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ABSTRACT

Current industrial robots are made very heavy to achieve high stiffness which
increases the accuracy of their motion. However, this heaviness limits the robot speed and
increases the required energy to move the system. The requirement for higher speed and
better system performance makes it necessary to consider a new generation of lightweight
manipulators as an alternative to today's massive inefficient ones. Lightweight
manipulators require less energy to move and they have larger payload abilities and more
maneuverability. However, due to the dynamic effects of structural flexibility, their control
is much more difficult. Therefore, there is a need to develop accurate dynamic models for
design and control of such systems.

There are two types of control problems for such manipulators, namely, trajectory
control and time-optimal control (TOC) problems. In the first one, the position of the
payload is given versus time while in the second one the path and the joint torque
constraints are known. Since feedback control systems are non-collocated and position
commands contain high frequency components, they may cause these systems to become
unstable. This is why inverse dynamic methods have been recently used by many authors
to determine the joint torques such that the end-point of the flexible manipulator follows a
given trajectory. Due to the flexibility, a complete model consisting of the kinematic and
dynamic equations should be solved simultaneously. But the difficulty is so called non-
causality of the inverse dynamics of flexible manipulators. In other words, since the point,
for which the prescribed motion is specified, is connected to the application points of
control torques by elastic bodies, the joint torques should be applied from negative time to
future time in order to control the position of the end-point according to the desired

trajectory. The reason for this phenomenon is the fact that elastic waves propagate with

finite speeds.



In this dissertation three topics, dynamic modeling, trajectory control, and time-
optimal control of multi-link flexible manipulators are studied.

First an efficient finite element/Lagrangian approach is developed for dynamic
modeling of planar and spatial manipulators with flexible links and joints. For planar case,
the nonlinear and coupled equations of motion of multi-link manipulators are derived using
minimum number of coordinates by considering joint or relative coordinates. In the case of
spatial manipulators, the equations of motion -are obtained using a mixed set of differential
equations and algebraic constraints.

Then a technique based on numerical optimization is proposed to solve trajectory
control and time optimal control of muiti-link flexible manipulators. The proposed
technique finds the joint torques required to move the end point from rest to rest along a
specified path. The "non-causality” of the inverse dynamics of such systems is taken into
account via considering pre-actuation and post-actuation in the solution procedure. The
proposed technique is complete and effective and can be used to find joint torques as
feedforward controls in order to minimize the work of the feedback controllers.
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CHAPTER 1

INTRODUCTION

1.1 Prologue

As primitive man became aware of his environment he started to increase his
physical and territorial capability by creating tools such as lever, hammer, and pince
gripper. The lever increased the effect of the physical force that he was able to apply
directly. The hammer helped him to accomplish tasks which previously were not possible.
And the pince gripper enabled him to manipulate objects from a distance.

Much later, man invented machine tools with some degrees of autonomy which
allowed him merely to start, stop, and observe machines at work. With the introduction of
automation his role was reduced to starting the machine by pressing a button which
concurrently switched on sophisticated systems of controls. Finally, machines were
invented which not only had degrees of autonomy but also were able to cause action from
a distance. These machines, called robots, were powerful, autonomous, and flexible in
their application.

The word robot is Slav in origin, related to the words for work and workers. This
word was introduced by Karel Capek, a Czech playwright, in his play "Rossum’s Universal
Robots" in 1920. In that play an engineer made machines that were modeled on human
beings but had none of their weaknesses. Those small artificial and anthropomorphic
creatures strictly obeyed their master's command.
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Probably the first occurrence of mechanical arms was in the prosthetic
devices to replace lost limbs. These arms were designed to grasp objects. The second field
in which robot arms had found application was remote manipulation. The need to work
with hazardous materials or environment, led to the design of teleoperator systems. These
devices permit a user to perform simple manipulations from a safe distant place.
Applications in space, nuclear, and underwater environments are the typical use of
teleoperators. Also robots are now to be found in various applications such as spot
welding, arc welding, material handling, and assembly. Mainly, they are used to reduce
labor cost and material wastage, to increase output rate, and to improve production
quality.

Robots are so new that there is no standard definition for them. However, an
industrial robot is defined by US Robot International Association (RIA) as: "a
programmable, multifunctional manipulator designed to move materials, parts, tools, or
specified devices through variable programmed motions for the performance of a varjety
tasks". |

Industrial robots are built of the following basic systems:

1) The mechanical structure consisting of mechanical linkage and joints.

2) The control system.

3) The power input(s) which can be hydraulic, pneumatic, electrical, or their
combination.

Most of the contemporary robotic manipulators are very massive and inefficient.
Their payload-to-weight ratio is about 1:20 to 1:15, which is very low when compared
with the capability of the human arm. By considering a human being as a manipulator, it is
a very effective and efficient one. With total mass of 70-90 kg and its linkages (lower and
upper arms and wrist) 4.5-9 kg, this manipulator can precisely carry loads up to 4.5-9 kg
with fairly high speed. It can handle loads up to 15-25 kg with slightly lower speed, while
it is able to make simple movement with loads up to 90-135 kg. Therefore, a typical
manipulator is more than 10 times less efficient than 2 human being.
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Robots are very different from any other structures. Their structure consists of
active linkages which differ from passive ones such as crank mechanisms. In active
linkages each link has its own power supply, while in passive linkages all the links receive
motion from a single driving motor. As it was mentioned earlier, the load carrying capacity
of most of the existing industrial manipulators is very low. This low weight efficiency is
mainly due to control design which is usually based on rigid body dynamics. The
excessive mass of the arms limits their speed and increases the energy requirements and
the size of actuators. Moreover, manipulator systems with large workspace volumes and
large payloads, such as long-reach manipulators for nuclear waste remediation or the outer
space arms with extreme penalty on the mass carried into orbit, should be as light as
possible. Therefore, many benefits can be received from manipulators with low weight-to-
payload ratio and high stiffness. This is why a new generation of light robots which are
able to handle heavy payloads is required to replace the inefficient and massive ones.
Lighter manipulators need less energy and can operate at higher speeds. Therefore, they
save manufacturing time and increase productivity. Due to the flexibility of the links, the
assumption of rigid body dynamics and kinematics is no longer valid and the problem of
position control resulting from link flexibility needs to be resolved.

It goes without saying that accurate dynamic modeling is the first step for design
and control of lightweight, heavy payload, and high speed manipulator systems. Due to the
distributed flexibility of the links, they should be regarded as deformable bodies with an
infinite number of degrees of freedom. These degrees of freedom are used to define the
location of each point of the system. Mathematical modeling of multi-link flexible
manipulators as multi-deformable-body systems is a challenging research topic. The rigid
body or nominal motion of the system changes the geometry of the system. This results in
varying system parameters which influence the elastic deformations of the links. In turn the
elastic deformations influence the rigid body motion. In other words, since the
interconnected bodies of the manipulator system undergo large translational and rotational
displacements, the dynamic equations governing the motion of the system are highly
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nonlinear and coupled. The dynamic formulation of multi-deformable-body systems leads
to a set of partial differential equations. Since these space- and time-dependent equations
can not be solved analytically, approximate techniques such as Rayleigh-Ritz and finite
element methods are used to change them to a set of ordinary differential equations by
reducing the number of coordinates to a finite set.

In multibody systems, the motion of each body is constrained because of the
mechanical joints which connect the adjacent bodies. The configuration of a multibody
system can be described by vector quantities such as displacement and velocity. These
quantities should be measured with respect to an appropriate coordinate system. The
dynamics of such systems can be formulated by means of either minimal or redundant
coordinate methods. In general, two kinds of coordinates are required. The first one is an
inertial or global frame of reference which is fixed in time and the second one is a body
reference coordinate for each component of the system. This reference frame translates
and rotates with the body; therefore, its location and orientation change with time with
respect to the inertial frame. In rigid body analysis, the set of coordinates defining the
location and orientation of the body references is enough for defining the location of an
arbitrary point of the rigid body. However, the configuration of deformable bodies must be
identified not only by a complete set of coordinates defining the location and orientation
of a selected body reference, but also the elastic coordinates describing the deformation of
the body with respect to the body reference. In redundant methods, connectivity between
different bodies can be introduced to the dynamic formulation by using a set of nonlinear
algebraic constraint equations. Therefore, by using the redundant approach, the dynamic
formulation of motion of multibody systems leads to a mixed set of differential and
algebraic constraint equations (DAE) which have to be solved simultaneously.

Instead of using connectivity constraints, it is possible to use joint or relative
coordinates to find dynamic equations of the system expressed in terms of the system
degrees of freedom. Using this approach, the number of dynamic equations is minimum
because extra variables including the Cartesian coordinates presenting the location of the
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origins of the body reference frames and the Lagrange multipliers resulting from
connectivity constraints are not used in the formulation. However, this minimal approach
leads to a complex recursive formulation in many applications.

Another way for dynamic modeling of flexible manipulators is to find the dynamic
response of the system directly with reference to a fixed global coordinate frame. This
approach eliminates the nonlinear Coriolis and centrifugal terms from the dynamic
equations; however, it requires the use of finite strains, large displacements, and large
rotations. Therefore, this approach is somehow complicated and not suitable for the
control design specially for chains of flexible links.

One of the major open problems related to flexible manipulators is controlling the
position of their end-point. There are two types of control problems for such
manipulators, namely, trajectory control and time-optimal control (TOC) problems. In the
first one the position of the payload is given versus time, while in the second one the path
and the joint torque constraints are known. Various feedback control strategies are
proposed in the literature for trajectory control of flexible manipulators. Because such
control systems are non-collocated and position commands contain high frequency
components, the feedback control may cause these systems to become unstable. This is
why inverse dynamic methods have been recently proposed by many authors to determine
the joint torques such that the end-point of the flexible manipulator follows a given
trajectory. Due to the flexibility, a complete model consisting of the kinematic and
dynamic equations should be solved simultaneously. The main difficulty is the non-
causality of the inverse dynamics of flexible manipulators. Because the point for which the
prescribed motion is specified and the application points of control torques are connected
by elastic bodies, the joint torques should be applied from negative time to the future time
in order to control the position of the end-point according to the desired trajectory. The
reason for this phenomenon is the fact that elastic waves propagate with finite velocity.
Little work has been done on the non-causal inverse dynamics of multi-link manipulators
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with flexible links. To the best knowledge of the author, no work has been done in the
field of non-causal inverse dynamics of muiti-link robots with both flexible links and joints.

Although various approaches have been developed for time-optimal control of
rigid manipulators, little work has been devoted in the literature to the time-optimal
control of flexible manipulators. The exact minimal time solution is not available at present
because of the highly nonlinear structure of the equations of motion as well as the non-
causality of such systems. In the previous studies the non-causality of such systems was not
taken into account for time optimal control problem of flexible manipulators.

1.2 Scope and Outline of This Dissertation

In this dissertation three aforementioned topics: dynamic modeling, trajectory
control, and time-optimal control of multi-link flexible manipulators are studied. At the
beginning, two efficient finite element/Lagrangian approaches are developed for dynamic
modeling of such manipulators. In the first approach the nonlinear and coupled equations
of motion of multi-link planar manipulators with flexible links and joints are derived using
minimum number of coordinates by considering joint or relative coordinates. In the second
approach, equations of motion of spatial multi-link manipulators with flexible links and
joints are obtained using a mixed set of differential and algebraic constraints.

Two techniques based on numerical optimization are proposed to solve trajectory
control and time optimal control of multi-link flexible manipulators. The proposed
techniques find the joint torques required to move the end point from rest to rest along a
specified path. The non-causality of the inverse dynamics of such systems is taken into
account via considering pre-actuation and post-actuation in the solution procedure. In the
trajectory control problem, the mimnimized objective function is the summation of squares
of tracking errors at the integration time points from zero time to the end of the post-
actuation time. The proposed technique for time minimization is based on transforming the
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optimal control problem into an equivalent unconstrained optimum design problem using
penalty function methods.

It will be shown that these techniques are complete and effective and can be used
to find joint torques as feedforward controls in order to minimize the work of the feedback

controllers.

1.3 Organization of The Text

Chapter 2 is a review of the literature relating to the dynamic modeling, trajectory
control, and time optimal control of flexible manipulators.

In chapter 3, a general overview of dynamics of multi-deformable-body systems is
presented and the governing equations including equations of motion of the system and
constrained equations are obtained and various solution procedures are described.

Chapter 4 presents an efficient finite element/Lagrangian approach developed for
dynamic modeling of lightweight planar multi-link manipulators with both flexible joints
and links. The dynamic elastic response of each flexible link is formulated relative to a
floating frame called pinned-pinned or virtual link coordinate system. Using this
coordinate system, the link deformation is measured relative to the line connecting the end
points of the link. The finite element method is used to discretize the continuos elastic
deformation of links. Both the rigid degrees of freedom and the elastic degrees of
freedom of the system are treated as generalized coordinates. Using virtual work of
external loads as well as kinetic and potential energies of flexible links and actuated.
flexible joints, the equations of motion of the system are derived in terms of the
generalized coordinates through a Lagrangian approach. Therefore, the dynamic model
derived in this study is free from the assumption of nominal motion and takes into account
not only the coupling effects between rigid body motion and elastic motion but also the
interaction between flexible links and actuated flexible joints. The main advantage of the

proposed model is its compactness and completeness.
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In chapter 5, dynamic modeling of multi-link spatial manipulators with flexible
links and joints is developed based on using tangential (clamped free) local coordinate
systems. The links are assumed to be deformable due to bending and torsion and the finite
element method is used to discretize the elastic deflections of the links. In this modeling
the connectivity of the links is taken into account by introducing the Cartesian coordinates
of origin of each local coordinate system as extra unknown variables. By using the finite
element method and employing Lagrange multipliers, a mixed set consisting of nonlinear
ordinary differential equations and nonlinear algebraic constraint equations is obtained.
These equations are solved simultaneously by means of numerical integration in order to
predict the dynamic behavior of the system.

A short review of numerical optimization techniques such as quasi-Newton
methods and penalty functions is presented in chapter 6. These methods are used in
chapters 7 and 8 to solve trajectory and time optimal control of flexible manipulators,

Chapter 7 describes the non-causal nature of the inverse dynamics of flexible
manipulators and proposes a simple but efficient approach based on numerical
optimization to solve such difficult pmble@ |

In chapter 8, an approach utilizing nonlinear programming is proposed to solve the
control problem of flexible manipulators for a rest to rest motion in minimum time. For
such systems, the proposed technique is simpler and more effective than optimal control
methods. Moreover, the non-causality of the inverse dynamics of the flexible manipulators
is taken into account in the proposed approach.

Finally, chapter 9 presents the conclusion of this work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Robots, mechanisms, teleoperators, spacecrafts, and walking machines share
common kinematical, dynamical, and control problems. In the age of high productivity, it
is required to design these mechanical systems in such a way that they can operate at
higher speeds with less energy consumption. In order to increase the operating speed of a
mechanical system, the mass of its moving parts must be reduced. However, the lighter
members are more likely to deform due to their flexibility. Therefore, the control problem
of lighter mechanical systems is much more complicated than that of massive, rigid ones.

The demand for designing light mechanical systems has prompted researchers to
develop comprehensive mathematical methods to model their dynamic behavior as well as
to control their motion. The literature on lightweight flexible multibody systems began in
the early 1970s. Three main subject areas discussed in the literature have included
modeling and control of mechanisms, spacecrafts, and robotic manipulators.

This chapter starts with an overview of the literature dealing with dynamic
modeling of flexible multibody systems including manipulators and mechanisms. Then a
literature review on trajectory and time optimal control of flexible manipulators is

presented.



LITERATURE REVIEW 10

2.2 Modeling

Many works in the past have been done in the formulation of the equations of
motion of rigid multibody systems. The kinematics of rigid multibody systems has been
completely described using symbolic notation of Hertenberg-Denavit Matrix [1]. Uicker
[2] and Paul and Rong [3] employed this 4X4 transformation matrix approach to model
the kinematics of spatial linkages and manipulators.

The dynamic modeling of rigid mechanisms and robots was approached by several
techniques. Greenwood [4] and Luh et.al [S] used the Newton-Euler method, while Asada
and Soltine [6] and Hollerbach [7] made use of Lagrangian approach. Kane's method also
was used by Kane and Levinson [8].

During the past 20 years there has been an increasing interest in formulation of the
equations of motion of large flexible multibody systems. Mathematical modeling of multi-
deformable-body systems is a challenging task. Since the nominal or rigid body motion of
the system changes the geometry of the system, system parameters vary with time and
subsequently influence the elastic deformations of the bodies. On the other hand, the
elastic deformations influence the rigid body motion of the interconnected bodies of the
system. This is why the dynamic equations governing the motion of such systems are
highly nonlinear and coupled.

In the literature a number of formulations and solution algorithms have been
proposed which differ in the techniques used to develop the equations of motion, the
approaches utilized to model the elastic deformation of the bodies, and the assumptions
regarding coupling of rigid body motion and elastic deformations.

2.2.1 Techniques for Deriving Equations of Motions

Three main techniques were used by researchers to develop the dynamic equations
of motion of flexible multibody systems, namely: Newton-Euler approach, Lagrangian
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approach, and Hamiltonian approach. While vector quantities are used in Newtonian
mechanics, scalar quantities such as kinetic energy, potential energy, and work are used in
Lagrangian dynamics which greatly simplify the problem. Moreover, the Lagrangian
formulation eliminates the forces of constraints from the dynamic equations. This is why
most of the researchers [9-12] have used the Lagrangian approach to formulate the
dynamic equations of flexible multibody systems, while only a few {13,14] have used the
Newton-Euler approach. Meanwhile, some other researchers applied directly the
Hamiltonian principle to obtain dynamic model for flexible single-body or multibody
systems [15,16].

2.2.2 Selection of Coordinates

Regarding the systems of coordinates, two fundamentally different approaches
have been proposed in the literature to describe the motion of flexible bodies of a multi-
deformable-body system. They are: the floating reference frame method and the inertial
reference frame method. Floating reference frames, which translate and rotate with flexible
bodies of the systems, have long been used in spacecraft dynamics [17]. The deformation
of each body is described with respect to its floating or body reference frame. The
introduction of this type of frame was motivated by the assumption of small deformations
in flexible bodies. Most of the researchers in the field of flexible mechanisms and robots
have used this system of coordinates [10,18,19,20,21]. Usoro et. al [10], Hasting and
Book [18], and Wang and Vidyasagar [19] defined the floating frame to be attached at the
base of a beam to model flexible manipulators, while Cannon and Schmit [20] used the
floating frame passed through the center of the mass. Asada et al [21] let the floating
frame pass through the end points. By usmg the latter approach, the resulting equations of
motion, although restricted to small deformations, are nonlinear and highly coupled in the
inertia terms such as Coriolis and centrifugal effects.

The inertial reference frame method was proposed by Simo and Vu-Quoc [22] to
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model the dynamics of moving beams. In this method the displacement vector is described
in an absolute coordinate system. Therefore, the rigid body motion and the elastic
deformations are expressed together. This leads to a formulation whose inertia matrix
becomes simple, but the stiffness matrix becomes highly nonlinear. This approach also was
used by Yang and Sadler [23], Jonker [24], Crisfield [25], and Hsia and Jang [26] to
model dynamics of flexible mechanisms. It is worth noting that these inertia reference
frame models incorporate geometric stiffening via various routes. For example, Simo and
Vu-Quoc [22] used the finite strain beam theory developed by Reissner [27] for finding
appropriate finite strain measures, while Hsia and Jang [26] proposed a finite element
approach based on co-rotational formulation and small deflection beam theory with
inclusion of axial forces. In this model, the nodal coordinates, velocities, accelerations,
incremental displacements and rotations, and equations of motion of the system were
defined in terms of fixed global coordinates, while the strains in beam elements are
measured with respect to a set of element coordinates associated with each element.
However, since these methods require the definition of finite strains, large displacements
and rotations, they are somehow complicated and, therefore, not suitable for the control
design especially for chains of flexible links.

2.2.3 Minimal and Redundant Methods

Since a system is a collection of bodies connected with various mechanical joints,
each body of the system has a constrained motion. The dynamics of such systems can be
formulated by means of either redundant or minimal coordinate methods.

In redundant methods, connectivity between different bodies is introduced to the
dynamic formulation by using a set of nonlinear algebraic constraint equations. This
approach has the advantage that the governing equations of motion of the system can be
found in a straightforward manner. However, the dynamic formulation of motion of
multibody systems based on this approach, leads to a mixed set of differential and
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algebraic constraint equations which have to be solved simultaneously. Moreover, this
procedure increases the dimension of the problem by considering dependent coordinates at
joints and Lagrange multipliers as additional unknowns. Many researchers such as
Shabana [11], Song and Haug [28], and Avello et al. [29] bave used this type of
forrulation. Song and Haug [28] developed a finite element formulation in which
kinematic constrains and equations of motion were combined to obtain a coupled system
of equations presenting the behavior of the planar flexible mechanisms. Avello et al.[29]
used a general non-linear finite element formulation to establish the equations of motion of
flexible multibody systems. Even though their model was based on the redundant method,
they did not use Lagrange multipliers, but they introduced the constrain equation into
equations of motions through a penalty formulation.

In the minimal method, the appended constraints are eliminated by using
independent coordinates. In other words, joint or relative coordinates are used to find
dynamic equations of the system expressed in terms of the system degrees of freedom.
This leads to a formulation with a minimum number of dynamic equations because extra
unknown variables including dependent coordinates used to represent connectivity of the
bodies and the Lagrange multipliers resulting from connectivity constraints are not
considered. However, this approach leads to a complex recursive formulation in many
applications. This approach was uﬁed by many researchers such as Book [9], Usoro et al
[10], Naganathan and Soni [14], and Nagarajan and Turcic [30].

2.2.4 Approximate Methods

The dynamic formulation of flexible multibody systems leads to a set of
complicated partial differential equations. Since these equations are space and time
dependent, they can not be solved analytically. This is why many approximate techniques
were proposed to change these partial differential equations to a set of ordinary differential
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equations. Mainly three methods have been used in the literature, namely: lumped
parameter methods, assumed mode methods, and finite element methods.

2.2.4.1 Lumped Methods

The lumping approximation is the oldest method to model continuos systems in all
engineering fields. This technique was used widely in vibration analysis of mechanical
systems with distributed inertia and elasticity. Inertia and compliance effects were lumped
to obtain ordinary differential equations as approximations for partial differential equations
governing the dynamic behavior of the continuos systems.

Mirro [31] in his pioneering work considered both the modeling and control of a
single flexible link via 2 lumped parameter approximation technique. Book [32] derived
the linear dynamics of spatial flexible arms represented as lumped mass and spring
components via 4X4 homogenous transformation matrices used in rigid multibody
dynamics. He neglected nonlinear and coupling terms such as Coriolis, centrifugal, and
gravity effects in his model. Later Book et al [33] directly approximated a two-link flexible
manipulator with a linear model derived from a nonlinear distributed parameter model by
using impedance methods. Also a generalized lumped parameter method was proposed by
Sadler and Sandor [34] and Sadler [35] to present a finite set of submasses of an elastic
member for simulating planar motion of flexible mechanisms. They considered the
components of the mechanisms as simply supported beams subject to planar bending. A
finite difference formulation was used to solve the equations of motion numerically. In
1979 Book [36] utilized 4X4 transformation matrices to model a spatial manipulator
which was light and operated at low speed. By neglecting the mass of the manipulator
compared to the mass of the payload and assuming that the links bent in their first mode of
vibration, he developed the linear equations of manipulator as two rigid masses connected

by a chain of massless beam segments.
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As mentioned earlier, in lumped parameter methods, it is necessary to
approximate the physical system with distributed mass and elasticity as a system of rigid
bodies connected with massless elements. This idealization is difficult in many practical
problems. This is why more advanced approximate methods such as assumed mode
methods and finite element methods, have been developed. These methods can be used to
discretize continuous systems in an easier and more systematic way.

