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Abstract 

The accelerated failure time (AFT) model is one of the most popular regression models 

in survival analysis. The AFT model assumes a linear relationship between (log) event 

time and covariates. We propose a censored single-index model to extend the identity 

link function in the AFT model to an unknown link function, so that the new model is 

more flexible in capturing information between event time and covariates than the AFT 

model, and at the same time, it avoids the "curse of dimensionality". In this thesis, we 

provide two estimation methods for the new model. One is minimum average weighted 

conditional variance estimation (MAWV); the other is estimation via outer product of 

weighted gradients (OPWG). These methods use the Kaplan-Meier weights in the least 

squares objective functions to account for censoring. The MAWVE method estimates 

parameters by minimizing the overall approximation errors which are calculated from 

the response variable and the estimated smooth link function. The OPWG method 

works on the eigenvector corresponding to the largest eigenvalue from the weighted outer 

product of gradients of the estimated link function. The weighed local linear estimate 

method is used to estimate the local link function, and the nonparametric 0.632 bootstrap 

is considered to estimate the variance and construct the bootstrap confidence intervals. 

Simulation studies and real data examples are used to evaluate and illustrate the proposed 

methods. 
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Chapter 1 

Introduction 

In this Chapter, we introduce our models and briefly review the existing estimation 

methods for the related models. In Section 1.1, we describe the basic concepts and 

background of survival analysis. In Section 1.2, we outline the historical development 

and the basic set up of censored single-index models. Two methods, rMAVE and rOPG, 

on censored single-index models which were introduced by Xia (2006) are also reviewed 

in Section 1.3. 

1.1 Introduction to Survival Analysis 

Survival analysis is a branch of statistics which deals with survival time data. Survival 

analysis is an important research field in biostatistics, and it is widely used in actuarial 

science, business, biology, public health, medical science, engineering and sociology. This 

topic shares different terminologies in different areas, since the concepts may be a little 

bit different after several renovations, which make the topic much easier to be applied 

in the specific area. Survival analysis is also called reliability analysis or failure-time 

analysis in engineering, and duration analysis or event-history analysis in economics and 

sociology. In general, survival analysis involves with studying and modeling of time to 

event data. In this context, death or failure is considered the specific "event". This 

"event" may be death related to a disease, broken of electronic devices, criminal recidi-

vism, divorce, unemployment, worker's compensation claims, subscription of a magazine, 

and graduation from school. Here in this thesis, we are concerned with survival analy-

sis, in the biostatistical context, which is the application of statistics to questions about 
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human health. 

1.1.1 Censored Data 

Survival time data set in survival analysis usually contains censored observations. The 

censored observations are defined as the specific event has not happened by the end of the 

study or the event-happening time is not observed or known; the specific event could also 

occur when people are lost to follow-up after the designated period of study. Otherwise, 

when there are no censored observations, we have complete observations. 

There are mainly four types of censoring. 

1. Type I censoring 

Type I censoring is defined as the specific event that is observed only if it occurs 

prior to some prespecified time. The censoring time may be different from individual 

to individual, but the censoring time is fixed to the specific individual. For example, 

a researcher may start with a fixed number of rats. The rats are given some 

treatment. Due to time or cost considerations, the researcher terminate the study 

or report the results before all the rats are observed for the specific event, say death. 

Type I censoring is the most common censoring type in censored data. 

2. Type II censoring 

If a study continues until the death or failure of the first r individuals are observed, 

then we have Type II censoring. For instance, a study begins with n rats, which are 

given some treatment. After r rats are dead, the investigator will stop the study. 

3. Left censoring 

Before an individual is observed for the eveiit at time C1, the specific event has 

already happened in the study. We call this left censoring. Here is an example, a 

question in a survey "When did you get your first car?". A response may like "I 
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got a car before a certain time, but I can not remember when I got it". Then such 

a response is considered as left censored. 

4. Interval censoring 

When the specific event is known to fall in a time interval (a, b), then we call it 

interval censoring. For example, the age at which a subject first develops a kind 

of disease is known to the before time b. But at time a, which is before time b, 

the physical examination to this disease shows no positive result. So the specific 

event or disease occurred in the time interval (a, b), and the response is subject to 

interval censoring. 

Type I censoring and Type II censoring are also called right censoring. Another 

important type of right censorship is random censoring. It is very popular in biostatistics. 

Suppose T is a random variable denoting the time-of-event, such as death and failure. 

Thus the survival function is the probability that an individual's time of event is beyond 

some specified time, 

S(t) = Pr(T > t), 

where t is a fixed time of interest. Here the survival function is the complement of the 

cumulative distribution function, 

F(t) =Pr(T<t)=1—S(t). 

The survival function 8(t) and the cumulative distribution function F(t) always have the 

properties listed below, 

1. At the beginning time t=O, we assume that 8(0) = 1 and F(0) = 0, that is, no 

death or failure occur at the beginning of the study. 

2. The survival function is a monotone and nonincreasing function. If u > t, then 

8(u) <S(t) and F(u) ≥ F(t). 
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3. The survival function decreases to zero when time approaches to infinity, i.e. S(t) --• 

o and F(t) - 1 as t - oo. This means for all individuals, the event of interest will 

occur if we have enough study time. 

Kaplan-Meier estimator is the standard estimator of survival function for right cen-

sored data (see Kaplan & Meier, 1958). It is also called product limit estimator. 

Suppose we have a study sample where D individuals are observed with the specific 

event at the observed time t1 ≤ t2 < < t. At time tj there are d1 events occuring 

right at that time. Let Yj be the total number of individuals who are at risk (both 

survived and dead) at time t1. The quantity d/Y shows the conditional probability that 

an individual who still survives up to time t1 may suffer the specific event at that time. 

The Kaplan-Meier estimator is defined as 

if t < ti 

t1 if t, ≤ t 
ti:5t YiJ, 

The advantage of this estimator is that there is no information loss, since it incor-

porates the information from all individuals, both censored and uncensored. We can see 

this point from its definition. 

1.2 Introduction to Censored Single-Index Model 

1.2.1 Background Information 

One of the most important methods in statistics is regression analysis. It aims to estimate 

the regression function, which describes the relationship between a response variable 

Y E JR and an explanatory vector variable X E 1R. The regression analysis technique is 

initially based on a linear regression model, such as 

Y=a+13"X+e, (1.2) 
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where X is a covariate vector which may depend on the error term E, a is the intercept, 

and /3o is the parameter vector. This model has been studied in many different ways, 

such as least squares estimation (LSE) method. 

Accelerated failure time (AFT) models take logarithm of the survival time T with 

the ususal linear regression form 

Y=logT=a+/3'X+6, (1.3) 

where the variables are the same as those noted in (1.2). 

