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Abstract 

This dissertation presents theoretical analyses and numerical experiments on buoyancy-driven 

convection in porous media in the context of geological storage of carbon dioxide (CO2) in deep 

saline aquifers. One of the main focuses of this study is to investigate the role of the concentration 

dependent base state density profile in the stability criterion of buoyancy-driven convection and 

hydrodynamics of the associated convective mixing in different fluid systems. In particular, 

scaling relations, which allow estimation of the onset of the convective instabilities and the 

generalization of the base state density dependence of the growth of the instabilities are of interest. 

Stability criterion of the buoyancy-driven convection in analogue fluid mixtures used in 

experimental studies of CO2 convective mixing are of particular interest. The density profile 

dependence of the growth of instabilities in both binary and ternary fluid mixtures is 

mathematically analyzed and scaling relations that relate the stability criterion of the diffusive 

boundary layer to the key parameters of the systems is proposed. 

It is shown that the characteristic behaviour of the base state density profile plays an important 

role in stability characteristics of the diffusive boundary layer and convective mixing beyond the 

onset of instability. The results have shown that the choice of an analogue system is critically 

important in correct representation of the onset of convective instabilities of CO2/water and design 

of experiments. In particular, it is shown that there are fundamental differences in the evolution of 

the buoyancy-driven instability and dynamics of convective mixing between CO2/water and 

typical EG-MeOH/water and PPG/water analogue systems. 

The developed concepts on the role of density profiles in the stability criterion of the buoyancy-

driven convection are applied to multi-component fluid systems with applications to impure CO2 

storage. The role of permitted impurities on the characteristic shape of the density profile evolved 

during the dissolution of impure CO2 in water is mathematically analyzed and a parameter space 

classification, which allows prediction of general stability behaviour of an impure CO2/water 

system is proposed. Specifically, a linear stability analysis is conducted to investigate the effect of 

H2S impurity in CO2 stream on the onset of buoyancy-driven convection associated with impure 

carbon CO2 storage in deep saline aquifers. Contrary to the common belief, it is shown that an 

impurity such as H2S has the potential to accelerate the buoyancy-driven instabilities. 
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The theoretical analysis is extended, by means of high-resolution numerical simulations, to 

characterize the long-term behaviour of density-driven convection and the associated mixing. The 

key features of the convective dissolution beyond the onset is analyzed by evaluating the finger 

patterns and convective fluxes at different periods of the mixing process. It is shown that an impure 

CO2 stream may lead to different convective mixing dynamics at early and late periods of 

dissolution process depending on the fractional composition of the permitted impurity. 

Another focus of this study is to develop mathematical models that capture key features of fluid 

flow and transport in fractured porous media and to characterize the stability criteria of buoyancy-

driven convection in fractured aquifers in the context of CO2 storage. Through performing a 

parametric analysis, by means of a linear stability analysis, the role of physical properties of a 

fracture network in the stability of the diffusive boundary layer in a saturated fractured porous 

medium is characterized. Important effects of fracture interporosity flow and fracture storativity 

on the stability behaviour of the system are demonstrated and scaling relations that can be used to 

estimate the onset of density-driven instabilities in a dual porosity porous system are reported as a 

function of the most common physical properties of the fractured porous medium.  

These findings improve our understanding of density-driven flow in porous media in the context 

of CO2 storage and are important in the estimation of potential storage capacity, risk assessment, 

and storage site characterization and screening. 
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Chapter 1: Introduction 

 

 

 

 

1.1 Background 

Worldwide emission of carbon dioxide (CO2) due to utilization of fossil fuels is one of the 

important human concerns. It is believed that such anthropogenic emissions has caused climate 

change over the past decades and is expected to continue in the upcoming years (Metz et al., 2005).  

Immediate reduction of greenhouse gas emissions is one of the most imperative environmental 

policies that has been proposed for global warming mitigation (EPA, 2014). Capture and 

geological storage of CO2 in deep geological formations has been recognized as an operative 

choice and a viable short term option to reduce CO2 emissions over the next decades until new 

technologies play an important role in significant reduction of the emissions (NACAP, 2012). At 

the national level, geostorage is a key opportunity that offers the possibility of sustaining access 

to fossil fuels such as oil sands in Alberta while reducing emissions.  

CO2 in a dense phase can be injected into deep subsurface formations (more than 800 meters below 

the surface where the ambient pressures and temperatures will usually result in CO2 being in a 

supercritical state). Within these formations, oil fields, depleted gas fields, deep coal seams, and 

saline formations are all possible options (Orr, 2009a). Deep saline aquifers have been identified 

as the best alternative among geological formation for CO2 storage due to their high capacity, 

proximity to emission sources, and worldwide availability (Metz et al., 2005).  

The injected CO2 can be effectively trapped in aquifers by several mechanisms such as structural 

(Gaus et al., 2008), residual gas (Boot-Handford et al., 2014), solubility (Benson and Cole, 2008), 

and mineral trapping (Firoozabadi and Myint, 2010), as briefly described below. In a typical 

geological storage most likely all mechanisms are active with different time scales. The focus of 
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this work is on solubility trapping of CO2, which is an important trapping mechanism. In this 

dissertation, the role of buoyancy-driven convection and the associated convective mixing on 

solubility trapping of CO2 in saline aquifers are studied. 

1.2 Buoyancy-driven Convection Principles 

Buoyancy-driven convection in porous media is of great importance for wide range of applications 

related to groundwater, soil contamination, chemical engineering, CO2 capture or sequestration, 

and petroleum and geothermal reservoirs (Carballido-Landeira et al., 2013; Lindeberg and Wessel-

Berg, 1997; Nield and Bejan, 2006). Buoyancy-driven convection can develop due to a buoyantly 

unstable density stratification in the gravity field, which can be attributed to either temperature 

and/or concentration gradient. The conditions under which buoyancy-driven convection develops 

in the concentration field have received great attention in the past decade (Ennis-King and 

Paterson, 2005; Hassanzad et al., 2005; Loodts et al., 2014; Myint and Firoozabadi, 2013; 

Trevelyan et al., 2011). Buoyancy-driven convection involved in geological sequestration of CO2 

into deep saline aquifers is a good example of the current interest. Much attention has been paid 

to the modelling of the convective dissolution of CO2 in deep saline aquifers over the past two 

decades, since the role of density-driven convection on solubility trapping of CO2 has been 

identified (Lindeberg and Wessel-Berg, 1997; Weir et al., 1996; Weir et al., 1995). 

Once injected, CO2 spreads as a free phase under a seal called cap rock since it is more buoyant 

than resident brine. While in free phase, there is always risk of leakage through pathways such as 

fractures, abandoned wells, and faults. Interestingly, gifted by Mother Nature, dissolution of CO2 

into brine increases the brine density at the top of aquifer. Depending on aquifer properties, the 

denser brine saturated with CO2 at the top tends to sink down and is replaced with fresh brine. This 

leads to buoyancy-driven instabilities in an aquifer. This process can result in enhanced dissolution 

of CO2 into brine and consequently reduces the volume of free (or mobile) phase CO2 under the 

seal leading to decrease of the CO2 risk of leakage (Ennis-King and Paterson, 2005; Hassanzadeh 

et al., 2005). Figure 2 shows the schematic of the described phenomenon. 
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Figure 1.1: Schematic of mechanisms involved in long-term sequestration of CO2 in deep saline 
aquifers (Jafari Raad and Hassanzadeh, 2016). 

 

1.3 Motivation and Research Objective 

The rate of decrease in CO2 free phase and hence reduction of risk of leakage depends on the rate 

of transfer of CO2 from the free phase to the underlying brines by convection, diffusion and geo-

hydrological characteristics of aquifers. Solubility trapping of CO2 as a result of the convective 

dissolution has been recognized as one of the main mechanisms in reduction of free phase CO2 

and thus reducing risk of leakage from storage sites. This CO2 trapping mechanism has received 

emerging attention as it significantly affects the trapping efficiency, storage capacity and long-

term storage security (Gilfillan et al., 2009).   

Most of the previous studies on the buoyancy-driven convection are mainly concerned with pure 

CO2 injection and there are relatively few works that considered injection of impure CO2 into deep 

saline aquifers and the potential impact of impurities on the fate of the injected CO2 has remained 

unexamined. One of the hindrances to progress in large scale implementation of CO2 storage has 

been high cost of CO2 capture from impure anthropogenic sources. Sequestering less pure CO2 can 

potentially reduce the cost of capture process (Bachu et al., 2003; Ji and Zhu, 2013; Li et al., 2013; 

Nicot et al., 2013; Talman, 2015; Wong et al., 2003). However, before large scale implementation 

of geological storage, risk associated with the long-term storage needs to be assessed and 
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mechanisms which contribute to the permanent storage should be identified. These are necessary 

steps to avoid catastrophic consequences of possible leakage of the injected CO2 from subsurface 

geological formations.  

Permitted impurities in CO2 streams can potentially impact the physical properties of CO2/water 

system and hence stability criterion of the buoyancy-driven convection. Since the stability criterion 

of the buoyancy-driven convection is significantly influenced by the dynamics of the base state 

density profile, it should be of primary importance to have a good understanding of the 

concentration dependent base state density behaviour during dissolution process. This study 

investigates the role of the concentration dependent base state density profile on the stability of 

the buoyancy-driven convection and hydrodynamics of the associated convective mixing in 

different fluid pair systems. Stability criterion of the buoyancy-driven convection in binary and 

ternary fluid pair systems used in experimental studies of CO2 convective mixing are of particular 

interest. The developed concepts on the role of density profiles in the stability of buoyancy-driven 

convection are extended to multi-component systems with applications to impure CO2 and acid 

gas storage. One of the main objectives of this research is to determine the effect of permitted 

impurities in CO2 streams on the fate of the injected CO2 in subsurface formations and investigate 

ways to engineer or control the involved convective mixing mechanism.  

An important class of geological formations suitable for storage of CO2 and acid gases are 

fractured aquifers. Understanding the density-driven convection involved in dissolution of CO2 in 

fractured formations is important since fractured aquifers are widespread and are gaining 

importance for their potential to host captured CO2 for storage. The majority of previous works 

have been focused on CO2 storage process in deep single porosity saline aquifers. This work also 

discusses stability criterion of the buoyancy-driven convection in dual porosity porous systems in 

the context of CO2 storage in fractured aquifers. There is relatively less work focused on stability 

criterion involved in CO2 sequestration process in fractured aquifers while fluid flow properties in 

a fractured formation can be completely different from those of in a conventional one. 

Understanding the effect of geological formation characteristics on the dynamics of dissolution 

and consequently effectiveness of CO2 trapping is of great importance for long-term storage and 

risk assessment. We also study the effect of interface boundary excitation on the stability of 

diffusive boundary layers in porous media. Stability of fluids in porous media with boundary 

excitation is of particular interest, especially in connection with the geophysical and environmental 
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problems. The objective of this part of my study is to perform an analysis of the instability and the 

associated dynamics of solutal natural convection in a saturated porous medium in the presence of 

boundary excitation. The presented analysis and results in this study provide fundamental 

understanding of natural convection in the presence of boundary excitation. 

In summary, the objectives of this research are (i) to perform theoretical studies related to the role 

of the base state density profile in dynamics of buoyancy-driven convection in different fluid pair 

systems as analogue to pure and impure CO2/water systems, (ii) study the buoyancy-driven 

convection and the associated convective dissolution involved in impure CO2 sequestration in deep 

saline aquifers, (iii) study the role of the gas/brine interface boundary condition on the stability of 

the diffusive boundary layer in geological flows with applications to geological storage of CO2, 

and (iv) stability of diffusive boundary layers in fractured geological formations.  

This study provides fundamental understanding on the role of fluid mixture physical properties as 

well as geological formation characteristics in hydrodynamics of convective mixing and the 

efficiency of solubility trapping mechanisms. In particular, the developed scaling relationships that 

characterize the long-term behaviour of the mixing process can be used as a useful tool for 

estimation of potential storage capacity, risk assessment and site screening purposes. The result 

from this research will also provide insight into a wide range of applications in various aspects of 

mixing encountered in engineering and science.   

1.4 Dissertation Outline  

This dissertation is comprised of nine chapters, which seven of them cover the core materials with 

an introduction chapter at the beginning and a summary chapter at the end. The core material 

chapters 2, 3, 4, 5, 6, 7 and 8 have been published in seven peer reviewed journals.  

Chapter 2 presents a parametric analysis on the stability criteria of buoyancy-driven convection 

and hydrodynamics of the associated convective mixing in binary fluid pair systems. This study 

offers a quantitative description of the role of base state density profile evolve during dissolution 

process on the stability criteria of fluid pair systems with general form of the mixture density 

function and dynamic density profiles. In particular, stability criterion of analogue fluid systems 

such as water-propylene glycol used in experiments of convective dissolution of CO2 in brine are 

discussed. This chapter is a modified version of the article entitled “Onset of dissolution-driven 
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instabilities in fluids with nonmonotonic density profile” that has been published in the journal of 

Physical Review E*. Chapter 3 extends the analysis provided in Chapter 2 to ternary analogue fluid 

systems. This chapter is a modified version of the article entitled “On the choice of analogue 

system in CO2 convective dissolution experiments” that has been published in the journal of Water 

Resources Research†. This study addresses the evolution of the buoyancy-driven instability and 

dynamics of convective mixing in EG-MeOH/water analogue system. This study examines the 

ability of EG-MeOH/water system in resembling the dynamics of CO2/water system and proposes 

scaling relations for the onset of convective instabilities that incorporate the effects of the 

concentration dependency of density of the analogue system at different mixture compositions. 

Chapter 4 discusses the effect of permitted impurities in a CO2 stream on the onset of buoyancy-

driven convection associated with impure carbon dioxide (CO2) storage in deep saline aquifers. In 

particular, impact of permitted H2S contaminants in a CO2 stream on the stability criteria of the 

diffusive boundary layer associated with dissolution of CO2 in brine is discussed through analytical 

developments. This Chapter offers a general parameter classification of dynamic density profiles 

evolve in impure CO2/water systems based on key physical properties of impure systems and 

makes predictions for the stability behaviour of impure systems based on the buoyancy ratio and 

diffusivity contrast of permitted impurities and CO2 species.  This chapter is a modified version of 

the article entitled “Does impure CO2 impede or accelerate convective mixing in geological 

storage?” that has been published in the International Journal of Greenhouse Gas Control‡. 

 

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2015). Onset of dissolution-driven instabilities in fluids 

with nonmonotonic density profile. Physical Review E, Statistical, Nonlinear, and Soft Matter 

Physics, 92(5–1), 053023. https://doi.org/10.1103/PhysRevE.92.053023. 
† Jafari Raad, S. M., Emami-Meybodi, H., Hassanzadeh, H. (2016). On the choice of analogue 

fluids in CO2 convective dissolution experiments. Water Resources Research, 52(6), 4458–

4468. https://doi.org/10.1002/2015WR018040. 
‡ Jafari Raad, S. M.,  Hassanzadeh, H. (2016). Does impure CO2 impede or accelerate the onset of 

convective mixing in geological storage? International Journal of Greenhouse Gas Control, 

54, 250–257. https://doi.org/10.1016/j.ijggc.2016.09.011. 
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Chapter 5 extends the analysis provided in Chapter 4 through numerical experiments to examine 

the dynamics of convective mixing and the total rate of dissolution involved in impure CO2 storage. 

It also demonstrates the effect of permitted H2S impurities on the distribution of CO2 concentration 

through the host aquifer. This chapter is a modified version of the article entitled “Prospect for 

storage of impure carbon dioxide streams in deep saline aquifers-A convective dissolution 

perspective” that has been published in the International Journal of Greenhouse Gas Control*.  

Chapter 6 presents the influence of the diffusion contrast between species in a two-component 

partially miscible system on the dynamics of Rayleigh–Bénard (RB) convection in porous media. 

This chapter is a modified version of the article entitled “On the dynamics of two-component 

convective dissolution in porous media” that has been published in the journal of Water Resources 

Research†. This study offers an inclusive parametric analysis on the stability criteria of two-

component partial miscible systems, which allows distinction of regions with different stability 

criteria and convective dissolution dynamics. This study provides new insight into the effect of 

diffusion contrast and can be used to develop strategies for acceleration and deceleration of 

buoyancy-driven instabilities.   

Chapter 7 presents a detailed parametric analysis on the stability of a diffusive boundary layer in 

porous media subject to time-dependent boundary conditions. This chapter is a modified version 

of the article entitled “Impact of boundary excitation on stability of a diffusive boundary layer in 

porous media” that has been published in Advances in Water Resources‡. This study offers scaling 

relations that incorporate the effect of the boundary parameters on the stability criteria and the 

dynamics of the buoyancy-driven mixing.  

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2017). Prospect for storage of impure carbon dioxide 

streams in deep saline aquifers-A convective dissolution perspective. International Journal 

of Greenhouse Gas Control, 63, 350–355. https://doi.org/10.1016/J.IJGGC.2017.06.011. 
† Jafari Raad, S. M., Hassanzadeh, H., Ennis-King, J. (2018). On the dynamics of two-component 

convective dissolution in porous media. Water Resources Research, (In Press). 
‡ Jafari Raad, S. M., Emami-Meybodi, H., Hassanzadeh, H. (2019). Impact of boundary excitation 

on stability of a diffusive boundary layer in porous media. Advances in Water Resources, 126, 

40-54. https://doi.org/10.1016/J.ADVWATERES.2019.02.005 
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Chapter 8 presents analytical analysis on the effect of physical properties of fracture network on 

the stability criteria of buoyancy-driven convection in a dual porosity system in the context of CO2 

storage in fractured aquifers. This chapter suggests scaling relations for the onset of convective 

instability that relate the onset of density-driven instabilities to the key physical properties of the 

fractured rocks in dual porosity systems. This chapter is a modified version of the article entitled 

“Onset of density-driven instabilities in fractured aquifers” that has been published in the journal 

of Physical Review E*. 

Finally, Chapter 9 summarizes the important findings and contributions of this study and makes 

recommendations for future works.  

 

 

 

 

 

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2018). Onset of density-driven instabilities in fractured 

aquifers. Physical Review E, 97(4), 043109. https://doi.org/10.1103/PhysRevE.97.043109. 
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Chapter 2: Onset of Dissolution-driven Instabilities in Fluids with Non-

monotonic Density*

 

 

 

 

2.1 Abstract 

Analogue systems have recently been used in several experiments in the context of convective 

mixing of CO2. We generalize the non-monotonic density dependence of the growth of instabilities 

and provide a scaling relation for the onset of instability. The results of linear stability analysis and 

direct numerical simulations show that these fluids do not resemble the dynamics of CO2/water 

convective instabilities. A typical analogue system, such as water/propylene glycol, is found to be 

less unstable than CO2/water. These results provide a basis for further research and proper selection 

of analogue systems and are essential to the interpretation of experiments. 

2.2 Introduction 

It is believed that anthropogenic carbon dioxide (CO2) emissions are the main cause of the current 

global temperature trend over the past decades and is expected to continue in the upcoming years 

(Metz et al., 2007). Capture and storage of CO2 (CCS) in deep geological formations has been 

suggested as an option to reduce CO2 atmospheric emissions (NACAP, 2012). Deep saline aquifers 

have been identified as the best alternative among geological formations for CO2 storage, due to 

their high capacity, proximity to emission sources, and worldwide availability (Metz et al., 2005). 

                                                 
*Jafari Raad, S. M., Hassanzadeh, H. (2015). Onset of dissolution-driven instabilities in fluids with 

nonmonotonic density profile. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 

92(5–1), 053023. https://doi.org/10.1103/PhysRevE.92.053023. 
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In the storage process, CO2 is compressed and injected in deep saline aquifers, where it comes into 

contact with brine and starts dissolving. The dissolution of CO2 and solubility trapping in 

formation brine has been identified as one of the key mechanisms in the permanent storage process 

(Gilfillan et al., 2009).  

The injected CO2 is less dense than the brine and remains buoyant above it under a cap rock (or 

seal), but slowly diffuses into the underlying brine.  Dissolution of most gases in water reduces the 

aqueous phase density, with the exceptions of sulfur dioxide (SO2), CO2, argon (Ar) and krypton 

(Kr) (Ennis-King and Paterson, 2005). The CO2-saturated brine is slightly denser than the pure 

brine and becomes gravitationally unstable, leading to a convective dissolution process that 

enhances the flux of CO2 into the brine. Such a slight density increase has been shown to be a 

linear function of the CO2 concentration (Yang and Gu, 2006).  Depending on aquifer properties, 

the denser brine saturated with CO2 at the top tends to sink down and is replaced with fresh brine. 

As a result of buoyancy-driven flow or so-called convective dissolution, the volume of free-phase 

CO2 under the seal decreases significantly compared to pure diffusion, thereby reducing the 

leakage risk of the CO2 (Ennis-King and Paterson, 2005; Hassanzadeh et al., 2005).  

Much attention has been paid to the modelling of the convective dissolution of CO2 in deep saline 

aquifers over the past two decades, since the role of density-driven convection on solubility 

trapping of CO2 has been identified (Lindeberg and Wessel-Berg, 1997; G. Weir et al., 1996; G. 

J. Weir et al., 1995). Difficulty in attaining a laboratory setting to study convective dissolution 

using CO2 and water at actual storage conditions has inspired researchers to propose the use of 

analogue systems, which retain some properties of the CO2/water system and allow experiments 

at normal laboratory conditions and length and time scales (MacMinn et al., 2012). A few studies 

have investigated the convective dissolution of CO2 in water using analogue systems. Analogue 

systems, such as propylene glycol (PPG) / water (Agartan et al., 2015; Backhaus et al., 2011; 

MacMinn and Juanes, 2013; Tsai et al., 2013), mixtures of ethylene glycol and methanol (EG-

MeOH) / water (MacMinn et al., 2012; Neufeld et al., 2010), potassium permanganate / water 

(Slim et al., 2013) and phenolphthalein dissolved in 4-methyl-2-pentanone (commonly known as 

methyl isobutyl ketone or MIBK) / sodium hydroxide (for reactive systems) (Cardoso and Andres, 

2014), have been used as analogue systems. Water/PPG and EG-MeOH/water systems have been 

used to mimic dynamics of free-phase CO2 relative to water as well as the dynamics of CO2 
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dissolved in water (Hidalgo et al., 2013); whereas potassium permanganate /water has been utilized 

to capture the latter (Slim et al., 2013).  

Analogue systems have some differences. In particular, analogue fluids and water are fully 

miscible, whereas CO2 is partially soluble in water. Therefore, analogue systems cannot capture 

the capillary impacts on the convective dissolution of a CO2/water system. Some of these systems 

have substantial viscosity variations: i.e., in water/PPG, PPG is ~50 times more viscous than water 

(Sun and Teja, 2004); and, in EG-MeOH/water, water is ~4 times less viscous than EG-MeOH 

(Tsierkezos and Molinou, 1999). A fundamental difference between CO2/water and analogue 

systems, such as EG-MeOH/water and PPG/water, is that dissolution of EG-MeOH or PPG in 

water results in non-monotonic density behaviour with concentration, whereas a CO2/water system 

shows a monotonic density-concentration dependence.  

The objective of our study was not the simulation of these experiments, but the parameterization 

of the role of the non-monotonic density profile on the onset of dissolution-driven instabilities, 

which has not been studied in the past. In addition, inconsistencies reported for the scaling of 

convective flux in recent experimental studies with the classic scaling of the Rayleigh-Bénard 

convection (Backhaus et al., 2011; Hidalgo et al., 2013; MacMinn et al., 2012; MacMinn and 

Juanes, 2013; Neufeld et al., 2010; Tsai et al., 2013) have motivated us to study the role of density 

behaviour of analogue systems at the onset of instabilities.   

Non-monotonic density profiles arise in several physical and chemical processes, such as natural 

convection of water near its density maximum (Kim and Choi, 2014; Moore and Weiss, 1973), 

buoyancy-driven flows induced by chemical reactions and/or diffusion in multi-species miscible 

or immiscible systems (Loodts et al., 2014; Trevelyan et al., 2011, 2015). A recent study attempted 

to demonstrate the role of non-monotonic density profile (Kim, 2014); however, the analysis did 

not permit scaling and generalization of the non-monotonic dependence of the growth of the 

convective instabilities. It was concluded that water/PPG is more unstable than a CO2/water 

system. This conclusion was partly made since the onset time of a moving interface problem was 

compared with a fixed interface one. Nevertheless, it is well-known that a moving interface results 

in a faster onset of instabilities (Daniel and Riaz, 2014; Elenius et al., 2012; Elenius et al., 2014; 

Emami-Meybodi and Hassanzadeh, 2015; Emami-Meybodi and Hassanzadeh, 2013; Myint and 

Firoozabadi, 2013; Slim and Ramakrishnan, 2010). Therefore, a comparison between CO2/water 
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and water/PPG systems can only be made when the boundary conditions for both systems are the 

same and more importantly when both systems are governed by the same dimensionless scaling 

group (i.e. Ra). In other words, the Rayleigh numbers that govern the system stability of the 

monotonic and non-monotonic profiles are not the same as will be shown in our stability analysis 

formulation. Nonetheless, when scaling groups are similar the moving interface is always more 

unstable than the fixed interface for a fixed Rayleigh number, which has been widely discussed in 

the literature (Emami-Meybodi et al., 2015).  

In addition, for a monotonic system such as CO2/water the onset time can be scaled based on the 

linear behaviour of the density as a function of concentration of the diffusing species.  For such a 

system (1 )i c    and the maximum density difference is given by i c  , where i  is 

the density of the initial fluid with zero concentration of the diffusion species. Therefore, the 

behaviour of the density profile (its linearity) is captured in the definition of the scaled time. 

Similarly, for a non-monotonic system such as water/PPG the behaviour of the analogue fluid 

should appear in the definition of the scaled time and the scaled onset time cannot be independent 

from the characteristics of the density function. However, in the analysis reported in (Kim, 2014) 

the onset time is scaled based on an the density difference between pure PPG and pure water, 

which does not resemble the non-monotonic behaviour of the density of water/PPG mixture. 

Therefore, the scaled times of CO2/water and water/PPG reported in (Kim, 2014) are not 

comparable.  In this paper, we have shown that the density difference used in the scaling of time 

should capture the non-monotonic behaviour of the fluid to have a proper comparison of the onset 

times for the two systems.   

In this study, we report results of both linear stability analysis (LSA) and direct numerical 

simulations of a gravitationally unstable boundary layer to address these issues. In particular, we 

present a universal scaling relation, which allows estimation of the onset of the convective 

instabilities and generalization of the non-monotonic dependence of the growth of the instabilities. 
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2.3 Mathematical Formulation 

2.3.1 Governing equations 

We started with a two-dimensional, laterally infinite, homogeneous, isotropic, isothermal, vertical 

cross-section of a porous layer of constant thickness, H, saturated with quiescent fluid, as shown 

in Figure 2.1 (adopted from Hewitt et al. (Hewitt et al., 2013)). The quiescent fluid was initially 

free of the diffusing species. Boundary conditions for the flow (pressure) and mass transport were 

set as follows: No flow boundaries were set at the top and bottom of the domain, the bottom 

boundary was set at no mass flux, and the top boundary was set at a constant concentration of the 

diffusing species for fixed interface problems.   

 

 

Figure 2.1: Geometry and boundary condition for three different systems (a) fixed interface 

problem, (b) moving interface problem (immiscible system), and (c) moving interface problem 

(miscible system) used in this study. The base state concentration profile versus depth is also 

shown by the dotted lines (adopted from Hewitt et al.(Hewitt et al., 2013)). 

In the context of geological storage of CO2 and in the absence of capillary pressure, the interface 

between CO2 and water remains sharp (i.e., an immiscible system); therefore, a constant 

concentration at the top (fluids interface) was deemed to be more appropriate (Emami-Meybodi 
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and Hassanzadeh, 2015).  However, the moving interface is more compatible for a miscible 

system. We performed LSAs for both fixed and moving interface problems. Our study was focused 

on the fixed interface problem since it is more comparable with a CO2/water system. The results 

of the moving interface are presented for comparison. A detailed discussion on various boundary 

conditions is provided elsewhere (Hewitt et al., 2013).  

Assuming that the Boussinesq approximation and Darcy’s law are valid, the governing equations 

of non-reactive flow and transport for an incompressible fluid, in the absence of viscosity variation 

and dispersion effects, can be written as (Bear, 1972): 

2 c
D c c

t
  
   


v ;   (2.1a) 

         0 v ;   (2.1b) 

( )
k

p z


   v g ,   (2.1c) 

where ( )f c  , v(u,v) is a vector of the Darcy velocity, t is time, k is the porous medium 

permeability,  is the viscosity, p is the pressure, g is the gravitational acceleration, z is the vertical 

coordinate (positive downwards),  is the mixture density,  is the porosity, c is the concentration, 

and D is the effective molecular diffusion coefficient of the diffusing species in porous media and 

is assumed to be independent of concentration for dilute solutions. 

2.3.2 Base state solution 

The system is initially stagnant; thus, the molecular diffusion is the dominant mechanism involved 

in the mass transfer of the dissolved species prior to the onset of convection. In this case, the 

governing equation for the base state reads as: 

         
t

c

z

c
ˆ
ˆ

ˆ

ˆ 0
2
0

2








 ,                                                                                                                   (2.2) 

where subscript 0 stands for the base state.  

We scaled the vertical coordinate z by H (the thickness of the porous layer), time with the diffusion 

time scale, DH /2 , and the species concentration by the maximum concentration of the diffusing 
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species at the top boundary, 
sc (

sccc /ˆ 00  ). The initial and boundary conditions for the base 

state were 0)0ˆ,̂(0̂ tzc  and, 1)̂,0(0̂ tc , 0ˆ/)ˆ,1(0̂  ztc , respectively. The base state solution 

can be written as: 

    







 



1

22
0

ˆexpˆsin
12

1ˆ
n

nn
n

tzc 


,         (2.3) 

where n=(2n-1)/2.  

A second-order polynomial, given by 2
1 2ˆ ˆ(1 )i c c      , is used to describe the density-

concentration relationship. This second-order polynomial closely fits the water/PPG density 

experimental data with a coefficient of determination of approximately one (R21) (Sun and Teja, 

2004). This density relation can be expressed in dimensionless form as
2ˆˆˆ crc   , where 

1ˆ ( ) /i i      , i is the initial fluid density and r= 2/1. Parameter r controls the shape of 

the density function. The dimensionless initial fluid density is 0ˆ   and the dimensionless density 

at the upper boundary is ˆ 1in r   .  

For r<-1/2 (e.g. water/PPG), there is an intermediate density maximum, ˆ ˆ( ) 1/ (4 )mc r  , where 

ˆ 1/ (2 )mc r  ; thus, diffusion of the diffusing species from the top boundary creates a mixing 

zone, which at some depth is slightly denser than the initial fluid and may trigger the convective 

instability. Note that for r≥-1/2 (e.g. CO2/water), the mixing zone is always denser than the initial 

fluid. For water/PPG systems, PPG and water are considered as initial fluid and diffusing species, 

respectively; and, ĉ denotes the concentration of water (diffusing species); whereas water and CO2 

are considered as initial fluid and diffusing species, respectively, for CO2/water systems, and ĉ 

represents the concentration of CO2 (diffusing species). It should be noted that r is zero for 

CO2/water systems.  

We studied the effect of the shape of density function on the evolving base state density profile to 

describe the possible instability of the system. Using the early time solution of the base state 

concentrations given by )ˆ4/ˆ(ˆ0 tzerfcc  , the density gradient in the z-direction (
z̂ ) in the 

porous layer can be obtained as: 
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



.   (2.4) 

Equation (2.4) indicates that the density gradient at the top boundary has negative or positive 

values for r≥-1/2 and r<-1/2, respectively; hence, the density profile may have extremum (local 

minimum or maximum). Therefore, the behaviour of the density profile with depth needed to be 

inspected. By setting 0ˆ
z   in Equation (2.4), we obtain 0)ˆ4/ˆ(21  tzerfcr . For r>0, this 

equation has no root, and the density profile remains monotonic and without an inflection point. 