2.24.2 Assumed Mode Method

The assumed mode method is mainly presented by Book [9] for modeling the
dynamics of flexible manipulator systems consisting of rotary joints that connect pairs of
flexible links. In fact he extended the recursive Lagrangian dynamics proposed by
Hollerbach [7] to flexible manipulator systems by using the assumed mode method
introduced by Meirovich [37). In his model, 4X4 transformation matrices were used to
describe the kinematics of both the rotary-joint motions and the link deformations.
Therefore, hybrid coordinates including the joint motions and elastic deformations
described by a series of vibration modes were employed to describe the system behavior.

Judd and Falkenberg [38] and Singh and Schy [39] used a similar modal analysis
approach to model flexibie robot arms. Since they neglected the kinetic energy due to the
link deformation, their models were not accurate. Also Yuan, Book, and Huggins [40]
used a2 Lagrangian assumed mode method for dynamic modeling and control of flexible
manipulators. They used the finite element method to derive suitable mode shapes.

An assumed mode method based on Kane's method was also used in the literature
by Singh et.al (41] who proposed a recursive formulation for flexible multibody systems.
The formulation was restricted to clamped-free mode shape shapes. In this work the
assurned modes were obtained by a prior finite element analysis.

Generally, floating reference coordinates are used in the assumed mode methods.
Depending on the choice of these rigid body coordinates, different mode shapes functions
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have to be used. Some authors have used the rigid body coordinates attached at the base
with the clamped free boundary condition [19,42], while the others have used rigid-body
coordinates passing through the end-point [21] or through the center of mass of the beam
[20].

The main drawback of these methods is the difficulty in finding modes for links
with non-regular cross sections and for multi-link manipulators. Benati and Morro [43]
proposed an assumed mode method for dynamic modeling of the chain of flexible links.
They described the flexibility of each link by the first two eigenmodes of clamped beams.
In their work the first two eigenmodes of the links were found by treating the mass of
distal links as a lumped effect at the extremity of the link under consideration. This method
of finding modes for links is only an approximation because the mode shapes of the links
are configuration dependent especially when the effect of gravity is taken into account.

On the other hand, the use of transformation matrices makes the modeling rather
complicated. This is why the solution of models based on assumed mode method (Book's
method) especially for spatial manipulators are computationally inefficient and time
consuming. To improve Book's method, a more efficient method which uses the Newton-
Euler formulation was proposed by Hasting and Book [13]. Also a Lagrangian
formulation by using angular velocities instead of transformation matrices was presented
by King et.al [44]. Meanwhile, Li and Sanker [45] improved Book's by using Lagrange
assumed mode method via using a 3X3 matrix and a 3X1 vector to present link
kinematics.

It is worth mentioning that some of the researchers such as Asada et.al [21] have
used Raylieght Ritz functions instead of mode shapes in their formulation. However,
choosing Ritz functions specially for non-uniform links is a difficult task.

2.2.4.3 Finite Element Method

In one of the early works on flexible mechanism Neubauer et.al [46] derived a
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nonlinear partial differential equation by force and momentum balance of a link section for
investigating the transverse vibrations of the connecting rod of a planar slider-crank
mechanism. They remove all nonlinearity by assuming the independency of end reactions
from elastic vibrations. Chu and Pan [47] transform the governing partial differential
equations of motion derived by [46] to ordinary differential equations by using Kantrovich
method and the method of weighted residuals. Other researchers such as Jasinski et.al
[48], Badlani and Midha [49], and Tadjbakhsh [50] also modeled the elastic links as
continuos systems with infinite degrees of freedom. These analyses were so limited and
complicated that they were used exclusively for simple slider-crank mechanisms with only
one flexible member.

Later finite element method was used to develop approximate models for flexible
mechanisms with more than one flexible links. In early use of finite element procedure,
only specific structures were analyzed mainly in the aerospace and civil engineering.
However, at the present time, finite element method is widely used in most of the
engineering analysis. This method is quite general and can be applied to the flexible
multibody systems with complex shaped components. Using finite element method,
flexible bodies are presented as discrete systems with finite degrees of freedom.

Finite element method was used to model flexible mechanisms by many authors.
Winfery [51,52] was the first to introduce the finite element concept for analysis of
mechanisms using stiffness technique of structural analysis. He used the assumption of
uncoupled rigid body motion and small deformation in his model. The idea of kineto-
elasodynamics, which is the study of motion of mechanisms consisting of flexible links,
was introduced by Erdman et.al [53,54]. They employed the finite element method based
on flexibility method of structural analysis to study flexible mechanisms. Their model was
based on the assumption that small elastic deformations are caused by inertia forces arising
from rigid body motion of the system which was assumed to be independent of elastic
deformations.

Midha et.al [55] used a displacement finite element method to model an entirely
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elastic four-bar mechanism. By assuming that the rigid body velocity and acceleration are
small as compared to the velocity and acceleration of the elastic nodal deformations, they
obtained the linear differential equations of motion via Lagrange's equations. Later Turcic
and Midha [12] used finite elements to derive the equation of motion of elastic
mechanisms by preserving tangential and Coriolis acceleration terms which leads to the
presence of nonlinear coupling terms. However, they assumed that the elastic motions did
not have any effect on the large rigid body motion.

Bahgat and Willmert [56] presented a finite element approach for vibration analysis
of general flexible planar mechanisms. All moving links are assumed to be elastic.
Lagrange equation was used to obtain the equation of motion. Similar to the previous
authors, they assumed that the gross motion is determined by traditional rigid body
kinematic analysis and the elastic response is driven by inertial forces arising in the rigid
body motion. Khan and Willmert [57] adapted the vibration analysis method first
introduced by Bahgat and Willmert [56] to quasi-static analysis of elastic deformations of
a slider-crank mechanism and a four-bar linkage.

In the field of robotics Sunada and Dubowsky [58] presented a general
Lagrangian/finite element approach to model industrial manipulators with elastic members,
They utilized NASTRAN (a large general-purpose FE program) to generate the lumped
mass and stiffness matrices of the individual links. In their method the effect of the system
deformations on the kinematics of succeeding links was ignored.

All the aforementioned finite element method approaches were based on linear
superposition theory, in which elastic deformations were found by assuming known rigid
body motion and later superposing the elastic deformations to the rigid body motion.
Therefore, they did not consider the coupling effects between rigid body motion and
elastic deformations.

There are some works in literature which consider rigid body motion and elastic
motion coupling terms, but only those which represent the effect of the rigid body motion
on the elastic motion {14,59,60,61]. Therefore, these works neglected the effect of elastic
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motion on the rigid body motion. Natagathan and Soni [14] included coupling effects and
presented a nonlinear finite element based model for flexible manipulators. Utilizing a
finite element method and Timoshenko beam theory, Nath and Ghosh [59,60] developed
the differential equations of motion of flexible mechanisms by considering coupling terms.
Kalra and Sharan [61] proposed a Galerkin approach for dynamic modeling of planar
multi-link flexible manipulators. They considered axial deformations and coupling terms
between rigid and elastic motions. However, similar to the previous finite element models,
in this model the nominal motion of the system was assumed to be independent of elastic
deformations.

The effect of elastic deformations on the rigid body motion of the system was
taken into consideration by few researchers. Nagarajan and Turcic [30] developed a
Lagrangian finite element dynamic model for spatial flexible mechanisms. They treated
both the rigid body degrees of freedom and the elastic degrees of freedom as generalized
coordinates. Although they considered the mutual dependence between the rigid body and
elastic motions, they ignored the effect of elastic deformation on the transformation matrix
between the link coordinates and the global coordinates. Usoro et.al [10] presented a finite
element/Lagrangian approach for modeling of lightweight flexible planar manipulators.
They introduced a model in which the system configuration at any time is described by a
combination of gross motion and elastic coordinates. The tangent coordinate systems,
which are attached at the base of the links, were utilized. This model was based on small
deformation theory and neglected axial deformations. Although most of the coupling
terms were taken into account, this model can not be easily used for manipulators with
more than two links due to its computational complexity.

Avello et al. [29] established a general non-linear finite element formulation for
dynamics of flexible multibody systems using large displacement theory and redundant
method based on penalty functions. Even though most of the coupling terms were taken
into consideration, the complexity of the method for control design is its main

disadvantage.
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2.2.5 Joint Flexibility

All of the above studies neglected the joint flexibility and the actuator dynamics.
Unfortunately, joint elasticity exists in most of today's manipulators and must be
considered in modeling for many cases. Most industrial robots are equipped with gear
boxes such as DC motors with harmonic drive transmissions that introduce joint flexibility.
In addition to gears, motor shafts and bearings can cause joint flexibility. The small
angular deviation due to joint compliance will influence the end effector position accuracy
especially as the arms length get longer. Neglecting this effect may be acceptable when the
operator speed is low, but may be quite devastating when the speed becomes high.
Because of the high complexity of the dynamical equations for multi-link manipulators
with both joint and link flexibility, most of the literature on the control of flexible
manipulators have discussed arms with joint flexibility and with link flexibility separately.

The problem of joint elasticity has been addressed in recent years. Spong [62]
investigated the modeling and control problem for flexible joint manipulators. He
developed a simple model to represent the elastic joint manipulator by assuming that the
motion of the rotor is purely rotation with respect to an inertial frame and the rotor
velocity and the gravitational potential of the system are both independent of the rotor
position. Also Good et al [63], Soﬁi and Dado [64], and Readman and Belanger [65] and
many others studied the dynamic response and control properties of manipulators with
elastic joints. Generally, in the proposed models, the dynamic model of the elastic joint has
been modeled as a torsional spring in parallel with a viscous damper.

Though a lot of work has been done in the modeling and control of joint flexibility
and link flexibility, little work has been devoted to the problem of combined link and joint
flexibilites. The problem of controlling manipulators and mechanisms with flexible links
and joints has received widespread attention in the past decade. When the link flexibility
and joint flexibility are comparable, the corresponding subsystems are strongly coupled
due to significant interactions between link and joint flexibility. The link flexibility by its



LITERATURE REVIEW 21

own complicates the manipulator dynamics, therefore, it is obvious that the inclusion of
the joint flexibility causes greater complication in the dynamic model of the system.

Gebler [66] modeled a flexible link planar robot with two revolute joints using Ritz
approximation considering joint flexibility. The two static deflection bending lines of a
cantilever beam with only one concentrated force or one concentrated torque acting on the
outer end of the beam were used as Ritz-functions. He neglected the dynamic forces
resulting from deviations from the nominal position and linearized the equations of motion
of the system with regards to the nominal trajectory. Jonker [67] presented a finite element
dynamic model of multi-link manipulators with link and joint flexibility by considering both
links and joints as specific finite elements. In his model the actuators were chosen linear
and their dynamics was not taken into account. Besides, he neglected the effects of
damping and gravity. Huang and Wang [68] developed the equations of motion of robotic
manipulators with both flexible links and flexible joints by combining the finite element
model of flexible links using Timoshenko beam theory with multi-degree of freedom
models of elastic joints. But they assumed that the rigid body motion was known in
advance. Yang and Donath [69] and Yang and Fu [70] investigated the combination
effect of link flexibility and joint compliance by combining a simple assumed mode shapes
model of beams with spring-damper models. .Similarly Gogate and Lin [71] formulated the
manipulator dynamics by a superposition of two models, namely, an assumed modes of
vibration model for links and a torsional spring model for joints. Based on this model they
proposed a two step control which found the total control torque as simply the
superposition of the first-step and the second-step control torque. Xi et al [72] studied 2
manipulator consisting of only one flexible link and one flexible joint. They assumed that
the link was constrained to move only in a horizontal plane, therefore; they didn't take into
account the gravity in their model. Also they neglected the component of centripetal
acceleration based on the assumption of small angular velocity of the link. Recently Lich
[73] investigated the dynamic behavior of a slider crank mechanism with flexible coupler

and joint by using a virtual work formulation. The slider was assumed to move on a
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horizontal plane and angular velocity was applied to the flexible joint. They used first two
modes of vibration to approximate the link flexibility.

2.3 Trajectory Control of Flexible Manipulators

Robotic applications can be divided into two major tasks: (1) point-to-point
motions, as in spot welding and parts handling, and (2) specified péth motions, as in arc
welding, laser cutting, painting, and glue dispensing. Controlling the position of the end-
point of flexible manipulators to track a desired trajectory with specified speed is a very
difficult task due to the structural flexibility coupled with noncolocated sensors and
actuators. This is why advanced techniques, which are significantly different from those
for rigid arm control, have been developed for control of nonminimum phase flexible arms.

A number of feed-back control strategies have been proposed in the literature by
the control community for the problem of end-point trajectory tracking in flexible
multibody systems. Hasting and Book [18], Cannon and Schmitz [20], Book [33], and
Sakawa et. al. [74] employed linear control theory, while Singh and Schy [39], De Luca et
al [81], and De Luca and Siciliano [82] madg use of nonlinear decoupling.

To control flexible systems, the early.s'tudies obtained linear models from nonlinear
equations of motion, and then they utilized linear control theory. For example Hasting and
Book [18] used joint and strain feedback to damp structural vibration of a flexible
manipulator. However, their experiments showed overshoot and vibration to step position
command. Book et al [33] addressed the control of two-link flexible manipulator by
linearizing the manipulator dynamics and using linear feedback control schemes. They
neglected nonlinear effects of Coriolis, centrifugal, and gravity forces. Cannon and
Schmitz [20] developed a specific linear model for a single-link flexible manipulator
moving on a horizontal plane. Gravity and Coriolis forces were neglected. With the linear
model, collocated and noncollocated control systems were developed utilizing linear
control theory. They recognized that a multi-link arm could not be controlled based on
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their approach because of nonlinearities in the dynamics of a muiti-link arm. Sakwa et al.
[74] introduced a similar closed-loop approach but with a more detailed analytical model
of the link and a different sensor system. Their algoritbm was used to suppress arm
vibrations by measuring strains over the arm links.

As mentioned earlier the aforementioned authors have used linearized equations of
motion of flexible manipulators. The linearized models can only work in the neighborhood
of operating points about which linearization has been taken. Therefore, the motion of
manipulators is confined to a small range, and the linearization has to be affected
frequently due to nonlinear and time varying nature of the system. We see that the control
design based on linearized models is not adequate for high speed manipulators. Moreover,
since control systems for flexible manipulators are non-collocated and position commands
contain high frequency components, the feedback control may cause these systems to
become unstable.

Siciliano et al. [75), Siciliano and Book [76], and Khorrami and Ozguner [77]
proposed singular perturbation approaches based on two-time scale model of the flexible
arm to control flexible link manipulators. These approaches allowed the definition of a
slow subsystem corresponding to the rigid body motion, and a fast subsystem describing
the flexible motion. Then a composite control strategy was applied. First a slow control
was designed for the slow subsystem as it wduld be done for an equivalent rigid arm, then
a fast control stabilized the fast subsystem. However, the separation of time scales
between the rigid and flexible subsystems can not be realized for many systems.

An approach proposed in the literature is the feedforward compensation which is
based on inverse dynamics of models of flexible structures. A key issue in feedforward
compensation is the computation of actuator torques required for flexible manipulators to
track a specified trajectory with a specified speed. Feedforward compensation has been
used to reduce tracking errors and residual vibrations [66,78,79]. The inverse dynamic
problems were usually simplified by deébupling the kinematic and dynamic equations
based on the concept of nominal joint motions, which were determined using the kinematic
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equations for the rigid link counterpart of a flexible link manipulator by neglecting the
effect of link deflections. Pfeiffer [80] suggested a control scheme consisting of a
feedforward computed joint torque based on rigid body inverse dynamics and a linear
stabilizing feedback on the linearized system around the given rigid trajectory. In Singh
and Schy paper [39], a generalization of the computed torque method, which had the end
effector actuation for vibration damping in addition to joint actuation, was presented. It
proposed a joint space closed-loop control for elastic robots based on nonlinear inversion
and modal damping. Also De Luca et .al [81,82] proposed a closed-loop control strategy
consisting of a linearized model-based feedforward term and a linear feedback control on
joint angles. However, De Luca et. al [81] showed that numerical inversion techniques for
a flexible manipulator lead to an unstable behavior.

Wang et al [83] presented a new method for synthesis of open-loop control inputs
to move a flexible system along a given trajectory. Their approach was based on the
closed-loop simulation to generate the open-loop control input. This method was applied
to a linear problem. It was claimed that the proposed method could be extended to
nonlinear systems, but such extension has not yet been done.

To avoid the aforementioned problems, inverse dynamic methods have been
recently proposed by many authors to determine the joint torques such that the end-point
of the flexible manipulator follows a given trajectory. Since the system is redundant due to
its flexibility, a complete model consisting of the kinematic and dynamic equations should
be solved simultaneously. But the main difficulty is the non-causality of the inverse
dynamics of flexible manipulators. In other words, since the point for which the
prescribed motion is specified and the application points of control torques are connected
by elastic bodies, the joint torques should be applied from negative time to the future time
in order to control the position of the end-point according to the desired trajectory. The
delay is due to the fact that elastic waves propagate with finite velocity. This is the reason
why standard causal time domain integratibn schemes are unstable in solving the inverse

dynamics of flexible manipulators.
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Asada et al. [21] derived an inverse dynamic equation by using Ritz-functions as
assumed modes. However, they did not solve the inverse dynamic equations completely.

Idler [84] formulated the inverse dynamics of flexible multibody systems by
utilizing higher order derivative information. However, he obtained a causal solution for
the inverse problem. This is why one of the links was assumed to be rigid. Moreover,
backward Euler method, which is only a first order method and not accurate enough, was
used in numerical integration.

Xi [85] recently proposed a new method to solve the inverse dynamics of flexible
manipulators. He used a Lagrangian assumed mode method to derive the equations of
motion of the system. Even though this study mentioned the noncausality of the inverse
dynamics of flexible manipulators, it was basically based on causal solution of such
problems. For this reason an initial velocity was assumed for the system in order to be able
to solve the problem.

Noncausal solutions for inverse dynamic problems have been developed by Bayo
[86] and Kwon and Book [87). Moulin and Bayo {88] showed that the causal integration
of the inverse dynamics of the flexible multibody systems leads to unstable results. Bayo
[86] developed a new approach to calculate the required torque to produce a desired end
effector motion for a single-link arm by solving the inverse dynamic equation in the
frequency-domain with inverse fast Fourier transform. This method took into
consideration the noncausal nature of the inverse dynamics of flexible manipulators. Since
the necessary torques are provided by the solution of the inverse dynamics, the reduction
of vibration in positioning of the tip is no longer required for input shaping. Later Bayo
and Mouline [89] introduced the conrvolution integral method to solve the inverse dynamic
equation in the time-domain. This technique was computationally much more efficient than
the approach developed in frequency domain. Ledesma and Bayo [90,91] extend the
noncausal integration method to the inverse dynamics of multi-link closed-loop and open-
loop flexible multibody systems. However, this approach was limited to systems with
flexible links only.
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Kwon and Book [87] introduced another new solution for the inverse problem for
a single-link arm. They decoupled the inverse dynamics of the manipulator into causal and
anti-causal parts, then these two parts were solved forward and backward in time,
respectively. The limitation of this approach is that it can be used only for linear single-link
systems in which the effects of gravity, Corolis and centrifugal accelerations are
neglected.

It is important to note that when the dynamic effects of the elastic modes are small
(quasi-rigid), causal inverse solution may be obtained by regularizing the problem with the
addition of artificial damping either through the damping matrix or the numerical
integration scheme. However, these ad hoc processes change the nature of the problem
and do not yield the desired time delay effect {90].

All of the above studies did not take into account the joint flexibility and actuator
dynamics. Only a few works were reported in the literature which addressed control of
manipulators with both link and joint flexibility. Gebler [66] proposed a feedforward
control strategy to control an industrial robot with elastic links and joints. As it was
mentioned in section 2.2.5, his model was based on Ritz approximation and linearization
with regard to a nominal trajectory. The desired joint angles calculated under the
assumption of rigid joints and links were modified by taking into account nominal
deflections. A two step control law which found the total control torque as the
superposition of the first-step and the second-step control torque was developed by
Gogate and Lin [71]. By assuming that only joints are elastic, the first control torque was
found using a singular perturbation approach. Then by treating the effects due to link
flexibility as nonlinear disturbances to the manipulator system the feedback control law
yields a second control torque. Also Yang and Fu [70] used singular perturbation
approaches to control manipulators with both joint and link flexibility. They decomposed
the full-order nonlinear system into slow subsystem, mid-speed subsystem and fast
subsystem, and then they proposed a composite control law using optimal control theory.
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None of the aforementioned works have taken into consideration the noncausal nature of
the inverse dynamic problem.

2.4 Time Optimal Control of Flexible Manipulators

For high productivity, it is desirable that the motion of the robotic manipulators be
time-optimal so as to reduce the motion time. Therefore, another type of problems related
to the flexible manipulators is controlling the position of their end-point for a rest to rest
motion in minimum time along a specified path, while actuator torques are not exceeding
the limits due to physical capabilities of actﬁators or bending strengths of links.

Time optimal control problems lead to two-point boundary value problems with
fixed initial and final states and free final time. These problems, even in the case of rigid
manipulators, have no closed form solutions except in the simplest cases. Further,
numerical approaches used for time-optimal problems have yielded acceptable resuits only
when certain restrictions were placed on the problems. For example, for the unconstrained
motion of linear single-degree of freedom systems with only one controller, the solution is
characterized by saturated controls for the entire motion with one switch at the mid-point
as shown in figure 2.1. This type of solution is known as bang-bang profile in optimal
control control theory. Nevertheless a general multi-degree of freedom nonlinear time
optimal control algorithm has not yet been developed. This is why most of the papers
dealing with computational algorithms for the time-optimal control problems assumed a
bang-bang control profile and found the number of switches and the switch times for each
controller.

Work on minimum-time control problems begun as early as the late 1960s and
most commonly, the researchers have linearized the dynamics in order to apply standard
techniques of linear optimal control theory to the time optimal solution. A survey of the
literature shows that two types of problemé are commonly considered: a point to point
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Figure 2.1 Bang-bang profile for a single degree of freedom system

motion without constraints on the path and a point to point motion along a specified or
constrained path.

Although various approaches have been developed for the time-optimal control of
rigid manipulators without path constraints [92-95] and with path constraint [96-98], little
work has been devoted in the literature to the time-optimal control of flexible
manipulators.

Many algorithms were proposed for solving unconstrained path minimum
problems. In the earliest attempts, Khan and Roth [92] derived the expected bang-bang
solution with multiple switching points. They addressed the time-optimal control of a-
system of rigid bodies in series by rigid joints. A suboptimal feedback control in terms of
switching curves for each of the system controls was developed. These curves were
obtained from linearized equations of motion of the system, then approximations were
made for the effects of nonlinear terms consisting gravity loads and angular velocity terms.
Luh and Lin [93] and Lin et al. [94] used purely kinematical approaches to find the
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sequence of time intervals that minimize the total time spent on moving between two
points. They assumed that the path consisted of a sequence of straight line segments and
the constant limits on Cartesian velocity and acceleration were known a priori along each
path segment. It is almost impossible to select such limits without knowing the dynamic
properties and the actuator characteristics of the manipulator. However, it is often difficult
and tedious to determine these limits.

Sahar and Hollerbach [95] presented a general solution by using a dynamic time-
scaling algorithm and a graph search. They did not pre-assume a bang-bang solution and
their algorithm took into account a full dynamic model for the manipulator and actuator
constraints.

Although unconstrained path minimum time approaches are suitable for some
appllications, it is often necessary to specify the manipulator trajectory in order to avoid
obstacles. Niv and Auslander [96] used a parameter optimization technique on the joint
actuator switching times to solve a constrained path minimum time problem. They
assumed that during the motion, each actuator exerts maximum control torque (bang-
bang), while the manipulator followed the desired path and reached to its final destination.
Shiller and Dubowsky [97] and Bobrow et al. [98] solved a minimum-time problem for a
rigid manipulator case when the path is specified and the actuator torque limitations are
known. The solution was given in the form of an algorithm for determining linear
acceleration of the end effector along its path. At each position and velocity on the path
the constraints on linear acceleration of the end effector corresponding to the actuator
torques limits were determined. On the other hand, Bobrow et al. [98] found that the
standard optimal control methods (in particular Pontryagin's maximum principle) even in
simple cases did not converge to a solution.