Brillinger (1983) proposed a link function g(.) to the linear regression model, produc-

ing the generalized linear model (GLM) 

where the link function g(.) is known. The GLM consists of three elements: 

1. A probability density function f for Y is from the exponential family. 

2. A linear predictor = 

3. A link function g such that E(Y) = y, 71 = g'(ji); g 1 is the inverse function of g. 

The unknown parameter /Ec in the GLM is typically estimated with the maximum like-

lihood estimator (MLE), the maximum quasi-likelihood estimator (MQLE) or Bayesian 

techniques. 

Stoker (1986) considered the same model form but with an unknown univariate 

smooth link function g (.), that is, 

(1.4) 

where the norm of PO is 1 (IIiolI = 1), E(elX) = 0, and the first component of 00 is 

positive. If the first component of 8o is negative, we can take = —,6o and a new link 
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function (.) to satisfy that g(/3'X) = g(—X) = ('X). This model is called the 

single-index model (SIM). Whether the link function g(.) is known or not is the primary 

difference between GLMs and SIMs. Recently, Xia (2006) considered SIMs and proposed 

two estimation methods, which are called rMAVE and rOPG methods, respectively (see 

section 1.3.1 and 1.3.2). He showed that the resultant estimators are asymptotically 

normal and his algorithms work more efficiently than others. 

1.2.2 Censored Single-Index Model 

Based on the previous work on the single-index model, we focus on the censored single-

index model, where the response Y is randomly right censored. The censored single-

index model (OSIM) is a semiparametric censored regression model, which generalizes 

the familiar accelerated failure time (AFT) models by assuming an unknown link function 

and an error term s, where e can be heteroscedastic. It can be used to model more flexible 

relationships between the survival response and the covariates than the AFT model. It 

also provides a technique for "dimension reduction" in nonparametric censored regression 

models. In the single-index model 

i=1,• ,m, (1.5) 

where Y is the ith object's survival time (on log scale), Xi is the covariate vector, Xi E RP. 

is the coefficient parameter vector. Let C be the random censoring variable. Due 

to the censoring, we would not know the survival time 1', but the censoring indicator 

'{Y≤c1} and the censored response Zi = min{, Q. So we have the data set in the 

form of {(X, Z,6)} 1. 

Actually, the single-index model is a special case of the censored single-index model. 

When 5j 1, i.e. Z 1', i = 1, .. , m, the single-index model and the censored single-

index model are the same. Lu and Burke (2005) considered a CSIM and proposed the 

average derivative estimator (ADE) for it. 
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1.3 Review of Estimation for Single-Index Model 

In the past two decades, the estimation of the single-index parameter 13o has been inves-

tigated in a series of papers. Typically, there are three main approaches. The first one 

is the average derivative estimation (ADE) method, proposed by Powell et al. (1989), 

ffiirdle et al. (1989 & 1993). The second one is the sliced inverse regression (SIR) 

suggested by Li (1989). The third method is the semiparametric least squares (SLS) 

estimation investigated by Ichimura (1993). 

Suppose the mean response of Y given X = x is denoted as 

M(X) = E(YIX = x). 

Then the vector of "average derivative" is defined as 

77 = 

where m'(x) = am(x)/,9x. It is the vector of partial derivatives and its expectation 

is taken with respect to the marginal distribution of X. Härdle et al. (1989 & 1993) 

proposed the average derivative estimation (ADE) on the SIM for studying the mean 

response m(x) through the estimation of the d-dimensional vector q. ADE can be con-

sidered in two stages: first estimate 9 using ,&, then approximate m(x) by (x) = .(iTx). 

Recently, Xia (2006) proposed two new methods: the refined minimum average con-

ditional variance estimation (rMAVE) and the refined outer product of the gradients 

(rOPG). Xia (2006) summarized the ADE method proposed by Powell et al. (1989) and 

Härdle and Stoker (1989), and pointed out that this ADE method suffers two drawbacks. 

The first is the "curse of dimensionality", the second is that when E{g'(f3'X) } = 0, the 

method fails to estimate Io. Then Xia introduced the rMAVE and rOPG to overcome 

these disadvantages. 

In this thesis, we adopt Xia's methods and develop two new estimation methods for 

CSIMs. We first introduce rMAVE and rOPG for SIMs. 
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1.3.1 Introduction to the rMAVE Method 

The basic idea of this method is to linearly approximate the smooth link function g(.) 

and to estimate 13o by minimizing the overall approximation errors 

E[Y - E(Y I X)]2 = E[Y - g(13TX)]2, 

where the unknown link function g(.) is locally approximated by a linear function (Taylor 

expansion) of g(j3'X) at 3'x 

g(/3X) a+d/3'(X—x), 

where a = g(/3x) and d = g'8'x). Hence, given a sample {(, X)} 1, rMAVE 

estimates 00 by minimizing local conditional variance 

n n 

min [i - {a+df3T (X —X)}]2w, (1.6) 
i=i 2=1 

aj,dj,=1,.•. ,n 

where wij are the kernel weights to describe the local character of linear approximation, 

n —1 

wjj =Kh(/3T(Xj_Xj)) [Kh( T(xx))] , (1.7) 

= (1/h)K(./h), K(.) is a kernel function and h is the bandwidth. 

The detailed algorithm of rMAVE could be expressed in three steps. Suppose ,8 is an 

initial estimate of Po. Let Xjj = X - X and j(/3TX) = n 1 Kh(/3TXj3). 

Step 1: Calculate the a and Z such that 

/ 9\ 

dh 
> Kh ()3TX) 
i=1 \ 

\ / \T 1 

1 ( 1 
c/h) Tx/h 

n 

Kh (TX) flTX/h) Yi 
' 

(1.8) 
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Step 2: Fix the weights K,(/3TX), ajfl and 4, calculate the solution to 6 in (1.6). 

18 ={ X iT  

i,j=1 

n (1.9) 

iI - 4(i3TXi), 
i,j=1 

where d(X) = 4 in step 1, and = pn{Je(Xj)}. Here p(•) is a trimming function 

used to handle the boundary points. In Xia's paper, for some fixed constant € > 0 and 

Co > 0, 

exp{(2con—v)'} 
exp{(2co _v)_}+exp{(v_c0n.)-i} 

0, 

if v ≥ 2c0n 

if 2con > v > con-' 

if v ≤ con-5 

(1.10) 

The choice of e and c0 will be given in the subsequent simulation study. 

Step 3: iteratively repeat Step 1 and Step 2 until P:= 0/1 1011 converges. 

Normally the iteration could be stopped by some common convergence rules. We 

denote the converged rMAVE estimator by IrMAVE. 

1.3.2 Introduction to the rOPG Method 

Let A(x) = E(YIX = x) = g(f3'x), where A(x) is the same tom(x) in the rMAVE 

method, then it is easy to get 

VA(X) = --X(x) = 19 -g(/3x) = g'(/3x)/3o, (1.11) 
Ox  

where the derivative or gradient of the regression function at any point x shares the 

same direction as 6o. For rOPG method, we focus on E{VA(X)VTA(X)} instead of 

E{VA(X)}. Since E{VA(X)VT)s.(X)} has only one nonzero eigenvalue, which is 1, and 

E{VA(X)VTA(X)} = E [{g'(i3g'X)}2} fioi3', (1.12) 
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the eigenvector of E{VA(X)VT.X(X)}, corresponding to its largest eigenvalue, is the 

index parameter /3g. 