However, for r<0, there exists one root, indicating the likelihood of an extremum.  

As discussed, system with monotonic or non-monotonic density profiles are distinguished based 

on character of their density profiles with depth. Systems with extremum in density profile are 

known as non-monotonic systems. Systems with non-monotonic density profile can be divided 

into two different categories based to the sign of the interface density differences ( ˆ 1in r   ) and 

density gradient, ˆ
z at the interface. These evolving non-monotonic density profiles are 

characterized by regions denoted by r<-1 an -1<r<-1/2. A monotonic density profile is 

characterized by -1/2<r<0. Figure 2.2 shows the mixture densities with various r values and their 

corresponding dynamic density profiles. For instance, system (V) with rβ=-0.7 resulted in a 

positive density differences while water/PPG system, (VI) with rβ=-1.68 reveals a negative 

interface density difference. These two systems demonstrate the non-monotonic density behaviour 

with depth. The interface density differences values are the main differences between these two 

systems. Zero interface density is shown by dashed line in Figure 2.2. Systems with a profile such 

as (I), (II), (III), and (IV) show different density- concentration behaviour. However, these systems 

reveal a monotonic density profile with depth but with a different interface density difference 

corresponding to their rβ value. The dissimilarity that exists between these density profiles has a 

great impact on the evolution of convective instabilities, as discussed in Section 2.4.  

These results demonstrate the base state density profiles during the evolution of the boundary layer, 

which may potentially become unstable, and is very informative in the detailed LSA in the 

following section.  
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2.3.3 Linear stability analysis 

We performed a LSA based on the quasi-steady-state approximation (QSSA) to study the growth 

of perturbations and determine the onset of convective instabilities. The pressure, velocity, 

concentration and density fields that appeared in the governing equations of flow and transport 

(Equation (2.1)) are subjected to small perturbations using the general linearization form of 

'0 sss  , where s=s[p,v,c,], and subscript 0 stands for the base state. Since the fluid is initially 

quiescent, and the transport occurs by pure diffusion, the base state for concentration is given by 

Equation (2.2), where the base state velocity is v0=0 and the base state density is
2
000 ˆˆˆ crc   . 

After substitution for the perturbed variables in the flow and transport equations, linearizing in the 

perturbations, simplification and dropping of the hats (^) for convenience, we obtain: 

 
2

2
0 2

'
' Ra 1 (2 1)

c
v f c

x


   


,   (2.5a) 

2c ' v '
c0

z

c '

t
 ,  (2.5b) 

where the velocity perturbation is scaled by D/H, 222
zx   , )1/(  rrf   and Rayleigh 

number Ra, which is the ratio of buoyancy strength to the dissipative effects of viscosity and 

diffusion, is defined as Ra (1 ) /i ikg H r D    . 
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Figure 2.2: (color online). Density versus weight fraction of diffusing species for mixtures with 

various density functions. The right panel shows the base state dynamic density profile versus 

depth for the fixed interface problem. 

  

Using the Fourier decomposition method, the perturbed velocity and concentration can be 

expressed as 
txietzvcvc   ),](,[]','[ 0

**
, where  and ω are the perturbation wavenumber and 

growth rate, respectively. Using Equation (2.5), we obtain: 
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The boundary conditions for the perturbed flow and concentration are given by: 0)0(* c , 

0/)1(*  zc , 0)1()0( ** vv . 

It is worth noting that the time scale represented by t refers to the fast growing perturbations, while 

the other time-scale, t0, corresponds to the molecular diffusion, which is a very slow phenomenon. 

Therefore, it seems reasonable to assume that 0 /c z   is evaluated at time t0 or the so-called frozen 

time during the growth of perturbations. Knowing that the molecular diffusion is a very slow 

process, this approach is applicable since the growth of perturbations is much faster than the 

evolution of the base state density profile. This approach is known as the (QSSA) (Tan and Homsy, 

1986) and has been extensively used in LSA (Ghesmat et al., 2011; Riaz et al., 2006; Tan and 

Homsy, 1986; Trevelyan et al., 2011). The limits of the validity of the QSSA have been discussed 

elsewhere (Trevelyan et al., 2011). 

Equation (2.6a) converts to the CO2/water case for r=0. To find the growth rate, ω, for an assigned 

wavenumber, , the above system of Equations (2.6a) and (2.6b) are solved numerically using a 

second-order finite difference method. For each value of , the discretized equations lead to an 

eigenvalue problem given by: 

 * 2 *
0[ ][ ] ( )Ra 1 (2 1)v f c   A v c ,  (2.7a) 

* * *0[ ][ ] [ ] [ ][ ]c z


 


c

A c v ω c  ,  (2.7b) 

where  IDA 2 vv ,  IDA 2 cc , vD, and cD  are coefficient matrices based on central 

discretization of the second derivatives, and c and v are vectors containing the unknown variables 

at the discrete nodes. Solutions to Equations (2.7a) and (2.7b) can be written as: 

 * 2 1
0[ ] ( )Ra 1 (2 1) [ ] [ ]vf c     *v A c ,       (2.8a)

  * 2 1 * *0
0[ ][ ] ( ) Ra 1 (2 1) [ ] [ ] [ ][ ]c vf c

z
         

c
A c A c ω c  .    (2.8b) 

This eigenvalue problem is solved numerically, and the maximum eigenvalue of the coefficient 

matrix is considered as the growth rate, ω, corresponding to the assigned wavenumber, , and Ra 

at a certain t0. The same numerical procedure reported by Emami-Meybodi and Hassanzadeh 
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(Emami Meybodi and Hassanzadeh, 2013) was used to solve the eigenvalue problem. The obtained 

growth rate of the initial perturbations for given wavenumbers are evaluated for detection of the 

onset of instability using dispersion curves. A positive growth rate at a particular time is an 

indication of instability. Thus, the onset time can be detected using a zero maximum growth rate: 

i.e., the time at which the growth rate first becomes positive represents the actual time of the 

instability. Negative values for the growth rate of large wavenumbers imply that the system 

remains stable.  

We validated our computational algorithm using the early time analytical solution (t0) for the 

special case of a step change in the concentration profile. For this case, it can be shown that ω=-

2 (Riaz et al., 2006; Tan and Homsy, 1986). The results shown by open circles in Figure 2.3a 

indicate that the developed algorithm recovers the special case of ω=-2 when time approaches 

zero, suggesting the validity of the developed numerical code.  

We used the traditional QSSA (or the normal z-domain) (Tan and Homsy, 1986) to solve the 

system of equations given in Equation (2.8); however, previous studies have shown that the onset 

times obtained using QSSA in self-similar coordinates are larger than those obtained using the 

traditional QSSA (Kim, 2014; Tilton et al., 2013). Recently, a comprehensive study addressed 

some concerns in this area using a comparison of the traditional QSSA and QSSA in self-similar 

coordinated with initial value problem (IVP) as well as full numerical simulations (Tilton et al., 

2013). According to these studies, the disagreement concerning the critical time is attributed to the 

sensitivity of different analyses to how the perturbation growth is measured. It is worth noting that 

both the selected perturbation field (concentration or velocity) and the norm used to measure the 

perturbation amplitude impact the measured growth rates. The traditional QSSA supports smaller 

initial amplitudes compared to other noted methods that consider larger initial perturbations. 

However, previous studies (Tan and Homsy, 1986; Tilton et al., 2013) have shown that the 

qualitative behaviour of the resulted scaling for time of onset for all analysis methods remains the 

same.  

For more clarification, we tested the stability criterion using QSSA in self-similar coordinates for 

both water/PPG and CO2/water systems. Since the formulation of QSSA in the self-similar 

coordinates has been presented in the previous publications (Daniel and Riaz, 2014; Riaz et al., 

2006; Tilton et al., 2013), we have provided this formulation in Appendix A. 



21 
 

2.4 Results and Discussion 

2.4.1 Fixed interface problem 

We studied the effect of the mixture density function on the growth of convective instabilities. 

Figure 2.3 shows the dispersion curves at different times for CO2/water and water/PPG systems 

with linear and non-monotonic mixture density functions, respectively. The results shown in 

Figure 2.3 demonstrate a clear difference between linear and non-monotonic density functions, 

suggesting that the onset of convective instabilities for the two systems can be different. To verify 

this hypothesis, we investigated the onset of the convective instabilities versus Ra for various 

mixtures’ density functions. The results for the fixed interface problem using the traditional QSSA, 

as shown in Figure 2.4, recover the well-known scaling of 
2ˆ aRat  . The results for CO2/water are 

also shown in Figure 2.4 with a solid black line. These results for CO2/water are in close agreement 

with the previous findings (Bestehorn and Firoozabadi, 2012; Ennis-King et al., 2005; 

Hassanzadeh et al., 2006; Meulenbroek et al., 2013; Slim, 2014), which supports the validity of 

the analysis.  

Figure 2.4 shows that prefactor a is a strong function of the mixture density function. An analogue 

system with r-1.68 (Sun and Teja, 2004) resembles the PPG, which has been used in several 

recent experiments (Agartan et al., 2015; Backhaus et al., 2011; MacMinn and Juanes, 2013; Tsai 

et al., 2013). This mixture results in a non-monotonic density profile during the growth of the 

diffusive boundary layer, as indicated in Figure 2.2 (case VI). For a CO2/water system where the 

interface is fixed, the traditional QSSA and the self-similar formulations result in scaling prefactor 

values of ~56 and ~167, respectively. This is in agreement with previous studies (Kim and Choi, 

2012; Riaz et al., 2006; Tilton et al., 2013). For a water/PPG system where the interface is fixed, 

the traditional QSSA and self-similar formulations result in scaling prefactor values of ~80 and 

~1791, respectively. The results reveal that the qualitative behaviour of the growth of perturbations 

remains similar for the self-similar and traditional QSSA formulations.   

For the case of r=-1, ˆ ˆ ˆ( 0)in z   ; thus, Ra 0 . In this case, it can be shown that Equation (2.5a) 

can be written as 
2 * 2 2

0' Ra (1 2 ) '/v r c c x     ; and, the linear scaling for the onset of instabilities 

follows 
*2ˆ 92/Rat  , where 

*Ra /i ikg H D   . Dependency of the scaling prefactor to r for 
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the fixed interface problem using the traditional QSSA is shown in Figure 2.5. The results show 

that, while a non-monotonic profile results in the same scaling for the onset of convective 

instabilities, it gives a prefactor that is a strong function of the mixture density function. The results 

also reveal that an analogue system with r=-1.58 closely resembles the onset of convective 

instabilities for CO2/water systems. However, the dynamics of the system beyond the onset for the 

two systems may be quite different. 

 

Figure 2.3: (color online). Rate of growth of perturbations versus the wavenumber for systems 

with |Ra|=300, at different frozen times of 
5
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ˆ 8 10t    (a) CO2/water with r=0 and (b) water/PPG with r=-1.68. Open circles are the results 

of the analytical solution (ω=-2) compared with the results of the stability analysis shown by the 

line.   
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Figure 2.4: (color online).  Onset of convective instabilities versus |Ra| for various mixture density 

functions including r=0 (CO2/water), r=-0.33, r=-0.7, r=-1.68 (water /PPG). 
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Figure 2.5: (color online). Prefactor of scaling relation, a, for the onset of convective instabilities 

(
2ˆ a/Rat  ) for various mixture density functions with different r. Water/PPG and CO2/water 

systems are shown by a circle and triangle, respectively. Base state density profiles with depth are 

also shown for different regions.  
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CO2/water, which may be considered a fixed interface problem. Furthermore, not all non-

monotonic density profiles shown in Figure 2.2 allow a moving interface problem, since the system 

is initially unstable for cases such as I, II, IV. In order to be able to use the moving interface 

formulation for miscible systems, an initially stable system is necessary, which is only possible for 

cases V and VI. It is well known that the moving interface problem results in a faster onset of 
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and Hassanzadeh, 2015; Emami Meybodi and Hassanzadeh, 2013; Myint and Firoozabadi, 2013; 

Slim and Ramakrishnan, 2010). The same trend can also be imagined for the water/PPG system, 

as shown in Table 2.1.  

We present the results of the moving interface problem for a water/PPG system to obtain the 

critical time using the same parameters defined for the fixed interface problem. For the water/PPG 

system, the moving interface problem using the traditional QSSA and self-similar formulations 

results in scaling prefactors of ~57 and ~1296, respectively. For the CO2/water system, the moving 

interface problem with the traditional QSSA formulation results in a scaling prefactor of ~46, while 

the prefactor for the self-similar formulation is reported to be ~153. Therefore, the results for the 

moving interface problem also reveal that the water/PPG system is less unstable than CO2/water. 

The results of our analysis are summarized in Table 2.1, which shows that, independent of the 

formulation and the nature of interface (fixed or moving), the water/PPG system is always less 

unstable than CO2/water. 

Table Error! No text of specified style in document..1: Summary of the obtained scaling 
prefactor for the fixed and moving interface problems using traditional QSSA and QSSA with 
self-similar formulations. 

Formulation Fixed interface Moving interface 

Traditional QSSA aCO2/water ~56 

awater/PPG~80 

aCO2/water ~ 46 

awater/PPG~57 

QSSA in self-similar aCO2/water ~167 

awater/PPG~1791 

aCO2/water ~153 

awater/PPG~1296 

 

2.4.3. Nonlinear simulations 

We have conducted the non-linear simulations for both water/PPG and CO2/water systems to 

confirm the results of the stability analysis. In order to examine the behaviour of CO2/water and 

water/PPG systems, Equations (2.1a- 2.1c) were solved numerically. Details of the numerical 

approach and controls on accuracy of the numerical solutions have been reported in previous 

publications (Coats, 1969; Emami-Meybodi and Hassanzadeh, 2015; Emami Meybodi and 
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Hassanzadeh, 2013). The 2D numerical solutions were conducted to evaluate the concentration 

distribution associated with convective mixing for the two systems. The same fluid properties used 

in the linear stability analysis are employed in the direct numerical simulations. The nonlinear 

development of convective dissolution is investigated at Ra = 800 for both systems. Figure 2.6 

shows the concentration distribution for CO2/water and water/PPG systems at different times. For 

the moving interface problem, the height of the system above and below the interface is considered 

to be the same and equal to the height of the domain in the fixed interface problem. For the moving 

interface case (right panel), only concentration disturbances below the interface are shown for 

better comparison. 

Consistent with the results of our linear stability analysis, the CO2/water system results in faster 

development of the boundary layer instabilities, such that the growth rate of fingers are 

significantly stronger than those in the water/PPG systems. Furthermore, the fingering pattern in 

the CO2/water system is more vigorous than those in the water/PPG system where the fingers 

develop with less interaction with neighbouring fingers. In addition, the wavelength of the density-

driven fingers in the CO2/water system is much smaller than those in the water/PPG. A strong 

merging of fingers was observed in the CO2/water system while the growth of fingers in the 

water/PPG system is nearly independent from each other with minimal interaction.  In the 

water/PPG system fingers growth in the form of sluggish plumes due to damping effect of upper 

stable region. These direct numerical simulation results are in qualitative agreement with the 

results of the linear stability analysis, which shows that water/PPG system is less unstable than 

CO2/water system.   
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Figure 2.6: (Color online) Concentration distribution at the different times of 3
01
ˆ 1.2 10t   , 

3
02
ˆ 2.4 10t   , 

3
03
ˆ 4.8 10t   , 

3
04
ˆ 9.6 10t   , 

2
05
ˆ 1.44 10t    for Ra=800 representing (a) CO2/water 

system with the fixed interface, (b) water/PPG system with the fixed interface, and (c) water/PPG 

system with the moving interface. For the moving interface case (right panel), only concentration 

distributions below the interface are shown for better comparison. 

 

2.5 Summary and Conclusions 

We used a general form of the mixture density function combined with the dynamic density profile 

to characterize the stability behaviour of a gravitationally unstable diffusive boundary layer. Using 

both LSA and direct numerical simulations, we have shown that the choice of the analogue system 

is important in the design of experiments for proper representation of the convective instabilities 

in CO2/water system. In particular, it was shown that water/PPG system is less unstable than 

CO2/water and does not mimic the dynamics of CO2/water system. Furthermore, a scaling relation 

for the onset of convective instabilities was developed that incorporates the effects of the 

concentration dependency of density of the analogue system. Our results form a basis for proper 
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selection of an analogue system and are necessary to interpret CO2 convective dissolution 

experiments.  

It was shown that an analogue system with r=-1.58 resembles the onset of convective instabilities 

for CO2/water systems. However, the dynamics of the system beyond the onset of instabilities may 

be quite different. This is an important research question and calls for further studies. In particular, 

determination of the reason behind inconsistencies found in the scaling of the convective flux in 

recent experimental studies with the classic scaling of the Rayleigh-Bénard convection merits 

further studies.  In addition, in the context of geological storage of CO2, the onset time is typically 

shorter than the time necessary to dissolve all of the CO2. Therefore, even large changes to the 

onset time are unlikely to have a major impact on the fate of the injected CO2 into the subsurface. 

The development of the instability once triggered is much more important, as is the subsequent 

rate at which CO2 dissolves.   
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2.8 Appendix 2.A: Self-similar Coordinate Formulation of The Stability Analysis Equations  

The linearized form of the perturbations can be written as: 

 
2 '

2 '
0 2

Ra 1 (2 1)
c

v f c
x


   


,                  (2.A1a) 
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c

z

c
vc


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
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'

0''2
,                 (2.A1b) 

where the base states for the fixed and the miscible moving interface problems are given by

)4/(0 tzerfcc  , and )4/(2
1

0 tzerfcc  , respectively. 



29 
 

Using the Fourier decomposition method, the perturbed velocity and concentration are expressed 

as: 

txietzcc   ),( 0
*' ,             (2.A2a)

txietzvv   ),( 0
*' ,            (2.A2b) 

The time-dependent variable tztz 4/),(   is used to transform the z-domain equations into 

the self-similar coordinates as given by: 
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,                                                          (2.A3b) 

where t4/1 .  

Discretization of Equations (2.A3a) and (2.A3b) results in the following system of equations: 

                     * 2 *
0[ ][ ] ( ) Ra 1 (2 1)v v f c c   A ,                                                    (2.A4a) 

              ]][[][]][[ **0* cv
c

cc ωA 

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


 ,                                                             (2.A4b) 

where  IDA 2
2

2   vv , 





  ccc t 1

2
2

2

2
DIDA

 , v2D , c2D and c1D are coefficients of  

matrices based on the central difference of the second and first derivatives; and, c and v are vectors 

containing the unknown variables at the discrete nodes.  

Solutions to Equations (2.A4a) and (2.A4b) can be written as: 

 * 2 1
0[ ] ( )Ra 1 (2 1) [ ] [ ]vv f c c     *A ,        (2.A5a)

  * 2 1 * *0
0[ ][ ] ( ) Ra 1 (2 1) [ ] [ ] [ ][ ]c v

c
c f c c c 


  

      
A A ω  .      (2.A5b) 

The same procedure described in the main text was used to find the eigenvalues of the system of 

equations. 
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Chapter 3: On the Choice of Analogue Fluids in CO2 Convective 

Dissolution Experiments*

 

 

 

 

3.1 Abstract 

Mixtures of ethylene glycol and methanol (EG-MeOH) have been used as an analogue system (i.e., 

EG-MeOH/water) in recent experiments in the context of convective dissolution of CO2 in deep 

saline aquifers. We have conducted a linear stability analysis of a gravitationally unstable diffusive 

boundary layer as well as direct numerical simulation of convective mixing involved in dissolution 

of EG-MeOH species in water. We provide new evidences that EG-MeOH does not resemble the 

dynamics of convective instabilities and subsequent mixing associated with dissolution of CO2 in 

water. It is found that there are fundamental differences in the evolution of the buoyancy-driven 

instability and dynamics of convective mixing between CO2/water and a typical EG-MeOH/water 

analogue system. Our results show that for a constant Rayleigh number the onset of convective 

instabilities for EG-MeOH/water can be different by an order of magnitude as compared with 

CO2/water. In addition, EG-MeOH/water system reveals different dynamics associated with the 

convective mixing as compared to CO2/water system. This study improves our understanding of 

the instability behaviour of analogue systems, their proper selection, and motivates further 

experiments.  

                                                 
* Jafari Raad, S. M., Emami-Meybodi, H., Hassanzadeh, H. (2016). On the choice of analogue 

fluids in CO2 convective dissolution experiments. Water Resources Research, 52(6), 4458–

4468. https://doi.org/10.1002/2015WR018040 
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3.2 Introduction  

Solubility trapping of carbon dioxide (CO2) in formations brine has been recognized as a dominant 

sink (Gilfillan et al., 2009). The density of the aqueous phase in contact with the injected CO2 

slightly increases as a result of CO2 dissolution leading to natural convection. Accelerated CO2 

dissolution into the aqueous phase due to such a favourable process results in reduction of the 

volume of free phase CO2 and thus reduces the risk of leakage of CO2 from storage formations 

(Emami-Meybodi et al., 2015; Ennis-King and Paterson, 2005; H. Hassanzadeh et al., 2005; Islam 

and Sun, 2015; Lindeberg and Wessel-Berg, 1997). This problem has been widely studied 

theoretically in the past decade. Maintaining actual storage conditions in laboratory studies of 

convective dissolution of CO2 is challenging due to time and length scale limitations and has 

motivated application of analogue systems. In addition, operation of experiments at actual 

subsurface condition using water and CO2 requires high pressure and high temperature 

experimental setup.  

A handful of studies have recently reported the use of analogue system in experimental studies in 

the context of geological storage of CO2. analogue systems such as propylene glycol (PPG)/water 

(Agartan et al., 2015; Backhaus et al., 2011; MacMinn and Juanes, 2013; Tsai et al., 2013), 

mixtures of methanol and ethylene glycol (EG-MeOH)/water (MacMinn et al., 2012; Neufeld et 

al., 2010), potassium permanganate/water (Slim et al., 2013), and phenolphthalein dissolved in 4-

methyl-2-pentanone (commonly known as methyl isobutyl ketone or MIBK)/ sodium hydroxide 

(for reactive systems) (Cardoso and Andres, 2014) have been used in the recent studies. Analogue 

systems such as water/PPG and EG-MeOH/water have been used to resemble the dynamics of 

free-phase CO2 relative to water and also to mimic the convective dissolution of CO2 in water 

(Hidalgo et al., 2013) while the potassium permanganate/water system has been utilized to only 

capture the convective dissolution (Slim et al., 2013). Although these analogue systems allow 

experiments at normal laboratory conditions and length and time scales (MacMinn et al., 2012) 

and represent some features of the CO2/water, there are some fundamental differences between the 

two systems. Presence of a density maximum at intermediate concentrations is one of the main 

features of EG-MeOH/water mixture while CO2/water system shows a monotonic density-

concentration behaviour (Jafari Raad and Hassanzadeh, 2015). In addition, there is a significant 

viscosity variation in some of analogue systems (Sun and Teja, 2004; Tsierkezos and Molinou, 
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1999). Furthermore, analogue fluids and water are fully miscible and hence cannot capture the 

impacts of capillarity on the convective dissolution of CO2/water system, which is a partially 

miscible system.  

One of the analogue systems that has been recently used to mimic CO2/water is a mixture of 

methanol and ethylene glycol (EG-MeOH)/water (MacMinn et al., 2012; Neufeld et al., 2010). 

EG-MeOH/water mixtures used in the experimental studies of the convective dissolution result in 

non-monotonic density profiles. Stability behaviour of fluids with non-monotonic density profiles 

has been addressed in several physical and chemical processes such as buoyancy-driven flows 

induced by chemical reaction and/or diffusion in multi-species miscible or immiscible systems 

(Loodts et al., 2014; Trevelyan et al., 2011, 2015) and natural convection of water near its density 

maximum (Kim and Choi, 2014; Moore and Weiss, 1973). However, none of the previous studies 

presented scaling relations for onset of convective instabilities for a diffusive boundary layer of 

binary species. 

Important questions that need to be addressed with regard to the EG-MeOH/water system are: does 

EG-MeOH/water resemble hydrodynamics of CO2/water system? How does the growth of the 

convective instabilities depend on the composition of EG-MeOH? In this study, we report results 

of the linear stability analysis (LSA) of a gravitationally unstable diffusive boundary layer and 

perform direct numerical simulations of the convective dissolution involved in solubility trapping 

mechanism to address these questions. Using linear stability analysis and direct numerical 

simulations we have shown that the onset of convective instabilities and the mixing dynamics of 

CO2/water and EG-MeOH/water systems are different. In particular, it is shown that the binary 

nature of EG-MeOH and the time evolution of the mixture density profile during the dissolution 

need to be considered.  

3.3 Mathematical Formulation  

3.3.1 Governing equations  

We consider a two-dimensional, homogeneous and isotropic porous layer of thickness, H, 

saturated with quiescent pure water. The model is considered to be laterally infinite and flow and 

solute transport are assumed to take place at isothermal condition. No-flow boundary conditions 

are considered at the top and bottom of the domain with respect to pressure. A no-flux boundary 
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condition is maintained at the bottom of the domain while a constant concentration of EG-MeOH 

is set at the top of the domain with respect to the mass transport. Under the assumption of single-

phase flow the interface between CO2 and water has been considered sharp with a constant 

concentration (Riaz et al. 2006, Emami-Meybodi and Hassanzadeh, 2015).  Using the Boussinesq 

approximation, assuming an incompressible fluid, and neglecting viscosity variability, cross 

diffusion of species and dispersion, the governing equations of non-reactive single phase flow and 

transport in a porous medium can be written as follows (Bear, 1972): 

t
D i

iii 





 v2 ;             (3.1a) 

           0 v ;         (3.1b) 

)( zgp
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 


v ,         (3.1c) 

where v(u,v) is the Darcy velocity vector, p is the pressure,  is the mole fraction,  is the viscosity, 

t  is the time, k is the permeability,  is the porosity, g is the gravitational acceleration, z is the 

vertical coordinate and positive downwards, D is the effective molecular diffusion coefficient in 

porous media and assumed to be independent of concentration for dilute solutions, and subscript i 

denotes the species index with i = 1 for ethylene glycol (EG) and i = 2 for methanol (MeOH). The 

aqueous phase density is therefore a function of both species concentration (i.e, 
1 2( , )f   ). 

For a purely diffusive process as a base state and prior to the onset of convection, the following 

governing equation can be obtained from the general mass conservation Equation (3.1a): 

tz
r ii

Di ˆ
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ˆ 0
2
0

2






   ,         (3.2) 

where subscript 0 denotes the base state condition. Vertical coordinate z, time, and species mole 

fractions are scaled by thickness of the porous layer (H), EG diffusion time scale (
1

2 / DH ) and 

mole fraction of EG in the EG-MeOH solution, 
s
1  (

i0̂ = s
i 10 / ), respectively. We also scaled the 

effective molecular diffusion coefficient by EG molecular diffusion coefficient (rDi=Di/D1).   

The base state solution can be obtained using the initial and boundary conditions 0)0ˆ,ˆ(ˆ0 tzi  

and, ci
ss

ii rt  10 /)ˆ,0(ˆ  , 0ˆ/)ˆ,1(ˆ0  zti , respectively, as given by:  
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where n=(2n-1)/2, rc1=1, rc2=rc, rD1=1, rD2=rD.  For the system of interest (i.e., EG-MeOH/water) 

rD=1.38 can be obtained from experimental data (Derlacki et al., 1985; Fernández-Sempere et al., 

1996; Ternström et al., 1996). 

3.3.2 Base state density profiles 

Mixtures of EG-MeOH solutions with 60-70 wt.% of EG (at 25C) when mixed with water result 

in mixture that is heavier than the original EG-MeOH solution and pure water. This range varies 

depending on temperature. This property of EG-MeOH solutions with water has been used to 

utilize EG-MeOH/water mixtures as an analogue system for experimental studies of CO2 

convective dissolution (MacMinn et al., 2012; Neufeld et al., 2010).  

Experimental density data of EG-MeOH/water ternary system at 25C (Conrad et al., 1952; Lee et 

al., 1990; Mikhail and Kimel, 1961; Ray and Nemethy, 1973) can be correlated using 

)1(
3

1

2

1

 


j i

j
iijb   where b is the pure water density and ij values are the coefficients of 

density variation with concentration given by: 11= 0.381016, 21= –0.251612, 12= –0.446894, 

22=0.037877, 13=0.184493, 23=0.002322. This density function predicts the mixture density 

with a maximum error of less than 1%. Figure 3.1 shows density of various EG-MeOH solutions 

with different EG wt.% mixed with water versus EG-MeOH weight fraction at 25C obtained 

using the above mentioned density function.  
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Figure 3.1: Density of EG-MeOH solutions mixed with water versus weight percent of EG-MeOH 

for various EG wt.% at 25C.  

 

The ternary density function can be written in dimensionless form as given by 
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The vertical density gradient ( ẑ/ˆ  ) can be obtained using the base state solutions at the early 
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where rc=rc2 and rD=rD2.   
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For a mixture of EG-MeOH /water, the evolution of the base state density profile may have 

extremum (local minimum or maximum). Therefore, the behaviour of the density profile with 

depth needs to be examined using Equation (3.4). The dimensionless density ( ̂ ) and its gradient 

( ẑ/ˆ  ) at the interface, and roots of the first and second derivatives of the density profile 

determine the shape of the density profile. The interface density, ˆ ( 0 )z  , for all EG wt.% 

shown in Figure 3.1 is negative while ˆ ˆ/ z   at 0ˆ z  is positive. This suggests a stable diffusive 

layer on the top of the domain (see Figure 3.2). The first derivative of the density profiles has no 

roots for 58 and 60 wt.% of EG while it has two roots for the other EG solutions (62.5-70%) 

signifying occurrence of two extrema as shown in Figure 3.2. While at some concentration of EG-

MeOH mixture densities for 58 and 60 wt.% of EG is larger than both water and EG-MeOH (see 

Figure 3.1) the associated dynamic density profiles do not demonstrate extremum since rD >1. The 

second derivative of the density profile has two roots for all EG wt.% indicating presence of two 

inflection points. Figure 3.2 shows density profiles versus depth for different EG wt.%. Density 

profile for CO2/water is also shown for comparison. The local maximum (first peak from top) in 

the density profiles shown in Figure 3.2 is as a result of formation of a stable diffusive boundary 

layer. The local minimum (second peak from top) occurs due to higher value of diffusion 

coefficient for MeOH compared with EG (rD=1.38). Thus, the diffusion front of MeOH is ahead 

of EG decreasing the local solution density. The density profile for CO2/water lacks these features 

and later, we will show that the dissimilarity between the density profiles can have a great impact 

on the onset of convective instabilities and subsequent mixing. 
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Figure 3.2: Density profiles for different EG wt. % in EG-MeOH solutions as analogue systems 

at 4101ˆ t . Density profile for CO2/water is also shown for comparison; for CO2/water rij=0, 

except r11=1. 

 

3.3.3 Linear stability analysis 

A linear stability analysis using quasi-steady state approach (QSSA) is used to study the growth 

of perturbation and consequently to determine the onset of convective instabilities. To conduct a 

linear stability analysis, the governing equations of flow and transport given in Equation (3.1) are 

perturbed using '0 sss   where s=s[p,v,1,2,]. The fluid is stationary at the early time and the 
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where the velocity perturbation is scaled by D1/H, 22
xy , Ra is the Rayleigh number 

3 2
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Ra jb
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j i

kgH
r r

D 
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   and the hats (^) are dropped for convenience.  

The perturbed velocity and concentration are expressed as *
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where  and ω are the perturbation wave-number and growth rate, respectively. Using Equation 

(3.5) we obtain 
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where rD1=1 and rD2=rD.  The boundary conditions for the perturbed flow and concentration are 

given by 0)0( 
i , 0/)1(   zi , and 

* *(0) (1) 0v v  . 

The growth of perturbation can be assumed to be much faster than the development of the base 

state and thus the quasi-steady-state approximation (QSSA) (Tan and Homsy, 1986) is applicable. 