There are a few work on time-optimal control of flexible link manipulators. Pao
and Franklin [99] developed a bang-bang solution with at most 3 switches for the time-
optimal control of a single flexible link manipulator. They neglected all nonlinear terms
and used a one-bending mode model of the flexible link. Hetch and Junkins [100]
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proposed a near-minimum-time solution for a flexible robot by smoothing the classical
bang-bang solution. Using an optimization algorithm, first they found the switch times of
the bang-bang solution of the rigid counter-part manipulator. Then to avoid large
vibrations in the flexible manipulator due to abrupt transitions (bangs), they smoothed the
changes in the control torques by using smoothing functions. Szyszkowski and Youck
[101] derived the control rule based on rigid body dynamics (using Pontryagin's principle for
linearized system) for a single flexible arm moving in a horizontal plane. Then they tried to
improve the rule by examining its effectiveness through finite element analysis of the fully
nonlinear dynamics of the system. Eisler et al [102] presented an algorithm in which the
method ofrecurswequadrancprogramnmg wasusedto generate approximate minimum-time
trajectory for two-link flexible manipulator movements in the horizontal plane. Hwang and
Eltimsahy [103] studied the effects of link flexibility on an unconstrained point to point
near-time-optimal control using the method of average dynamics and the bang-bang
control theory. They used only one vibration mode in their assumed mode method to
approximate the link flexibility. First, they obtained the near-time optimal reference
trajectory based on linearized equations of motion of a counter-part rigid link manipulator.
Then they proposed a closed-loop controller with the effects of link flexibility as a
disturbance on the system.

All of the aforementioned studies dealt with link flexibility and neglected joint
flexibility. Also they did not take into account the non-causality of inverse dynamics of flexible
systems. Because of the highly nonlinear structure of the equations of motion as well as the
non-causality of such systems, the exact minimal time solution is not available at the
present time. In this dissertation near-time-optimal control problem of manipulator
systems with both link and joint flexibility are solved using nonlinear programming by
taking into consideration the noncausal nature of their inverse dynamics via considering
pre-actuation and post-actuation in the solution procedure. The proposed technique is
based on transforming the optimal control problem into an equivalent unconstrained
optimum design problem using penalty function methods.



CHAPTER 3

DYNAMICS OF DEFORMABLE MULTIBODY SYSTEMS

3.1 Introduction

Many mechanical systems such as machines, mechanisms, manipulators, space
structures, and aircrafts can be modeled as muitibody systems. Figure 1 shows some
examples of this type of systems. Each multibody system consists of a set of
interconnected bodies which undergo large rotational and translational displacements. This
is why the dynamic equations are highly nonlinear and coupled even for systems with rigid
components.

In this dissertation, mathematical models incorporated into the numerical
simulation of multi-deformable-body systems are based on the Lagrangian principle. This
chapter presents a general overview of dynamics of muiti-deformable-body systems. The
general form of governing equations, which includes equations of motion of the system

and constraint equations, is developed and various solution procedures are described.

3.2 Kinematics of Deformable Bodies

The distance between two points of a rigid body remains constant during the
motion of the body; therefore, there is no difference between the kinematics of the body
and the kinematics of its reference coordinate. However, this is not the case when

deformable bodies are considered.
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Figure 3.1 Multibody systems
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Consider the floating coordinate system O-X;'X,'X;' shown in figure 3.2, which
translates and rotates with the body. This coordinate system called body coordinate system
is assigned to a deformable body whose origin is rigidly attached to point O, Vector ug®
represents the position vector of point P* in the undeformed state. Assume that this vector
(ug' ) has no translational and rotational displacement with respect to the body coordinate
system. It means that the components of vector u,' are constant in the local coordinate
system during the motion of the deformable body.

Referring to figure 3.3, position vector of P* after deformation can be written as

r =R +ul +uf 3.

where R'=[R;'R;'R;'] is the position vector of point O, u,' is the undeformed local
position of point P, and u/ presents the deformation vector at this point. The components
of u¢ in the body coordinate system are time and space dependent. Therefore, the dynamic
formulation of the system leads to a set of nonlinear time varying partial differential
equations with an infinitte number of degrees of freedom. To reduce the number of
coordinates to a finite set, approximate techniques such as finite element method can be
employed. By using these techniques, the governing partial differential equations are
transformed to ordinary differential equations which can be solved with well known
numerical methods such as Runge-Kutta, Newmark, and Wilson theta methods.

3.2.1 Constrained Motion

The motion of each body of a multibody system is constrained because of the
mechanical joints connecting adjacent bodies. The constraint equations represent the
mathematical or kinematical relationship among the coordinates. As it was mentioned in
previous chapters, there are two basic methods to handle the constraints. The first method
called minimal method is based on solving constraint equations for the dependent
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Figure 3.2 Deformation of a deformable body
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Figure 3.3 Global position of an arbitrary point on a deformable body
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coordinates explicitly in terms of independent coordinates. The condition for using such a
method is that the constraint equations are holonomic or integrable. Since the algebraic
equations are eliminated, the minimal method leads to the smallest set of equations. But
this method is not very feasible especially for large systems because the equations are
highly nonlinear and complex.

In the second approach called redundant method, the constraint equations are
added to the dynamic formulation by making use of Lagrange multipliers. This method
leads to a set of differential and algebraic equations (DAE's) with the coordinates and the
Lagrange multipliers as unknowns. The most direct approach is converting the system of
DAE's to a set of differential equaﬁon§ by appending the double derivatives of the
constraint equations with respect to time. Although the redundant method provides much
more convenient means of handling the constraint equations, it increases the number of
unknowns and subsequently the size of the problem.

3.3 Dynamic Equations

Several techniques can be used to develop the dynamic equations governing the
motion of material bodies. Among them two basic techniques: Lagrangian and Newtonian
approaches are the most popular ones in dynamic modeling of multibody systems. The
former has established itself as the primary approach in multibody systems. This is mainly
due to this fact that it is a scalar rather than vector approach. In the following, Lagrangian
dynamics is briefly discussed.

3.3.1 Lagrangian Dynamics

Unlike Newtonian mechanics, Lagrangian mechanics makes use of scalar
quantities: kinetic and potential energies and work done by the forces acting on the
system. In Lagrangian dynamics, the system of equations of the motion are expressed in
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terms of a set of generalized coordinates and associated generalized forces. However,
Lagrangian and Newtonian approaches are equivalent.

Lagrangian equations can be derived from D'Alembert's principle or Hamilton's
principle. The first approach starts from a consideration of the instantaneous state of the
system and small virtual displacements about the instantaneous state, while in the second
approach Lagrange's equations are obtained from a principle which considers the entire
motion of the system between times t; and t; and small virtual variations of the entire
motion from the actual motion. This approach involves only physical quantities that can
be defined without reference to a particular set of generalized coordinates, namely, kinetic
and potential energies. Only the second approach (Hamilton's principle) is shortly
described here.

3.3.1.1 Hamilton's Principle

This principle is one of the most basic and important principles in mathematical
physics. Originally, it is formulated in terms of the dynamics of systems of particles, but it
can readily extended by analogy to other cases.

First we consider a single particle of mass m subject a force field f. If r denotes
the vector from a fixed origin to the particle at time t, then according to Newton's laws of
motion, the path of the particle is governed by the equation

m——~f=0 (3.2)

Let consider any other path r+dr. The true path and the virtual path coincide at two

distinct instants t=t; and t=t,; therefore, the variation or vanishes at these two instants.

&, =&, =0 (3.3)

2
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Now by taking the scalar product of the variation or into equation (3.2) and
integrating the result with respect to time over (t;, t;), we have

z 2
(mi‘:t—zr.sr- f.8r)de=0 (3.4)

After integration by parts and using equation (3.3), the first term of equation (3.4) takes

the form

1 dr,
& m() ] =¥%KE) 3.5
where KE is the kinetic energy of the particle. Therefore, equation (3.4) can be written as

T( OKE + f .or)dt =0 (3.6)
4
This is Hamilton's principle in its most general form for a single particle {104]. The above
derivation can be extended to a system of particles by summation, and to a continuous
system by integration.

For a system of N particles, the virtual work W done by the force system can be
expressed in terms of virtual displacements 8q; in the form

oW =3 1.8 = 308, 6

k=l i=1

where n presents the number of degrees of freedom of the system. Now Hamilton's
principle (equation 3.6) states that

) KEat +]( 30,89, )t = 0 3.8)

ixl
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This result is valid for both conservative or nonconservative systems [104]. By calculating
the variation of the first integral of equation (3.8) in the usual way, we obtain the
condition
[

JKE d JKE

e e e () 4 =0 .
Y e e AL 69
The vanishing of the coefficients of the independent variations leads to Lagrange's

equations in the following forms:

d OKE dKE .
Z(E:)—&T =Qn 1= ],....,u (3-10)

if the coordinates q; are independent. This result is valid for both conservative and

nonconservative systems [104].
If the force system is conservative, the generalized forces Q; are derivable from a
potential energy function (PE) in the following way:

__XPE)
QE - aqi

3.11)

By introducing the Lagrangian of the system as L=KE-PE, equation (3.10) can be

rewritten in the following form

d JL oL
—(—=)——=0, i=l],...... n 3.12
dt " 94, i (3-12)

which can also be found from Hamilton's principle expressed in the form:

t. [/
8]( KE — PE )dt = SILdt =0 (3.13)

[ 1) 4



DYNAMICS OF DEFORMABLE MULTIBODY SYSTEMS 39

If the force system consists of both conservative and nonconservative parts, the
Hamilton's principle leads to the Lagrange's equations:

—(— ____=Qif“’, i=l...n : (3.14)

where Q™ are the generalized forces resulting from the nonconservative loads.

Hamilton's principle can be extended to cover constrained systems. For problems
with dependent coordinates which are interrelated through certain constraints equations
(holonomic), it is possible to use the method of Lagrange multipliers to obtain the
equations of motion. When the connection between bodies are of the holonomic type, the
constrains can be expressed mathematically in the following form:

c(q,t)=0 k=L......m (3.15)

with m<n and n-m being the number of degrees of freedom. Equation (3.15) can also be

shown in the following matrix form:
C(g,t)=0 (3.16)

where C is the vector of constraint functions. By using the formal way of dealing with
constraint equations in the calculus of variations, we can obtain the following mixed sets

of differential and algebraic equations:

d oL AL _, -
dt( . )— 2. +C A=0,, i=lew,n (3.17-2)
C (g,t)=0 (3.17-b)

where A is the vector of Lagrange multipliers and C, is the constraint Jacobian matrix.
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By twice differentiation of the vector of the constraint functions with respect to
time we find the following equation:

Cod=—[Cu +(Cy§)yd +2C44] (3.18)

which can be used instead of equations (3.17-b).

As it was mentioned earlier, approximate techniques should be used to reduce the
number of coordinates of the deformable multibody systems to a finite set. After proper
discretization of the continuous system, the system of equations (3.17-a) and (3.18) can be

written in the following forms

Mj+ Kq+CIA=0,+0,.+0,

.o 3.19
qu =0, G-19)

where M and K are, respectively, the symmetric positive definite mass and stiffness
matrices of the system. @, and Q. are the gravity load vector and the vector of generalized
externally applied loads, respectively. O, is the quadratic velocity vector containing
Coriolis and centrifugal components resulting from differentiating the kinetic energy with
respect to time and with respect to the generalized coordinates of the system. Q. is a
vector which presents the right hand side of equation (3.18). Matrix K can be expressed in
the following partitioned form

K =|_O K, _| ] (3.20)

in which Kg is the stiffness of the deformable system.
The system of equation (3.19) can be utilized in numerical solution of the nonlinear
dynamic equations of motion of multi-deformable-body systems.
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3.4 Solution Procedures

The dynamics of muitibody systems with deformable components has many
industrial and technological applications such as robotic manipulators, vehicle systems,
and space structures. Because of the finite rotation of the deformable body reference
frames, the dynamic equations of such systems are highly nonlinear. Two approaches
which can be used to solve these equations are introduced in the following sections.

3.4.1 Linear Theory of Elastodynamics

A solution strategy widely used in the past [S1-54] is the linear theory of
elastodynamics. In this approach, the total motion of the system is assumed to be the
superposition of the rigid body motion of the system and the elastic deformation of the
components. The multibody system is treated first as a collection of rigid components. The
inertia and reaction forces are calculatéd by using general-purpose multi-rigid-body
computer programs. Then the forces obtained from the rigid body analysis are used to
solve for deflection of the bodies in multibody systems. The total motion of the system is
obtained by superimposing the small elastic deformation on the rigid body motion.
Therefore, the coupling effects between rigid body motion and elastic deformations are
ignored in this approach. As it was mentioned earlier, these effects become significant
when high-speed, lightweight mechanical systems are considered.

3.4.2 Total Lagrangian and Updated Lagrangian Approaches

There are two finite-element formulations for large displacement problems. The
first one is called total (stationary) Lagrangian approach in which the global reference
coordinate system remains stationary and the motion of the bodies in multibody systems
are defined with respect to the fixed frame of reference. Another finite-element
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formulation which has been proposed for large displacement analysis of deformable bodies
is called updated Lagrangian approach. In this approach, a convected coordinate system,
which is sometimes called co-rotational system, is attached to each finite element.
Therefore, this coordinate system shares the rigid body motion of the corresponding finite
element. By using small time steps in numerical integration, the displacement of the
element between two coordinate system is described using shape functions and the nodal
coordinates of the element. The current deformed state is used as the new reference state
prior to the next incremental step. Therefore, the equations of motion are defined in the
local coordinate system and the solution of these equations is updated in order to define a
new local coordinate system. Since differentiations and integrations are defined in the local
coordinate systems, the equations of motion are much simpler in the updated Lagrangian
approach. However, since the general constraint equations or relative velocities and
accelerations between bodies are not as simple as in the total Lagrangian formulation, this
approach is not convenient for multibody system dynamics. This is why in the following
two chapters, the total Lagrangian approach is used to develop dynamic equations of
motion of planar and spatial flexible manipulators.

3.5 Summary and Conclusion

In this chapter a general overview on dynamic modeling of deformable multibody
systems is presented. A Lagrangian approach is used to obtain equations of motion of such
systems. A minimal method and redundant method are introduced and the system of
equations including equations of motion of the system and constraint equations is derived
using Lagrange multipliers. Moreover various solution approaches are briefly described.

In the next two chapters, the total Lagrangian approach is used to model the
dynamics of flexible manipulators. The continuous flexible manipulator systems are
discretized by the finite element method in order to reduce the number of coordinates
necessary to describe the system. Minimal and redundant methods are used respectively in
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chapters 4 and 5 to present the configuration of the system in applying Lagrange's
approach for dynamic modeling of planar and spatial multi-link flexible manipulators.



CHAPTER 4

DYNAMIC MODELING OF PLANAR MANIPULATORS
WITH BOTH FLEXIBLE LINKS AND
FLEXIBLE JOINTS

4.1 Introduction

In this chapter, an efficient dynamic modeling of lightweight muiti-link planar
manipulators with both flexible joints and links is developed using a finite
element/Lagrangian approach. The dynamic elastic response of each flexible link is
formulated relative to a floating frame called pinned-pinned or virtual link [21] coordinate
system. Using this coordinate system the link deformation is measured relative to the line
connecting the end points of the link. Both the rigid degrees of freedom and the elastic
degrees of freedom of the system are treated as generalized coordinates. Each link is
divided into a finite number of elements and the elemental kinetic and potential energies of
an arbitrary link are derived in a systematic way. Then by using Lagrange’s equation
elemental mass and stiffness matrices and load vector of the typical element are obtained.
By assembling the elemental matrices and vector of each kink and then assembling the
resulting link matrices and vectors in a proper manner the system mass and stiffness
matrices and load vector are obtained. The effects of the payload and the revolute joints
on the equations of motion of the system are included by using virtual work of the external
loads and the kinetic and potential energies of the actuated flexible joints and the payload
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through applying Lagrange's equations. The dynamic model derived in this study is free
from assumption of a nominal motion and takes into account not only the coupling effects
between rigid body motions and elastic motions but also the interaction between the
flexible links and the actuated flexible joints. Axial deflections, shear deformations, and
rotary inertia effects due to elastic deformation are neglected and Bemoulli-Euler beam theory
is used in the formmlation.

The resulting equations of motion of the system are highly nonlinear and coupled.
They can be integrated using any standard ordinary differential equation solver such as the
Newmark method. The main advantage of the proposed model is its compactness and
completeness; therefore, this modeling is quite tractable for automated computer

solutions.

4.2 Kinematic Modeling

The manipulator system modeled in this chapter is a chain of flexible links which
are connected by revolute actuated joints (figure 4.1). Each joint is flexible in the direction
of rotation of the connecting links. There is an actuator at each joint which may contain
gears. The stator of each arbitrary actuator k is fixed to the end of link k-1 and the stator
of actuator 1 is fixed to the ground. Each rotor k is connected to link k through a gear
train and a flexible shaft which presents the joint flexibility. The manipulator is constrained
to move in the vertical plane; therefore, the effect of gravity is taken into account. The
links are deformable due to bending during heavy payload operations and high speed

motions.
4.2.1 Kinematic Modeling of Flexible Links

In order to develop a simple and compact model, elastic deformation of linkk of
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Figure 4.1 A planar multi-link flexible manipulator

the manipulator is represented relative to a floating coordinate system oyxyyx, called
pinned-pinned coordinate system. This frame describes the motion of the imaginary
undeflected beam with respect to the inertial frame. As it can been seen in figures 4.1 and
4.2, OXY is the inertial frame coordinate system and oyxyx is the rotating frame
associated with link k of the manipulator. The axis ox; of the rotating frame o.x.yix passes
through the end points of this link whose transverse deflection w*(x) is expressed with
respect to this rotating frame. The kinematic modeling is based on the following
assumptions:
1) The manipulator is constrained to move in the vertical piane OXY; therefore, the
effect of gravity is taken into account.
2) Each link is considered to be pinned at both ends in the corresponding floating
frame.
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Figure 4.2 Link deformation presented in the local coordinate system

3) Axial deflections are negligible and only transverse bending deflections w*(x") are taken
into account.
4) The links are so long and slender that shear deformations and rotary inertia effects can
be neglected. This allows the use of Bernoulli-Euler beam theory.
Since x, axis passes through both ends of link k, the origin of each local coordinate system is
irrelevent to the deformation of the other finks. This allows to reduce the computational
complexity of the model. The equations of motion become more compact and decoupled than
those derived using tangent coordinate systems [10,21].
Based on the aforementioned assumptions, the position vector of an arbitrary point A
of each link k, shown in figure 4.2, can be written in the following form

B =OA=x "()+wk(x )‘(2)+ZL,'(U 4.1)

i=1
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in whichL;, &', W', &" and &{?’ are the length of link i, x and y coordinates of point A
in the local coordinate system i, and the unit vectors along x; and y; axes of the local
coordinate system i, respectively. By differentiating the position vector with respect to

time, the velocity vector can be found as:

=
r,=(x*®, +w(x* )P —-wr(x* )b el" + XL,.@,.E{“ 4.2)
i=1
where dot over the variables indicates their time derivatives and ®; presents the angular
position of the i-th pinned-pinned coordinate system.

4.2.1.1 Elastic Displacement Discretization

Link deflections are continuous functions of space and time. In order to reduce the
system dimension from infinite to finite, it is desirable to discretize link deflections. The
generalized coordinates, which are only functions of time, can be used to obtain the
dynamic equations of flexible manipulator systems by using Lagrangian dynamics.

Using the finite element method, each link is divided into a number of elements and
link deflections are presented in terms of shape functions and nodal values of transverse
deflections and slopes of the links. The deflection w*(x") in the i-th element of link k can
be described as: |

4
wE(xk,0)= XN whi_pu(t) @3)
=1
where v, and v, are elastic displacement, and v*; and V*x. are flexural slopes
at nodes i and i+1, respectively (figure 4.3). N/* represents the I-th shape function of the
i-th element of link k.
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Figure 4.3 A typical element i of an arbitrary link k
Hermite polynomials, which are used as shape functions, are given by
ok _ ok k__k
N (xk)=1-3 T )%2(’7’1)3 (4.4-2)
l i
ik, k k_ _k x -xzk 2
Ny (x")=(x" —x; (I- ) (4.4-b)
i
k k
X —-x
N (k)= = M g —) (4.40)
l l
k k__k
-X x" —-x;
NI )=k - xF )= [ ) el (4.4-d)
i i

in which x* is the x-coordinate of node i and L* is the length of the i-th element with -
nodes i and i+1 of link k.

4.2.2 Kinematic Modeling of Flexible Joints

The arrangement of an actuated flexible joint is shown in figure 4.4. The rotations

of the rotor and the link are presented by angles q; and \y;, respectively. g; is the rotation
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Figure 4.4 Model of an actuated flexible joint

angle of the rotor of the actuator i relative to the link I-1, while y; represents the angle
between tangent line of link i-1 at x'=L;, and that of link i at x'=0. K and I} are the
drive shaft stiffness and the gear ratio of joint i, respectively. The difference yi- I q;
shows the joint deflection. We assume that link i, joint i, and rotor i all rotate about the

same axis which can be an approximation for some arrangements of the gear train.

4.3 Dynamic Modeling

The equations of motion of the system can be found by using the standard
Lagrangian approach. This can be done by computing the kinetic energy, the potential
energy, and the virtual work of the nonconservative loads such as actuator torques. Then

the dynamic model is obtained by satisfying the Lagrange-Euler equations:

d KE) XKE) ¥PE)
— -— - i .= 2, ...... L]
T Tw a2 = Paof 4.5)

where z;, KE, PE, Q; and ngs are generalized coordinates, total kinetic energy, total
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potential energy, generalized forces, and the number of degrees of freedom of the system,
respectively.
The total kinetic energy and total potential energy of the system can be found by

summing those of various components of the system as:

n n
KE = Y KEI* + Y, KEA* + KEP (4.6)
k=1 k=1
n n
PE= Y PEL* + ), PEA* + PEP @.7
k=1 =1

where n is the number of links (or joints) and KEL®, KEA", and KEP represent kinetic
energies of link k, actuator k, and the payload. Similarly PEL*, PEA%, and PEP are
potential energies of link k, actuator k, and the payload, respectively.

4.3.1 Kinetic and Potential Energies of an Arbitrary Link

The kinetic and potential energies of link k can be written as:

KEL' “TP,‘AJ& rdx (4.8)

PELk =5 rEka( )2dr‘

.rPkAtgl xtsin @, + wt cos D, + 214; sin®; Jdx* 4.9)

Jj=1

where g is the gravitational acceleration. The first integral in equation (4.9) represents the
strain energy stored in the link and the second one represents gravity potential energy of
the link.
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Using finite element discretization, equations (4.8) and (4.9) can be written in the
following forms:

N, R e~ o
KEL*= 3, KEE; = Y {7 )oxtuh-iids"} (4.10)
e=1 e=1 x*
x+l
PEL* = ZPEE = 2{— _[ Eklk( )
o+l k-1 (4.11)
pkA,,g[x smtbk+w cos P, +ZL sin® ; Jax* }
x Jj=l

L 4

where N,, KEE.*, PEE.X, x.t, and L* are the number of elements of link k, the kinetic and
potential energies of the e-th element of link k, the x-coordinate of node 2e-1 (referring to
figure 4.3), and the length of the e-th element of link k, respectively. Now by substituting
equation (4.2) into equation (4.10), elemental kinetic and potential energies of the k-th
link are obtained in the following forms:

1% e k-lk—1
KEE* —E I pkAk{[lelL ;L b, cos(®; —®; )] +x’®}
x! i=lj=

+2xdy Zthi)jcos(d!k ~®@; )+ W2 + wldf + 2xdpw 4.12)
k- 1

+2w X, L;®; cos(®y —D; ) - 2wy ZL @ sin(®y —®; )}dx
J=1 j=1

PEEY = r PeAig[x sin®, +wcos@t+2’-f"'"‘l’f""‘ (4.13)

J=1

rEka( 3:2) 2dx
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in which superscript k is not shown for x and w.
Generalized coordinates used in obtaining the kinetic and potential energies of a
typical element i of link k, can be represented by the following vector:

{q}ke = {¢I,¢2, ------------- ’Qk, va-l,vgeyvzke-pl’vzkc-fz}r (4'14)

This vector includes both rigid body motion degrees of freedom ®; (j=1....k) and elastic
motion degrees of freedom v,-" (j=2e-1,2e,2e+1,2e+2). Therefore, the total number of
degrees of freedom of the element is k+4.