Thus, the rOPG method considers the local linear regression, it solves the minimiza-

tion problem 

min J:fYj - aj -  
aj, j 

where Xjj and wij are defined as in the rMAVE section. 

Next, we introduce the algorithm of the rOPG method in three steps which are similar 

to those of the rMAVE method. Suppose ,@ is an initial estimate of 18o satisfying the 

condition (C5) stated in the next section. 

Step 1: Calculate 4 and bq such that 

= K (18TXa) ( 1 ) ( 1 
i=1 XIIJ X IJ 

\\ 

I IYi. 
( k\ Xii) 

n 

K,(f3'X) 

Step 2: Calculate the first eigenvector corresponding to the largest eigenvalue of 

n 
13jf3f7j3\T 

Pj "i (1.15) 
j=1 

where Is'? p(J (18Tx)), the same as defined in the previous rMAVE section. Denote 

the first eigenvector to (1.15) again by 18. 

Step 3: Repeat Step 1 and Step 2 until 18 converges. 

We denote the converged rOPG estimator by I9rOPG. The iteration could be stopped 

by some common convergence rules, too. 

1.3.3 Remarks on the rMAVE and rOPG Methods 

Xia (2006) compared the two methods and got the conclusion that the rMAVE method is 

more efficient than the rOPG method. Tinder the following conditions, the two estimators 
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/3rMAVE and /oc are asymptotically normal. 

(Cl) (Design). The density function f(v) of /3TX and its derivatives up to the third 

order are bounded on K for all 3: ftfl - <8 where 6> 0 is a constant, EIXJ6 <00, 

and E1Y13 <o°• 

(02) (Link function). The conditional mean g (v) = E(YJI3TX = v), and its deriva-

tives up to the third order are bounded for all 8 : Il/s - ,6o I I oII <6 where 8 >0. 

(C3) (Kernel function). K(v) is a symmetric density function with finite moments of 

all orders and bounded derivative. Its Fourier transform is absolutely integrable. 

(04) (Bandwidth and trimming parameter). Bandwidth h c< n 115 and trimming 

parameter € < 20 

(05) (Small neighborhood). The initial value 3 is in a small neighbor of o: 93 = 

11,8 - ,eoll ≤ COTh"2 o} with c0 < 20* 

Under (Cl)-(05), Xia (2006) got the asymptotic results of the two estimators f3rMAVE 

and Use the Moore-Penrose method to calculate the inverse of symmetric matrix 

A, and denote it as A (see Penrose, 1955). Let pp(x) = E(Xl,8TX = f3TX), 71(x) = 

- X, W'6 = E(XXTI/3TX = I3T),70() = vpTO  and W(x) = w,30 (x) - 

Xia's results can be summarized in the following three theorems. 

Theorem 1.3-1. (see Xia, 2006) 

'./(/rMAVE - 00) 'N(0, ErMAVE), 

where 

>rMAVE = [E{g' (/3X)2W(X) }]E{g' ( f3X)2 Wo (X)e2} 

X [E{g'(/3X)2W(X)}]. 

Theorem 1.3-2. (see Xia, 2006) 

'/(IrOPG - 00) 'N(0, Er0p), 

(1.16) 

(1.17) 

(1.18) 
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where 

ErOPG = E{g'(j3X)2W(X)Wo (X)W(X) 2}/{Eg'(/3'X)2}2. 

Theorem 1.3-3. (see Xia, 2006) If E is independent of X, them 

ErOPG ≥ ErMAVE. 

(1.19) 

(1.20) 

When X is normal, these two methods perform equivalently in terms of asymptotic 

efficiency, i.e., ErQpG = 2 rMAVE• Theorem 1.3 - 3 shows that rMAVE is more efficient 

than rOPG. But in computing the estimates, rOPG is easier to implement and faster to 

compute than rMAVE. 



Chapter 2 

Estimation of CSIMs 

In last Chapter, we introduced CSIMs and SIMs, and also introduced the two estimators 

of SIMs: /3rMAVE and f3rQPG• Now we present the core work of this thesis: two estimators 

of CSIMs. In Section 2.1, we describe the model assumptions. In Section 2.2, we propose 

two estimation procedures for CSIMs, which are modified from rMAVE and rOPO for 

SIMs. We discuss the properties of the estimators in Section 2.3. 

2.1 Model Assumptions 

Now, we study the CSIMs. Consider the following censored single-index model, 

11 = g(/3'X) + aj, (2.1) 

where Yi is the ith subject's survival time (on the log scale), Xi is the covariate vector, 

Xi E RP, 00 is the parameter p-vector, 3o E 1R', satisfying IIPoII = 1, the first component 

of fib is positive, ei is the random error, satisfying E( IX) = 0. Let Ci be the random 

censoring variable, independent of X, and 111. Then we have the censor indicator Sj = 

I{≤cd, and at the same time, we have the censored response Zi = min{Y, Q. Hence we 

have an i.i.d random sample {(X, Z, S) }t1 from the population {X, Z, 6}. Assume the 

distribution of Y, C and Z are F(t) = P(Y ≤ t), G(t) = P(C ≤ t) and H(t) = P(Z 

respectively. 

We assume the same assumptions (C1)-(C5) in Chapter 1. In addition, we assume 

that the following conditions for the Kaplan-Meier integrals hold, 

(C6). Let u = /3'x, H(t) = P(Z ≤ t), denote by F(yu) the conditional distribution 

13 
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of Y given U = /3'X = u, assume 

0TH y2{1 - G(y)}'dF(yu) <00, 

where TH = inf{t H(t) = 1}. 

(C7). Denote 'iF = inf{t: F(t) = 1} and TG = inf {t : G(t) = 1}. Suppose rF 

which implies 1 - H(t) = (1 - F(t))(1 - G(t)), 'rH = TF; and assume 

JTH IyIc'I2(y)dF(vlu) <00, 
where c(y) = f.!'{1 - H(s)J 1{1 - G(s)}'dG(s). See Stute (1996) for more details 

about these conditions. 

2.2 Estimation for CSIMs 

2.2.1 MAWVE Method 

This approach is to linearly approximate the smooth link function g(.) of the OSIM 

and then estimate the parameter 00 by minimizing the overall weighted approximation 

errors. The method is called minimum average weighted conditional variance estimation 

(MAWVE). 

Suppose /3 is an initial estimate of ,8, C is known. Take Xjj = X - X, J,(X) = 

Fn 
K,(/3"X) and WiG = 6j/(1 - G(Z—)), where G(.—) is the left-continuous 

version of C. When C is unknown, we replace C by its Kaplan-Meier estimator 6, i.e. 