This approach has been widely used in the linear stability analysis of gravitationally unstable 

diffusive boundary layers (Ghesmat et al., 2011; Riaz et al., 2006; Trevelyan et al., 2011). 

Limitations of the QSSA have been discussed elsewhere (Trevelyan et al., 2011). Using QSSA, 

0 /i z   in Equations (3.6b) and (3.6c) can be evaluated at time t0 or so called “frozen time” 

during the growth of perturbations. 

It is worth noting that Equation (3.6a) recovers CO2/water system when rij=0, except r11=1. The 

above system of Equations (3.6a-c) are solved numerically using a second-order finite difference 

method to find the growth rate, ω, as a function of wave-number, . The following eigenvalue 

problem can be obtained using the discretized equations. 
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where 
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coefficient matrices based on central discretization of the second derivatives and c and v are 

vectors containing the unknown variables at the discrete nodes. The subscripts v and c refer to 

vertical velocity and concentration, respectively. Equations (3.7a-c) can be rearranged to obtain: 
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The eigenvalue Equations (3.8b) and (3.8c) can be rewritten in matrix form;  
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To find the growth rate, ω, for an assigned wave-number, , and Ra number at time t0, the above 

problem is solved numerically using the same procedure addressed in previous studies (Emami-

Meybodi and Hassanzadeh, 2013). The maximum eigen-value of the coefficient matrix for given 

wavenumbers is considered as the growth rate, ω. The onset of instability is evaluated based on 

the obtained growth rate of the initial perturbations for given wave-numbers, using dispersion 

curves. The time at which the growth rate turns positive at a given wave-number represents the 

onset of instability.  

Analytical solution at the early time (t0) for the special case of a step change in the concentration 

profile was used to verify the computational algorithm. For such a case, it can be shown that ω=-

2 (Ghesmat et al., 2011; Tan and Homsy, 1986). The good agreement between results of the 

developed algorithm and the analytical solution ω=-2 at 5
01 108ˆ t , shown by open circles in 

Figure 3.3(a), indicates validity of the analysis.  
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3.4 Results and Discussion 

3.4.1 Stability analysis  

We present results of linear stability analysis for CO2/water and EG-MeOH/water systems 

characterized by monotonic and non-monotonic density profiles, respectively. Figure 3.3 shows 

the growth rate of perturbations for CO2/water and EG-MeOH/water mixtures at different times. 

The results shown in Figure 3.3 demonstrate a clear difference between EG-MeOH/water and 

CO2/water systems. These results suggest that the onset of convective instabilities for the two 

systems can be different. To further clarify this finding, results of the onset of the convective 

instabilities versus Ra for various mixtures of EG-MeOH are shown in Figure 3.4. The results for 

different compositions of EG-MeOH recover the well-known scaling of 2ˆ aRact
 , in which the 

prefactor a is a constant. The result for CO2/water is also shown in Figure 3.4, which is in close 

agreement with previous findings (Bestehorn and Firoozabadi, 2012; Ennis-King et al., 2005; 

Hassanzadeh et al., 2006; Meulenbroek et al., 2013; Slim, 2014). Figure 3.4 shows that the 

prefactor a depends on the composition of the EG-MeOH solution. The results reveal that an EG-

MeOH mixture with 62.5 wt.% EG results in a scaling relation with a prefactor of a~ 870 as 

compared to a~ 56 for CO2/water pair, indicating a significant delay in the onset of instabilities at 

a given Rayleigh number. This mixture results in a marginally non-monotonic density profile 

during the growth of the diffusive boundary layer with a negative peak density (see Figure 3.2). 

On the other hand, a mixture of EG-MeOH with 67.5 wt.% EG results in non-monotonic density 

profile with a positive peak density (see Figure 3.2) with scaling prefactor of a~ 6 suggesting a 

much faster onset of the convective instabilities. At a given Rayleigh number, the onset of 

instabilities for a mixture of EG-MeOH with 67.5 wt.% appears to be around one order faster than 

CO2/water pair. An EG-MeOH mixture with 65 wt.% EG results in a non-monotonic density 

profile with a peak dimensionless density close to zero and scaling prefactor of a ~ 82. It is worth 

noting that an EG-MeOH mixture with 65.39 wt.% EG results in the same scaling prefactor as of 

CO2 while the base state density profile for CO2 is evidently different. However, this resemblance 

does not guarantee the same dynamic for the two systems beyond the onset time. These findings 

highlight the importance of the proper choice of an analogue system in experimental studies for 

representation of CO2 convective dissolution behaviour. In particular, inconsistencies reported in 
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scaling of convective flux in several experimental studies (Backhaus et al., 2011; Hidalgo et al., 

2012; MacMinn et al., 2012; MacMinn and Juanes, 2013; Neufeld et al., 2010; Tsai et al., 2013) 

with the classical scaling (Hidalgo et al., 2012; Nield and Bejan, 2006; Slim et al., 2013) highlight 

the importance of choice of analogue fluids.  

 

Figure 3.3: Rate of growth of perturbations versus wave-number at different frozen times of 

5
01 108ˆ t , 4

02 108ˆ t , 3
03 108ˆ t , 2

04 108ˆ t , 1
05 108ˆ t  (a) CO2/water, and (b), (c), and 

(d) EG-MeOH/water with EG wt.% of 62.5, 65, and 67.5, respectively. Open circles are the results 

of the analytical solution (ω=-2) as compared with the results of the stability analysis shown by 

line.  
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Figure 3.4: Onset of convective instabilities versus Rayleigh number for different compositions 

of EG wt.% in EG-MeOH mixture.   

 

3.4.2 Nonlinear simulations 

Direct numerical simulations have been conducted to examine the nonlinear behaviour of 

convective mixing in CO2/water and the analogue systems. Equations. (3.1a-c) were solved 

numerically using a well-known IMPEC approach where pressure is considered implicit while 

mole fractions are treated explicitly. Details of the numerical approach and controls on accuracy 

of the numerical solutions have been reported in previous publications (Coats, 1969; Emami-

Meybodi and Hassanzadeh, 2015; Emami Meybodi and Hassanzadeh, 2013).  

The 2D numerical simulations were conducted to evaluate the nonlinear dynamics of mixing for 

CO2/water and analogue systems. The direct numerical simulations were performed at |Ra|=600, 
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using the same parameters defined in the linear stability analysis section. Figure 3.5 shows the 

time evolution of concentration distribution for the CO2/water system and EG-MeOH/water 

systems with 65 wt. % and 67.5 wt. % of EG. As predicted by the linear stability analysis, these 

three systems exhibit different instability behaviour followed by different fingering pattern. 

Consistent with the results of the stability analysis, the dynamics of EG-MeOH/water systems 

change significantly as the mass fraction of EG in EG-MeOH mixture is increased. The EG-

MeOH/water systems with 67.5 wt. % of EG results in faster development of the boundary layer 

instabilities such that the growth rate of fingers is significantly stronger than those in EG-

MeOH/water system with 65 wt.% of EG and CO2/water system. Furthermore, it can be observed 

that the fingering pattern in the EG-MeOH/water systems with 67.5 wt. % of EG is significantly 

vigorous than those in the EG-MeOH/water system with 65 wt. % of EG and CO2/water system. 

In the EG-MeOH/water system with 65 wt. % of EG fingers evolve in the form of sluggish 

convective fingers due to damping effect of the upper thick stable region. In this system fingers 

grow nearly independent from each other with minimal interaction.  

Numerical simulations for three different mixtures of EG-MeOH/water with 62.5 wt. %, 65 wt. % 

and 67.5 wt. % of EG have been conducted and consistent with the results of stability analysis in 

all cases a linear scaling was obtained for the onset time. As it was expected and has been 

previously reported (Emami-Meybodi et al., 2015; Hassanzadeh et al., 2007) the linear stability 

analysis shows smaller onset time as compared to the numerical simulations. This deviation 

originates from the fact that definition of the onset time in linear stability analysis and numerical 

simulation approaches are different. In the case of linear stability analysis, the onset time is based 

on the growth rate of perturbations once turn positive. While, the onset time in numerical 

simulation has been defined as the time when growth of perturbations is visible in the form of 

fingers of dense fluid penetrating into less dense fluid or sometimes when pure diffusive mixing 

and convective mixing curves deviates from each other.    
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Figure 3.5: Concentration distribution at different times of 01
ˆ 0.0013t   , 02

ˆ 0.004t  , 03
ˆ 0.011t  , 

04
ˆ 0.018t  , and 05

ˆ 0.025t   for |Ra|=600 representing CO2/water system (left panel), EG-

MeOH/water system with 65 wt. % of EG. (middle panel), and EG-MeOH/water system with 

67.5 wt. % of EG. (right panel). 

 

To better understand dynamics of the mixing process beyond the onset of instability, we studied 

the dissolution flux of the four cases considered in the stability analysis section. Figure 3.6 shows 

the numerical measurement of dissolution flux as a function of time, both in dimensionless form. 

The dissolution flux per unit area is expressed as the cumulative dissolution of mass in water 

(Emami-Meybodi et al., 2015): 

dVtC
td

d

A
tF

V )ˆ(
ˆ

1
)ˆ( ,        (3.10) 

where V is the domain pore volume, A is the cross sectional area of the interface and C  is total 

concentration of species (EG and MeOH) in the entire domain. 
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Figure 3.6: Dimensionless dissolution flux versus dimensionless time for CO2/water and the EG-

MeOH/water systems with |Ra|=600. 

 

Consistent with the results of the stability analysis, the dissolution flux for CO2/water system are 

clearly different than those of the analogue systems. As illustrated by concentration distribution 

maps (see Figure 3.5), the time of the onset of convection when the finger like structures form 

(solid black circle symbols shown in Figure 3.6) is significantly different for various systems. For 

EG-MeOH/water systems, the time of the onset of convection, which is marked by a sharp increase 

in the dissolution flux, increases as EG fraction of EG-MeOH solution decreases. Furthermore, the 

maximum flux values (open circle symbols shown in Figure 3.6) strongly depend on the EG 

fraction of EG-MeOH solution such that the systems with higher EG fraction results in a larger 

maximum flux. In addition, the start of shutdown regime (open square symbols shown in Figure 

3.6) where the convective fingers touch the bottom boundary and the domain begins to saturate is 

accelerated by increase of EG fraction. As it was expected, CO2/water system and the EG-

MeOH/water systems show different dynamics especially in the onset of convection and the 
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maximum flux. These results are in qualitative agreement with the results of the linear stability 

analysis and assert that the EG-MeOH/water systems neither resemble the onset of instability nor 

the nonlinear mixing of CO2/water system.  

3.5 Summary and Conclusions 

Stability behaviour of a gravitationally unstable diffusive boundary layer for EG-MeOH/water was 

studied. Possible base state densities during the growth of a gravitationally unstable diffusive layer 

for various EG wt.% were identified. Using the linear stability analysis and nonlinear simulations, 

we have shown that the composition of EG-MeOH mixture has a significant effect on the stability 

characteristics of the diffusive boundary layer and convective mixing beyond the onset of 

instability. Furthermore, scaling relations were developed that consider the effect of the 

composition of EG-MeOH on the onset of convective instabilities. The results have shown that the 

choice of an analogue system is critically important in correct representation of the onset of 

convective instabilities of CO2/water and design of experiments. In particular, it was shown that 

EG-MeOH mixtures do not resemble the dynamics of CO2/water system. The onset of convective 

instabilities for common EG-MeOH mixtures used in experiments was found to be strong function 

of the composition of EG in the EG-MeOH solution. These findings form a basis for further 

investigations in relation with the proper choice of analogue systems for design of the convective 

dissolution experiments.   
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Chapter 4: Does Impure CO2 Impede or Accelerate the Onset of 

Convective Mixing in Geological Storage?*

 

 

 

 

4.1 Abstract  

We have conducted a linear stability analysis to investigate the effect of impurity in CO2 stream 

on the onset of convective mixing associated with impure carbon dioxide (CO2) storage in deep 

saline aquifers. It has been generally thought that injecting impurities such as hydrogen sulphide 

(H2S) and nitrogen (N2) along with carbon dioxide impedes the buoyancy-driven instabilities 

resulting in less efficient CO2 solubility trapping. In this work, we have for the first time shown 

that contrary to the original thought informed inclusion of an impurity such as H2S has a potential 

to accelerate the onset of buoyancy-driven instabilities and possibly leading to more effective 

solubility trapping. This result improves our understanding of the storage of impure CO2 streams 

in deep saline aquifers and uncovers a new area for further research.    

4.2 Introduction 

Immediate reduction of greenhouse gas emissions is one of the most imperative environmental 

policies that has been proposed for global warming mitigation (EPA, 2014). It is believed that 

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2016). Does impure CO2 impede or accelerate the onset of 

convective mixing in geological storage? International Journal of Greenhouse Gas Control, 

54, 250–257. https://doi.org/10.1016/j.ijggc.2016.09.011. 
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anthropogenic carbon dioxide (CO2) emissions level as a primary greenhouse gas, has caused 

climate change over the past decades and is expected to continue in the upcoming years (Metz et 

al., 2007). Capture and geological storage of CO2 in deep geological formations has been 

recognized as an operative choice and a viable short term option to reduce CO2 emissions over the 

next decades until new technologies can play an important role in significant reduction of the 

emissions (NACAP, 2012). Deep saline aquifers have been identified as the best alternative among 

geological formation for CO2 storage due to their high capacity, proximity to emission sources, 

and worldwide availability (Metz et al., 2005). Once injected CO2 spreads under a sealing rock or 

so called cap rock due to its buoyancy, gradually dissolving into the underlying formation brines. 

The formation brines saturated with CO2 on top of an aquifer beneath a cap rock (or seal) is slightly 

denser than the original brine. This leads to buoyancy-driven instabilities in an aquifer. The CO2 

saturated brine sinks down due to gravitational instabilities and is continuously replaced by fresh 

brine from the bottom of the aquifer giving rise to convective dissolution. This process can result 

in enhanced dissolution of CO2 into brine and consequently reduces the volume of free (or mobile) 

phase CO2 under the seal leading to decrease of the CO2 risk of leakage (Ennis-King and Paterson, 

2005; Hassanzadeh et al., 2005). Figure 4.1 shows the schematic of the described phenomenon. 

  

 

Figure 4.1: Schematic of mechanisms involved in long-term sequestration of CO2 in deep saline 

aquifers.  
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Long term risk of leakage of free phase CO2 is a great concern. Solubility trapping of CO2 as a 

result of the convective dissolution has been recognized as one of the main mechanisms in 

reduction of free phase CO2 and thus reducing risk of leakage from storage sites. The majority of 

previous works have been focused on pure CO2 streams. One of the hindrances to progress in large 

scale implementation of CO2 storage has been high cost of CO2 capture from impure anthropogenic 

sources. Sequestering less pure CO2 can potentially reduce the cost of capture process (Bachu et 

al., 2003; Ji and Zhu, 2013; Li et al., 2015; Nicot et al., 2013; Talman, 2015). However, 

transportation and compression of impure CO2 streams continue to be challenging. Two abundant 

species which exist in impure anthropogenic CO2 streams are H2S (oil and gas production) and N2 

(power plants). Dissolution of the both species (N2 and H2S) in water results in density decrease 

while CO2 dissolution increases the aqueous phase density. Permitting impurities into CO2 

injection steams influences the density and viscosity of the mixture and then the shape of CO2 

migrating plume in subsurface (IEAGHG, 2011; Ji and Zhu, 2013). A few studies have been 

conducted to consider the effect of co-injection of some popular impurities with CO2. However, 

recent interpretations and findings, which are merely based on the overall density reduction effect 

of such impurities, have led to an incorrect proposition that impure CO2 stream leads to lower 

solubility trapping (Bachu, 2008; Ji and Zhu, 2013; Li et al., 2015; Wang et al., 2011). The notion 

of density reduction as a results of dissolution of impurities such as H2S and N2 has been used to 

conclude that co-injection of CO2 with impurity considerably retards the convective mixing and 

thus lowers the solubility trapping (Ji and Zhu, 2013; Li et al., 2015; Zhang et al., 2011).  

An important physical mechanism that has been unnoticed in the previous studies is the role of 

molecular diffusion of impurities such as H2S and N2 during the long-term storage process. 

Experimental data of molecular diffusion has indicated that diffusion of H2S and N2 are different 

than CO2. Such a difference in the molecular diffusion gives rise to a non-monotonic density 

profile during the dissolution process. Here we have shown that a diffusive boundary layer with a 

non-monotonic density profile resulted from the contrast in the diffusion of coefficients of species 

of an impure stream can become more unstable than that of pure CO2 stream, leading to a faster 

onset of convective instability. Non-monotonic density profiles are known to arise in numerous 

physical and chemical settings. Examples are natural convection of water near its density 

maximum (Blake et al., 1984; Kim and Choi, 2014; Moore and Weiss, 1973) and density-driven 
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flows as a result of chemical reaction and/or diffusion in multi-component miscible or immiscible 

flows (Loodts et al., 2014, 2015, Trevelyan et al., 2011, 2015; Wylock et al., 2014). However, the 

important character of non-monotonic density profile in the context of impure CO2 storage has not 

been discussed in the literature.   

Precise determination of the effect of impurities on the fate of the injected CO2 in subsurface 

requires investigations that take into account the hydrodynamics of the system. Does impure CO2 

impede the onset of convective dissolution? How does the growth of these convective instabilities 

depend on the impurities? Are we able to control the onset of convective dissolution in aquifers by 

proper selection of impurities? These are the questions that need further investigations. In 

particular, the time evolution of the non-monotonic density profile during dissolution of impure 

CO2 in deep saline aquifers needs to be considered.  In this work, we report results of linear stability 

analysis of a gravitationally unstable diffusive boundary layer to address some of these questions.  

4.3 Mathematical Formulation 

4.3.1 Governing equations  

We consider a two-dimensional, homogeneous and isotropic physical porous model of thickness, 

H (see Figure 4.1 for domain geometry), saturated with quiescent water. The model is assumed to 

be laterally infinite and isothermal. No-flow boundary conditions are considered at the top and 

bottom of the domain with respect to pressure. A no-flux boundary condition is maintained at the 

bottom of the domain while constant concentrations of species are set at the top of the domain with 

respect to the mass transport.   

Under the assumption of single-phase flow and consequently in the absence of capillarity, the 

interface between CO2 and water has been considered sharp with a constant concentration (Emami-

Meybodi and Hassanzadeh, 2015; Jafari Raad and Hassanzadeh, 2015; Riaz et al., 2006). Using 

the Boussinesq approximation and assuming an incompressible fluid and in the absence of 

viscosity variation, cross diffusion of species, and dispersion, the governing equations of non-

reactive single phase flow and transport in a porous medium can be written as follows (Bear, 1972): 
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where, v(u,v), p, ,  and t  are vector of Darcy velocity, pressure, mole fraction, viscosity and 

time, respectively. k is the porous medium permeability,  porosity, g the gravitational acceleration 

and z is the vertical coordinate and positive downwards. D is the effective molecular diffusion 

coefficient in the porous media and assumed to be independent of concentration for dilute 

solutions. i is the species index with i=1 for CO2 and i=2 for impurity species. The aqueous phase 

density as a function of both species mole fraction (i.e, ),( 21  f ) is obtained from the linear 

regression of the predicted aqueous phase density using a thermodynamics model (Tsivintzelis et 

al., 2010; Zirrahi et al., 2012). The gas mixture composition range is chosen based on the licensed 

acid gas injection sites in western Canada. The licensed composition for acid gas injection varies 

between 2 to 85 mole % H2S with the rest being CO2 (Stefan Bachu et al., 2003, 2008). According 

to the licensed disposal conditions of the injection sites, we assume representative temperature and 

pressure of 40°C and 100 bar, respectively. Figure 4.2 shows the aqueous phase density as a 

function of species mole fractions in the aqueous phase for three impure CO2 streams, which 

clearly shows the linear behaviour. The mixture density can be expressed by 21 ˆˆˆ  r  where 

b
s

b  11/)(ˆ  , 1
ˆ / s

i i   , i  is the species mole fraction with respect to total moles in 

the aqueous phase, and 
s
1  is the equilibrium mole fraction of CO2 in the aqueous phase. b is the 

water density,   is expansion coefficient, which is defined as ii dd
b

  /1  , and r= 2/1 is 

the ratio of the coefficients of density variation of H2S (or N2) to CO2. The density at the interface 

(z=0) between the impure CO2 and water is given by crr 1ˆint , where ss
cr 12 /  and 

s
2  is 

the equilibrium mole fraction of H2S in the aqueous phase.  

Values of r corresponding to the above mentioned linear relation of aqueous phase density are 

obtained for a given operating temperature and pressure conditions. The density data for CO2-

H2S/water fluid pair at 40 C and 100 bar results in r-0.57. Figure 4.3 shows r values as a 
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function of temperature and pressure for the system of CO2-H2S/water. The density data for CO2-

N2/water system at the above mentioned operational condition result in r-1.53. It is worth noting 

that solubility of N2 into water is significantly lower than that of CO2. It will be shown that while 

r for CO2-N2/water is high, the equilibrium mole fraction ratio, rc, is very small leading to low 

rrc values where the hydrodynamic of the system remains very close to pure CO2. Therefore, our 

focus in this work is on impure CO2 streams containing H2S.  

  

  

Figure 4.2: Aqueous phase density as a function of species mole fraction for three impure CO2 

streams at 40 C and 100 bar, which can be described by
2 2

0.998 0.3681 0.2099CO CO     . 

 

0.0
0.5

1.0
1.5

2.0
2.5

0.0
0.4

0.8
1.2

1.6

50% H2S

0

1

2

3
4

0.0
0.3

0.6
0.9

70% H2S

0.992

0.996

1.000

1.004

1.008

0.0

0.4

0.8
1.2

0.0
0.5

1.0
1.5

A
q

u
eo

u
s 

p
h

a
se

 d
en

si
ty

 (
g

/c
c

)

X-
 H

2
S(

×1
00

)

X- CO
2 (×100)

30% H2S



53 
 

 

 

Figure 4.3: rβ as a function of temperature and pressure for CO2-H2S/water system, which can be 

described by
2725441 10833.810549.51039.110834.310283.5 PTPTr   , 

where P is in bar and T in C. 

 

4.3.2 Base state density profiles  

Dissolution of CO2 in water slightly increases the aqueous phase density. Such a density increase 

creates a gravitationally unstable diffusive boundary layer on top of an aquifer, which may lead to 

convective dissolution resulting in improved storage efficiency. Presence of impurities in the 

injected stream affects stability of the boundary layer and consequently the CO2 dissolution in 

aquifers. We study the time-dependent base state density profile as a function of the binary system 

physical properties to classify the regions with possibility of the boundary layer instability. Prior 

to the onset of convection, the system is initially stagnant ( 0v ) and molecular diffusion is the 

dominant mechanism involved in the mass transfer of the dissolved species. For the diffusive mass 
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transfer mechanism as a base state of dissolution process the following dimensionless governing 

equation can be obtained from the general mass conservation Equation (4.1a): 

2
0

2
0

ˆ

ˆ
ˆ
ˆ

z
r

t
i

Di
i






 

 ,             (4.2) 

where subscript 0 denotes the base state condition. Vertical coordinate z, time and species 

concentration are scaled by thickness of the porous layer (H), CO2 diffusion time scale ( 1
2 /DH ) 

and the concentration of CO2 at the interface, 
s

1  ( i0̂  =
s

i 10 / ), respectively. We also scaled 

the effective molecular diffusion coefficient by CO2 molecular diffusion coefficient (rDi=Di/D1).   

The base state solution can be obtained using the initial and boundary conditions 0)0ˆ,̂(ˆ0 tzi  

and, cii rtz  )̂,0ˆ(ˆ0 , 0ˆ/)̂,1(ˆ0  zti , respectively, as given by:  

   







 



1

22
0

ˆexpˆsin
12

1ˆ
n

Dinn
n

cii trzr 


 ,      (4.3) 

where n=(2n-1)/2, rc1=1, rc2=rc, rD1=1, rD2=rD.   

The vertical density gradient can be obtained using the proposed density concentration relationship 

and the associated base state concentrations solutions for both species (e.g. CO2 and H2S) at the 

early time, )ˆ4/ˆ(ˆ0 trzerfcr Dicii  , as given by: 



































tr

z

r

rr

t

z

tz DD

c

ˆ4

ˆ
exp

ˆ4

ˆ
exp

ˆ

1
ˆ

ˆ 22





,                (4.4) 

For CO2-H2S /water system r<0 (1>0, 2<0), the density profile can have extremum (local 

minimum or maximum). Therefore, the behaviour of the density profile with depth needs to be 

inspected. By setting 0ˆ/ˆ  z   in Equation (4.4), rearranging and taking natural log of the 

resulting expression we arrive at 0)/ln(ˆ4/ˆ)1( 2/12  DcDD rrrtrzr  . This is a quadratic equation 

in ẑ with discriminant trrrrr DDcD
ˆ/)/ln()1( 2/1

 . The existence of extremum in the density 

profile then can be identified using sign of the discriminant. In addition, for cases that results in a 

monotonic density profile possibility of an inflection point also needs to be determined. In such a 
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case, the second derivative of the density profile needs to be evaluated to determine the existence 

of an inflection point in the density profile. This again leads to a quadratic equation given by  

0)/ln(ˆ4/ˆ)1( 2/32  DcDD rrrtrzr   with trrrrr DDcD
ˆ/)/ln()1( 2/3

 . The inflection point exists 

when >0. Table 1 shows a summary of various stability states arise for the evolving base state 

density profile. The interface density int̂ , is defined as the density difference at z=0 and the original 

water as described by: crr 1ˆint . We study binary systems that cover six potentially unstable 

regions in the parameter space (-rrc, rD) shown in Figure 4.4. The entire parameter space is divided 

into two categories based on the molecular diffusion ratio, (rD<1 and rD>1).  A case with rD<1 

represents an impurity with a molecular diffusion coefficient less than that of CO2, while rD>1 

denotes an impurity with a molecular diffusion larger than that CO2. Reported experimental 

molecular diffusion coefficients data for CO2-H2S/water system reveals that rD is always less than 

unity and varies from 0.66 to 0.99 for the given temperature range of 293-368 K (Tamimi et al., 

1994). 

Therefore, for a typical storage condition of 40 C and 100 bar, the density profile can be defined 

using (r=-0.57, rD ~0.87). Figure 4.4 shows parameter space (-rrc, rD) for various stability regions 

and the associated density profiles. For binary systems with various H2S composition, the system 

density profile demonstrates both monotonic and non-monotonic behaviour, which cover the space 

parameter regions I, VII, II and III corresponding to their physical properties, as shown in Figure 

4.4. The parameter space for CO2/water system is given by (-rrc, rD) = (0,1) with a monotonic 

density profile similar to region I. Later, we will show that the dissimilarity exists between the two 

density profiles has a great impact on the evolution of convective instabilities. 
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Table Error! No text of specified style in document.1: Characteristics of various parameter 
space regions shown in Figure 4.4 

Region rD 
0ˆ

ˆ
zz  Density profile Stability 

int̂  

I (-rrc)2< rD1 decreasing monotonic unstable + 

II&III rD<1, rD<(-rrc)2 increasing non-monotonic unstable ± 

IV 1rD<(-rrc)2 increasing monotonic stable - 

V&VI rD>1, rD>(-rrc)2 decreasing non-monotonic unstable ± 

VII (-rrc)2<rD<(-rrc)2/3 decreasing monotonic/INF  unstable + 

VIII (-rrc)2/3<rD<(-rrc)2 increasing monotonic/INF unstable - 

 

In all non-monotonic cases with an extremum, the peak in the density profile occurs at  

)1/()/ln(ˆ2ˆ 2/1
DDcDp rrrrtrz    and the peak density is given by  

)1/()/ln()1/()/ln(ˆ 2/12/1
DDccDDcDp rrrrerfcrrrrrrrerfc   , which is independent of 

time. It is expected that for large values of -rrc or rD the peak in density diminishes resulting in a 

monotonically increasing or decreasing density profiles, respectively. For an impure system with 

r>0 (e.g. SO2, Ar, Kr), the density profile remains always monotonically decreasing with an 

inflection point at the interface.  

The above classification demonstrates the important role of physical properties of impure streams 

on the growth of the diffusive boundary layer, which may potentially become unstable as discussed 

in the following section 
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Figure 4.4: Parameter space (-rβrc, rD) classification shows various stability regions. Inset plots 

are the base state density profiles with depth. Dashed space (IV) demonstrate the stable regions. 

Gray color highlighted spaces (I, VII, II& III) indicate the possible parameters regions for aqueous 

CO2/H2S system. H2S compositions correspond to a typical storage temperature of 40C and a 

pressure of 100 bar. 

4.3.3 Linear stability analysis 

The base state density profiles parametrized in the previous section may become unstable and lead 

to convective dissolution, which is favorable in the context of geological storage of CO2. The linear 

stability analysis determines the time at which these instabilities occur and is important for impure 

injection streams and screening of storage sites.  A linear stability analysis using quasi-steady state 

approximation (QSSA) is used to study the growth of instabilities and consequently to determine 

their time of onset. To conduct a linear stability analysis, the governing equations of flow and 
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transport given in Equation (4.1) are perturbed using '0 sss   where s=s[p,v,1,2,]. The fluid is 

stationary at the early time and the concentrations, velocity, and density base states can be 

described by 
2

0
2

0 ˆ/ˆˆ/ˆ zrt iDii   , v0=0, and 0201 ˆˆˆ
0

 r , respectively. Substituting the 

perturbed variables into the flow and transport equations, eliminating the higher order terms and 

after simplification, we obtain the following perturbed equations. 

2 ' 2 '
1 1 1 22

2 ' Ra
1 c

r
v

r r




   
 


;        (4.5a) 

tz
vr ii

iDi 







'

0'2
2 '

  ,                            (4.5b, c) 

where the velocity perturbation is scaled by D1/H, 
22

1 x ,
22

2 xz ,

1 1Ra (1 ) /s
b ckg H r r D      and i=1,2, and the hats (^) are dropped for convenience.  

The perturbed velocity and concentration are expressed as 
txietzvv   ),](,,[]',','[ *

2121  

where  and ω are the perturbation wave-number and growth rate, respectively. Using Equation 

(4.5) we obtain 

* *2 *
1 22 * 2

2
Ra( )

1 c

rv
v

z r r




 
 


  

 
,       (4.6a) 












i
i

i
i

Di z
v

z
r  0*2

2

2

;                (4.6b, c) 

where i=1,2,  rD1=1 and rD2=rD.  The boundary conditions for the perturbed flow and mass transfer 

are given by 0)0( 
i , 0/)1(   zi , 0)1()0( ** vv . For the special case of -rrc =1, 

0ˆ
int  ; thus, Ra =0. In this case, it can be shown that Equation (5a) is reduced to

 2 * 2 ' 2 '
2 1 1 1 2' Rav r       where 

*
1 1Ra /s

bkg H D    . 

The growth of perturbations can be assumed to be much faster than the development of the base 

state and thus the quasi-steady-state approximation (QSSA) (Tan and Homsy, 1986) is applicable. 
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This approach has been widely used in the linear stability analysis of gravitationally unstable 

diffusive boundary layers (Ghesmat et al., 2011; Riaz et al., 2006; Trevelyan et al., 2011). 

Limitations of the QSSA have been discussed elsewhere (Trevelyan et al., 2011). Using QSSA, 

zi  /0  in Equations (4.6b, c) can be evaluated at time t0 or the so called “frozen time” during 

the growth of perturbations. 

It is worth noting that Equation (4.6a) recovers CO2/water system when r=0. The above system 

of Equations (4.6a-c) are solved numerically using a second-order finite difference method to find 

the growth rate, ω, as a function of wave-number, . The following eigenvalue problem can be 

obtained using the discretized equations. 