4.3.1.1 Elemental Mass and Stiffness Matrices and L.oad Vector

Having the kinetic and potential energies of a typical element of an arbitrary link
k, mass and stiffness matrices and load vector of the element can be found by applying
Lagrange's equation. Using generalized coordinates, the kinetic energy of a generic

element e of the k-th link can be written in the following form:

k+4 k+4

KEE! —*Z X MFleqke -—{q J M*eg*e ) (4.15)
z-l Jj=1

and the components M;;* of mass matrix M;/ can be obtained using the equation:

J°KEE¥
M5 = e (4.16)
aq; 94

Therefore, various components of elemental mass matrix can be found in the following

compact forms:
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M8 =——%= |ppApLiLycos(Oy—Op)dx ml=12,......k-1
000, .
J02KEE} ,
M =W ;[pgA,[xL,cos(tbt -@,)—wL,sin(P; — P, )]dx
I=12,...,k-1
*KEE: I
M. = m= I;&AkN:'Ltm(‘bk ~ @, )dx
1=12,....k-1, p=1234
32KEE* *}"
M ——a;z"g' Joxagrx? +w2 s
k x!
2KEE® x, 41
e PrAxNg'ds  p=1234

Mke L. -
k,p+k = Mkavh—ZQ-p o

2 k

KEE

_ O KEE, I PANKENEa: pr=1234
a"2e—2-i»pa"2e-2+r xt

ke
Mk+p,k+r =

4.17)

(4.18)

4.19)

(4.20)

(4.21)

(4.22)

It is worth mentioning that M“.,,4. are the components of standard consistent mass

matrix for a beam element.

Components of the elemental load vector can be obtained using Lagrange's

equation in the following manner:

e d OKEEF dKEEX oPEEEF

Ji [—[Z(—E—)—SIDII o, 9 I=12,...k-1

and

d BKEE" OKEE* aPEEE
_{_[ (3g.—)-STD2]+ 3o, aw, !

(4.23)

4.24)
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where STD1 and STD2 are second time derivative terms obtained in finding

4 IKEEL 4 (axEEf ) wely
< (=g ) ad —-(—z—%), respectively.
AN de' 30,

After finding and substituting the necessary terms in equations (4.23) and (4.24)

we have

£
= kaAk{le, +x0, Ly (D ~ By ) sin( Oy —®; )+ WLy(20;, —&; ) sin(®, ~B; )

k
x'

+wiby Ly (@ =y )cos(@y —®y )—s, Ly +x Oy Ly Dy sin(®, ~ ;) (4.25)
+w Ly @, sin(® —®; ) +w O L, by cos(Dy —By )—gL, cos®; Mx,  [=12,....k-1
=l
f:‘ = kaAk{s3x—2wﬁ6k -x‘i’k.& —g(x COS'DE -w Sﬁlﬁk)m (4-26)
in which
k=l
sp= LL;®;( &y —b; Jsin(®;—®;) (4.27-3)
j=1
k=l -
52 = X Ljd;sin(®;-®;) (4.27-b)
j=1
k—l - - -
s3= 2 Ljd;( by ~; )sin( D —@;) (4.27<)
j=1
k-1
54 = ZLJ‘bj sin(d)k -‘p]’) (4.27.d)
j=

Let introduce new variables s,*, s,°, and ss° in order to simplify the expressions for the
elemental stiffness matrix and remaining components of the load vector.
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x4t
d OKEE* I ke
s¥ =—(——"—)-STD3=— | py AN, s5dx (4.28)
dt dypirp £

L 4

KEEf , ,

P 2ol _
§3 = W =821 +522 (4.29)
2e+2-p

p

aPEEY
S3 =7

| R
= =531 +532 (4.30)
a”'2:—!-2-,;! '
in which STD3 is the set of second time derivatives obtained in the first part of equation
(4.28), p=1,2,3,4,and

P
=2 ke ke ke ke ke
s =@ kaAkNp [Ny vy 1+ N3 vy + N3V + N4 Vo 1dx (4.31-a)
x -
x! 4!
sh=— )prANEdyssdx (4.31-b)
x;
xil!
s;f 1= J Pr AN g'gcos Opdx (4.31c)
x;
x4l
p I e erhe [ ke role
§33 = EkaNp [N] Va1 +N3 v3e + N3 vy +Ny vopyr Jdx “4.31-d)
x;

where N;™ represents the second derivative of N;** with respect to x*. Now f,;* can be

written in the following form:

,} k
ft"i,, =—s{'+s{§—s-§’l ={s3—‘i>,s4—gcos¢bk} I;;AgNﬁ‘dx, p=12,34 (4.32)

=

and the stiffness matrix of the e-th element of link k is obtained as:
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=k plf sk Ik
KB pir= rE,I,N;"'N}"‘dx-tibkz I:)gAgN;‘N,de, pr=1234 (4.33)

= =%
or in the matrix form
[K.ge ] = [Kfl:mc] -(i)kz M::mmt] 4.39)

K5 shows the non-zero part of the elemental stiffness matrix which corresponds to only
flexible degrees of freedom. The dimension of the matrix Ky* is 4X4, therefore, the rank
of the elemental stiffness matrix is four. In other words the components associated with
rigid degrees of freedom are all zero. Also, equation (4.34) shows that the non-zero part
of the elemental stiffness matrix has two parts, the first part is the traditional stiffness
matrix of beam elements and the second part is due to centrifugal effects during the large
overall motion of the beam.

The components of elemental mass matrix, elemental stiffness matrix, and
elemental load vector are functions of elastic deformations, elastic velocities, and nonlinear
terms including rigid body degrees of freedom and their time derivatives. Therefore, the
dynamic equations of motion of multi-link flexible manipulators are nonlinear. Centrifugal
effects are included in the second part of the elemental stiffness matrix and the Coriolis
effects can be seen in the expressions for the loading vector.

4.3.1.2 Assemblage of Elemental Matrices and Vectors of the k-th Link

As it was previously pointed out, one part of the elemental mass matrix is exactly
the standard consistent mass matrix of beam elements. Similarly it was shown in equation
(4.34) that the non-zero part of the elemental stiffness matrix consists of the standard
beam element stiffness matrix and the consistent mass matrix multiplied by -®,”. Therefore
we can assemble these parts using the standard procedure used in linear finite element
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analysis. Also, because the coefficient {Sg-:kachOSd)g} in the expression for the
elemental load vector (equation 4.32) is constant for all of the elements of the link, it is
possible to construct link load vector h,* by assembling the elemental vectors h,* whose
components can be defined as:

xi+l!
Me = |ppAxNdx p=1234 (4.35)

x;

The size of link matrices associated with elastic degrees of freedom which are
constructed using standard assembly procedure is 2(Ni+1) X 2(Ni+1) and that of link
vector is 2(Ni+1) X 1.

Other components of the elemental mass matrix and load vector corresponding to
the rigid body degrees of freedom and coupling effects can be found by integrating all of
the given integrals from O to Ly instead of x.* to x.“+L.*. If pyA; (mass per unit length of
the k-th link) is constant the results can be written as:

)‘{l""’I =p, AL L_L,cos(®,-D,_), m,d=12,....... k-1 (4.36)

L '
My =Pk‘4k[-;k_Ll cos( Py —®; )—( f"’d”) Ly sin(®g —®;) I,

. 4.37)
1=12,...,k-1
k Li l]' 2
Mk,k = pkAk("B—"l' wdx} (4.38)
0
k k .
Ml,k+r = Ll COS(Qk _¢l ”‘Ir' I=12,..,k-1, r= 1’2’""2(Nk +1) (4.39)
ko _gk _
Mk,k+r _h2r r 1,2,3,,....2(Nk +1) (4.40)

where A%, is the r-th component of the h,* which is the assembled vector of elemental

vectors h,** with the components given in equation (4.35) and A%, is the r-th component
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of the h* which is the assembled vector of elemental vectors h,* with the components
calculated by the following equation:

x* 41t
W= |prApxNEds p=1234 (4.41)

x'
The remaining components of the load vector can be written as:

| ' L
F =peArLyfs\Ly +§¢,, (b — B, ) sin(®y —®; ) +( rm N 20, — B, ) sin(®, —®;)
0

+( | wir)b, (& —;)cos(® —®; )5, Ly ®; +( | wdx) &sin(® ~D; ) (4.42)
0 1]
+( ) wdx) &, d,cos(®; -, )—gL; cosP;}, [=1,2,...k-1
0
2 2

L . . L L
k= p,‘Ak{s3-2-!*—2( T wiwdx ), -¢I>,s‘7‘-g[7" cos D, - ( j.wdr) sin®]} (4.43)
0 0

The above expressions include nonlinear effects of elastic degrees of freedom,
therefore, they should be found by means of iterative procedures.

4.3.2 Assemblage of Link Matrices and Vectors

In order to reduce the size of resuiting link matrices and vectors we can apply
boundary conditions due to pinned-pinned position of the links in their local floating
frames. Because transverse elastic deflections (w) at the both ends of each link are zero, it
is sufficient to eliminate the first and the 2N,+1 -th rows and columns of the part of the
mass and stiffness matrices of link k associated with elastic degrees of freedom before
assembling them. Also the 2N, +1-th row of each link load vector corresponding to elastic
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degrees of freedom should be eliminated. Therefore, the sizes of the aforementioned part
of the link mass matrix, stiffness matrix, and load vector of each link k are reduced to 2Ny
X 2Ny, 2N X 2Ny, and 2N, X 1, respectively.

Now the sub-system mass matrix MS, the sub-system stiffness matrix KS, and
the sub-system load vector £S can be obtained by assembling corresponding link matrices
and load vectors in a simple way which is shown schematically in figures 4.5 and 4.6. In
these figures, n is the number of rigid degrees of freedom, and M, @;, and KE; are the
mass matrix, the angular velocity, and the elastic stiffness matrix of link i, respectively.

In figures 4.5 and 4.6, the first n rows and columns of the mass matrix and the first
n rows of the load vector can be found easily by using equations (4.36-4.40) and (4.42-

4.43). It is worth mentioning that to obtain the assembled mass matrix, (,,.,,EZNI )+r

J=l

should be used instead of k+r in equations (4.39) and 4.40).

-us'(r,r) MS(1.2) . .. ... MS(Im) o o o o oo e e ersifr.mzz)\g)T
MS(2,2) . ... .. MS(2ZM) .« o e eee e MS(2,n+E21)
MSthm) o o oo . MS{n,n+T2N)
MS= M,
symmetric M,
Mn

Figure 4.5 Schematics for construction of system link mass matrix
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—000...0.... 0- fs'(éj
06 0...0 ... 0 .
N n rows .
0..... 0 j.’S’(‘n.)

KE, , f,
KE, fz'

"‘bz M,

KS

I

5

S

<

i
|

Symmetric

KE
ilu, T,

Figure 4.6 Schematics for construction of system link stiffness matrix and load vector

The resulting mass and stiffness matrices and the load vector are called the sub-
system matrices and the sub-system load vector in order to emphasize that the degrees of
freedom of flexible joints (qy) have not yet been included in the derivation. The dimension
of the system matrices is [20+Z2N;]X[20+Z2N,] and that of the system load vector is
[2n+Z2N,]X1. In section 4.3.4 the elements of the system matrices and the load vector

associated with flexible joint variables are found.

4.3.3 Boundary Conditions due to the Payload

Boundary conditions at the end of the last link due to the payload can be applied
by using Lagrangian approach. Therefore, the first step is to find kinetic and potential
energies of the payload.

Using the notations from the preceding parts of the chapter, the position and
velocity vector of the payload are
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r, = Z;Lz-?.-( Y (4.44)
7= Lbe? (4.45)
=1

The kinetic and potential energies of the payload can be written as:

1 - - 1 - . 2
KEP =5MPIPJP +EIP(°I! +v2(N_+l)) (4.46)

n
PEP =Mpg Y, L; sin®; (4.47)
i=1
where M, and I, are mass and moment of inertia of the payload, respectively.
Taking into account the effect of the payload kinetic and potential energies on the
total Lagrangian of the system, the following corrections should be made in the

components of the sub-systemn mass matrix and the load vector:

MS'(1,j) < MS'(1,j)+M,L L, cos(®,—~®;) Lj=1,....,n (4.48)
MS'(n,n+ 22N,) « MS'(n,n+ 22N, )+1, (4.49)
= j=t
MS'(n+ Y.2N,,n+ 22N, ) &« MS'(n+ 22N, n+ X 2N, )+I, (4.50)
7= =1 =t =

n
fs'(z)<—fs'(l)+MpL,{2L,<bj(d>, -®; )sin(®; ;)
_
’ (4.51)

l,....n

n
-y Y Lb; sin(® —®;)—geos®y), 1
=

In the above expressions, the sign < represents the substitution of the left hand side by
the right hand side. The corrections are made on the sub-system mass matrix and the sub-
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systyem load vector which were constructed by assembling elemental matrices and vectors
and applying boundary conditions at both ends of each link. This is why the row and
column numbers are shown in parentheses instead of subscripts used for elemental

matrices and vectors.

4.3.4 Actuators Dynamics

The kinetic and potential energies of each actuator composed of the stator, the
rotor, and the flexible joint are derived in this section. Then elements of the system mass
matrix and the system stiffness matrix associated with the flexible joint variables are found
and the whole system mass and stiffness matrices is built by including the corresponding
sub-matrices obtained in the previous sections. Moreover, the elements of the damping
matrix due to the joint damping, and the elements of the generalized forces due to the
actuator torques are obtained by using the principle of virtual work. '

Figure 4.7 shows the various angles which should be used in finding ‘¥, the angle
between tangent lines of adjacent links k-1 and k at common joint k. In this figure
8. =v* and 0¢,=v5' ,, are the slope of link k at x*=0 and the slope of link k-1 at

2 = VN2
X! =L, in the corresponding local floating system, respectively.
Referring to figures 4.1 and 4.7, the kinetic and potential energies of the first joint

can be written as:

1
KEA'= P g; 4.52y
1
PEA' = > K ( @, +8;-Ig,)* (4.53)

and those of other actuators (k=2,3,.......n) are
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Ok—f

Figure 4.7 Definition of the angles at joint Oy

1 . . 1 . .
KEA* = Elr,,(q',‘ +®,  +05")? +—2-I.'.',‘(<I>,:_1 +9:71)?

1 =l k=1 L “4.54)
+>(mr, +ms, )EE{LEL,.@@, cos(®, ~®;)
1
PEA* = 5&; [®, +0% —(®, , +0:')-T,q, ]’
P (4.55)
+(mr, +ms, )gg,LJ.siij

where Ir., Is,, mey, ms;, and Kjy are the mass moment of inertia of rotor k, the mass
moment of inertia of stator k, the mass of rotor k, the mass of stator k, and the rotational
stiffness of joint k.

The system mass matrix and the stiffness matrix can be presented as:



DYNAMIC MODELING OF PLANAR MANIPULATORS 65

MS

0]

0]

nin

0]

nX(n+22NJ-)

(MS’]

KS

o],

0]

0]

nX( "'+E‘2Nj )

[KS']

(n+Z2N; )Xn

= - b

Figure 4.8 Schematic of system mass and stiffness matrices before substituting
components associated with flexible joint degrees of freedom

and the system load vector is given by

o

nX1

7S’

(n+Z2N; )X1

Figure 4.9 Schematic of system load vector before substituting components
associated with flexible joint degrees of freedom

in which MS', KS', and fS' are the sub-system mass matrix, the stiffness matrix, and the
load vector obtained in the previous section.

Now by using Lagrange's equation, it can be shown that the elements of the mass
and the stiffness matrices and the load vector of the system can be presented as:

MS(L1)=1Ir, (4.56)
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and for k=2,3,......,0

MS(k,k)=In, , MS(k,n+k-1)=1In; ,MS(k,2n+22N,-)=Ir,,
j=1
MS(n+k-Ln+k—-1) — MS(n+k-Ln+k—1)+1In, +Is;

MS(n+k- 1,2n+22N)(—MS(n+k 1,2n+22N )+In +Is;

J=1

MS(2n+22N,,2n+ Szzv ) MS(2n+ 22N,,2n+221v )+In+Is;

J=1 J=1
KS(1,1)=FIZK_].1 , KS(Ln+1)=-T\Kj, , KS(L2n+1)=-T' Kj,
KS(n+lL,n+1)=Kj, , KS(n+12n+1)= Kj,
KS(2n+12n+1) « KS(2n+1,2n+1)+ Kj;
KS(k,k)=T2Kj, , KS(k,n+k—1)=TKj; , KS(k,n+k)=~T; Kj;
k-1 k-1

KS(k2n+ ) ,2N ;) =T K , KS(k,142n+ ) 2N ;) =T, Kj,
=1 j=1
KS(n+k-lL,n+k-1)=Kj; , KS(n+k—-1,n+k)=—-Kj;
k-1 k=1

KS(n+k-12n+ Y 2N ;)= Kjy , KS(n+k—11+2n+ Y 2N ;)=—Kjg,
j=1 j=1

k-1
KS(n+k,n+k)=Kj; , KS(n+k,2n+Z2Nj)=—Kjk
Jj=1
k-1
KS(n+k,1+2n+ ¥ 2N ;)= Kj
J=1

KS(2n+22N,,2n+22N )&« KS(2n+22N,,2n+22N )+ Kj,

j=1 Jj=1 J=1

4.57)

(4.58)
(4.59)

(4.60)

(4.61)
(4.62)
(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)
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KS(2n+22Nj,l+2n+SZNj )& KS(2n+22Nj,l+2n+22Nj )- Ky (4.71)

j=t J=l J=l J=I

KS(1+zu+22N,.,1+m+ zzN, )& KS(1+2n+22N,-,1+2n+ EZN,- )+ Kj,, 4.72)

J=i =1 j=l 7=l

Nonlinear components of the system mass matrix are not shown in the above equations.
Therefore, it is necessary to correct such components in the following manner during the

iterative process of solution:

MS(n+L,n+j) < MS(n+l,n+j)+(mr, +ms, )L,L, cos(P,—®;)

4.7
k=23,.n and Lj=12,....k-1 (4.73)

MS(n+l,n+j) on the right hand side is the linear part of this component shown in previous
parts of this section.
By applying the Lagrange's equation, the following nonlinear components of the

system load vector can be obtained.
k=1
fS(n+1) e fS(n+l)+(mry +msy )Ly [ I LDi(®; - )sin(®, ;)
=
- @.74)
+¢12Lj¢jﬁn(d’f —Qj) - gcoslb,], k=l,--.,'l and l=l,...,k—1
=

In the above equations the sign ¢— represents substitution of the left hand side by the right
hand side.

4.3.4.1 Generalized Forces due to Actuator Torques and Joint Dampings

There are 2n nonconservative loads, namely, n actuator torques and n damping
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torques resulting from friction of the joints. The generalized forces due to the actuator
torques and the damping torques in the joints can be found using the principle of virtual
work. The total virtual work of these loads can be written as:

W = _i:,(r,.-b,q, )3q; (4.75)
J=

where b; is the viscous damping coefficient in the j-th joint. Using equation (4.75) the
generalized forces required in the right hand side of the Lagrange's equations can be
obtained as:

Q; =T;-b;q; , Jj=12,...n (4.76)

The (20+Z2Nj)X(1) vector of generalized force Q, which is composed of the components
given in equation (4.76), can be shown in the form of

T

=0 ..0 0....0} 4.77)

where superscript T stands for transpose notation.
4.3.5 Equations of Motion

Using the results obtained in the preceding subsections, the system of equations

can be written in the following form:
MS(U)U+KS(U,U)U = fS(U,U)+Q 4.78)

U is the vector of generalized coordinates of the system including all of the rigid and
flexible degrees of freedom. It is worth noting that mass matrix MS(U) is symmetric and
positive definite. Equation (4.78) can be organized in the following partitioned form in
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order to represent the coupling effects between the joint motion, the large rigid body
motion, and the small elastic motion of the system.

MS,, MS_;(m;) Ms,, N
MS.(Mm,) MS;(m,n,) MS,(m,n,))q; (4.79)
Ms, MS,(m;n,) MSy(n;n, )]0,
KS.. KS,, KS,, Na CS.. 0 O|in, Fo(T,)
+ KS,, 0 0 n(+| 0 0 OpA, (=1F;(M;M.MM0,)
KS, 0 KS,(q,)]n, 0 0 o0jiw, Fo(n;,n,0,1,)

In eguation (4.79) Nin, T}; and 1 are vectors of flexible motor degrees of freedom (g«
k=1...n), joint degrees of freedom (P , k=1,...n), and elastic degrees of freedom of the
system (v, k=1,...n , j=1,..2N)), respectively. MSqm, MS;, and MSg represent effective
inertia matrices for the motor motions, the joint motion, and the small motions, while
MS ., MS s, and MSj, are the coupled inertia matrices of the system. Due to the procedure
used in the formulation, there is no static coupling between the rigid motion and the smafl
elastic motion. As it can be seen, only Fy, is function of actuator torques (7,), while other
force vectors are functions of rigid and elastic displacements and velocities. Since only
damping due to the joints is considered in the modeling, only sub-matrix CSp, of the
damping matrix is not zero. Structural damping has not been taken into account, however,
it can be included in the formulation very easily.

The equation of motion will be solved in the next section using the Newmark
method for some cases in order to show the validity of the model. Also, the coupling
effects of joint and link flexibilities on the overall motion of the multi-link manipulators
will be observed.
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4.4 Simulation Results

Some simulation results are presented in this section in order to test the validity of
the model and to show the effects of link and joint flexibilities on the dynamic behaviour
of the system.

Consider a three-link manipulator with the following physical parameters (for
i=1,2,3):

pA; =5 kg/m
L=1 m
M,=5 kg
I,=0 kgm?®
Ir=02 kg.m?

Is;=02 kg.m® (4.80)
mr,=02 kg

ms, =02 kg

T=1

b, =0

where p;A; and L; are mass per unit length and length of link i, M, and I, are mass and

moment of inertia of the payload, Ir;, Isi, mr;, and ms; are moments of inertia and masses

of the rotor and stator of actuator i, and I'; and b; are gear ratio and damping of joint i.

Different values of E;l;, E:l,, Esl; Kji, Kj», and Kj; are used in various cases to show

the effects of flexibility. Each link is divided into two elements, therefore; the total number-
of degrees of freedom of the system in the presented examples is 18.

4.4.1 Free Vibration of the System

In this case, the aforementioned system is released from its initial rest position
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Figure 4.10 Initial position for free vibration simulation

shown in figure 4.10.

