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Citrrent industrial robots are made very heavy to achieve high stiffiress which 

increases the accuracy of their motion. However, tbis tieaviness limits the robot speed and 

inmases the reqilited energy to move the system. The requirement for higher speed and 

beîter system ped~fmatlce makes it necessary to consider a new generation of lightweight 

manipulators as an alternative to today's massive inefficient ones. Lightweight 

manipulators require Iess energy to move and they have larger payload abilities and more 

maneuverability. However, due to the dynamic effects of structurai flexi'biüty, their control 

is much more di8ncuit. Therefore, there is a need to develop accurate dynamic modeIs for 

design and control of such systems. 

There are two types of control problems for such manipulators, namely, trajectory 

control and time-optimal control (TOC) problems. In the h t  one, the position of the 

payload is given versus time while in the second one the path and the joint torque 

constraints are known. Since feedback control systems are non-coilocated and position 

comrnands contain high fiequency components, they may cause these systems to become 

unstable. This is why inverse dynamic rnethods have been recently used by many authors 

to determine the joint torques such that the end-point of the fiemile manipulator foIlows a 

given trajectory. Due to the flexiiility, a complete modei consisting of the kinematic and 

dynamic equations should be solved simuitaneously. But the difficulty is so cailed non- 

causality of the inverse dynamics of flexible manipulators. In other words, since the point, 

for which the prescxibed motion is specined, is connected to the application points of 

control torques by elastic bodies, the joint torques should be applied h m  negative time to 

future time in order to control the position of the end-point accordhg to the desired 

trajectory. The reason for this phenomenon is the fact that elastic waves propagate with 

finite v d s .  



In this dissertation three topics, dynamic modtling, îrajectory control, and tirne- 

optimal control of muiti-link flexible manipulators are studied. 

First an efficient finite element/Lagrangian approach is deve1opeü for dynamic 

modeling of planar and spatial manipulators with flexible links and joints, For p h  case, 

the noniinear and coupleci equations of motion of multi-Iink manipulaiors are derived using 

minimum number of coordinates by considering joint or relative coordinates. In the case of 

spatiai manipiriators, the equaîions of motionare obtained using a mixed set of di&:rential 

equaiions and aigebraic constraints. 

Ttien a technique based on numerical optirninition is proposeci to solve trajectory 

conhrol and time optimal control of multi-link fiemile manipulators. The proposeci 

technique fin& the joint torques required to move the end point h m  rest to rest dong a 

specined path- The "non-causality" of the inverse dynamics of such systems is taken into 

account via considering pre-actuation and pst-actuation in the solution procedure. The 

proposed technique is complete and effective and can be used to find joint torques as 

feedfomard conmls in order to m h h k  the work of the feedback controllers. 
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INTRODUCTION 

As primitive man became aware of his environment he started to bmeasei his 

physical and temtonai capability by creating tools such as lever, hammer, and pince 

gripper. The lever i n d  the effect of the physical force that he was able to apply 

directly. The hammer helped him to accomplish tasks which pxeviously were not possible. 

And the pince gripper enabled him to manipulate objects h m  a distance. 

Much later, man invented machine tools with some degrees of autonomy which 

ailowed hirn d y  to start, stop, and observe machines at work. With the introduction of 

automation his role was reduced to starting the machine by pressing a button which 

concurrentiy switched on sophisticated systems of controls. Finally, machines were 

invented which not only had degrees of autonomy but also were abIe to cause action h m  

a distance. These machines, called robots, were powerful, autonomous, and flexiile in 

their application. 

The word robot is Slav in origin, relatecl to the words for work and workers. This 

word was introduced by Katel Capek, a Czech playwright, in bis play "Rossum's Universal 

Robots" in 1920. In that play an engineer made machines that were modeled on human 

beings but had none of theil. weaknesses. Those small &cial and anthpomorphic 

creatures strictiy obeyed their master's command. 



Pn,bably the first occurrence of mechanical arms was in the prosthetic 

devices to replace Iost limbs. These arms were designeci to grasp objects. The second field 

in which robot arms &ad found application was remote manipulation. The need to work 

with hazardous mamiah or environment, led to the design of teleoperator systems. These 

devices permit a user to petfonn simple manipulations h m  a d e  distant place. 

Applications in space, nuclear, and undemater enviromnts are the typical use of 

teleoperators. Aiso robots are now to be found in various applications such as spot 

welding, arc welding, material handling, and assembly. Mainly, they are useâ to reduce 

labor cost and matenal wastage, to increase output rate, and to improve production 

quality* 

Robots are so new that there is no standard definition for them. However, an 

industriai robot is &fÏned by US Robot International Association (U) as: "a 

programmable, Lnultifunctional manipulator designed to move materials, parts, tools, or 

qwified devices tbrough variable progammed motions for the perfomance of a vaaety 

taSksn- 

industrial robots are built of the following basic systerns: 

1) The mechanical structure consisting of mechanid ljnkage and joints. 

2) The control system. 

3) The power input(s) which can be hydraulic, pneumatic, electrical, or their 

combination. 

Most of the contemporary robotic manipulators are very massive and inefficiea 

Their payload-to-weight ratio is about 1:20 to 1:15, which is very low when compared 

with the capabiiïty of the human arm. By considering a human being as a manipulator, it is 

a very effective aad efficient one. W3h total mass of 70-90 kg and its mes (lower and 

upper arms and wrist) 4.5-9 kg, this manipulator can precisely cany loads up to 4.5-9 kg 

with fairly high speed. It can handle loads up ta 15-25 kg with slightly lower speed, while 

it is able to make simple movement with loads up to 90-135 kg. Therefore, a typical 

manipulator is more than 10 times Iess efficient than a human king. 



Robots are very different h m  any other structures. Their structure consists of 

active hicages which cliffer Eram passive ones such as crank mechanisms. In active 

hkages each link has its own power supply, while in passive Ihkages ail the links receive 

motion h m  a single driving motor. As it was mentioned eariier, the load carrying capacity 

of most of the existing industrial manipulators is very low. This iow weight efficiency is 

-y due to control design which is usually based on rigid body dynamics. The 

excessive mass of the arms limits their speed and increases the energy quicements and 

the size of actuators. Morewer, nianipuiator systems witb large workspace voIumes and 

large payloads, such as long-reach manipulators for nuclear waste remediation or the outer 

space arms with extreme penalty on the mass camed into orbit, should be as ïight as 

possible. Therefore, many benefÏts can be received h m  manipulators with Iow weight-to- 

payload ratio and high stiffiiess. This is why a new generation of light robots which are 

able to handie heavy payloads is quued to replace the inefficient and massive ones. 

Lighter manipulators need less energy and can operate at higher speeds. Therefore, they 

Save manufactlrring time and increase producîivity. Due to the flexiity of the Iinks, the 

assumption of rigid body dynamics and kinematics is no longer valid and the problern of 

position control resulting fkom Iink fiem'bility needs to be resolved. 

It goes without saying that accurate dynamic modeling is the nrst step for design 

and control of lightweight, heavy payload, and high speed manîpuiator systems. Due to the 

distributed flexibility of the links, they should be regarded as defOrmable bodies with an 

idhite number of degrees of fÎeedom. These degrees of M o m  are used to define the 

location of each point of the system. Mathematical modehg of muiti-link fiexiile 

manipulators as dti-deformabe-body systems is a challenging research topic. The rigid 

body or nominal motion of the system changes the geometry of the system. This tesults m 

varying system parameters which influence the elastic deformations of the links. In nirn the 

elastic deformations influence the ngid body motion. In other words, since the 

interconnected bodies of the rnanipuiator system undergo large translational and rotational 

displacemenfi, the dynamic equatim goveming the motion of the systern are bighly 



nonluiear and mupIed The dynamic ~~LIMOIL of rrmlti-deformable-body systems leads 

to a set of partial d i f h t i a l  equatiom. Sinœ these space- and tirne-dependent equations 

can not be solved a n m y ,  a p p r o ~  techniques such as Raylagh-Ria and finite 

eiement methods are used to change tbem to a set of omlinaty di&ritntial equatiom by 

reducing the number of cootdinates to a finite. set. 

h m d h i  systems, the motion of each body is corutraineci because of the 

mechanicai joints which connect the adjacent bodies. The configuration of a m u l t i .  

system can be desabd by vector qyantities such as displacement and velocity. These 

quantities should be measured with respect to an apprapliate mcdhate system. The 

dynamics of such systems c m  be f011[1ulated by nmearis of either m h b l  or redundant 

coordinate methods. In general, two kinds of coordinates are required. The fint one is an 

inercial or gIobal fianie of reference which is nxed in time and the second one is a body 

reference coordinate for each component of the system- This reference frame d a t e s  

and rotates with the body; therefore, its location and orientation change with time with 

respect to the inertial frame. In ngid body d y s k ,  the set of coordinates d e m g  the 

Iocation and orientation of the body references is enough for &finhg the location of an 

arbitrary point of the rigid body. However, the configuration of deformable bodies must be 

identified not ody by a complete set of coordinates denning the l d o n  and orientation 

of a selected body reference, but also the elastic coordinates descn'b'ing the deformation of 

the body with respect to the body reference. In redundant methods, comectivity between 

different bodies can be introduced to the dynamic formulation by using a set of nonlinear 

algebraic consiraint equations. Therefore, by using the redmdant approach, the dynarnic 

formulation of motion of muitibody systems leads to a mixed set of di&=rential and 

algebraic consttaint equatiom ( D M )  which have to be solved simultaneously. 

Instead of using coMBCtivity constraints, it is posaile to use joint or relative 

coordinates to find dynamic equatiom of the system expressed in terms of the s)%tem 

degrees of freedom. Using this appmcb, the number of dynamic equations is minimum 

because extra variables including the Cartesian coordinates presenting the location of the 
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origins of the body reference fiames and the Lagrange dtipliiers d t i n g  h m  

comectivity constraints are not used m the fonnuIati011. However, this minimal approach 

leads to a complex LeClFSive formulation in many applications. 

Another way for dynamic modeling of flexible manipulators is to nnd the dynamic 

response of the system diredy with refmncc to a nxed giobal coordinate W. This 

approach elimiaates the nanlinear Coriolis and centtifitgal terms h m  the dynarnic 

equations; however, it requneS the use of hite Sttains, Iarge di@cements, and large 

rotations. Therefore, tbis approach is somehow c o r n p i i d  and not suitable for the 

control design specidy for chains of flexible l.hks. 

One of the major open problems related to fïexible manipulators is controIling the 

position of their end-point. There are two types of conml problems for such 

manipulators, namely, trajectory control and time-optimal control (TOC) problems. In the 

first one the position of the payload is given versus tirne, while in the second one the path 

and the joint toque constraints are known. Various féedback control strategies are 

proposed in the 1iterature for trajectory control of flexible manipulators. Because such 

conml systems are non-co11ocated and position commands contain high frequency 

components, the feedback control may cause these systems to become unstable. This is 

why inverse dynamic methods have been ~e~ently proposed by -y authors to determine 

the joint torques such that the end-point of the fiexible mauipuiator foliows a given 

trajectory. Due to the fiexi'bility, a wmplete madel consisting of the kinemaîic and 

dynamic equations should be solved simultaneously. The main difnculty is the non- 

causality of the inverse dynamics of flext'ble manipulators. Because the point for which the 

prescribed motion is specined and the appiication points of control torques are ~0me~ted  

by elastic bodies, the joint torques should be applied fian negaiive time to the future time 

in order to control the position of the end-point according to the desined trajectory. The 

reason for this phenomenon is the fact that elastic waves propagate with nnite velocity. 

Little work bas been done on the non-causal inverse dynamics of multi-link manipulators 



with flexible links. To the best knowledge of the author, no work has been done m the 

field of noncausal inverse dynamics of dti-link robots with both flexible links and joints. 

Although various approaches have been kveloped for time-optimal control of 

rigid manipulators, little work has been devoted in the literature to the timeqtimal 

control of flexible manipulators. The exact minimal time solution is not available at present 

because of the higldy mnlirrPar structure of the equasions of motion as well as the non- 

causaiïty of such systems. In the previous studies the nonaudty of such systems was not 

taken into m u n t  k r  tim optimal control problern of -le mnipubrs. 

1 2  Scope and Ontïine of This Dissertation 

In this dissertation three aforementioned topics: dynamic modeling, trajectory 

control, and time-optimal control of dti-link flexii1e manipulators are studied. At the 

beginning, two efficient finite eiement/lagrangian approaches are developed for dynamic 

modeling of such manipuIators. In the ht approach the noalinear and coupled equations 

of motion of multi-link planar manipulators wiîh flexiile links and joints are derived using 

minimum nwnber of coordinates by considering joint or relative coordinates. In the second 

approach, equations of motion of spatial mdti-link manipulators with flexible links and 

joints are obtained using a mixed set of differentiai and dgebraic constraints. 

Two techniques based on numerical optimiZation are proposed to solve trajectory 

control and time optimal contra1 of multi-iink flexi'bk manipulators. The proposed 

techniques fïnd the joint toques required to move the end point h m  rest to rest dong a 

specified path. The n o n d t y  of the inverse dynarnics of such systems is taken into 

account via considering pre-actuation and pst-actuation in the solution procedure. In the 

trajectory control problem, the 
' 
' Rd objective function is the summation of squares 

of tracking emrs at the integraiion time points from zero time to the end of the post- 
. .  . 

actuation tirne. The proposed technique for time tion is based on transforming the 



optimal control probkm into an equivalent unconstrained optimum design problem using 

penalty function methods. 

It wïU be shown that these techniques are compiete and effective and can be used 

to h d  joint torques as feedforward controls in order to m b h k e  the work of the feedback 

controllers. 

1 3  Organization of The Test 

Chapter 2 is a review of the literature relating to the dpamic modeluig, trajectory 

control, and time optimal control of flexible manipulators. 

In chapter 3, a general overvïew of dynaxnics of rrmlti-deformab1e-body systems is 

presented and the governing equations iacluding equations of motion of the system and 

constrained equations are obtained and various solution procedures are descri'bed. 

Chapter 4 presents au efficient nnite element/lagrangian approach developed' for 

dynamic modehg of lightweight planar dti-link manipulators with bath fiexi'ble joints 

and links. The dynarnic elastic response of each flenr'ble link is forrnulated relative to a 

floating fbme cailed pinned-pinned or virtual Iink coordinate system. Using this 

coordinate system, the link deformation is measured relative to the line connecting the end 

points of the link. The f i t e  elernent method is used to discretize the continuos elastic 

deformation of links. Both the rigid degrees of freedom and the elastic degrees of 

freedom of the system are treated as generalized coordinates. Using vimtal work of 

extemal loads as weU as kinetic and potential energies of flemile links and actuated. 

flexi%le joints, the equations of motion of the system are &&ed in terms of the 

generalized coordinates through a Lagsangian approach. Therefore, the dynamic model 

derived in this study is fkx h m  the assumption of nominai motion and takes into account 

not only the coupling effects between rigid body motion and elastic motion but also the 

interaction between fiexiie iinks and actuated fiext'be joints. The main advantage of the 

proposed model is its compacmess and completeness. 



In chapter 5, dynamic modeling of multi-link spaîiai manipuIators with fiexibk 

W and joints is developed based on using tangentid (clamped he)  Iocai cooniinate 

systems. The links are as& to be deformable due to bending and torsion and the finite 

elexnent method is used to discretize the elastic deflections of the iïnks. In this modeling 

the co~ectivity of the h k s  is taken into account by inmiduchg the Cartesian coordinates 

of origin of each local coordinate system as extra unknown variables. By using the nnite 

dement rnethod and eqloying Lagrange muitipliers, a mixed set consisting of nonlinear 

ordinary différentid equatiom and nonlinear dgcbraic constraint equations is obtaiaed. 

These equations are solved simultaneously by means of numerical integration in order to 

predict the dyuamic behavior of the system. 

A short review of numerid optimizaton techniques such as quasi-Newton 

methods and penalty funciions is presented in chapter 6. These methods are used m 

chapters 7 and 8 to solve trajectory and time optimal controI of flexiile IIliZIUpnIator~, 

Chapter 7 descrii  the non-causal nature of the inverse dynamics of fiexiile 

manipulators and proposes a- simple but efficient approach based on numerid 
. . 

optimization to solve such difncult problem. 

In chapter 8, an approach utilking nonlinear programming is proposed to solve the 

control problem of fhiile manipulators for a rest to rest motion in minimum time. For 

such systems, the proposed technique is simpler and more efktive than optimal conml 

methods. Moreover, the non-causality of the inverse dynamics of the Qexiile manipulators 

is taken intb account in the proposed approach. 

F i y ,  chapter 9 presents the conclusion of this work. 



LITERATURE REVIEW 

Robots. mectianisms, teleoperators, spaaaafts, and walking machines share 

common kinematical, dynamical, and contm1 problems. In the age of high ptoducfivity, it 

is requixed to design these mechanical srstgns m such a way that they can operate at 

higher speeds with less energy consumption. In order to inaease the operating speed of a 

mechanical system, the m a s  of its moving parts must be reduced. However, the lighter 

membem are more likeiy to defonn due to their flexiiility. Thetefore, the control problem 

of lighter mechanical systems is much more complicated thaa that of massive, rigid ones. 

The demand for designhg iight mechanid systems has prompted researchers to 

develop comprehensive mathematical rnethods to model their dynamic behavior as weU as 

to control their motion. The literaîure on lightweight h i l e  rrmltrcbody systems began in 

the early 1970s. Three main subject areas discussed in the literatuce have included 

modeling and control of mechnnicmr, spacecraft, and mbotic manipulators. 

This chapter starts with an o v e ~ e w  of the literature deaüng with m c  

modeling of fiexible mult i iy  systems includuig manipulators and mechanisms. Then a 

iiterature nview on trajectozy and time optimal control of flexiile nianipulators is 

presented. 



Many works in the past have been done in the formulation of the equations of 

motion of rigid multi'body systems. The kinematics of &id m u l t i i  systems has been 

completely descn'bed using symboIic notation of Hertenberg-Denavit MatrÏx [l], Uicker 

[2] and Paul and Rong [3] employed this 4x4 transformation matrix approach to mode1 

the kinematics of spatial Mages and manipulators. 

The dynamic modeling of rigid mechanisms and robots was approached by several 

techniques. Greenwood [4] and Luh etal [SI used the Newton-Euler method, while Asada 

and Soltine [6] and Holierbach [n made use of Lagrangian approach. Ibners method also 

was used by Kane and Levinson [8]. 

During the past 20 years there has been an inci.easing interest in formulation of the 

equations of motion of large flexible multi'body systems. Mathematical modeling of multi- 

defonnable-body systems is a chailenging task. Since the nominai or rigid body motion of 

the system changes the geometxy of the system, system parameters Vary with time and 

subsequently inQuence the elastic deformatons of the bodies. On the other han& the 

elastic deformations influence the rigid body motion of the interconuected bodies of the 

system, This is why the dynamic equations governing the motion of such systems are 

highly noniinear and coupleci. 

In the literature a number of formulations and solution aigorikm have ken 

proposed which differ in the techniques used to develop the equations of motion, the 

approaches utilized to mode1 the elastic deformation of the Mes, and the assumptions 

regarding coupling of rigid body motion and elastic deformatioas. 

22.1 Techniques for Deriving Ekpations of Motions 

Three main techniques were used by researchers to develop the dyoamic equations 

of motion of f lexie  multibody systems, namely: Newton-Euler apptoach, Lagrangian 



approach, and Hamiitonian approach, While vector guantities are used in Newtonian 

mechanics, scalar quotities such as kinetic energy, potential energy, and work are used in 

Lagrangian dynamics which greaîiy simpw the problem Moreover, the Lagrangian 

formulation elimrnates . . the forces of constraints fnnn the dynarnic equations. This is why 

most of the researchers 19-12] have used the Lagrangian approach to f o d a t e  the 

dynamic equations of flexi'ble d t ~ b o d y  systems, whiIe ody a few [13,14] have us& the 

Newton-Euler approach. Meanwhk* some other researchers applied directiy the 

Hamiltonian principle to obtain dynaxnic modei for flexi'be single-body or multi'body 

systems [15,16]. 

Regarding the systems of coordinates, two fundanieamlly different approaches 

have been propsed in the likratum to hi the motion of flexible bodies of a r d t i -  

deformable-body system. They are: the fioating reference 6rame method and the inertial 

reference frame method. Floating reference frames, whicb îranslate and rotate with flexible 

bodies of the systems, have long been used in spacecraft dynamics [17]. The deformaiion 

of each body is described with respect to its floating or body reference fkame. The 

introduction of this type of frarne was motivated by the assumption of snall defoxmations 

in flexiile bodies. Most of the researchers in the field of flewile mechanisms and robots 

have used this systezn of coordinates [IO, 18,19,20,21]. Usoro et. al [IO], Hastuig and 

Book [18], and Wang and Vidyasagar [19] dehed the floating fiame to be attached at the 

base of a beam to mode1 flexiile matilpulators, whiie Cannon and Schmit [20] used the 

floating h m e  passed through the center of the rnass- Asada et al [21] Jet the floating 

trame pass through the end points. By using the latter approach, the rwlting equations of 

motion, although restricted to srna11 defocmations, are no- and highiy coupled in the 

inertia terms such as Coriolis and centrifuga1 effects. 

The inertial reference fmmc method was proposed by Simo and Vu-Quoc [22] to 



model the dymmics of moviag beams- in this method the displacement vector is d e s c n i  

in an absalute coordinate system. Thenfore, the rigid body motion and the eiastic 

deformations are expressed together. This fcads to a formulation whose inertia match 

becomes simple, but the stifhess matRx bccames highly nonlinear. This approach also was 

used by Yang and Sadler 1231, Jonker 1241, Crisneld 1251, and Hsia and Jang [2q to 

m d  dynamics of flexr'bIe mechanisms. It is worth noting that these inertia reference 

hune models incorporate geometric stifféniag via various routes. For example, Simo and 

Vu-Quoc 1221 used the a t e  strain beam theory developed by Reissner [2TJ for fïnding 

appropriate nnite strain measures, whüe Hsia and Jang 1261 praposed a îïuite element 

approach based on CO-rotationai formulation and small deflection beam theory with 

inclusion of axial forces. In this model, the nodal coordiaates, velocities, accelerations, 

incrementai displacements and rotations, and equations of motion of the system were 

&fine- in terms of nxed globd coordinates, whüe the strains in beam elements are 

measured with respect to a set of element coordinates associated with each elernent. 

However, since these methods require the dennition of finite strains, large displacements 

and rotations, they are somehow complicateâ and, therefore, not suitable for the control 

design especially for chains of flexible links. 

263 Minimal and Redundant Methods 

Since a system is a collection of bodies comected with various mechanical joints, 

each body of the system has a constrained motion. The dynamics of such systems can be 

formulated by means of either redundant or minimai coordinate methods. 

In redundant methods, connectivity between different bodies is introduced to the 

dynamic formulation by ushg a set of nonlinear aigebraic constraint equations. This 

approach has the advantage that the governing equations of motion of the system cau be 

found in a straightfomard mariner. However, the dynamic formulation of motion of 

m u l t i i y  systems based on this approach, Ieads to a mixed set of differentiai and 



algebraic constraint equatiw which have to be solved Simuitaaeoudy. Moremer, this 

produre increases the dimension of the problem by conderhg dependent coordinates at 

joints and Lagrange multiplies as additional unknowlls. Many researchers such as 

Shabana [Il], Song and Haug [28], and AveiIo et ai, [29] have used this type of 

formulation. Song and Haug 1281 devdoped a &ïte element formuIation in which 

kinematic constrains and equaticms of motion were combined to obtaia a coupIed system 

of equations presenting îhe behavior of the plam fleïgbie mechaniSmS. Adla et ai.[29] 

used a general non-hear finite eIemxit farmuiation to establish the equations of mation of 

fiexible d t i i y  systems. Even though their model was based an the redundant rnethod, 

they did not use Lagrange dtipliers, but they introduced the canstrain equation into 

equaîions of motions through a penalty formulation. 

In the minimai method, the appended constraints are elrminated - .  
by k g  

independent coordinates. In other words, joint or relative coordinaties are used to fjnd 

dynamic equations of the systcm expressed in terms of the system degrees of M o m .  

This Ieack to a f-on with a minimum nnmber of dynamic equations because extra 

unlcnown variables including dependent coordinates used to represent connectivity of the 

bodies and the Lagrange muitipliers resulting h m  coonectivity constraints are not 

considered. However, tfiis approach leads to a compIex recursive formuiation in many 

applications. This approach was used by many researchers such as Book [9], Usoro et al 

[IO], Nagrnathan and Soni [14], and Nagarajan and Turcic [30]. 