1 2* 2[ ][ ] Ra( )
1v

c

r

r r





  

   
  

χ χ
A v  ,        (4.7a) 

]][[][]][[ 0*  



 i
i

icDi z
r χω

χ
vχA  ,                 (4.7b,c) 

where )( 2IDA  vv , )( 2IDA  cc , vD , and cD  are coefficient matrices based on central 

discretization of the second derivatives and c and v are vectors containing the unknown variables 

at the discrete nodes. Solutions to Equations (4.7a-c) can be written as: 

1 2* 2 1[ ] Ra( )[ ]
1v

c

r

r r





 


 

   
  

χ χ
v A ,         (4.8a) 

1 22 1 0[ ][ ] Ra( )[ ] [ ][ ]
1

i
Di c i v i

c

r
r

r r z





 

  
                 

χ χ χ
A χ A ω χ .              (4.8b,c) 

The eigenvalue Equations (4.8b) and (4.8c) can be rewritten in matrix form;  

22
1 101 01

1 1

22
2 21 102 02

RaRa
[ ] [ ] [ ]

1 1
[ ] 0
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[ ] [ ] [ ]

1 1
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                                              

χ χ
A A A

χ χ
ω

χ χχ χ
A A A

.     (4.9) 
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The above eigenvalue problem was solved numerically using the same numerical procedure 

reported by Emami-Meybodi and Hassanzadeh (Emami Meybodi and Hassanzadeh, 2013). The 

maximum eigenvalue of the coefficient matrix corresponding to given parameters of , t and Ra 

number is considered as the growth rate, ω. Onset time is defined as the time at which the growth 

rate of perturbation first becomes positive. Thus, the onset time can be detected using dispersion 

curves given a zero maximum growth rate.  

For the special case of a step change in concentration profile, analytical solution at the early time 

(t0) results in ω=-2 (Ghesmat et al., 2011; Tan and Homsy, 1986). This analytical solution was 

used to verify the computational algorithm. Growth rates of the perturbations obtained by the 

analytical solution (ω=-2) at 5
01 108ˆ t , shown by open circles in Figure 4.5(a), are in close 

agreement with results of the developed algorithm indicating validity of the analysis.  

4.4 Results and Discussion 

4.4.1 Stability analysis 

Figure 4.5 shows rate of growth of perturbations for pure CO2 stream and three other streams of 

impure CO2 at different times. The results shown in Figure 4.5 demonstrate a clear difference 

between CO2/water system and the impure CO2/water systems. These results suggest that the onset 

of convective instabilities for each stream can be different. This figure shows clearly that an impure 

stream with 52% H2S, which corresponds to (-rrc, rD) ~ (0.96, 0.87) (see region II in Figure 4.4), 

has a maximum growth rates as compared to the other streams. The non-monotonic density profile 

associated with the positive interface density difference ( intˆ 0  ) implies that impure CO2 streams 

fall in region II of Figure 4.4 are gravitationally more unstable than pure CO2 and other streams. 

In other words, the presence of impurity leads to faster onset of instability. In contrast, an impure 

stream with 56% H2S, which corresponds to (-rrc, rD) ~ (1.04, 0.87) (see region III in Figure 4.4), 

demonstrates the lowest growth rate of the convective instabilities. This behaviour is attributed to 

the negative interface density difference ( intˆ 0  ), which corresponds to excessive H2S 

concentration in the impure stream. To further clarify these findings, results of the onset of the 

convective instabilities versus Ra for various impure streams are shown in Figure 4.6. 
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Figure 4.5: Rate of growth of perturbations versus wave-number at different frozen times of 

5
01 108ˆ t , 

4
02 108ˆ t , 

3
03 108ˆ t , 

2
04 108ˆ t , 

1
05 108ˆ t  for a system with Ra=300,  

(a) pure CO2 stream with (-rrc, rD) = (0, 1), (b) impure stream with 49% H2S [(-rrc, rD) ~ 

(0.9,0.87)], (c) impure stream with 52% H2S [(-rrc, rD) ~ (0.96,0.87)], and (d) impure stream with 

56% H2S [(-rrc, rD) ~ (1.04,0.87)] where H2S compositions correspond to a typical storage 

temperature of 40 C and a pressure of 100 bar. Open circles are the results of the analytical 

solution (ω=-2) as compared with the results of the stability analysis shown by line. 

 

Figure 4.6 shows the onset of instabilities as a function of Rayleigh number for pure stream of CO2 

and four possible impure streams. Rayleigh number is used to compare the onset of instability of 

systems with different rock and fluid properties based on the scaled onset time. According to the 

definition of Rayleigh number ( 1 1Ra (1 ) /s
b ckg H r r D     ), a constant Ra for different rrc 

can be achieved by varying other properties including thickness of porous layer, permeability or 

porosity. The results shown in Figure 4.6 reveal that an impure stream with 52% H2S (rrc =-0.96), 

which falls in region II of the parameter space (see Figure 4.4) leads to a faster onset of instability 

as compared to the pure CO2. This system represents a non-monotonic density profile with a 

positive interface density differences intˆ( 0)   during the growth of the diffusive boundary layer. 

Results shown in Figure 4.6 clearly indicate the important role of density profile on the onset of 

instability. Results also show that in all cases the onset of instability can be scaled with the inverse 

of Ra2, implying the onset time is independent of the porous layer thickness, which is in agreement 

with previous findings (Bestehorn and Firoozabadi, 2012; Ennis-King et al., 2005; Hassanzadeh 
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et al., 2006; Meulenbroek et al., 2013; Slim, 2014). The scaling prefactor (a) for each system is 

also given in Figure 4.6. The results reveal that a mixture with -rrc=0.96 (52% H2S) results in a 

scaling relation with a prefactor of a40 suggesting a faster onset of the convective instabilities 

as compared to a56 for a pure stream of CO2. It is worth noting that H2S compositions reported 

in Figure 4.6 correspond to a typical storage temperature of 40 C and a pressure of 100 bar. In the 

other words, H2S composition that leads to a faster onset depends on the storage temperature and 

pressure conditions. These findings show that the composition of impurity for storage sites can be 

engineered to control and accelerate the evolution of convective mixing.  

 

 

Figure 4.6: Onset of instability scaled with Ra for various regions of the parameter space where 

H2S compositions correspond to a typical storage temperature of 40 C and a pressure of 100 bar. 
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Figure 4.7 shows the dependency of the onset of convective instability to the equilibrium 

concentration ratio (rc) of impure CO2 streams for different Rayleigh numbers. The corresponding 

parameter space is also shown on this figure. Positive interface densities intˆ( 0)  generally tend to 

create a monotonically decreasing density profile (unstable system) while negative interface 

densities intˆ( 0)  result in a monotonically increasing density profile (stable system). Once the 

interface density is not strong enough, the contrast in molecular diffusion of CO2 and H2S 

(represented by rD) comes into play and forms a non-monotonic density profile. A non-monotonic 

density profile caused by such a contrast with positive interface density can accelerate the onset of 

convective instability significantly, which needs to be considered for geological storage of acid 

gases. 

The results shown in Figure 4.7 reveal that as the composition of H2S in an impure CO2 stream 

increases the onset time gradually increases up to an equilibrium ratio of ~1.51, which corresponds 

to an impurity composition of ~51% H2S. This gradual increase in the onset time corresponds to 

parameter space regions I and VII shown in Figure 4.4 where the density profile is monotonic with

intˆ( 0)  . Further addition of H2S to the impure stream decreases the interface density leading to 

deceleration of the onset of convective instabilities. Although CO2 molecular diffusion is greater 

than that of H2S (rD<1), the effect of higher equilibrium ratio (rc) is dominant in controlling the 

shape of density profile. Therefore, the density profile remains monotonic. For larger H2S 

impurities in acid gas streams between ~51-55 mole%, which corresponds to the parameter space 

region II, the interface density is still positive but diminishes by further increase in the composition 

of H2S. Since CO2 is more diffusive than H2S (rD<1), it penetrates deeper into the formation and 

generates a non-monotonic density profile with positive interface density intˆ( 0)  . It is worth 

noting that CO2 increases the aqueous phase density while H2S decreases the density upon 

dissolution.  Figure 4.7 shows that impure streams with positive interface density and non-

monotonic density profile (region II) may have a faster onset of instability as compared to a pure 

stream of CO2. This finding is in agreement with the behaviour of the growth of perturbations 

described in Figure 4.5. For H2S compositions beyond 55% the interface density differences take 

negative values (region III). While the density remains non-monotonic in region III, the effect of 

negative interface density is dominant over the diffusion contrast leading to more stable system as 

compared to pure CO2 stream. The peak in the density profile diminishes rapidly beyond rrc>~1.5 
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leading to a monotonically increasing and stable profile. These results are not applicable to the 

special case of -rrc =1 since the Rayleigh number for this case is different than the one used in 

our analysis. In the following section, the optimum storage pressure and temperature that lead to 

faster onset of convective dissolution will be discussed. 

 

Figure 4.7: Onset of instability versus composition of impurity for various regions of the 

parameter space at a) Ra<200 and b) 300<Ra<1000, binaries with rB=-0.57 and rD=0.87 where H2S 

compositions correspond to a typical storage temperature of 40 C and a pressure of 100 bar. 
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temperature as given in Figure 4.8. This simple relationship can be used to choose composition of 

H2S in the impure storage stream for acid gas disposal and simplify the site screening process.   

 

Figure 4.8: Optimum H2S composition (mole %) leading to faster onset as a function of storage 

temperature and pressure. Dependency of optimum H2S composition can be expressed as a linear 

relationship of
2

(%) 0.147 0.4695 56.466H Sx P T    where P is in bar and T in C. 

Information related to the onset of instabilities such as the scaling relations (see Figure 4.6) and 

the parameter space (See Figure 4.4) developed in this study are important in proper design, site 

screening, characterization and safety of geological storage. This information can be used to either 

identify future geological candidates for acid gas disposal or reviewing the current operating 

conditions of licensed sites. For example, large-scale injection of acid gas into geological 

formations has been approved for more than 47 operation sites in Western Canada (Alberta and 

British Colombia) operating over a wide range of acid-gas composition, pressure and temperature 

(Bachu et al., 2003, 2008; Bachu and Carroll, 2005). Deep saline aquifers with 26 injection sites, 

depleted oil and/or gas reservoirs with 17 injection sites and underlying water leg of depleted oil 
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30

35

40

45

50

55

60

65

70

40

50

60
70

80

100
120

140
160

180

H
2S

 (
m

o
le

%
)

Tempera
tu

re
(
o C)

Pressure(bar)



66 
 

injection in Western Canada.  Storage sites such as those are possible candidates for reviewing the 

operating conditions to control the onset of convective dissolution. 
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Chapter 5: Prospect for Storage of Impure Carbon Dioxide Streams in Deep 

Saline Aquifers-A Convective Dissolution Perspective*

 

 

 

 

5.1 Abstract 

Secure and permanent storage of CO2 in deep saline aquifers by solubility trapping depends highly 

on the rate at which it dissolves in formation brine by convective dissolution. A commonly-held 

belief is that injection of impurities along with CO2 retards the evolution of convective dissolution, 

thereby, negatively impacting solubility trapping of CO2. Injection of impurities along with CO2 

provides an exceptional prospect for low-cost Carbon Capture and Storage (CCS) technologies 

and can potentially accelerate large scale implementation of geological storage of CO2. In this 

study, convective dissolution of CO2 streams with different portion of H2S impurities, which leads 

to solubility trapping of CO2 in deep saline aquifers, is studied using non-linear numerical 

simulations. We have shown that the rate of dissolution of an impure CO2 stream with H2S 

impurities less than 30 mol.% is nearly similar to that of a pure CO2 stream. It was also shown that 

an impure CO2 stream may lead to different convective mixing dynamics at early and late periods 

of dissolution process. These findings suggest that an impure CO2 stream can be engineered to 

improve the rate of dissolution and thus solubility trapping of CO2 leading to higher storage 

security and efficiency.  

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2017). Prospect for storage of impure carbon dioxide 

streams in deep saline aquifers-A convective dissolution perspective. International Journal 

of Greenhouse Gas Control, 63, 350–355. https://doi.org/10.1016/J.IJGGC.2017.06.011 
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5.2 Introduction 

It is believed that the effects of our increase reliance on fossil fuels and subsequent carbon dioxide 

(CO2) emissions are becoming an ever present threat to global climate change (Metz et al., 2007; 

Pacala and Socolow, 2004). Storage of CO2 into deep saline aquifers has been considered as an 

operative choice and a viable short term option offsetting anthropogenic emissions of CO2 (Benson 

and Cole, 2008; Boot-Handford et al., 2014; EPA, 2014; Firoozabadi and Cheng, 2010; Lackner, 

2003; Metz et al., 2005; Orr, 2009a). Most gases (e.g. H2S, N2, O2), when dissolve in water 

decrease the aqueous phase density. However, CO2 and a few other gases (SO2, Kr, Xe) increase 

density of the aqueous phase (Ennis-King et al., 2005). Solubility trapping of CO2 in deep saline 

aquifers favors from such a density increase since it leads to higher rate of dissolution of CO2 in 

water and thus a more secure sequestration process can be achieved.  

Once CO2 is injected into an aquifer, it migrates upwards to the top of reservoir due to its buoyancy 

and spreads under caprock from where it gradually dissolves into the underlying brine (Lindeberg 

and Wessel-Berg, 1997). Dissolution of CO2 into brine slightly increases the density of brine 

phase. Setting the negative density gradient in gravity field leads to sink down and consequently 

replacement of the CO2-rich brine phase by underlying fresh brine, giving rise to a buoyancy-

driven flow or so-called convective dissolution process. This mechanism significantly accelerates 

the solubility trapping of the injected CO2 and consequently increases security of storage (Ennis-

King and Paterson, 2005; Hassanzadeh et al., 2005; Hassanzadeh et al., 2007; Orr, 2009b).  

Secure and permanent storage of CO2 in deep saline aquifers by solubility trapping depends highly 

on the rate at which it dissolves in formation brine by convective dissolution. Intuitively, one may 

infer that injection of impurities, which reduce the aqueous phase density, such as those found in 

flue gases (e.g. N2) and oil and gas production operations (e.g. H2S) along with CO2 impedes the 

development of convective dissolution; thus, undesirably influencing the trapping of CO2 in deep 

saline aquifers. However, here we will show that this is not always the case. 

Capture of CO2 from impure streams is an expensive and energy intensive process (Markewitz et 

al., 2012). Injection of impurities along with CO2 provides an exceptional prospect for competitive 

CCS technologies and can potentially accelerate implementation of large scale geological storage 

of CO2. On the other hand, potential risk for impure CO2 injection process and its subsequent 

environmental impact is higher than those for pure CO2. Furthermore, impurities could pose risk 

of excessive corrosion of carbon storage infrastructures such as compression, transportation, and 
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injection facilities. However, compression, transportation, and injection of acid gases have been 

practiced in oil and gas industry for subsurface disposal to avoid flaring of H2S and expensive 

sulphur recovery units as well as in oil reservoirs for enhanced oil recovery (EOR) purposes for a 

long time all around the world. These operations have demonstrated the practicality of impure CO2 

injection in subsurface (Bachu and Gunter, 2005; Bachu et al., 2003; Carroll and Maddocks, 1999; 

Moshfeghian et al., 2002; Rahimi and Griffin, 2004; Wall and Kenefake, 2005; Wang et al., 2011; 

Whatley, 2000).  

Convective dissolution that leads to permanent storage of CO2 is of great importance. This CO2 

trapping mechanism has received emerging attention as it significantly affects the trapping 

efficiency, storage capacity and long-term storage security (Gilfillan et al., 2009). Previous studies 

of convective dissolution in the context of CO2 sequestration have addressed the stability analysis 

(Ennis-King et al., 2005; Hassanzadeh et al., 2006; Jafari Raad et al., 2015; Myint and Firoozabadi, 

2013; Riaz et al., 2006) and full numerical simulation of the process (Emami-Meybodi and 

Hassanzadeh, 2015; Farajzadeh et al., 2007; Hidalgo et al., 2012; Jafari Raad et al., 2016; 

Meulenbroek et al., 2013; Neufeld et al., 2010), and experiments to represent the dynamics of the 

process (Agartan et al., 2015; Backhaus et al., 2011; Cardoso and Andres, 2014; Loodts et al., 

2014; MacMinn and Juanes, 2013; Tsai et al., 2013). These studies improved our understanding 

of convective dissolution of pure CO2 streams. However, the majority of previous works have been 

focused on pure CO2 streams and there are relatively few works that considered injection of impure 

CO2 while the potential impact of impurities on fate of the injected CO2 has been unnoticed. 

Understanding the effect of permitted impurities on the dynamics of dissolution and consequently 

effectiveness of CO2 trapping is of great importance for long-term storage and risk assessment.  

Impure CO2 streams containing significant portion of hydrogen sulphide (H2S) produced from sour 

hydrocarbon pools has been one of the main concern of oil and gas producers as well as 

environmentalists over the past decades (Metz et al., 2005). While the high cost of CO2 capture 

from impure sources and purification process have been major challenges to the large scale 

implementation of CO2 storage, co-injection of CO2 with impurities has been suggested as a cost-

effective option to reduce the cost of carbon capture and storage (Bachu et al., 2003; Ji and Zhu, 

2013; Q. Li et al., 2013; Nicot et al., 2013; Talman, 2015; Wong et al., 2003).  
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Impurities in CO2 steams are known to influence the fluid mixture thermophysical properties and 

consequently the sequestration process (IEAGHG, 2011; Ziabakhsh-Ganji and Kooi, 2012, 2014a, 

2014b). Impurities such as H2S and N2 decrease the density of aqueous phase, which may have an 

undesirable effect on solubility trapping of CO2 (Stefan Bachu, 2008; Ji and Zhu, 2013; Lei et al., 

2016; D. Li et al., 2015; Nicot et al., 2013; Wang et al., 2011). Co-injection of H2S with CO2 may 

also affect mineral trapping of CO2. Previous studies indicated that injection of H2S with CO2 

results in different mineral alteration patterns, precipitation types and CO2 mineral trapping than 

injection of pure CO2 (Xu et al., 2004, 2007). It was reported that H2S and CO2 mineral trapping  

depends highly on PH and host rock type (Zhang et al., 2011). Since the time scale of mineral 

trapping is believed to be much longer than convective dissolution, undrestanding of the solubility 

trapping of impure CO2 is worthy of consideration. Although great acheivements have been made 

through the prevouis studies on solubility trapping, the role of impurities on convective dissolution 

and their impact on solubility trapping of impure CO2 remains poorly understood. In a most recent 

study (Jafari Raad and Hassanzadeh, 2016), linear stability analysis was conducted to investigate 

the effect of H2S as an impurity on the onset of convective dissolution. It was shown that difference 

in the molecular diffusion of H2S and CO2 species may give rise to a non-monotonic density profile 

during the dissolution process, which can significantly affect the instability behaviour of diffusive 

boundary layer and consequently the onset of convective dissolution. It was shown that the impure 

H2S streams have potential to accelerate the onset of convective dissolution (Jafari Raad and 

Hassanzadeh, 2016). Nevertheless, the long-term fate of the injected CO2 in subsurface is dictated 

by the mixing process after the onset. Therefore, from the storage security standpoint, the fate of 

the impure CO2 beyond the onset is significantly more important than the onset, which has not 

been studied in the past. The understanding developed in this analysis may provide an opportunity 

to engineer injection streams to accelerate solubility trapping. 

A detailed numerical simulation of convective dissolution by considering the effect of impurities 

could reveal possibility of injecting impure CO2 streams, which eventually leads to significantly 

lower carbon capture cost. This study is designed to answer important questions related to the role 

of impurities on solubility trapping of impure CO2 streams in subsurface. Does the dynamic of 

onset hold valid beyond the onset? What is the impurity range that results in similar dynamics as 

of pure CO2 stream? Is it possible to engineer impure streams to improve solubility trapping of 

CO2? In the following sections, we intend to answer these questions. 
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5.3 Model Description 

We consider a two-dimensional (2D) saturated porous layer of thickness H, and length L, where 

the domain is impervious to flow from the top and bottom as well as its sides. The top boundary 

is exposed to constant concentration of species (CO2 and impurity) where the interface between 

diffusing species and water has been considered sharp under the assumption of single-phase flow 

and consequently in the absence of capillarity (Emami-Meybodi and Hassanzadeh, 2015; Jafari 

Raad and Hassanzadeh, 2015; Riaz et al., 2006). The porous layer is assumed to be homogeneous, 

isotropic, and isothermal. Schematic of the considered system and the associated boundary 

conditions are shown in Figure 5.1. 

Under the assumption of incompressible flow coupled with the Boussinesq approximation and in 

the absence of viscosity variation, cross diffusion of species, and velocity-based dispersion, the 

governing equations of non-reactive single-phase flow and transport in a porous medium can be 

expressed by (Bear, 1972) 

2 i
i i iD

t

    
   


v ;        (5.1a) 

        0 v ;          (5.1b) 

( )
k

p z


   v g  ,         (5.1c) 

where, index i is the species index with i=1 for CO2 and i=2 for impurity, v=(u,v) is the vector of 

Darcy velocity when u and v are the horizontal and vertical components of components of Darcy 

velocity, respectively, and p, χ,  and t are pressure, mole fraction, viscosity, and time, 

respectively. k is the porous medium permeability,  is the porosity, g is the gravitational 

acceleration and z is the vertical coordinate and positive downwards. D is the effective molecular 

diffusion coefficient of species in the porous media and assumed to be independent of 

concentration for dilute solutions. It is worth noting that H2S has smaller molecular diffusion 

coefficient in water than CO2 (Tamimi et al., 1994).  

The aqueous phase density as a function of species mole fractions in the aqueous phase for CO2-

H2S/water fluid pair can be expressed by
2 21 2(1 )b CO H S        (Jafari Raad and 
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Hassanzadeh, 2016), where χ is the species mole fraction with respect to total moles in the aqueous 

phase, b is the water density, and   is expansion coefficient, which is defined as 1 /
bi id d   . 

A thermodynamics model developed based on the Cubic-Plus-Association equation of state (CPA-

EoS) was used to predict the aqueous phase density. This relation was obtained using 

thermodynamics analysis of solubility limits for mixture of CO2-H2S in brine under the licensed 

operating disposal conditions for acid gas injection sites in Western Canada at a typical 

temperature and pressure of 40°C and 100 bar, respectively (Bachu et al., 2003, 2008; Jafari Raad 

and Hassanzadeh, 2016). Detailed thermodynamics model and the behaviour of the aqueous phase 

density for acid gas-brine systems has been reported elsewhere (Jafari Raad and Hassanzadeh, 

2016; Tsivintzelis et al., 2010; Zirrahi et al., 2015).  

The expansion coefficient values for CO2-H2S/water fluid pair for the given temperature and 

pressure condition are given by 368.01   and 21.02  . In the following section, nonlinear 

simulations are presented.  

 

 

Figure 5.1: (a) Geometry and boundary conditions used in this study. The considered brine-rich 

porous layer is initially free of the diffusing species. No flow boundaries are set at the top and 

bottom as well as its sides. The top boundary is exposed to a constant concentration where the 
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species (H2S and CO2) with finite solubilities in water at the interface diffuse downward, (b-e) 

CO2 dimensionless base state concentration (
1/ s

i  ) profiles versus depth for pure CO2, and 

impure streams with 10, 35 and 52 mol.% H2S in water, respectively. The base state concentrations 

are found using mass conservation Equation (5.1a) at pure diffusive state ( 0v ) (Jafari Raad and 

Hassanzadeh, 2016). (f-i) dimensionless base state density profiles versus depth for pure CO2, and 

impure streams with 10, 35 and 52 mol.% H2S, respectively. 

   

5.4 Nonlinear Simulations 

We have conducted full numerical simulations to gain an insight into the nonlinear dynamics of 

mixing for impure CO2 streams with various fractions of H2S impurities. The basic framework of 

the developed numerical model is based on a well-known IMPEC approach where the implicit 

scheme is used to discretize flow Equations (5.1b) and (5.1c) while the transport Equations (5.1a) 

are treated explicitly (Settari, 2001). Governing Equations (5.1a-c) are discretized using the finite 

difference approach in a block-centred Cartesian grid system for a two-dimensional domain where 

equal horizontal and vertical meshes are employed. The numerical model has been benchmarked 

against single and multi-component systems (Emami-Meybodi and Hassanzadeh, 2015; Emami-

Meybodi and Hassanzadeh, 2013; Jafari Raad et al., 2016; Jafari Raad and Hassanzadeh, 2015). 

For brevity, we refer the reader to the previous publications for more details of the numerical 

approach and controls on accuracy of the numerical solutions. 

Here, we investigate the onset of convective dissolution and the associated dynamics for pure CO2 

and impure CO2 streams with 10, 35 and 52 mol.% of H2S. These cases are chosen based on a 

detailed parameter space classification representing dynamics of density profiles during 

dissolution of acid gas (H2S-CO2) in brine reported in our recent study (Jafari Raad and 

Hassanzadeh, 2016). It was shown that dissolution of acid gas in brine leads to four main family 

of density profiles depending on the fraction of H2S impurities and operating conditions. Using 

linear stability analysis, it was previously shown that an impure CO2 stream corresponding to each 

parameter space region shows its unique stability behaviour (Jafari Raad and Hassanzadeh, 2016). 

We have chosen these cases with the purpose of making a consistent comparison between the 

results of the numerical simulations and the linear stability analysis relating dynamics of buoyancy 

driven instability and subsequent mixing to the dynamics of base state density profiles.  
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The dimensionless scaling group, 
1 1 1Ra (1 ) /s

b ckg H r r D     is used to make a proper comparison 

of the convective dissolution of CO2-H2S/water system considered in the nonlinear simulations, 

where, 
2 1/s s

cr   ,
2 1/r   , and s

i is equilibrium mole fraction of specie i in the 

aqueous phase. All numerical simulations were performed at |Ra|=600. The concentration 

distributions, fractional ultimate dissolution of acid gas and dissolution fluxes as the most practical 

measures of convective dissolution are considered in analysis that follows.  

5.5 Results and Discussion 

The 2D numerical solutions were conducted to evaluate the concentration distribution associated 

with convective dissolution for pure and impure CO2/water systems. An impurity such as H2S 

decreases the density of the aqueous phase, which one may intuitively conclude that it impedes the 

convective dissolution. However, the lower molecular diffusion of H2S compared to CO2 leads to 

double diffusive convection that makes evolution of convective instabilities associated with an 

impure CO2 stream similar to or in some cases more vigorous than a pure CO2 stream. This 

phenomenon, which has not been noticed in previous studies of convective dissolution, provides a 

unique feature of impure systems that can be used to engineer impure CO2 streams to optimize 

storage condition. Figure 5.2 shows the time evolution of concentration distribution for pure CO2 

and impure CO2 streams with 10, 35 and 52 mol.% of H2S. It can be observed that, these systems 

exhibit different instability behaviour followed by different fingering pattern. Concentration 

distributions show that the CO2/water system leads to fingering pattern with shorter wavelength 

compared to all impure streams. Results of the concentration distributions show that lateral 

spreading and merging of the developed fingers in the CO2/water system is more vigorous than 

those in the impure systems. However, the impure CO2/water systems with 52 mol.% of H2S 

results in faster development of the instabilities in form of finger structures representing the onset 

of convective dissolution, which is in agreement with the results of stability analysis (Jafari Raad 

and Hassanzadeh, 2016). 

The numerical results show that impure systems with a large portion of H2S impurities (52 mol.%) 

lead to sluggish form of fingers associated with low rate of convective mixing due to the presence 

of less dense mixture on the upper layer compared to pure CO2. Furthermore, H2S impurity 

significantly affects the wavelength of the density-driven fingers in the impure CO2/water system 

such that systems with higher impurities result in fingers with longer wavelengths.  
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Figure 5.2: Concentration distribution of CO2/water systems with |Ra|=600 at different times of 

0.75( )t yr , 1 .35( )t yr , 1 .80( )t yr , 2.25( )t yr , and 2.85( )t yr , including (a) 

pure CO2 streams [(
1
s ,

2
s )~( 0.0256,0.0)], (b) impure CO2 with 10 mol.% H2S [(

1
s ,

2
s )~( 

0.0242,0.0048)], (c) impure CO2 with 35 mol.% H2S [(
1
s ,

2
s )~( 0.0202, 0.0181)], and (d) impure 

CO2 with 52 mol.% H2S [(
1
s ,

2
s )~( 0.0166, 0.0285)]. Equilibrium mole fraction of dissolved 

species in the aqueous phase were evaluated at the typical storage temperature of 40C and a 

pressure of 100 bar.  

 

Figure 5.3 shows the fractional ultimate dissolution of acid gas (CO2+H2S) as a function of time 

for the considered cases. The results shown in Figure 5.3 clearly show that the impure CO2 stream 

with 52 mol.% of H2S results in faster onset of convective dissolution compared to CO2 stream, 

while the impure CO2 streams with 10 and 35 mol.% of H2S show a delayed onset compared to 

pure CO2. Furthermore, numerical simulation results show that an impure stream with 57 mol.% 

or higher H2S impurities leads to stable system and denotes the pure diffusion as a dominant 

mechanism during the sequestration process. These non-linear simulation results are in agreement 

with the results of the linear stability analysis reported in our previous study (Jafari Raad and 

Hassanzadeh, 2016). The instability behaviour is attributed partly to the magnitude of interface 

density differences and the shape of base state density profile under the consequence of the contrast 

in the molecular diffusions of CO2 and H2S. 
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It is worth noting that an impure CO2 stream with 52 mol.% of H2S results in a non-monotonic 

density profile with positive density difference at the interface while the impure CO2 stream with 

10 and 35 mol.% of H2S lead to monotonic density profiles (Jafari Raad and Hassanzadeh, 2016). 

These results show the important role of double diffusion on evolution of unstable density profiles 

and dynamics of convective dissolution. Comparison of mixing curves beyond the onset time 

reveal a unique mixing behaviour for an impure CO2 stream with 52 mol.% of H2S. While an 

impure CO2 stream with 52 mol.% of H2S reveals a faster development of convective dissolution, 

its mixing rate is significantly less than pure CO2 as well as impure CO2 streams with less H2S 

impurities. Higher convective dissolution rate in CO2/water system is attributed to the strong 

interaction and merging of fingers as they propagate downward (see concentration distribution 

shown in Figure 5.2). At the same time, the growth of fingers in the case of impure CO2/water 

systems with 52 mol.% of H2S, is nearly independent from each other with less interaction as 

compared to the pure CO2/water system.  
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Figure 5.3: Dissolution curves representing convective mixing for pure and impure CO2/water 

systems with |Ra|=600. For CO2-H2S/water systems, ultimate dissolution denotes fraction of 

acid gas (CO2+H2S) dissolved in water.  

 

To gain a better understanding of the dynamics of the mixing process beyond the onset of 

instability, we studied the dissolution flux of systems with different level of impurities. The 

dissolution flux is measured directly from the numerical simulations taking the cumulative 

dissolution of mass in water. The dissolution flux per unit area can be expressed by: 

dVtC
td

d

A
tF

V )ˆ(
ˆ

1
)ˆ( ,        (5.2) 

where V indicates the domain pore volume, A is the cross-sectional area of the interface and C is 

total concentration of species (CO2+H2S) in the entire domain. 

Figure 5.4 shows the numerical measurements of dissolution flux as a function of time. It can be 

observed that impurity of CO2 stream significantly influences the convective onset marked by the 

sharp increase of dissolution flux and consequently, the nonlinear dynamics of convective mixing 

beyond the onset.  
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Figure 5.4: Dimensionless dissolution flux versus time for pure CO2 and the impure CO2 

streams with 10, 35 and 52 mol.% H2S at |Ra|=600.  

 

Examination of the convective flux beyond the onset show that an impure CO2 stream with 52 

mol.% of H2S leads to lower convective flux at the late period of mixing as compared to other 

cases with lower H2S impurities as well as pure CO2 stream. Even though this system shows the 

fastest onset of convective instabilities, it reveals a sluggishly mixing process. This behaviour can 

be credited to the accumulation of less dense mixture below the interface on the top layer. In other 

words, convective dissolution homogenizes the concentrations within the mixing zone, which 

would counteract the effect of double diffusion on the density stratification and consequently the 

mixing behaviour. Interestingly, the impure CO2 streams with 10 and 35 mol.% of H2S reveal a 

close mixing dynamics and consequently nearly equivalent dissolution flux to the pure CO2 stream. 