The results of joint angles @,, ®,, and ®; for such system with large values of EIs
and Kjs are shown in figures 4.11 a-c. It can be seen that the response of the system is
completely in agreement with the motion of a triple rigid pendulum with similar masses
and inertias for the links, the payload, the stators, and the rotors. The response of the rigid
counterpart was obtained by solving its system of equations of motion, which were
obtained separately but not shown here.
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Free Vibration

Flexible link/Flexible joint
485 - /Flexible joint

very stiff links/very stiff joints
---- rigid links/rigid joints

4.80 - -

4.70

4.65 - : -
0.0 1.0 2.0 3.0

time (sec)

Figure 4.11-a Joint angle ®, for a rigid manipulator and a manipulator with very stiff links

and joints
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Free Vibration

Flexible link/Flexible joint

4.85

4.80

4.65

very stiff links/very stiff joints

-~ -~ rigid links/rigid joints

4.60
0.0

1.0

time (sec)

3.0

Figure 4.11-b Joint angle ®; for a rigid manipulator and a manipulator with very stiff

links and joints
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Free Vibration
Flexible link/Flexible joint
4.85 . :

very stiff links/very stiff joints
480 L - - - - rigid links/rigid joints

4.65

4.60

0.0 1.0

3.0
time (sec)

Figure 4.11-¢c Joint angle @; for a rigid manipulator and a manipulator with very stiff
links and joints
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Figures 4.12-a and 4.12-b present x and y coordinates of the end effector for
various combinations of link and joint flexibility. These figures illustrate the effects of
these flexibilities on the overall motion of the system. Either joint flexibilty or link
flexibility changes the overall motion motion of the system from that of the rigid
manipulator. But as it can be seen in figure 4.12-b, in the presence of both joint and link
flexibilities, the deviation of overall motion is much larger than other cases. In other
words, the interaction between joint and link flexibilities plays an important role in the
dynamic behavior of the system.
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Flexible link /Flexible joint
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Figure. 4.12-a x-coordinate of the payload for various cases
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Free Vibration
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Figure. 4.12-b y-coordinate of the payload for various cases
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4.4.2 Large Overall Motion of the Manipulator

In this case, the system is released from its initial rest position shown in figure
4.13. The initial x and y coordinates of the payload are chosen 3 and 0 m, respectively.
The nonlinear effects are much stronger than the previous case, because the motion of the
system is not limited to small vibration about its equilibrivm position.

Y

L N ~
T

Figure 4.13 Initial position for large overall motion simulation

In figures 4.14 a-b the effect of link flexibility on the x and y coordinates of the
payload is shown. As it can be seen, the difference between large overall motion of the
system and that of the rigid link/flexible joint manipulator (Kj=100 N.m/rad) increases
especially at the end by increasing the link flexibility. Figures 4.15 a-b show the x and y
coordinates of the payload for manipulators with similar link flexibility but with various
values of the joint flexibility. These figures lead to the conclusion that more flexible joints
cause more deviations in large overall motion with respect to the flexible link/rigid joint
counterpart. However, similar to the previous case (section 4.4.1), the interaction between
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joint and link flexibilities has the most significant effect on the dynamic behavior of the
system. Figures 4.16 a-c represent the tip elastic transversal deflection of various links
relative to the tangent lines to the corresponding link at the base for a manipulator with
flexible links and joints. As it can be seen the tip points oscillate undesirably.

Large Overall Motion
Flexible link/Flexible joint

rigid link ,  rigid joint
4.0 | ----rigid link , Kj=100 N.m/rod -
— — EL,=2500 N.m? EL=E,=1500 N.m? Kj=100 N.m/rad
— - Ei,=2000 N.m? El,=El,=1000 N.m? Kj=100 N.m/rad
2.0 -
-
g
S
% 00
-2.0 +
_4‘0 ] 1
0.0 1.0 2.0 3.0

time (sec)

Figure 4.14-a Effect of link flexibility on the x-coordinate of the payload
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Large Overal Motion
Flexible link/Flexible joint
rigil ink , rigid joint
-—---rigil link , Kj=100 N.m/rad J
— — EI,=2500 N.m?, El,=EI3=1500 N.m? Kj=100 N.m/rad
— - E1,=2000 N.m?, El,=EI3=1000 N.m? Kj=100 N.m/rad

1.0

time (sec)

Figure 4.14-b Effect of link flexibility on the y-coordinate of the payload
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z (m)

Large Overall Motion
Flexible link/Flexible joint

rigid link , rigid joint

--—~ E1,=2000 N.m? El,=El,=1000 N.m?, rigid joint
— — E,=2000 N.m?, El,=El;=1000 N.m? Kj=200 N.m/rad
— - E1,=2000 N.m?, EL=El,=1000 N.m?, Kj=100 N.m/rad

time (sec)

Figure 4.15-a Effect of joint flexibility on the x-coordinate of the payload

3.0
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Large Overall Motion
Flexible link/Flexible joint

rigid link , rigid joint

1oL ----E,=2000 N.m? El,=El;=1000 N.m’, rigid joint

— — E1,=2000 N.m? El,=Ely=1000 N.m? Kj=200 N.m/rad
— - EI,=2000 N.m? El,=El;=1000 N.m? Kj=100 N.m/rad

— \

time (sec)

Figure 4.15-b Effect of joint flexibility on the y-coordinate of the payload
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Large Overal Motion
Flexible link/Flexible joint

0.15
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Figure 4.16-a Tip deflection of the first link with respect to its tangent line at the base
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Large Overal Motion
Flexible link/Flexible joint
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Figure 4.16-b Tip deflection of the second link with respect to its tangent line at its base
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Large Overal Motion
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Figure 4.16-c Tip deflection of the third link with respect to its tangent line at the base
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4.5 Summary and Conclusion

In this chapter an efficient finite element/L.agrangian approach for dynamic
modeling of lightweight multi-link manipulators with both flexible links and flexible joints
has been developed. The dynamic elastic response of each flexible link is formulated
relative to a floating frame called pinned-pinned or virtual link coordinate system. Each
link is divided into a finite number of elements and the elemental kinetic and potential
energies of an arbitrary link are derived in a systematic way. Using virtual work of external
loads and kinetic and potential energies of flexible links, actuated flexible joints, and
payload, the equations of motion of the system have been found by using Lagrange's
equations. The dynamic mode!l derived in this study is free from assumption of a nominal
motion and takes into account not only the coupling effects between the rigid body motion
and the elastic motion but also the interaction between flexible links and actuated flexible
joints. Due to the aforementioned couplings as well the variation in the effective inertia of
the system as its configuration is changing with time, the model is highly nonlinear and
coupled.

The validity of the model is shown and the effects of the link and joint flexibilities
are illustrated by some case examples. It is shown that the interaction between the joint
and link flexibilities causes significant changes in the dynamic behavior of the system. Also
it is shown that in the present of link flexibility the tip points of the links oscillate
undesirably which causes difficulties in control of flexible manipulators.



CHAPTER 5§

DYNAMIC MODELING OF SPATIAL MANIPULATORS
WITH FLEXIBLE LINKS AND JOINTS

5.1 Introduction

In this chapter, a redundant Lagrangian/finite element formulation is proposed to
model the dynamics of lightweight spatial manipulators with both flexible links and joints.
This modeling is an extension of the dynamic model developed for spatial manipulators
with flexible links proposed by Farid and Lukasiewicz [105]. The links are assumed to be
deformable due to bending and torsion. The elastic deformations of each link are
expressed in its tangential (clamped free) local floating frame. The constraint equations
representing kinematical relations among different coordinates due to connectivity of the
links are added to the equations of motion of the system by using Lagrange multipliers.
This leads to a mixed set of nonlinear ordinary differential equations and nonlinear
algebraic equations with coordinates and Lagrange multipliers as unknown variables. The
resulting system of differential algebraic equations (DAEs) is converted to a set of
differential equations by substituting the constraints with their double time derivatives.
These equations are solved numerically to predict the dynamic behavior of the system. The
dynamic model derived here is free from the assumption of a2 nominal motion and takes
into account not only the coupling effects between the rigid body motion and the elastic
deformations of the links, but also the interaction between flexible links and actuated
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flexible joints.

5.2 Kinematics of the System

The manipulator system modeled in this chapter is a chain of flexible links
connected by revolute actuated joints (figure 5.1). Each joint is flexible in the direction of
the rotation of the connecting links. In addition to the base actuator which rotates the
system about Z-axis, there is an actuator at each joint which rotates the next link about the |
axis of the rotor. The stator of each actuator k is fixed to the end of link k-1, while the
stator of the base actuator is fixed to the ground. Each rotor k is connected to link k
through a gear train and a flexible shaft which presents the joint flexibility.

Figure 5.1 A spatial multi-link flexible manipulator system
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5.2.1 Kinematic Modeling of Flexible Links

Each link is assumed to be deformable due to bending and torsion. The effects of
axial and shear deformations are neglected. As shown in figures 5.1 and 5.2, elastic
deformations of each link k are presented relative to a local floating frame Ox-Xy¥xZx. This
local frame is a clamped-free coordinate system whose x; and yi axes are tangent to link k
at o and parallel to the horizontal plane (XY plane), respectively. ®,* and ®,* are two
angles presenting the orientation of the x,-axis of the local coordinate system in the inertial
reference frame. ®;® is the angle between the projection of the x,-axis on the horizontal
(XY) plane and the X-axis, while ®," is the angle between the x.-axis and the Z-axis. vi
and wy are y; and z, components of linear deformation of link k due to bending. 6™
defines the rotation of link k at its basc_(ok) about x,-axis resulting from the absolute
rotation of end point (ox) of link k-1 about x,.; axis, while € is rotational deformation of
various sections of link k about x-axis relative to the cross section of link k at point oy.

) A
e u:j'-k X
y &
k
7o)
$,
Y ’ o,
h
R k
0 X

Figure 5.2 Absolute and relative position vectors of an arbitrary point A of link k
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Referring to figure 5.2, the position vector of an arbitrary point A of link k on its

elastic curve can be written in the following form:
r*=R¥+r, (5.1)
or

r=REI+RIJ+REK+xi+vi ], +wik, (5.2)

where r*, R¥, and r, are the position vectors of point A in the global system, origin oy in
the global system, and point A in local coordinate system orX¥iZe. R<, R,S, R;" are
components of vector R* along three axes of global coordinate system, and x,, Vi, and w
are x-coordinate and deflections in y, and z;-directions of point A in the local coordinate
system, respectively. I, J, and K are unit vectors along the coordinates of the global
system, while jx, jx, and Kx are unit vectors of the local system.

Local unit vectors iy ji, and ki can be written in terms of I, J, and K in the

following forms:

I = Ve M L+e, sV +5,M K (5.3)
J, = -s{ ¥ L+eMJ (5.4)
k,= -5, - 5,5P [ +¢,' Y K (5.5)

where ¢;%=cos(®,®), s;V=sin(®*), ¢;¥=cos(®,*), and s,¥=sin(®>*). In order to
reduce the length of the equations, unless it is necessary, superscript k will be kept only
for components of R and angles ®; and ®,, while other variables will be used without
superscript or subscript.

By substituting local unit vectors i, jx, and ks in terms of ©;™ and ®,* and
global unit vectors L, J, and K from equations (5.3), (5.4), and (5.5) into equation (5.2)
for r*, the velocity vector t* of each point of link k can be obtained as:
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P =[R: — x(D s, +DFe, s, ) —vBFe, + w(—D c.c, + B X s,s, ) — Vs, —Ws,c, ]I
+[ R —x(®Fs,s, —@Fc,c, ) —vdiPs, —w(—Dite,s, +BVs ¢, )+vc, —ws,s, 1 (5-6)

+[RE +x®c, —wdt's, +vc, +we, JK

The orientation of the tangent line to link k+1 at 0y presented by ®,**" and
®,%*V (figure 5.3-b) is a function of the orientation (®,* and ®,™) and the elastic
deformations of link k as well as angle Y**" between tangent lines to links k and k+1 at
point Oy;. For small deformations, the angular deformation of link k at point 0y, can be
separated into three parts: v\, W., and ©. (figure 5.3-a), where v'. and -w'. respectively
show the rotation angles of link k at point oy, about z,-axis and y,-axis, while ©, is the
rotation of the end section of link k (at ox.;) about x,-axis.

Having unit vectors ix, jx, and k: associated with ox-X.yiZx coordinate system, we
can find three unit vectors i', j', and k'x attheend point (0y.) of linkk by rotating
subsequently each unit vector (i, jx, and k) an angle -w’, about y-axis, an angle v' about
Zc-axis, and an angle ©. about x,-axis. It is obvious that unit vector i'; is tangent to link k
at point oy,;. Now let these three unit vectors (i's, j'x. and k's) rotate an angle y**", which
is not necessarily small, about unit vector j'x which is common normal of tangent lines to
two links k and k+1 and also normal to the stator and rotor of the revolute actuator at
joint Or1. As the result of these rotations (shown in figure 5.4), unit vector iy.;, which is
along Xy.;-axis of link k+1 is found. This unit vector can be expressed in terms of its
components along X, Y, and Z axes in the following form:

iy = [(+D I 4 (kD) J 4 g+ K .7

in which I m®?" and n™*" are functions of ®,%, ®,®, elastic rotations of link k at
point Ox.1, and angle ¥**". Angles ®,**" and ®,**" can be found by the following simple

equations:
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Tangent to link k at point 0.,

z
Y
o X
(@)
z
Y
0 X

()

Figure 5.3 Angular deformations of link k at point oy, expressed in its local
system and orientation of the tangent line to link k+1 at oy,
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Tangent to link k+1 at point OH ’

YA — \
k.’ ito:
| K I
Jk 'Jbl 0k+'xk
Y L
i i
ok
0 X
Figure 5.4 Representation of unit vector iy, resulting from
various rotations of unit vectors iy, ji, and k
sin @k = plk+1) (5.8)
@ k+1) J(k+
cos - J( JO:+0) 2 (k4D 2 (5-9)

10 m®* 1 and n®** will be defined in the next section. These quantities are complicated
nonlinear functions especially for multi-link manipulators. Therefore, it is better to
consider ®;**" and ®,**" as additional variables and use equations (5.8) and (5.9) as two
constraints (in addition to other constraints) for each joint oy.,. There are five remaining
constraints for each link. Three of them present the relation between coordinates of the
position vectors of the origin of link k+1 and that of the link k. The forth one gives the
angular rotation of the origin of the link k+1 about its x,-axis in terms of that of the link k,
rotational deformation of the end of the link k, and the angle Y**" (between two vectors
i'c and k). Finally the fifth one defines the relation between angle ¥**" and components

of unit vectors i'y and jx,.
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5.2.2 Kinematic Modeling of Flexible Joints

The arrangement of an actuated flexible joint is shown in figure 5.5. The rotations
of the rotor and the link are presented by angles gy, and ¥**", respectively. qy+; is the
rotation angle of the rotor of actuator k+1 with respect to the line tangent to link k at
x*=L,, while Y**" represents the angle between tangent line of link k at x*=L, and that of
link k+1 at xX**'=0. K1 is the drive shaft stiffness of the joint k+1, [, is the gear ratio,
and the difference Y**"-T,1 qrs1 shows the joint deflection. We assume that link k+1, joint
k+1, and rotor k+1 all rotate about the same axis which can be an approximation for some

arrangements of the gear train.

Link k+1

Figure 5.5 Model of the k+1% actuated flexible joint

As it can be seen in figure 5.5, axes Xy, and X, have different direction cosines
due to the flexibility of joint k+1. We can introduce two angles ¥,**" and ¥,**" similar
to angles ®;**" and ®,**" introduced in the previous section, to present the orientation
of axis X . TWo equations similar to equations (5.8) and (5.9) can be used to obtain
angles ¥,**" and ¥,**" simply by substituting I**", m**", and n™*" respectively by ™",

ms®*? and ns®*? as direction cosines of line Xy.; .
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5.2.3 Rotation of a Vector about an Arbitrary Axis

As it was mentioned earlier, in order to find the orientation of the local Xy
coordinate of link k+1, we should rotate the unit vectors i, ji, and ki of the local
coordinate system of link k about various axes. Therefore, it is necessary to develop a
rotation matrix which can generate the new orientation of any vector after rotating about
any arbitrary axis. Without loss of generality we can consider that the axis of rotation
passes through the origin of the vector.

Let r be the position vector of point Q and OC show the axis of rotation (figure
5.6). The angle between r and OC is B. We rotate the vector r an angle © about OC. It is
shown in figure 5.6 that as the result of this rotation, the vector r (OQ) is transformed to
the vector r’ (OQ*). The change of position vector r is defined as Ar. The new vector r*

Z
c/® a 2
a CA'r
Q Ar »,
|
Q H Q
B T .
T* ®)
v
0 Y

@

Figure 5.6 Rotation of vector r about axis OC
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is
rK=r+Ar (5.10)

and the vector Ar can be written as:
Ar=0H + HQO* .11)

Since the vector HQ* is perpendicular to the plane OCQ, its direction can be found as v x
r, where v is a unit vector along the axis of rotation OC. The magnitude of the vector

HQ#* is given by
IHQ*I =a sin® (5.12)

where a is the radius of the circle resulting from the rotation of the point Q about OC and
from figure 5.6-a, it can be written as:

a =r|sinp (5.13)

On the other hand, the magnitude of the vector QH can be found as:

|OH|=a(1-cos©)=2a sinzg (5.14)

Since the vector QH is perpendicular to both v and HQ¥, its direction is same as the unit

Xr

v
vector vX , thus

on =lor" 2 GED (20 sin? )P EC2D) 519

=2 siuzg[vx(v xr)]
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by substituting equations (5.12) and (5.15) into equation (5.11), we have

Ar=(vxXr)sin©®+2 [vx (v xr)]sinzg

and therefore;
[J y] 26
rF=r+Ar=r+(vxr)sin®+2 [vx(vxr)]sin®>

Moreover, we can use the identity

~ -

vVXr=vr=-—rv
to write the equation (5.17) in the following form:

-, ~2 .29
rF=r+vrsin©®+2 (v) rsin ;

where V and F are skew symmetric matrices given by

) i— 0 -v, v, ]| i I- 0 —-r, r, .I
v=| v, 0 -v_ r=|r, 0 -r |
l_-vy vV, 0 I.—ry r, J

(3-16)

(5.17)

(5.18)

(5.19)

(5.20)

in which v, vy, and v, are the components of unit vector v and ry, ry, and r, are the

components of unit vector r.
Equation (5.19) can also be written in the following form:

-, ~2 .20
rF=[I+vsin©+2 (v) sin —2-]r=Ar

(5.21)
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where I is a 3 x 3 identity matrix and A is the 3 x 3 rotation matrix given by
g ~2 .20
A=[I+vsin©®+2 (v)" sin -2-] (5.22)

which is expressed in terms of the angle of rotation (©) and the unit vector along the axis
of rotation.

The orthogonality of the rotation matrix A can be proyed in the following simple

way. Since ¥V isaskewsymmetl:icmau'ix(vr =-V), (V)zisasymmctricmam'xand

one can write

- - 2 - -2
ATA=[I-vsin©®+2 (v) sinzg][l+vsin6+2(v) sinzg]
4

e ~ 2 -
= I +4sin* 3{(;’) +(v) } (5.23)
= AAT

Also the following recurrence relations can be noted.

(v)™ = (=1)" v (5.24)
(v)*" =(-1)"(v)? (5.25)
By utilizing these identities, equation (5.23) can be written as

ATA=1 (5.26)

which proves the orthogonality of the rotation matrix.
In the case of small rotations, we can substitute sin® by © and neglect the third
term in equation (5.22) to yield an approximation of rotation matrix A as
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A=I+v0O (5.27)

5.2.4 Derivation of the Direction Cosines

As it was shown in figure 5.4, unit vectors i, }'x, and K at the end point (0y.1) of

link kcan be found by rotating subsequently each unit vector (i, jx, and ki) an angle

w' ) about yi-axis, an angle v'.* about z-axis, and an angle ©.™ about x.-axis. By

assuming that these elastic deformations are small, equation (5.27) can be used to find
three rotation matrices A,, A, and Ag in the following forms

[ 1 0 —clw’,-l
A= 0 1 —sw, | ' (5.28)
_clw', slw', 1

1 -y, —szslv']
A, =!| eV, 1 szclv, I (5.29)
|28V —$201V _I
I- —S2®¢ cZSlee -I
=! §,0, 1 —c,¢,0, (5.30)

I:‘c 2510, €60, 1 .I

in which c¢;=cos(®*®), s,=sin(®;*), co=cos(®,™), and s,=sin(P.™).
Since the rotations are small, the order of rotations is not important and one
rotation matrix can be obtained by multiplying the three different ones. After neglecting

second order terms, we have

1 —,V,—$,0, —clw’,—szslv’,i-czsle,.l (5.31)
Ae=4,A4 = CV, 45,0, 1 —~S1W'e+520V,—€,6,0, )
W +5,51V,—€,510, 5\W,—5.0,V,+¢,¢0, 1 J
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By multiplying unit vectors i and jx by the rotation matrix Aye and neglecting higher
order terms, fi and j, can be obtained in the following forms

€20 €1 — SV, —5.61W',
I, = Apaiy =Ape) 028 [ =) €28 +HO WV —S51W', (5.32)
s2 )] U S, +CoW',

-

. ] =51 =81 —€1(C2V, 45,0, )
J, =Apel, =Ape] €1 [=] €1—81(€2V,+5,0,) (5.33)
0. . -s2v'c "'czec)

Now we should rotate unit vector i an angle -Y**" about unit vector j; to reach to
unit vector j. tangent to the link k+1. Since ¥**" is not necessarily a small angle, we
should use equation (5.22) to construct the proper rotation matrix A,.

(k+1)

2

Y

A, =I-v, siny* +2 (vy )’ sin® (5.34)

since for this rotation the vector v,=j'%, the associated skew symmetric matrix used in the

above equation is
0 s, v, ~¢,0, ¢, —s,(c,v,+5,0,)
v, = —s,V',+¢,0, .0 s;+c(c,V,+5,0,) | (5.35)
—~c, +5,(c,V',+5,8,) =s,—c,(¢c,V +5,0,) 0

By applying the rotation matrix A, to the vector ix, we have

b C1C1 — SV —S,61W',
[3 — —_— o __ r r
U = 1Mt [ = Ayl = Ay} €281 + OV —S:51W, (5.36)
I 4
] 5, +C W,
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After substituting A,, various components of the unit vector j.; can be written in the

following forms:

-Y(“"I) {E+1)

. 2 Y
)e,e, =SV, —s,e,W", )+4c,cls,(5,0, +c,V, )smz—z—

Lo =(1-2c] sin’

(k+1)

2 Y

—c,(s, +c,W', )siny™**!
5 1(s; +¢, Y (5.37)

T(k-l-l)
> 1

-2¢,8,(¢c,8, +o,V',~s,S,W', )sin

. s .
+6,8, [(—5,V',+¢,0, )siny™!) =2 e} — 57 )¢ V', +5,0, )sin’

k+1)
2 X
> ]

+8,[5,(c,V,+5,0, )siny™**V +25,(s,v,—¢,0, )sin

(k+1) Tftﬂ)
— : 2 e ——— (4 (] - 2 ’ o 2
m,, =-2c,s,sin > (c.6, =58V —s,0,W', )—4¢s.c,(c,v ,+5,0, )sin >

(k+1)

Y

), 8, +c,v',—5,5,W', )—5,(S5, +c, W', )siny**!
2 (5.38)

(k+1)
+c,6,[(5,V,.—¢,0, )siny**V —2(c2 —si )¢, V', +5,0, ) sin’ Y 7

+(1—2s? sin®

2
I

(k+1)

2

27

+5,[—c,(c,V',+5,0, )siny**" +2¢ (—s,V', +¢,0©, )sin

(k+1)

2

Y

n,,, =—s,w', siny**" +(1-2sin* NS, +c,W'", ) (5.39)

5.3 Dynamic Modeling

The equations of motion of the flexible manipulator systems can be found by using
standard Lagrangian approach. The proposed dynamic model contains dependent
coordinates which are interrelated through holonomic constraint equations. Therefore, it is
possible to use method of Lagrange multipliers to obtain the equations of motion. As it
was shown in chapter 3, by using the formal way of dealing with constraints equation in
the calculus of variations, we can obtain the following system of differential equations for
a system with n degrees of freedom from which m degrees are redundant.
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d JL oL .
= % )— 37 +A,Tcﬂ =0,, i=l,...... n (5.40)
C,i=0. _ (5.41)

where L shows the Lagrangian of the system (L=KE-PE), A is the vector of Lagrange
multipliers, and Cq is the constraint Jacobian matrix (mXn) which shows the derivatives of
the different constraints with respect to various variables. The system of differential
equations (5.40, 5.41) can be solved numerically to predict the dynamic behavior of the
manipulator system.

To obtain the equations of motion of a manipulator system by Lagrangian
dynamics, first we need the kinetic and potential energies of its various components
including the links, the actuators, and the payload. Since the number of degrees of
freedom of each link is infinite due to its elastic deformations, we use the finite element
method to approximate the real system with a system with finite degrees of freedom.