The dynamic formulation of fia'b1e mul tr iy  systems leads to a set of 

complicated partial ciifkenhi equatiom. Since these equations are space and t h e  

dependent, they can not be solved anaiyticaUy. This is why many approxïmate techniques 

were proposed to change these partial differential equations to a set of ordinary differentid 



equations. Mainly three methods have been used in the literaaire, namely lumped 

parameter methods, assumed mode methods, and hite element methods. 

23.4.1 Lumped Methods 

The lumping approximah'on is the oIdest method to model continuos systems in all 

engineering fields. This technique was used widely in viiration anal* of mechanical 

systems with disûiiuted inertia and elasticity. Ineaia and compiiance effects were lumped 

to obtain ordinary differentïai equations as approximations for partial differential equations 

governing the dynamic behavicx of the continuos systems. 

Mirro [31] in his pioneering work considered both the modeling and control of a 

single flexible liuk via a lumped parameter approximation technique. Book 1321 d e r i d  

the hear dynamics of spatial h i H e  arms nqwesented as lumped mass and spring 

components via 4x4 homogenous transformation matrices used in rigid rrmltibotiy 

dynamics. He neglected nonlinear and coupIing terms such as Coriolis, centrifugai, and 

gravity effects in his model. Later Book et al [33] directly approximated a two-Iink hi 

manipulator with a linear mode1 derived h m  a nonlinear distributed parameter mode1 by 

using irnpedance methods. AIso a generalized lurnped parameter method was proposed by 

SadIer and Sandor 1341 and Sadler [35] to present a finite set of submasses of an elastic 

member for simulating planar motion of flexi'ble mechanisms. They considered the 

components of the mechaniwms as simpIy suppozted beams subject ta planat bending. A 

finite ciifference formulation was used to solve the equations of motion numerically. In 

1979 Book [36] utilized 4x4 Iradonnaiion maaices to model a spatial manipulator 

which was light and operated at low speed By neglecting the mass of the manipulator 

compared to the m a s  of the payload and assuming that the liaks bent in  the^ &t mode of 

vibration, he developed the lin= equatiom of manipulator as two rigid masses connected 

by a chah of massless beam segments. 



As mentioned eark, in lumped parameter methods, it is necessary to 

approximaîe the physical system with distniuted mass and elasticity as a system of rigid 

bodies connected with massless elements. This idealization is difncuit in many practical 

problems. This is why more advanced approximate methods such as assumed mode 

methods and finite element methods, have beea developed. These rnethods can be used to 

discretize continuous systems in a .  easier and more systematic way. 

2.2.4.2 Assumed Mode Method 

The assumed mode method is mainly presented by Book [9] for modeling the 

dynamics of flexible manipulator systems consisting of rotary joints that connect pairs of 

flexiile W. In fact he extendeci the recursive Lagrangian dynamics proposed by 

Hoilerbach ['7] to flexible manipulator systems by using the assumed mode method 

introduced by Meirovich [37.  In his model, 4x4 transformation mairices were used to 

descrii the k i n d c s  of both the rotary-joint motions and the link &formations. 

Therefore, hybrid coordinates including the joint motions and elastic deformaiions 

descnlbed by a series of viiration modes were employed to describe the system behavior. 

Judd and Falkenberg [38] and Singh and Schy [39] used a similar modal analysis 

approach to modd flexible robot arms. Since they neglected the kinetic energy due to the 

lin. deformation, th& models were not accurate. Also Yuan, Book, and Huggins [40] 

used a Lagrangïan assumed mode method for dynarnic modeling and control of flexible 

manipulators. They used the nnite element rnethod to &rive suitable mode shapes. 

An assumed mode method based on Kane's method was also used in the literature 

by Singh etal 1411 who proposed a recursive formulation for flexible m u l t i i y  systems. 

The fornidation was restricted to clarnped-free mode shape shapes. In this work the 

assurneci modes were obtained by a prior nnite element analysis. 

Generally, floating reference coordinates are used in the assumed mode methods. 

Depending on the choice of these rigid body coordinates, different mode shapes functions 



have to be used. Some authors have used the rigid body coordinates attacheci at the base 

with the ciamped fiee ùoundary condition [19,42], while the others have used rigid-body 

coordinates passing through the end-point [21] or through the center of mass of the beam 

C201- 

The main drawback of these methods is the difncuIty in hding modes for links 

with non-regular cross sections and for muiti-link manipulators. Benati and Morro [43] 

proposed an assurneci mode method for dynamic modehg of the chain of flexiile links. 

They d e s c r i i  the f l e x i i  of eacb link by the first two eigenmodes of clamped beams. 

In their work the first two eigenmodes of the links were found by üeating the mass of 

distal links as a lumped effect at the extrcmity of the link mder consideration. This metbod 

of finding modes for h k s  is only an approximation because the mode shapes of the links 

are configuration dependent especially when the effect of gravity is taken into account. 

On the other han& the use of transfoZrnation &ces niakes the modehg rather 

complicated. This is why the soIution of modeis based on assumed mode method (Book's 

method) especially for spatial manipuiators are computationally inefficient and tirne 

consurning. To improve Book's method, a more efficient method which uses the Newton- 

Euler formulation was proposed by Hasting and Book 1131. Also a Lagrangian 

formuiation by using angular velocities instead of transformation mahices was presented 

by King et-al [44]. Meanwhile, Li and Sanker [45] improved Book's by ushg Lagrange 

assumed mode method via using a 3x3 rnatrix and a 3x1 vector to present link 

kinernatics. 

It is worth mentionhg that some of the researchers such as Asada et.al[21] have 

used Raylieght Ritz functions instead of mode shapes in their formulation. However, 

choosing Ritz functions specially for non-unifbrm links is a difncult ta& 

In one of the early works on flexiile mechankm Neubauer et.al [Qdj derived a 



nodinea. partial Merenh'sl equatioa by forre and momentum balance of a link section for 

investigating the transverse v1ions  of the comecting rod of a planar siider-crank 

mechanism. They remove ail n0nIinPrini.y by assuming the independeocy of end reactions 

h m  elastic v i ~ o n s ~  Chu and Pan 1471 transfonn the goveming partial differential 

equations of motion denved by [w to ordinary differential ecpaîions by using Kantrovich 

method and the methoci of weighted residuais. Ouier researchers such as Jasinski etal 

[48], Badiani and Adidha [49], and Tadijij [SOI also modeled the elastic links as 

continuos systems with inflnite degrtes of fkedom. These analyses were so limited and 

comphcated that they were used exchiveIy for simple s i i d e r d  mechanisms with ody 

one flelucble member- 

Later finite elemmt method was used to develop approKimate models for flexicb1e 

mechanisms with more than one flexible links. In e d y  use of finite elemnt procedure, 

oniy specific stnictures were anaIyzed maidy in the aemspace and civil engineering. 

However, at the present time, finite eIement xnethod is widely used in most of the 

engineering andysis. This methoci is quite general and can be applied to the flextiIe 

mulhaody systems with complex shaped components. Using -te element metûod, 

flexible bodies are presented as discrete systems with finite degrees of f idom. 

F i  elernent rnethod was used to model flexible mechanisms by many authors. 

Wrnfexy [51,52] was the first to introduce the finite element concept for analysis of 

mechanisms using stiffiiess technique of structural analysis. He used the assumption of 

uncoupled ngid body motion and d deformation in his modd. The idea of kineto- 

elasodynamics, which is the study of motion of mecbanisms coasisting of flexible links, 

was introduced by Erdman etal 153,541. They employed the f i t e  element method based 

on flexibility method of structural anaiysis to study flexible mechanifim. Their model was 

based on the assumption that small elastic deforniatons are caused by inertia forces arising 

from rigid body motion of the system which was asmmd to be independent of elastic 

&formations- 

Midha etA [55] used a displacement nnite element method to model an entireiy 



elastic four-bar mechaniSn. By assuming that the ngid body velocity and acceletation are 

smaü as comparexi to the velocity and acceleration of the elastic nodal &formations, they 

obtained the Iinear diflémtiai equations of motion via Lagrange's equations. Later Turcic 

and Midha [12] used Wte elements to &rive the quation of mqtion of elastic 

mechanisms by preserving tangentid and Coyiotis acceleration terms which leads to the 

presence of nonlinear couphg tem.  However, tky  assumed that the elastic motions did 

not have any &ect on the large Egid body motion. 

Bahgat and Willmert [Sa presented a finite element approach for vibration anaiysis 

of general flexible planat mechauhm. All m v h g  links are assumed to be eiastic. 

Lagrange equation was used to obtain the equation of motion. Similar to the previous 

authors, they assumed that the gross motion is determined by traditional rigid body 

kinemaiic analysis and the elastic response is drivm by inertial forces arising in the rigid 

body motion, Khan and Willmert 157 adapted the v i i o n  analysis method h t  

introduced by Bahgat and Willmert 1561 to quasi-static d y s i s  of elastic deformations of 

a slider£rank mechaukm and a four-bar idcage. 

In the field of robotics Sunada and Dubowsky [58] presented a general 

LagrangianKmite element approach to m d 1  industrial manipulators with elastic members, 

They utilized NASTRAN (a large generd-purpose FE program) to generate the lumped 

mass and stiffness matrices of the individual Iinks. In their method the effect of the system 

deformations on the kinematics of succeeding links was ignored. 

AU the aforementioned nnite element method approaches were based on linear 

superposition theory, in which elastic deformations were found by assuming known rigid 

body motion and later superposing the elastic deformations to the rigid body motion. 

Therefore, they did not consider the coupling effects between rigid body motion and 

elastic deformaîions. 
. - .  

There are some work in iitetature which consider rigid body motion and elastic 

motion coupling tenns, but only those which repnxent the effect of the rigid body motion 

on the elastic motion [14,59,60,61]. Therefore, these works negiected the effect of elastic 



motion on the rigid body motion. Natagathan and Soni [14] included couphg effects and 

presented a nonlinear finite element based model for flexible manipulators. Utilking a 

finite eIement method and Timosbirnko beam theory, Nath and Ghosh [59,6û] &veIoped 

the différentid equations of motion of -le rnechanisms by mmiierhg coupling terms. 

Kalra and Sharan 1611 proposeci a Gaierkin approach for dynamic modehg of planar 

mdti-link fki'ble manipuiatozs. They considered arrial &fOIIIliltions and coupling terms 

b e m n  rigid and elastic motions. However, similar to the previous nnite element modeis, 

in this model the nomid motion of the system was assumeci to be independent of elastic 

deformations. 

The effect of elastic deformations on the rigid body motion of the systcm was 

taken into consideration by few researchers. Nagarajan and Turcic [30] developed a 

Lagrangian finite element dynamic model for spatial flexible mechanisms. They treated 

both the rigid body degrees of freedom and the elastic degrees of freedom as generalized 

coordinates. Although they considered the mutual dependence between the rigid body and 

elastic motions, they ignored the effect of elastic d e f d o n  on the transfomation mscrix 

between the link coordinates aad the global coordinates. Usoro etal [IO] presented a finie 

element/lagrangian approach for modehg of lightweight flexible planar manipulators. 

They ineroduced a model in wbich the system configuration at any time is descr i i  by a 

combination of gross motion and elastic coordinates. The tangent coordinate systems, 

which are attached at the base of the links, were utilized This model was based on small 

deformaiion theory and neglected axial &formations. Although most of the couplhg 

terms were taken into account, this model can not be easily u d  for manipulators with 

more than two Links due to its computational complexity. 

Avdo et al. [29] established a general non-linear hite element fonndation for 

dynamics of flexiile d t i i y  systems using large dispiaceme~lt theory and redundant 

method based on penalty functions. Even though most of the coupling terms were taken 

into consideration, the complexity of the method for control design is its main 

disadvamage. 



2.2.5 Joint Flexibility 

All of the above studies neglected the joint f l e x i i  and the actuator dynamics. 

Unfortunately, joint elasticity exists in most of today's manipulators and must be 

considered in modehg for many cases. Most industrial robots are equipped with gear 

boxes such as DC motors with harmonk drive traasmissions that introduce joint flexiIbiIity- 

In addition to geats, motor sbafts and bearings can cause joint flexaility. The d 

anguIar deviation due to joint c o m p b  will influence the end effector position accuracy 

especiaiiy as the arms length get longer. N e g l d g  this effect may be acceptable when the 

operator speed is low, but may be quite devastating when the speed becomes hi& 

Because of the high complexity of the dynamical equations for multi-link manipulators 

with both joint and link flexi'b'i, most of the Literature on the control of flexiile 

manipulators have discussed arms with joint flexi'bility and with link flexiiility separately. 

The problem of joint elasticity has been addressed in recent years. Spong [62] 

investigated the modeling and conml pmblem for flexible joint manipulators. He 

developed a simple model to represent the dastic joint rnanipdator by assuming that the 

motion of the rotor is purely rotation with respect to an inertial frame and the rotor 

velocity and the gravitational potential of the systern are both independent of the rotor 

position. Aiso Good et al [63], Soni and Dado [64], and Readman and Belanger [65] and 

many others studied the dynamic response and control properties of manipulators with 

elastic joints. ûenerally, in the proposed modeis, the dynamic model of the elastic joint has 

been rnoàeIed as a torsional spriag in parallei with a viscous damper. 

Though a lot of work has been done in the modehg and control of joint flexibiiity 

and liak kxibility, lirtie work has been devoted tu the problem of combined link and joint 

flexibilites. The problem of controlling manipulators and mechanisms with flexible links 

and joints has received widespread attention in the past decade. When the link flexiility 

and joint flexibiüty are comparable, the corresponding subsystems are strongly coupled 

due to signifiant interactions between link and joint flexiiility. The link flexibility by its 



own complicates the manipulator dynarnics, therefore, it is obvious that the inclusion of 

the joint flexi'bility causes greater complication in the dynarnïc model of the system. 

Gebler [66j modelai a flexible link planar robot with two revolute joints using Ria 

approximation considering joint flexiiility. The two static deflection bending Iines of a 

cantilever beam with only one concenîrated force or one concentraîed torque acting on the 

outer end of the beam were used as Ritz-functions. He neglected the dynamic forces 

resuiting h m  deviations h m  the nominal position and lineakd the equations of motion 

of the system with regards to the nominal trajectory. Jonker 1671 presented a fînite element 

dynamic model of multi-link manipulators with link and joint flexï'bility by considering both 

links and joints as specific finite elements. In his model the actuators were chosen lineat 

and their dynamics was not taken into account. Besides, he neglected the effects of 

damping and gravity. Huang and Wang [68] developed the equatiom of motion of robotic 

manipulators with both flexible links and flexible joints by combining the nnite element 

model of flexible links using Timoshenko beam theory with multidegree of fieedom 

modeIs of elastic joints. But they assumeci that the rigid body motion was known in 

advance. Yang and Donath [69] and Yang and Fu [70] investigated the combination 

effect of link flexi'bility and joint compliance by combining a SimpIe assumed mode shapes 

model of beams with spring-damper modei. 'simiIarly Gogate and Lin [71] formuiated the 

manipulator dynamics by a superposition of two modeIs, namely, an a s s u d  modes of 

vibration model for links aud a torsional spring model for joints. Based on this model they 

proposed a two step control which found the total conaol torque as simply the 

superposition of the kt-step and the second-step control torque. Xi et al 1721 studied a 

manipulator consisting of only one flexi'ble link and one flexiile joint They assumed that 

the link was constrained to move only in a horizontal plane, thetefore; they didn't take into 

account the gravity in their model. Also they neglected the component of centripetal 

acceleration based on the assumption of smaii angular velocity of the link. Recently Lieh 

(731 investigated the dynamic behavior of a slider Mank mechanism with flexii1e coupler 

and joint by using a virtual work formulation. The sli&r was asswned to move on a 



horizonta1 plane and anguiar velocity was igiplied to the fkxible joint. They used first two 

modes of vïiraiion to approximate the Iink flexiity- 

23 Trajectory Controi of Flexible ManipuiatoFs 

Robotic applications can be divided into two major taFks: (1) point-to-point 

motions, as in spot welding and parts handhg, and (2) specined path motions, as in an: 

welding, laser cotting, painting, and glue dispensing. Controllhg îhe position of the end- 

point of fiexîbie manipulators to track a desired trajectory with specined speed is a very 

difncult task due to the structurai flexiiilïty coupled wirh noncolocated sensors and 

actuators. This is why advanced techniques, which are signincantly different h m  those 

for rigid a m  control, have been developed for control of nonminimum phase flexiile anns. 

A number of feed-back control strategies have been proposed in the literaîure by 

the control comrnunity for the problem of end-point trajectory tracking in flexible 

multi'body systems. Hasting and Book [18], Cannon and Schmitz 1201, Book [33], and 

Sakawa et. al, [74] employed linear control theory, whiIe Singh and Schy [39], De Luca et 

al 18 II, and De Luca and Siciliano [82] made use of nonlinear decoupling. 
- .  

To conmil ff exile systcms, the eady studies ob*uned hear modeIs h m  nonlinear 

equations of motion, and then they utilized iinear control theory. For example Hasting and 

Book [18] used joint and strain feedback to damp structurai vi'bration of a flexiile 

manipukitor. However, their experïments showed overshoot and viiration to step position 

comrnand. Book et al [33] addressed the control of two-link fiexile manipulator by 

linearizing the manipulator dynamics and using hear feedback control schemes. They 

neglected nonlinear effects of Coriolis, cennifugal, and gravity forces. Cannon and 

Schmitz 1201 developed a specinc linear mode1 for a single-link flexible manipulator 

moving on a horizontal plane. Gravity and Coriolis forces were neglected, With the linear 

model, collocated and noncoiiocated control systems were developed utilizing linear 

control theory. They recognized that a muiti-link arm couid not be controlled based on 



their approach because of nonlinearties in the dynamics of a dti-link ann, Sakwa et aL 

p4] introduced a .cimilar closed-Ioop approach but with a more detailed analyticai model 

of the Iink and a different sensor system. Their aigorithm was used to suppress ami 

vibrations by measuring strains over the ann links. 

As mentioned earlier the afoxementioned authors have used linearized equations of 

motion of flexi'ble manipulators. The linearized models can ody work in the neighborhood 

of operating points about which linearization bas been taken. Therefore, the motion of 

manipulators is confineci to a smaü range, and the linearization has to be affecteci 

frequentiy due to nwlinear and time varying nature of the system. We see that the control 

design based on linearized modeIs is not adequate for hïgh speed rnaaipuiators. Moreover, 

since conttol systems for flexiile manipuiatm are noncollocated and position corn-& 

contain hi@ fkquency compments, the feedback conaol may cause these systems to 

become unstable. 

Sicfiano et al. [75], Siciliano and Book 1761, and Khozfami and Ozguner [771 

proposed singular perturbation approaches based on two-tirne scde model of the fîexi'ble 

arm to contrd flemie link manipulators. These approaches allowed the dennition of a 

slow subsystem corresponding to the rigid body motion, and a fast subsystem descn'bing 

the flexi'ble motion. Then a composite control strategy was applied. First a slow control 

was designeci for the slow subsystem as it would be done for an equivalent rigid arm, then 

a fast control stabilized the fast subsystem. However, the separation of time d e s  

between the rigid and flemile subsystem cm not be realized for many systems. 

An appmach proposed in the fiterature is the feedforward compensation which is 

based on inverse dynamics of models of flexible structures. A key issue in feedfomard 

compensation is the computation of actuator torques required for fiw'ble manipulators to 

îrack a specified trajectory with a specified speed. Feedforward compensation has been 

used to duce  tracking emrs and residual vibrations [66,78,79]. The inverse dynamic 

probkms w m  usuaiiy simplifieci by &uphg the Mematic and dynamic equations 

based on the concept of nominal joint motions, which were determined using the kinematic 



equations for the rigid link counterpart of a flexiIble Iink manipulator by negiecting the 

effect of Li& deflections. Pfeiner [80] suggested a fontml scbeme consisting of a 

feedforward computed joint torque based on rigid body inverse dynamics and a linear 

stabiiizing feedback on the linearized system around the given rigid trajectory. In Singh 

and Schy paper [39], a genaalization of the computed torque method, which had the end 

effector actuation for v i i o n  damping in addition to joint actuation, was presented It 

proposed a joint space closed-loap contra1 for elastic robots based on nonlinear inversion 

and modal damping. AIso De Luca et .al [8 1,821 proposed a closed-loop control strategy 

consisting of a linearized rnodel-based fBedf0rward term and a Iinear feedback control on 

joint angles. However, De Luca et. al [81] showed that numerical inversion techniques for 

a flexi'ble manipulator lead to an unstabIe behavior. 

Wang et a1 1831 presented a new methoci for synthesis of open-loop control inputs 

to move a flexiile m m  dong a given trajectory. Tkir approach was based on the 

closed-loop simulation to generate the open-hop control input. This method was applied 

to a linear problem. It was claimeci that the proposed method codd be extendeci to 

nonlioear systems, but such extension has not yet been done. 

To avoid the aforementioned prob1ems, inverse dynamic methods have been 

recentiy proposed by many authors to determine the joint torques such that the end-point 

of the flexiale manipulator follows a given îrajectory. Since the system is redundant due to 

its flexibility, a amplete mode1 consisting of the kinematic and dynamic equations should 

be solved simultaneously. But the main difficulty is the noncausality of the inverse 

dynamics of flexible manipulators. In other words, since the point for which the 

prescribed motion is specified and the application points of conml torques are co~ected 

by elastic bodies, the joint torques should be applied fiom negative t h e  to the future tirne 

in order to conml the position of the end-point according to the desired trajectory. The 

delay is due to the fact that elastic waves propagate with finite velocity. This is the reason 

why standard causal thne doniain integration schems an unstable in solving the inverse 

dynarnics of flexible manipulators. 



Asada et ai. 1211 derived an inverse dynamic quaiion by using Ritz-functions as 

a s s d  modes. However, tbey did not soive tlk invase dynamic equations oomplcteiy. 

Idler [84] formulatecl the inverse dynamics of flexible multiiy systems by 

utilizing higher order derivative i n f o d o n t  However, he obtained a causai s01ution for 

the invexse probiem. This is why one of the .Mcs was assumed to be Hgid. Moreover, 

backward Euler metbod, which is only a fint order method and not accurate enough, was 

used in numerical integratioa 

Xi [85] recently proposed a new rnetbd to solve the inverse dymmics of £lemile 

manipulators. He used a Lagmgian assumed mode method to derive the eqyaiiom of 

motion of the system. Even though this study mentioned the noILcauSality of the inverse 

dynamics of flexiile manipuIators, it was basidy based on causal solution of such 

problems. For this reasbn an initial velocity was assumed for the system in order to be able 

to solve the problem. 

Noncausai solutions for inverse dynamic pmblems have been developed by Bayo 

[86] and Kwon and Book [87& Mouiin and Bayo [SS] showed that the causal integration 

of the inverse dynamics of the fiexi'ble mul t i i y  systems leads to UllStabIe resuits. Bayo 

[86] developed a new approach to caiculate the required torque to produce a deshd end 

effector motion for a single-link arm by solving the inverse dynamic equation in the 

frequency-domain with inverse fast Fourier transfonn. This method took into 

consideration the noncausal nature of the inverse dynamics of flexiie manipulators. Since 

the necessary torques are provided by the soIution of the inverse dynamics, îhe reduction 

of vibration in positionhg of the tip is no longer required for input shaping. Later Bayo 

and Mouline [89] introduced the convolution integral method to solve the inverse dynamic 

equation in the tirmdomain. This technique was computationally much more efficient than 

the approach developed in fkquency domain. Ledesma and Bayo [90,91] extend the 

noncausal integraiion method to the inverse dynamics of multi-link closed-loop and open- 

loop flexiile multiiy systems. However, -& approach was limited to systems with 

flexible Wcs ody.  



Kwon and Book [871 introduced another new solution for the inverse problem for 

a single-link am. They decoupled the inverse dynamics of the manîpulator into causal and 

anti-causai parts, then these two parts-were solved forward and backward in time, 

respectively. The iimitation of this approach is that it can be used only for linear single-link 

systems in which the effects of gravity, Coriolis and centrifuga1 acceleratiom are 

neglected. 

It is important to note that when the dynamic effects of the elastic modes are d 

(quasi-rigid), causal inverse solution may be o b W  by regularipng the problem with the 

addition of artificial dampjng either h u g h  the damping matnx or the numericai 

integration scheme. However, these ad hoc processes change the nature of the proHem 

and do not yield the desired time delay effect [W. 
Ail of the above d e s  did not take into account the joint ffexiity and actuator 

dynatuics. Only a féw works were nported in the fiterahire which addressed contra1 of 

manipulators with both Iink and joint ficxiity. Gebler [66] proposed a feedforward 

control strategy to control an industn robot with elastic links and joints. As it was 

mentioned in section 2-2.5, his mode1 was based on Ritz approximation and lineanzation 

with regard &O a nominal trajectory. The desked joint angles calculateci under the 

assumption of ngid joints and Links were modifiecl by taking into account nominal 

deflections. A taro step control law which found th total conîrol torque as the 

superposition of the hrst-step and the second-step control &orque was developed by 

Gogate and Lin [71]. By assuming that only joints are elastic, the fkst control torque was 

found using a singular perturbation approach. Then by treaîing the effects due to link 

flexibility as nonhear disturbances to the manipulator system the feedback control law 

yields a second control torque. Also Yang and Fu 1701 used singular perturbation 

approaches to control manipubtors with both joint and link flemiity. They decomposed 

the full-order nonlinear system into slow subsystem, mid-speed subsystem and fast 

subsystem, and then they proposed a composite controI law using optimal control theory. 