These results show that while an impurity such as H2S is prone to impede the convective 

dissolution, an informed choice of impurity can lead to similar convective dissolution as of pure 

CO2 stream. The results clearly indicate the important role of the composition of the injected 

stream on the evolution of convective dissolution. Due to these facts, well-designed operating 

conditions in acid gas injection operations may have a significant effect on the onset of convective 
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instability and consequently long-term fate of the injected acid gases. These findings improve our 

understanding of mixing mechanisms involved in large scale sequestration of acid gases in deep 

saline aquifers. 

5.6 Summary and Conclusions 

Co-injection of carbon dioxide (CO2) with impurities such as hydrogen sulphide (H2S) into deep 

saline aquifers has been suggested as a potential cost-effective option for geological sequestration 

of acid gases. We studied the effect of H2S impurity exists in CO2 streams on the convective 

dissolution of CO2 and impurities using direct numerical simulations. It was found that permitting 

H2S impurities significantly affects the dynamics of convective dissolution. The results clearly 

indicated the important role of the composition of the injected stream on the evolution of 

convective dissolution. Numerical simulation results showed that the dynamic of the system at the 

onset of convective dissolution does not hold beyond the onset, such that an impure stream with 

an earlier onset of convective dissolution develops a slower dynamic at the late time of the process. 

While an impurity such as H2S is prone to impede the convective dissolution, it was shown that an 

informed choice of impurity can lead to similar convective dissolution as of pure CO2 stream. An 

impure CO2 stream with 52 mol.% H2S was shown to demonstrate an earlier onset of convective 

dissolution. It was shown that the rate of dissolution of an impure CO2 stream with H2S impurity 

less than ~30 mol.% is nearly similar to the pure CO2 stream. These findings form a basis for 

further research in this area and engineering of impure streams to improve security and efficiency 

of impure CO2 storage in deep saline aquifers. However, the hazardous nature of H2S, leakage risk 

and its subsequent environmental impact should be considered in large scale implementation of 

impure CO2 storage.  
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Chapter 6: On the Dynamics of Two-component Convective Dissolution 

in Porous Media*

 

 

 

 

6.1 Abstract 

We studied the influence of the diffusion contrast between species on the dynamics of Rayleigh–

Bénard (RB) convection in porous media. The onset time of buoyancy-driven instabilities and 

convective dissolution flux were quantified using linear stability analysis (LSA) and direct 

numerical simulations (DNS). The parametric analysis indicates eight distinct instability regions. 

Different stability mechanisms were characterized over the given range of diffusivity and relative 

buoyancy ratios. In particular, transition from instabilities solely by double diffusion to Rayleigh–

Bénard (RB) convection was identified using linear stability analysis and confirmed using 

nonlinear simulations. The parametric analysis on the onset also indicates that double diffusion 

has a potential to accelerate or slow down the RB convection depending on the solutes diffusion 

contrast. This study provides new insight into the effect of diffusion contrast and can be used to 

develop strategies for acceleration and deceleration of buoyancy-driven instabilities. 

 

 

                                                 
* Jafari Raad, S. M., Hassanzadeh, H., Ennis-King, J. (2018). On the dynamics of two-component 

convective dissolution in porous media. Water Resources Research, (In Press). 
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6.2 Introduction 

Buoyancy-driven convection in porous media is of great importance for a wide range of 

applications related to geophysical and environmental fluid dynamics. Rayleigh–Bénard (RB) 

convection is a fundamental mechanism for the buoyancy-driven flows leading to nonlinear 

dynamics of mixing (Lemaigre et al., 2013; Trevelyan et al., 2011). RB instability develops due to 

negative density stratifications when a heavy solution lies on top of a light one in the gravity field 

(Trevelyan et al., 2011; Wooding, 1969). RB convection in porous media is observed in 

applications as diverse as groundwater hydrology (Van Dam et al., 2009; Diersch and Kolditz, 

2002; Simmons, 2005), carbon dioxide sequestration (Ennis-King and Paterson, 2005; 

Hassanzadeh et al., 2005; Lindeberg and Wessel-Berg, 1997; Riaz et al., 2006), soil contamination 

and waste disposal (Gao et al., 2013; Liu and Dane, 1996; Mao et al., 2006; Schincariol and 

Schwartz, 1990; Shen and Chengji, 2015; Truex et al., 2015; Xie et al., 2010; Yang and Edwards, 

2000), and crystallization processes and magma chambers (Holness et al., 2006; Kuritani et al., 

2007; Worster et al., 1990). 

Buoyancy-driven instabilities can also develop in an initially stable stratifications due to 

development of vertically adverse density gradient as a consequence of diffusivity contrast of 

diffusing components (chemical species or heat/mass) (Radko, 2013; Turner, 1979). Double 

diffusion (DD) phenomenon is for instance the origin of thermohaline convective motions in 

oceans (Schmitt, 1994), and magma chamber (Huppert and Sparks, 1984), where both heat and 

mass diffuse and instabilities develop due to the heat and mass transfer diffusivity contrast. DD 

instabilities can also occur in binary or multicomponent systems where solutes with different 

diffusion coefficients establish density gradients in an initially stable density stratification 

(Griffiths, 1981; Huppert and Turner, 1981; Pringle and Glass, 2002; Trevelyan et al., 2011). 

Despite numerous studies on RB convection and DD instabilities, the interplay of DD instabilities 

on dynamics of such systems remains largely unexplored. The potential of the DD mechanism to 

influence the initiated instabilities in a RB problem has been previously demonstrated in miscible 

(Carballido-Landeira et al., 2013; Lemaigre et al., 2013; Trevelyan et al., 2011), immiscible 

(Eckert et al., 2004; Eckert and Grahn, 1999) and, more recently, in a partially miscible systems 

(Jafari Raad and Hassanzadeh, 2016; Loodts et al., 2018). 
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Trevelyan et al., 2011, have analysed the differential diffusion effects on buoyancy-driven 

instabilities in miscible systems with initially step function density profile. Their analysis deals 

with a two-component miscible system where a denser solution containing a solute A overlies a 

less dense one containing a solute B. Solutes B and A diffuse with different rates and their relative 

contribution to the density is positive. Using investigation of time evolving base state density 

profiles, analytical and numerical experiments, they have classified various Rayleigh–Taylor (RT), 

double diffusive (DD), diffusive-layer convection (DLC) and delayed-double diffusive (DDD) 

instability mechanisms in a parameter space characterized by the relative contribution of solutes 

to the density and their diffusion coefficient ratio. They have shown that the domain of instability 

obtained from analysis of time-evolving base state density profiles is much larger than the one 

predicted from linear base state profiles.  

A recent study on miscible systems show that DD can lead to a mixed mode dynamic in which the 

two DD instabilities act cooperatively (Carballido-Landeira et al., 2013). This is the case when 

upper solution contains a solute A which diffuses sufficiently faster than a solute B which is 

initially in the underlying less dense solution (rD<1), where rD is the ratio of diffusion coefficient 

of solutes A and B, rD =DB/DA. More recently, Gopalakrishnan et al., 2018, have renewed interest 

in understanding the influence of DD mechanisms on the onset of instabilities and fingering pattern 

in RB convection. It was reported that the onset of instability and rate of advancement of the 

mixing front in system with rD>1 can be scaled by the maximum density jump around the interface 

(called dynamic density) due to diffusion contrast. Their study deals with a case with rD>1, where 

solute B diffuses faster than a solute A.  

DD can be encountered in many practical applications in the presence of RB convection and are 

able to influence the mixing process. Therefore, understanding the role of diffusion contrast on the 

stability of partially miscible systems is of importance. There are relatively very few studies 

available in the literature that look into the interplay of DD and RB convection in partially miscible 

systems. Recently, Jafari Raad and Hassanzadeh (Jafari Raad and Hassanzadeh, 2016, 2017) have 

studied the impact of DD and its effects on instability of RB convection in the context of impure 

CO2 sequestration, where dissolved CO2 and H2S make opposing contributions to the vertical 

density profile in the aqueous phase. They have shown that the contrast in diffusion coefficients 

of CO2 and H2S may give rise to a non-monotonic density profile during the dissolution process 

depending on the solutes buoyancy ratio rβrc=(βBCsB/βACsA), where βi and Csi are coefficients in 
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density relation and equilibrium concentration of the solute i=A, B, respectively. It was suggested 

that the buoyancy-driven convection modes can be systematically classified in the (rβrc, rD) 

parameter space based on the type of the developed base state density profile. In our previous study 

we have introduced the (rβrc, rD) parameter space merely based on the time-evolving density 

profile. However, the previous analysis is limited to a special case of CO2/H2S/water system where 

a fixed diffusion ratio at various mixture compositions was considered. In particular, the stability 

and dynamics of convective dissolution for the major part of the (rβrc, rD) parameter space 

emphasizing the differential diffusion effects remained unexplored.   

In this work, we examine both stabilizing and destabilizing effects of the diffusion coefficient 

contrast on RB instabilities and the associated convective dissolution in systems with different 

diffusivity ratios and opposing contribution of dissolving solutes to the mixture density.  

In contrast to the work of (Trevelyan et al., 2011) where they studied a two-component miscible 

system with positive buoyancy ratios (both solutes A and B increase mixture density upon 

dissolution), we study another class of buoyancy-driven problems where for a partially miscible 

system the two chemical species have opposing effect on mixture density. This leads to another 

interesting dynamics which have not been explored in previous studies.      

Our objective is to understand how the onset and the associated convective dissolution can be 

controlled by altering the diffusion contrast of the chemical species. To achieve this, we consider 

partially miscible systems with a sharp interface where two solutes A and B with diffusion contrast 

and opposing effect on density diffuse into the underlying less dense fluid. While dissolution of 

solute A increases the density of the host fluid layer, solute B decreases the density. First, we 

examine the effect of diffusion contrast where unstable density evolves in the gravity field upon 

dissolution and the net contribution of the solutes A and B to the density is positive (-rβrc<1). Using 

linear stability analysis (LSA) and direct numerical simulation (DNS), we have quantified the 

interplay of DD instabilities and RB convection in terms of the onset time and convective 

dissolution flux. Our parametric analysis on the onset indicates that double diffusion has a potential 

to accelerate or slow down the RB convection depending on the solutes diffusion contrast.  

We also discuss the possible enhancement of DD effects in systems with negative net density 

contribution of the solutes, where the effect of solute A on increasing density is lower than the 

effect of solute B in decreasing the density (-rβrc>1) and instabilities occur solely due to a locally 
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unstable density gradient that results from the diffusion contrast. Our results show that for a given 

buoyancy ratio (rβrc), this system can be either stabilized or destabilized depending on the diffusion 

contrast of the diffusing species, allowing a possible control on the onset and associated convective 

dissolution. Parametric analysis for this system reveals a transition from pure DD instabilities to 

RB convection at relatively high diffusion contrast, leading to significantly earlier onset of 

convective instability and higher dissolution flux. It is shown that the key point to distinguish 

whether the diffusion contrast has a stabilizing or destabilizing effect on buoyancy-driven 

instabilities depends on the relative contribution of the two species to the density. Although, the 

focus of this study is on solutal natural convection, the insight developed here can be applied 

equally to thermohaline problems.   

This paper is organized as follows. In section 6.3, we describe the problem of interest by presenting 

the governing equations, initial and boundary conditions followed by base state solutions for the 

diffusive mass transfer and the density profile. In sections 6.4 and 6.5, mathematical formulation 

and description of linear stability analysis and direct numerical simulations are presented, 

respectively. Results and discussion are presented in section 6.6 followed by section 6.7, which is 

the conclusion of this study.  

6.3 Mathematical Formulation 

6.3.1 Governing equations 

We consider a two-dimensional, homogeneous and isotropic porous layer of thickness, H, 

saturated with quiescent fluid initially free of solute. No-flow boundary conditions are considered 

at the top and bottom of the domain with respect to pressure. A no-flux boundary condition is 

maintained at the bottom of the domain while a constant concentrations of solutes A and B are set 

at the top of the domain with respect to the mass transport. The porous layer is assumed to be 

laterally infinite and flow and solute transport are considered to take place at isothermal conditions. 

Using the Boussinesq approximation, and neglecting rock and fluid compressibility effects, 

viscosity variability, cross diffusion and dispersion effects, the convective transport of non-

reactive single phase flow in a porous medium is described as follow  (Bear, 1972): 

 



85 
 

2 i
i i i

C
D C C

t
  
   


v ;        (6.1a) 

0 v ;         (6.1b) 

( )
k

p z


    v g ,         (6.1c) 

where v(u,v) is the Darcy velocity vector, p is the pressure, C is the solute concentration,  is the 

water viscosity, t  is the time, k is the permeability,  is the porosity, g is the gravitational 

acceleration, z is the vertical coordinate and positive downwards, Di is the effective molecular 

diffusion coefficient in porous media and assumed to be independent of concentration for dilute 

solutions, and subscript i denotes the species index with i =A , B.  

Mass conservation equations of solutes A and B (6.1a) is coupled to Darcy’s law (6.1c) through a 

constitutive relation for the density as (1 )b A A B BC C       where b is the fluid density at C = 0, and 

 is coefficient of density variation, which is defined as 1 /
bi id dC  , and has positive and negative 

values for solute A and B, respectively.  

The governing equations are nondimensionalized using the thickness of the porous layer (H) as 

the length scale, H2/ DA as the time scale, and equilibrium solubility of solute A as the 

concentration scale, 
s
AC . We also scaled the effective molecular diffusion coefficients using the 

molecular diffusion coefficient of solute A as rDi=Di/DA.  In nondimensional form, the diffusive 

mass transfer mechanism as a base state of the dissolution process, prior to the onset of convection 

( 0v ) is described as 

2
0 0
2 ˆˆ

i i
Di

c c
r

z t

 


 
 ,         (6.2) 

where subscript 0 denotes the base state condition. 

Given the initial and boundary conditions 0
ˆˆ( , 0) 0ic z t    and, 0

ˆ(0, ) /s s
i i A cic t C C r  , 

0
ˆ ˆ(1, ) / 0ic t z   , respectively, the diffusive base state solution is given by:  
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where n=(2n-1)/2, rcA=1, rcB=rc, rDA=1, rDB=rD.   

Using the proposed density-concentration relationship, the vertical density profile is given by: 

       2 2 2 2

1 1

2 1 2 1ˆ ˆˆ ˆ ˆ1 sin exp 1 sin expn n c n n D
n nn n

z t r r z r t        
   

 

 

 
      

 
  ,    (6.4) 

where ˆ ( )/ s
b A A bC      , and r= B/A is the ratio of the coefficients of density variation of 

solute B to solute A.  

Depending on the values of rrc and rD, the base state concentration profiles imply various density 

profiles (Jafari Raad and Hassanzadeh, 2016). Here, we study the effect of diffusion contrast on 

dynamics of the system for -rrc<1 and -rrc>1. For the first case (-rrc<1), the net density 

contribution of solutes is positive, and instabilities can develop due to the negative density gradient 

in the gravity field. The interface density
int̂ , is defined as the density difference from the original 

fluid density at z=0, and is given by, crr 1ˆint .  

For the second case (-rrc>1), the net density contribution of the solutes is negative, and 

instabilities develop solely due to locally negative density stratifications induced by the double 

diffusion mechanism. We will show how the DD affect the RB convection in these two different 

types of density configurations, and how differential diffusion of diffusing solutes affect the 

instability criterion of the system and nonlinear dynamic of convective dissolution.  

6.3.2 Linear stability analysis 

A linear stability analysis using quasi-steady state approach (QSSA) was conducted to study the 

growth of perturbation and consequently to determine the onset of convective instabilities. To 

conduct a linear stability analysis, the governing equations of flow and transport given in Equation 

(6.1) are perturbed using '0 sss   where s=s[p,v,cA,cB,] and s '  are the base state and 

infinitesimal perturbations of pressure, velocities, concentration and density, respectively. 

Substituting the perturbed variables into the flow and transport equations, implementing the base 

state quantities, linearizing in perturbations and after simplification, we obtain the following 

perturbed equations: 
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where the velocity perturbation is scaled by DA/H, 2 2
1 x   , 2 2

2 x z   ,

Ra (1 ) /s
b A A c Akg C H r r D     and i=A, B, and the hats (^) are dropped for convenience.  

For cases with -rrc =1( intˆ 0  ), Equation (6.5a) is reduced to  2 * 2 ' 2 '
2 1 1' Ra A Bv c r c     , 

where 
*Ra /s

b A A Akg C H D   .  

The perturbed velocity and concentration are expressed as 
*[ ' , ' , '] [ , , ]( , ) i x t
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where  and ω are the perturbation wave-number and growth rate, respectively. Using Equation 

(6.5) we obtain 
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The perturbed flow and mass transfer boundary conditions are given as 0)1()0( **  vv , and 

(0) 0ic  , (1) / 0ic z   , respectively.  

Conducting quasi-steady-state approximation (QSSA) (Tan and Homsy, 1986), 0 /ic z   in 

Equations (6.6b) and (6.6c) can be evaluated at time t0 or the so called “frozen time” during the 

growth of perturbations. For the sake of brevity, we refer the reader to the previous studies for 

more details on QSSA approach (Jafari Raad et al., 2016) and its limitations (Trevelyan et al., 

2011). 

The system of perturbed Equations (6.6a-c) are discretized using a second-order finite difference 

method and then solved numerically to find the growth rate, ω, as a function of assigned wave-
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number, . The following matrix form eigenvalue problem can be obtained using the discretized 

equations after some rearrangements (Jafari Raad et al., 2016). 
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where )( 2IDA  vv , )( 2IDA  cc , vD , and cD  are coefficient matrices based on central 

discretization of the second derivatives and c and v are vectors containing the unknown variables 

at the discrete nodes.  

This eigenvalue problem is solved numerically, and the maximum eigenvalue of the coefficient 

matrix is considered as the growth rate corresponding to the assigned wavenumber,  and Ra 

number at certain diffusive time, t0. A positive growth rate at a particular time is an indication of 

instability. Thus, the time at which the growth rate turns positive at a given wave-number 

represents the onset of instability. The onset of instability is evaluated based on the obtained 

growth rate of the initial perturbations for given wave-numbers, using dispersion curves. For 

brevity, we refer the reader to (Emami Meybodi and Hassanzadeh, 2013; Jafari Raad and 

Hassanzadeh, 2015; Riaz et al., 2006; Tan and Homsy, 1986) for more details on the numerical 

procedure and the validity of the computational algorithm  

6.4 Numerical Simulations 

We have conducted direct numerical simulations (DNS) to gain further insights into the effects of 

diffusion contrast on instability behaviour and the nonlinear dynamics of mixing beyond the onset. 

We solved the nonlinear problem with a high accuracy numerical model developed based on a 

well-known IMPEC approach where the implicit scheme is used to discretize flow Equations 

(6.1b) and (6.1c) while the transport Equations (6.1a) are treated explicitly (Settari, 2001). The 

developed numerical model is based on a uniform Cartesian grid and second order finite difference 

discretization of the governing Equations (6.1a-c). The numerical model considers the same 

physical domain and the boundary conditions described in section 6.3. The reader may refer to 

(Coats, 1969; Emami-Meybodi and Hassanzadeh, 2015; Hassanzadeh et al., 2005) for further 
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details on the numerical model and controls on the accuracy and convergence of the numerical 

solutions. 

 

6.5 Results and Discussion 

6.5.1 Systems with (-rβrc <1) 

The density profile in a binary system demonstrates both monotonic and non-monotonic 

behaviour, depending on the relative buoyancy (rβrc) and diffusion coefficient ratio (rD) (Jafari 

Raad and Hassanzadeh, 2016). Our objective here is to examine the onset and associated nonlinear 

dynamics in systems with -rβrc <1 over the given range of diffusivity ratio, 0.1<rD<100. Figure 6.1 

shows the effect of solutes diffusion coefficient ratio on the growth rate of perturbations at the 

given buoyancy ratio (-rβrc=0.5) and (a) t = 0.0002 and (b) 0.0001. The results shown in Figure 

6.1(a) demonstrate clear dissimilarities in stability behaviour of systems with rD<1 and those with 

rD>1. While the growth rate increases by increasing diffusion contrast when rD>1, systems with 

rD<1 do not follow the same behaviour. The results show that a system with rD=0.1 leads to higher 

growth rates as compared to systems with rD=0.2, 0.5 and 1. This behaviour is mainly attributed 

to the shape of the density profile in each system which varies significantly with diffusion 

coefficient ratio, rD. While systems with rD=0.1 and 0.2 lead to non-monotonic density profiles 

with a local maximum at the diffusive boundary layer, systems with rD=1(no differential diffusion 

effects) and 0.5 show monotonic, and monotonic with an inflection point density profiles, 

respectively.  

These results suggest that systems with non-monotonic density profile associated with local 

maximum (systems with rD=0.1 and 0.2) are gravitationally more unstable than those with 

monotonic one (systems with rD=0.5 and 1). However, the distinction between the two systems 

with non-monotonic density profiles is still not clear. We will show how the shape of a non-

monotonic density profile controls the growth rates and consequently onset of convection. Figure 

6.1(b) shows the growth rate of perturbations for systems with rD≥1. In the case of rD>1, the density 

profile features a nonmonotonic behaviour with a local minimum (Jafari Raad and Hassanzadeh, 

2016). As it is seen, the growth rate of perturbations increases as the diffusivity ratio increases 



90 
 

over the given range of rD. The results also suggest that the effect of diffusion contrast on the 

instability of the system reaches a plateau for rD~≥50.  

  

 

Figure 6.1: Growth rates versus dimensionless wavenumber for a system with -rβrc=0.5 at 

Ra=|500| and different diffusivity ratios (a) t = 0.0002 and rD=0.1, 0.2, 0.5,1, 1.5, 3,5, and (b) t = 

0.0001 and rD=0.5, 1.5, 3, 5, 10, 50,100. 

 

To further clarify the results of growth rate, we investigated the onset of instabilities in systems 

with various diffusion contrasts. Results for the onset recover the well-known scaling of 2ˆ  aRat

at a given diffusion ratio. The results show that, while systems with different diffusivity contrasts 

result in the same scaling relations for the onset of convective instabilities, they give a prefactor 

that is a strong function of the diffusion ratio, rD. The dependence of the scaling prefactor on rD 

for the system with -rrc=0.5 is shown in Figure 6.2(a). The inset plots represent the base state 

density profiles corresponding to each region. It can be seen that the scaling prefactor for the onset 

is strongly controlled by the diffusion ratio. The results show that the scaling prefactor increases 

as the diffusivity ratio increases for systems with small and intermediate values of diffusivity ratio 

(0.1<rD<0.63) suggesting delayed onset by increasing the diffusivity ratio. This refers to region I 

(rD<(-rβrc)2) and II ((-rβrc)2<rD<(-rβrc)2/3) in Figure 6.2 where the double diffusive mechanism 

leads to non-monotonic density profile with a local maximum and monotonic density profile with 

an inflection point, respectively. The scaling prefactor shows a maximum at rD~0.63 (rD=(-rrc)2/3), 
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based on the previously developed space parameter reported by (Jafari Raad and Hassanzadeh, 

2016)), and then decreases monotonically leading to a constant value of ~14 for rD~≥50. The same 

scaling prefactor is obtained for systems where rD0. 

Careful inspection of the base state density profiles in systems with different diffusivity ratios, 

shown in Figure 6.2(b), reveals that a favorable density difference (dynamically unstable density 

profile) acts as a driving force of instabilities and is controlled by rD. For a non-monotonic density 

profile with a local maximum (region I), the driving density difference (Δρu) decreases as the 

diffusivity ratio increases. In this case, the local maximum occurs due to higher diffusion 

coefficient of solute A compared with solute B. In such a case, the diffusion front of solute A is 

ahead of solute B increasing the local solution density such that the density at the diffusion front 

of solute A is higher than both interface density and fresh fluid density. The driving density 

difference (Δρu) in regions II ((-rβrc)2<rD<(-rβrc)2/3 with monotonic density profile with inflection 

point) and III ((-rβrc)2/3<rD<1 with monotonic density profile) remains almost constant. However, 

it can be shown that the density gradient decreases with the diffusivity ratio in region II. In contrast, 

the density gradient increases with the diffusivity ratio in region III. 

It can be also observed that the driving density difference (Δρu) increases with the diffusivity ratio 

in region IV (rD>1 with non-monotonic density profile with a local minimum) and approaches 

unity at high diffusion ratios where the extremum diminishes, and density follows a monotonic 

density profile. In this case, the diffusion front of solute B is ahead of solute A decreasing the local 

solution density such that the density at the diffusion front of solute B is lower than interface 

density. Comparison of the results of scaling prefactor for the onset and the driving density 

differences as a function of diffusivity ratio is shown in Figures 6.2(a) and (b) reveals the important 

role of diffusion contrast on evolution of the unstable density profile.   
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Figure 6.2: (a) Scaling prefactor a, and (b) driving density difference as a function of diffusion 

coefficient ratio (rD) for systems with -rβrc=0.5. The inset plots represent the base state density 

profiles corresponding to each region. 

 

For further insight, we examine the dependence of the scaling prefactor for the onset on the driving 

density difference induced by the diffusion contrast. Figure 6.3 shows the scaling prefactor for the 

onset as a function of the driving density difference for non-monotonic density profiles with (a) 

local maximum and (b) local minimum. The density profile with local maximum shown in Figure 

6.3(a), reveals a prefactor which scales inversely with Δρu leading to 1.869a 10.552 u
  . Figure 

6.3(b) shows the dependency of scaling prefactor to Δρu for systems with a local minimum. It can 

be observed that the scaling prefactor decreases with Δρu. This system leads to a constant prefactor 

at high diffusivity ratio suggesting a unified instability behaviour similar to RB. This is the case 

when the second species (B) diffuses much faster than solute A, and its diffusive front is far ahead 

of that of solute A.   
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Figure 6.3: Scaling prefactor for the onset as a function of the driving density difference (Δρu) for 

systems representing nonmonotonic density profile with (a) region I (rD<(-rβrc)2) with local 

maximum and (b) region IV (rD>1) with local minimum at a constant interface density, -rβrc=0.5. 

 

To further support these findings and to understand the dynamics of mixing beyond the onset of 

instability, we inspected the dissolution flux of diffusing species through direct numerical 

simulations. 2D numerical simulations were conducted to evaluate the nonlinear dynamics of 

mixing and convective dissolution flux in various regions with different density profiles, marked 

in Figure 6.2.  

All numerical simulations were performed at |Ra|=500, using the same parameters defined in the 

linear stability analysis. Figure 6.4 shows the numerical measurement of dissolution flux as a 

function of time. The dissolution flux per unit area is expressed as the time derivative of cumulative 

dissolution as given by: 

1ˆ ˆ( ) ( )
ˆ pV

d
F t C t dV

A dt
  ,        (6.8) 

where Vp indicates the domain pore volume, A is the cross-sectional area of the interface and C  

is the average concentration of both species in the entire domain. 

As predicted by the LSA, the onset of convection (open circle symbols shown in Figure 6.4) is 
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results of the stability analysis, a system with 0 .1Dr   (falls in region I) leads to an earlier onset 

as compared to systems with 0 .5Dr  (fall in region II).  For systems with rD>0.5 (regions III 

and IV), the onset of convection (marked by a sharp increase in the dissolution flux) decreases as 

rD increases. It can be observed that a higher diffusivity ratio results in a larger maximum flux and 

earlier shutdown regime. In agreement with results of LSA, systems with rD>20 (region IV) lead 

to very similar onset times. However, the dynamics of the system beyond the onset of instabilities 

is different. Inspection of the convective dissolution flux for each species with rD=50, shown in 

the inset plot (b), reveals that while dissolution of solute A is controlled by both diffusion and 

convective dissolution, solute B is transported and dissolved merely by diffusion. However, this 

is not the case for systems with lower diffusivity ratios, as it seen from the inset plot (a) for the 

system with rD=0.1. The same observation can be made from the concentration distributions, 

shown as inset contours for systems with (a) rD=0.1 and (b) rD=50. The concentration distribution 

also shows the significant differences in development of diffusive boundary layer and associated 

fingering patterns in these systems. This analysis shows that diffusion contrast has a great impact 

on the RB convection, allowing a possible control of the onset and the associated convective 

dissolution in partially miscible systems. 
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Figure 6.4: Dimensionless dissolution flux versus dimensionless time for the cases with -rβrc=0.5, 

at |Ra|=500 and different diffusivity ratios rD=0.1, 0.5, 3.0, 20 and 50. Inset plots show convective 

dissolution flux for each species in cases with (a) rD=0.1 and (b) rD=50. The inset maps show the 

corresponding concentration distribution of diffusing species (A+B) in cases with (a) rD=0.1 and 

(b) rD=50, at the given diffusive times. 

 

6.5.2 Systems with (-rβrc >1) 

Here, we examine the effect of diffusion contrast on stability criterion and the dynamics of 

connective dissolution in systems with negative interface density where the increasing density 

effect of solute A is lower than the decreasing density effect of solute B (-rβrc >1) and instabilities 

occur due to locally unstable density profile as a result of double diffusion mechanism. Our 

objective is to investigate the possible enhancement of instabilities and convective dissolution in 

systems with different diffusion coefficient ratios. 
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Figure 6.5 shows LSA results of scaling prefactors for the onset in system with -rrc=1.5, at 

different diffusivity ratios (rD). Inset plots represent the base state density profiles corresponding 

to each region. Results shows that for systems with rD<1 the scaling prefactor increases as the 

diffusivity ratio increases, suggesting a delayed onset at a higher diffusivity ratio. This refers to 

region V (rD<1) in Figure 6.5 where diffusion contrast leads to a non-monotonic density profile 

with a local maximum. Inspection of the base state density profile in this region shows that as the 

diffusion ratio increases the locally unstable density profile induced by double diffusion shrinks 

gradually toward the stable one at rD=1.  

 

 

Figure 6.5: Scaling prefactor as a function of diffusion coefficient ratio (rD) for systems with rβrc=-

1.5. The inset plots represent the base state density profiles corresponding to each region. 
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As discussed earlier, there is a direct relation between the magnitude of the driving density 

difference and the instability criteria for the system. Figure 6.6(a) shows the dependency of the 

scaling prefactor to the driving density difference (Δρu) in systems with a non-monotonic density 

profile and a local maximum. The results show that the prefactor scales inversely with the driving 

density difference, Δρu, leading to a=9.652 Δρu -2.25.  

For systems with 1<rD<(-rβrc)2/3 (region VI) LSA suggests a stable diffusive boundary layer where 

diffusion is the only mechanism controlling the dissolution process. In this case, the density profile 

remains always monotonically increasing downward (Jafari Raad and Hassanzadeh, 2016). It 

interesting to note in region VII where (-rβrc)2/3<rD<(-rβrc)2 while the base density profile is 

increasing downward monotonically and one may intuitively expect a stable system, the LSA 

results show that the system is in fact unstable due to the double diffusive effect.  In this region, 

the scaling factor decreases as the diffusion ratio increases. It worth noting that while the base 

density profile provides an insight into possibility of evolution of instabilities, it does not provide 

information on the growth of perturbations and the consequences of the double diffusion effect. It 

can be also observed that the prefactor decreases as the diffusivity ratio increases over the given 

range of rD>(-rβrc)2 (region VIII) suggesting an earlier onset time. In this case, the density profile 

is nonmonotonic. The scaling prefactor results, shown in Figure 5, also suggest that DD does not 

play a significant role on the instability of the system with rD>50. From the inset plot, it can be 

observed that for large values of rD the peak in density diminishes resulting in a monotonically 

decreasing density profile.  