5.3.1 Kinetic and Potential Energies of the Links

Each link is divided into a number of elements. The link deflections are presented
in terms of shape functions and nodal values of transverse deflections, slbpes, and rotation
angles. Hermite and Linear shape functions are used to approximate bending deflection
and torsional deflection of the links, respectively. Each element e of link k has 17 degrees
of freedom, namely, ®,%, ®,®, ¥,®, ¥,® 6, q;, and ¥ as rigid degrees of freedom,
Vae-1, V2e, V2es1, and Va2 as nodal transverse deflections and slopes in the y-direction, wa.1,
Wae, W2es1, and Wa2es2 as nodal transverse deflections and slopes in the z-direction, and ©;,
and ©;; as nodal rotation angles about x-axis. The notations used for transverse
deflections and slopes in y and z-directions are shown in figures 5.7-a, b and notations

used for rotational deflection about x-axis are shown in figure 5.7-c.
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Figure 5.7 Nodal elastic deformations of each finite element of link k
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Now kinetic and potential energies of each link k, presented by KEL* and PELY,
can be written as the summation of elemental kinetic and potential energies shown by
KEE.* and PEE." in the following forms:

m*:imgt[% r p.A,,i‘.fdx+% rp,,J,,(ég” +O+d*'s, 2dx] (542)
X x

e=l e=1

N, N, 1 ] 2
PEL* = ZPEE:‘ = 2[ r P, A g( R} +xsz+wc2)d;r+% T E,‘I:(-g;;-)’dr
e=1 =l a:. Te (5.43)
w 1 el
3’ )2dx +5

X e

O 30
+= E.I%( Gt (3) dx]

2
where N is the number of elements of link k and py, A, and Ji are the density, the cross
sectional area, and the polar moment of inertia of link k at each point. E;, Gy, L%, and I*
are Young modulus of elasticity, shear modulus, and area moments of inertia about y and
z axes, respectively. The notations: c;=cos(®*), s;=sin(®*), c,=cos(®,*), and
s;=sin(®,*), are used to simplify the trigonometrical expressions in the above equations
and also in the next parts of this chapter. The first term in the right side of equation (5.42)
shows the kinetic energy resulting from the linear motion of each point, while the second
term is due to the rigid and elastic angular rotations of the link about its x-axis. The first
term of the potential energy shows the effect of gravity, while the second and third terms
present the bending effects of the link aboutz and y axes, respectively. The last term
presents strain energy due to torsional deformation of the link.

5.3.2 Kinetic and Potential Energies of the Actuators
The base actuator, whose stator is fixed to the ground, rotates the manipulator

system about the global Z-axis. Its kinetic energy (KEA™) and potential energy (PEA™)

can be written as:
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1
KEA®™ =2 Ind; (5.44)

1
Pm(b) __.5 E(Q{U -r545 )2 (5.45)

in which Ir,, K, Qv, and I';, are the moment of inertia of the base rotor, the joint stiffness,

the rotation angle of the base rotor, and the gear ratio of the base actuator, respectively.
The kinetic and potential energies of the first actuator, which rotates the firs link

about its local y;-axis, have the following forms:

. 1 . 1 1 .
KEA™ = _;_ Isx (Y )? +§ Irz (Y cosq, )* .;.Elryldf ++§Irx,( o sing, )’ (5.46)

1
PEA® =2 K(®" -Tg, )’ (5.47)

where Isx,, Isy;, Isz;, Irx,, Iry;, and Irz, are moment of inertia of the stator and rotor of
the first actuator about different local axes. K; and I'; present the stiffness and gear ratio

of the joint, respectively.
Similarly the kinetic and potential energies of the k-th actuator (k=2,....,n) can be

written in the following forms:

EA(k) -_ %stk(ﬁk-l)sgk-l) +'e£k—l) +égt-l) )2 +%Isyt((pgk—l) +W:k-l) )2

+%Isz, (BNl pptl )2 +%Irx,(\i'{ £V sin Y + 68 )? (5.48)
1 g 1 . _ 1 L L
+EIryk (P )? +-2-Irz,(‘l’{" Y cos L1 )2 +E(mrk +ms, )R, .R,
1
PEA™® = -Z-K,(y‘ ¥ ~T.q,)* +(mr, +ms, )gR™ (5.49)

where mr, and ms; are masses of the rotor and stator of the k-th actuator.
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5.3.3 Virtual Work of the External and Damping Torques

There are 2n+2 nonconservative loads, namely n+l actuator torques and n+l
damping torques resulting from friction of joints. The generalized forces due to the
actuator torques and damping torques in the joints can be found by using the principle of
virtual work. The total virtual work of these loads can be written as:

BW =(T, ~byd, 0a-+ (T, b4, )54, (5.50)
J=

where by, and b; are viscous damping coefficients of the base and j-th joints, and T, and T;
are torques applied by the base and j-th actuators. Using equation (5.50) the generalized
forces required in the right hand side of the Lagrange's equations can be obtained.

5.3.4 Equations of Motion

Due to considering extra coordinates in describing the kinematics of the system,
the manipulator is dynamically modeled in a redundant approach. By satisfying Lagrange
equations and substituting the constraints with their double time derivatives, the following
second order system of nonlinear differential equation can be obtained .

ZS {ii}-l- c’ {l}: {{QQ:]?‘F {Qe} (5.51)

in which {g} preseats a vector consisting of all of the degrees of freedom of the system
and {A} is the vector of Lagrange multipliers. {Qv} is the load vector including the
velocity terms due to Coriolis and centrifugal effects, and gravity terms. Also it includes
-KS{q} due to the elastic deformations and -BS{&} due to the joint dampings. {Qe} is the
vector of external loads and C, and {Qc} present the constraint Jacobean matrix and the
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vector consisting of nonlinear terms resulting from twice time differentiation of the
constraints, respectively. MS and KS are system mass and stiffness matrices. These two
system matrices and system vector {@v} in equation (5.51) can be obtained in three steps.
In the first step various matrices and vectors are built for finite elements of each link. Then
they are assembled to find corresponding matrices and vectors for each link. And finally
system matrices and vectors are formed by assembling those of various links and joints.
Boundary conditions are used to eliminate non-changing degrees of freedom and to
modify the elements of the link mass matrix and the load vector. These boundary effects
are due to the clampedness of each link at its origin, the mass and moment of inertia of the

stator and rotor of each revolute actuator, and the mass and moment inertia of the

payload.
5.3.4.1 Derivation of Elemental Matrices and Vectors

To simplify the derivation of components of various elemental matrices and
vectors of each link, they are partitioned into submatrices and subvectors in the following

forms:

Mk ={ ;M;G]14x14 [M;RGJ 14X3 (5.52)
: -M:&]BXM [M;¢ 3X3 .
Kf =[ ;K.fe ]14Xl4 [K§:¢ 14X3 (5.53)

-Kmlsxu [Kke- 3X3

r[Qvg‘:e] [Qe§¢]
k — 14X1 s ok = 14X1 (5.54)
¢ L[Qvﬁelg‘fl Q ¢ [Qe§¢]3x1

in which e and k, respectively, show the element and link numbers, and the size of each

matrix and vector are shown on the right side of them. Matrices and vectors with subscript
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Re refer to 3 degrees of freedom representing the linear motion of the origin of link k,
while those with Se are associated with other 14 degrees of freedom of each element
including &%, ®,%, ©,%, and ¥* as rigid degrees of freedom, and Vae.1, Vae, Vaert, Vais2,
Wael, W2es, Waerl, Waee, O, and ©;,, as nodal degrees of freedom due to the elastic
deformation of the link. It is worth mentioning that due to the symmetry of the mass and
stiffness matrices, (Mrsc")'=Misr." and (Krs.")'=Ks.". In addition Kr.“ and K", in
equation (5.53), are both zero matrices.

In order to find the components of the elemental mass and stiffness matrices and
the load vector Qv, we need to determine the kinetic and potential energies of each
element. These energies can be written in the following decomposed forms:

KEE* = KEE, + KEE " + KEE,.* (5.55)
PEEE = PEEL, + PEE.* (5.56)

KEEz." is one part of the link kinetic energy due to the motion of the origin of the floating
frame system. This part can be written as:
1 ™ R . .
£ _ L k2 k2 k2
H.‘E,,,-2 x'p,‘A,‘[(R,) +(R, )" +(R; )" Jdx (5.57)
while KEEs.* corresponds to the rigid and elastic degrees of freedom: ®,%, ®,%, §,%, v,

w, and © . KEEg." can be written in the following form

KEE:, =~% R,Ak{x( -t c - Fe,s, ) —vdF e, + w(~Die,c, + D s, s, )~ Vs, —ws,c, I
x,
(5.58)

+[¥(—‘i’(z“3231 +‘b{“¢z¢1 )= "q”su - "(‘i"z”cz’t +‘b€”‘zc: ) +ve, —vs,s, I

+[x® e, —wdt's, +vc, +wc, ]z}dz-!-% R,J,(x(éf,“ +6+®¥s, )2dx

KEEg:.”, given by equation (5.59), presents the kinetic energy resulting from interaction
of the linear motion of the origin and the motion of the virtual single link.
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KEEg = R,A,[R""[x(-d“:zcl-d ‘e,s, ) —v@¥e, + w(—c.e, + D55, ) —vs, —vs,e, ]

+Rf [x(~Ds,s, +DFe e, ) —v@®ts, —w( D e 8, + DPs e, )+, —wWs,s8, ] (5-59)
+RE[x®Pe, —wd s, +ie, + e, [Jdx
Similarly PEEg.* and PEEs." can be written in the following forms:
1
PEEE, = R,A.gxgdx (5.60)
PEE;, = T P A L(xs, +We, )dr+— ]' E,I“(— *dx
- (5.61)
LR Y LA AT T 6. ( )

Based on the Lagrangian approach the following expressions corresponding to
rigid degrees of freedom ®,* and ®,*, can be obtained.

d mEk k el -
IKEE, | OKEE, _ [ fp,A,(xch - 2xc,5,w +v* +w3s,? )dx JB(*

a3 )~ e

+/ .rPtA (xvs, +vwe, )dx]dl"‘) +i1[ thAt N, (xc, —ws, dx]v,,,;
(5.62)

+ i[ pkAk N, vs,dx W, +(s29"" "‘szzq’“’) I:;k', pdx

=1 X,

rpk-’k(z ;+19-+j)dx +f.

where Ni,2 and NL;,; are Hermite and linear shape functions. f,; presents quadratic

velocity terms given by
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fu= Jp.ADPDE [-2x3¢c,s, —2xw(c,” —s,7 ) +2ws,¢c, Jdx

+ ) p A (B Y (xve, —vws, )dx

+ : ;;A, (—xwdie s, + 2Bt + 2mie, B — w5, c, + 2wt )dx o
+25,0, 800 [oud,de
Similarly, we have
o Bfﬁ )- af(f,E, =1 f udy (25, +vwe, Jdx &
ool eo1 (5.64)
+/[ f PeA, (x* +w? )dx JO + ;gl[ f Pe AN X I, + £,

in which

[, = r;;;A,‘ (D* )2 [x%c,s, + xw(c, —s,% ) —w’s,c, Jdx

+ _r;;; A ®F(2xvs, +2¥we, )dx (5.65)

+ f P A B (2w )dx— | poJ e, (6L + O+ s, )dx

Xe

Including nodal values of v, w, and © of each element e in two first terms of

Lagrange equation, for each i=-1,0,1,2, we have
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d OKEE! 3EE
Z( Py —%) - = r PrAN »z(i N 2V j Mx
2e4i

eel

+[ plAkN w2 (X€; —ws, Jdx ] 6{“

+ i[ p,‘A N, (2x5, 00D — 2105, D) — 2we, DG )dx ]

x,

- (6{“ ) PLAN m(jgN +2V2e4; JX
d_JKEEg, )— JKEE;, _
dt’ ow,,,, oW, r

.

PEAI:N I+2( th 14-2‘.62:-] )dt

+[ JPeANovs, dt]d’(“ +/ pkAtNuzx h]d’(”

L, (B ) (D) ] pkAkN‘.z(gwj,zwm,m

+ PLAN o [ ”2"1(6{“ )+ Z‘Hk’sz(jg‘v 142V 2045 M dx

X

and for 1=0,1

d JKEE., £ aKEE X o . - s
( F.T:) 26 = -r Ped ¢ NL,,, [(98” +s 224,{&) )+ 25,0, 0Dt 1dx
e+l e+l X

el

+ p.J.NL,+.(§NL,+,é.+,)dx

x,

where NL;,, are linear shape functions.
We can also write the following expression corresponding to G,

d OKEE; . OKEE; * - . P
90 )" el = [Pud (8 +5,2600 + 20,0,0(02050

+ [ i (ENL, 8., )ix
£, =0

(5.66)

(5.67)

(5.68)

(5.69)
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By differentiation of the element potential energy PEEs." with respect to various
degrees of freedom, the following expressions are found.

OPEE:

JPEE:,
o

=0 (5.70)
kaAkg(xcz = WS, )dx (5.71)

OPEEY., " . ) o
= r E I}N"io( zN j+2V2e+j )X, =-1012 (5.72)

a"Ze +i j=-1

JPEEY, * . )
awz,j = r E.I;N "*2(21\’ j+2W2e e j X + H&Angﬂzczdrs (5.73)

Jj=-1 X,
i=-1012
OPEE! -
-—ae—f‘ = f G J¢NL 11( ZNLj+le¢+jm (5.' )
e+ . j=0

in which (') and (") denote the first derivative and the second derivative with respect to x,

respectively.
Using the above expressions, we can construct the elemental mass and stiffness

matrices and the load vector for each link.

5.3.4.1.1 Elemental Mass Matrix MsX

Mass matrix of each element can be shown by the following 14X 14 matrix which is

partitioned into various submatrices:
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(M), [Ms],, (M), [Mie],, [Miel,, [0,y
[M H ]4x4 [0]4x4 [0]4.1'1 [0]4x2 [0]4x1

[M:']uu [0 x, 0. [y (5.79)

[Méo]lxl [Maﬁ]wz [O]m

Mg),,, [0y,

Symmetric [0] 4,

in which the elements of submatrix M® associated with ®;* and ®,* are

1
Mg(L)= J‘;kAt( x2c2 —2x¢,5,w +v2 + wis,? Mdx (5.76)
Xe
Mg(12)=Mg(21)= | ppAs(xvs, +vwe, Mdx (5.77)
Mg(22)= _rl;;At( x*+w?)dx (5.78)
X

The components of other sub-matrices, shown in equation (5.75), can be written as:

Mg, (L,j)= .r PrAgN j(xcy —ws; )dx (5.79)
xl
Mg, (2,j)=0 (5.80)
Mg, (Lj)= ,r Pr AN jvs,dx (5.81)
xl‘
Mg, (2,))= f Pr Ax N jdx (5.82)
X

in which j=1,2,3.4.
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The elemental mass matrices regarding elastic degrees of freedom v, w, and © are
classic bending and rotational mass matrices used in structural dynamics for beam

elements.
oedehe| 212512 w on ]

M; =M, = 420| 13, 156 —22h | (5-83)
L-13h, 3 -2k 4R |

RN

where hy is the length of a uniform element ¢ of link k.
The 1X1 and 1X2 mass matrices resulting from rigid rotation of the clamped end
of link k are

= TPJkdt (5.85)
&e(Lj)= TPJ&NL,dx, i=12 (5.86)
Xe

N; and NL; in equations (5.79-82) and (5.86) are Hermite and linear shape functions.

It is worth mentioning that the last column and row of the elemental mass matrix
are zero due to the fact that the rigid degree of freedom ¥* is not an independent variable
but it is a redundant degree of freedom. The aforementioned degree of freedom was
defined as the angle between tangent lines to two links k and k+1 at their common point.

5.3.4.1.2 Elemental Stiffness Matrix Kg*

The stiffness matrix of each element (Ks.*) can be divided into two parts Kes*
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and Krs.*. Kes." is normal stiffness matrix due to elasticity of the link in bending and
torsion. Stiffness matrix Krg is due to the centrifugal effects. The elements of this matrix
are obtained by differentiating the link kinetic energy with respect to the nodal values of
the elastic deflections. These two parts are shown as:

[ Oy, [Ohy, [y, Oy [y, [0l
[K: ]4 X4 [0]4X 4 [O] 4XL [0] 4X2 [0]4X 1 5 8
[Kely, Oy Oy, Ol (3:87)

) -
Kes. Oy [Oly, Oy,
[Ks),,, [0l
| Symmetric [0] &,
and
[ [O]zxz [Olle [olzxa [0]211 [Oluz [olzn-
"(ﬁ )Z[M: ]‘n [olu'c [O]u'x [O]uz [0]411
Kri = —[s(¥) ) +($:)'] [M:]4x4 0y, [0y, [0y 1(5.88)
Ch [ol,, [,, [0],,
[0]2X2 [0]221
| Symmetric [0l,,, |

As equation (5.88) shows, Krs* is nonlinear in terms of rigid degrees of freedom &,

and @,*. Various submatrices in the equation (5.87) are

[ 12 6, —12 6h |

e - Eelt| ki —Gh, 2"3{ (5.89)
"= | 12 —6h
| Symmetric 4an |
Ik
= TrKs (5.90)
G 1 -1
Kg:-—i—’l‘-[_l 1] (591)
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5.3.4.1.3 Elemental Load Vector Qvs.*

The load vector for each element can be defined as:

Ovs, = {{f X }2x1 {f v }4x1 {f w }4x1 {f e¢o }1x1 {f o }2x1 {O}m }r (5.92)

in which
R(LD)==f, (5.93)
fE(L)=~f,— rp,,A,,g( xc, —ws, Jdx (5.94)

F0)=2 )P AN (x5, & D + s, & +we, D) )de, j=12,34 (5.95)

Xe

e}

Fi(i) == )pAN;[25, 8" +x(B )ic,s, +ge, Jdx, j=12,34 (5.96)
£6,(L1) = 25,6, ®H f Pet dx (5.97)
FE(G,1) = =25,c,0D(F f p.J NL,dx, j=12 4 (5.98)

X,

where f,; and f;, used in equations (5.93) and (5.94) were introduced in equations (5.63)
and (5.65), respectively.

5.3.4.1.4 Elements of My.", Qvz ., and Mgg.*

In this section the submatrices and subvectors resulting from the movement of the
origin of each link are found. Together with those found in the previous section, they can
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be used to construct the global matrices and vectors of each link. From the following
expression of Lagrange equations, we have

d_ OKEEL,

a(3p )=( P Adx )P

Xe

(5.99)

in which P is chosen as one of R.*, R,%, and R.*. Mg.* can be obtained in the following

form:

] PrAidx 0 0
Xe
(5.100)

1
M. 0 Tpm.dx 0
Xe

-

1
0 0 ‘]‘Pt&dx
x,

Also the load vector Qvg.” due to the gravity effect corresponding to motion of the origin
of the link k can be obtained as:

- E

0
Qve=) , 0 f (5.101)
-8 kaAkdx

- (4

The remaining parts of link matrices and vectors are obtained by considering

KEEgs." in Lagrange equations.
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L IKEEy;, )- dKEy;,
dt’ oR: oR!
+(—x8,6, —wc,C, Y — 5,5 —s,0,% )]dx (5.102)

Lt
(k)
= kaAk [(—xc,s, —ve, +ws,s) )@,
Xe

+ -rl;:Az [ )(—xc,c, +vs, +ws,e, ) +(B )} (—xc,c, +ws,e,)

Xy

+2BMDX) (xs,5, + we,s, ) - 200 e, + 20(—B e 0, + BEs, s, )ldx

d OJKEE: JKEE* ! -
( :E‘ )= :& = RkAk [(xc,¢, —vs, —ws,c, )‘bg“
K aRF .

+(—X8,8, — we,s, )OS +5,7 - 5,5,% )]dx (5.103)

+ r;’kAk [(‘i’{“ ):(—xe,8, —ve, +Ws,$, )"'(d’rz” )2(‘3"231 +ws,5,)

— 20D (x50, +we,c, )~ 200 s, + 2w(—D e, s, — D5 ¢, )]dx

d JKEE: JdKEL - - -
Al R"“) ax*£= ]' PeA, [(xc, = ws, JF) +¢,% )]dx
" - £ (5.104)

+ T;;,A, [ ) (—xs, — we, ) — 2wd*'s, ]dx

Fe

d OKEEy, JKEEp, _
dt( wt} ) w{k}

_TP;A,‘ [(—xc,s, —ve, +ws,s, )Rt (5.105)
+(xe,¢, — VS, —Ws,c, JR® Jdx

d JKEE},, JKEE, t _
( wk} ) M&:s‘= T’PkAk[(-ISZSl—WCZCI)R: (5.106)

e

+(—x5,5, —we,s, )R} +(xc,—ws, )Rf Jdx
The elements of mass matrix Mig.” can be presented in the following forms:

Mg (L1)= j.;)gAk( —XC,8) — Ve + Ws,s dx (5.107)
X,
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Mge(12)= T;gAk(xczcl-Vsl—wszcl Mx (5.108)
%

Mg (13)=0 (5.109)

M§e(21)= I;&Ak("nzcl-wczcl Mdx (5.110)

Mse(22)= I;,,A,,(—xszs,—wczsl)a (5.111)

Mse(23)= :Tl;gAg(xcz-wsz )x (5.112)

The elements of 3X1 vector Qvg.* corresponding to coordinates: R.", R,", R.* are

ot

OvEi (1)=~ ), A [(DF )2 (—xc,c, +vs, +ws,e, ) HOY ) (—xe,c, +ws,e,) (5.113)

‘rl
+2015D " (x5,5, + we,s, )= 200 e, +2w0(~D e 0, + D s, s, )]dx

a3

v (2)=— ]p,A, [(DF ) (—xe,s, —ve, +ws,s, JHDE Y (—xe.5, +ws,s,) (5.114)

X,

— 20D (xs,¢, +we, 0, ) — 205, + 2w(—D e s, ~ D s,c, )]dx

ovi(3)=- I';:,Ak [(D) )2 (—xs, —we, )= 2w s, Jdx - R,A,gdx (5.115)

&

For each element e for i=-1,0,1,2, we can write the following equations:

1

EE JKEE% .. .
%(%)-ﬁ=(-slﬁ +oRF) ) PrdeN;, dx (-116),
T +i .

d a EEk¢ aKEEE‘ e+l .
de §,~,2 )T W = (TSORE —ssBRy v eaRE) f PrANpdx O 1D

Xe
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which can be used to obtain mass elements corresponding to nodal bending degrees of
freedom v and w, respectively. Equations (5.118) to (5.122) give these elements for
i=-1,0,1,2.

el

Mg, (i+4,1)=-s ] P AN, dx (5.118)
Mge (i+42)=c¢, ! ;.AtN i+2dX ’ (5.119)
M (i+71)=—-s,¢c, ! ;;A,N,.+zdx (5.120)
Mt (i+7,2)=-s,s, ] ;;A,dex (5.121)
M. (i+73)=c, f;;Atdex (5.122)

Ze

5.3.4.2 Link Matrices and Vectors

By assembling the elemental matrices and load vectors derived in the previous
sections, the main parts of the link matrices and the load vectors can be found. Since the
origin of each link is considered to be clamped in its local coordinate system, all of the
elastic degrees of freedom at the first node of the first element of each link, namely, v;, v,
w;, W2, and ©,, are zero. Therefore, we can take into account this boundary conditions
simply by eliminating corresponding rows of the link load vector and corresponding rows
and columns of the link mass and stiffness matrices.

Each link k (k>1) has 10+5N; degrees of freedom. They can be divided into two
parts. ©,%, ®,®, ¥,®, ¥,%, 6%, g, R, RS R, and ¥* are 10 degrees of freedom
which correspond to the rigid body motion of the link, while remaining SN degrees of
freedom correspond to the discretized bending deformations in the local yi and z
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directions and the discretized torsional deformation along the local x, axis. It should be
mentioned that variables 6y, R.", R,5, R, and ¥*' must not be taken into consideration
for the first link. Without loss of generality, mass and stiffness matrices as well as load
vector of each link can be partitioned in the following forms:

[ k
Mf =[ [Mﬁ (3)X(3) [MJ’](”‘“""’"" (5.123)
. .
[M’f ]( 34N, JX(345) [M,, ](7"5" ) X(T45N,) |
[ &
K* _| [Kﬁ ](3)xm [Kﬁ ](3)x(7+5Ns) (5.124)
- .
L[Kﬂ ](3+7N3)X(3+5) [K:](""SN £IX(T45N,)
E_ {Qv; }(:ux(u (5.125)

Qvl - {ka}
B3N, )x01)

in which subscripts j and 1 are used to present the contribution of joint variables (‘¥;*,
¥,®, and qx) and link variables (@,%, ®,%, 6., R, R,5, RS, ¥, v¥, w®, and ©) in
various parts of matrices and load vector.