- O(Z—)). In fact, wid is equivalent to the Kaplan-Meier weight defined in 

Stute (1993, 1996), see Satten and Datta (2001). Then we have conditional expectation 

equation E(IX) = E(wjGZjIXj). This indicates that we can use the Kaplan-Meier 

weight to construct new estimators of /3o under censorship. 

In order to estimate /3, we need to estimate g(.) first. To do this, assume /3 is fixed 

and similar to the rMAVE method, we have the Taylor expansion of the link function 
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g(/3Tx) at g(18TX) given by 

g(f3Txi) a + d/3T(X - x), (2.2) 

where a = g(/3'x), d = g/(fiTx). we would like to calculate the minimum value of the 

estimated conditional variance with respect to a and d using the Kaplan-Meier weights, 

o(xL8) = min{nf(x)} 
i=1 

[Z - {a + d/3T(X - x)}]2waKh{ (Xi - x)}, (2.3) 

where J(x) = n-,EnKj{,8T (X - x)} and Kh(u) = K(u/h)/h, where K is Gaussian 

kernel function, K(u) = and h is the bandwidth. 

Write the right-hand-side of (2.3) as 

n 

a, d,,@, Z) = {nf(x)}' E [Z - {a + d/3T(X - x)}] 2 wjGKh{/3T(X - x)}. (2.4) 

Let 

l(x,a,d,)3,Y) = 

i=1 

n 

i=1 

- {a + d13T (X - )}]2 Kh{f3T (Xi 
- x)}, (2.5) 

which is the estimated conditional variance when data are fully observed. We can see 
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that 

E{l(x,a,d,)3,Z)IXi,... ,X} 

=E{{nj,3(x)}_1 [Z - {a + d/3T(X 2 - x)}] 1 - (X1 - x)}JX1,... ,X} 
i=1 

[min{1', C} — {a + d/3T(X - x)}]2 1— G(min{, C}) K1 — x)}lxi,... ,X} 

=E{{nJ(x)}' 
1 — G() 

[Yj - {a + d/3T(X - x)}]2 Kh{ j3T (X - x)}JX1, 

=E{{n,J,3(x)}_'{l - 1 
- G() 

n 

,Xn,Yi,... ,Y}IXi,." ,X} 

i=1 

=E{l(x,a,d,,8,Y)IXi,... 

Hence, we propose the weighted estimator of the conditional variance when data are 

randomly right censored. 

An important class of estimators is one that minimizes the overall sum of o(xI18) 

at all x = X5, j = , n. Hence, in the MAWVE method, the estimator of Po is to 

minimize the overall local linear approximation of the conditional variance, 

n 

QTh (/3) = > o(XL8), 
j=1 

(2.6) 

where 3 satisfies 11,8 

The algorithm of the MAWVE method can be expressed in three steps. Suppose 0 is 

an initial estimate of /3g. 
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Step 1: Fix fi, calculate the 4 and 4 such that 

n (a [ 1 

4h) = [waKh(18Txii) 18X/h) 

( 1h 

wKi (/3TX) 
i=1 ,I3TX./h / 

zi. 

) T-

(2.7) 

Step 2: Fix Kh (I3Tx), 4 and 4, calculate the solution of 8 to a minimization 
formula, 

18 { 
n 

i,j=]. 

wKh(18TXjj),dp(Xj)Xjj (Z - 

(2.8) 

i,j=1 

where dp(Xj) = 4 in Step 1 and = 

Step 3: iteratively repeat Step 1 and Step 2 until 0:= 18/111811 converges. 

The iteration can be stopped by some common convergence rules (see Section 2.3.1). 

We denote the converged MAWVE estimator by IMAWVE 

2.2.2 OPWG Method 

The basic idea of this method is to work on the eigenvector corresponding to the largest 

eigenvalue from the outer product of weighted gradients of the estimated link function. 

The method is called the outer product of weighted gradients (OPWG) method. Let 

A(x) = E(YIX = x), which is the same in the rOPG section. Define 

Then 

VA(X) = --A(x) = 19 _g'(/3x) = g'(j3g'x)f30. (2.9) 
ax 49X 

E{V)(x)VTA(x)} = E [{g1(I3'x)}2] 18ofi'. (2.10) 
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So the index parameter ,6o is the corresponding eigenvector when the mean outer product 

of the gradients E{V)(X)VTA(X)} reaches its largest eigenvalue. 

First we estimate the gradients by local polynomial smoothing. It is implemented 

by solving the following minimization problem of the weighted local linear regression 

function 

min Zi -  aj  - bXjj}2wôwjj, 
.1' 3 

(2.11) 

where Xij = - X, the same as that presented in the previous section, wij are the 

kernel weights depending on the distance between Xi and X in equation (1.7), the same 

as those defined in (1.7) in the rMAVE section. 

As we did for the MAWVE estimator, we can show that 

E [{z - a - ,X = E -  a - x] 

(2.12) 

This indicates that the weighted objective function under censoring is equal to the Un-

weighted objective function under non-censoring, conditional on the observed covariates 

X. Therefore, the new estimator is called the OPWG estimator. 

Specifically, we would calculate the matrix 

i=i J [E{Yi 

n 

i=i 

(2.13) 

where ij is bg corresponding to the minimum of the weighted local linear regression in 

(2.11). Hence the first eigenvector of is an estimator of the index parameter o, 

where ,& satisfies ft&H = 1. 

Similar to MAWVE, OPWG can also be expressed in three steps. The definitions of 

symbols X, f(X), wiO and Kh(u) = K(u/h)/h are given in the previous sections. 
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Step 1: Calculate the a and such that 

a {n 1 
bj" i1  Xii wjaKh(/3TXjj) I 

waK,(TXjj) ( zi. 
i=1 X ii 

/ 

(2.14) 

Step 2: Calculate the first eigenvector of 

= ,b(b)T, (2.15) 

where = pn( e(8TXj)), which is defined in the MAWVE section, and f,5.TX) = 

K(/3"Xj). Denote the eigenvector as 8. 

Step 3: iteratively repeat Step 1 and Step 2 until 0:= ///3U converges. 

We denote the final converged OPWG estimator by /QPWG, which satisfies II/9OPWGII = 

1. 

2.3 Inference for CSIMs 

2.3.1 Consistency 

Huber (1964) introduced the concept of M-estimators. Generalized maximum likelihood 

estimation is proposed to the minimization of 

n 

(2.16) 
j=1 

where p is an arbitrary function that is differentiable with respect to 9 and could be solved 

for the root of the derivative. Then the solution to the minimization of (2.16) is called 

an M-estimator. We can easily find that I3MAWVE and I3OPWG are both M-estimators 

since the functions we used in (2.6) and (2.10) satisfy the conditions for p(.). 



20 

Next, we want to check if the M-estimators I3MAWVE and I3OPWG are consistent. 

Before proving the consistency, suppose M(/3) and M(,8) are criterion functions. M-

estimator / maximizes a random criterion function 

We have the theorem below for the M-estimator j9, to be consistent. 