Figure 6.6(b) shows the dependency of the onset time to the driving density difference for system 

with rD>rβrc
2. The results show that the scaling prefactor scales inversely to the driving density 

difference (Δρu) leading to a=12.263Δρu -0.543. It can be observed that the scaling prefactor 

decreases as the driving density difference increases leading to a unified stability criterion similar 

to the single component problem in a RB convection at Δρu~1 for rD>50. The same observation 

was made for systems with -rβrc <1 and rD>50 discussed in section 6.6.1. In this case, solute B 

diffuses much faster than solute A and decreases the density of underlying fluid layers far ahead 

of diffusion front of solute A providing a favorable density profile between the upper A-rich dense 

layer and lower less dense B-rich fluid layer. This observation will be further elaborated in the 

following using numerical simulations.   
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Figure 6.6: Scaling prefactor for the onset as a function of the driving density difference for 

systems representing nonmonotonic density profile with (a) region V (rD<1) with local maximum 

and (b) region VIII (rD>(-rβrc)2) with local minimum at constant interface density, -rβrc=1.5. 

 

Figure 6.7 shows the results of numerical for dissolution flux in systems with -rβrc>1 for different 

diffusion coefficient ratios.  As predicted by linear stability analysis, a system with rD=0.1 (region 

V) leads to an earlier onset, marked by a sharp increase in the dissolution flux, as compared to 

systems with rD=0.5 (region V), rD=2 (region VII) and rD=3 (region VIII). Examination of the 

convective flux beyond the onset, however, shows that a system with rD=0.1 leads to lower 

convective dissolution flux and experiences a delayed shutdown regime as compared to the system 

with rD =2 and rD=3. This behaviour can be credited to the accumulation of less dense B-rich 

mixture below the interface on the top layer due to smaller diffusivity of species B. In other words, 

the initiated convective motion homogenizes the concentrations gradient within the mixing zone, 

which would counteract the effect of double diffusion on the density stratification and 

consequently the mixing behaviour.  

In the case of rD>(-rβrc)2/3(regions VII and VIII), systems with higher diffusivity ratio result in 

larger maximum flux and show earlier shutdown regime. In agreement with results of LSA, 

systems with rD>20 lead to very similar onset times. However, the dynamics of the system beyond 

the onset of instabilities is quite different. Inspection of individual dissolution flux of solutes A 
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and B in this system, shown in the inset plot (b) in Figure 6.7, confirms that at high diffusion ratio 

solute A is the only component which contributes to the convective dissolution representing similar 

dissolution dynamics to those in a single component system. The inset concentration maps show 

the concentration distributions of diffusing species (A+B) for systems with (a) rD=0.1 and (b) 

rD=50. The separate frontal diffusive boundary layer for solutes A and B is clearly observed from 

the inset contour (b). It can be also observed that these two systems lead to different diffusive 

boundary layers and the associated fingering patterns.  

 

Figure 6.7: Dimensionless dissolution flux versus dimensionless time for the cases with -rβrc=1.5, 

at |Ra|=500 and different diffusivity ratios rD=0.1, 0.5, 2, 3.0, 20 and 50. Inset plots show 

convective dissolution flux for each species in cases with (a) rD=0.1 and (b) rD=50. The inset 

contours show the corresponding concentration distribution in cases with (a) rD=0.1 and (b) rD=50, 

at the given scaled diffusive time. 
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Figure 8 summarizes the above discussed stability regions in form of the parameter space (-rrc, 

rD), the associated density profiles, and the typical fingering patterns for each region. Detailed 

theory on construction of the parameter space classification has been reported elsewhere (Jafari 

Raad and Hassanzadeh, 2016). This figure shows how the characteristic shape of density profiles 

control the evolution of convective instabilities and fingering patterns in different parameter space 

regions. It can be observed that the shape of fingers, their growth rates and spreading patterns in 

different space parameter regions are changed and highly controlled by the buoyancy and 

diffusivity ratio parameters. It interesting to note in region VII where (-rβrc)2/3<rD<(-rβrc)2 while 

the characteristic shape of base density profile suggests a stable system, numerical simulations in 

accordance with the LSA suggest an unstable system.  
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Figure 6.8: Parameter space (-rβ rc, rD) classification shows various stability regions. Inset plots 

are the base state density profiles with depth. Inset 2D concentration maps show fingering patterns 

for systems with |Ra| =500, at the given diffusivity ratio and the scaled diffusive time. 

 

6.6 Summary and Conclusions 

We studied stabilizing and destabilizing effects of diffusion contrast on the onset of Rayleigh–
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on convective instabilities in terms of onset time and convective dissolution flux. In particular, two 

important categories of -rβrc <1 and -rβrc >1 were studied. In both categories, dissolution of solute 

A increases the mixture density while solute B decreases the density. In the first category (-rβrc 
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reduction while in the second category (-rβrc >1), the impact of solute B on density reduction is 

greater than the effect of solute A on density increase.  It was shown that when -rβrc <1 the system 

always remains unstable while for the other class it can be stable or unstable depending on the 

ratio of diffusivities. In both cases, it was shown that the diffusion contrast effect has a potential 

to accelerate or slow down the convective instabilities depending on the solutes diffusivities. This 

feature could be used to control the onset and the associated dynamics of convective dissolution.  

The relevance of the base state density profile in the control of onset was characterised by 

analyzing the favorable driving density difference in systems with different diffusivity contrasts. 

We have proposed scaling relations for the onset as a function of the driving density difference. 

The presented parametric analysis provides new insights into differential diffusion effects and can 

be used to control instabilities in partially miscible systems. This study also finds application in 

solutal and thermal natural convection problems in porous media including geological 

sequestration of CO2 in deep saline aquifers, enhanced oil recovery, contaminant transport and 

waste disposal, geophysical fluid dynamics, groundwater hydrology, and convection in magma 

chamber. In particular, purposeful inclusion of nanoparticles or other materials that are able to 

modify the density profile could enable accelerating or decelerating of convective dissolution.   
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Chapter 7: Impact of Boundary Excitation on Stability of a Diffusive 

Boundary Layer in Porous Media*

 

 

 

 

7.1 Abstract 

We study the effects of boundary excitation on the onset of natural convection and the dynamics 

of subsequent convective mixing by conducting linear stability analysis (LSA) and direct 

numerical simulations (DNS). A detailed parametric analysis on the stability of a diffusive 

boundary layer in porous media subject to three different types of linear decline, linear decline 

followed by constant concentration, and symmetric flat floored valley shape boundary conditions 

is presented. We propose scaling relations based on results of LSA to describe the critical time and 

the associated wavenumber of convective instabilities that incorporate the effect of the boundary 

parameters. The LSA results show that the classic onset criterion is applicable when decline factors 

(α) is smaller than 10-4. The results also demonstrate that α does not play a significant role in the 

instability of the system unless it is greater than 10-4. The results show that in systems with linear 

concentration decline followed by constant concentration, the impact of decline on the stability of 

the system decreases as α increases. Based on the LSA results, a system with α>10-2 leads to 

unified stability criteria at different constant concentration (χ) similar to the classic problem, when 

                                                 
* Jafari Raad, S. M., Emami-Meybodi, H., Hassanzadeh, H. (2019). Impact of boundary excitation 

on stability of a diffusive boundary layer in porous media. Advances in Water Resources, 126, 

40-54.https://doi.org/10.1016/J.ADVWATRES.2019.02.005 
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the transient time (τ) and the wavenumber (κ) are rescaled by χ as τχ2 and κ/χ, respectively. Our 

results also show that the duration of the flat portion in symmetric flat floored valley shape 

boundary condition is the main factor controlling the stability behaviour of the system. The DNS 

results reveal that the dynamics of the buoyancy-driven mixing is also significantly influenced by 

the temporal variation of concentration at the boundary. These findings improve our understanding 

of buoyancy-driven instabilities in the presence of boundary excitation and finds applications in 

thermal and solutal convection in porous media. 

7.2 Introduction 

Solutal and thermal convection in porous media has wide range of applications in a number of 

fields such as geological flows, groundwater hydrology (Van Dam et al., 2009; Diersch and 

Kolditz, 2002; Simmons, 2005), waste disposal (Liu and Dane, 1996; Mao et al., 2006; Schincariol 

and Schwartz, 1990; Yang and Edwards, 2000), carbon dioxide sequestration (Emami-Meybodi et 

al., 2015; Lindeberg and Wessel-Berg, 1997; Riaz et al., 2006), petroleum reservoir engineering, 

and geothermal reservoirs (Coumou et al., 2008; Horton and Rogers, 1945; Zhao et al., 2008). 

Solutal and thermal convection can develop due to negative density gradients in the gravity field 

resulted from temperature and/or concentration (Landau and Lifshitz, 2004; Nield and Bejan, 

2006). Evolution of natural convection in porous media enables efficient heat/solute transport over 

larger spatial and time scales than those achieved by molecular diffusion. Theoretical basis and 

importance of natural convection in porous media have been very well discussed in the book by ( 

Nield and Bejan, 2006).  

Stability of the diffusive boundary layer in porous media with different types of boundary 

conditions such as step change boundary condition (Elder and W., 1967; Ennis-King et al., 2005; 

Nield and Bejan, 2013), constant flux boundary (Ingham and Pop, 2005; Pop and Ingham, 2001; 

Vafai, 2005), partially permeable boundary (Elenius et al., 2012; Slim, 2014; Slim and 

Ramakrishnan, 2010), and moving boundary condition (Meulenbroek et al., 2013; Myint and 

Firoozabadi, 2013) has been widely discussed in the literature. However, these investigations are 

mainly concerned with systems with either fully developed or time independent base state (Ingham 

and Pop, 2005; Donald A. Nield and Bejan, 2013; Pop and Ingham, 2001; Vafai, 2005) or constant 

boundary type problems (Elenius et al., 2012; Ennis-King et al., 2005; Meulenbroek et al., 2013; 
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Myint and Firoozabadi, 2013; Slim, 2014; Slim and Ramakrishnan, 2010), where the imposed 

boundary is independent of time.  

Stability of fluids in porous media with boundary excitation is of particular interest, especially in 

connection with the geophysical and environmental problems. There are relatively very few studies 

available that look into the effect of interface boundary excitation on the stability of diffusive 

boundary layers in porous media. Hassanzadeh et al. (Hassanzadeh et al., 2006) studied the effect 

of linear decline (negative ramp) in concentration at the top boundary on the onset of convection 

in a transient diffusive layer using a linear stability analysis. They found that the decline factor 

significantly affects the stability of the diffusive boundary layer in systems with low Ra number 

(Ra<250). It was reported that the growth of the perturbations in systems with low Ra number 

attenuates as the decline factor increases. It was also observed that the effect of decline factor on 

the stability of systems with large Ra number (R=500) can be negligible. More recently, Wen et. 

al. (Wen et al., 2018) studied the dynamics of convective mixing in a closed porous system in the 

context of CO2 sequestration. It was shown that the pressure drop in the gas phase during 

dissolution of gas in water negatively affect both diffusive and convective mass transport of CO2. 

It was reported that the pressure drop in a closed system decreases the dissolution flux and limits 

the convection before the underlying brine begins to saturate. However, these studies were either 

concerned with the dynamics of convective mixing in a finite domain (Wen et al., 2018) or 

restricted to a simplified form of a time-dependent boundary condition (Hassanzadeh et al., 2006). 

These studies do not present any parametric analyses on the stability criterion of the system. The 

objective of the present study is to perform an inclusive analysis of the instability and the 

associated dynamics of solutal natural convection in saturated porous media in the presence of 

boundary excitation. The presented analysis and results in this study provide fundamental 

understanding of natural convection in the presence of boundary excitation. Three different types 

of time-dependent boundary conditions are used to simulate the concentration excitation at the 

interface. The effect of boundary excitation on the onset of instabilities and subsequent convective 

mixing is discussed. A linear stability analysis using quasi-steady-state approximation (QSSA) is 

conducted to study the effect of time-dependent concentration boundary on the instability 

behaviour of a gravitationally unstable diffusive boundary layer. We present new scaling relations 

for the onset of convective instabilities in systems with linear decline, linear decline followed by 

constant concentration, and symmetric flat floored valley shape boundary conditions.  
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The developed scaling relations can be used to estimate the onset of density-driven instabilities as 

a function of the characteristics of the boundary condition and the physical properties of the porous 

layer. The dynamics of the system beyond the onset time is also studied using direct numerical 

simulations. Although, we focus on solutal natural convection, the insight developed here can be 

applied equally to thermal problems. 

This paper is organized as follows. In Section 7.3, we describe the problem of interest via 

presenting the governing equations and boundary conditions followed by a base state solution for 

the diffusive mass transfer with time-dependent boundary condition. In Section 7.4, mathematical 

formulation of linear stability analysis is presented. Results and discussion are presented in Section 

7.5 followed by Section 7.6, which is summary and conclusion of this study.  

7.3 Mathematical Formulation 

7.3.1 Governing equations 

We consider a two-dimensional, homogeneous, isotropic, isothermal, vertical cross-section of a 

porous layer with thickness H as shown in Figure 7.1(a). The porous layer is saturated with a 

quiescent fluid, which is initially free of solute. A Cartesian coordinate system was chosen with 

the z-axis pointing downward. The porous layer is assumed to be infinite in the x-direction. 

 

Figure 7.1: (a) Geometry and boundary conditions of the porous system. (b) The time-dependent 

concentration profile imposed on the upper boundary of the porous layer. 

 

The bottom boundary is assumed to be impermeable to flow with zero mass flux.  The top boundary 

is also assumed impermeable to flow but is imposed to a time-dependent concentration as shown 

in Figure 7.1(b). The time-dependent concentration at the top boundary is defined as: 

g
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where c is the concentration of the diffusing species, t is the time, c1, c2, c3, are the concentration 

at z = 0 for t = 0, t1 < t ≤ t2 , and t ≥ t3, respectively, H is the Heaviside step function (H(t) = 1 if t 

≥ 0 and H(t) = 0 if t < 0).  

Assuming the Boussinesq approximation is valid and  rock and fluid compressibility effects are 

negligible, and in the absence of viscosity variation, and dispersion effects, the governing 

equations of non-reactive single phase flow and transport can be written as (Bear, 1972): 

2 c
D c c

t
  
   


v ;         (7.2) 

      0 v ;           (7.3) 

 k
p z


    v g ,          (7.4) 

where v(u,v) is the Darcy velocity vector, u and v are the horizontal and vertical components of 

the velocity vector, respectively, p is the pressure, k is the porous medium permeability,  is the 

viscosity, g is acceleration due to gravity, z is the vertical coordinate (positive downwards), ρ is 

the density,  is the porosity, and D is the effective molecular diffusion coefficient of the diffusing 

species in porous media and is assumed to be independent of concentration for dilute solutions.  

It was assumed that density is a linear function of the local concentration of the dissolved species,  

 0 1 c    ,         (7.5) 

where ρ0 is the fluid density at c = 0, and β = (1/ρ)∂ρ/∂c, which can be obtained from an equation 

of state.    

The governing equations were nondimensionalized by choosing c1 as the concentration scale, the 

buoyancy velocity /Bu k g   as the velocity scale, /l D k g   with 0 1c   as the 

length scale, and D/l2 as the time scale. It is worth noting that using height of the domain as the 

length scale would make it difficult if not impossible to distinguish the effect of top and bottom 

boundary in the finite domain and parameterize the role of the top boundary on the onset of 

convection. In fact, the defined decline rate (α) in H-scaled system such as those used by 
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(Hassanzadeh et al., 2006) and (Wen et al., 2018) contains H meaning that both alpha (α) and Ra 

change with the height of the domain. In this case, depending on Ra both top and bottom boundary 

would affect the behaviour of diffusive flux and consequently onset of instability in a same fashion. 

In other words, for H-scaled system, change in α (  in Wen et al., 2018) could mean either change 

in the decline rate for the concentration at the top boundary or change in H (which may involve 

the bottom boundary effect). Therefore, the used scaling may lead to misleading results, especially 

in systems with low Ra numbers. Here, we intentionally use l as the length scale to avoid this 

scaling problem and let α to only capture the top boundary features. In other words, time dependent 

nature of top boundary is isolated from the size of the domain.  

Accordingly, the dimensionless form of the governing equations for flow and transport can be 

expressed as 

2
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7.3.2 Base state solution 

At the early times, when the thickness of the diffusive boundary layer ( 4 D t  ) (Bird et al., 

2002) is very small compared to the height of the porous layer ( H  ), the domain can be 

considered as a semi-infinite medium in the z-direction. Eqs. (6) and (7) are subject to the following 

conditions: 

    00   VV ,        (7.8a) 

  0C ,          (7.8b) 

   

  






 





















 









 








 














1

12

2

23

1

12
223

1

12

1

12
2

1

12
12120




















H

HHC

 , (7.9) 



109 
 

where i=ci/c1, 1121 /)(   , 2 3 2 3 2( )/( )       , and =1/2.  Figure 7.2 shows the 

dimensionless form of the time-dependent concentration profile imposed at the upper boundary of 

the porous layer.  

 

 

Figure 7.2: Dimensionless time-dependent concentration profile at the upper boundary.  

 

Since the system is motionless prior to the onset of instabilities, the bases state velocity is zero. At 

the early times prior to the onset of instabilities, the molecular diffusion is the dominant transport 

mechanism. Therefore, Equation (7.7) can be written as  
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The time-dependent base state solution of Equation (7.10) subjects to the initial condition Cb (τ = 

0) = 0 and the boundary conditions given in Equation (7.9) can be obtained using Duhamel’s 

theorem (Carslaw and Jaeger, 1959):   

   

    






 











 









 









1

12

2

23
332

1

12
222

1

12
111001

4
),(
















HH

HerfcCb

,   (7.11) 

where 

c/c1









 



110 
 

  




















i

ii erfc



22

,
2

,      (7.12a) 

   













i

i
i 





4
exp,

2

.        (7.12b) 

For the limiting case of α2 = -α1 = α, 113  , and considering 
2  , i.e., the time-dependant 

bouandry, Equation  (7.9) can be expressed as: 
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and the base state solution, Equations (7.11) and (7.12), is given as: 
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The dissolution flux per unit area at the interface (z = 0) can be obtained as:  
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Using the diffusive time and length scales, the non-dimensional form of the flux can be expressed 

by 
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According to Equations (7.14) – (7.16), the diffusive flux at  = 0 can be written as: 
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where  ii   2 . 

Figure 7.3 shows the diffusive flux at the interface ( = 0) for systems imposed to the time-

dependent concentration boundary. Figure 3(a) presents the diffusive flux for the system with a 

linear decline concentration boundary at different α = 10-5, 10-4, 10-3, 10-2, and 0.1 followed by a 

constant concentration of χ = 0. A case with α =0 (χ = 1) is also shown for comparison. The inset 

plot in Figure 3(a) shows the boundary condition. It can be observed that the decline factor 

significantly influences the diffusive flux.  The linear decline boundary condition with small values 

of decline factor resembles gas absorption and CO2 dissolution in water. Later, in Appendix it is 

shown that the linear decline boundary condition with a low decline factor is able to reasonably 

resemble the early time behaviour of diffusive flux in a close system where the boundary is coupled 

with a finite gas cap (Wen et al., 2018).  

Figure 3(b) shows the log-log scale of the same results. While for a system with a constant 

boundary condition (α = 0.0, χ = 1), the diffusive flux declines as τ -1/2 at the early times, the 

diffusive flux in systems with time-dependent boundary condition (α≠0, χ = 0) does not follow the 

same trend. The results show that the diffusive flux decreases as the decline factor, α increases. 

Figure 3(b) reveals that at higher decline factors the diffusive flux departs earlier from 1/2   and 

declines much faster compared to the constant concentration boundary condition (α = 0.0, χ = 1). 

At very high decline factors, the diffusive flux turns to shut down even before the domain becomes 

saturated. In this case, due to the positive concentration gradient at the interface, system may even 

lead to an out-flux regime with a negative diffusive flux and act like a discharge problem (see 

diffusive flux for systems with α = 10-3, 10-2, and 0.1). In other words, the interface may reach a 

concentration lower than those of its underlying saturated fluid layers in systems with large decline 

factors. This leads to a non-uniform concentration distribution through the penetration depth of the 

diffusive front, which negatively slows down the rate of dissolution. 

The diffusive flux for a system with a linear decline (α = 0.01) followed by a constant concentration 

boundary at χ = 0.0, 0.1, 0.3, 0.5, 0.7, 1 is shown in Figure 2(c). The log-log plot of the same 

results is shown in Figure 3(d). The inset plot in Figure 3(c) shows the boundary condition. The 
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diffusive flux for low values of χ follows a deep shut down during the decline of the interface 

concentration and then recovers after the decline is completed. Systems with χ = 0.0, 0.1, and 0.3 

show a negative diffusive flux around their bounce back point. As discussed earlier, this behaviour 

is attributed to the establishment of a positive concentration gradient at the interface, where the 

effect of constant concentration boundary is not large enough to compensate the effect of the high 

decline rate and the interface reaches a lower concentration than that of the underlying fluid. The 

diffusive flux deviates from the shutdown path and starts to recover as a consequence of 

establishment of the constant concentration boundary following the linear decline of the interface 

concentration. The diffusive flux reaches a maximum and then declines and approaches the trend 

of the constant concentration boundary condition. The results show that as χ increases the diffusive 

flux bounces back earlier and leads to a higher diffusive flux at the late time.   

Figure 3 (e) shows the diffusive flux for a system with a linear decline (α1 =-0.01) followed by a 

constant concentration of χ = 0.5 at the boundary, succeeded by a linear positive ramp at α2 = 0.01 

at θ = 0.1, 0.25, 0.5, 0.75, 1.0 and followed by a constant concentration of χ = 1.  A case with θ =1 

is also shown for comparison. The log-log plot of the same results is shown in Figure 3(f). The 

inset plot in Figure 3(e) shows the boundary condition. During the early time, the diffusive flux 

goes to a deep shut down until the linear decline in the concentration of the top boundary is 

terminated. It can be seen from Figure 3 (e) that the diffusive flux experiences its bounce back just 

after the linear decline is over and the boundary profile turns flat at constant value of χ = 0.5. The 

second bounce back occurs at the end of constant concentration period just after the linear ramp 

begins. The diffusive flux then approaches the trend of a constant concentration boundary ( 1/2 ) at 

late time when the linear positive ramp is over and a constant concentration of χ = 1 is established 

again. The results demonstrate that as the time ratio () decreases the second bounce back in the 

diffusive flux is delayed. Later, we will show that how the dependency of the diffusive flux to the 

time dependent boundary condition may impact the onset and associated dynamics of convective 

dissolution.  
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Figure 7.3: Diffusive flux versus time, (a and b (log-log)) flux for a linear decline at α = 10-5, 10-

4, 10-3, 10-2, and 0.1 followed by a constant concentration of χ = 0; a case with α = 0 (χ = 1) is also 

shown for comparison , (c and d (log-log)) flux for a linear decline at α = 0.01 followed by  constant 

concentrations of  χ = 0.0, 0.1, 0.3, 0.5, 0.7; a case with α = 0 (χ = 1) is also shown for comparison,  

(e and f (log-log)) flux for a linear decline at α = 0.01 followed by  a constant concentrations of  χ 

= 0.5, succeeded by a linear positive ramp at α = 0.01 at θ = 0, 0.1, 0.25, 0.5, 0.75, followed by a 

constant concentration of χ = 1; a cases with θ = 1 is also shown for comparison.   

  

7.3.3 Linear stability analysis 

To conduct linear stability analyis the base state is purturbed using b  where [ , ]C  v , and 

'( , , ) ( , )exp( )i      are the infinitesimal perturbations of velocities and concentration where i 

is the imaginary unit and κ is the dimensionless horizontal wavenumber with a very small 

amplitude ε. After substituting the perturbed variables into the flow and transport equations, 

implementing the base state quantities, linearizing the perturbations, the following perturbed 

equations can be obtained: 
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.        (7.19) 

The linearized Equations (7.18) and (7.19) were solved using a quasi-steady-state approximation 

(QSSA), in which the disturbance quantities were assumed to have the following forms (Tan and 

Homsy, 1986).  

 
     

 

*

0 *

,

,

V V
A

C C

  


  
   

      
,        (7.20) 

where variables defined by asterisks represent the perturbation eigenfunctions. Therefore, the 

dimensionless growth rate, σ, reads 

   0
0

1 dA

A d
 

 
 .         (7.21) 

The time scales represented by τ and τ0 denote to the fast-growing perturbations and the molecular 

diffusion time scales, respectively.  

Using Equation (7.20), Equations (7.18) and (7.19) can be written as: 

0*2*2
2

2














CV 
 ,        (7.22) 

2
* 2 * *

2
0bC

V C C 
 

  
       

,       (7.23) 

subject the following boundary conditions: 

   * *0 0V V     ,        (7.24) 

   * *0 0C C     .        (7.25) 

To obtain the growth rate corresponding to an assigned wavenumber the system of perturbed 

Equations (7.22) and (7.23) are discretized using a second-order finite difference method and then 

solved numerically. The resulting discretized equations can be expressed by a system of linear 

equations 
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1 2 0 a V a C ,          (7.26a) 

 3 4 0  a V a I C          (7.26b) 

where V and C are the eigenvectors for vertical velocity and concentration, respectively, a1–a4 are 

the coefficient matrices based on central discretization of the second derivatives related to the 

eigenfunctions, and I is the identity matrix. By substituting 
1

1 2( ) V a a C into the concentration 

stability equations, Equation (7.26) can be reduced to 

  02
1

134   CIaaaa  .        (7.27) 

This eigenvalue problem is solved numerically, and the maximum eigenvalue of the coefficient 

matrix is considered as the growth rate corresponding to the assigned wavenumber at a certain 

diffusive time, τ0. A positive growth rate at a particular time is an indication of instability. Thus, 

the onset time can be detected using a zero maximum growth rate (i.e., the time at which the growth 

rate turns positive at a given wave-number represents the onset of instability). Negative growth 

rate for every wavenumber suggests a stable system. For brevity, we refer the reader to the previous 

studies for more details on numerical procedure and validity of the computational algorithm (Riaz 

et al., 2006; Tan and Homsy, 1986).  

7.5 Results and Discussion 

7.5.1 Stability analysis 

7.5.1.1 Linear decline 

Linear stability analysis (LSA) was conducted to parameterize the effect of the time-dependent 

boundary condition on the growth rate of perturbations and consequently, the onset of natural 

convection. The LSA was conducted for a wide range of physical parameters of the time-dependent 

boundary condition. First, we study the stability of a system imposed to a linear decline followed 

by a constant concentration of χ = 0 at the upper boundary. The stability analysis on the linear 

decline boundary condition is important not only in convective dissolution of CO2 into brine in a 

sequestration process (Akhbari and Hesse, 2017; Hassanzadeh et al., 2006) but also in contaminant 
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transport and waste disposal (Gao et al., 2013; Shen and Chengji, 2015; Truex et al., 2015; Xie et 

al., 2010), and crystallization processes and magma chambers (Holness et al., 2006; Kuritani et 

al., 2007; Worster et al., 1990). 

LSA results show that the behaviour of such a system is controlled by the concentration decline 

factor. The perturbation growth rates for a system with constant concentration boundary (α = 0, χ 

= 1) is shown in Figure 7.4 (a).  For this limiting case, the stability analysis predicts the negative 

perturbations growth rates at early times, τ0=25 and 37.5, suggesting an unconditionally stable 

system at these times. As time increases, the perturbations grow such that growth rates turn positive 

at critical time τc =56 at the corresponding wavenumber of κc=0.064, representing the onset of 

instability. Similar stability criterion has been reported in previous studies for systems with the 

same configuration and boundary conditions (Jafari Raad and Hassanzadeh, 2015; Meulenbroek 

et al., 2013; Tilton et al., 2013).  

Figure 7.4(b) shows dispersion curves for the same system imposed to linear decline in 

concentration at the upper boundary with various decline factors at 5.62
0
 .  Perturbations growth 

rate for the system with constant concentration boundary (α=0, χ = 1) at the similar time is also 

shown for comparison. The results reveal that increase of decline factor slows down the growth of 

perturbations, suggesting more stable diffusive boundary layer. In other words, increasing the 

decline factor has a stabilizing effect in a system with a linear decline boundary. As discussed 

earlier, this is attributed to a lower interface concentration at higher decline factor. The same 

observations has been reported in earlier studies (Hassanzadeh et al., 2006; Wen et al., 2018). 
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Figure 7.4: Growth rates versus dimensionless wavenumber for (a) a system imposed to a constant 

concentration at the top boundary (α = 0, χ = 1) at different dimensionless times and (b) systems 

imposed to a linearly declining concentration boundary with different decline factors, α = 0.0001, 

0.001, 0.002, and 0.004, followed by a constant concentration of χ = 0, at a constant dimensionless 

time τ0 = 62.5, a case with α = 0 (χ = 1) is also shown for comparison.   
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The general effect of decline factor can be seen from Figure 7.5 where the maximum growth rates, 

(σmax) and the corresponding wavenumbers, (κmax) are shown for systems with different decline 

factors α=0, 0.0001, 0.001, 0.002, 0.003 and 0.004. Inspection of the maximum growth rates 

obtained for systems with different decline factors, shown in Figure 7.5(a) indicates the significant 

impact of decline factor. The effect of a large decline factor is to reduce the maximum growth rate 

significantly suggesting the stabilizing effect of the decline factor. 

It can be seen that the maximum growth rate increases rapidly, reaches a maximum and decreases. 

The results show that systems with larger decline factor lead to higher attenuation of the 

instabilities. While the late-time evolution of the maximum growth rate scales with τ -1/4 for the 

system with constant concentration at the upper boundary (α=0) the maximum growth rate scales 

with τ -5/8 in system with α=0.003.   

Figure 7.5(b) shows that the maximum wavenumber is also controlled by the decline factor. While 

evolution of the maximum wavenumbers (the most dangerous wavenumber) for the constant 

boundary system (α=0) decays as τ 1/4, it decays faster as τ 1/3.2 for system with α=0.003.  
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Figure 7.5: (a) Maximum growth rate and (b) the corresponding wavenumber as a function of 

dimensionless time for systems with different decline factors of α = 0, 0.0001, 0.001, 0.002, and 

0.004. 

A more general overview of the impact of the decline factor on the stability behaviour of the 

diffusive boundary layer is provided using the neutral stability curves. Figure 7.6 shows the neutral 

stability curves for different decline rate. The results for the system with a =0 is also shown for 

comparison. The neutral stability curves clearly show that the decline factor negatively affects the 

instability of the systems. The instability limit shrinks and moves upward as the decline factor 

increases, suggesting increase of the critical time. This observation suggests that the system turns 

more stable at a higher decline factor. It can be observed that the shrinkage effect is significant for 

a system with a large decline factor such as α= 0.004. This behaviour is mostly attributed to the 
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lower mass flux at the interface at higher decline factor (see Figure 7.3(b)). As the decline factor 

increases the support of the concentration source at the interface to the underlying diffusive 

boundary layer decreases. This leads to small penetration depth of the diffusive front, the weak 

buoyancy force, and a delayed onset. This may also result in attenuation of the already initiated 

instabilities at earlier times.  

It can be also observed that the loci of the critical times, marked by filled circles moves toward 

smaller wavenumbers as the decline factor increases.  It is worth noting that minimum of the 

neutral stability curve indicates the critical time (τc).  

 

Figure 7.6: Neutral stability curves for systems exposed to a linear decline of concentration at the 

top boundary at different decline factors, α = 0, 0.0001, 0.001, 0.002, and 0.004. The dotted lines 

show the loci of the critical time and the corresponding wavenumbers that maximize the growth 

rate (σ).  
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To further clarify the effect of decline factor on the stability criteria of the diffusive boundary 

layer, results of LSA for the scaled critical time and the corresponding wavenumber as a function 

of decline factor are shown in Figure 7.7. The results show that the scaled critical time increases 

as the decline factor increases, suggesting a more stable diffusive boundary layer. The results 

reveal that the critical time and the corresponding wavenumbers are not sensitive to the decline of 

concentration when the decline factor is less than 10-4. For systems with decline factors less than 

10-4, the scaled critical time and the corresponding wavenumber recover the scaling relations τc = 

55.6 and κc = 0.0583, respectively. These scaling relations are similar with those reported for the 

case of constant boundary condition (=0).  For this particular case, Tilton et al., (Tilton et al., 

2013) reported τc = 55.62 and κc =0.058, which are quite close to those predicted in our analysis.  