None of the aforementimed works have taken into cansideration the noncausal nature of 

the inverse dynamic problem. 

2.4 Time Optimal ControI of Flexible Maniplators 

For high productivity, it is desirable that the motion of the robotic manipulators be 

time-optimal so as to &ce the motion tirne. Therefore, another type of probIems related 

to the flem'ble manipulators is controlling the position of their end-point for a rest to rest 

motion in minimum tirne dong a speciti:ed path, whik actuator toques are not exceeding .. . 
the Iimits due to physical capabilitics of actuators or bending strengths of M. 

Time optimal control pblems lead to two-point boundary value problems with 

flxed initial and 6inal States and free hl tirne. These problems, even in the case of rigid 

manipulators, have no closed form solutions except in the simplest cases. Further, 

numerical approaches used for time-optimd problems have yielded acceptable resuits only 

when certain restrictions were pIaced on the prob1ems. For exarnple, for the unconstrained 

motion of linear singiedegree of fieedom systems with only one controiler, the solution is 

characterized by saturated wntroIs for the entire motion with one switch at the mid-point 

as shown in figure 2.1. This type of solution is known as bang-bang profle in optimal 

control control theory. Nevertheless a general mdti-degree of freedom nonlinear tirne 

optimal control algorithm has not yet been deveIoped. This is why most of the papers 

dealing with computational algorithms for the tirne-optimal control pmblems assumed a 

bang-bang control profile and found the number of switches and the switch times for each 

controiIer. 

Work on minimum-- control problems begm as early as the late 1960s anci 

most cornmonly, the mearchers have liueazized the dynamics in order to apply standard 

techniques of hear optimal control theory to the time optimaI solution. A survey of the 

literature shows that two types of problems are commonly considered: a point to point 
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Figure 2.1 Bang-bang profile for a singIe degree of &dom system 

motion withaut consiraints on the path and a point to point motion dong a specined or 

constrained path. 

Although various approaches have been developed for the time-optimal control of 

rigid manipulators without path constraints [92-95J and with path constraint 196-981, iittie 

work has ben  devoted in the iiterature to the time-optimal control of flexible 

manipulators. 

Many algorithms were proposed for solving unconstrained path minimum 

problems. In the earliest attempts, Khan and Roth [92] derived the expected bang-bang 

solution with multipie switching points. They addressed the tirne-optimal control of a 

system of rigid bodies in series by rigid joints. A suboptimai feedback conml in terms of 

switching curves for each of the system controls was developed. These curves were 

obtained from linearized equations of motion of the system, then approximations were 

made for the effets of nodhear terms consisting gravity Io& and angular velocity terms. 

Luh and Lin [93] and Lin et al. [94] used purely kinematical approaches to find the 



sequence of tirne intervais that mmimile the total time spent on moving between two 

points. They assumed that the paîh consisted of a sequence of straight line segments and 

the constant b i t s  on Cartesian velucity and acoeleration were known a priori dong each 

path segment. It is almost impossible to seIect such limits without knowing the dynamic 

properties and the actuator characteristics of the manipulatoi. However, it is often difncult 

and tedious to determine these limits. 

Sahar and Hollerbach 1951 presented a general solution by using a dynamic time- 

scaling algorithm and a graph search. They did not pre-assume a bang-bang solution and 

their aigorithm took into account a fuli dynamic model for the manipuiator and actuator 

constraints. 

AIthough unconstrained path rrimimum time approaches are suitable for some 

appIlications, it is often necessary to specify the manipulator trajectory in order to avoid 

obstacles. Niv and Auslander [%] used a parameter opthkation technique on the joint 

actuator switching times to solve a constrained path minimum rime problem. They 

assumed that during the motion, each actuator exerts maximum control torque (bang- 

bang), while the manipulator foliowed the desired path and reached to its final destination. 

Sider and Dubowsky [97l and Bobrow et ai. [98] solved a minimum-time problem for a 

rigid manipuiator case when the paîh is specitied and the actuator torque limitations are 

known. The solution was given in the fonn of an algorithm for determirim - 
g hear 

accderation of the end effector dong its path. At each position and velocity on the path 

the constraints on linear acceleration of the end effector corresponding to the actuator 

torques limits were determineci. On the other hand, Bobrow et ai. [98] found that the 

standard optimal control methods (in paaicular Pontryagin's maximum principle) even in 

simple cases did not converge to a solution. 

There are a few work on time-optimal control of flexible link manipuiators. Pao 

and Franklin 1991 developed a bang-bang solution with at most 3 switches for the tirne- 

optimal conml of a single flexible link manipulator. They neglected ail nonlinear terms 

and usai a one-bending mode model of the flexi'ble link. Hetch and Junkins [100] 



proposed a neaf-minimum-tinie solution for a flexibIe robot by smoothing the classical 

bang-bang soIution. Using an op-- d@thm, k t  they found the switch times of 

the bang-bang solution of the ri@ c~uuter-part manipuiator. Then to avoid large 

vihations in the flexlible man.ipuIator due ta abrupt transitions (bangs), they smootheci the 

changes in the cantrol toques by using smoothing functions. Szyszkowski and Youck 

[IO11 d a k d  the coahtol mie based on Ùgiù M y  dynamics (using Ponrsrsigai's principk h r  

Imearized system) fbr a shgk &x&b ami movhg in a horizouial plaue. Then they rried to 

improvetkrulebyeXarriiningiîs~thro~ghhiteeleor:ntanatysisof thefuny 

n o m  dynamics of the system Eisler et al [lM] presented an aigorithm m wbich tbe 

m e W  of recursive quadratic 1rnV-~ was used to generate approximaîe mininnimtHne 

tragedory for two-Mc rrianqnilator movements in the horizontal plane. Hwang and 

Eltimsahy Cl031 studied the eEecîs of link £ i m i  on an unconstrained point to point 

near-time-optimal control using the method of average dynamics and the bang-bang 

control theory. They used only one m'bmtion mode m their assumed mode rnethod to 

approximate the link flexibility. Fmt, they obtained the near-tirne optimal refance 

trajectory based on linearized equations of motion of a counter-part rigid link rnanipulator. 

T'en they proposed a closed-hop controiier with the effects of link flexibility as a 

disturbance on the system. 

AII of tbe afbremntioned studir=s deah with link flertibility and neglected joint 

fiexïbdity. Aiso they did mt take into account the noncausality of mverse dynarnics of tlexible 

systems. Because of the highly nonlinear structure of the quations of motion as weIl as the 

non-causality of such systems, the exact minimal tirne solution is not avaiiable at the 

present tirne. ln this dissertation near-time-optimal control problem of rnanipulator 

systems with both link and joint fiexi'bility are solved using nonlinear programming by 

taking into consideration the noncausal nature of theù inverse dynamics via considering 

pre-actuation and pst-actuation in the solution procedure. The proposed technique is 

based on transforrning the optimal control probIem into an quivalent unconstrained 

optimum design problern using penalty function methods. 



DYNAMICS OF DEFORMABLE MüLTIBODY SYSTEMS 

3.1 Introduction 

Many mechanid systems such as  machines, mechanisms, manipulators, space 

structures, and aircrafts can be modeled as muItibody systems. Figure 1 shows some 

examples of this type of systems. Each muItiiy systern consists of a set of 

intercomected bodies which undergo large rotational and translational dispiacements. This 

is why the dynamic equations are highly nonIinear and coupled even for systems with rigid 

components. 

In this dissertation, mathematicai models incorporated into the numerical 

simulation of multi-deformable-body systems are based on the Lagrangian principle. This 

chapter presents a general ovenriew of dynamics of multideformable-body systems. The 

general form of governing equations, which includes equatiom of motion of the systern 

and constraiat equations, is developed and various solution procedures are describeci. 

3.2 ginexnatics of Deformable Bodies 

The distance between two points of a rigid body remains constant during the 

motion of the body; therefore, there is no clifference between the kuiematics of the body 

and the kinemaîics of its reference coordinate. EIowever, this is not the case when 

deformable bodies are considered. 





Consider the floating coordinaîe system o ~ - x I ~ x ~ ~ x ~ ~  shown m figure 3.2, which 

translates and rotates with the body. This coordinate system called body coordinate system 

is assigned to a deformable body whose origin is rigidly attached to point O'. Vector 

represents îhe position vector of point P' in the undefonned state. Assume that thïs vector 

(mi ) has no translational and rotational displacement with respect to the body coordinte 

system. It means that the components of vector uo' are constant in the local coordinate 

system during the motion of the deformable body. 

ReferRng to figure 33.  position vector of P' after defonnation can be written as 

where R~=[R~&,R:] is the position vector of point o', ib' is the undeformed local 

position of point P', and ui presents the &formation vector at this point The components 

of u;' in the body coordinaîe systtm are time and space dependent Therefore, the dynamic 

formulation of the system leads to a set of nonlinear time varying partial differential 

equations with an innnite nurnber of de- of freedom. To reduce the number of 

coordinates to a finite set, approximate techniques such as finite element rnethod can be 

employed. By using these techniques, the governing partial differential equations are 

transformed to ordinary CiBexential equations which can be solved with weU hown 

numericd methods such as Runge-Kutta, Newmark, and Wilson theta methods. 

3.2.1 Constrained Motion 

The motion of each body of a multl'body system is consrraineci because of the 

mechanical joints connecting adjacent bodies. The constraint equations represent the 

mathematical or kinematical relationship among the coordinates. As it was mentioned m 

previous chapters. there are two basic meth& to handle the constraints. The 6rn rnethod 

called minimal method is based on s o l h g  constraint equations for the dependent 
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Undeformed posifion Deformed position 

Figure 3.2 Deformation of a deformable body 

Figure 3.3 Global position of an arbitrary point on a deformable body 



coordinates explicitly in terms of independent coordinates. The condition for using such a 

method iç that the constraint e q d o n s  are holonomic or integrable. Since the aigebraic 

equations are efiminated, the minimai method leads to the smallest set of equations. But 

this rnethod is not very feaSib1e especially for large systems because the equations are 

highiy noniinear and complex. 

In the second approach d e d  redundant method, the constraint equations are 

added to the dynamic formulation by making use of Lagrange dtipiiers. This method 

leads to a set of differential and algebraic equatiom (DAE's) with the coordinates and the 

Lagrange dtipliers as unknowns. The most direct approach is converting the system of 

DAE'E to a set of differential equatio& by appending the double derivatives of the 

constraint equations with respect to fime. Although the redundant method provides nwh  

more convenient means of handling the constraint equations, it increases the number of 

unknowns and subsequently the size of the problem. 

Several techniques can be used to develop the dynamic equations governing the 

motion of material bodies. Among them two- basic techniques: Lagrangian and Newtoniau 

approaches are the most popular ones in dynarnic modehg of m u l t i i y  systems. The 

former has estabiished itseIf as the primary approach in multiïy systerns. This is mainiy 

due to this fact that it is a scalar rather than vector approach. In the following, Lagrangian 

dynamics is briefiy discussed 

Unlike Newtonian mechanics, Lagrangian mechanics &s use of scalar 

quantities: kinetic and potenrial energies and work done by the forces acting on the 

system. In Lagrangian dynamics, the system of equations of the motion are expressed m 



terms of a set of generaüzed coordiaates and aSSOciated g e m d k d  forces. However, 

Lagraiigian and Newtonan appfoaches are @valent, 

Lagrangian eqyations can be deriveci h m  D'AIembert's princip1e or Hamilton's 

principle. The fht  appzoach starts h m  a consideration of the insbntaneous state of the 

system and small vjrtual displacements about the instantaneous state, while in the second 

approach Lagrange's equations are obtained h m  a prbciple which considers the entire 

motion of the system between times tt and ts and small vimial vâriations of the entire 

motion from the acûxal motion. This approach involves only physical quatities that can 

be defineci without refercnce to a parti& set of generalized cmrcünates, namdy, kinetic 

and potential energies. Only the second approach (Hamilton's principle) is s h d y  

described here. 

33.1.1 Hamilton's PFinapIe 

This priiiciple is one of the most basic and important @ciples in mathematicai 

physics. ûriginaUy, it is formdated in te- of the dyiiamics of systems of particles, but it 

can readily extended by analogy to other cases. 

First we consider a sinde particle of mass m subject a force field f. If r denotes 

the vector from a fxed ongin to the particle at time t, then according to Newton's laws of 

motion, the path of the particle is governed by the equation 

Let consider any other path &rt The tme path and the vimial path coincide at two 

distinct instants t=t~  and t=tl; therefore, the variation 6r vanishes at these two instants. 



Now by taking the scalar product of the variation 6r into equation (3.2) and 

integraihg the resdt with respect to time over (tl, ta, we have 

After integration by parts and using equation (3.3), the fïm term of equation (3.4) takes 

the form 

where KE is the kinetic energy of the particle. Therefm, equation (3.4) can be written as 

This is Hamilton's principle in its most general form for a single particle [104. The above 

derivation can be extendeci to a system of particles by summstion, and to a continuous 

system by integration. 

For a system of N particles, the virtual work 6W done by the force system can be 

expressed in terrns of virtual displacements NI in the f&m 

where n presents the number of degrees of freedom of the system. Now Hamilton's 

priociple (equation 3.6) States that 
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This resuIt is vaiid for boîh comavative or noncollsc~~ative syskms [1û4], By caicuiating 

the variation of the nrst integai of equation (3.8) m the usuai way, we obtain the 

condition 

The vanishing of the coefficients of the independent variations leads to Lagrange's 

equations in the foliowing forms: 

i = i,...., n 

if the coordinates qi are independent. This result is valid for both conservaiive and 

nonconservative systems [la]. 
If the force system is consemative, the generalized forces Q, are derivable h m  a 

potential energy function (PE) in the foilowing way: 

By introducing the Lagrangian of the system as  L=KE-PE, equation (3.10) can be 

rewritten in the foilowing f a  

which can also be found h m  Hamilton's prhcipie expresseci in the f o m  



If the force system consists of both conservative and nonconservative parts, the 

Hamilton's principle ieads to the Lagrange's equations: 

where ~ i ' ~ )  are the generahed forces resulting h m  the nonconservathe loads. 

Hamilton's prinüpie can be extendeci to cover consirainesi systems. For pmblems 

with dependent coordinates which are interrelated through certain constraints equations 

(holonomic), it is possible to use the methoci of Lagrange multipIiers to obtain the 

equations of motion. When the co~ection between bodies are of the holonomic type, the 

constrains can be expressed mathernatically in the fo110wing form: 

with mai and n-m king the number of degrees of freedom. Equation (3.15) can also be 

show in the following matrix fonn: 

where C is the vector of comtra.int functions. By using the formai way of dealing with 

constraint equations in the calculus of variations, we can obtain the foliowing mixeù sets 

of difierential and algebraic equations: 

where Â. is the vector of Lagrange multipliers and C, is the consiraint Jacobian matrix. 



By ewice differentiation of the vector of the coDStraUlt hctions with respect to 

time we find the following m o n :  

which can be used instead of equations (3.17-b). 

As it was mentioned eariier, appmximaîe techniques shouid be used to reduce the 

number of coordinates of the âeformable d n W y  systems to a finite set After proper 

discretkation of the continuous system, the system of equations (3.17-a) and (3.18) can be 

written in the following fonns 

where M and K are, nspectively, the symmeüïc positive definite mass and stiffness 

matrices of the system. Q, and Q, are the gravity load vector and the vector of generalized 

externaiîy applied loads, nspcctiveIy. Qv is the quadratic velocity vector containhg 

Coriolis and centrifi@ components d t i n g  h m  diffmntiating the kiaetic energy with 

respect to time and with respect to the generalized coordinates of the system. Qc is a 

vector which presents the right hand si& of equation (3.18). Matrix K cm be expressed m 

the following partitioned form 

in which is the stiffness of the deforrnabIe system. 

The system of equation (3.19) cm be utüized in numencal solution of the noalinear 

dynamic equatiom of motion of multi-deformable-body systems. 



The dynarnics of mulhnody systems with defonaable components has many 

industrial and technologicd appkaâions such as robotic manipulators, vehicle systems, 

and space structures. Because of the finite rotation of the deformable body reference 

hmes, the dynamic equaîions of such systems are higtdy nonlinear. Two a p a c h e s  

which c m  be used to solve these equations are introduced in the following sections. 

A solution strategy widely used in the past [SI-541 is the linear theory of 

eIastodynamics. In this approach, the total motion of the system is assumed to be the 

superposition of the rigid body motion of the system and the elastic d e f e o n  of the 

components. The m u l t i i y  system is treated k t  as a collection of rigid components. The 

inertia and reaction forces are calculateci by using general-purpose dti-rigid-body 

computer programs. Then the forces obtained h m  the rigid body anaiysis are used to 

solve for deflection of the bodies in m u l t i i y  systems. The total motion of the system is 

obtained by superimposing the smd elastic deformation on the rigid body motion. 

Therefore, the coupling effects between rigid body motion and elastic deformations are 

ignored in this approach. As it was mentioned eatlier, these effects becorne signincant 

when hi&-speed, lightweight mechanical systems are considered. 

3.4.2 Tot4 Lagrangian and Upcirtted Lagcangian Approaches 

There are two hnite-element fornuiaiions for large displacement problems. The 

hrst one is d e d  total (stationary) Lagrangian approach in which the global reference 

coordinate system remnins staiionary and the motion of the bodies in muitibody systems 

are denaed with respect to the k e d  frame of reference. Another hiteelement 



fordation which has been proposed for large nisplaeement analysis of deformable bodies 

is d e d  updated Lagrangian appmach. In this approach, a convected coordinate system, 

which is sometimes caüed co-rotational system, is attached to each finite element. 

Therefore, this coordinate system shares the rigid body motion of the corresponding finite 

element By using smaü rime steps in numerical inkgration, the displacement of the 

element between two coorduiate system is d e s c n i  using shape funciions and the nodal 

coordinates of the elenient, The cunent defocmed state is used as  the new reference state 

prior to the next incremenîai step. Therefo~, the equations of motion are defineci in the 

local coordinaîe system and the solution of these equaiions is updated in order to &fine a 

new local coordinate system. Since differentiatim and integrations are defïned in the local 

coordinaîe systems, the equations of motion are much simpler in the updated Lagrangian 

approach. However, since the general constraint quations or relative velocities and 

accelerations between bodies are not as SmpIe as in the total 1;agrangian formulation, this 

approach is not convenient for multi iy  system dynamics. This is why in the foiiowing 

two chapters, the total Lagrangian approach is used to develop dynamic equations of 

motion of planar and spatial flexible manipulaton. 

3.5 Si immary  and Condusion 

In this chapter a general overview on dynamic modehg of defonnable m u l t i i y  

systems is presented. A Lagrangian appmach is used to obtain equations of motion of such 

systems. A minimal method and redundant method are introduced and the system of. 

equations including equations of motion of the system and constraint equations is derived 

using Lagrange multipliers. Moreover vario- so1ution approaches are briefly d e s c n i  

In the next two chapters, the total Lagrangian approach is used to mode1 the 

dynamics of flexiile manipulators. The continuous flexiile manipulator syskms are 

discretized by the f i t e  element method in order to reduce the number of coordinates 

necessary to describe the system. Minimal and redmdant methods are used respectively m 



chapters 4 and 5 to present the conlïgutation of the system in appIying Lagrange's 

approach for dynarnic modeling of plana, and spatial muiti-link flexiile manipulators. 



DYNAMtC MODELING OF PLANAR W U T O R S  

WITH BOTH FLEXIBLE LINES AND- 

FLEXIBLE JOINTS 

4.1 Introduction 

In this chapter, an efficient dynamic modeling of lightweight muiti-lulk planar 

manipuiatm with both fiexiile joints and links is developed using a finite 

element/Lagrangian approach. The dyoamic elastic response of each fiex.iible link is 

formxilated relative to a fioating frame d e d  pinned-pinned or virtuai link 1211 coordinate 

system. Using this coordinate system the link deformation is measured relative to the line 

connecting the end points of the link. Both the rigid degrees of k d o m  and the ehtic 

degrees of h d o m  of the system are treated as generaIized coordinates. Each Iink is 

divided into a finite number of elements and the elementai kinetic and potential energies of 

an arbitrary link are derived in a sysîematic way. Then by using Lagrange's equation 

elemental mass and stiffness matrices and load vector of the typical element are obtained. 

By assembling the elemental matrices and vector of each Iink and then a s d i h g  the 

resuiting link maûices and vectors in a proper manncr the system mass and stifhiess 

matrices and load vector are obtained. The effects of the payload and the revolute joints 

on the equations of motion of the system are included by using Wtuai work of the extenial 

Io& and the kinetic and potentiai energies of the actuated fîexiile joints and the payload 
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through appIying Lagrange's equations. The dynamic mode1 derived in this study is fiee 

fiom assumption of a nominal motion and takes into account not oniy the coupihg effects 

between rigid body motions and elastic motions but aiso the interaction between the 

&mile links and the actuated flexible joints. h i a i  deflections, s k u  defomiataons, and 

romy mertia efkcts due to elasl &hmathn are aeglected and Berwulli-Euler beam theory 

is usedm the bmdati01~ 

The resuiting equations of motion of the system are highiy nonlinear and coupleci. 

They can be integrated using any standard ordinary dBxential equation solver such as the 

Newmark method, The main advantage of the proposed model is its compactness and 

completeness; therefore, this modeling is quite tractable for automateci cornputer 

soluti~ns* 

The manipdator system modeled in this chapter is a chah of flexible links which 

are comected by revolute actuated joints (figure 4.1). Each joint is flexible in the âirection 

of rotation of the connecting links. There is an actuator at each joint which may contain 

gears- The stator of each arbitrary actuator k is fixed to the end of link k-1 and the stator 

of actuator 1 is ked to the ground. Each rotor k is connected to link k through a gear 

train and a flexible shaft which presents the joint fiexibility. The manipulator is constrained 

to move in the vertical plane; therefore, the effezt of gravity is taken into account. The 

links are deforruable due to bending during heavy payload opemiions and high speed 

motions. 

In order to develop a simple and compact model, elastic defocmation of link k of 



Figure 4.1 A planar multi-link flexible rnanipulator 

the manipiilatm is represented relative to a floating coordinate system o k ~ k ,  d e d  

pinned-pinned coordinate system. This frame d e s c n i  the motion of the imaghuy 

undeflected beam with respect to the inertial fiame. h it can been seen in figures 4.1 and 

4.2, OXY is the inertial frame coordinate system and 0 ~ -  is the mtating fhme 

associated with link k of the manipuiator. The axis %xi, of the rotating h m e  a x i ÿ k  passes 

through the end points of this link whose îransverse clefleciion w'(xk) is expressed wiih 

respect to this rotating fiame. The kinematic modehg is based on îhe following 

assw~~ptioxls: 

1) The manipdator is constrained to move in the vertical piane OXY, therefore, the 

effect of gravity is taken into account. 

2) Each link is considered to be pinned at both ends in the corresponding floating 

hune. 



Figure 4.2 Link deformation presented in the local c oordinate system 



DYNAMIC MODEUNG OF PLANAR MNWULATORS 48 

in which Li, 2, w', ë!", and êy '> srr the lmgth of link ï, x and y COO- of point A 

in the Iocai coordinate system i, and the unit vectors dong xi and yi axes of îhe local 

cwrdina. system i, reqdvely. By differentiating the position vector with respect to 

time, the velocity vector can be found as: 

where dot over the variables indicates their time derivatives and a, presents the angrilar 

position of the i-th pinneâ-pinned coordinate system. 

Link defiectiom are continuous fimctions of space and time. In order to reduce the 

system dimensicm h m  infinite to hite, it is desirable to discretizc link deflections. The 

generalized coordinates, which are only funcîions of tirne, can be used to obtain the 

dynarnic equations of flexiile manipuiator systems by using Lagrangian dynamics. 

Using the hnite element methad, each link is divided into a number of eIements and 

link deflections are presented in &ms of shape funciions and nodal values of transverse 

deflections and dopes of the Links. The deflection qk(xk) in the i-th element of link k can 

be described as: 

k k  i k k k  
wi (X , ~ ) = Z N I  (x h*i-2+1(t) 

where Sti-1 and $ul are elastic displacement, and $2 and $zi+2 are f l e d  dopes 

at nodes i and i+l, respectiveIy (figure 4.3). N,& represents the 1-th shape fùnction of the 

i-th element of link k. 