Similar to the elemental matrices and load vectors, the link matrices (My®, K;®)
and vectors (Qvy™) can be partitioned into various matrices and vectors. For example,

mass matrix My® of link k with N, elements can be presented as follows

[T agk k
[MSI](;H..SN.: )X(3+5N, ) [MSRI](g.‘.sNt)xg [O](3+5N,)X1

M [M§,]3x3 [0] , (5.126)
Symmetric (0], x,
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in which 3+5N; is the number of degrees of freedom: ®,%, ®,, v; 10 vy 5, W5 to
Wan, .2 ©5 and ©; to Oy ;. All of the finite elements of link k have common degrees of

freedom ®;%, ®.%, 6., R, R,5, R, and ¥*. The first three ones are associated with
the submatrix [Ms*], while the second three represent the linear motion of the origin of
link k correspond to submatrix [Mg,“]. The last one (¥*) is associated with the last column
of the mass matrix Mi*. As it was mentioned earlier, all elements of that column are zero.

Matrix Mg can be shown as

ML)y, MLy, Ml [Mie,,, Mieloy,
[ wexaw,  Olowxom, (0], (0] v, (5.127)
ME = [M!-]m& X2N: [0l [0]4xN,
Mook, (Mol .,
| Symmetric (ML), o,

Usual assemblage procedure is used to construct link matrices M,', M/, and My' from
elemental matrices M,°, M,°, and My°. Application of boundary conditions corresponding
to zero deflections, slopes, and rotation at the origin of x-axis of each link k, reduces the
size of the matrices. For example the size of the matrix resulted from assemblage of
matrices M,° is (24+2N;)X(2+2N,), but after applying boundary conditions it is reduced to
2N, X2N; because at x=0, both the deflection (v) and the slope (V') are zero. In finding the
first two rows (and columns) of link mass matrix the usual assemblage procedure is not
applicable, this is why a special suitable approach is developed to assemble first two rows
of the elemental mass matrices. The elements Mg*(1,1), Mr"(1.2), Mk‘(2,2) of link matrix
Mg and the elements of link matrix Mg can be found by the similar integrals given in
equations (5.76-78) and (5-100), respectively, but by using (0, Ls) instead of (X, Xe+1) as
the bounds of integration. The remaining elements of the first and the second rows of the
assembled matrix Mg* and the elements of Mg can be obtained by assembling

corresponding rows of elemental mass mairix in a columnwise manner.
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Similarly Keg, Krs*, and Qvg’ can be obtained by assembling and eliminating
columns and rows corresponding to zero boundary conditions of clemental matrices Kes.",
Krs.", and vector Qvs.’ (equations 5.87, 5.88, and 5.92). The size of each link matrix
(M;* and Ky) and load vector (Qwy) are (3+5NX(3+5Ny) and (3+5Nu)X(1),
respectively. After finding other parts of system matrices and load vector of each link k,
the whole stiffness matrix K;* and load vector Qvy* of can be constructed.

The elements of matrices M;*, M, K;*, K;i and load vector Qv;* can be found
by making use of different terms of Lagrange equation.

§5.3.4.3 Modification of the Mass and Stiffness Matrices and the Load Vectors due
to the Effects of Inertia and Stiffness of the Actuators

The kinetic and potential energies of various actuators were found in section 5.3.2.

By using the following expression

d oKE; OKE; OPE;

T Ty Ty

(5.128)

the effect of mechanical properties of the actuators on the mass matrix and load vector of
the whole system can be taken into account. In equation (5.128), KE,* and PE," present
kinetic and potential energies of the k-th actuator and y can be any of the coordinates of
the system. Practically the effects of inertia and stiffness of various joints can be taken into
account by modifying certain components of mass matrix M,* and load vector Qvi* as
well as by obtaining the elements of matrices M*, M;", K;*, K;“ and those of load vector
Qv;*. Since the procedure is similar to that presented in the previous sections, the details
of the mathematical manipulations are not shown here.

It is worth mentioning that the effects of actuator torques will be taken into
account in constructing external load vector of the manipulator system in section 5.3.2.4.
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5.3.4.4 System Matrices and Load Vector

Having the mass matrix matrices, the stiffness matrices, and the load vectors of all
of the links, we can create the system matrices and load vector in a straightforward
manner. This can be done by assembling the matrices by simply placing them together
diagonally. The resulting assembled vector consists of link load vectors which are placed
together in a columnwise manner. These assemblages do not include any overlapping
because each link has its own state variables. For example, the mass matrix MS and load
vector Qv of the system can be constructed in the following way:

M} 0v}]
M? Ovi

MS = CME b Qv=: Ov¥ * (5.129)

i My OV} ]

where M{* and Qv are the mass matrix and load vector of link k, respectively.

It is worthwhile noting that the dimensions of the matrices and load vector of the
first link are (+5SN)X(2+5N) and (2+5N)X1, while those of other links are
(10+5N)X(10+5N) and (10+5N)X1, respectively. This is due to the fact that the position
vector of the origin of the local coordinate system of the first link is a zero vector.

5.3.4.5 Boundary Conditions due to the Payload

The boundary conditions due to the payload can be applied again by obtaining the
expression of the left hand side of the Lagrange equation and then modifying the necessary
components of the system mass matrix and the load vector. The kinetic and potential
energies of the payload in terms of degrees of freedom of the system can be written as:
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1 . . 1 o) (R N 1 r)a(n ~ ~(n
KE, =5M’r’.rp +Elpz(c§ o+, )2+51px(s§ '™ +6, +6(")*

I . (5.130)
+§Ipy(¢‘2" +¥, )
PE, =M, g(R? +L,si” +w,cs™) (5.131)

where M,, Ipx, Ipy, and Ipz are payload mass and the moment of inertia of the payload
about various axis of the local coordinate system of the last link. r;, is the absolute position
vector of the payload, while w,, v, W', and ©, are the w-deflection, the slope in the xz
plane, the slope in the xy plane, and the torsional deflection of the end point of link n (the
location of the payload).

5.3.4.6 Generalized Forces due to Actuator Torques

The generalized forces due to the actuator torques and damping torques in the
joints can be found by using the virtual work of the nonconservative loads given by
equation (5.50). As it was mentioned earlier, -qk is the angle between tangent to links k-1
and x, axis at their common point oy. Therefore, all of the effects of elastic deformations
on the direction of actuator torques are taken into account automatically.

Using equation (5.50), the external load vector Qe can be constructed in the

following way:

Qe(l) =T, - b,q, (5.132)
Qe(2) =T, - b,q, (5.133)
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J < 5+5N,

for i=2 ton
Qe(j)=T,—-b;q; (5.134)
J < j+10+5N,;

end

The remaining components of the external load vector Qe are zero.
5.3.4.7 Constraints

As it was mentioned at the beginning of section (5.3.4), the following system of
equations should be solved to predict the dynamic behavior of the deformable multibody

systems.

Ms {g}+cC,” (A} ={0v}+{Qe}
c, {4} ={0c}

This system includes the constraint equations. In the previous parts of this section, MS,
Qv, and Qe were found for spatial flexible multi-link manipulators with flexible links and

(5.51)

joints. Now the constraint equations are developed in order to find C, and Qc.

For each joint, except joint 1 whose linear position is fixed , ten constraint
equations should be included. This is caused by introduction of ten redundant (or
dependent) degrees of freedom at each joint i including: q;, ¥,®, ¥.®, ®,©, ®,°, 6,7,
R/, R/, R/, and ¥*.

The following three equations present continuity of the global Cartesian
coordinates at different joints. In other words, they show the relations between three

components of position vectors of two successive joints i and i+1 for i=1,2,...,n-1.

() R = RE=(Lefoe? - w{s{le(® —viVs(?)=0 (5139
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GiI(2): R - R —(LefPs® —wPs@si 4yed) =0 (5.136

G R -RI=(Lsf +wPef?) =0 .13

in which subscript e is used to identify the components of elastic deformations of link i at
point O;41.

As it was shown is section (5.2), angles ®;*" and ®,**" can be found by using
equations (5.8) and (5.9). These equations are presented here again in a different form.

Gi*V(4):  sin®," —p™V =0 (5.138)
GiV(5): [(IV)? +(m™V)? ] cos® @V ~ (1) =0 (5.139)

The sixth constraint equation expresses the angular rotation of the origin of the
link i+1 about its x;,;-axis in terms of the angle ¥*” and the rigid and elastic rotation of
the end of the link i about its x;-axis.

GUV(6): — O +(Of +6(" )iy, =0 (5:140)

where i; and i;, are unit vectors along x; and x;.; axes, respectively.
The seventh constrain equation presents the cosine of angle ¥**" as dot product of

two unit vectors i'; and j;.1, which are tangent to links i and i+1 at their common point 0;1-
G"™(7):  cos(y“*V)-i i, =0 (5.141)

Two constraint equations regarding the definition of angles ¥;® and ¥,® can be
defined similar to the forth and fifth ones:

Gi‘™(8):  sin¥, ! —ns™V =0 (5.142)
GP(9): HITV) +(msTY )] cos® WY — (B )P =0 (5.143)
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and finally the last constraint equation presents the cosine of angle g;.1 as dot product of

two unit vectors i'; and i1 . As it was mentioned earlier, the first unit vector is tangent to

the end of link i and the second one is along X.+;" axis shown in figure 5.4.
Gi‘*V(10):  cos(q,, ) -, .i,,, =0 (5.144)

To find Jacobian matrix C, of the constraints, first we differentiate the constraints
of each joint i+1 with respect to various variables to build submatrices Cj,**". Then by
assembling these submatrices, C, is found.

Vector Qc in equation (5.51) can be found by using following equation:

Oc =—[Cy +(Cp )y +2C 4] (5.145)

we can also find this vector by assembling subvectors, @j. obtained for various joints.
Due to highly nonlinear and complex nature of the constraints, especially those which
include unit vectors i'; or i1, the details of derivation of C; and Qc need many pages and
patience. Therefore, interested readers are referred to the appendix for details.

It is worth mentioning that we should eliminate five columns of C, corresponding
to three components of position vector R' , zero ©,"", and zero ¥ , because the origin of
the first link is attached to the origin of the inertial reference frame. Therefore, the size of
non-square matrix C, is 10(n-1)Xnv, where n and nv=n(10+5ZN;)-5 are the numbers of
links and variables, respectively.

5.4 Numerical Solution

In this section a direct integration method is used to solve the problem shown by
system of equations (5.51). There is a variety of direct integration methods available for
solving transient problems such as finite difference, Wilson tetha, and Newmark methods.
The algorithm used in this study, is one of the implicit type and chosen primarily because
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of its stability and accuracy under a wide range of element size and time step variations. It
is based on linear acceleration scheme called Newmark type approximation.

Since many components of matrices MS and C, and vectors Qv, Qe, and Qc in
equation (5.51) are functions of various degrees of freedom and their time derivatives, the

system of equations (5.51) can be written in the following form:

MS(a( )it +C, T (alf NG = Ov(al?» 417 )+ Qe(dil)

dir ) 5.14
CT(aF )it =0c(q),dk)) (5.146)

Due to the nonlinearities, the system must be solved iteratively at each time step. The

iterative process can be performed as:

[Ms cr1” {q}“‘*" {Qv+Qe}‘”
I-Cﬂ 0 -L.[ A’ i+l B Qc i+l

where subscript i+1 shows the time step number, while superscripts (k) and (k+1) present
the iteration numbers at each time step. Since we need ¢ and § to evaluate MS, Cq, Qv,

(5.147)

and Qc at each iteration, it can be assumed that the acceleration varies linearly within each
time interval. Therefore, the acceleration § within each time interval At can be expressed

by the equation:
d(t)=g;+ 18 Ai (e, (5.148)

where §, =§(¢;) and §;,, = §(t,,). Now §(£) and g(¢) can be obtained by simple
integration of equation (5.148),

a(t)=d;+a(t— 1)+ L5t 2 (5.149)
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1 _—
q(t)=q; +q(t ;) +34(t 1, +ﬂﬁ—”i(t—ti)3 (5-150)
Having ¢;, §;. and §,, we can describe ¢;,; and §;,; as functions of unknown
acceleration §;,,. Then by substituting the expressions for displacement and velocity
vectors in the equation of motion of the systeni (5.147), the resulting system can be solved
for unknown accelerations and Lagrange multipliers at the next time step till reaching the

convergence.
5.4.1 Simulation Results

In this section some simulation results are presented in order to show the validity
of the model and to illustrate the effects of link and joint flexibilities on the overall motion
of the spatial flexible manipulator systems.

A three-link manipulator with the following physical parameters for its links,

payload, rotors, and stators: S

p;A; =5 kg/m, pJ; =005 kg.m,L;=1 m
Mp=2 kg, Ipy=Ipz=0.1 kg.m*, Ipx =02 kg.m’
Ir, =005 kg.m®

Iry, = Irz, =005 kg.m®, Irx, =01 kg.m’, mr, =02 kg (5.152)
Isy, = Iz, =0.05 kg.m?, Isx, =0.1 kg.m*, ms, =02 kg

=, I=1

b,=0. b,=0

has been considered (i=1,2,3). Different values for Ed,’, El, , GJ;, and K; are used in
various cases to show the effects of flexibility on the motion of the system.

Each link is divided into two elements. Therefore, the total number of degrees of
freedom of the system (rigid and elastic degrees) is 54 in this examples, from which 20
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degrees of freedom are redundant.

5.4.1.1 Validity of the Modeling

Very large values of El,’, El,, GJ;, and K; are used to compare the results of the
proposed model with those obtained from a modeling of a multi-link spatial manipulator
with rigid links and joints. The initial position of the payload is chosen as: Xo=2 m, Yo=1
m, and Zy=0 m. The initial configuration of both rigid and flexible manipulators are found
from proper inverse static algorithms. By considering constant torque Ty=250 N.m applied
by the base actuator and constant torques T,=T>=T3=300 N.m applied by other revolute

2.0 X-coordinate
N —— Rigid
\E_t.s F —--- Stiff
N
> 1.0 Y-coordinate
Se

0.5} :

Z-coordinate
0.0 = L L
0.00 0.05 0.10 0.15%

time (sec)

Figure 5.8 Comparison of the position of the payload of a three-link rigid manipulator
with a similar flexible one with very stiff links and joints under the same loading
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actuators, the motion of both systems are obtained within a finite period of time. Figure
5.8 shows X, Y, and Z coordinates of the payload of a rigid system and its counterpart
Stiff joints (K;=1E6 N/rad) and links (EJ,' =Ed; =G:J; =40000 N.m?). As it can be seen,
the response of the stiff system is completely in agreement with that of the rigid one. This
shows the validity of the developed flexible model.

5.4.1.2 The Effect of Link and Joint Flexibilities on the Overail Motion of the
System

In this part, the same external torques introduced in the previous section are
applied to the manipulators with the same physical properties shown in equation (5.152),
but different stiffness properties. The initial position of the payload in all of the cases is
chosen Xo=2 m, Yo=1 m, and Z;=0 m. Figures 5.9, 5.10, and 5.11, respectively, show X,
Y, and Z coordinates of the payload of seven similar manipulators with different joint
flexibility and link flexibility in bending and torsion. G; and E; are related to each other in
the form of G, = E;/2(1+v;), in which v; is poison ratio. On the other hand, J; can be
found by J=I/+I;!. Therefore, bending stiffnesses EJ,' and EJ, and torsional stiffness
GyJ; values have the same order of magnitude. However, different values are chosen in
order to show the effect of bending and torsfonal flexibilities separately. As it can be seen,
simultaneous presence of the flexural and torsional flexibilities of the links causes
significant change in the dynamic behavior of the system. By comparing the end point
coordinates of different manipulators with those of rigid one, we see that the effect of
torsional flexibility of the links is much more significant than that of bending flexibility. On
the other hand, figures 5.9, 5.10, and 5.11 reveal that the effect of joint flexibility is
important when the links are flexible. In other words, the difference between dynamic
behaviors of the flexible manipulator system and the rigid one becomes more significant

when the joint flexibility is also taken into account. Therefore, the interaction among
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flexural, torsional, and joint flexibilities plays a big role in the dynamic behavior of the

system.
rigid links and joints
G——-© EI=50000 N.m?, GJ=5000 N.m? rigid joints
2.3 + —a EI=5000 N.m?, GJ=80000 N.m? rigid joints . ;

» - -3 EI=5000 N.m? GJ=5000 N.m? rigid joints

— — rigid links, Kj=5000 N.m/rad

— - EI=GJ=5000 N.m? Kj=5000 N.m/red _
6——© EI=GJ=5000 N.m? Kj=12000 N.m/rad o >
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N
N

o

0.0 0.10 0.15
time (sec)

Figure 5.9 X -coordinates of the payload of various manipulators



DYNAMIC MODELING OF SPATIAL. MANIPULATORS 134

1-3 ¥ T —_——

rigid links and joints

G—oO EI=50000 N.m?, GJ=5000 N.m? rigid joints
G—=a E1=5000 N.m?, GJ=80000 N.m? rigid joints
3 --3 El=5000 N.m? GJ=5000 N.m? rigid joints

S

g — — rigid links, Kj=5000 N.m/rad
~ — - EI=GJ=5000 N.m? Kj=5000 N.m/rad
o121 o 6E=GJ=5000 N.m? Kj=12000 N.m/rad
3

e

‘e

=

&~

(=]

(=]

Q

|

J o1

time (sec)

Figure 5.10 Y-coordinates of the payload of various manipulators
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Figure 5.11 Z-coordinates of the payload of various manipulators
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In a rigid manipulator, due to lack of elastic deformations, all of the links have the
same ®; angle, while in a flexible one each link i has its own ®,” angle. Figure 5.12
presents the variation of angle ®, for the rigid manipulator and the variation of angles ®,*
for flexible manipulators with E/Z/=El=GJ=5000 N.m* but different joint stiffnesses.
Since the external torque Ty is applied to the first link, the difference among variations in
angle ®,", ®®, and ®,® reveals that each link responds in a delayed manner in
comparison with the previous one. The reason for this phenomenon is the fact that elastic

waves propagate with finite velocity.

0.70 r r
—— &, Rigid Links/Rigid Joints
o—o,") Flexible Links/Rigid Joints
0.65  B—a9,@ Flexible Links/Rigid Joints
o—o 6,7 Flexible Links/Rigid Joints
»--3 & Flexible Links/Flexible Joints
0.60  >--> ¢@ Flexible Links/Flexible Joints
+--2 9,9 Flexible Links/Flexible Joints

0.45 |

0.40

0.35 : .
0.00 0.05 0.10 0.15

Figure 5.12 Variation of angles ®, of various links of a rigid manipulator, a manipulator
with flexible links (EJy’ =Ed,'=GJ;=5000 N.m?), and a manipulator with flexible links and
joints (Ed,} =El}=GJ=5000 N.m” and K;=5000 N.m/rad)
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Figure 5.13 presents the variation of the angles ®,” of various links of both the
flexible and rigid manipulators. In this figure, the difference between behavior of the rigid
and flexible systems, due to link and joint flexibilities, can be also clearly seen.

2.0
—— Rigid Link/Rigid Joint
~--- Flexible Link/Rigid Joint
1.5 ' — — Flexible Link/Flexible Joint 7

AL

i

0.00 0.05 0.10 0.15
time (sec)

Figure 5.13 Variation of angles @, of various links of a rigid manipulator, a manipulator
with flexible links (EJ,' =Ed;=GJ=5000 N.m?), and a manipulator with flexible links and
joints (Eil, =El/=GJ=5000 N.m* and K;=5000 N.m/rad)
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5.5 Summary and Conclusion

In this chapter an efficient finite element/Lagrangian approach was developed
for dynamic modeling of lightweight multi-link spatial manipulators with flexible links and
joints. The equations of motion of the system were derived by using Lagrange's equations.
The constraint equations representing kinematical relations among different coordinates
due to the connectivity of the links were added to the equations of motion of the system
by using Lagrange multipliers. This leads to a mixed set of ordinary differential equations
and nonlinear algebraic equations with coordinates and Lagrange multipliers as unknown
variables. The resulting system of differential algebraic equations (DAEs) was converted
to a set of differential equations by substituting the constraints with their double time
derivatives, then the system was solved numerically to predict the dynamic behavior of the
system. The proposed dynamic model is free from assumption of a nominal motion and
takes into account the coupling effects among the rigid body motion of the system, the
bending and torsional deflections of the links, and the flexibility of the joints. Due to these
couplings as well as the time variation in the effective inertia of the system, the model is
highly nonlinear and coupled.

The validity of the model is shown and the effect of link and joint flexibilities is
illustrated by some case examples. It is shown that the torsional deflections have more
significant effect than the bending deflections and joint deformations. Also it is shown that
the effect of joint flexibility is significant when the links are flexible too. Figure 5.12
reveals that each link responds in a delayed manner in comparison with the previous one
due the fact that elastic waves propagate with finite velocity. The last point is that the
interaction among various flexibilities plays an important role in the dynamic behavior of

the system.



CHAPTER 6

OPTIMAL CONTROL THROUGH OPTIMUM DESIGN
THEORY

6.1 Introduction

Engineers are traditionafly involved in designing systems for various applications.
These systems should be efficient, versatile, unique, and economic. Usually engineering design
is an iterative process involving modification of the system after examination of the results of
the previous step. To design the best systems, we need analytical and numerical tools.
Optimization theory, which is a branch of applied mathematics, can be viewed as means of
systematizing the engineering design process. Using optimization theory, the design of each
system can be formulated as an optimization problem in which a measure of performance of the
system is maximized or minimized, while all constraints are satisfied. Optimization involves
three steps: description of the system, adoption of a measure of performance, and selection of
the system variables which yield optimum effectiveness.

A large number of optimization miethods have been used to solve optimization
problems over years. These techniques can be classified as direct or search methods and
indirect or optimality criteria methods. Direct methods start at an arbitrary point and proceed
stepwise towards the optimum point by successive improvement, while indirect methods are
those which involve solving equations resulting from optimality conditions. Optimality
conditions are the conditions a function must satisfy at its optimum point [106]. Since indirect
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methods find the roots of the equations representing the optimum point, they are very effective
when they can be applied. However, due to complex and nonlinear nature of the objective
functions and constraints in most of the engineering problems, these methods can be used only
for simple cases. This is why indirect methods have not had a substantial growth, while direct
methods have substantially grown due to their ease implementation.

Based on the physical structure of engineering problems, optimization problems can be
classified as optinmm design and optimal control problems. In an optimum design problem, the
system and its elements, are designed to optimize an objective function such as weight and
natural frequency. Then the system remains fixed for its whole life. But in an optimal control
problem, the input to the system, which steers the system from a prescribed initial state to a
desired final state, must be determined as a function of time so as to minimize or maximize
some performance index such as time, path, and energy. Therefore, unlike the optimum design
problems, optimal control problems are dynamic in nature.

6.2 Optimal Control Problems

Optimal control problems are defined by two different types of variables: the
control variables and the state variables. Thé state variables describe the behavior of the
system in any stage, while the control variables govern the evolution of the system from
one stage to the next stage. In the optimal control problems, the optimization problem is
to find a set of control variables to satisfy the given state equations, boundary conditions,
and any constraints imposed on the state and/or control variables, while minimizing or
maximizing a given performance index.