Theorem 2.3-1. (see van der Vaart, 1998) Let M be a random function and let M 

be a fixed function of 0 such that for every > 0 

SUP I M8) - M(,6)I ' 0, 

SUP M(8) <M(,80). 
: d(f3,fio)≥e 

Then any sequence of estimators $, with ≥ M,(/3o) - o(1) converges in 

probability to /3o. 

For MAWVE, we have 

n  
M(j3) = n/Q(/3) = En 

=1 o(XI/3)' 

where the M-estimator I3MAWVE maximizes the random function M. 

Also from the idea of MAWVE, we may find a determinant function M() such that it 

satisfies the conditions of Theorem 2.3-1 and Oo maximizes it. Hence, through Theorem 

2.3-1 we can get the conclusion that 

I3MAWVE P— f 00. 

For the OPWG method, we have the same convergence conclusion, 

P 
I3OPWG - o. 
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2.3.2 Estimation for the Link Function 

Fan and Gijbels (1994) proposed methods of data transformation and local linear fit 

to estimate the nonparametric regression function when data are censored. Lu and 

Burke (2005) applied their techniques to the censored single-index models to estimate 

the link function. Cai (2003) considered a weighted local linear method to estimate the 

nonparametric regression function with censored data. 

For the CSIMs, after we obtain the estimator / of the single-index parameter, we 

use Cai's method to estimate the link function. The estimation procedure is outlined 

as follows. In fact, such an estimator, which coincides with a in the final step of the 

iterative algorithm of MAWVE or OPWG at each {X }, is the estimate of the link 

function at that point. 

To estimate g(.), with / from the final step of the iterative algorithm, we calculate 

U=TX. 

Thus, we have the data {(U, Z, ö)} with the weights fwi = Following 

Cal (2003), the weighted local linear least squares equation based on the censored data 

{(U, Z, 5)} = is expressed as 

n 

— a - a2(U - u)}2Kh( - u). (2.17) 
i=1 

By minimizing (2.17) with respect to a1 and a2, we can obtain the weighted local linear 

estimator of the link function g(.) at point u, (u; /) = &i, which can be expressed as 

below, 

with 

n n 

.(u; ) = m(u; $)Z/ )' m(u; ,ã), (2.18) 
i=1 i=1 

m1 (u; $) = WKh (U — u) {S,2 — (U - u)S,i}, 
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where 
n 

Sm wjKh(U—u)(U—u), 1=1,2, 
i=1 

and h is the bandwidth used in the MAWVE and OPWG methods. 

2.3.3 The Nonparametric 0.632 Bootstrap 

We use the nonparametric 0.632 bootstrap, which is introduced by Efron and Tibshi-

rani (1993 and 1997), to estimate the variance of /3MAWVE and I3oPWG. For one sample 

set with sample size n, the probability for the subject in the sample not chosen after n 

samples is about 

(1 - 1/n)tm 0.368. 

So the expected bootstrap sample size from the original sample set is appearing to be 

0.632n. 

The 0.632 bootstrap estimator has the following error form: 

-0.632 -(1) 
Err =0.368•ff+0.632•Err 

-.0.632 
where Err denotes the 0.632 bootstrap estimation error, presents apparent error 

--- (1) 
rate (or resubstitution estimation error) and Err is for leave-one-out bootstrap esti-

mation error. Here leave-one-out bootstrap is the bootstrap procedure that leaves out 

one subject at one bootstrap time. 

Thus for the 0.632 bootstrap, we resample the data with sample size A = 0.632n for 

m times without replacement. Then we would have the bootstrap estimators $', 

The variance of {/3} approxiimates as the variance of 4. 



Chapter 3 

Simulation Studies 

In this Chapter, two Monte Carlo simulation studies are performed to check the consis-

tency and efficiency of the MAWVE and OPWG methods. In Section 3.1, we introduce 

a model which is developed from the "sine-bump" model and present the results from 

MAWVE and OPWG. Another model is called the exponential model, which is modified 

from Xia (2006). This exponential model is used in the second simulation study in Sec-

tion 3.2. In Section 3.3, we conduct a small simulation study on the "sine-bump" model 

to estimate the variances and to construct the bootstrap confidence intervals of the index 

parameters with MAWVE and OPWG. 

3.1 Simulation Study I: Sine-Bump Model 

3.1.1 Model Introduction 

Consider a censored single-index model which is developed from the "sine-bump" model 

(see Carroll, Fan, Gijbels & Wand, 1997; Yu & Ruppert, 2002): 

Y=sin 
fir('X — Afl 

1 B—A (3.1) 

where X is a trivariate generated independently from the standard normal distribution 

N(0, 1), e is independent of X and follows the normal distribution N(0, p.2), where o is the 

standard deviation of the error. Set A = i//2 - 1.6451V-12 and B = \//2-i- 1.645/\/. 

Assume that C follows N(p, 1), where p determines the censoring rate. The true value 

of the parameter is set to be i@O = (1, 1, 1)T/. 

In this simulation study, we consider the CSIM with respect to different u and /2. 

We choose o- = 0.1 and 0.5, each with three different levels of censoring: i = 0.5, 1.0, 

23 
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and 2.0. When y = 0.5, the censoring rate is approximately 55%; when = 1.0, the 

censoring rate is about 37%; when = 2.0, the censoring rate is around 10%. The higher 

censoring rate, i.e. smaller jt, the more censored data we will get. 

3.1.2 Simulation Results 

The simulation is based on 1000 replications for different a and /2 using MAWVE and 

OPWG methods. In each replication, the sample size is 100. Thus we have 1000 estimates 

, i = 1,... , 1000, from each replication. We calculate the mean of the estimates ,8 and 

the Monte Carlo variance with 1000 replications. With the mean , and the Monte Carlo 

variance, we obtain the bias and the mean squared errors (MSE) of the estimators, which 

are used to check the performance of MAWVE and OPWG. 

In the simulation, we choose (1, 2, 3) IVI-4 as the initial value of @ in the algorithm. 

We use Gaussian kernel function K(u) = =e with bandwidth h = 0.14. We set 

= 1/10 and c0 = 0.01 in the trimming function (1.10). 