Figure 4.3 A typicai element i of an arbitrary link k 

Hermite polynomials, which are used as shap hctions, are given by 

k k  
X  - X i  2 k k  

i k k  NI ( x  )=1-31 
1: 

) + 2 t X  -* )3 
1: 

in which xf is the x-coordinate of node i and 1: is the length of the i-th element with . 

nodes i and i+L of link k 

4.2.2 Kinematic ModeLing of Fiesible Joints 

The arrangement of an acîuated flexible joint is shown in figure 4-4. The rotations 

of the rotor and the link are presented by angles qi and w, respectively. qi is the rotation 



Figure 4.4 Mode1 of an actuted flemïle joint 

angle of the rotor of the actuator i relative to the iinic 1-1, while represents the angle 

between tangent iine of liuk i-1 at xi-l=~.1 and that of linlr i at &O. & and ri are the 

drive shaft stïffness and the gear ratio of joint i, respectives.. The difference v- Ti qi 

shows the joint deflection. We assume that lin. i, joint i, and rotor i all rotate about the 

same axis which can be an approximation for some arrangements of the gear train. 

The equations of motion of the system can be found by using the standard 

Lagrangian appmach. This can be done by computiag the kinetic energy, the potential 

energy, aud the virtual work of the nonconservative loads such as acniator torques. Then 

the dynar.uk mode1 is obtained by satisfymg the Lagrange-Euler equations: 

where s, KE, PE, Qi, and are generalized coordinates, total kinetic energy, total 
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potential energy, generalized forces, and the nimiba of degras of M o m  of the system, 

respectively. 

The total kuietic energy and total potential energy of the system can be found by 

summing those of various components of the system as: 

where n is the number of Iinlcs (or joints) and mk, KE& and KEP npresent kinetic 

enagies of link k, actuator k, and the p a y l d  Similarly mk, PW and PEP are 

potentiai energies of link k. achiator k, and the payload, respectively. 

43.1 metic and Potentisl Energies of an Arbitrary LinL 

The kinetic and potential energies of link k c m  be wrïtten as: 

where g is the gravitational acceledon. The first integrai in equafion (4.9) represents the 

straia energy stored in the link and the second one represents gravity potentid energy of 

the link 



Using h i t e  elexnent discrethion, equations (4.8) and (4.9) c m  be written in the 

where Nk, KEE,~, P=, &k, and &k are the number of elements of link k, the kinetic and 

potentid energies of the e-th element of link k, the x-c oordinate of node 2e-1 (referring to 

figure 4.3), and the Iength of the e-th eIement of link k, respectively. Now by substituthg 

equation (4.2) into equation (4.10), eIemental kiuetic and potential energies of the k-th 

link are obtained in the foIiowing forms: 



in which superscript k is not shown for x and W. 

Generalized coordinates used m obtaining the kinetic and potential energies of a 

typical element i of luik k, can be represented by the following vector: 

This vector includes both rigid body motion degrees of f a o m  aj (j=l, ..k) and elastic 

motion degrees of freedom v: fj=2e-l,2e~l,Ze+2). Thucfore, the total number of 

degrees of W o m  of the clement is k+4. 

43.1.1 Elemental Mass and StiEfness Matrices and L a d  Veetor 

Having the kinetic and potential energies of a typical element of an arbitrary link 

k, mass and stiffiaess matrices and load vector of the element can be found by applying 

Lagrange's equation. Using generalized coordinates, the kinetic energy of a genenc 

element e of the k-th link can be written in the foliowing f o m  

and the components M~~ of mass xnatrix M Q ~  cm be obtained ushg the equation: 

Therefore, various components of elemental mass mai& cm be found in the following 

compact forms: 



It is worth mentioning that P k v I M  are the components of standard consistent mass 

matrix for a beam element. 

Components of the dementai Ioad vector can be obtained using Lagrange's 

equation in the foiiowing mannet: 

and 

Re-  d a m $  )-sYzI~]+ X E E ~  ~ P E E ~  
fk -Hz( ak - 

*k *& 
J 



where STDl and STD2 are second time derivative terms obtained in fhding 

After m g  and substituting the necessary terms m equations (4.23) and (4.24) 

we have 

Let introduce new variables slP, S Z ~ ,  and in order to simpiify the expressions for the 

elemental stifhess xnatrix and remaining components of the load vector. 



in which STD3 is the set of second t h e  derivatives obtained m the nrSt part of equaîion 

(4.28), p= I,2,3,4, and 

where N~~ represents the second derivative of N~~ with respect to 2. NOW fkqk can be 

written in the foliowing fom 

and the stifniess matrk of the e-th element of lùik k is obtained as: 



or in the maîrïx fonn 

KJflk shows the non-zero part of the elemental e e s s  mairix which corresponds to only 

fiexiile degrees of Ereedom. The dimension of the mauU Kfk is 4x4, therefore, the rank 

of the elernental sii£fness matrix is four- In other words the components associated with 

rigid degrees of fraedom are ail zero. Also, equation (4.34) shows that the non-zero part 

of the elemental stiffness matrix has two parts, the first part is the traditional stiffness 

matrïx of beam elements and the second part is due to centrifugai effects during the large 

o v e d  motion of the beam, 

The components of elemental mass maîrjx, elemental stifnness matrix, and 

elemental load vector are functions of elastic d e f o d o n s ,  elastic velocities, and nonlinear 

te= including rigid body degrees of fieedom and their time derivatives. Therefore, the 

dynamic equations of motion of multi-Iink fiexiile IllSinipdators are nonhear- Centrifuga1 

effects are included in the second part of the elemental stiffiiess matxix and the Coriolis 

effects can be seen in the e~ptessions for the loading vector. 

4.3.13 Assemblage of EIemeatai Matrices and Vectors of the k-th Link 

As it was previously pointecl out, one part of the elemental mass maûix is exactly 

the standard consistent mass matrix of beam elements. Simiiady it was shown in equation 

(4.34) that the non-zero part of the elemental stiffness matrix consists of the standard 

beam element stiffness matrix and the consistent mass mairix muitipiied by -&*. Therefore 

we can assemble these parts using the standard procedure used in iinear finite element 



analysis. Also. beeause the coefficient {~~&-~cosf&) in the expression for the 

elemental Ioad vector (equation 4.32) is constant for ali of the elements of the link, it is 

possibIe to construct Link load vector h: by assembling the elemental vectors hi" whose 

components can be defiiied as: 

The size of iink mattices associateci with elastic degrees of Ereedom which are 

constructed U s h g  standard b 1 y  procedure i~ 2(Nk+l )  X 2(Nk+I) and that of link 

vector is 2(Nk+1) X 1. 

Other components of the elemental m a s  rnatrix and Ioad vector carresponding to 

the rigid body degrees of M o m  and coupling effects can be found by intcgrating aii  of 
k k  the given inte@ from O to Lt instead of x.k to x. +t . If fi& (mass per unit length of 

the k-th link) is constant the results can be written as: 

where hkl, is the r-th component of the h t  which is the assembleci vector of demental 

vectors h P  with the components given in equation (4.35) and hk2, is the r-th component 



of the kk which is the assemMed vectm of e h n t a l  vectors hsLC with the components 

calculatecl by the following w o n :  

The remaining components of the load vector can be wriüen as: 

The above expressions hclude nodinea. effects of elastic degrees of k d o m ,  

therefore, they should be found by means of iterative procedms. 

43.2 Assembhge of Link Matrices and Vectors 

In order to reduce the size of resuiting link mattices and vectors we can apply 

boundary conditions due to pimeci-pinned position of the links in their local floating 

frames. Because transverse elastic deflections (w) at the both ends of each link are zero, it 

is saCient to eiimhîe the first and the 2Nk+l -th rows and columns of the part of the 

mass and stShess matrices of IinL k associated with elastic degrees of freedom before 

assembling them. Also the 2Nk tl-th row of each liak load vector componding to elastic 
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de- of fiedom shodd be elirninated Therefore, the sizes of the aforementioned part 

of the liak mas matrix_ stiffiiess mafrk and load vector of each link k are reduced to ZNk 

X 2Nb 2Nk X ZNk, and î& X 1, respectiveiy. 

Now the sub-system mas maûïx MS', the sub-system stifhiess manix KS; and 

the sub-system load vector fS' caa be obtaineâ by assembling corresponding link maûices 

and Ioad vectors in a simple way which is shown schematically in figures 4.5 aad 4.6. In 

these figures, n is the numba of rigid degrees of freedom, and Mt hi, and KE1 are the 

mass matrix, the an+ velocity, and the eIastic stiffiiess match of link i, respectively. 

Zn figures 4.5 and 4.6, the fint n rows and columns of the mas  mattix and the fbt 

n rows of the load vector can be found easiiy by using equaîions (4.36-4.40) and (4.42- 

4.43). It is worth me9fioning that to obtain the assembled xws I.+gm,J+r 
1-1 

should be used instead of k+r in equations (4.39) and 4.40). 

Figure 4.5 Schematics for construction of system link mass ma& 



Figure 4.6 Schematics for construction of system Iink sîifhess matnx and load vector 

- 

- 

The resulting mass and st i fhss matrices and the load vector are called the su& 

system mairices and the sub-system load vector in order to emphasize that the de- of 

freedom of flexi%le joints (qd bave not yet been incIuded in the derivation. The dimension 

of the system mairices is [2n+Z2NL]X[2n+Z2Nd and that of the system load vector is 

[2n+ZîNJXl. In section 4.3.4 the elements of the system matrices and the load vector 

associated with f i e x i i  joint variables are fmd. 

1 n rows 

* f si- 

433 Boundary Conditiom due to the P a y l d  

Boundary conditions at the end of the last hk due to the payload can be applied 

by using Lagrangian approach. Therefore, the fhst step is to h d  W t i c  and potential 

energies of the payload. 

Using the notations hm the m g  parts of the chapter, the position and 

velocity vector of the payload are 



The kinetic and potential energies of the pay1oad can be wn#en as: 

where M, and IF are mass and moment of inertia of tbe payload, respectively. 

Taking into account the effect of the payload khetic and potential energies on the 

total Lagrangian of the system, the followhg corrections should be made in the 

cornponents of the sub-system mass maaix and the load vector: 

In the above expressions, the sign + represents the substitution of the lefi hand side by 

the right hand side. The corrections are made on the sub-system mass matrix and the sub- 
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systyem load vector which were consaucted by assembhg elemental mattices and vectors 

and applying boundary conditions at b t h  ends of each link. This is why the row and 

column numbers are show in parentheses instead of subscripts used for elemeatal 

mabices and vectors. 

The kinetic and potentiai energies of each actuator cbmposed of the stator, the 

rotor, and the aexible joint are derived in tbis section. Then elements of the system mass 

nxmîx and the systern stiffiiess matrix associaîed with the flexible joint variables are found 

and the whole system mass and sîifhess matrices is built by including the correspondhg 

sub-matrices obtained in the previous sections. Moreover, the elements of the damping 

mmbt due to the joint damping, and the elements of the generaüzed forces due to the 

actuator toques are obtained by using the principle of virtual work. 

Figure 4.7 shows the various angles which should be used in hding Yk, the angle 

between tangent lines of adjacent links k-1 and k at cornmon joint k. In this figure 
k 6: = v, and 6;, = v&i-t+Z are the slop of LinL k at 24 and the slope of lidc k-1 at 

2' = LL-, in the corresponding local floating system, respectively. 

Rtferring to figures 4.1 and 4.7, the kiaetic and potential energies of the fïrst joint 

cm be written as: 

and those of other actuators (k=Z,3, ......a) are 



Figure 4.7 Definition of the agies at joint a 

where Irk, Isk, mek, m s k ,  and Kjk are the mass moment of inertia of rotor k, the mass 

moment of inertia of stator k, the mass of rotor k, the mass of stator k, and the rotationai 

stiffness of joint k. 

The system m a s  matrix and the stiffness maûix can be presented as: 



Figure 4.8 Schematic of system mass and stifhess matrices befm substituting 

components associated with fiexile joint degrtes of fteedom 

and the system load vector is given by 

Figure 4.9 Schematic of systemload vector b e f o ~  substituting components 

associated with flexible joint degrees of fieedom 

in which MS', KS', and fS' are the sub-system mas  matrix, the stiffness matrix, and the 

load vector obtained in the previous section. 

Now by using Lagrange's equation, it can be shown that the elements of the mass 

and the stiffhess maîrices and the load vector of the system can be presented as: 
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Nonlinear components of tk system mass matrix are not shown in the above equations. 

Therefore, it is necessary to conect such components in the following manner durhg the 

iterative process of solution: 

MS(n+l,n+ j )  c MS(n+l,n+ j)+(mr, +rns,)L,L/co~(@,-@~) 
(4.73) 

k=2,3,..n and l,j=1,2? .... k-I 
MS(n+I,n+j) on the right hand side is the Iinear part of this component shown m previous 

parts of this section. 

By applying the Lagrange's equation, the foilowing nonlinear components of the 

system load vector can be obtained. 

In the above equations the sign + represents substitution of the Ieft haad si& by the right 

hmd si&. 

43.4.1 Generalized Forces due to Actuator Torques and Joint Dampiogs 

There are 2n nonconsenrative loads, namely, n actuator toques and n dampinp 



torques resulihg h m  friction of the joints. The generalized forces due to the actuator 

torques and the damping toques in the joints can be found using the principle of Mtual 

w o k  The total virtual wods of these loads can be Wntten as: 

where bj is the viscous damping coefficient in the j-th joint, Ushg equaîion (4.75) the 

generalized forces requinxi in the right hand side of the Lagrange's equations can be 

obtained as: 

The (2n+Z2Nj)X(1) vector of generalized force Q, which is composed of the components 

given in equation (4.76), c m  be shown in the form of 

where superscript T stands for transpose notation. 

4.35 Eqmtiom of Motion 

Using the resuits obtained m the preceding subsections, the system of equations 

c m  be written in the foiiowing f o m  

U is the vector of generalized coordinates of the system including aii of the rigid and 

fiexile degrees of fitedom. It is worth noting that mass matrUr M m )  is symmeaic and 

positive dennite. Equation (4.78) can be organized in the foiiowing partitioned form m 



order to represent the muplhg effects between the joint motion, the iarge rigid body 

motion, and the smail eIastic motion of the system. 

In equation (4.79) q, 7\i and q~ are vectors of fIexii1e motor degrees of freedom (qk 

,k=l,..n), joint degrees of freedom (& , k=l, ..A), and elastic degrees of fieedom of the 

system (vt, Ir-1, ..a , j=1, ... 2N& respectively. MS*, MS5, and MSn represent effxtive 

inertia matfices for the motor motions, the joint motion, and the and motions, wMe 

MS,, MS& and MSr, are the coupled inertia mattices of the system. Due to the procedure 

used in the formulation, there is no static coupling between the rigid motion and the snall 

dastic motion. As it can be seen, only Fm is funciion of actuator torques (T,), while other 

force vectors are functions of rigid and elastic displacements and velocities. Since only 

damping due to the joints is considered in the modeling, only sub-maîrix CS,, of the 

damping matrix is not zero. Structural damping has not been taken into account, however, 

it can be included in the formulation veq easily. 

The equation of motion will be solved in the next section using the Newmark 

method for some cases in order to show the validity of the model. Also, the couphg 

effects of joint and link flexibiliiies on the overall motion of the multi-link maaipulators 

will be observed, 



Some &dation resuits are presented in this section in order to test the validity of 

the mode1 and to 

of the system. 

Consider 

i= l,2,3): 

p,q* = 5 

Li = 1 
M p = 5  
1, = O  

1~ = 0.2 

Is, = 0.2 

mr, = 0.2 

msi =O2 

r , = l  
b, = O  

show the effects of link and joint flencbilities on the dynamic behaviour 

a h-Iink miinipuiator with the following physical parameters (for 

m 

where pi& and Li are mass pet unit length and length of link i, Mp and Ip are mass and 

moment of inertia of the payload, Iri, &, rnc, and mi are moments of inertia and masses 

of the rotor and stator of acaiator i, and ri and are gear ratio and damping of joint i. 

Different values of ElIl, E&, E&, 91, Kj t ,  and Kj3 are used in various cases to show 

the effects of fiexiiility. Each link is divided into two elements, therefore; the total number * 

of degrees of M o m  of the system in the presented examples is 18. 

4.4.1 Free Vibration of the System 

In this case, the aforementioned system is released h m  its initial rest position 
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Figure 4.10 Initial position for free miration simulation 

shown in figure 4.10. 

The results of joint angles QI, a, and a3 for such system with large values of Ers 

and Kjs ate shown in figures 4.11 a-c. It can be seen that the response of the system is 

completely in agreement with the motion of a triple rigid pendulum with simrlar masses 

and inertias for the links, the payload, the stators. and the rotors. The response of the rigid 

counterpart was obtained by solving its system of equations of motion, which were 

obtained separately but not shom here. 



Free Vibration 
nexible link/flexible joint 

I L 

very stiff Iinks/very stiff joints 
---- rig id lin ks/rigid joints 

1 .O 2.0 

time (sec) 

Figure 4.1 1-a Joint angle 9, for a rigid manipuiator and a manipulator with vexy stiff links 

and joints 
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Free Vibration 
Elenile ~ / F I e x i b l e  joint 

- very stiff iinks/very stiff joints 
---- rig id lin ks/rigid joints 

time (sec) 

Figure 4.1 1-b Joint angle a2 for a rigid manipulator and a manipulator with very stiff 

links and joints 



Free Vibration 
Flexible link/Flexible joint 

I I 

- very stiff links/very stiff joints 
- - - -  rig id tinks/rigid joints 

tinte (sec) 

Figure 4.1 1-c Joint agie @ for a rigid manipulator and a manipuiator with very st i f f  

iinks and joints 



Figures 4.12-a and 4.12-b present x and y coordinates of the end effector for 

various combmatio~~ of lin' and joint tlexibüity. These figures illiistrate the effects of 

these flexriilities on the overall motion of the systenz Either joint fiexibilty or link 

flexi'biüty changes the overall motion motion of the system from that of the rigid 

manipulator- But as it can be seen m figure 4.12-b, in the presence of both joint and iink 

flexibilities, the &viation of overall motion is much larger than other cases. In other 

words. the intetaction between joint and iink fiexibilities phys an important role in the 

dynamic befiavim of the system. 
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Free Vibration 

time (sec) 

Figure. 4.12-a x-coordinaîe of the payload for various cases 



Free Vibration 
FIexible link/Flenble joint 

-2.993 t t 1 
EI=400 ~.m '  . K j = l O O  N.m/rad 

---- rigid links , Kj=100 N.m/rad 
- - EI=400 ~.rn' . rigid joints 
- - rigid links . rigid joints 

time (sec) 

Figure. 4.12-b y-coordinate of the payload for various cases 



4A.2 Large Overall Motion of the Mamipuiator 

Tn this case, the system is released from its initial rest position shown in figure 

4.13. The initiai x and y coordinates of the p a y l d  are chosen 3 and O m, respectiveIy. 

The nonlinear e&cts are much sîronger than the previous case, because the motion of the 

system is not limited to d m Ï o n  about its equili'brium position. 

Figure 4.13 Initial position for large overall motion simulation 

In figures 4.14 a-b the effect of link fiexibiiity on the x and y coordinates of the 

payload is shown. As it cm be seen, the ciifference between large ovedi motion of the 

system and that of the rigid linkMexl'ble'joint manipulator (Kj=100 N.drad) incteases 

especially at the end by increasing the h i c  aexi'bility- Figures 4.15 a-b show the x and y 

coordinates of the payload for maaipulaton with shnk link f l e x i i  but with various 

values of the joint flexibility. These figures lead to the conclusion that more &xi'tIe joints 

cause more deviations in large overall motion with respect to the flexiile lWrigid joint 

counterpart. However, simila, to the previous case (section 4.4.11, the interaction between 



joint and link fiexi'bilities has the most signifiant effect on the dynamic bchavior of the 

system. Figures 4.16 a-c represent the tip elastic transversal defidon of various linEcs 

reIative to the tangent lines to the collfesponding link at the base for a manipuiator with 

fienile I i t b  and joints. As it can be seen the tip points oscillate undesïrably. 

Large Overall Motion 
Flexible link[Flexible joint 

1 i 

rigid link , rigid joint 
- - - -  rigid Iink , Kj=100 N,m/rod 
- - EI,=2500 N.m2, EI2=El3=1 500 ~ . m ' ,  Kj= 100 N.m/rad 

- - El,=2000 N.m2. E12=EI,=1 000 N.mZ, Kj=100 N.m/rad 

1.0 2. O 

rime (sec) 

Figure 4.14-a Effect of link fiexi'bility on the xcoordinate of the payload 



Large Overal Motion 

time (sec) 

Figure 4.14-b Effect of lin. flexi'bility on the y-c m d h t e  of the payIoad 
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Large Overall Motion 
Flexible link/Flexible joint 

rigid link , rigid joint 
---- EI,=2OOO ~.rn', E12=EI,=1000 ~ . r n ~ ,  rigid joint 
- - EI,=2OOO N.rn2, El2=EI3=1000 ~.rn', Kj=200 Nm/rod 
- - EI,=2000 N.m2, E12=EI,=1000 ~.m', Kj=100 ~ . m / r o d  

1.0 2.0 

time (sec) 

Figure 4.15-a Effect of joint flexibility on the xcoordinate of the payload 



Large Overall Motion 
Flexible link/Flexïble joint 

rigid link . rigid joint 
----  EI,=2000 N.m2, €l,=Ei,= 
- - El,=2000 N.m2, E12=EIs= 

- - EI,=2000 N.m2. El2=ElS= 

1 O00 ~.rn', rigid joint 
1000 ~.rn', Kj=200 N.m/rad 
1 000 N.rn2. Kj=100 N.rn/rad 

1.0 2.0 

Eime (sec) 

Figure 4.15-b Effect of joint fiexiiility on the ycoordinate of the payload 
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Large Overal Motion 
Flexible link/Flmiiale joint 

0.15 1 1 I 

-0.10 I 
O. O 1.0 2.0 3. O 

time (sec) 

Figure 4.16-a Tip deflection of the first link with respect to its tangent line at the base 



Large Overal Motion 
Flexible link/EïexibIe joint 

0.15 , , 

- EI,=Z000 N.rn2, Ell=EI,=l 000 N m 2 .  Kj= lOO ~.rn/iod 

tinte (sec) 

Figure 4.16-b Tip deflection of the second link with respect to its tangent line at its base 
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Large Overal Motion 
Plexible Iink/FIenïle joint 

0.10 r I I 

iime (sec) 

Figure 4 . 1 6 ~  Tip deflection of the third link with respect to its tangent line at the base 
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4.5 Summary and Conclusion 

In this chapter an efncient finite e1ernentRagrangian approach for dynamic 

modehg of lightweight dti-link manipulators with both flexible links and flexible joints 

has been developed, The dynamic elastic response of each flexible link is formulated 

relative to a fioating frame d e d  pinned-pinneci or viaual link c6ordinate system, Each 

link is divided ioto a nnite number of elements and the elemental kinetic and potential 

energies of an arbitrary Iink are derived in a systernatic way. Using virtuai work of extemal 

loads and kinetic and potential energies of flexlile links, actuated flemile joints, and 

payload, the equations of motion of the system have been found by using Lagrange's 

equations. The dynamic mode1 d&ved in this study is fiee h m  assumption of a nominal 

motion and takes into itccou~lt not only the coupling effects between the ngid body motion 

and the elastic motion but also the interaction between flexible links and actuated fiexiile 

joints. Due to the afimentioned couplings as well the variation in the effective inertia of 

the system as its configuration is changing with the, the model is highly nonlinear and 

coupled. 

The validity of the rnM is shown and the effects of the link and joint flmiilities 

are illusirated by some case examples. It is shown that the interaction between the joint 

and link flexibilities causes significant changes in the àynamic behavior of the system. Also 

it is shown that in the present of link flexi'bility the tip points of the links oscillate 

undesimbly which causes difficulties in control of flexible manipulators. 



DYNAMiC MODELING OF SPA- MANIPULATORS 

WITH FLEXIBLE LINgS AND JOINTS 

5.1 Introduction 

In this chapter, a redundant Lagmgiadfini~e element formulation is proposed to 

model the dynarnics of lightweight spatial manipulators with both flexible links and joints. 

This modehg is an extension of the dynamic model developed for spatial manipulators 

with h i l e  Iinks proposed by Farid and Lukasiewicz [los]. The links are assumed to be 

defonnable due to bending and torsion. The elastic deformations of each link are 

expressed m its tangentid (clamped free) local floating fiame. The constra.int equations 

representing khmatical relations among different coordinates due to connectivity of the 

iinks are added to the equations of motion of the system by using Lagrange multipliers. 