The critical time and wavenumber both reveal a non-linear dependence for decline factors greater 

that 10-4. The scaled critical time (and the corresponding wavenumbers) increases (decreases) 

monotonically with the decline factor for the intermediate decline factor values of 10-4 ≤ α≤ 4.4×10-

3 followed by a sharp increase of the critical time suggesting an unconditionally stable system. The 

results of LSA imply that both the onset and the wavelength of instabilities are controlled by the 

decline factor for 10-4 ≤ α≤ 4.4×10-3).   
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Figure 7.7: (a) Critical dimensionless time and (b) the corresponding wavenumber as functions of 

decline factor (α) for a linearly declining top boundary. The inset plot shows the time dependent 

concentration boundary identified by linear decline factors of α=0.001, 0.002 and 0.004.  
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temporal change in the upper boundary. The presented analysis finds application in many material 
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of the boundary parameters. The neutral stability curves for decline factors of α=0.01 and 0.1 at 

various concentrations of χ=0.3, 0.5, and 0.7 are shown in Figure 7.8. The neutral curve for χ=1 

(α=0) is also shown for comparison. It can be observed that the instability limit in the neutral 

stability curves shown in Figures 7.8 (a, c) shift upward significantly as the concentration 

decreases.  

The result also shows that the neutral stability curves considerably shrinks as the concentration 

decreases suggesting a reduced instability region (σ≥0). It can be also observed that the loci of the 

critical points (κc, τc) marked by filled symbols moves toward smaller wavenumbers as the 

concentration decreases. In general, a system with lower concentration leads to larger critical time, 

reduced unstable region, and much smaller dominant wavenumbers. This is attributed to the lower 

interface concentration, which negatively affects the growth of diffusive boundary layer.  

Comparison of the neutral stability curves for systems with different decline factors, α=0.01 and 

0.1 shown in Figures 7.8(a) and 7.8(c), respectively, demonstrates that α=0.1 leads to higher 

critical times than α=0.01. This observation reflects the stabilizing effect of the decline factor.  

Figures 7.8 (b) and 7.8(d) show the rescaled neutral stability curves where the transient time and 

the wavenumber are rescaled by χ as, τ×χ2 and κ/χ, respectively.  Interestingly, this rescaling 

collapses all neutral curves to a single one with unique critical point (κc, τc) for systems with α=0.1, 

suggesting a unified stability region as shown in Figure 7.8(d). This observation reveals that 

stability of a system with a large decline factor is controlled by the constant concentration portion 

of the boundary condition. In other words, the impact of decline factor on the stability of a system 

with linear decline followed by constant concentration decreases as the decline factor increases. In 

fact, as the decline factor increases the interface concentration reaches to the constant regime faster 

and consequently the behaviour of the system with the constant concentration boundary is 

recovered more quickly. 
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Figure 7.8: Neutral stability curves for systems with a linear decline followed by a constant 

concentration boundary (a, b) with decline factor α=0.01, and (c, d) with decline factor α=0.1 at 

different concentrations of χ=0.3, 0.5, 0.7, and 1.0. The dotted lines show the temporal evolution 

of the dominant wavenumbers that maximize σ. Figures 8(b) and (d) represent the rescaled neutral 

curves for the cases shown in Figures 8(a) and (c), respectively.  
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of a constant concentration case reported in the literature ( Meulenbroek et al., 2013; Tilton et al., 

2013). This region is followed by a non-linear region (10-4≤α≤10-2) where both the decline factor 

and the constant concentration portion of the boundary condition play a role.  In the third region 

(α 10-2), stability of the system is governed only by the constant concentration portion of the 

boundary condition. This is attributed to the quick transitions of the interface concentration to the 

constant concentration at large decline factors (α10-2). The results shown in Figures 7.9 (c,d) 

reveal that for cases with χ<1the rescaled critical time (and the corresponding wavenumbers) 

increases (decreases) and approaches the classical cases of constant concentration boundary 

condition (Jafari Raad and Hassanzadeh, 2015).  

 

 

Figure 7.9: (a, c) Critical time and (b, d) the corresponding wavenumber versus decline factor. 

The inset plot in 7.9(a) shows the boundary condition. Figures 7.9(c) and (d) represent the rescaled 

critical time and the corresponding wavenumber. 
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7.5.1.3 Symmetric flat floored valley shape boundary condition 

A flat floored valley shape boundary condition is characterized by a linear decline, a constant 

concentration portion, followed by a linear rise. The stability analysis on the behaviour of the 

system with symmetric flat floored valley shape boundary condition provide fundamental 

understanding on the stability of the systems subject to cyclic boundary conditions in re-entry 

heating or/and periodic induced flow problems. Systems with re-entry heating and periodic 

boundary condition find application in many industrial and environmental settings, such as 

geothermal reservoir engineering, underground waste management and industrial emergency 

cooling systems. A controlled induced periodic boundary condition can also be used as a 

mechanism to control convection in the case of materials processing applications to attain higher 

efficiencies and to advance convection in achieving major enhancement of heat, mass and 

momentum transfer (Kwak and Hyun, 1996; Wu and Wang, 2017). Although, natural convection 

in porous media under periodic boundary conditions have been addressed in previous studies 

(Bhadauria et al., 2013; Caltaoirone, 1976; Chhuon and Caltagirone, 1979; Kwak and Hyun, 1996; 

Nield and Bejan, 2006; Steen and Aidun, 1988; Wu and Wang, 2017; Xie et al., 2010), to the best 

of our knowledge, this is the first parametric analysis that addresses the role of boundary 

parameters on the stability behaviour during each period of the boundary oscillation. This analysis 

provides useful insight into the stability behaviour of the system during each period and can be 

used as a tool for proper parameter tuning in an engineered natural convection problem. 

The results of LSA for the scaled critical time and the corresponding wavenumber as a function of 

decline factor for this boundary condition are shown in Figure 7.10. Figures 7.10(a) and 7.10(b) 

show the critical time and the corresponding wavenumber for a case with χ = 0.7, respectively, for 

different = 0.0, 0.1, 0.25, 0.5, and 1.0. Figures 7.10(c) and 7.10(d) show the same results for a 

case with χ = 0.5. It is worth noting that 
1 2/   is a measure of the duration of the constant 

boundary condition (flat portion of the valley) and thus smaller indicates longer duration of the 

flat portion. The behaviour of the critical time and the corresponding wavenumber for each case is 

shown. A case with linear decline followed by a zero concentration is also shown for comparison. 

The critical time and the corresponding wavenumber for this special case at a decline factor of 

4×10-3 approach infinity and zero, respectively, which are illustrated by the vertical dashed lines 
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and have been previously shown in Figures 7.5 and 7.9.  In addition, a symmetric V shape 

boundary ( =1) is also shown for comparison.  

For a boundary condition of interest, which is a symmetric flat floored valley shape boundary 

condition, the gradual increase of the onset time by increasing the decline factor shown by blue 

dashed line is partly due to the duration of the flat portion of the boundary condition. The maximum 

critical times shown by triangles mark the rise of concentration at the top boundary. The decline 

factor at which the onset time reaches a maximum depends on the duration of the flat portion of 

the boundary condition. A longer duration of the flat portion (smaller) shows stronger 

stabilization effect of the boundary. The concentration rise at the boundary leads to decline of the 

critical time shown by brown dashed line that approaches the classical case (c=55.6). The same 

observations can be made for the behaviour of the critical wavenumber. 

  

Figure 7.10: Critical time and the corresponding wavenumber versus decline factor for 

symmetric flat floored valley shape boundary condition where 7.10(a) and 7.10(b) show the 

critical time and the corresponding wavenumber for a case with χ = 0.7, respectively, for 
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different = 0.0, 0.1, 0.25, 0.5, and 1.0, and 7.10(c) and 7.10(d) show the same results for a case 

with χ = 0.5. The inset plots show the shape of the boundary conditions for each case. 

 

7.5.2 Numerical simulations  

We have conducted full numerical simulations to gain further insight into the instability behaviour 

and the nonlinear dynamics of mixing beyond the onset. We solved the nonlinear problem with a 

high accuracy numerical model developed based on a well-known IMPEC approach where the 

implicit scheme is used to discretize flow Equations (3-4) while the transport Equations (2) are 

treated explicitly (Settari, 2001). The developed numerical model is based on a uniform Cartesian 

grid and second order finite difference discretization of the governing Equations (2-4). 

The numerical model considers the physical domain and the boundary conditions described in 

Figure 7.1. One may refer to previous publications (Hassanzadeh et al., 2007) for further details 

on the numerical model and controls on the accuracy and convergence of the numerical solutions. 

7.5.2.1 Linear decline 

We studied the effect of the linear decline factor on the onset of convective dissolution and the 

associated dynamics in systems with a linearly decreasing ramp concentration boundary. The 

concentration distributions, space-time concentration maps and the time-dependent Sherwood 

number as the most practical measures of convective dissolution are considered in analysis that 

follows.  

The 2D numerical solutions were conducted to evaluate the concentration distribution associated 

with the convective dissolution. The domain size is chosen to ensure that the numerical solutions 

are independent from the domain aspect ratio and the lateral boundaries could not influence the 

evolution of convective fingers. Figure 7.11 shows the time evolution of concentration distribution 

for systems with time-dependent concentration boundary at different decline factors of α=0, 

0.00004, and 0.0004. It can be observed that these systems exhibit different instability behaviour 

followed by different fingering pattern. The results show that the systems with α=0 results in faster 

development of the instabilities compared to the cases with declining concentration at the top 

boundary. These observations are in agreement with the results of stability analysis. As discussed 

earlier, this instability behaviour is attributed partly to the growth of the diffusive boundary layer 
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under the consequence of the time-dependent concentration at the upper boundary. As the decline 

factor increases, the interface concentration that supports the growth of boundary layer decreases 

faster leading to lower mass flux.  

Figure 7.12 (a) shows space-time maps of the concentration of the solute along a horizontal slice 

below the interface (z≈+0). Results of the space-time concentration maps show that lateral 

spreading and merging of the developed fingers in the system when α=0 is more vigorous than 

those in the system with α=0.0004. The results also show that the system with α=0 leads to 

fingering pattern with shorter wavelength compared to the system with α=0.0004. To gain a better 

understanding of the instability behaviour of the diffusive boundary layer and the dynamics of 

mixing process beyond the onset of instability, we analyzed the time-dependent Sherwood number 

as a measure of the dissolution process. Sherwood number is defined as the ratio of the total 

dissolution flux to the pure diffusion flux, /total diffusionSh F F  where the dissolution flux per unit area 

is define as: 

1
( ) ( )

V

d
F C dV

A d
 


  ,        (28) 

where V indicates the domain pore volume, A is the cross-sectional area of the interface and C is 

total concentration of the solute in the entire domain. 

Figure 7.12(b) compares the time-dependent Sherwood number, Sh (τ), at the early times for the 

three cases shown in Figure 7.12(a). It can be observed that the Sherwood number is unity at early 

times for all three cases suggesting a diffusion dominant mechanism. Figure 7.12(b) reveals that 

the Sherwood number for the system with α=0 deviates earlier from unity than that of α=0.00004 

implying an earlier onset of convection for systems with smaller decline factor. It is seen from 

Figure 7.12(b) that the diffusion is the dominant transport mechanism for the system with 

α=0.0004. These results confirm the linear stability analysis predictions on the effect of decline 

factor on the instability behaviour of diffusive boundary layer in systems with a decreasing ramp 

concentration boundary.  
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Figure 7.11: Temporal concentration distribution for a system imposed to a linear decline of 

concentration from top at different α = 0.0, 0.00004, and 0.0004 and a constant χ=0.  

  

Figure 7.12: (a) Space-time maps of the concentration of the solute along a horizontal slice located 

just below the top boundary at z ≈ +0 for the same cases shown in Figure 7.11 (b) Sherwood 

number versus time. 
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7.5.2.2 Linear decline followed by constant concentration 

 Next, we considered the effect of linear decline followed by constant concentration on the onset 

of convection and the dynamics of convective dissolution. Figure 7.13 presents the time evolution 

of concentration distribution for different concentrations of χ=0.7, 0.5, and 0.3, while the decline 

factor remained constant at α=0.004. Results for a system with a constant concentration boundary 

(χ =1) is also shown for comparison.  

Consistent with the result of LSA, Figure 7.13 demonstrates that a system with lower concentration 

results in weaker development of instability leading to delayed onset of free convection. 

Comparison of the developed fingering patterns show that systems with a smaller concentration 

result in sluggish form of fingers associated with low rate of convective dissolution due to the 

presence of less dense mixture on the upper layer. This is attributed to the fact that the flux of 

solute into the domain decreases when the concentration is lower at the interface, which suppresses 

the growth of convective fingers along the vertical direction. The results show that the magnitude 

of constant concentration following the linear decline significantly affects the wavelength of the 

density-driven fingers such that systems with higher concentration result in fingers with smaller 

wavelengths.   

Figure 7.14 depicts space-time contour maps of the solute concentration along a horizontal slice 

located just below the interface at z ≈+0, as well as the time-dependent Sherwood number for the 

same cases, shown in Figure 7.13. The evolution of the fingers root concentration in Figure 7.14 

(a), demonstrates that the growth of the diffusive boundary layer is significantly controlled by the 

magnitude of the constant concentration following the linear decline. It can be observed from these 

maps that systems with higher concentration lead to larger number of fingers associated with 

stronger finger roots.  It is seen from the space-time map that finger interaction increases over time 

leading to a smaller number of dominant fingers. The finger root concentration significantly 

reduced in the system with χ =0.3 leading to a fading finger pattern.  

Figure 7.14 (b) shows the numerical measurements of Sherwood number as a function of time. It 

can be observed that the magnitude of the constant concentration following the linear decline 

significantly influences the onset marked by the deviation of Sherwood number from unity. 

Numerical results confirm that systems with higher concentration lead to earlier onset time. 

Examination of the Sherwood number beyond the onset shows that a system with higher 
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concentration results in a larger Sherwood number, implying a stronger convective flux as 

compared to other cases with lower concentration. Higher convective dissolution rate in systems 

with higher concentration ratio is attributed to the strong interaction and merging of fingers as they 

propagate downward. These results show the important role of the constant concentration 

following the linear decline on evolution of the onset of convection and the dynamics of convective 

dissolution. 

 

Figure 7.13: Temporal concentration distribution for a system exposed to linear decline followed 

by constant concentration at different χ =0.3, 0.5, and 0.7 with constant α = 0.004.  A case with χ 

=1 is also show for comparison. 
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Figure 7.14: (a) Space-time maps of the concentration of the solute along a horizontal slice located 

just below the top boundary at z ≈ +0 for the same systems shown in Figure 7.13(b) Sherwood 

number versus time. 

 

7.5.2.3 Symmetric flat floored valley shape boundary condition 

 As the last part of our analysis, the impact of a symmetric flat floored valley shape boundary 

condition on the onset of convection and the dynamics of mixing was investigated. In particular, 

we studied the effect of duration of the constant concentration (flat portion of the valley) by 

considering θ = 0.1, 0.25, 0.5, and 1.0 while the decline factor and concentration remained constant 

at α = 0.004 and χ = 0.5, respectively. It is worthwhile noting that 1 2/    and smaller indicates 

longer duration of the flat portion and 1  denotes a symmetric V shape boundary condition. The 

temporal concentration distributions, presented in Figure 7.15, demonstrates that a system with 

larger time ratio (θ) results in faster development of instabilities in form of fingers. This is in 

agreement with the results of LSA. This observation is attributed to the fact that the as the time 

ratio increases the supporting flux for evolution of density-driven fingers is stronger leading to 

more vigorous fingering. 

Careful review of the fingering patterns in systems with different θ shows that while the onset time 

and fingering patterns at the early times are different, they lead to almost similar fingering pattern 

at the later times (τ≥5000). This behaviour can be credited to the same supporting flux into the 
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domain at the late times while a maximum interface concentration is established for all four 

considered cases. This can be also observed from the space-time maps, shown in Figure 7.16 (a), 

where almost the same fingering root patterns is seen for all cases at the late times (τ≥5000). 

Numerical results of time-dependent Sherwood number, shown in Figure 7.16 (b), confirm that 

systems with shorter duration of the constant concentration (flat portion of the valley) lead to 

earlier onset time as well as stronger convective dissolution at early times beyond the onset.  

 

Figure 7.15: Temporal concentration distribution for the system exposed to the ramp-flat-ramp 

contact concentration boundary at different, θ = 0.1, 0.25, 0.5, and 1.0 with constant α = 0.004 and 

χ = 0.5.   
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Figure 7.16: (a) Space-time maps of the concentration of the solute along a horizontal slice located 

just below the top boundary at z ≈ +0 for the same systems shown in Figure 15(b) Sherwood 

number versus time.  

 

7.6 Summary and Conclusions 

Linear stability analysis (LSA) and direct numerical simulations (DNS) were conducted to study 

the effect of interface boundary excitation on the onset of convection and associated dynamics of 

convective dissolution. Stability behaviour of the gravitational unstable diffusive boundary later 

were characterized as a function of parameters of a well-defined time-dependent interface 

concentration profile. It was found that for a system with a linear decline (α) in concentration at 

the interface, the onset time monotonically increases for 10-4 ≤α≤ 4.4×10-3, beyond which the 

system turns to become unconditionally stable. The scaled critical time and the corresponding 

wavenumber were found as τc = 55.6 and κc = 0.0583, respectively, for α <10-4. It was also observed 

that the instability behaviour of systems with a linear decline followed by constant concentration 

is controlled by the constant concentration portion of the boundary condition such that the scaled 

critical times and the most dangerous wavenumbers lead to single scaling relations of τc = 55.6/χ2 

and κc =0.0583χ, respectively, for α ≥10-1. It was shown that for a symmetric flat floored valley 

shape boundary condition the scaled critical time decreases by decreasing the duration of the flat 

portion of the boundary condition for the intermediate values of the decline factor, 3×10−3 ≤α ≤ 

10. For the same interface boundary condition, it was observed that the scaling relations for the 
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critical time and the critical wavenumber at either large (α ≥101) or small (α ≤10-4) decline factors 

can be described as those in the classical system with constant concentration of =1. The dynamics 

of convective dissolution was also investigated using direct numerical simulations. The results of 

numerical simulations confirm the general stability criteria predicted by the linear stability 

analysis. The results also show that in addition to the onset time, the development of instabilities 

in form of density-driven fingers and the associated dynamics of convective dissolution are 

controlled by the interface boundary condition.  
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7.8 Appendix 7.A: Comparison of Early Time Diffusive Flux  

As discussed earlier, the linear decline boundary condition with small values of decline factor may 

find application in gas/liquid dissolution and absorption processes, especially in system with small 

dissolution capacity where the interface concentration varies linearly over time. Here, it is shown 

that the linear decline boundary condition with a low decline factor is able to reasonably resemble 

the diffusive flux the top boundary as compared to case when the boundary is coupled with a finite 

gas cap (Wen et al., 2018).  

While the linear decline boundary condition does not resemble the pressure-dependent 

concentration of CO2 at the interface when a CO2 gas cap is coupled with the underlying brine, it 

can be shown that it recovers the flux at the top boundary for cases with small decline factor. The 

solutions for the pressure-dependent interface concentration (Wen et al., 2018) and the linear 

decline concentration boundary are given by:  
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where z (the height of the domain and positive downward) and time are scaled by height of domain, 

H and the diffusive time scale, H2/D, respectively. (2 1) /2nB n    and,  and aD are dissolution 

capacity and the decline rate in the H-scale system, given by /m h gV KRT V (Wen et al., 2018),  and 

 2
a /D k gH D    (rescaled α in the this study), respectively.  

We examined the diffusive flux, as the most important factor in controlling the onset of instability, 

for both pressure-dependent and the linear decline boundary condition as shown in Fig. A1. The 

results for constant concentration boundary ( a 0D ) is also shown for comparison. Fig. A1 

shows that a system with the linear decline reasonably recovers the behaviour of diffusive flux in 

a CO2/water system at early times for small dissolution capacities (i.e 0.5 a 0.5D   ).  
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Figure 7.A1: Diffusive flux versus time for systems with (dashed line) linear decline and (solid 

line) pressure-dependent interface concentration in a CO2/water system. The blue solid line 

represents the diffusive flux for cases with constant concentration boundary.  
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Chapter 8: Onset of Density-driven Instabilities in Fractured Aquifers*

 

 

 

 

8.1 Abstract 

Linear stability analysis is conducted to study the onset of density-driven convection involved in 

solubility trapping of CO2 in fractured aquifers. The effect of physical properties of a fracture 

network on the stability of a diffusive boundary layer in a saturated fractured porous media is 

investigated using the dual porosity concept. Linear stability analysis results show that both 

fracture interporosity flow and fracture storativity play an important role in the stability behaviour 

of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous 

media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more 

stable. We present scaling relations for the onset of convective instability in fractured aquifers with 

single and variable matrix block size distribution. These findings improve our understanding of 

density-driven flow in fractured aquifers and are important in the estimation of potential storage 

capacity, risk assessment, and storage site characterization and screening. 

8.2 Introduction 

Density-driven convection in porous media is of great importance for a wide range of applications 

related to groundwater, soil contamination, formation of ore deposits, carbon dioxide (CO2) 

                                                 
* Jafari Raad, S. M., Hassanzadeh, H. (2018). Onset of density-driven instabilities in fractured 

aquifers. Physical Review E, 97(4), 043109. https://doi.org/10.1103/PhysRevE.97.043109 

 



140 
 

sequestration, and petroleum and geothermal reservoirs (Alt-Epping and Zhao, 2010; Carballido-

Landeira et al., 2013; Lindeberg and Wessel-Berg, 1997; Zhao et al., 2009). Natural convection 

can develop due to an unstable density profile in the gravity field, which can be attributed to either 

temperature or concentration gradient. Conceptual basis and general importance of both solutal 

and thermal density-driven convection in porous media have been comprehensively addressed in 

previous studies (Diersch and Kolditz, 2002; Nield and Bejan, 2006; Zhao et al., 2008). The 

conditions under which density-driven convection develops in the concentration field have 

received great attention in the past decade. Density-driven convection involved in geological 

sequestration of CO2 in deep saline aquifers is a good example of the current interest (Jafari Raad 

and Hassanzadeh, 2015; Loodts et al., 2014; Trevelyan et al., 2011). Geological sequestration of 

CO2 has been proposed as a short-term implementable option to reduce anthropogenic CO2 

emissions from the atmosphere (Lackner, 2003). Deep saline aquifers with their high storage 

capacity and worldwide accessibility have been identified as the best alternative for CO2 storage 

(Lackner, 2003). Once CO2 is injected into an aquifer it migrates upwards due to its buoyancy and 

spreads at the top of aquifers below a low permeability cap rock from where it gradually dissolves 

into the underlying brine (Lindeberg and Wessel-Berg, 1997). While most dissolved gases 

decrease fluid density, dissolution of CO2 into brine slightly increases the density of the brine 

phase. The CO2-rich brine phase sinks down due to gravitational instabilities that drive the 

convective dissolution. Convective dissolution enhances the mass transfer of CO2 from the CO2 

free phase (plume) to the underlying brines. This process significantly decreases the volume of 

free-phase CO2 under the cap rock, and consequently reduces risk of CO2 leakage (Ennis-King and 

Paterson, 2005; Hassanzadeh et al., 2005). The onset of density-driven convection in porous 

media, in the context of the CO2 sequestration process, has been the subject of several studies as 

it impacts the long-term storage security. The onset of density-driven convection has been often 

studied using linear stability theory and energy method in both isotropic (Ennis-King et al., 2005; 

Hassanzadeh et al., 2006; Riaz et al., 2006; Slim and Ramakrishnan, 2010) and anisotropic (Hong 

and Kim, 2008; Rapaka et al., 2008, 2009; Xu et al., 2006) porous media. This problem has been 

also addressed by a number of numerical studies (Andres and Cardoso, 2011; Chen and Zhang, 

2010; Hassanzadeh et al., 2007; Hidalgo et al., 2013; Pau et al., 2010). These studies enhanced the 

understanding of the density-driven convection in the context of CO2 sequestration in deep saline 
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aquifers. However, previous studies have been focused on CO2 storage in nonfractured (single-

porosity) deep saline aquifers.  

Understanding the density-driven convection involved in dissolution of CO2 in fractured 

formations is important since fractured aquifers are widespread and are gaining importance for 

their potential to host captured CO2 for storage. Density-driven convection in fractured porous 

media has been the subject of several studies mostly related to geothermal energy, fractured 

petroleum reservoir exploration, hazardous waste disposal, formation of ore deposits, and 

groundwater applications. The onset of density-driven instabilities in fractured aquifers with a 

transient base state in the context of geological storage of CO2 has not been studied sufficiently.   

In the early studies on density-driven convection in fractured porous media, a single-fracture 

medium was approximated by a three-dimensional (3D) fluid-filled vertical slab or vertically 

oriented saturated porous box heated from below. This configuration was used for cases with either 

impermeable and nonconducting (Zebib and Kassoy, 1977) or impermeable conducting fracture 

walls (Kassoy and Cotte, 1985; V. I. Malkovsky and Pek, 2004; Murphy, 1979; Weidman and 

Kassoy, 1986; Zhao et al., 2005). Later, more complex models were considered to study this 

phenomenon either within a single fracture ( Graf and Therrien, 2008; Malkovsky and Pek, 2004; 

Malkovsky and Magri, 2016; Peaceman, 1976a, 1976b; Ruth, 1979; Yang et al., 1998; Zhao et al., 

2004) or in a fracture network (Graf and Therrien, 2007; Saidi, 1987; Shikaze et al., 1998; 

Simmons et al., 2008; Vujević et al., 2014; Vujević and Graf, 2015; Yang, 2006) under various 

boundary conditions. Through these studies, it was shown that the density-driven flow within a 

single fracture with nonconducting walls is mostly governed by the stability criteria similar to 

those reported for stability of a diffusive boundary layer in vertically saturated porous medium 

(Davis, 1967; Nield, 1968; Zebib and Kassoy, 1977). It was reported that conducting fracture walls 

have a stabilizing effect on density-driven convection within the fracture (Alt-Epping and Zhao, 

2010; Kassoy and Cotte, 1985; V. I. Malkovsky and Pek, 2004; Zhao et al., 2005). The stabilizing 

effect of conducting fracture walls is less distinct when the adjacent matrix blocks contribute to 

the transport process as compared to the cases when the fracture wall acts as a boundary (Alt-

Epping and Zhao, 2010; Graf and Therrien, 2009; Malkovsky and Pek, 2004; Murphy, 1979; Zhao 

et al., 2006).  
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The stability of density-driven convection and the associated convective flow in fracture networks 

have been often studied using direct numerical simulations. Findings from previous studies show 

that fracture geometry and hydraulic properties play an important role in the stability of density-

driven convection and the convective flow pattern within the fractured system. It has been 

observed that low fracture aperture, low matrix permeability, and high matrix porosity impede 

density-driven convection within the fracture network with orthogonal continuous or/and inclined 

discontinuous fractures (Graf and Therrien, 2007; Simmons et al., 2008). It was shown that the 

likelihood of continuous fracture circuits and thus the strength of density-driven convection in a 

fracture network increase as the fracture density and fracture length increase (Mourzenko et al., 

2016; Vujević et al., 2014; Vujević and Graf, 2015).  

Although significant achievements were made in the study of density-driven flow within fractured 

porous media, stability analysis of density-driven flows with transient temperature (or 

concentration) field in a fractured porous medium has not been studied sufficiently. The objectives 

of this study are to perform linear stability analysis of transient single-phase flow and transport in 

fractured rocks and develop scaling relations that relate the onset of density-driven instabilities to 

the key physical properties of the fractured rocks.   

The common approach to study the stability of fluids in porous media is to use linear stability 

analysis. This approach is well accepted and has been widely used in the literature (Emami-

Meybodi and Hassanzadeh, 2013; Jafari Raad and Hassanzadeh, 2015; Tan and Homsy, 1986; 

Trevelyan et al., 2015). In addition, we use the well-known dual porosity idealization of fractured 

porous media pioneered by Barenblatt et al. (Barenblatt et al., 1960), Warren and Root (Warren 

and Root, 1963), and Odeh (Odeh, 1965) to model single-phase flow in fractured media. The 

applicability of this elegant approach to model single-phase flow and transport in fractured porous 

media has been well accepted in the literature. However, while the dual porosity approach works 

very well for the single-phase flow situations, which is the subject of our study, it has some 

essential deficiencies when multiple phases are present. For instance, the gravity drainage process, 

capillarity, and reinfiltration phenomena are not easy to describe using the dual porosity approach. 

In this work, we deal with single-phase flow and transport of CO2-saturated brine and therefore 

gravity drainage process, capillarity, and reinfiltration phenomena are not involved.  
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Based on the dual porosity concept, which is believed to be appropriate for single-phase flow and 

transport in fractured rocks, fractured porous systems are considered to be composed of two media, 

fracture networks with high permeability and low storativity and rock matrix blocks with low 

permeability and high storativity (Barenblatt et al., 1960; Saidi, 1987; Warren and Root, 1963). In 

this model, fractures with high permeability contribute to the main flow path for fluid in the 

fractured porous medium and matrix blocks act as sink or source. Thus, it is expected that density-

driven flow develops in the brine-filled fracture networks. However, diffusive solute transport and 

hence density-driven flow within a fracture is strongly coupled with mass transfer in matrix blocks 

through the fracture-matrix interaction. The contrast between the dissolved CO2 concentration in 

fractures and adjacent matrix blocks leads to mass transfer between matrix and fracture. Dissolved 

CO2 mass transfer from the fracture to the matrix block can act as a sink for the accumulated CO2 

in the fissures (Zhou et al., 2017) and consequently affect the stability behaviour of the diffusive 

boundary layer developed in the fracture network.  

Determination of the effect of the physical properties of the fractured porous media on the stability 

of a diffusive boundary layer requires a coupled model that takes into account the transient solute 

transport between the fracture and matrix blocks.  

In this work, we performed linear stability analysis to study the instability behaviour of a 

gravitationally unstable diffusive boundary layer associated with dissolution of CO2 in a saturated 

fractured porous medium. The effect of fracture physical properties and also fracture-matrix 

interaction on the instability behaviour of a diffusive boundary layer within the fractured porous 

medium was investigated. Scaling relationships that can be used to estimate the onset of density-

driven instabilities were reported as a function of the most common physical properties of the 

fractured porous media.  

8.3 Mathematical Formulation 

8.3.1 Model description  

An idealized picture of fractured rock is shown in Figure 8.1(a). We consider a two-dimensional 

(2D) fractured aquifer of thickness H with slab-shape matrix blocks saturated with quiescent brine 

as shown in Figure 8.1(b). No-flow boundary conditions are considered at the top and bottom of 

the domain. At the lower boundary, mass flux is set to zero, while constant concentration of CO2 
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species is set at the top of the domain with respect to the mass transfer.  Assuming single-phase 

flow and consequently in the absence of capillarity, the interface between CO2 and water is 

considered sharp with a constant concentration of dissolved CO2 (Riaz et al., 2006).  

To study the problem, the coupled mass transfer between the fracture and matrix blocks is treated 

using the dual porosity model concept (Warren and Root, 1963). Based on this, the matrix blocks 

act as a sink for the fracture network.  