The results for the bias and MSE with respect to different a and censoring rates are 

showed in Table 3.1. Smaller bias and MSE indicate good fitness of the estimates. We 

can easily see that the estimates have small bias and MSE, even when the censoring 

rate is 55%. For smaller a, the bias and MSE of the estimates are smaller; when the 

censoring rate is smaller, i.e. /2 is larger, the bias and MSE of the estimates are smaller 

too. From Table 3.1, we conclude that the MAWVE method performs slightly better 

than the OPWG method, since the MSE values of the MAWVE method are generally 

smaller than those of the OPWG method. 
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Ii, (01032,03) 

0.1 10 2.0 
0.1 37 1.0 
0.1 55 0.5 
0.5 10 2.0 
0.5 36 1.0 
0.5 55 0.5 

0.1 10 2.0 
0.1 37 1.0 
0.1 55 0.5 
0.5 10 2.0 
0.5 36 1.0 
0.5 55 0.5 

Bias 
(j3, 2, 8)  

MSE (x 100) 
MAWVE 

(-0.001, 0.000, 0.001) (0.031, 0.031, 0.028) 
(-0.001, 0.000, 0.001) (0.043, 0.047, 0.042) 
(-0.002, 0.000, 0.000) (0.074, 0.077, 0.071) 
(-0.009, -0.010, -0.002) (0.764, 0.833, 0.775) 
(-0.019, -0.015, -0.006) (1.404, 1.636, 1.588) 
(-0.031, -0.026, -0.026) (2.425, 3.559, 3.605) 

OPWG 
(-0.001, -0.001, 0.001) 
(-0.001) -0.001, 0.001) 
(-0.002) -0.001, 0.001) 
(-0.009, -0.011, -0.002) 
(-0.018, -0.018, -0.007) 
(-0.029,-0.036, -0.033) 

(0.031, 0.031, 0.029) 
(0.042, 0.047, 0.041) 
(0.075, 0.079, 0.068) 
(0.855, 0.886, 0.831) 
(1.495, 1.844, 1.604) 
(2.664, 4.104, 4.542) 

Table 3.1: Sine-Bump Model: Results of Monte Carlo simulations with the MAWVE 
method and the OPWG method (a-: standard deviation of the error; : censoring para-
meter; cv: censoring rate in percentage; Bias: bias of the estimates; MSE: mean squared 
error). 

After obtaining the index parameter estimator ,& we can estimate the link function 
using weighted local linear method (see (2.18)) and compare it with the true link function. 

For example, we show the estimation from a typical simulated sample in Figure 3.1 with 

the MAWVE method, under the condition that standard deviation for the error a- = 0.1 

and the censoring parameter i = 1.0 (the corresponding censoring rate is about 37%). 

Figure 3.2 is the results using the OPWG method under the same situation. In both 

figures, the link function estimations fit the true link function very well, except for some 

small bias in the peak. 
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3.2 Simulation Study II: Exponential Model 

3.2.1 Model Introduction 

Consider the exponential single-index model modified from Xia (2006). 

Y = (3.2) 

where X = (x1,... ,xio)T, Oo = (2,1,0,... ,0)T//g, N(0,o 2). Let (xi + 1)/2 

Beta('r, 1) and P(xk = ±0.5) = 0.5, k = 2,3,4,••• , 10. The censoring variable C follows 

N(p, 1.52), where p determines the censoring rate. Assume that the random variables 

x10, e and C are independent with each other. 

We conduct this simulation study with respect to different u and p values. We choose 

= 0.1 and 0.5, p = 1.2, 1.8 and 3.6. When p = 3.6, the censoring rate is about 10%; 

when p = 1.8, the censoring rate is around 39%; when p = 1.2, the censoring rate is 

approximately 54%. 

3.2.2 Simulation Results 

The simulation runs 250 replications for different u and p with the sample size n = 200 

in each replication. Hence, similar to the "sine-bump" simulation, we have 250 estimates 

, i = 1,... , 250 from each of the MAWVE and OPWG methods. We calculate the 

mean of the estimates , and Monte Carlo variance in 250 replications. The bias and 

MSE of the estimators are also calculated for comparison. 

16,2 In the simulation, we use Gaussian kernel function K(u) = with bandwidth 

vf2h = 0.22. We also set e = 1/10 and co = 0.01 in the trimming function (1.10). Use 

(10,9,8,... , 1)/\/ as the initial value of 3 in the algorithm. 

Table 3.2 shows the results from both the MAWVE and OPWG methods. Similar 

to the "sine-bump" model simulation study, we can find that when a is smaller, the 

bias and MSE are smaller; when the censoring rate is smaller, the bias and MSE are 
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smaller as well. Smaller bias and MSE indicate better estimates. From Table 3.2, we can 

notice that both the MAWVE and OPWG methods perform well on the simulation data. 

MAWVE works better than OPWG, since the results of the MAWVE method always 

show smaller bias and MSE. Comparing the results in Table 3.1, we can also find that 

the bias and MSE of larger dimension of covariates (p = 10) appear larger than those of 

smaller dimension of covariates (p = 3). 

We can alsO estimate the link function using the weighted local linear method (see 

(2.18)), and compare it with the true link function. For illustration, we show one example 

in Figure 3.3 with the MAWVE method, in which the data are from a typical simulated 

sample with standard deviation for the error o. = 0.1 and the censoring parameter p = 

1.8 (the corresponding censoring rate is about 39%). Figure 3.4 shows the estimated 

link function with the OPWG method, along with the true link function from a same 

simulated sample. 

Figure 3.3 and Figure 3.4 show the performance of the estimation of link function. In 

both figures, the link function estimations fit the true link function well, except for the 

right boundary of the x-axis. This results from lack of information, such as number of 

data, in the boundary. 

3.3 A Small Simulation Study On Variance Estimation and 

Bootstrap Confidence Interval 

As illustrated in Section 2.3, we can make inference on 3 if we know the variance of 

the estimator. To do this, we consider the bootstrap estimation of the variance. We 

use the "sine-bump" model as an example to explain the method. In a simulation of 

this model, we set the sample size ri = 100 and the replication number r = 100. In the 

ith replication, we estimate the variance of the estimator ,j using the 0.632 bootstrap 
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without replacement (see Efron & Tibshirani, 1993 or explanation in Chapter 2). The 

bandwidth used is h = 0.14 and the number of bootstrap times is b = 100. 

For the accuracy of the bootstrap variance, the results are shown in Table 3.3. We 

compare it with the Monte Carlo variance of the r = 100 estimates. We also calculate 

the coverage probability of the bootstrap confidence intervals. 

We find that when o- is small, the bootstrap variance agrees with the Monte Carlo 

variance. Otherwise, the bootstrap variance tends to overestimate the variances of the 

estimators. 

We notice that the average coverage probability deviates from the nominal level 95%, 

which reflects the inaccuracy of the bootstrap variance. OPWG has higher coverage prob-

ability than MAWVE, but it appears to have larger Monte Carlo variance and bootstrap 

variance. Hence, we may conclude that OPWG is less efficient but has better coverage 

probability than MAWVE. 

This is a small scale simulation study. We believe that we can improve the results 

by increasing the sample size and the number of bootstrap times. However, a faster 

computing method is needed to achieve this goal. 
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Figure 3.1: Sine-Bump Model: Curve estimation for the link function (standard deviation 
for the error u = 0.1, censoring rate cr = 37%) with the MAWVE method and a typical 
simulated sample. The dotted curve is the estimated link function. The solid curve is 
the true link function. 
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Figure 3.2: Sine-Bump Model: Curve estimation for the link function (standard deviation 
for the error o = 0.1, censoring rate cr = 37%) with the OPWG method and a typical 
simulated sample. The dotted curve is the estimated link function. The solid curve is 
the true link function. 