This leads to a mixed set of nonlinear ordinazy differential equations and nonlinear 

dgebraic equations with coordinates and Lagrange multipliers as unknown variables. The 

resuiting system of differential dgebraic equations (DAES) is converted to a set of 

differential equations by substituting the constraints with theit double time derivatives. 

These equatiom are solved numeridy to predict the dynamic behavior of the system. The 

dynarnic mode1 derived here is free h m  the assumption of a nominal motion and takes 

into account not only the coupling effects between the rigid body motion and the elastic 

defonnations of the links, but aiso the interaction between flexible links and actuated 
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flexible joints. 

5.2 Kinematics of the System 

The manipulator system modeled in' this chapter is a chah of fkxiile iiuks 

connected by revolute actuated joints (figure 5.1). Each joint is fkxiile in the direction of 

the rotation of the connecting links. In addition to the base actuator which rotates the 

system about Z-axis, there is an actuator at each joint which rotates the next iink about the 

axis of the rotor. The stator of each actuator k is ked  to the end of link k-1, while the 

stator of the base actuator is fixed to the ground. Each rotor k is connected to link k 

through a gear îrain and a flexible sh& which presents the joint fiexiity. 

Figure 5.1 A spatial d t i - M t  flexible manipuiator system 
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5.2.1 ginematic Modeiing of Flexible Links 

Each iink is assumed to be deformable due to b e n h g  and torsion, The effects of 

axial and shear deformations are negiected. As shown in figures 5.1 and 5.2, eIastic 

deformations of each Iink k are presented relative to a local floating fiame oit-xfltzi,- This 

local fiame is a clamped-fiee coordinate system whose rrr, and yk axes are tangent to link k 

at and paralie1 to the horizontal plane @'Y plane), respectively. @I') and am are two 

angles presenting the orientation of the Q-axis of the local coordmate system in the inertiaI 

reference fiame. is the angle between the projection of the xi,-& on the horizontal 

(XY) plane and the X-axh, wbùe is the an& between the a-axis and the Zaxis. vk 

and wk are yk and 4, components of linear &fOzmation of IuiL k duc to bending. %a) 

defines the rotation of link k at its base (03 about xi,-& d t i n g  h m  the abdute 

rotation of end point (q3 of link k-1 about &-r axis, while is rotational deformation of 

various sections of link k about xk-axis relative to the cross section of link k at point or, 

O X 

Figure 52  Absolute and relative position vectors of an arbitrary point A of iink k 
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kf&g to figure 5.2, the position vector of an arbitrary point A of link k on its 

elastic curve can be written in the fo110wing fonn: 

where #, R~, and rd are the position vectors of point A in the global system, origin ok in 

the global system, and point A m local coordinate syskm hyyzk.  R:, R:, R: are 

compments of vector R~ dong tbree axes of giobal cwrdinate systern, and a, vk, aud w i  

are x-coordinate and deflections in yk and zkdirections of point A in the local coordinate 

system, respectively. 1, J, and B are unit vectm dong the coordinates of the global 

system, while b, & and !gk are unit vectots of the local system. 

Local unit vectors jb and can be written in terms of & J, and in the 

following forms: 

where c~')=cos(@I'~~, s~"'=sin(@~~), c2"sos(@2@)). and @)=sin(@??. In order to 

reduce the length of the equations, uniess it is necessary, superscript k wii i  be kept only 

for components of R and angles 0 1  and Q2, while other variables wili be used without 

superscript or subscript 

By substituthg l a d  unit vectors 4, L, and & in terms of aim and and 

global unit vectors 1, J, and h m  quations (5.3), (5.4), and (5.5) into equation (5.2) 

for fi, the velocity vector ?' of each poht of LinL k can be obtained as: 



The orientation of the tangent Line to link k+l at presented by @i'L*L) and 

a2'+" (figure 5.3-b) is a function of the orientation (<DI@) and a')) and the &tic 

deformations of link k as well as angie f i )  between tangent lines to W k and k+l at 

point ot+~. For small defomÿitons, the anguIar deformabon of link k at point a+l can be 

separated into three parts: v:, de, and 8, (figure 5.3-a), where vte and -w', respectively 

show the rotation angies of link k at point OM about a-axis and yk-axis, while 8, is the 

rotation of the end section of link k (at q;+i) about xk-axk.  

Having unit vectors i, and & associateci with a - x ~ ~ z k  cwrdinate system, we 

can find three unit vectors &, j't, and at the end point ( o ~ , ~ )  of link k by mtating 

subsequently each unit vector (L, &, and W an angle -de about y k - a ,  an angle v: about 

zk-axis, and an angle O, about a-axis. It is obvious that unit vector rk is tangent to link k 

at point &+I. Now let these three unit vstors (i'k, j'k, and &'3 rotate an rmgle p l ) ,  which 

is not necessarily smali, about unit vector j'k which is cornmon n o d  of tangent lines to 

two links k and k+l and also no& to the stator and rotor of the revolute actuator at 

joint OL+~.  As the result of these rotations (shown in figure 5.4), unit vector &+l, which is 

along ~ + ~ - a x i s  of link k+l is found This unit vector can be expressed in tenns of its 

compoaents along X, Y, and Z axes in the foliowing fom: 

. - l(k+l) 1 + m(k+l)~ + n(k+l )  K 
Ek+l - - - (5.7) 

in p ,  ,#+O s and ,p+o are functions of mla), @2@), elastic rotations of link k at 

point &+I, and angle fi' .  Angles 01"" and iod2'+" can be found by the following simpie 

equations: 
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Figure 5.3 Angular deformations of link k at point a+r expressed in its local 

system and orientation of the tangent line to iink k+l at &+, 
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Figure 5-4 Representation of unit vector it+l resuiting from 

various rotations of unit vectors ik, ja and Iri, 

Tangent to iïnk k+l at point Ok+, 

~ + I I ,  m(k+~, , and nfk+') will be denned in the next section. These quantities are compIicated 

nonlinear functions especially for mdti-Iink manipulators. Therefore, it is better to 

consider aiw and uidz'+') as additional vari&Ies and use equatïons (5.8) and (5.9) as two 

2 

constraints (in addition to other constraints) for each joint ok+l. There are five remaining 

constraints for each link. Three of them present the rielaiion between coordinates of the 

position vectors of the origin of link k+l and that of the link k. The forth one gives the 

angular rotation of the origin of the link k+l about its Q-axis in tenns of that of the iînic k, 

rotational deformation of the end of the link k, and the angle (between two vectors 

rk and &+l). Finally the fifth one defines the relation between angie pl) and components 

of unit vectors j'k and &+I. 

k 



52.2 Kinematic Modeling of Flexible Joints 

The arrangement of an acniated flexible joint is shown in figure 5.5. The rotaiions 

of the rotor and the iink are presented by angles q k + ~  and p), rcspectively. qr+t is the 

rotation angle of the rotor of actuator k+l with respect to the iine tangent to link k at 

xk=k, while p l '  represents the angle between tangent Iine of link k at X?=L and that of 

iïnk k+l at ?+'=O. &+l is the drive shaff stifbiess of the joint k+l, rk+l is the gear ratio, 

and the clifference y@+')-&+l q k + ~  shows the joint deflection. We assume that link k+l, joint 

k+l, and rotor k+l aU rotate about the same axis whkh c m  be an approximation for some 

arrangements of the gear train. 

Figure 5.5 Mode1 of the k+la actuaîed flexible joint 

As it can be seen in figure 5.5, axes %+le and Q + ~  have different direction cosines 

due to the flexiiility of joint k+1. We can introdufe two angles P~&+') and v2@+" simiiar 

to angles o~"') and 42'") introduced in the previous section, to present the orientation 

of axis Q+~*. Two equations similar to equations (5.8) and (5.9) can be used to obtain 

anges and simpiy by substituthg PL), mm+'), and nW respectiveiy by isa+l), 

ms*+l), and ns@+" as direction cosines of Iine &+le. 



5.2.3 Rotation of a Vector about an Arbitrary AQs 

As it was mentioned earlier, in order to find the orientation of the local -+I 

coordinate of liuk k+l, we shouId rotate the unit vectors b, k, and of the local 

coordinate system of link k about vgîous axes. Therefore, it is necessary to develop a 

rotation matrix which can generate the new orientation of any vector a h  mtating about 

any arbitrary axis. Without loss of generality we c m  consider that the axis of rotation 

passes through the origin of the vector. 

Let r be the position vector of point Q and OC show the axis of rotation (fi- 

5.6). The angle between r and OC is p. We rotate the vector r an angle 8 about OC. It is 

shown in figure 5.6 that as the resuit of this rotation, the vector r (09) is transformed to 

the vector ro (OQ*). f i e  change of position vector r is denned as Ar. The new vector r* 

Figure 5.6 Rotation of vector r about axis OC 



and the vector Ar can be written as: 

Since the vector Hv is pexpendicular to the plane OCQ, its direction can be found as v x 

r, where v is a unit vector dong the suris of rotation OC. The magnitude of the vector 

HQ* is given by 

where a is the radius of the circle resuiting h m  the rotation of the point Q about OC and 

from figure 5.6-a, it can be written as: 

On the other han& the magnitude of the vector QH can be found as: 

e  HI =a( i - cos S )  = 20 sin2 3 

Since the vector QH is perpendicular to both v and HQ*, its direction is same as the unit 

v x r  
vector vx- , thus 

a 



by substituthg equations (5.12) and (5.15) into w o n  (5.1 l), we have 

and therefore; 

Moreover, we can use the identity 

to Wnte the quaiion (5.17) in the foilowing form: 

- - 2 9 P=r+vrs in8+2  (v) min2 - 
3 

... - 
where V and r are skew symmetric matnces given by 

in which v ,  v,, and v. are the components of unit vector v and r,, r,, and r, are the 

components of unit vector r. 

Equation (5.19) can also be written in the following fonn: 

- 
- 2  2 0  r * = [ I + v s i n 8 + 2 ( v )  sin - ] r=Ar  

2 



where 1 is a 3 x 3 identity rnaîrix and A is the 3 x 3 rotation matrix given by 

which is expresseci in terms of the angie of rotation (e) and the unit vector dong the ivns 

of rotation. 

The orthogonality of the rotation mairix A cm be proved in the foIlowing simple 
- - - - 

way. Sina V is a &w symmetric maaU (v' = - V ), ( v ) ~  is a symmetric matlin and 

one can write 

Also the following recurrence rehîions can be noted. 

which proves the orthogonality of the rotation mat&. 

In the case of small rotations, we cm substitute sin@ by 0 and neglect the third 

tem in equation (5.22) to yieId an approximation of rotation ma& A as 
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5.2.4 Derivation of the Direction Cosiws 

As it was shown in figure 5.4, unit vectors rb Zb and Bk at the end point (&+l) of 

Illik k c m  be found by rotating subsequently each unit vector &,*h, and Q an angie 

-W. about y-, an angk va about zk-axis, a d  an angle €hW) about a-&. By 

assuming that these eiastic deformations are smaii, equation (5.27) can be used to hi 

three rotation matrices Ap A,, and Ae in the following farms 

in which c~=cos(~PI~)). slsin((@~')), c~os(cfr2~)). and s2=sin(f&')). 

Since the rotations are smali, the order of rotations is not important and one 

rotation matrix cm be obtained by multiplying the three different ones After neglecting 

second order te=, we have 



By multiplying unit vectors 4 and & by the rotation ma& A* and neglecting higher 

order terms. & and & can be obtained in the foLIowing forms 

Now we shouid rotate unit vector 6 an angie about unit vector & to reach to 

unit vector L+L tangent to the link k+t. Since PL' is not neamady a d angle, we 

shodd use equation (5.22) to construct the proper rotation matnx 4. 

sin- for this rotation the vector v ~ j ' ~  the associated skew symmetric martix used in the 

above equation is 

By applying the rotation u m i x  A, to the vector hm. we have 
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After substituting A, various components of the unit vector h+l can be written in the 

The equations of motion of the flexiile manipuiator systems can be found by using 

standard Lagrangian approach. The proposed dynamic madel contains dependent . 

coordinates which are intemlated through holonomic constraint equatiom. Thmefore, it is 

possible to use metbod of Lagrange multipiiers to obtain the equations of motion. As it 

was shown in chapter 3, by using the formai way of dealing with constraints equation in 

the cdculus of variations, we can obtain the following system of différentid equations for 

a system with n degrees of freedom h m  which m degrees are redundaut. 
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i = i,...... n 

where L shows the Lagtaagiaa of the system GKE-PE), Â is the vector of Lagrange 

multipliers, and Cq is the consiraint Jacobian ma&h (mXn) which shows the derivatives of 

the ci i f f i t  constraints with respect to various vanables. The system of düferentiai 

equations (5.40, 5.41) cau be solved numerically to predict the dynamic behavim of the 

manipdator system. 

To obtain the equations of motion of a manipulator system by Lagrangian 

dynamics, fht we need the kinetic and potential energies of its various components 

including the links, the actuators, and the payload. Since the number of degrees of 

-dom of each link is infinite due to its elastic &formations, we use the finite element 

method to approximate the real system with a system with finite degrees of freedom. 

53.1 Kinetic and Potential Energies of the Links 

Each link is divided into a number of elements. The link deflections are presented 

in temis of shape functions and nodal vllus of transverse &ffections, slipes, and rotation 

angles. Hermite and Linear shape functiom are used to approximatP. bending deflection 

and torsional deflection of the links, respectively. Each element e of link k bas 17 degrees 

of freedom, namely, mlm), a2@), Y?lm), Y ~ ~ ) ,  a'), qk, and f') as ngid degrees of freedom, 

vze-i, vk, v-1, and VZ~+Z as nodal transverse deflections and slopes in the y-direction, w ~ ,  

wk, wwi, and W-2 as nodal transverse deflections and slopes in the z-direction, and Qi, 

and Qi+l as nodal rotation angles about x-axis. The notations used for transverse 

deflections and slopes in y and z-directions are shown in figures 5-74, b and notations 

used for rotational deflection about x-axis are shown in figure 5.7s. 
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Figure 5.7 Nodal elastic deformations of each finite element of link k 



Now kinetic and potential energîes of each iink k, presented by KELk and P*, 

can be Wntten as the summation of elemntai Linetic and potentÏal energies shown by 

=' and PEE,~ in the foIlowing forms: 

where Nk is the niimber of elements of link k and h, &, and L are the ùensity, the a o s s  

sectional area, and the polar moment of M a  of Iink k at each point. Ek, Gi, I,", and 1: 

are Young modulus of eIasticity, shear moduius, and area moments of inertia about y and 

z axes, respectively. The notations: c~=cos(@l@). si=sin(~!t')), c~=cos(@~~)), and 

~&n(@~')), are used to simpiify the trigonometricd expressions in the above equations 

and also in the next parts of this chapter. The first term in the right si& of equation (5.42) 

shows the kinetic energy resuiting h m  the li~ear motion of each point, while the second 

tem is due to the rigid and elastic angular rotations of the iink about its x-axis. The fksî 

term of the potential energy shows the efféct of gravity, while the second and third terms 

present the bending effects of the Iink about z and y axes, respectively. The 1st term 

presents strain energy due to torsional deformafion of the link 

5.33 Kinetic and PotentiaI Energies of the Actuators 

The base actuator, whose stator is fixed to the ground, rotates the manipuiator 

system about the global 2-axis. Its kimtic energy  KEA^^ and potential energy (PEA? 

can be written as: 
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in which I& & qt,, and rb are the moment of inertia of the base rotor, the joint stiffness, 

the rotation angle of the base rotor, and the gear ratio of the base actuator, respectively- 

The kinetic and potentiai energies of the first actuator, which rotates the fïrs link 

about its local yI-axis, have the foiiowing foms: 

where Isxi, IsyI, Iszl, Incl, Iryl, and Ini are moment of inertia of the stator aud rotot of 

the fkst actuator about different local axes. Kt and present the stiffiiess and gear ratio 

of the joint, respectively. 

Similady the kiuetic and potentiai energies of the k-th actuator (k=2, ....JI) can be 

written in the following forms: 

where mrk and msk are masses of the rotor aad stator of the k-th actuator. 
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533 V i i  Work of the Egternd and Damping Torques 

There are 2n+2 nonconse~ative loads, name1y n+l actuator torques and n+l 

damping torques resuiting Erom fiction of joints. The generalized forces due to the 

actuator torques and damping torques in the joints cm be found by using the principIe of 

virtual work The total virtual work of these loads can be written as: 

where and bj are viscous damping coefficients of the base and j-th joints, and Tb and Tj 

are torques appiied by the base and j-th acaiators. Using equation (5.50) the generalized 

forces required in the right hand side of the Lagrange's equaiions can be obtained 

53.4 Equations of Motion 

Due to considering extra coordinates in descriiing the kinematics of the system, 

the manipuiator is dynamidy modeleci in a redundant approach. By satisfying Lagrange 

equatiom and substituthg the constraints wth their double time derivatives, the foilowing 

second order system of nonlinear differentiaI equation cm be obtained . 

in which {q}  presents a vector consisting of a l l  of the degrees of fieedom of the system 

and ( h }  is the vector of Lagrange multiplim. {Qv) is the load vector inc1uding the 

velocity texms due to Coriolis and centrifuga1 effects, and gravity terms. A h  it includes 

-KS[q} due to the elastic deformations and - B S { ~ }  due to the joint dampings. {Qe} is the 

vector of extemal loads and C, and {Qc) present the consiraint Jacobean matrix and the 



vector consisting of nonlinear terms d t i n g  h m  îwice tûne dinexeatiation of the 

constraints, respectivelyY MS and KS are system m a s  and stiffiiess matrices. These two 

system matrices and system vector (Qv) in equation (5.51) can be obtained in rhree steps. 

In the fint step various matfices and vectors are built for fide elements of each link. Then 

they are assembkd to nnd corresponding matrices and vectors for each lnik. And W y  

system matrices and vectors are f m e d  by assembling those of various links and joints. 

Boundary conditions are used to eliminate nonchanging degrees of freedom and to 

modify the elements of the link mass matrix and the load vector. These boundary effects 

are due to the d a m m e s s  of each link at its origin, the mass and moment of inertia of the 

stator and rotor of each revolute actuator, and the mass and moment inertia of the 

5.3.4.1 Derivation of Elemental Matrices and Vectors 

To simpiify the derivation of components of various elemental matrices and 

vectors of each link, they are partitioned into submatrices and subvectors in the foliowing 

forms: 

in which e and k, respectively, show the element and link numbers, and the size of each 

maaix and vector are shown on the right side of them. Matrices and vectors with subscript 
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Re refer to 3 degrees of k d o m  fepresentiag the kear motion of the origin of link k, 

while those with Se are associated with other 14 degrees of freedom of each elemnt 

including mlw. a@). aQ1, and f 1  as rigid degrees of tieedom, and v2c-1, V& V-1, VW, 

w%l, wh, wlc+t, W- a, and %L as nodaf degrees of W o m  due to the eiastic 

deformation of the link. It is worth mentioning that due to the symmetry of the mass and 

stiffness &ces. ( M ~ ~ ) ~ = M ~ ~  and ( K ~ C ) ~ = K * ~ .  In addition  KR^ and gskk, m 

qation (5.53). are both zero mairices. 

In order to find the components of the elemental mass and stiffness matrices and 

the load vector Qv, we need to detamine the kinetic and potential energies of each 

element These energies can be written in the following decomposeci fom: 

KEE~C is one part of the link -tic energy due to the motion of the oxigin of the fîoating 

fiame system. This part can be Wntten as: 

while KEESek corresponds to the rigid and elastic degrees of fireedom: al'), #z", 6') , v. 

w, and 8 . KEESek can be in the foilowing fom 

KEEsd. given by equation (5.59). presents the kinetic energy resulting h m  interaction 

of the iinear motion of the origin and the motion of the v i r t d  single link. 
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Sirnilady PEEkk and pEEvk can be wden in the following foims: 

Based on the Lagrangian approach the foUowing expressions correspondhg to 

rïgid degrees of M o m  0 1 "  and 02'! can k obtained. 

where Ni+2 and wl are Hermite and linear shape fiinctions. f,, presents quadratic 

velocity terms given by 
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Similatly, we have 

IncIuding nodal values of v, w, and 8 of each eIernent e in two hrst tem of 

Lagrange equation, for each i=- 1,0,1,2, we have 
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d a-; a m ;  
z' ai, 1- &t+i 

= r  PAN^ Nj+2$2.-j )dr 
4 

e 
i-1 

and for l a ,  1 

where NL,.+, are linear shape functions. 

We can aiso write the following expression corresponding to 
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By clifîerentiation of the element potentiaï energy P & ~  with respect to V ~ ~ O U S  

degrees of fiadom, the foliowing expressions are found 

in which (3 and (") denote the first derivative and the second derivative witb respect to x, 

respectively. 

Using the above expressions, we can constnict the demental mass and s W k s  

matrices and the load vector for each link. 

Mass matrk of each element cm be shown by the foUowing 14x14 tt~trix which is 

partitioned into various submatrices: 
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The components of other sub-matrices, shown in equation (5.73, can be written as: 
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The elemental mass matrices regardùig elastic degrees of fkedorn v, w, and 8 are 

classic bending and rotational mass matrices used m structural dynamics for beam 

eIements. 

where hk is the length of a unifonn element e of Iink IL 

The 1x1 and 1x2 m a s  matSces rwdtïng h m  ngîd rotation of the clamped end 

of link k are 

Nj and NL, in equations (5.79-82) and (5.86) are Hermite and linear shape functions. 

It is worth mentionhg that the last column and row of the elemental mass matrix 

are zero due to the fact that the rigid degree of freedam f' is not an independent variable 

but it is a redundant degree of freedom. The afbrernentioned degree of freedom was 

defined as the angle between tangent lines to two links k and k+l at cbeir common point. 

The stifïness matrix of each element ak) can be divided into two parts JCeSk 
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and Krak. ICeSek is normal s t i f kss  maûk due to elasticity of the Iink in bending and 

torsion. Stiffness matrix KrI' is due to the cenrrifugaI eEects- The elements of this 

are obtained by differentiating the link kinetic energy wiîh respect to the nodal values of 

the elasîic deflections. These two parts are shown as: 

and 

fi: = 

As equation (5.88) shows, ~ r $  is nonlinear in terms of rigid de- of freedom alBL) 
and @p. Various submatrices in the equation (5.87) are 
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5.3.4.13 Elemental Loed Vedor 

The load vectm for each elexnent can be defined as: 

in which 

where fYI andfi used in equations (5.93) and (5.94) were introduced in equatiom (5.63) 

and (5.65). respectively . 

In this section the subrnatrices and subvectors resulting h m  the movement of the 

origin of each link are found. Together with those found in the previous section, they cari 



be used to constnict the global matrices and vectors of each link. From the foiiowing 

expression of Lagrange equatim, we have 

in which P is chosen as one of R?, R:, and &k- ~2 cm be obtained in the foiiowing 

Also the load vector &bk due to the gravity effect correspondhg to motion of the origin 

of the link k can be obtained as: 

The remaining parts of link matRces and vectors are obtained by considering 

K E E ~ ~ ~  in Lagrange equations- 
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= fik4 [(xc, - ws2)ip2' + c2ü)ldr 
d;( a&: 1- a ~ :  =. 

The elements of mas  matrix c m  be presented in the following fonns: 
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The clements of 3x1 vector Qvd correspondhg to coordinates: R:, RA R: are 

For each element e for i=-1 ,O, 1,2, we can write the foiiowing equations: 
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which cm be used to obrain mass elements cot~csp~nding to nodal bending degrees of 

M o m  v and w, respectively. Equatioas (5.118) to (5-122) give these elements for 

i=- 1 ,O, 1,2. 

53.4.2 Link Matrices and Vectors 

By assembiing the elementai matrices and load vectors derived in the previous 

sections, the main parts of the link matrices and the load vectors can be found. Since the 

origin of each link is considered to be c h p e d  in its local coordinate system, al1 of the 

elastic degrees of freedom at the h t  nade of the fkst element of each link, namely, vl, v2, 

wl, w2, and el, are zero. Therefore, we can take into account this boundary conditions 

simply by eliminating corresponding rows of the link load vector and corresponding rows 

and columns of the link mass and stiffiiess matrices. 

Each link k ( b l )  has 10r5Ni degrees of fiedom. They cm be divideci into two 

'U O 'U Y " Y a'), Q, R:, RI, R:, and f' are 10 d e p s  of M o m  parts.@1, 2 .  1 ,  2 ,  

which correspond to the rigid body motion of the h i c ,  while remaining 5Nk degrees of 

fi.eedom correspond to the discretized bendiag deformations in the local yk and zk 
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directions and the discretized torsional d e f d o n  almg the local xi, axis. It shouid be 

mntioned that variables 8g! RA R:, Rh, a d  y@) musr not bc tllan into consideration 

for the nrst U Without loss of generality, mass aud stiffness matrices as well as load 

vector of each link can be partitioned in the foUowing fotms: 

(S. 124) 

in which subsaipts j and 1 are used to present the contriïution of joint variables (YIw), 

Y*@', and q,J and iink variables (@iw), @zii7 a'), R:, RA R:, f), @, ww, and eW3 m 

various parcs of matrices and bad vector. 