 

Figure 8.1: (a) Idealization of fractured rock with single-size block matrix and (b) geometry and 

boundary conditions considered in this study(Warren and Root, 1963). C* is the equilibrium 

concentration, and C is the concentration of the diffusing species in the aqueous phase. u and w 

denote the horizontal and vertical components of the Darcy velocity in the fracture domain, 

respectively. 
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Using the Boussinesq approximation and in the absence of fluid compressibility, viscosity 

variation, and dispersion, the governing equations of nonreactive single-phase flow and transport 

in a fracture domain under the dual porosity concept can be written as follows: 
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

max

min

)()(.)( 2
c

c

L

L

ccc
f

fffff dLLJLQ
t

C
CCD  v

 ;     (8.1) 

      0 v


;          (8.2) 

( )
k

p z


   v g


;         (8.3) 

t

CC
D m

m
m

mm 







2

2


,        (8.4) 

where v(u,w) is the vector of Darcy velocity, p is the pressure, l denotes the spatial coordinate in 

the matrix block domain with 0 cl L  , and Lc is the characteristic thickness of the matrix block. 

),,( tzxCf  and ),( tCm   are the concentrations of CO2 in fracture and matrix, respectively;  is the 

viscosity; k is the permeability;  is the porosity; and g is the gravitational acceleration. D is the 

effective molecular diffusion coefficient and is assumed to be independent of concentration for 

dilute solutions. Subscripts m and f stand for matrix and fracture, respectively.   is the brine 

density defined as )1( Cb   where b  is the density of fresh brine,   is the coefficient of 

density variation with concentration, and C is the concentration of dissolved CO2 in water. The 

integral term (or sink) in Equation (8.1) accounts for the mass transfer of dissolved CO2 between 

matrix blocks and the fractures, and Lc min and Lc max are minimum and maximum matrix block 

sizes, respectively.  

Q(L) is the rate of mass transfer from the fracture to the adjacent matrix blocks. For matrix block 

with slab-shape geometry the rate of mass transfer from the fracture to the adjacent matrix block 

is expressed as 
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Function J(L) in Equation (8.1) is the probability density function (PDF) describing the size 

distribution function for the matrix blocks. For a fractured porous medium with a single size-matrix 

block of thickness Lc the sink term in Equation (8.1) is reduced to Q(Lc). 

A fractured porous medium may be classified as an intensely or sparsely fractured system 

depending on the skewness of the block length probability density function (PDF) (Johns and 

Jalali, 1991). Linear and exponential probability density functions are the two most common 

continuous block size distributions used in the modelling of dual porosity media (Segall, 1981). In 

this study, we use exponential probability density as the most general function to characterize the 

matrix block size distribution. The corresponding function for an exponential block size 

distribution is given by (Jelmert, 1995) 

maxmin
)(

cc

c

mLmL

mL

c meme

me
LJ 




  ,        (8.6) 

where m is an exponential distribution constant; Lc min and Lc max are minimum and maximum 

matrix block sizes existing in the distribution, respectively.  

It has been observed that a collection of continuous matrix blocks with different characteristic 

lengths can be interpreted using a single-matrix block with an equivalent length (Zimmerman 

and Bodvarsson, 1995), where the equivalent length is obtained based on the matrix block size 

distribution.  

In other words, the sink term in fracture conservation mass Equation (8.1) is equivalent to the 

fracture interporosity flow with an equivalent length c eL as given by 
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In the following, the above formulation is used to perform the linear stability analysis. 

8.3.2 Base state solution 

At the early times and prior to the onset of convection, molecular diffusion is the dominant 

mechanism involved in transport of dissolved CO2. In this case, the dimensionless equations 

governing the mass transfer within the fractured porous media can be written as follows: 
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where subscript 0 stands for the base state. We use H, Lc max, C*, and fDH /2  to scale the spatial 

coordinates in the fracture domain (x,z), the spatial coordinate in the matrix block domain (l), 

concentration, and time, respectively.  Using these scalings the governing equations are 

nondimensionalized. In the above equations tf  /  is the storativity, 2
max

2 / cfm LDHD  is the 

interporosity flow coefficient, and max/ˆ
ccee LLL   is the dimensionless matrix block equivalent 

thickness. The storativity coefficient, tf  / , is defined as the pore volume of the fracture per 

total pore volume of the fractured porous medium where subscripts f and t refer to the fracture and 

the total system (both fracture and matrix domains), respectively.   

In the case of exponential distribution, the equivalent thickness in dimensionless form is expressed 

as (Ranjbar et al., 2012):  

)(

)1()1(ˆ














ee

eeF
L

h

h

F

F
h

e
 ,       (8.10) 

where  maxmin/ cch LLF  , and   is a dimensionless exponential distribution constant.  

The following initial and boundary conditions are used to close the formulation. 

For fracture: 0)0ˆ,ˆ(ˆ
0 tzC f , 1)ˆ,0(ˆ

0 tC f , and 0ˆ/)ˆ,0(ˆ
0  ztC f ,    (8.11) 
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0  tC m .    (8.12) 

The base state solution for the concentration field in the fracture domain can be obtained by using 

Laplace transform and inverted to the time domain using residue theorem (Carslaw and Jaeger, 

1959) as given by 
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and nn ddff  /)(' , and n  are roots of the following nonlinear equation: 
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Figure 8.2(a) shows the base state concentration profiles versus depth in the fracture domain with 

different fracture storativity coefficients () and constant fracture interporosity flow coefficient 

() at a given time ( 08.0ˆ t ).  It can be observed that diffusive mass transfer of CO2 in a fracture 

is much slower when the fracture storativity decreases. This is due to the fact that the matrix blocks 

act as a sink for the dissolved CO2. Note that =1 denotes the single-porosity system with 

properties of the fracture domain. A low storativity implies larger matrix pore volume per unit 

bulk volume of the fractured media and hence a much stronger sink for the dissolved CO2.   

Figure 8.2(b) shows the time-dependent diffusive flux at the upper interface (z = 0). The results 

for diffusive flux versus time clearly indicate that the flux of CO2 at the interface into the domain 

is higher for a system with lower fracture storativity during the early time and later throughout the 

shutdown period when the effect of concentration reaches the bottom boundary.  
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Figure 8.2: (a) Base state concentration profiles versus depth at 08.0ˆ t  and  (b) CO2 diffusive 

flux at the upper interface for fracture domain with a constant fracture interporosity flow 

coefficient of  310  and different fracture storativity coefficients  1 , 110  , 210  , 

and 310  .   

 

Figure 8.3 shows the dependency of the base state concentration profile on the fracture 

interporosity flow coefficient. It can be observed that increase of the fracture interporosity flow 

coefficient at a constant fracture storativity retards the propagation of CO2 concentration in the 

fracture domain. Solution of the base state concentration also shows that for a fractured porous 

medium with fracture interporosity flow coefficients larger than 310 , the concentration within 

the fracture domain is less sensitive to the fracture interporosity flow coefficient. Later, we will 

show how the dependency of the concentration profile on the physical properties of the system 

may impact the onset of density-driven instabilities. 
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Figure 8.3: Base state concentration profiles versus depth in fracture domain with fracture 

storativity 210  , and different fracture interporosity flow coefficients of 2 310 , 10  , and 41 0  

at 08.0ˆ t . 

 

8.3.3 Linear stability analysis 

The linear stability analysis determines the time at which the diffusive boundary layer becomes 

unstable leading to convective mixing of CO2. As discussed earlier, convective mixing plays an 

important role in the rate of CO2 solubility trapping. We performed the linear stability analysis 

under quasi steady-state approximation (QSSA) (Tan and Homsy, 1986) to study the growth of 

instabilities of a diffusive boundary layer involved in CO2 sequestration into a fractured aquifer. 

To conduct a linear stability analysis, the governing equations of flow and transport given in 
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subjected to infinitesimal perturbations as '0 sss   where s=s[p,v,C,]; s0 and s’ are the base 

state and perturbations, respectively.  

Substituting the perturbed variables into the flow and transport equations, implementing the base 

state quantities, taking the curl of Equation (8.3), and, after simplification, we obtain the following 

perturbed equations. 
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  2 ' 2 'Ra fw C   ,         (8.18) 

where the velocity perturbation is scaled by (D)f/H, 22
xy , *Ra / ( ) fkg C H D   , and the 

hats (^) are dropped for convenience. 'w  denotes the vertical component of the Darcy velocity 

perturbation, and C* is the equilibrium concentration (maximum concentration) of the diffusing 

species in the aqueous phase.  

By using the Fourier decomposition method, the perturbed velocity and concentration are 

expressed as 

txi
mfmf etzwCCwCC   ),](,,[],,[ 0

*'''  ,      (8.19) 

where  and σ are the perturbation wave number and growth rate, respectively. Using Equation 

(8.19) the decomposed perturbed equations can be written as 
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with the boundary conditions  0)1()0( **  zwzw , ,0)0(* zC and 0/)1(*  zzC .  
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To find the growth rate σ as a function of wave number  , Equations (8.20) and (8.21) are solved 

numerically using the finite difference method. The following eigenvalue problem can be obtained 

using the discretized perturbed Equations (8.20) and (8.21). 

  02 1 * *{ Ra }[ ] [ ][ ]f
c w

C
C C

z
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
A A ,      (8.22) 

where )( 2IDA  ww , )( 2IDA  cc ; wD  and cD  are coefficient matrices based on central 

discretization of the second derivatives and c and w are subscripts for concentration and velocity, 

respectively. 

The above eigenvalue problem is solved numerically for a range of system physical properties at 

a certain diffusive time. The same numerical procedure addressed in the previous studies (Emami-

Meybodi and Hassanzadeh, 2013) is employed to solve the eigenvalue problem. The maximum 

eigenvalue of the coefficient matrix is considered as the growth rate σ, corresponding to the 

assigned wave number , and Ra at a certain time. The time at which the growth rate turns positive 

at the given Ra number represents the onset of instability.  

8.4 Results and Discussion 

Linear stability analysis was conducted to study the effect of the physical properties of fractured 

porous media and interaction of matrix and fracture on the onset of density-driven convection. In 

the following, the stability criterion of the diffusive boundary layer in a fractured porous medium 

is examined for a wide range of dual porosity parameters. 

Figure 8.4 shows the growth rate of perturbations for a system with different fracture storativity 

and interporosity flow coefficients at a constant Ra number and 3
0 1018ˆ t . Linear stability analysis 

results reveal different growth rates for these systems, suggesting different instability behaviour. 

Results of perturbation growth rates for systems with a constant interporosity flow coefficient, 

shown in Figure 8.4(a) indicate that systems with larger fracture storativity ω lead to higher 

perturbation growth rates. This may imply that systems with larger fracture storativity are 

gravitationally less stable than those with smaller ω. 
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Results of growth rates for systems with a constant fracture storativity and Ra number are shown 

in Figure 8.4(b) for different interporosity flow coefficients. It can be observed that increase of 

interporosity flow coefficient leads to lower perturbations growth rates, suggesting a more stable 

diffusive boundary layer. In other words, the fracture to matrix mass transfer has a stabilizing 

effect. To further clarify these findings, results of onset of the convective instabilities versus Ra 

for various fracture storativity and interporosity flow properties are shown in Figure 8.5. 

 

Figure 8.4: Perturbation growth rates versus wave number for systems with different fracture 

storativity and interporosity flow coefficients at a constant Ra=500 and 3
0̂ 1.8 10t   . 

Figure 8.5 shows the onset of instabilities as a function of Rayleigh number for fractured systems 

with single-size matrix blocks at different fracture storativity and interporosity flow coefficients.  

Results show that in all cases the onset time of instability is inversely promotional to the square of 

the Rayleigh nimber, implying that the onset time is independent of the porous layer thickness, 

which is in agreement with previous findings (Ennis-King et al., 2005; Hassanzadeh et al., 2006; 

Meulenbroek et al., 2013; Slim, 2014). Results of stability analysis shown in Figure 8.5(a) clearly 

indicate the important role of fracture storativity on the onset of instability. For a given Ra number 

and fracture interporosity flow coefficient, it is observed that a fractured system with larger 

fracture storativity shows the earlier onset time. This is in agreement with previous findings for 
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the effect of fracture density and storativity on the onset and dynamics of density-driven flow in 

fractured porous media (Graf and Therrien, 2007; Mourzenko et al., 2016; Vujević et al., 2014).  

For the case of a single-porosity system with fracture properties (=1), linear stability analysis 

results in a scaling prefactor value of a ~56 for the dimensionless onset time as a function of Ra 

number. This is in agreement with previous studies (Jafari Raad et al., 2016; Jafari Raad and 

Hassanzadeh, 2015, 2016; Riaz et al., 2006). Scaling results also show that the value of prefactor 

a, representing the onset of density-driven instability at constant Ra and interporosity flow 

coefficient, significantly increases as the fracture storativity factor decreases. Comparison of 

scaling onset results for systems with different fracture interporosity flow coefficients also shows 

that the onset of instability is delayed as the fracture to matrix interporosity flow coefficient 

increases. This observation is in agreement with those reported in the literature (Alt-Epping and 

Zhao, 2010; Graf and Therrien, 2009; V. I. Malkovsky and Pek, 2004; Murphy, 1979; Chongbin 

Zhao et al., 2006). This instability behaviour is attributed to the stabilizing effect of fracture to 

matrix mass transfer on the growth rate of perturbations in the diffusive boundary layer.  

Careful review of the onset time results for a system with constant Ra number and fracture 

interporosity flow coefficient shows that the rescaling of the onset time as a function of Ra number 

leads to a single scaling with unique prefactor /a  for cases with fracture storativity coefficients 

less than 0.1. It is worth noting that most of the natural fractured systems have fracture storativity 

below 0.1. The new scaling onset time is shown in Figure 8.6.  

 

Figure 8.5: Onset of instability scaled with Ra for fractured systems with single-size matrix blocks 

at different fracture storativity and interporosity flow coefficients.   
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Figure 8.6: Onset of instability scaled with Ra for fractured systems with single-size matrix blocks 

at different fracture interporosity flow coefficients. 

 

Figure 8.7 shows the effect of fracture storativity on the neutral stability curves for fractured 

systems with a constant interporosity flow coefficient,  =100. The results clearly show that the 

instability limit in the neutral stability curves significantly shifts upward as fracture storativity 

decreases. This observation suggests that the system turns more stable at smaller fracture 

storativities. Rescaling the transient time by multiplying it by the fracture storativity coefficient 

leads to a single neutral curve suggesting a unified stability limit for a constant interporosity flow 

coefficient as shown in Figure 8.7(b). 
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Figure 8.7: Neutral stability curves for fractured systems with single-size matrix blocks and a 

constant fracture interporosity flow coefficient  =100, at different fracture storativity 

coefficients. 

 

Figure 8.8: Neutral stability curves for fractured systems with single-size matrix blocks and a 

constant fracture storativity =0.1, at different fracture interporosity flow coefficients. 
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It is of interest to find out how the variability of matrix block sizes in the fracture aquifers may 

influence the instability behaviour of the diffusive boundary layer. Figure 8.9 shows the scaling of 

the onset time as a function of Rayleigh number for fractured systems with different fracture 

intensities at constant storativity and interporosity flow coefficients. The exponential probability 

density function with four different common values of α=-20, -5, 5, and 20 at the constant fracture 

uniformity Fh=0.1 was employed to represent the matrix block size distribution (Rodriguez et al., 

2001). For an exponential probability density function [see Equations (8.6) and (8.10)], positive 

values of m (α in dimensionless form) imply higher fracture intensity and negative values of m 

infer sparse fracturing. Scaling results for the onset time versus Ra number show that increase of 

fracture intensity (positively increasing of α value) stabilizes the diffusive boundary layer leading 

to higher onset time. This suggests that the diffusive boundary layer for an intensively fractured 

system is more stable than the sparse one. This instability behaviour is expected since for an 

intensely fractured system mass transfer between matrix and fracture is higher, thus promoting 

stability of the boundary layer.  

 

Figure 8.9: Onset of instability as a function of Ra number for fractured systems with different 

matrix block sizes represented by exponential probability density function at constant fracture 

storativity and interporosity flow coefficients. The inset plots show the matrix block size 

probability distribution.  
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Figure 8.10 shows the scaling of the onset time as a function of Ra number for a fractured system 

with exponential matrix block size distribution at different fracture storativity and interporosity 

flow coefficients. It can be observed that the onset time can be rescaled as a unique scaling for 

systems with fracture storativity coefficients less than 0.1. The results shown in Figures 8.10(a)-

8.10(c) also indicate that the impact of matrix block size distribution on the onset of instability 

decreases as the fracture interporosity flow coefficient increases.  

 

Figure 8.10: Scaled onset time of instability for fractured systems with variable matrix block size 

at different fracture interporosity flow coefficients. 

 

8.5 Summary and Conclusions 

We have conducted a linear stability analysis to investigate the onset of natural convection 
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was employed to describe the solute transport in fractured media. The effect of physical properties 

of the fractured porous media on the stability of a transient diffusive boundary was investigated. 

It was shown that increase of the interporosity flow coefficient leads to a more stable diffusive 

boundary layer. It was also shown that a diffusive boundary layer under the gravity field in a 

fractured porous medium with a higher fracture storativity coefficient is less stable. We also 
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boundary layer using an exponential probability density function. It was observed that increase of 
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fracture intensity stabilizes the diffusive boundary layer leading to a delayed onset time. In general, 

it was shown that the diffusive boundary layer for an intensively fractured system is more stable 

than the sparse one. Results of the onset time show that the impact of matrix block size distribution 

on the onset of instability decreases as the fracture interporosity flow coefficient increases. The 

scaling relation for the onset of convection as a function of Rayleigh number, fracture interporosity 

and storativity coefficients, and matrix block size distribution properties were developed. It was 

shown that the onset time as a function of Ra number for cases with fracture storativity coefficients 

less than 0.1 can be presented using a single scaling relation with unique prefactor /a . Such 

scaling relationships are of great importance in characterization of the fate of the injected CO2, 

risk assessment, and site screening purposes.  

Finally, we used an idealization of the dual porosity formulation. The behaviour of mixing beyond 

the onset of convection in complex fractured formations in the presence of heterogeneity calls for 

further studies. The current study paves the way for further studies in this area.   
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8.7 Appendix 8.A: Semi-analytical Treatment of The Linear Stability for Special Cases  

The detailed linear stability analysis in the main text was conducted using the QSSA, which does 

not allow explicit representation of the special cases. Here, we use the Galerkin technique 

(Hassanzadeh et al., 2006; Xu et al., 2006), which allows explicit parametric analysis of the 

stability problem for some limiting cases.  

The linearized Equations (8.16)-(8.18) can be transformed into ordinary differential equations 

(ODEs) using the Galerkin technique (Hassanzadeh et al., 2006; X. Xu et al., 2006). The resulting 

ODEs can be rearranged to find the Rayleigh numbers as a function of the dual porosity parameters 

( and  ) as given by  
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where a is the time-dependent amplitude of concentration perturbation in the fracture domain; 

l=1,2,….,N is the summation index in the Fourier expansion of the concentration perturbation; and 

other parameters have been defined in Sec. 8.3. Equation (8.A1) allows explicit parametric analysis 

of the stability problem for special cases as described in the following. 

 

Special cases 

Case (i)  . The relation given for the Rayleigh number in Equation (8.A1) reduces to 

the following equation when   : 
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This equation indicates that the onset time is independent of  when   . The detailed analysis 

using QSSA also shows that for 410 the onset time is independent of . 

Case (ii) 1  . The relation given for Rayleigh number in Equation (8.A1) reduces to the 

following equation when 1  : 
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 which is equivalent to Case i ( ) when  =1.    

Case (iii) 0  . The relation given for the Rayleigh number in Equation (8.A1) reduces 

to Ra  when 0  , which indicates an unconditionally stable state. It is worth noting that 
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this conclusion has been reached as a result of the dual porosity assumption where the transport 

mechanism in the matrix is pure diffusion.  

Case (iv).  When tanh / 1n    or / 4n    it can be shown that   
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where lg is only a function of  ˆ(1 ) / , t   . This indicates that for a constant Ra, the onset time 

is only a function of   and (1 ) /   . In other words,  ( , ,1 ) / )ct Ra       

Case (v). 0   while 0  : The relation given for the Rayleigh number in Equation 

(8.A1) reduces to Equation (A3) in this case. 
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Chapter 9: Conclusions and Recommendations 

 

 

 

 

9.1 Conclusions 

This dissertation has presented analytical and numerical analyses on stability criteria of buoyancy-

driven convection and hydrodynamics of the associated convective mixing in porous media with 

applications to the geological storage of CO2 in deep saline aquifers. This study has firstly 

investigated the dynamics of concentration dependent base state density profile evolve during 

dissolution process for different fluid pair systems. Mathematical models have been developed to 

characterize the role of the base state density profile on the stability criteria of the buoyancy-driven 

convection and the dynamics of the associated convective mixing in the considered fluid pair 

systems.  

The analysis on the role of the base state density profile has been extended to problems with 

application to CO2 sequestration process. In particular, stability criterion of the buoyancy-driven 

convection and the dynamics of associated convective dissolution in fluid systems involved in 

impure CO2 sequestration process and also analogue fluid systems used in experiments of 

convective dissolution of CO2 in brine have been addressed.  

This study has also presented a theoretical analysis on stability criterion of the buoyancy-driven 

convection and the dynamics of convective mixing in porous media subjected to time-dependent 

boundaries. This research has also offered a mathematical model describing stability behaviour of 

diffusive boundary layer involved CO2 storage in fractured saline aquifers. It has also investigated 

the effect of physical properties of fracture network on the stability criterion of the buoyancy-

driven convection and consequently dynamics of mixing process.  
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This dissertation has provided fundamental understanding of the hydrodynamics of buoyancy-

driven flow and convective mixing. In particular, scaling laws derived from this study, which can 

be used to design experiments and incorporated into storage site screening and selection models, 

are of great importance and are key novel contribution of this study. The results from this study 

also provide insight into a wide range of applications in various aspects of mixing encountered in 

engineering and science. In the following, the contributions of this dissertation are described in 

more details followed by recommendations for future study. 

9.1.1 Role of the base state density profile in hydrodynamics of the buoyancy-driven 

convection   

Using analytical and numerical developments, I have characterized the role of the base state 

density profile evolved during dissolution process on the onset of buoyancy-driven instabilities 

and the dynamics of the associated convective mixing in binary and ternary fluid pair systems. 

Using linear stability analysis (LSA), I have parameterized the role of non-monotonic density 

profile in the stability criteria of the fluid systems. LSA results revealed the important role of the 

characteristic shape of the base state density profile in the stability criterion of the system. 

Universal scaling relations, which allows estimation of the onset of the convective instabilities and 

generalization of the non-monotonic dependence of the growth of the instabilities were presented 

based on the results obtained from LSA of the diffusive boundary layer in different fluid pair 

systems.  

I have extended this analysis to typical analogue fluid systems used in experiments of convective 

dissolution of CO2. In particular, I have studied the stability criterion of the buoyancy-driven 

convection and the dynamic of associated convective mixing in EGMeOH/water and 

water/propylene glycol fluid pair systems.  

Using both linear stability analysis and direct numerical simulations, I have provided new 

evidences that neither EG-MeOH nor PPG analogue systems do resemble the dynamics of 

convective instabilities associated with dissolution of CO2 in water. It was found that there are 

fundamental differences in the evolution of the buoyancy-driven instability and dynamics of 

convective mixing between CO2/water and these analogue systems. Results revealed that for a 

constant Rayleigh number the onset of convective instabilities for these analogue fluids can be 
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lower (or higher) by an order of magnitude as compared to CO2/water. It was shown that the base 

state density behaviour of analogue systems has a significant effect on the stability characteristics 

of the diffusive boundary layer and the convective mixing beyond the onset of instability. 

According to the results of this study, the choice of the analogue system is critically important in 

the design of experiments for proper representation of the convective instabilities in CO2/water 

system. Results of this study form a basis for proper selection of an analogue system and are 

necessary to interpret CO2 convective dissolution experiments.  

9.1.2 Dynamic of the buoyancy-driven convection associated with impure CO2 storage  

I have studied the effect of impurities in a CO2 stream on the onset of buoyancy-driven convection 

and subsequent dynamics of convective mixing associated with impure carbon dioxide (CO2) 

storage in deep saline aquifers. I have shown that the contrast in diffusion coefficients of CO2 and 

permitted impurities may give rise to a non-monotonic density profile during the dissolution 

process depending on the solute buoyancy ratio and equilibrium concentration of the gas. I have 

suggested that the buoyancy-driven convection modes can be systematically classified in the (rβrc, 

rD) parameter space based on the type of the developed base state density profile. 

Using LSA and with the help of the developed parameter space classification, I have shown that 

an impurity such as H2S has a potential to accelerate the buoyancy-driven instabilities. The LSA 

results clearly indicated the important role of the composition of the injected stream on the onset 

of buoyancy-driven convection. Using direct numerical simulation, it was shown that the dynamic 

of the system at the onset of convective dissolution does not hold beyond the onset, such that an 

impure stream with an earlier onset of convective dissolution develops a slower dynamic at the 

late time of the process. While an impurity such as H2S is prone to impede the convective 

dissolution, it was shown that an informed choice of impurity can lead to similar convective 

dissolution as of pure CO2 stream. These findings suggest that an impure CO2 stream can be 

engineered to improve the rate of dissolution and thus solubility trapping of CO2 leading to higher 

storage security and efficiency.  
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9.1.3 Role of diffusivity contrasts in dynamics of buoyancy-driven convection in multi-

component fluid systems 

Using investigation of time evolving base state density profiles in a two-component partially 

miscible fluid mixture, analytical and numerical experiments, I have classified various instability 

mechanisms in a parameter space characterized by the relative contribution of solutes to the density 

and their diffusion coefficient ratio. I have examined both stabilizing and destabilizing effects of 

the diffusion coefficient contrast on Rayleigh–Bénard (RB) instabilities and the associated 

convective dissolution in systems with different diffusivity ratios and opposing contribution of 

dissolving solutes to the mixture density. A parametric analysis indicated eight distinct instability 

regions. Using linear stability analysis (LSA) and direct numerical simulation (DNS), I have 

quantified the interplay of double diffusive (DD) instabilities and Rayleigh–Bénard (RB) 

convection in terms of the onset time and convective dissolution flux. In particular, I have studied 

two important categories of fluid systems with positive and negative net density contribution of 

the solutes. In both cases, it was shown that the diffusion contrast effect has a potential to accelerate 

or slow down the convective instabilities depending on the solutes diffusion contrast. The 

parametric analysis for systems with negative net density contribution of the solutes revealed a 

transition from pure DD instabilities to RB convection at relatively high diffusion contrast, leading 

to significantly earlier onset of convective instability and higher dissolution flux.  

It was shown that the key point to distinguish whether the diffusion contrast has a stabilizing or 

destabilizing effect on buoyancy-driven instabilities depends on the relative contribution of the 

two species to the density. The relevance of the base state density profile in the control of onset 

was characterized by analyzing the favorable driving density difference in systems with different 

diffusivity contrasts. I have proposed scaling relations for the onset as a function of the driving 

density difference. The presented parametric analysis provides new insights into differential 

diffusion effects and can be used to control instabilities in partially miscible systems.  

9.1.4 Boundary excitation effects on buoyancy-driven flows in porous media  

I have performed an inclusive analysis of the instability and the associated dynamics of solutal 

natural convection in saturated porous media in the presence of boundary excitation. I have used 

a time-dependent boundary condition to simulate the concentration excitation at the interface. 
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Using linear stability analysis (LSA), I have provided a detailed parametric analysis on the stability 

of a diffusive boundary layer in porous media subject to three different types of linear decline, 

linear decline followed by constant concentration, and symmetric flat floored valley shape 

boundary conditions.  

The LSA results showed that the boundary excitation influences the stability behaviour and 

evolution of the subsequent convective instabilities. I have proposed scaling relations based on 

results of LSA to describe the critical time and the associated wavenumber of convective 

instabilities that incorporate the effect of the characteristics of the boundary condition and the 

physical properties of the porous layer. The dynamics of the system beyond the onset time has also 

been studied using direct numerical simulations. The results of DNS revealed that the dynamics of 

the buoyancy-driven mixing is significantly influenced by the temporal variation of concentration 

at the boundary. These findings improve our understanding of buoyancy-driven instabilities in the 

presence of boundary excitation and finds applications in thermal and solutal convection in porous 

media. 

9.1.5 Buoyancy-driven instabilities in fractured porous media 

I have performed linear stability analysis (LSA) to study the instability behaviour of a 

gravitationally unstable diffusive boundary layer associated with dissolution of CO2 in a saturated 

fractured porous medium. I have studied the effect of fracture physical properties and fracture-

matrix interaction on the instability behaviour of a transient diffusive boundary layer in a dual 

porosity porous medium. LSA results revealed that both fracture interporosity flow and fracture 

storativity play an important role in the stability behaviour of the system. Results showed that a 

diffusive boundary layer under the gravity field in fractured porous media with lower fracture 

storativity and/or higher fracture interporosity flow coefficient is more stable.  

I have also studied the effect of matrix block size distribution on the stability behaviour of the 

diffusive boundary layer using an exponential probability density function. LSA results showed 

that the diffusive boundary layer for an intensively fractured system is more stable than the sparse 

one. Results also revealed that the impact of matrix block size distribution on the onset of 

instability decreases as the fracture interporosity flow coefficient increases. Based on the results 

of LSA, I have proposed scaling relations for the onset of convection as a function of the most 
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common physical properties of the fractured porous media. Such scaling relationships are of great 

importance in characterization of the fate of the injected CO2, risk assessment, and site screening 

purposes.  

9.2 Recommendations for Future Research  

The above-mentioned theoretical and numerical analyses enhanced our understanding of transport 

phenomena in porous media and provided useful tools for application in geological CO2 storage 

and waste disposal in subsurface formations and groundwater resource engineering. Significant 

challenges remain in this field and represent exciting opportunities for future experimental and 

theoretical investigations. In the following, some of these challenges as a potential for future 

research is briefly described.  

9.2.1 Two-phase flow effects associated with impure CO2 storage   

Studies of two-phase CO2 convective dissolution and the two-phase flow effects therein have thus 

far focused almost solely on pure CO2/brine system. Two-phase flow effects are expected to be 

important in stability behaviour and the dynamics of convective dissolution impure CO2/brine 

system. It is essential to study two-phase flow effects such as capillarity on the stability criterion 

of the buoyancy-driven convection and the hydrodynamics of convective dissolution involved in 

geological storage of impure CO2.  

9.2.2 Gas phase fractional composition change associated with impure CO2 storage   

In the case of impure gas injection, the fractional composition of the free phase gas can rarely 

remain constant during the whole span of the sequestration process due to either small gas/brine 

volume ratio or the solubility and diffusivity contrast of CO2 and impurities. In this case, the 

fractional portion of CO2 in the gas phase region may decrease or increase with time depending on 

the CO2/impurity solubility and diffusivity ratio as dissolution progresses. This suggests a time-

dependent aqueous CO2/impurity concentration at the gas/brine interface affecting the density 

difference driving convective dissolution. This important physical behaviour of the fractional gas 

composition in the gas phase region and its role in the gas/brine concentration interface and 

subsequently the dynamics of convective dissolution has been not well understood and need to be 

investigated.  
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9.2.3 Reactive convective mixing associated with impure CO2 storage   

Upon dissolution of impure CO2 stream in brine, a variety of geochemical reactions may occur 

between the dissolved gas species (e.g., CO2, H2S, NO2 and SO2) and reactants dissolved in the 

brine. These reactions can severely complicate the situation by interacting with the transport 

phenomena, altering the hydrodynamic instability and the spatio-temporal convection patterns. 

The impact of these reactive processes on the trapping mechanisms; in particular, convective 

dissolution and consequently overall trapping of impure CO2 is, however, poorly understood and 

needs to be investigated. Understanding the effects of chemical reaction on the dynamics of 

dissolution and consequently effectiveness of CO2 trapping is of great importance for long-term 

storage and risk assessment.  

9.2.4 Dynamics of convective dissolution in fractured aquifers 

The impact of fracture networks on the dynamics of convective mixing involved in CO2 storage in 

fractured aquifers is poorly understood. The effect of fracture-matrix mass transfer interaction and 

fracture network geometry on dynamics of convective dissolution is expected to be significant. 

The hydrodynamic of CO2 convective dissolution in fractured aquifers is less discussed and worthy 

of further investigation.  
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