0. cr(%) A 
fil 

3.6 Bias: -0.008 
MSE(x 100): 0.012 

1.8 Bias: -0.014 
MSE(x 100): 0.031 

1.2 Bias: -0.025 
MSE(x 100): 0.654 

3.6 Bias: 
MSE(x 100): 

1.8 Bias: 
MSE( x 100): 

1.2 Bias: 
MSE(x 100): 

MAWVE 

0.1 10 

0.1 39 

0.1 54 

0.5 10 

0.5 39 

0.5 54 

-0.024 
0.154 
-0.077 
1.960 
-0.151 
5.079 

132 

0.012 
0.036 
0.020 
0.073 
0.014 
0.600 
0 
0 
0 
1 
0 
1 

.015 

.288 

.005 

.306 

.006 

.745 

/33 
0.000 
0.036 
0.000 
0.086 
-0.004 
0.369 
-0.001 
0.281 
0.007 
1.142 
0.055 
2.795 

,84 135 136 

0.001 
0.036 
0.003 
0.120 
0.003 
0.263 
0.004 
0.383 
0.015 
1.492 
0.047 
3.234 

0.000 
0.036 
-0.004 
0.090 
-0.005 
0.255 
-0.003 
0.260 
0.005 
1.252 
0.041 
3.020 

0.000 
0.033 
0.001 
0.078 
0.005 
0.333 
0.002 
0.320 
0.009 
1.196 
0.032 
2.697 

137 
0.001 
0.033 
0.001 
0.086 
-0.001 
0.139 
0.006 
0.324 
0.016 
1.299 
0.002 
2.314 

138 
-0.001 
0.036 
-0.001 
0.086 
0.000 
0.233 
-0.005 
0.270 
0.001 
1.256 
0.024 
2.081 

139 
0.000 
0.036 
-0.003 
0.089 
0.001 
0.287 
0.000 
0.319 
-0.002 
1.351 
0.002 
1.805 

13io 
-0.001 
0.032 
-0.002 
0.079 
0.002 
0.121 
-0.004 
0.314 
0.002 
1.043 
0.000 
1.667 

OPWG 
0.1 10 

0.1 39 

0.1 54 

0.5 10 

0.5 39 

0.5 54 

3.6 Bias: 
MSE( x 100): 

1.8 Bias: 
MSE(x 100): 

1.2 Bias: 
MSE( x 100): 

3.6 Bias: 
MSE( x 100): 

1.8 Bias: 
MSE( x 100): 

1.2 Bias: 
MSE(x 100): 

-0.001 
0.009 
-0.013 
0.034 
-0.023 
0.162 
-0.018 
0.139 
-0.089 
2.435 
-0.213 
9.164 

-0.001 
0.034 
0.014 
0.080 
0.020 
0.173 
0.004 
0.255 
0.001 
1.603 
-0.04 
3.802 

0.000 
0.040 
-0.001 
0.108 
-0.002 
0.344 
0.000 
0.281 
0.001 
1.265 
0.033 
4.060 

0.001 
0.037 
0.004 
0.146 
0.000 
0.304 
0.004 
0.364 
0.013 
1.684 
0.029 
4.278 

0.000 
0.037 
-0.003 
0.124 
-0.006 
0.253 
-0.002 
0.296 
-0.002 
1.498 
0.015 
3.395 

0.001 
0.035 
0.001 
0.105 
0.002 
0.265 
0.002 
0.348 
0.001 
1.556 
0.007 
3.555 

0.001 
0.034 
0.000 
0.095 
0.002 
0.241 
0.006 
0.317 
0.006 
1.814 
0.018 
3.126 

0.000 
0.040 
-0.003 
0.117 
0.000 
0.248 
-0.005 
0.281 
-0.007 
1.218 
0.011 
3.563 

0.000 
0.034 
-0.005 
0.125 
-0.003 
0.227 
0.001 
0.302 
-0.011 
1.345 
0.006 
3.455 

-0.001 
0.034 
-0.004 
0.104 
-0.001 
0.187 
-0.003 
0.319 
0.002 
1.381 
-0.001 
3.219 

Table 3.2: Exponential Model: Results of Monte Carlo simulations with MAWVE and OPWG methods (u: standard 
deviation of the error; p: censoring parameter; cr: censoring rate in percentage; Bias: bias of the estimates; MSE: mean 
squared error). 
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Figure 3.3: Exponential Model: Curve estimation for the link function (standard devi-
ation for the error u = 0.1, censoring rate cr = 39%) with the MAWVE method and 
a typical simulated sample. The dotted curve is the estimated link function. The solid 
curve is the true link function. 
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Figure 3.4: Exponential Model: Curve estimation for the link function (standard devi-
ation for the error ci = 0.1, censoring rate cr = 39%) with the OPWG method and a 
typical simulated sample. The dotted curve is the estimated link function. The solid 
curve is the true link function. 
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a cr(%) /2 
Monte Carlo Variance Bootstrap Variance 

(x 100) (x 100) 
Bootstrap CI 
Coverage (%) 

0.1 10 2.0 
0.1 37 LU 
0.1 55 0.5 
0.5 10 2.0 
0.5 36 1.0 
0.5 55 0.5 

0.1 10 2.0 
0.1 37 1.0 
0.1 55 0.5 
0.5 10 2.0 
0.5 36 1.0 
0.5 55 0.5 

MAWYE 
(0.032, 0.030, 0.026) 
(0.041, 0.038, 0.041) 
(0.070, 0.069, 0.072) 
(0.656, 0.730, 0.615) 
(1.605, 1.341, 1.458) 
(2.373, 2.981, 2.053) 

(0.020, 0.021, 0.020) 
(0.034, 0.034, 0.034) 
(0.067, 0.068, 0.058) 
(0.668, 0.882, 0.910) 
(1.342, 2.603, 2.386) 
(2.142, 5.043, 4.462) 
OPWG 

(85, 83, 87) 
(88, 93, 89) 
(90, 88, 88) 
(90, 93, 85) 
(87, 92, 91) 
(91, 95, 93) 

(0.086,0.105,0.088) 
(0.094,0.109,0.091) 
(0.120,0.133, 0.119) 
(0.815,0.871, 0.622) 
(1.873,3,871,3.001) 
(2.562,5.883, 8.938) 

(0.080, 0.077, 0.077) 
(0.096, 0.095, 0.091) 
(0.157, 0.238, 0.212) 
(0.993, 1.958, 2.412) 
(1.811, 5.012, 5.027) 
(2.95, 10.136, 10.001) 

(86, 83, 90) 
(91, 92,89) 
(92, 93, 93) 
(91, 93, 92) 
(95, 97,92) 
(98, 96, 94) 

Table 3.3: Sine-Bump Model: Results of Monte Carlo variances, Bootstrap variances and 
Bootstrap confidence intervals with MAWVE and OPWG methods (a: standard devi-
ation of the error; : censoring parameter; cr: censoring rate in percentage; Bootstrap 
CI Coverage: the probability that the true parameter value falls in the 95% bootstrap 
confidence interval). 