Similar to the elemental matrices and load vectors, the link matrices (MP), ICU&)) 
and vectors (QI?)) cm k partitioned h to  various matrices and vectors. For example, 

mars matrix M~*) of linL k with Nk elements can be presented as foiiows 
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in which 3+% is the number of degrces of W o m :  a*', %@), r, to va,,, w, to 

 and^^ to eN +1. WofmtnDaCeIem~llt~of1ùiLkhavecommon&grresof 

fieedom <Di@), &*), a@), R:, R:, R:, and fl The fbst t h e  ones are associateci with 

the submatrix FIS:], M e  the second three represent the hear motion of the origin of 

linL k correspond to submaîrix @¶RL~]. The last one (fi is aJsaciated with the last colunm 

of the mass niatrix  MU^. As it was mentioned earlier, dl e1ements of that column are zero. 

Maûix canbeshownas 

Umal assemblage procedm is used to consmicf ünk matrices MY', M:, and &' h m  

eIementai matrices M:, MG, and W. Application of boundaq conditions corresponding 

to zero deflections, dopes, and rotation at the origin of x-axis of each link k, reduces the 

size of the matrices. For example the size of the matrix resulted from assemblage of 

mahices M: is (2+2W(2+2Nk), but after appiying boundary conditions it is reduced to 

2NkX2b& because at x=O, both the deflection (v) and ihe dope (VI) are zero. In hding the 

first two rows (and columns) of link mass & the usual assemblage procedure is not 

applicable, this is why a special suitable approacb is developed to assemble first two rows 

of the elementd mass matrices. Tbe elements MR~(I, l), M ~ ( I  J) ,  ~ ~ ~ ( 2 , 2 )  of link ~~~ 
and the elements of link matrix M~~ cm be found by the sjmilar integrals given m 

equations (5.76-78) and (5-100), mpctively, but by using (0, instead of (xe, ~ c c l )  as 

the bunds of integration. The riemainhg elements of the fint and the second rows of the 

assembled matrix M R ~  and the elements of M s ~  can be obtained by assembling 

corresponding rows of elemental mass ma& in a columnwise manner. 



Similady ~ e &  m?, and QvSIv cau be obtained by assembling and elmimatmg 
* *  - 

columns and rows correspondhg to zero boundary conditio11~ of elementai maûices k Kea ,  

KkSek* and vector Qvd (equations 5.87, 5.88, and 5.92). The size of each link makïx 

(M: and K;) and load vector (Qv:) art (3+mX(3+5N1J and (3+5NdX(l), 

respectively. After fïnding other parts of system matSces and Ioad vector of each link k, 

the whole stiffness rnatrix g u k  and load vector Q V ~ ~  of cm be co~~~tmcted. 

The elemcnts of matfices M& ~~k KA gflk and load vector QV; ean be fnind 

by making use of different terms of Lagrange equation. 

53.43 Modification of the Mass and Stifhess Matrices and the Load Vectors due 

to the Effects of Inertia and Stifniess of the Actuators 

The kinetic and potential energies of various actuators were found in section 5.32. 

By using the foiiowing expression 

the effect of mechanical pmperties of the actuators on the mass matrïx and load vector of 

the whole system cm be têkcn into account. In equation (5.128),  and P & ~  present 

kinetic and potential energies of the k-th actuator and y can be any of the coordinates of 

the system. Ractically the effects of inertia and stiffness of various joints can be taken into 

account by modifymg certain components of maps mamX MU* and load vector Q V U ~  as 

weii as by obtaining the elements of maicices MA ~ j : ,  KA ELj: and those of load vector 

Q V ~ .  Since the procedure is sjmiiar to that presented in the previow sections, the details 

of the mathematical manipulations are not shown h a .  

It is worth mentioning that the effects of actuator toques wiU be taken into 

account in constructing extemai load vector of the rnanipulator system in section 5.3.2.4. 
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53.4.4 System Matrices and Load Vectot 

Efaving the mas matrix matrices, the stiffutss matrices, and the load vectors of al1 

of the links, we can create the system matrices and Ioad vector in a straightforward 

manner. ï'his c m  be done by assemblicig the matrices by simply placing them together 

diagonaiiy. The resulting assemblexi vector consists of link load vectors which are placed 

together in a wIumnwise manner. These assemblages do not include any overiapping 

because each link has its own state variables. For exampIe, the mass rnatrix MS and Ioad 

vector Qv of the system cm be constnicted in the foliowing way: 

where M~~ and QV: are the mas rnatrix and load vector of link k, respectively. 

It is woxthwbiie notiag that the dimensions of the matrices and load vector of the 

hrst link are (2+5N)X(2+5N) and (2+5N)X1, while those of other links are 

(10+5N)X(10+5N) and (10+5N)Xl, respectiyely. This is due to the fact that the position 

vector of the ongin of the local coordinate system of the first Iink is a zero vector. 

5.3.4.5 Boundary Conditions due to the Payload 

The boundary conditions due to the payload can be applied again by obtaining the 

expression of the left band si& of the Lagrange equation and then rn-g the necessary 

components of the system mass m a t .  and the load vector. The kinetic and potential 

energies of the payload in terms of degrees of freedom of the system can be written as: 
.. . 
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where M, Ipx, Ipy, and fpz are payload mass and the moment of inertia of the payload 

about various axis of the local coordioate system of the 1st link, r, is the absolute position 

vector of the payload, while w, v', wtP and 8, are the w-dektion, the dope in the xz 

plane, the dope in the xy plane, and the torsionai defiectim of the end point of link n (the 

location of the payload). 

53.4.6 Generaiized Forces due to Actuator Torqms 

The generalized forces due to the actuator torques and damping torques in the 

joints cm be found by using the vixtuai work of the nonconsewative loads given by 

equation (5.50). As it was mentioned earlier, qk is the angie htween tangent to iinks k-1 

and axis at îheir common point a. Therefore, aü of the effects of elastic deformations 

on the direction of actuator torques are taken into account autornaticaiiy. 

Using equation (5.50), the extexnai load vector Qe cm be constructed in the 

foiiowing way: 
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j t 5+5N, 
for i = 2  to n 

Qe(n =T, -bjqj  

j c  j+10+5Ni 
end 

The remaining components of the extemal load vector Qe are zero. 

As it was mentioned at the beginniag of section (5.3.4), the foiiowing system of 

equations shouid be solved to predict the dynamic behavior of the deformable dtibody 

systems. 

This system includes the constraint equaîiom. In the previous parts of this section, MS, 

@, and Qe were fowid for spatial flexïïle multi-link manipulators with flexible links and 

joints. Now the constraint equations are &veIoped in order to h d  C, and Qc. 

For each joint, except joint 1 whose linear position is fixed , ten constraint 

equations should be included. This is caused by introduction of ten redundant (or 

dependent) degrees of W o m  at each joint i including: qi, Y L ~ ,  ~2'). mlC", @2", e0'); 

R~', R ~ ~ ,  R:, and f). 

The folIowing three equations present continuity of the global Cartesian 

coordinates at different joints. In other words, they show the relations between three 

coniponents of position vectors of two successive joints i and i+l for i=1,2, ...JI- 1. 
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in which subscript e is used to identifj. the components of elastic deformations of iink i at 

point o*1. 

As it was shown is section (5.2), angles 01~'' and a2*') cm be found by using 

equaîions (5.8) and (5.9). These equations are presented here again hi a different fonn 

The sixth consrraint equation expresses the angular rotation of the origin of the 

link i+l about its xi+'-axis in terms of the angle fi+" and the ngid and elastic rotation of 

the end of the Iink i about its xi-axis. 

where and br are unit vectors dong xi and xxl axes. respectively. 

The seventh constrain equation pMents the cosine of angle f*') as dot pmduct of 

two unit vectors ri and hi, which are tangent to Iinks i and i+l at their commdn point wi. 

Two constraint cquaîions regarding the definition of angies Y and can be 

denned simila. to the forth and W ones: 
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and fïnaiiy the Iast constraint equation presents the cosine of angle q - i r  as dot product of 

two unit vectors ri and hl8. As it was mentioned earlier, the first unit vector is tangent to 

the end of lhk i and the second one is dong a+: axis shown in figure 5.4. 

To find Jacobian mahïx Cp of the constraints, hrst we diffaentiate the constraints 

of each joint i+l with respect to various variables to builcl submatnces cj:*'). Then by 

assembiing these submatnces, C, is f o d  

Vector Qc in equation (5.51) can be found by using following equation: 

we can also nnd this vector by assembhg subvectors, Qfc obtained for various joints. 

Due to highly nonlineu and complex nature of the constraints, especially those which 

indu& unit vectors ri or LI, the details of derivation of C, and QC need many pages and 

patience. Thenfore, interested readers are referred to the appendix for details. 
* * 

It is worth mentionhg that we should ehmaîe fk columns of C, corresponding 

to three components of position vector R' , zem 80<'), aad zao .y''' , becam the origin of 

the nrst link is attached to the origin of the inertial reference hme. Therefore, the size of 

non-square ma& C, is lqn-l)Xnv, where n and n~=~l(lOt5CN~)-5 are the numbers of 

links and variables, respectively. 

5.4 Numerid Solution 

In this section a direct integration method is used to solve the problem shown by 

system of equations (5.51). Thcre is a vatiety of direct integraiion methods available for 

solving transient problems such as fmite difFerence, WWn tetha, and Newmark methods. 

The algorithm used in this study, is one of the implicit type and chosen primariy because 
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of its stability and accuracy under a wide range of element size and time step variations. It 

is based on hear acceleration scheme d e d  Newmark type approximation. 

Since many components of matrices MS and C, and vectors Qv, Qe, and Qc m 

equaîion (5.51) are functions of various de- of fkdorn and their tirne derivatives, the 

system of equations (551) can be writîen in the folIowing fonn: 

(S. 146) 

Due to the nonijnearities, the system mut  be solved iteratively at each time step. The 

iterative process can be performed as: 

where subscript i+l shows the time step number, while superscripts (k) and @+1) present 

the iteration numbers at each time step. Since we need q and 4 to evaiuate MS, Cq, Qv, 

and Qc at each iteration, it can be assumed that the derat ion varies iinearly witbin each 

t h e  internai. Therefore, the acceleration Q within each time interval At can be expressed 

by the equation: 

where di = Q( ti ) and Q,, = #(ti+, ) . Now q(t) and Q( f ) can be obtained by simple 

integration of equation (5.148), 
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Kaving +, qi, and gi, we c m  describe qi+t and &+, as hctions of unhtown 

acceleration Then by aibstitnting the expressions for displacement and velocity 

vectors in the equation of motion of the system (5.147), the resulting system caa be solved 

for unknown accelerations and Lagrange dtipiiers at the next time step tiii reaching the 

convergence. 

In this section some simulation results are presented in order to show the validity 

of the mode1 and to illustrate the effects of link and joint flexiiilities on the overail motion 

of the spatial flex1iile rnanipdator systems. 

A three-iink manipuiator witb the fo110wing physical parameters for its links, 
. .. 

payload, rotors, and stators: 

pi4=5 k g / m ,  piJi=a05 kg.m, Li = 1  m 

Mp=2 kg, Im=Ipr=Oal kg*kg.nr2, I ~ x  = O 2  kgam2 

Irb = 0.05 kg.m 

Ziy,=Irr, =O*OS kgant2, i ' i ~ ~ = û S  kgam2, - = O 2  kg 
Zv,=Issi=OX)5 kg.m2, Isq=al kg.m2, =,=O2 kg 
r , = ~  q = i  
b, =O. b, = O  

has been considered (i=1,2,3). Diffe~nt values for EJ,', EJ;' , GJi, und & are used m 

various cases to show the effects of fiexiiility on the motion of the system. 

Each link is divided into two elements. Therefote, the total number of degrees of 

freedom of the system (rigid and elastic degrees) is 54 in this examples, from which 20 
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degrees of f3eedorn are dundant, 

5.4.1.1 VaIidity of the Modeiing 

Very large values of E& E&, GJI. and & are used to compare the &ts of the 

proposed mode1 with those obtained h m  a modehg of a multi-Iiak spstial mmipu)sitm 

with ngid links and joints. The initial position of the payload is chosen as: -2 m, Y031 

m, and &,=Cl IIL The initial confrguraîion of both rigid and & d e  manipulators are found 

h m  proper inverse statîc dg0Lithm.c. By considering constant torque Te250 N.m appIIed 

by the base actuator and constant toques Tl=T~T3=300 N.m appiied by other revolute 

time (sec) 

Figure 5.8 Cornparison of the position of the payload of a three-link rigid manipulator 

with a similar flexible one with very stiff Linkr and joints under the same loadhg 
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actuators, the motion of both systems are obtained within a nnite period of time. figure 

5.8 shows X, Y, and Z cwrdinates of the payload of a ngid system and its c o u n t e v  

s t .  joints (&=lm Nlrad) and iiuks ( E J -  =E& =G& =4ûo ~ . r n ~ ) .  As it c m  be seen, 

the response of the stiff system is completely in agreement with that of the rigid one. This 

shows the vaiidity of the developed flexible model. 

5.4.13 The Meet of Link and Joint Fiexibilities on the Oversil Motion of the 

SYStem 

In this part, the same extemal torques introduced m the previous section are 
. . 

applied to the manipulators with the same physical propeaies shown in equation (5.152), 

but different stiffness properties. The initial position of the payload in ail of the cases is 

chosen -2 m, Yo=l m, and &=û m. Figures 5.9, 5.10, and 5.11, respectively, show X, 

Y, and Z coordinates of the payload of seven simüar manipulators with diffant joint 

fiexiiility and link flemity in bending and torsion. Gi and Ei are related to each other in 

the form of Gi = Ei/2(1 + v i ) ,  in which VL is poison ratio. On the other han& Ji can be 

f0u.d by J~=I;+I; Thetefore, bending stiffne~ses E~Z; and E& and torsionai stiffass 

Gd values have the same order of magnitude. However, different values are chosen m 

order to show the effect of bending and torsionai flexi'bilities separately. As it can be seen, 

sirnultaneous presence of the flexural and torsional flexi'bilities of the links causes 

signïfxcant change in the dynamic behavior of the system. By comparing the end point 

coordinates of different manipulators with those of rigid one, we see that the effect of 

torsional flexiiility of the links is much more signifïcant than that of bending flexiiility. On 

the other han& figures 5.9, 5.10, and 5.11 teveal that the effect of joint flexîîility is 

important when the links are flexi'ble. In other words, the ciifference between dynamic 

behaviors of the flexi'ble manipulator system and the rigid one becomes more signincant 

when the joint flexîiility is also taken into account. Therefore, the interaction among 
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flexurai, torsionai, and joint fiexjities piays a big role in the dynarnic behavior of the 

system. 

0.05 0.10 

time (sec) 

Figure 5.9 X coordinates of the payload of various manipulators 
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rigid links and joints 
C- EI=50000 ~.rn', GJ=5000 ~ . r n ~ ,  rigid joints 

- M El=5000 ~.rn', GJ=80000 ~-rn'. rigid joints 
* - - .u El=5000 Nm2. GJ=5000 ~ . r n ~ .  rigid joints 
- - rigid links. Kj=5000 N.rn/rad 
- - EI=GJ=5000 ~ . r n ~ ,  Kj=5000 N.m/rad - 

EI=GJ=5000 ~.rn', Kj=12000 N.m/rad 

0.05 0.1 O 

t h e  (sec) 

Figure 5-10 Ycoordinates of the payload of various manipulators 



rigid links and joints 
C3- EI=50000 ~.m', GJ=5000 ~ - r n ~ ,  rigid joints 
M !3=5000 N.rnZ, GJ=80000 ~.rn' ,  rigid joints 
+ - - 9 E1=5000 ~.rn', GJ=5000 ~.rn', rigid joints 
- - rigid links, Kj=5000 N.m/rod 
- - EI=GJ=5000 N.rn2, Kj=5000 N.m/rod 
M EI=GJ=5000 Nm2,  Kj=12000 N-m/rod 

O 0.05 0.1 O O 

time (sec) 

Figure 5.1 1 Z-coordinates of the payhad of various manipulators 
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In a igid manipulator, due to lack of elastic &formations, aiï of the links have the 

same al angle, whiie in a h M e  one cach link i has its own alm angle. Figure 5.12 

presents the variation of angle <pl for the ngid manipukitor and the variation of angles 

for flexible manipulators with E#=EJ,'=GJFSOOO ~ . r n ~  but dinerent joint stiffnesses. 

Since the extemal toque Tb is applied to the h t  Iink, the ciifference ammg variations m 

angle 9i"), ai@), and O?) reveak that each link responds in a delayexi mrmm m 

cornparison with the previous one. The reason for tùis phenornenon is the fact that elastic 

waves propagate with finite velocity. 

- 4, Rigid Links/Rigid Joints 
M 4,[') Flexible Links/Rigid Joints 
W $,(') Flexible Links/Rigid Joints 
W al0) Flexible Links/Rigid Joints 
+ - - 9 4,(') Flexible Links/Fiexibie Joints 
+ - - + al(') Flexible Links/Flexible Joints 

- - 2 Flexible Links/Rexible Joints 

time (sec) 

Figure 5.12 Variation of angles ai of various links of a rigid manipulator, a rnanipulator 

with flexi'ble links (EJ; = E & = G J ~ ~ o ~ )  ~m*)) ,  and a manipulator with flexiile Iùilcr and 

joints (EJ; =E&=GJF~OOO ~ . r n ~  and &=5OOO N.mlrad) 



Figure 5.13 pmnts  the variation of the angles am of various linlcs of both the 

flexi'ble and rigid manipulators. In tiiis fi-, the difkeme between behavior of the rigid 

and flexi'be systems, due to link and joint f i ex i ies ,  caa be also cIearly seen. 

- Rigid Link/Rigid Joint 
---- Fiexible Link/Rigid Joint 

1.5 - - flexible Link/Flexible Joint 

-1.0 1 I I 

0.00 0.05 0.1 0 0.1 5 

time (sec) 

Figure 5.13 Variation of angies of various links of a rigid manipuiator, a rnanipuiator 

with flexible LinLs (EJ,' =E&=GJ+SOOO ~.m'), and a manipuiator with fkxible linLs and 

joints (E~z; =~~:=~i~1=5000 aiid &=5000 Ndrad) 
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5.5 Summary aadConchmion 

In this chapter an efficient finite element/Lagrangian approach was developed 

for dynamic modeling of lightweight muiti-link spatial manipulators with fkï'bIe links and 

joints. The equations of motion of the system were derived by using Lagrange's equations. 

The constxaint equations representing kinematcal relations among différent coordinates 

due to the connecîivity of the iinks were added to the equations of motion of the system 

by using Lagrange muitipliers. This leads to a mixed set of otdiaary diEerentid equaîions 

and nonhear algebraic equatiom with coordinates and Lagrange multip1iers as UnEniown 

variables. The resulting system of di&rential dgebraic equatim (DAES) was convertexi 

to a set of differential equaîions by substituting the constraints with their double time 

derivatives, then the system was solved numerically to predict the dynamic behavior of the 

system. The proposed dynamic model is fiee h m  assumption of a nominal motion and 

takes into account the coupling effects among the rigid body motion of the system, the 

bending and torsional deflections of the links, and the flexi'bility of the joints. Due to these 

couplings as weii as the tirne variation in the effective inertia of the system, the model is 

highly nonlinear and coupIed. 

The validity of the mode1 is shownWII~d the ef f i t  of liaL and joint Bcxibilties is 

illustrated by some case examples. It is shown that the torsional deflections have more 

signifiant effect than the bending deflections and joint defonnatiolls. AIso it is shown that 

the effect of joint fiexiiiiity is signihnt when the links are flexi'ble too. Figure 5.12 

reveals that each link responds in a delayed manner in comparison with the previous one 

due the fact that elastic waves propagate with finite velocity. The Iast point is that the 

interaction among various fleniilities plays an important role in the dynamic behavior of 

the system. 
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6.1 Introduction 

Engrneers are traditiow n r v O W  in designmg systems fbr Vanous applications. 

These systems shouid be e f h h t ,  d, .unique, and economic- U s d y  engmeenPg design 

is an iterative process invoIMig m d i h t b n  of the system afkr e xambabn of the resuhs of 

the previous step. To design the best systems, we need adytkd and numericaI tools. 

ûptimization theory, which is a branch of applied mathematics, can be viewed as means of 

systemaîizing the engineering design process. Using optirrraation theory, the Qesign of each 

system can be forrrmlated as an opthidon problem m which a measure of performance of the 
. . system is A or mihi&, while ail constraints are saiidkd Opihkatbn invoives 

three steps: description of tbe system, adoption of a rneasure of pxformance, and selection of 

the systemvariabies which yieldoptmumeffeaiveaess. 

A large number of optimization nkthcds have ben used to sohe opteni;mtion 

problems over years. Tbse techniques can be c k i k d  as direet or search methods and 

indirectoroptgnalitygicetia niethods.Direetmethodsstaxtatanarbiaarypointaadpmceed 

stepwise towards the opCmnmi point by successive improw~nt, while mdirect metbods are 

those which invohe sohring qdons  m u h g  h m  opthdity conditions. Optimality 

conditions are the conditions a funaion must satisfy at its optiraiim point [lw. Shre mdirect 
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methods fïnd the mots of the equations qnxentbg the opthmm point, tbey are wry e m  

when t i q  can be appiied. However, due due tonplex and nonSinear naîure of the objective 

fiinctions and constranits inmost of the engbxhg p r o b b ,  these methods can be used ody 

for simple cases. Tbis is why Hdiriect methods have not had a substantiai p w t h ,  whik direct 

Based on the physhl struchm of engiaeernig probEéms, optnÉation problenis can be 

classined as optimum design and optimal contml probhs. In an optinnun design pmblem, the 

system and its eleiments. are designed to an objedve h a i o n  such as weighit and 

natuml hpency. Then the system rcmains h x i  fbr its whok E. But in an optimal control 

problem, the 9ip* to cbe system, whkh & tbe system h m  a prrsamed initiai state to a 

desired nnal state, must be detecmined as a fuuctbn of time so as to mbïmh or rmxbke 

sonie perfoni3aece index such as tirne, path, and energy. Theriefore, un&e the opümum design 

pmblems, optimal control problems are dynamic in nature. 

6.2 Optimal Control Problems 

Optimal control prwblems are defined by two different types of variables: the 

control variables and the state variables. The state variables describe the behavior of the 

system in any stage, while the control variables govern the evolution of the system h m  

one stage to the next stage. In the optimal control pmblems, the optimi7ation problem is 

to find a set of contml variables to satisfy the given state equations, boundary conditions, 

and any constraints imposed on the state anaor control variables, while mhhkhg or. 

maximiPng a given performance index. 

Methods available for the solution of the optimal control problems generally hü 

into two categories: direct and induect methods. Indirect meehods seek to solve the 

optimization problem by satisfjing the necessary optimaiiîy conditions established h m  

the calculus of variations. The resulting conditions generally provide muiti-point boundary 

value problems m the h m of variathal problerris. These p r o U  are différent h m  those of 
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subjected to tbe constramts in th krm 

where q and ui are state and control variables, respectively. Tk mconditions were obtained by 

using Lagrange rnultiph and a fiinctond called Hariiihonian. However, ponûyagin priucipie 

isverydifkuk to satjsfyandinpractieecanbeusedoniyfi,riiuearproblenis. 

A general analyîicai solution of optimal control problems is impossible due to 

nonlinearities and comp1exities in the state equaîions and the constraints. Therefore, 

numerical algorithms such as shooting methods [108,109] and quasi-lineanzation 

techniques [110,111] are used to solve such problems. It should be stated that, even m 

simple cases with oniy one control variable, the computation is likely to be extremdy 

lengthy and timeconsurning. Although, in the cases in which objective function, state 

equations, and constraints are linear, the process can be rather simple, the optimization of 

the dynamic systems such as fiemile manipulators is usiaaliy so compIex that the 

applicabiiity of these numerical methods is quite doubtful. 

Another option is to use the direct methods which transform the infinite- 

dimensional continuos pmblem into a fuite-dimensional nonlinear pmblem. These 
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methods require parameterization of the control anaor sbte tirne histories, Once the 

parameterization scheme is chosen, the problem can be fonnulated and solved by the weil 

developed nonlinear programming algorithms used in optimum design. 

63 Some Nonünear h q p m m h g  'ïechniques for Optimum Design 

Mathematicai programming deals with the problem of optimizing au objective 

function m the presence of equality and inequaiity constraints. If aay of the objective 

function and constraints is nonlinear, the problem is called a nonlinea. programming 

problern Since in most of the engineering problems, both the objective function and the 

constraints are nonlinear functiom of design variable, nonlinear programming algorithms 

have found mauy applications in optimum design. In the following section, uansformaiïon 

techniques as the simplest and most important techniques of nonlinear programming wiü 

be discussed. 

63.1 TLaI1Sfomtion Techniques 

One approach to solve a nonlineariy wnsttained problem is to constnict an 

unconstrained objective function using transformation techni~ues. Optimum points of the 

originai constrained @lem can be found by solving the üansfonned problem using weli 

developed unconstrained optimization algoritbms- ICI the foUowing sections three popdar 

transformation mimiques are reviewed. 

6.3.1.1 Penalty Fonction Methods 

In the constrained optimization, instead of applying constraints we can replace 

them by penalties whose magnitude depend on the degree of constraint violation. Because 



OPTLMAG CONTROL 'IMROUGH OPTIMUM DESIGN THEORY 143 

of the simplicity and effectivetress of these methods, they have been used widely in the 

constrained optimizaticm in various fieIds. The penalties associated with the constraint 

violations have to be so high thai the constraints c m  be ody slightly violated But there 

are numericai difncuîties associated with imposing abrupt high penalties in numerical 

optimization. Thus a gradual appmach, m wbich we start with smail penaities and increase 

them graduaüy, is uused in practice. Theriefore, they ttansform the basic optimi7rrtion with 

mixed equaiity and inequality comtmhts into alternative formulations such that numerical 

solutions are sought by soIving a sequence of unconstrained opthhiion problems, This is 

why they are a h  called Sequential Unconstrained Minimrzati 
. . 'on Techniques (SUMT) 

11 121. These rnethods are of great importance in solving real He problems. Penalty 

methods ate classined as exterior and interior penalty function methods. 

63.1.1.1 Exterior Penalty Funetions 

In this type of penalty functiom the penalties are applied ody in the exterior of the 

feasibIe domain. Consider the following basic probIem: 

where X is the vector of design variables and n, and n, are number of equality and 
. .  * 

inequality constraints, respectively. This constraint minimr2.ation can be replaced 

where <gj>cmax(O,gj). The positive multiplier r~ controis the magnitude of the penalty 
. .  . terms. The nmmmîion is started with a ~latively d value of ri, and then its value is 
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gradually i n d  As noted bcfore, this is because of numerid difficulties due to ïii- 

conditioning of penalty functions. This type of exterior penaIty function method is the 

most cornmon one. A typicai example* which is fincihg the rninmium of f(X) subject to 

bxS0, is shown graphidy in figure 6.1 by constructing unconstrained objective 

hction @(~~)=fQQ+reb-x>'. As r i n m .  the mmimum of O moves closer to the 

constraint boundary, but the curvature of @ inczeases which leads to wmaical difficulties. 

By using graduai appmach, we can use the minimum obtained for sm&r vdue of r as a 

starting point for tbe next step (with higher r) and; therefore, the illanditioning probIem 

associated with the high curvature of @ can be counterbalanced 

X=b X 

Figure 6.1 Illustration of exterior penalty function method 
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By using exterior penalty fiiactions, the design typically moves in the infr=asile 
. .  . - 

domain. Therefore, if mmmmahon is terminated before r becornes very large, the W 

result may be useless. We can define a penalty fundon that keeps the design in the 

feaslile domain. The cornmon fonn of interior penalty function for general @lem 

expressed by equations (6.4) and (6.5) is 
. . 

Figure 6.2 Illustration of interior penalty function method 
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in which l/gi(X) becomes innnity large at the bomdary of the f e a ~ ~ i l e  domain which 

creates a bauier. Figure 6.2 shows the khavior of interior penalty function method 

appiied to the simple example previousiy solved by exterior penalty fiinctions. 

63.13 Muitiplier (Lagrange Augmented) Methods 

The penalty ihmction methods suffer h m  ill-~onditioning- This difndty may be 

avoided by using Multiplier methods w k h  combine the use of Lagrange muItipIiers with 

exterior penalty functions. Thse mthods, oûghdly proposed m 1969 by Hestenes Cl131 and 

Poweil [llq, have been determined to be quite mbust [115]. A review of the ttvrory and 

computational procedures of miriplier methods was given by J.S. Arora et al [llq. When 

oniy Lagrange muhipliers are employed the optimum point is a stationary point of the 

Lagrangian function and we have to check the Hessian maîrix at that point to h o w  

whether or not it is a minimum. And wkn  only penalty functions are employed, the 

optimum point, if it can be found in spite of illconditioning, is a minimum point. By using 

a combination of these rnethods we can get an unconstrained problem where the functions 

to be mmmud 
. .  . do not d e r  h m  illanditioning because there is no need to use the 

large values of penalty parameters which are required for extemal penalty function 

methods. 

One of the common forms of Multiplier functions for the problem 

Minimize 

Subject to: 

Minimize 
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if &=O, we have muai exterior penalty M o n ,  w h k  for correct values of hi, we can get 

the correct !minimum. of the problem using any positive value of r. 

These methods are based on esthaihg the Lagrange multipliers, When the 

estimated multipliiers are gaod, it is possl'ble to approach the miiiimum without using large 

values for r. They need to be only large enough so that has a minimum rather than a 

staîionary point. An estimate for Lagrauge dtipliers can be found using the stationary 

condition of Augmented Lagrangian in the fohwing way: 

while for an optimal X* we have: 
. . 

Then we expect that as x+x*, 4 +2hj +A*, therefore 

We can extend the Multiplier meihods to deai with inequality constraints in several 

ways. Fletcher [117 suggested the foflowing forms for the objective function: 

Minimize f(x) 
Subject to: g j ( X )  I O , j = l,...., ng 
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An estimated value for found by using optimaIity condition of the augmented objective 

function can be written in the form 

Therefore, for a general problem with both equality and inequality constraints, we can 

construct the foilowing augmented Lagrangian function: 

By using transfonnaticm techniques the constrained nmmwab 
. .  . 'on problems can be 

converted into unconstrained ones. Therefore, the selection of a suitabk methad for the 

unconstrained optjmization is the most important part of the algorithm. The unconsaained 

opti.mktion probletus can be classifieci as one-dimensional (line search) problems and 

multidimensional problems, Most direct -on algorithms have two phases, namely, 

search direction and step ske determination subproblems. Therefore, even in the muiti- 

dimensional problems it is necessary to use one-dimemionai search techniques in finding 

the step size. 

As it was mentioned earlier, after de& ' ' g the search direction, the step lengîh 
. .  . 

can be detexmined in a one-dimensional mmmmîion problem. One of the simplest and 

most efficient algorithm called Quadratic cuve fitting is used in this research. 
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A continuous, sufiicienîiy srnooth, and uaimodal fiuiction on a given anail inmal  

of unceminty can be approximated by a quadratic curve- To interpoiate a fimaion with 

quadratic curve, we need ody to know the fimction value at three distinct points to 

detemune the coefficients of the second-order polynomial. Then the minimum point of the 

approximating H p m i a l  can be used as a gwd estirnate of the exact minimum of the 

search fimctiou (figure 6.3). Kowever, usualiy an iterative procedure is used to fiad a 

better approximation for minimum point of the original objective fuaction. 

X, X f 
min min 

. .  . Figure 6.3 -on of a function f(X) by quadratic interpolation 

In this section some direct search methods for unconstrained -on are 

introduced and the mettiods which will be used in the next parts of the thesis WU be 

describai. 
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Zen, order methods use oniy finiction values for mhhkhg fuactions of several 

vaxiabIes. These metbods are usuaily reliable and easy to implement SequentiaI simplex 

method, univariant methods, and pattern search methods including Hook and Jeeves 

method and Powell's method are exampIes of zero order swch methods. Powell's method 

is the most p o w d  method a m g  these methods. 

New random based rnetbods such as Genetic algorithm and simulatecl annealing 

method are also zero order mthods. Genetic dgorithms use techniques deriveci f bm 

biology and rdy on the prhtiple of Darwio's ttiemy of d v a l  of the fiaest [118]. 

Simulated annealhg algorithm was motivated by shrdies in statistical mechanïcs which 

deal with equili%riium of large nusiber of atoms in solids and liquids at a given temperature 

[Il$]. These methods are the most efficient 2tro-order methods and can eady handle 

integer design variables or discretized variables. Moreover, by using these methods 

(esptxially Genetic algoritbms), it is usually possible to reach the global optimum point, 

while ail of the deterministc search methods can only fhd local optimum near the initial 

guess. 
. . 

However, the main drawback of zero-order methods is that the location of the 

optimum point can not be found accurately. 

These rnethods use the gradient of the fiinction as well as P value in hding the 

direction for fiinction mhhhtion. Steepest descent method is the oldest and simplest 

multidimensional first order method In this method, iterations are made accordhg to the 

following equation: 
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where kk is the smaiiest positive d u e  which locally m i n h b s  f(X) dong -Vf@) starhg 

h m  xk. The steepest descent dinctions at two consecutive steps are orthogonal to each 

other, that is, for aU k 

This tends to slow down the convergence specially near the optimum point due to 

Pgzagging moves. Another disadvaatage of the steepest descent method is that each 

iteration is calculateci independently of the 0 t h ~ ~ ;  that is, no information is stored and 

used which might accelerate convergence. Thcrefore, this method is not very efficient. 

Various attempts to accelerate convergence have been made in the literature. For example 

conjugaîe gradient methads, such as Fletcher-Reeves method, are very simple and 

effective modincations of the steepest descent method. The raiionale for these methods is 

the minimum point cm be found in n or fewer steps of a n-th order positive definite 

quadratic form. This desirable property is d e d  quadratic convergence. The conjugate 

directions are not orthogonal to each other but tend to cut diagonaliy through the 

orthogonal steepest descent directions, this is why they improve the rate of convergence 

[106] of the steepest descent method. Although conjugate gradient methods are vasîly 

superïor to the steepest descent method, they are rather l e s  efficient than quasi-Newton 

methods which are introduced in the foiiowing sections. 

63.2.23 Second Oder Methods 

In addition to the funcimion value and its first order derivative, the second order 

&rivative can be used to represent fhe cost fimction more accurately. Therefore, it is 

possible to h d  a ktiu direction of search which impmves the rates of convergence. 
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63333.1 Newton's Method 

This method uses the Hessian of the cost fiinction to determine the search 

direction. The basic idea is to use the second-order Taylor series expansion of the 

objective function about the current design point (X) as: 

where G and H are gradient vector and He& matrix at design point X, respectively. 

They can be found in the foiIowing forms: 

Equation (6.21) provides a quadratic expression in terms of the incrernents of the 
. .  . 

design variabies. Necessary conditions for xmmmation of this function give an explicit 

result for search direction in the design space as: 

Since in general the objective function is not a quadratic function, this process must be 

repeated to obtain the minimum point. 

In each iteraîion, it is necessary to h d  Hessiau matrix by nnding n(n+1)/2 second 

order derivatives, therefore, a large number of computations is needed, Moreover, because 

the classical Newton's method uses unit step size, f(X+AX) may becorne grater than fo 
during the iterations. Therefore, there is no guarantee for convergence of the method. 
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63.2.23.2 Modified Newton's Method 

A simple way to impmve the Newton's method is to use step length parameter Â. in 

finding new optimum point using 

instead of equation (6.24). S@ is the search direction (s" =-ml G) and Ic can be found by 

any one-dimcnsional minimidon tdnique to mhhize f@+L 59. This approach, 

which is d e d  modifiecl Newton's method, not only inmases the efficiency of the rnethod, 

but also stabilizes it and guarantees the convergence to the local minimum (if H remains 

positive definite). 

The drawback of Newton and modined Newton's methods is that a large number 

of calcuiations is required to fïnd the Ifessian matrix and it may become singuiar during 

iterations. Moreover, previous information is not used in the new iteration and the method 

dose not converge unless the Hessian matex remains positive definite. 
- .  

6.33.2.4 Variable Metric or Quasi-Newton Methods 

The key to the success of Newton-type methods is the curvature information 

provided by the Hessian matrix. As mentioued eadier, aithough these methods have very 

good convergence properties, they suffer from some difficulties. This is why variable 

metric or quasi-Newton methods have been introduced in the fiterature as modifications of 

Newton's method. They are based on the idea of building up approximate curvature 

idonnation without explicitiy forming the Hessian matrix. Quasi-Newton methods rquire 

the computation of only firstdenvatives to generate approximete Hessian which should 

remain positive dennite at each iteration. These methods speed up the convergence by 

malring use of the information obtained b r n  previous iterations. Therefore, they are 

leaming processes and have desired features of both the steepest descent and the Newton's 



-.. . . 
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rnethods. AIthough qilasi-Newton mthods are redy first-order methods, because they 

use approximate second detivatives, they might be considend as pseudo second-order 

methods. Also they can be thought conjugate gradient methods [119]. 

in quasi-Newton rnethods, ïnstead of Hessian mmk, au initiai positivedefinite 

matnx & (usnally an identity matrk I) is chosen. T'bis maecix is sub~e~uendy updated by 

an update formula as 

where Hk* is the update matrur. However, many update formulas are appiied directly to 

the inverse Hessian (Bit=&-l-') in order to avoid the need for solution of a lin= system of 

equations in each iteration. Then the updatùig formula for the inverse is also of the form 

DBerent quasi-Newton methods 

matrices. The desirable properties of the 

are distinguished 

updating matrices 

by the choice for updating 

are that only fbst derivaiive 

idormation is needed in updating and &;+l remains positive defînite duriag iterations. The 

second property guarantees that we aiways move in a downhill direction. Besides, 

approximate Hessian should converge to the tnie Hessian aftcr successive updates. 

Using the first-order Taylor series expansion of the gradient vector G, we can 

write: 

In general approximate Hessian maük does not satisfy this condition. Therefore, a good 

updafe shouid satisfy the requirement 
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which is called quasi-Newton mditiw- By substituthg equation (6.27) into equation 

(6.29). we have 

A general form of updating inaîrix is 

where a and b are scalars and a and v are vectors. These scalars and vectors should 

be appropriately selected to satisfy equation (6.30) and the symmetry and positive- 

dennitenessi of 

Methods which take b=û are using rank one updates, while resulting methods for 

b#O are said to use rank two updaîes. Rank two updates are more flexible and are the 

most widely used schemes. Many rank one and two updates have been proposed in the 

literature, but we will linnt omselves ody to two methods which are the most popular 

update fornulas. They are rank two methods caüed DFP and BFGS methods. 

63.2.2.4.1 DFP Method 

This rank two quasi-Newton method initialy was proposed by Davidon [120] and 

then Fletcher and Powell Cl211 modifieci it. This is why it is often caiied DFP method. This 
. .  . . 

method is one on the most powerful methods for the 'on of a general function 

fin- 
By substituthg equation (6.3 1) foi B; i .  equation (6.30), we have 

If we choose u=AXk, v=&AGk, and detenxtine a and b such that U K ~ A G ~ ~  and ~V'AGF 

-2,  the resulting update formula is 
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6.3.2.2.4.2 BFGS Method 

In 1970, Broyden [122], Fletcher [123], Goldfarb [124], and Shanno [IZq, 

independently suggested another important rank two f o n d a  in the following f o m  

This formula is known as BFGS formula 

Both DFP and BFGS methads have theoreticai properties which guarantee the 

superlinear convergence rate and global convergence, under certain conditions [126]. The 

global convergence for DFP requires exact line searches, while inexact line searches will 

sufnce for BFGS. This is why numrical expeximents with BFSG algorithm [112] 

suggested that it is superior to other variable-metric algorithms including DFP method. 

It is necessary to mention that quasi-Newton methods are considered as the most 

effective nonlinear optimization methods for solving general unconstrained problems. 

[126J. Because in quasi-Newton methods the approximate Hessian is forced to be 

positive-definite, a saddle point may be reached without any waming. Therefore, it is 

advisable to check if a descent direction can be found around the fuial point. 

6.4 Optimal Con- Using Nonlineau Programmllig Techniques 

It is possible to transform some optimai control problem to the optimum design 

problems [127]. Then they can be formuiated and soIved by nonlinear programming al go ri th^ 
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which are well develaped m optmium design theory- 

In the next two chapters, direct mcthuds wiU be used to solve trajectory control 

and time-optimal control of fiexi'ble manipulators. The proposed techniques, which are 

based on numerical opthbation, h d  the joint torques requùed to move the end point 

h m  rest to rest dong a specined path, in the trajectory problems the desired position of 

the payIoad is given versus time in the trajectory control problems, while in the time 

optimal wntrol pmblems the path and the constraints on the joint torques are Iniown. In 

the optimal control problems discussed in îhis work, the objective functions are obtained 

based on the method of least squares and the method of penalty functions. Hence the 

resulthg objective functions are implicit functions of desired variables, BFSG method as a 

powerfid quasi-Newton mthod is used to fhd the s01ution Le. the minimum time (in t h -  

optimal conml problem) and the time history of the required joint torques. 

6.5 Summary and Conclusion 

Optimum design and optimal control problems and various methods to solve such 

problems were addressed in this chapter, A short review of nonlinear pro&ramming and 

numerical optimbiion techniques is presented. In the next two chapters, the 

aforementioned noniinear pgrammjng techniques will used to solve the trajectory control 

and the-optimal control of flexible manipuiator systerns, 



TRAJECTORY CONTROL OF MULTI-LINK 

MANIPULATORS WITH FLEXIBLE LINKS AND JOINTS 

7.1 Introduction 

In the trajectory control problems, the desired position of the end point of the 

manipuiator is given versus tirne. Therefore, the required joint torques or forces shodd be 

appkd to move the end point dong the given trajectory. This type of problem is one of 

the major open problems related to the flexiile maaipuiators. Various feedback conmi 

strategies are proposed in the literature for suppressing vibration of the flexible-Iink 

manipulators [1320]. But due to the non-coliocated nature of the control system of 

flexible manipulators as weU as the existence of high fkquency components in the position 

commands, the feedback contml may cause these systems unstable. To akid this probiem, 

many authors have recently proposed inverse dynamic methods. These metbods 

simultaneously solve the equations of motion and the kinernatic equations in order to 

determine the requiseci joint torques or forces. But the main difnculty is that the numerical 

solution of the inverse dynamic probiem of fiexiiile rnauipuIators nomMy diverges. This is 

not because of failure of the numerid analysis, but due to the nature of the problem 

which is noncausai. 

This chapter first descriis the noncausality of such systems and then presents a 

technique based on nUmencai optimization for solving the non-causal inverse dynamics of 
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muiti-link robot arms with fiexiôle links and joints, This technique fin& the joint torques 

required to move the end point of fhi'bIe manipulators through specified trajectories 

while avoiding tip oscilIati011~. Tb proposed aigorihm takes into account the non- 

causality of such a system via consideMg pre-actuation and pst-actuation in the solution 

procedure. 

7.2 Inverse Dynamks of J?iexible Manipalritors 

Consider a twdhk macilpulator with both fM'bIe links and fiexiiIe joints in Fig. 

7.1. The purpose of the anal* is to find the requked joint torques Tl(t) and Tz(t) to 

cause the desired motion of the payload. w k h  is a rest to rest motion tracking a specined 

path (x(t),y(t)), h m  point A to point B in a givea t h e  interval tr. The inverse dynamics 

of the £iexile manipdator is redundant due to its fkxï'bility. Thercfore, a complete mode1 

consisting of the kinematic and dynamic equaîiocs of the systcm should be solved 

sirnultaneously. 

Figure 7.1 A two-link manipulator and its desireci trajectory 



Using the resuits of chapter 4, we caa wxite the quation of the motion of the system in 

the following forni: 

where q, , q , and qf are the vectors of motor coordinates, joint coordinates, and eiastic 

coordinates of the links. These variables all together present the degrees of freedom of the 

system. The desired trajectory or motion of the payload can be expressed by the following 

in which A is a non-square matrix, U is the state vector including all of the degrees of 

fkedom of the system, and h(t) is a time dependent vector. After double differentiation of 

the bernatic equations wiîh respect to time, the resulting system of second order 

differentiai equation can be shown in the following form. 

In the above equations, Ta presents the vector of uaknown actuator torques and p is a 

non-square matnx which maps the joint torque vector from a space whose dimension is 

equal to the number of joints to a vector with the dimension of all degrees of freedom of 

the system. 



Because of the compkxity of the system of equations (7.3). it should be soIved 

niimeridy for unknown state variabIes (U) and contrd variables (TJ. But the numerical 

solution of this system of equations dose not n d y  converge. The divergence of the 

solution is not reIated to fdm of the numefical approach, but the non-causal nature of 

the pmbIem, This is due to this fact that the end point, for which the pre~cflikd motion is 

specifïed, is connecteci to the application points of toques by defOnaab1e Mes. Thus, 

the joint torques should be applied h m  a negaîive time to a future time in order to 

control the position of the end-point according to the desired trajectory. Since standard 

causal time domah integration schemes are unstable in solving the inverse ciynamics of 

flexible manipulators, it is neaxsary to develop ptoper non-causai schemes. 

7.2.1 Classification of Inverse Dpunic Roblems 

For better understanding of the timedelayed behavior of the deformable bodies 

some terms will be introduced in this section and a simple example will be shown. Inverse 

dynamic problems can be classified as: causal systems, anticausd systems, and noncausal 

systems [87]: 

CAUSAL SYSTEM: A system in which the output (impulse response) always 

occm after an input 'impulse) is given. 

ANllCAUSAL SYSTEM: A system which has the output (backward impulse 

response) before an input (impulse) is @en. 

NONCAUSAL SYSTEM: A system which has the combined output of a causal 

system and an anticausal system. 

Consider a single link flexible manipulator shown in figure 7.2 moving in the 

horizontal plane. We want to move the endgoint h m  its initial position to a desired final 

position. At the beginnuig when we apply a torque to the hub, for a short time the payload 

doesn't move, while the link is deforming. Since torque, which is the output of the inverse 



Figure 73. Point-to point motion of a siagle link flext'be manipulator 

dynamic problem, occurs before input, the systemis anticausai at the beginning. At the 

end, to keep the payload at its desired position, we should apply a torque which ody 

changes the curvature of the Iink. Thus, the system is causai at the final stage- Therefore, 

the inverse dynamics of the flexiile manipulator is noncausal. 

As it was mentioned in chapter 2, Kwon and Book 1871 decoupleci the inverse 

dynamics of a single flexi'ble link manipulator into causal and anti-causai parts, then they 

solved these two parts forward and backward in tirne, respectively. This appmach can be 

used only for iinear systems m which the effects of gravity, Coriolis and centrifugai 

accelerations are neglected. Bayo [86] and Bayo and Moulia 1891 proposed a .  iterative 

direct approach which nnds the n o n d  required torques by solving the inverse 

dynamics equations of fiedie maniprilators in the fiequency 1861 and time 1891 domains. 

However, this appmach is limiteci to manipulators with flexible links only and can not be 

used if joints are a h  flexile. 



7.23 Time Delayed Response of a Shgie-Lhk M b l e  Ann 

As it was rnentioned eariier, the inverse dynamics of flexr'ble manipuiators yields 

noncausal or time delayed joint torques with respect to the end-point motion. Ln this 

section, this phenomena is quaatitativeIy shown for a single-link arm by using a simple 

Galerkin approach. 

Consider a one-link flex1ible robot arm shown in figure 7.3. A clamped free floating 

coordinate system, wbicb is nxed to the mot of the l i e  is used to descrik the elastic 

deformation of the I.i.uk.. The variables v(x,t) and q(t) represent the deflection at point x 

dong the arm and the arm angle, respeetively. The displacement s(x,t) of any point on the 

arm is defineci as 

Figure 7.3. A single-link flemile ann moving in horizontal plane 



h m  which the velocity and acceleration of the point can be simpiy found. 

The beam defiection is de- by a forth order partial differential equaticm 

where EI is the flexural rigidity and pA is the mass per unit length of the beam- The 

gravity effect is neglected and the motion is c o h e d  to a horizontal plane. After 

substituting s h m  equation (7.4) into equation (7.5) we have 

In addition to equaîion (7.6), we obtain the foUowing comtra.int equation which 

expresses the overail baiance of anguiar mornentum of the system 

where L is the length of the Iink, 

To approximate the field equations (7.6) and (7.7), we use a Galerkin approach. In 

general, the variable v(x,t) can be assumed to be 

where %(t) are time dependent generalized coordinates and Ni(x) are shape functiom 

which satisfy homogeneous boundary conditions. Using Galerkin approximation, equation 

(7.6) can be substituted by 

For simplicity, we chws  n=l and N~(X)=X~; therefore, v(x,t) is assumeci to à 



By assuming constant pA and EL. aftet using proper integrations by parts and appIying the 

boundary conditions, we wiil have the fo1Iowing system of equations descnig the 

dynamic behavior of the system 

If the end-point trajectory is given by y,-f(t), we want to obtain the required joint 

torque for this motion. The ycoordinate of the end-point of the flexible a m  can be 

written as . .. . 

where v, which is the elastic deflection of the end-point in the local coordinate system, is 

substituted h m  equation (7.10). Using equation (7.12), we caa obtain a(t) in terms of y, 

and cp in the foiiowing fonn 

1 
a(r) = 

L~ COS q (Y, - L h f P )  

from which à(t) and Ü ( t )  can be easily found. By substituthg a(t) and a ( t )  in 

equation (7.11-b), we have the following differential equation in terms of only one 

unknown variable cp. 