Chapter 4 

Case Study: Stanford Heart Transplantation Data 

In this chapter, we consider Stanford Heart Transplantation data (see Miller & Halpern, 

1982). We use the MAWVE and OPWG methods to estimate the index parameter 

under the censored single-index model. We first introduce the data and the necessary 

background in Section 4.1. We perform analysis on the data and compare the results 

with other methods, such as the linear least squares estimates using the Buckley-James 

method in Section 4.2. 

4.1 Data Description 

The Stanford heart transplantation program was conducted from October 1967 to Feb-

ruary 1980. In this program, 184 patients had received heart transplants. Their survival 

times, uncensored or censored, were recorded by the end of the program, in February 

1980. Their ages at the time of the first transplant, noted by "age", were recorded too. 

The patients' T5 mismatch scores measure the degree of tissue incompatability between 

the initial donor and recipient hearts with respect to HLA antigens. 

We do not use the whole data of the Stanford heart transplantation program. We 

refer readers to Miller & Halpern (1982) for the whole data set. We use base-10 logarithm 

of the survival time as the response. As Miller & Halpern (1982) and Zhou (1992) did, 

we only consider 157 patients who survived for at least 10 days after transplantation. 

The censoring rate in this data set is 36%. 
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4.2 Study Results 

There are several regression techniques used on the Stanford heart transplantation data, 

we refer to Buckley & James (1979) and Huang & Jin (2007) for the Buckley-James 

method, Miller (1976) for the least squares regression method, and Cox (1972) for the 

Cox regression model. These authors considered linear models but suggested nonlinear 

effects of age by introducing a quadratic term age2. 

In this analysis of Stanford heart transplantation data, we consider it with a CSIM. 

We use the 157 patients' base-10 logarithm survival time (Z) and two covariates: T5 

(X1) and age (X2 ). We define Xi = (X11, X2)T. We also denote the censoring status 

(dead=1, censored=0) as 5, the original log10 survival time as Y, and the censoring 

variable as C, then we have the data set {(Z, X, 1157i=1 with a CSIM 

Yi = g(/3X1 + ,32X2) + s, (4.1) 

where Zi = min{, C} and Ji = I{<Cj}, for i = 1,... , 157. 

Our model is different from the linear models considered by other authors. We don't 

introduce any higher order polynomial terms of the variables such as age  in the model. 

We assume an arbitrary link function g(.), and let the model automatically adapt to the 

data for possible nonlinear effects. 

The results from the MAWVE and OPWG methods compared with the Buckley-

James method are presented in Table 4.1. We use Gaussian kerneal function K(u) = 

and bandwidth h = 0.4, e = 1/10 and co = 0.01 in the trimming function 

(1.10), and (1, 2)/v' as the initial value in the algorithm. 

To calculate the variance (or standard deviation) of the estimators, we use the non-

parametric 0.632 bootstrap for 100 resampling times without replacement (see Efron & 

Tibshirani, 1993 and the explanation in Chapter 2). That is, the sample size for each 

bootstrap is 96. Table 4.1 shows the estimation results and bootstrap standard devia-
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tions, including the results from the linear model with three covariates (T5, age, age') 

fitted by the Buckley-James method for comparison. 

Model Method Estimates (T5, age) 
CSIM MAWVE 
CSIM OPWG 

(0.3369, 0.9003) 
(0.4332, 0.8541) 
Estimates (T5, age, age') Standard Error 

Bootstrap Standard Deviation 
(0.2458, 0.1279) 
(0.2313, 0.1735) 

Linear Buckley-James (0.0289, 0.1140, -0.0017) (0.1432, 0.0537, 0.6624 x10 3)  

Table 4.1: Stanford Heart Transplantation Data: Results of the single-index model and 
the linear model with MAWVE, OPWG and Buckley-James methods. 

• In the linear model, both age and age' are significant, T5 is not. In the CSIM, we 

have similar conclusion, age is significant and T5 is not. However, we don't use high order 

terms such as age2 to model the nonlinear effect of age, instead, we use the nonparametric 

link function to model possible nonlinear effects and interactions. Figure 4.]. and 4.2 are 

plots of the estimated link function with the MAWVE and OPWG methods when the 

bandwidth h = 0.4. It is clear that the identity link is not appropriate for this data set 

if we fit a linear model with only two covariates T5 and age in the model. These figures 

also suggest for practitioners to include high order terms such as T5 x age and age  if 

they want to use a linear model. 
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Figure 4.1: Single-index model for Stanford Heart Transplantation Data. The data are 
presented by stars for censored data (5 = 0) and by solid points for observed data (5 = 1). 
The solid curve is the estimated link function with MAWVE method. 
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Figure 4.2: Single-index model for Stanford Heart 9ansplantation Data. The data are 
presented by stars for censored data (8 = 0) and by solid points for observed data (5 = 1). 
The solid curve is the estimated link function with OPWG method. 



Chapter 5 

Conclusion and Discussion 

The MAWVE and OPWG methods are proposed as tools for studying the censored single-

index models. These two methods are extensious from rMAVE and rOPG of Xia (2006) 

for censored data analysis. When there is no censored response, MAWVE and OPWG 

are equivalent to rMAVE and rOPO respectively. 

The MAWVE and OPWG methods are both based on the weighted least squares 

principle. The weights are Kaplan-Meier weights, the accuracy of the parameter esti-

mation depends on how accurate these weights are in estimating the theoretical weights 

and other unknown quantities such as the link function. The factors affecting the per-

formance of the estimation include the standard deviation of the error, the censoring 

rate, the sample size and the dimension of covariates. From the simulation studies, we 

find that when the sample size is moderate (n = 100), the dimension of covariates is low 

(p < 10), the two methods work quite well. When the dimension of covariates is large 

(p ≥ 10), the performance becomes worse. It seems that large sample size is needed when 

p becomes large. We hope that we can investigate the issue of small m and large p when 

data are censored in our future work. 

Since we are unable to establish the asymptotic distribution theory of the estimators, 

we prove the consistency of the estimates and use the bootstrap method to make inference 

about the parameters. Our simulation results show that it works reasonably well. But 

the bootstrap method requires a lot of computing time, it is desirable to develop a faster 

inference procedure for the CSIMs. 

We have successfully applied our methods to the Stanford heart transplantation data. 

We are able to discover the nonlinear effects of the covariates. To get similar results, the 
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users of linear models must include some high order terms chosen subjectively. While 

our methods are data-driven methods - they do it automatically. 

From all above, we conclude that the OSIMs are useful models in analyzing censored 

data, they are more flexible in modelling effects of covariates than the traditional linear 

models for censored data. The proposed MAWVE and OPWG methods have some good 

features in estimating the CSIMs. They are promising techniques in dimension reduction. 

It is worthwhile to further explore the large sample properties of the new estimators and 

the computational issues regarding the OSIMs in future work. 
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