+4 
EI 

( y ,  -Lsinip) = O  L cos Q 



This equation is higbiy nonlinear and cau not be solved anaiyticauy. Fourth-order Runge- 

Kutta method is used to solve this equation numerically. Havhg tp, @, and @, we can h i  

a(t),  d ( t )  and ü(t) using equation (7.13). Then the required joint torque can be obtainsd 

h m  equation (7.1 1-a) by substituthg known Ht) and ü(t). 

Let consider the motion of the end point h m  initiai time t 4  to nnal t h e  t = ~  to 

be described by 

where y0 is the initial y- of the end-point and al to as are detennined such that 

y e ( t f ) = y e  and y e ( t f ) = j e ( t , ) = ~ e ( t , ) = y " e ( t f ) = ~ .  This trajectory ir shown m 

figure 7.4. 

The required joint torque for a coünterpart singie-link rigid manipuiator is a h  

shown in figure 7.4. The initial position of the end point of the a m  is considered to be 

(&(O)=L, ye(0)=û) and subsequently the initial arm angle is zero (cp(O)=û). The rigid 

Figure 7.4. Joint torque and y-coordinate of the end-point of a single-link rigid a m  



arm has the foUowing physical properties: pA=S Kg/m and G-1 m. The requimi joint 

torque is accurately found fiom the foilowing equations 

Figure 7.5 shows the ycoordinate and the require joint torque T(t) for the flex1bIe 

manipulator. Due to the divergence of the solution, only the ntSt 0.072 second of the 

motion is iuustrated in this figure. As it can be seen, at the beginning of the motion instead 

of positive torque (counter4ockwise) we should apply a negative torque in order to have 

the desireci trajectory for the end-point, The value of the joint torque is rapidly increasing 

which causes the divergence of the soIution. 

y-coordinote 
Joint Toque 

-12000 J 
0.00 0.02 0.04 0.06 0.08 

tim (sec) 

Figure 7.5. Joint torque and ycoordinate of the end-point of a single-link flexible arm 



If we consider a hem joint torque, we can solve equations (7.1 1-a) and (7.1 1-b) 

to h d  a(t) and Nt). Then equation (7.12) can be ased to obtain the path of the end-point 

of the ana Figmes 7.6 to 7.10 present the end-point y-coordinate of a singie-link rigid 

arm and that of various singk-Iink fiexiile arms with différent link Ilexliilities (EI= 500, 

lûûû, 2000, 10000, 50000 ~ .m~) .  Constant torques p=20 N, 100. 50 Nm) are 

considered as joint toques, The same physical properties and initial conQuration 

introduced eariier are used in the aforementioned cases. As it can be seen, for each EI 

regardles of the magnitude of the appiied torque, al l  of the cmes (corresponding to the 

flexible amis) have a cornmon point which shows zero y after movement of the end-point 

in the negative y-direction for a short time (Ab) at the beginning of the motion. It can be 

shown that there is a relation between this delayeci time interval (Ab) for various cases and 

the corresponding flexurai wave speed e = [12q in the fom 

-0.02 L 
0.00 0.0 1 0.02 0.03 

tim (sec) 

Figure 7.6. Y-coordinate of the end-point of a single fienile arm with EI=500 ~ . m '  



0.01 0.02 

time (sec) 

Figure 7.7. Y-coordinate of the end-point of a single fiex1Ïi.le a m  with EI=lûûû ~ . r n ~  
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Figure 7.8. Y-cwrdinate of the end-point of a single flexible arm with EI=20ûû Nrn2 
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Figure 7.9. Y-coordinate of the end-point of a single flexible arm with EI=lûûûû ~ . . m ~  

Figure 7.10. Y-cooldiaate of the end-point of a single flexible am with EI=5ûûûû ~ . r n ~  
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Therefore, it can be cuncIuded that the delayed response of the end-point of a fiexible m 

with espect to the joint torque is neM to a characteristic of the flem'ble link associateci 

with the finite speed of wave propagation. 

As it was mentioned earlier. due to the non-causahty of the inverse dynamic 

problem, the actuator toques shwld be applied h m  a negative tirne to a future time in 

order to conml the position of the end-point. Let tl and t . ~  be defïned as cltf and ch, 

respectively, where cl and cz are two constants. As it is show in figure 7.11, the time 

duration of the motion of the system is considered t~+t+tz instead of tf. It is obvious that 

the correct values of tr and tz are required for pre-actuation and pst-actuation tirnes. 

Since these t h e  internais are not known in advance, two large enough numbers cl and c2 

Figure 7.11. Extended tirne and torque discretization 



can be selected such that the pre-actuaiion and pst-actuation times can be captured, 

The numerical optimization is used to solve the aforementioned inverse dynannc 

pmblem. A suitable parameteriaiion of control torques Tl(t) andT2(t) is necessary. Tl(t) 

and T2(t) are represented by finite discrete numbers at specinc tmies instead of continuos 

functions of tirne. Figure 7.11 shows a schematic diagram of torque dismtization during 

the extended time (tr+tftt2). Let NM be the number of intervals for torque discretization 

fiom t=ti to t=t~+tf and NI=C~ NM and N e  NM be the numbers of torque intervais for 

pre-actuation and pst-actuation times. respectiveIy. Thezefore, TI and T2 are 

approximated by two arrays each one with Nr+NM+N2+1 components. Linear 

interpoiation is used to wmpute the torque values between the given time-nodal values. 

Similarly the number of tirne steps in numerical integration of the equations of motion are 

chosen as nl=qnm, nm, and 112s2nm witbin pre-actuation time inteml tt, main time 

interval tf, and pst-actuation intemal tz, respectively. Using the aforementioned 

parameterkation of the conml toques aud considering the extended duration time of the 

motion due to the non-causality of the system, an objective functon cm be defineci This 

function is the sllmmation of squares of tracking emrs at integration time points h m  end 

of the pre-actuation tirne (t= tl) to the end of the post-actuation lime (t=tl+t+t2), cm be 

dehed as: 



where Ti and Tt are the arrays of discrie- joint toques as design variables, and Ki and 

& are two enough large numbers. 4 and Yi p n ~ e n t  the position of the payload at 

integration points between t=tl and t=tl+Wtz, whik and fi show the desïred position 

of the payload at intemon points between t=ti and t=ti+tt. It is c h  that the exact 

q y i d  joint toques wbich mve the end-point through the specikd ttajarory m a k  the 

objective nmction de- in equatDn ('7.18) zgo. Tbe purpose is to minniinr this objectk 

functonusip8~e~optmiaationtechniqiie.TheobpctRrefunctionisrin~licafrmction 

ofdesignvaEaMes-daS~ditfélentiation&mtpossible.Thus,anïerativesearch 

method toge* with mnaeacal ditserentiation nust à use& Ha* two aditmy design 

wors  Ti andT2. w e c a n ~ s o l v e e q u a t i o n ( 7 . 1 ) b y ~ N e w n i a r k m t h o d  Then 

thc~canbeusedfortbc~noftbeobjcctivef'uactio~1.BKiSmrroducedmtht 

previous chapteris uçcd to soh  the a h e m m t b a e d i m c o ~ o p ~ n p r o b l e r n  

7 5  Simulation R d t s  

Consider a planar maaipulator having two identical unifonn links and two similar 

joints. Let the physical ppert ies  of its linlcs be 

and the stiffgess of the joints and the mass of the stators and rot1 

following magnitudes 

Kj, = Kj2 = 1000 N / rad 
msl = ms2 = 0.2 kg 
mq=mt,=0.2 kg 

ors, respectively, have the 

The gear ratio of each joint is considerd to be 1. The mass of the payload is 5 Kg and its 

initial position (xr, yd  and final desired position (xe. ys) are assumed to be 



For trajectory contrd, the desired motion of the end-point within t d . 5  second is 

considered a straight h e  given by the foliowing equations 

The number of torque intemais within the main tirne intemal tf is chosen NM=10. 

By choosing ci=cz=û.2, the extendeci time is 0.7 second and the total number of the 

torque intervais becomes 14. Since two joint torques at t=û can be found h m  the staîïc 

equiliium of the system, the numbcr of design variables is 28. Computed joint toques 

needed to üack the desired end-point trajectory are shown in figures 7.12 and 7.13. Also 

the comsponding rigid body torques are shown in the figures to illustrate the non-causal 



Cornputed joint torque 
------ Rigid joint torque 

t ime ( s ec )  

Figure 7.12. First joint torque (computed and rigid) 

200 - Computed joint torque 
------ Rigid joint t oque  

O - --- 

-50 - 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

time (sec) 

Figure 7.13. Second joint toque (computed and rigid) 



nature of the problem. Figures 7.14 presents tracking mors for two cases of the loading, 

namely, the rigid body torques and the computed joint toques. The maximum tracking 

emrs along x and y axes for rigid body torque case are 6.1 mm and 5 mm, wMe they are 

reduced to 0.1 mm and 0.268 mm h r  the coquted joint torque case. 

E 0.010 - x-error *10 (Copmputed torque) 
x-error (Rigid torque) 

L ----- k -  y-error * 1 O (Copmputed torque) 1 

time (sec) 

O) 0.005 s- 

Figure 7.14. Tip emrs along x and y axes 

- - -  - y-error (Rigid torque) 

\ - - - 
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A technique based on numerical opthhtion is deve10ped to fïnd the joint torques 

required to move the end point of flexiiIe manipulators through specified tmjectories. The 

proposed approach takes into account the non-causaiity of such systems via considering 

pre-actuation and pst-actuation in the solution procedure. 



Results illustrate the non-causai nature of the inverse dynamks of tlexible 

manipulators. It is shown that by appIying the computed joint toques obtained from the 

proposed approach, the tracking errors are reduced sigr~&~~tiy~ The proposed techniqge 

is a complete and effective approach which can be used to find the input controls for tbe 

complicated flexi'ble manipulators. The computed joint torques can be used as feedforward 

controls which minhint the work of the feedback controUers needed to compensate 

modeiing enors. 



TIME OPTIMAL CONTROL OF MULTI-LINIC FLEXIBLE 

MANIPULATORS ALONG SPECIFIED PATH 

8.1 Introduction 

This chapter deds with time control of flexible manipulators. This subject 

is about controhg the position of the end-point of ~nimipuiators for a rest to rest motion 

in minimum time dong a specined path, while actuator torques are not exceeding the 

limits due to physicaI capabilities of actuators or bending strengths of links. Although, 

many approaches have been developed in the literature for time-optimal control of rigid 

manipuIators with and without path constraints, little work has been done in the area of 

time-oprimai control of flexible manipulators. 

The sttucture of the equaîions of motion of multi-iink flexible manipulators is 

highly nonünear and coupied and the nature of their inverse dynamics is non-causal. 
. .. - 

Therefore, the exact minimal time solution.i not available at the present time. This chapter 

proposes a technique to fhd a near time-optimal control solution for a two-link flexiile 

manipulator with toque and p î h  wnstraints. Both links and joints are assumed to be 

flexible. The p r o p e d  technique is based on transfonning the optimal controi problem 

into an quivalent unconstrained optimum design problem using penalty function methods. 

Then BSFG method is used to find the solution Le. the minimum time and the tirne bistory 

of the required joint torques. It is worch noting that this study takes into account the non- 



causality of the inverse dynaniic system in descriig the probiem as an optimum design 

one- 

8.2 The-Optimal Control Probiem 

Consider a rest to rest motion of payload P (figure 8.1), which tracks a specified 

path f(x,y,)=0 from point A to point B. 

Figure 8.1 A two-Iink manipulator and its desired end path 

The purpose is to find the bounded joint toques Tr(t) and Tz(t) which witl cause this 

k i r e d  motion in minimum time. The bwds on the actuator toques are T'' )~eTld' ) -  

and T " ~ ~ T I ~ I ' @ ' ,  due to physical capabilities of the actuators or bending smngths of 

the links. 

The optimal conin11 pmbIem can be expressed as: 

subject to: 



where U represents ai i  of the de- of kedom of the system, R is a non-square matüx 

which maps joint toques h m  a 2x1 vector to a vector whose size is equal to that of U, 

and x, and y, are coordinates of the payload wkch can be expressed as functions of some 

components of state variable vector U. 

This two-point bouudary value problem is a variationai problem, but différent 

h m  those in classicai caicufus of variation. F d y ,  there are two ciiffixent types of 

vaxiables, m I y ,  state variab1es U and control variabIes T. Secondly, some equaiity 

coastraints have the form of nonlinear ordinary dinerential equations. These make the 

problem very difficult such that its exact soIution does not exist at the present the. 

8.2.1 Classical Approach to Solve Time Optimal Control Problems 

As it was mentioned in chapter 6, Po- mniimum priociple can be used as a 

mathematicaï twl to solve some optimaï coml probiems. 

Usually nrx:hanicaï systems are assumed to be dtscribed by the fdowing equations of 
.. . . 

motion 

where m, x~ , and uj are number of degees of thedom of tk system, sbte variables, and 

control variables, respectively. Tb sysksystem is assunr;d to be m the sates X(b)=& and 



X(tr)=X, respective&, at the time t=6 and at tbe h a I  t i u ~  t=tf. In general the 

mode1 of a system aichxde certain copstraints on tk controI vector U in the form of 

where k is the numhet of constraiaed conîrois. 

Thetinie-~ptmiaicontrolpMemcannowbestatedas:Giventhedynaniicalsystem 

describedbyitsequationsofthe~n~tion withimtialstateX0, theterrninalstate&,andthe 

constramts on the elenients of the control vector U, ond the admkible vedor U which 

transforrnsthesystemfbm&to&inthemniimumtnir=. 

The miuimum prkipk, which is based on using Lagrange mdt@Iiers in calcuhis of 

variations, fianishes iocaJIy the necessq conditions which an optimal control U(t) mist satisfy. 

A Hamiltonian fllnction, Ei, is defined as 

where the fllrilctions G@,U,t) denote the right hand sides of equations (8.3)- The variabies 3.j 

are caIled the adjoint variables. Pontryagin minimum principb states the fbbwing conditions 

for the optimal soiution: 

a) conîrois ~ ( t )  are piecewise contiuuous in the closed regions 

b) adjoint variables kl(t), ........ ut) , whicb are a set of continuous iÙn3bns, m s t  exist 

and satisfy tk f0hwDig equations: 

c) and make the Hamüîonian a niinmium Mllj(t), xj(t)] with respect to u&). This minirriirm 

has the fORowing property 





8.2.2.1 Tmtment of Non-CaI1SBÜty and Numerid Optimization Algorïtbrn 

[130,132] 

By using an approach similar to the approach presented in the previous chapter, 

we consider the noncausality of the inverse dynamics via denning two additional time 

intewais tl and tz as pre-actuation and pst-actuation. The dinecence between the timt 

optimal control problem and the trajectory problem is that the main time internai tf is 

unlsnown in the f h t  one, whik tf is @en for the second one. In order to use numerid 

optimization, a suitable pararneterization of control torques Tl(t) and Tz(t) is required. 

Since the joint torques have side limits, each joint torque i can be expresseci by the 

foilowing equations: 

. ... . 

Therefore, the control inputs of the problem are transformeci fiom bounded variables Tl(t) 

and T2(t) to unbounded variables s'"(t) and Ca)(t). In th& study the fiee variables C'I)(t) 

and p ( t )  are represented by finite discrete numbers at speciûc tirnes instead of continuos 

funciions of tirne. We consider NM intervais for torque discretization in the main tirne 

interval. Moreover, Nl=cl NM and N2=c2 NM are chosen to present the number of torque 

intervals in the pre-actuation and pst-actuation times, respectively. Linear interpolation is 

used to compute torque values bet~veen the given time-nodal values. A h  the number of 

time steps in three different parts of motion are defined exactly simila, to the previous 

chapter. For the lrnown extended tirne (t1+t+t2) of the motion and known distribution of 

the joint torques, based on the aforementioned parameterization, equation of motion of the 

system can be solved nuIllericaIly as an initial value problem. Then, we can define an objective 

function presented by equation (8. IO), in which ro is a positive constant, rl, r2, r3, and r .  

are large penalty coefficients. q and are end-point coordinates at integration point i, 

while :(xi) defines the y-coordinate obtained h m  the desired path equation. 



The objective function in quaiion (8.10) is built using penalty fimction methods. The fîrst 

tenn corresponds to the main time interval t ~ ,  The second term is the penalty regarding the 

deviation of the coordinates of the payload h m  the given initial cootdinates, whik the 

third term &&es the penalty due to the deviation of the path from the desired one. The 

payload shouid stay staiionary at desired point B dirring the pst-actuation tirne. The forth 

and nfth terms present penalties due to no satisfying this requirement. The constraints 

regarding payload acceleraiion are not taken mto account. 

In this way, the optimai control problem is transformed to an optimum design 

problem with 2(N+NM+N2)+l design variables includkg main tirne intemal tf and 

discretized cl) and 5'2' values at Nl+NM+N2 specific time points. 

We use numaical âdEmm&kn to h d  its gradient vector, th BFGS niethod which 

required first dernratnres to approximate Hessian matrix is used to nnd the optimum point of 

the objective fimction. 

This section presents same simulation results of the proposeci algorithm applied to 

a planar manipiiiator wbkh was used as an example in chapter 7. The initial and final 

positions of the payload are (x~=1.8 m, y d - 2  m) and ( ~ ~ ~ 1 . 6  m, ~ ~ d . 7  m), respectively. 

The desired path of the payload is a straight line connecting these two points. Limits on 

the actuator joints are considered as: T,"' =-Th(" =3OO N.m, T-') =-Tha) =l20 N.m 



In this s h h i i o n  the number of toque intervais within the main t h e  interval tf is 

chosen -10 and the pst-actuation time is assumed to be 0.2tf ( ~ 4 . 2 ) .  cl is chosen O 

for no pre-actuation case and 0.2 for considering pre-actuation tirne, respectively. The 

joint torques needed to track the desired end-point trajectory for a counter-part 

manipulator with rigid links and joints are shown in figure 8.2-a Figure 8.2-b shows the 

tip emrs if these toques are applied to the aexiile dpula tor .  Also the variations of 

joint velocities 61 and & and payload angulac velocity & (ii the second linL coordinate 

system) are shown m figure 8.2-c. As it can be seen the maximum error is about 2.5 cm 

and the payload is not stationary at the end of the main time inteml (t=t+3.4893 sec). 

The computed joint torques for the fiexiile mauipuiator without considering pre-actuation 

(cl=()) are pfesented in figure 8.3-a As it can be seen h m  fi- 8.3-b 8.3-c after t=tf 

=O4940 sec, the tip error and the payload velocities are very small but at the beginning of 

the motion the tip error has a considerable value (maximum emr=3.5 mm). Figure 8.4-a 

shows optimal joint torques by considering pre-actuation time (cl=0.2)). From figures 

8.4-b and 8.4-c, it is clear that not only the payload velocity is very close to zero after 

t=0.5658 sec (t4.4850 sec), but also the maximum etror during the motion is only about 

0.4 mm. 
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Figure 8.2-a Optimal joint toques for a rigid manipuIatm 
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Figure 8.2-b Tip emr w k n  optimal rigid joint toques are applied to the flexible 

manipulator 
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Figure 8.2-c Angular velocities when optimal rigid joint torques are applied to the 

Figure 8.3-a OptimaI joint torques without pre-actuation considering flexibility 
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Figure 8.3-b Tip emr in the case of optimal flexiile joint t o q e s  without pre-actuation 
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Figure 8 - 3 4  Angular velocities in the case of optimal flexible joint toques 

without pre-actuation 
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Figure 8.4-a Optimal joint toques with pre-acOuation considering flexiiility 
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Figure 8.4-b Tip emr in the case of optimal flexible joint toques with pre-actuation 
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Figure 8.4-c Anguiar velocities in the case of optimal fiexiile joint torques 
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In this chapter a technique based on numencal optimization is developed to find 

near the-optimal contra1 solution of a two-link fiexïible manipuiator with both torque and 

path constraints. Results show that by applyhg the computed joint torques without 

considering pre-actuation, the tip errors becorne ver- smaü and the payload is almost 

stationary at the end, but at the beginning of the motion the tip error has a considerable 

value. By applying pre-actuated computed joint torques, not oniy the payload velocity is 

very close to zero during pst-actuation time, but also the maximum error is much srnalier 

than previous case. Therefore, the simuiation d t s  present the effectiveness of the 

proposed approach which takes into account the non-causality of the system via 

considering pre-actuation and pst-actuation. The computed joint torques can be used 



as feedfmard controis to mïnîmh the work of feedback controiiers. 



9.1 Summary 

This dissertation presents developrnent of dynamic modeling, trajectory control, 

and time-optimal control of multi-link fiemile maaipulators. 

Two efficient finite elemenüLagrangiaa approaches are used for dynamic modehg 

of flexiile maaipulators. In the nrst approach, the nonlinear and coupied equations of 

motion of muiti-link pIanar manipulators with both flexiii1e links and joints are derivecl 

using minimum number of coordiaates by considerhg joint or relative coordinates. The 

dynamic mode1 is free fmm assumpti~n of nominal motion and takes into account not only 

the coupling effects between rigid body motion and elastic motion, but &O the interaction 

between flexïle links and actuated flexible joints. The validity of the mode1 is shown and 

the effects of link and joint flexi'bilities are illustrated by some case examples. It is shown 

that the interaction between joint and link £Iexibilities has the most signifiant effect ia the 

dynamic behavior of the system. 

In the second approach, equations of motion of spatial muiti-link manipulators 

with flexiile links and joints are obtained. The constraint equations representing 

kuiematical relations among diffmnt coordinates due to connectivity of the iir&s are 

added to the equations of motion of the systern by using Lagrange muhipliers. This leads 

to a mixed set of nonlinear ordinary differential equations and nonlinear algebraic 





9.2 Recommendaüons for E'uture Research 

The foUOWiTlg ta& and investigations can be suggested as extensions to the 

present work: 

1. Expehental verïihtïon of the modeIs. This is due to the fact that regardless of how 

precise the maihcmatid description is, a model shouid bc tested experimentally. 

2. IncIusion of various danrpings in the dyaamic modeIs. Although, in the proposed 

modeiing, vismus damping at the joints was included, other types of damping were 

neglected due to their complex nature- During the motion of a flexible manipulator, 

damping is present in various forms such as aModynamic damping due to the air 

resistance, structural damping due to the interd losses of energy, and coulomb fictions 

at the joints due to the contact of various surfaces. To have a diable and accurate model, 

the only way is to nnd various damping effects experimentally which is not a simple task. 

3. Inclusion of the telescopic joints in addition to the revolute joints. In this work, all of 

the joints were assumed to be of revolute type. 

4. Modification of the dynamic modeIs in or&r to get rid of their iimitations. The basic 

assumption used in the proposed dynamic modelings of fiexiile manipulators is small 

elastic &formations. Moreover, the dynamic model developed for spatial manipulators is 

limitecl to the manipulators whose tang=& t* various Iuilrr do not becorne vertical during 

the motion. 

5.  Transfening the modeis ont0 more powerful computers and utilizing paralle1 processing 

capability in order to increase the computational speed. 
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APPENDIX 

DERIVATION OF ELEMENTS OF CONSTRAIN 

JACOBEAN MATRIX C, AM> VECTOR Qc 

. , . .  . 

As it was mentioned in chapter 5, due to intmducing redundant variables at each 

joints i (bl), tea constraint equatiom are needed to represent the mntinuity of the 

maniptdator system. These consaaints were show by the fo11owing equations for each 

joint i=2, ...P. 



To fbd Jacobean xm&k Cp of the constraints, first we differentiate the constrain& 

of each joint i with respect to various variabkr to buùd suinnatrices Q~~~~ Thai by 

assembling these submatrices, C, is found. 

For each joint i the non-zero carnponents of submatrix Cfiiq are: 

(A. 1 1) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 



Vector Qc in equation (5.51) can be found by using following equation found m 

chapter 3. 



Since the constrains are not expiidy functions of time, equation (5.146) can be simpiïfïed 

as 

Vector Qc can be found by assernbling subvectm, GC obtained for various joints. 
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