Methods available for the solution of the optimal control problems generally fall
into two categories: direct and indirect methods. Indirect methods seek to solve the
optimization problem by satisfying the necessary optimality conditions established from
the calculus of variations. The resulting conditions generally provide multi-point boundary
value problems in the form of variational problems. These problems are different from those of
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classical calculus of variations because of the appearance of two different types of variables;
namely, state variables and control variables. Moreover, some equality constrains have the form
of ordinary differential equations in such problems. These restrictions make these problems
very difficult to solve and their analytical solutions exist only in exceptional simple cases.

Pontryagin [107] in 1962 derived a set of necessary conditions called Pontryagin
minimurm principle to minimize the functional:

P= [ Lizmuola 6.1

subjected to the constraints in the form

¥ =g, (x, O @),0) i,j=12,...m (6.2)
N, <u, () <M, C1=12,...k (6.3)

where x; and &, are state and control variables, respectively. The conditions were obtained by
using Lagrange muitipliers and a functional called Hamiltonian. However, pontryagin principle
is very difficult to satisfy and in practice can be used only for linear problems.

A general analytical solution of optimal control problems is impossible due to
nonlinearities and complexities in the state equations and the constraints. Therefore,
numerical algorithms such as shooting methods [108,109] and quasi-linearization
techniques [110,111] are used to solve such problems. It should be stated that, even in
simple cases with only one control variable, the computation is likely to be extremely
lengthy and time-consuming. Although, in the cases in which objective function, state
equations, and constraints are linear, the process can be rather simple, the optimization of
the dynamic systems such as flexible manipulators is usually so complex that the
applicability of these numerical methods is quite doubtful.

Another option is to use the direct methods which transform the infinite-
dimensional continuos problem into a finite-dimensional nonlinear problem. These
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methods require parameterization of the control and/or state time histories. Once the
parameterization scheme is chosen, the problem can be formulated and solved by the well

developed nonlinear programming algorithms used in optimum design.

6.3 Some Nonlinear Programming Techniques for Optimum Design
Problems

Mathematical programming deals with the problem of optimizing an objective
function in the presence of equality and inequality constraints. If any of the objective
function and constraints is nonlinear, the problem is called a nonlinear programming
problem. Since in most of the engineering problems, both the objective function and the
constraints are nonlinear functions of design variable, nonlinear programming algorithms
have found many applications in optimum design. In the following section, transformation
techniques as the simplest and most important techniques of nonlinear programming will
be discussed.

6.3.1 Transformation Techniques

One approach to solve a nonlinearly constrained problem is to construct an
unconstrained objective function using transformation techniques. Optimum points of the
original constrained problem can be found by solving the transformed problem using well
developed unconstrained optimization algorithms. In the following sections three popular
transformation techniques are reviewed.

6.3.1.1 Penalty Function Methods

In the constrained optimization, instead of applying constraints we can replace
them by penalties whose magnitude depend on the degree of constraint violation. Because
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of the simplicity and effectiveness of these methods, they have been used widely in the
constrained optimization in various fields. The penalties associated with the constraint
violations have to be so high that the constraints can be only slightly violated. But there
are numerical difficulties associated with imposing abrupt high penalties in numerical
optimization. Thus a gradual approach, in which we start with small penalties and increase
them gradually, is used in practice. Therefore, they transform the basic optimization with
mixed equality and inequality constraints into alternative formulations such that numerical
solutions are sought by solving a sequence of unconstrained optimization problems. This is
why they are also called Sequential Unconstrained Minimization Techniques (SUMT)
[112]. These methods are of great importance in solving real life problems. Penalty
methods are classified as exterior and interior penalty function methods.

6.3.1.1.1 Exterior Penalty Functions

In this type of penalty functions the penalties are applied only in the exterior of the
feasible domain. Consider the following basic problem:

Minimize  f(X) (6.4)
Subjectto: hA(X)=0 , i=Ll...n, (6.5)
gi(X)<0 ,j=L..,n,

where X is the vector of design variables and n. and n; are number of equality and
inequality constraints, respectively. This constraint minimization can be replaced

Minimize @(X,r,)=f(X)+r,2k,2(X)+r;2<g,-(X)>2
i=1 j=t (6-6)

where <g>=max(0,g;). The positive multiplier r; controls the magnitude of the penalty
terms. The minimization is started with a relatively small value of r;, and then its value is
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gradually increased. As noted before, this is because of numerical difficulties due to ill-
conditioning of penalty functions. This type of exterior penalty function method is the
most common one. A typical example, which is finding the minimum of f(X) subject to
b-X<0, is shown graphically in figure 6.1 by constructing unconstrained objective
function P(X.r)=f(X)+r<b-X>. As r increases, the minimum of ® moves closer to the
constraint boundary, but the curvature of @ increases which leads to numerical difficulties.
By using gradual approach, we can use the minimum obtained for smaller value of r as a
starting point for the next step (with higher r) and; therefore, the ill-conditioning problem
associated with the high curvature of @ can be counterbalanced
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Figure 6.1 Illustration of exterior penalty function method



OPTIMAL CONTROL THROUGH OPTIMUM DESIGN THEORY 145

6.3.1.1.2 Interior Penalty Functions (Barrier Methods)

By using exterior penalty functions, the design typically moves in the infeasible
domain. Therefore, if minimization is terminated before r becomes very large, the final
result may be useless. We can define a penalty function that keeps the design in the
feasible domain. The common form of interior penalty function for general problem
expressed by equations (6.4) and (6.5) is

1

1
Minimize ¢(X,n)=f(X)+F§h3(X)-';i—a,')'
[ ¥

=¥ 4
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Figure 6.2 Illustration of interior penalty function method
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in which 1/g;(X) becomes infinity large at the boundary of the feasible domain which
creates a barrier. Figure 6.2 shows the behavior of interior penalty function method
applied to the simple example previously solved by exterior penalty functions.

6.3.1.2 Multiplier (Lagrange Augmented) Methods

The penalty function methods suffer from ill-conditioning. This difficuity may be
avoided by using Multiplier methods which combine the use of Lagrange multipliers with
exterior penalty functions. These methods, originally proposed in 1969 by Hestenes [113] and
Powell [116], have been determined to be quite robust [115]. A review of the theory and
computational procedures of multiplier methods was givenby I.S. Arora et al [116]. When
only Lagrange multipliers are employed the optimum point is a stationary point of the
Lagrangian function and we have to check the Hessian matrix at that point to know
whether or not it is a minimum. And when only penalty functions are employed, the
optimum point, if it can be found in spite of ill-conditioning, is a minimum point. By using
a combination of these methods we can get an unconstrained problem where the functions
to be minimized do not suffer from ill-conditioning because there is no need to use the
large values of penalty parameters which are required for external penalty function
methods. .

One of the common forms of Multiplier functions for the problem

Minimize f(X) o (6.8)
Subjectto: A (X)=0 , i=L....n; (6.9)
is

Minimize dxx,Lr)=f(X)+21fhf (X)+r2h%(X) (6.10)
i=1

i=]
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if A;=0, we have usual exterior penalty function, while for correct values of A;, we can get
the correct minimum of the problem using any positive value of r.

These methods are based on estimating the Lagrange multipliers. When the
estimated multipliers are good, it is possible to approach the minimum without using large
values for r. They need to be only large enough so that @ has a minimum rather than a
stationary point. An estimate for Lagrange multipliers can be found using the stationary
condition of Augmented Lagrangian in the following way:

o0 df 2 dh;

o g 1orh =2 = (6.11)
ox, axi'*'j:l(lj"'zr J)axi

while for an optimal A* we have:

af 2 . ah]

Y r—L=0 (6.12)
axi =1 ax,-

Then we expect that as x—x*, A; +2rh; —=A*, therefore
X, =A;+2rk; or AF™V =2 +2r®p* (6.13)

We can extend the Multiplier methods to deal with inequality constraints in several
ways. Fletcher [117] suggested the following forms for the objective function:

Minimize ¢(X,p,r)=f(X)+ri<g,— -1-%>2 (6.14)
j=1

instead of

Minimize f(X) (6.15)

Subjectto: g;(X)<0 ,j=1l..,n, (6.16)
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An estimated value for p; found by using optimality condition of the augmented objective

function can be written in the form
uE =< p(® 4 2pmgE) 5 (6.17)

Therefore, for a general problem with both equality and inequality constraints, we can
construct the following augmented Lagrangian function:

Minimize dr(x,xﬂ,uf*’,rm)=f(XJ+2(2-‘f’h +riVR?) 6.18)
i=l b

§ ool
k J 2
-H'( ) <gj+2r(k) >

j=1

6.3.2 Unconstrained Minimization

By using transformation techniques the constrained minimization problems can be
converted into unconstrained ones. Therefore, the selection of a suitable method for the
unconstrained optimization is the most important part of the algorithm. The unconstrained
optimization problems can be classified as one-dimensional (line search) problems and
multidimensional problems. Most direct optimization algorithms have two phases, namely,
search direction and step size determination subproblems. Therefore, even in the muiti-
dimensional problems it is necessary to use one-dimensional search techniques in finding

the step size.

6.3.2.1 One-Dimensional Minimization

As it was mentioned earlier, after determining the search direction, the step length
can be determined in a one-dimensional minimization problem. One of the simplest and
most efficient algorithm called Quadratic curve fitting is used in this research.
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A continuous, sufficiently smooth, and unimodal function on a given small interval
of uncertainty can be approximated by a quadratic curve. To interpolate a function with
quadratic curve, we need only to know the function value at three distinct points to
determine the coefficients of the second-order polynomial. Then the minimum point of the
approximating polynomial can be used as a good estimate of the exact minimum of the
search function (figure 6.3). However, usually an iterative procedure is used to find a
better approximation for minimum point of the original objective function.
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Figure 6.3 Minimization of a function f(X) by quadratic interpolation

6.3.2.2 Multi-Dimensional Minimization

In this section some direct search methods for unconstrained minimization are
introduced and the methods which will be used in the next parts of the thesis will be
described.
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6.3.2.2.1 Zero Order Methods

Zero order methods use only function values for minimizing functions of several
variables. These methods are usually reliable and easy to implement. Sequential simplex
method, univariant methods, and pattern search methods including Hook and Jeeves
method and Powell's method are examples of zero order search methods. Powell’'s method
is the most powerful method among these methods.

New random based methods such as Genetic algorithm and simulated annealing
method are also zero order methods. Genetic algorithms use techniques derived from
biology and rely on the principle of Darwin's theory of survival of the fittest [118].
Simulated annealing algorithm was motivated by studies in statistical mechanics which
deal with equilibrium of large number of atoms in solids and liquids at a given temperature
[118]). These methods are the most efficient zero-order methods and can easily handle
integer design variables or discretized variables. Moreover, by using these methods
(especially Genetic algorithms), it is usually possible to reach the global optimum point,
while all of the deterministic search methods can only find local optimum near the initial
guess. .

However, the main drawback of zero-order methods is that the location of the

optimum point can not be found accurately.

6.3.2.2.2 First Order Methods

These methods use the gradient of the function as well as its value in finding the

direction for function minimization. Steepest descent method is the oldest and simplest
multi-dimensional first order method. In this method, iterations are made according to the

following equation:

Xt = Xt —NVF(XE) (6.19)



OPTIMAL CONTROL THROUGH OPTIMUM DESIGN THEORY 151

where AX is the smallest positive value which locally minimizes f(X) along -V{(X*) starting
from X*. The steepest descent directions at two consecutive steps are orthogonal to each
other, that is, for all k

V(X )Vf(X*)=0 | (6.20)

This tends to slow down the convergence specially near the optimum point due to
zigzagging moves. Another disadvantage of the steepest descent method is that each
iteration is calculated independently of the others; that is, no information is stored and
used which might accelerate convergence. Therefore, this method is not very efficient.
Various attempts to accelerate convergence have been made in the literature. For example
conjugate gradient methods, such as Fletcher-Reeves method, are very simple and
effective modifications of the steepest descent method. The rationale for these methods is
the minimum point can be found in n or fewer steps of a n-th order positive definite
quadratic form. This desirable property is called quadratic convergence. The conjugate
directions are not orthogonal to each other but tend to cut diagonally through the
orthogonal steepest descent directions, this is why they improve the rate of convergence
[106] of the steepest descent method. Although conjugate gradient methods are vastly
superior to the steepest descent method, they are rather less efficient than quasi-Newton
methods which are introduced in the following sections.

6.3.2.2.3 Second Order Methods

In addition to the function value and its first order derivative, the second order
derivative can be used to represent the cost function more accurately. Therefore, it is
possible to find a better direction of search which improves the rates of convergence.
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6.3.2.2.3.1 Newton's Method
This method uses the Hessian of the cost function to determine the search

direction. The basic idea is to use the second-order Taylor series expansion of the
objective function about the current design point (X) as:

1
f(X+AX)=f(X)+G"AX +5 AX"HAX (6.21)

where G and H are gradient vector and Hessian matrix at design point X, respectively.
They can be found in the following forms:

°f
G=Vf(X) H=V*f(X)= ;
f(X) f(X) [ax,axj (6.22)
Equation (6.21) provides a quadratic expression in terms of the increments of the
design variables. Necessary conditions for minimization of this function give an explicit
result for search direction in the design space as:

—af—=G+HAx=o = Ax=-H"'G (6.23)

d( Ax)
Since in general the objective function is not a quadratic function, this process must be
repeated to obtain the minimum point.

X,.=X,-H'G (6.24)

In each iteration, it is necessary to find Hessian matrix by finding n(n+1)/2 second
order derivatives, therefore, a large number of computations is needed. Moreover, because
the classical Newton's method uses unit step size, f(X+AX) may become grater than f(X)
during the iterations. Therefore, there is no guarantee for convergence of the method.
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6.3.2.2.3.2 Modified Newton's Method

A simple way to improve the Newton's method is to use step length parameter A in

finding new optimurn point using
Xi+l = Xi +ls(" (6.25)

instead of equation (6.24). $? is the search direction (S® =-H' G) and A can be found by
any one-dimensional minimization technique to minimize fX®+A S®). This approach,
which is called modified Newton's method, not only increases the efficiency of the method,
but also stabilizes it and guarantees the convergence to the local minimum (if H remains
positive definite).

The drawback of Newton and modified Newton's methods is that a large number
of calculations is required to find the Hessian matrix and it may become singular during
iterations. Moreover, previous information is not used in the new iteration and the method

dose not converge unless the Hessian matrix remains positive definite.

6.3.2.2.4 Variable Metric or Quasi-Newton Methods

The key to the success of Newton-type methods is the curvature information
provided by the Hessian matrix. As mentioned earlier, although these methods have very
good convergence properties, they suffer from some difficulties. This is why variable
metric or quasi-Newton methods have been introduced in the literature as modifications of
Newton's method. They are based on the idea of building up approximate curvature
information without explicitly forming the Hessian matrix. Quasi-Newton methods require
the computation of only first-derivatives to generate approximate Hessian which should
remain positive definite at each iteration. These methods speed up the convergence by
making use of the information obtained from previous iterations. Therefore, they are
learning processes and have desired features of both the steepest descent and the Newton's
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methods. Although quasi-Newton methods are really first-order methods, because they
use approximate second derivatives, they might be considered as pseudo second-order
methods. Also they can be thought conjugate gradient methods [119].

In quasi-Newton methods, instead of Hessian matrix, an initial positive-definite
matrix Hj (usually an identity matrix I) is chosen. This matrix is subsequently updated by
an update formula as

H,.,=H, +H; : (6.26)

where Hy* is the update matrix. However, many update formulas are applied directly to
the inverse Hessian (B.=Hy.;™) in order to avoid the need for solution of a linear system of
equations in each iteration. Then the updating formula for the inverse is also of the form

B,,,=B, +B; 627)

Different quasi-Newton methods are distinguished by the choice for updating
matrices. The desirable properties of the updating matrices are that only first derivative
information is needed in updating and Hy,, remains positive definite during iterations. The
second property guarantees that we always move in a downhill direction. Besides,
approximate Hessian should converge to the true Hessian after successive updates.

Using the first-order Taylor series expansion of the gradient vector G, we can

write:
G, -G, =H,(X,,—-X,) = AX, =H;'AG, (6.28)

In general approximate Hessian matrix does not satisfy this condition. Therefore, a good
update should satisfy the requirement

AX, = H;, AG, =B, AG, (6.29)
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which is called quasi-Newton condition. By substituting equation (6.27) into equation
(6.29), we have

AX, =B, AG, +B,AG, (6.30)
A general form of updating matrix is
B;_ =auul +bvy? - (6.31)

where g and b are scalars and u and v are vectors. These scalars and vectors should
be appropriately selected to satisfy equation (6.30) and the symmetry and positive-
definiteness of By,;.

Methods which take b=0 are using rank one updates, while resulting methods for
b#0 are said to use rank two updates. Rank two updates are more flexible and are the
most widely used schemes. Many rank one and two updates have been proposed in the
literature, but we will limit ourselves only to two methods which are the most popular
update formulas. They are rank two methods called DFP and BFGS methods.

6.3.2.2.4.1 DFP Method

This rank two quasi-Newton method initially was proposed by Davidon [120] and
then Fletcher and Powell [121] modified it. This is why it is often called DFP method. This
method is one on the most powerful methods for the minimization of a general function

fX).
By substituting equation (6.31) for Bk in equation (6.30), we have

AX, = B,AG, +auu'AG, +bv v AG, (6.32)

If we choose u=AX;x, v=B:AG;, and determine a and b such that au”AG=1 and bv'AG=
-1, the resulting update formula is
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T ) of
AX AX ]_[(BAG)(BAG) ] 633
k k

(DFP) _ B 4
By B, [Ax’ AG AGTB AG
6.3.2.2.4.2 BFGS Method

In 1970, Broyden [122], Fletcher [123], Goldfarb [124], and Shanno [125],
independently suggested another important rank two formula in the following form:

(6.34)

T axaxt1l [ T T
peres: _ g, +[1+AG BAG] [ AX AX AG” B+ B AG AX
k

AXT AG | [AXT AGL 1 AXT AG _L
This formula is known as BFGS formula.

Both DFP and BFGS methods have theoretical properties which guarantee the
superlinear convergence rate and global convergence, under certain conditions [126]. The
global convergence for DFP requires exact line searches, while inexact line searches will
suffice for BFGS. This is why numerical experiments with BFSG algorithm [112]
suggested that it is superior to other variable-metric algorithms including DFP method.

It is necessary to mention that quasi-Newton methods are considered as the most
effective nonlinear optimization methods for solving general unconstrained problems.
[126]. Because in quasi-Newton methods the approximate Hessian is forced to be
positive-definite, a saddle point may be reached without any waming. Therefore, it is
advisable to check if a descent direction can be found around the final point.

6.4 Optimal Control Using Nonlinear Programming Techniques

It is possible to transform some optimal control problems to the optimum design
problems [127]. Then they can be formulated and solved by nonlinear programming algorithms
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which are well developed in optimum design theory.

In the next two chapters, direct methods will be used to solve trajectory control
and time-optimal control of flexible manipulators. The proposed techniques, which are
based on numerical optimization, find the joint torques required to move the end point
from rest to rest along a specified path. In the trajectory problems the desired position of
the payload is given versus time in the trajectory control problems, while in the time
optimal control problems the path and the constraints on the joint torques are known. In
the optimal control problems discussed in this work, the objective functions are obtained
based on the method of least squares and the method of penalty functions. Hence the
resulting objective functions are implicit functions of desired variables, BFSG method as a
powerful quasi-Newton method is used to find the solution i.e. the minimum time (in time-
optimal control problem) and the time history of the required joint torques.

6.5 Summary and Conclusion

Optimum design and optimal control problems and various methods to solve such
problems were addressed in this chapter. A short review of nonlinear programming and
numerical optimization techniques is presented. In the next two chapters, the
aforementioned nonlinear programming techniques will used to solve the trajectory control
and time-optimal control of flexible manipulator systems.



CHAPTER 7

TRAJECTORY CONTROL OF MULTI-LINK
MANIPULATORS WITH FLEXIBLE LINKS AND JOINTS

7.1 Introduction

In the trajectory control problems, the desired position of the end point of the
manipulator is given versus time. Therefore, the required joint torques or forces should be
applied to move the end point along the given trajectory. This type of problem is one of
the major open problems related to the flexible manipulators. Various feedback control
strategies are proposed in the literature for suppressing vibration of the flexible-link
manipulators [13,20]. But due to the non-collocated nature of the control system of
flexible manipulators as well as the existence of high frequency components in the position
commands, the feedback control may cause these systems unstable. To avoid this problem,
many authors have recently proposed inverse dynamic methods. These methods
simultaneously solve the equations of motion and the kinematic equations in order to
determine the required joint torques or forces. But the main difficulty is that the numerical
solution of the inverse dynamic problem of flexible manipulators normally diverges. This is
not because of failure of the numerical analysis, but due to the nature of the problem
which is non-causal.

This chapter first describes the noncausality of such systems and then presents a
technique based on numerical optimization for solving the non-causal inverse dynamics of
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muiti-link robot arms with flexible links and joints. This technique finds the joint torques
required to move the end point of flexible manipulators through specified trajectories
while avoiding tip oscillations. The proposed algorithm takes into account the non-
causality of such a system via considering pre-actuation and post-actuation in the solution

procedure.

7.2 Inverse Dynamics of Flexible Manipulators

Consider a two-link manipulator with both flexible links and flexible joints in Fig.
7.1. The purpose of the analysis is to find the required joint torques T(t) and Ta(t) to
cause the desired motion of the payload, which is a rest to rest motion tracking a specified
path (x(t),y(t)), from point A to point B in a given time interval t,. The inverse dynamics
of the flexible manipulator is redundant due to its flexibility. Therefore, a complete model
consisting of the kinematic and dynamic equatiors of the system should be solved

simuitaneously.

Yy B

Figure 7.1 A two-link manipulator and its desired trajectory
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Using the results of chapter 4, we can write the equation of the motion of the system in

the following form:

| MS,.(m,) MSy(m,n,) MS,(n,n) ),
MSﬁ,, Msf(ﬂj!n_f) Ms_f(nj’n! )J ﬁf

}-Ksm KSW’ Ksllf -I nn F.(1: ) .1
+| Ksj., 0 0 nr= F}(ﬂj!“[:ﬂpﬂ])
|KS, 0 KS,,)|ln,) (F(mun,nm,)

where N , M; , and )¢ are the vectors of motor coordinates, joint coordinates, and elastic
coordinates of the links. These variables all together present the degrees of freedom of the
system. The desired trajectory or motion of the payload can be expressed by the following
kinematic equation :

AU=HK¢) (12)

in which A is a non-square matrix, U is the state vector including all of the degrees of
freedom of the system, and h(t) is a time dependent vector. After double differentiation of
the kinematic equations with respect to time, the resulting system of second order
differential equation can be shown in the following form.

MUY+ ESUUU=fSUU)+T, 75
AU+BU+QU=g(t) '

In the above equations, T, presents the vector of unknown actuator torques and W is a
non-square matrix which maps the joint torque vector from a space whose dimension is
equal to the number of joints to a vector with the dimension of all degrees of freedom of
the system.
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Because of the complexity of the system of equations (7.3), it should be solved
numerically for unknown state variables (U) and control variables (T,). But the numerical
solution of this system of equations dose not normally converge. The divergence of the
solution is not related to failure of the numerical approach, but the non-causal nature of
the problem. This is due to this fact that the end point, for which the prescribed motion is
specified, is connected to the application points of torques by deformable bodies. Thus,
the joint torques should be applied from a negative time to a future time in order to
control the position of the end-point according to the desired trajectory. Since standard
causal time domain integration schemes are unstable in solving the inverse dynamics of

flexible manipulators, it is necessary to develop proper non-causal schemes.
7.2.1 Classification of Inverse Dynamic Problems

For better understanding of the time-delayed behavior of the deformable bodies
some terms will be introduced in this section and a simple example will be shown. Inverse
dynamic problems can be classified as: causal systems, anticausal systems, and noncausal
systems [87]:

CAUSAL SYSTEM: A system in which the output (impulse response) always
occurs after an input (impulse) is given.

ANTICAUSAL SYSTEM: A system which has the output (backward impuise
response) before an input (impulse) is given.

NONCAUSAL SYSTEM: A system which has the combined output of a causal.
system and an anticausal system.

Consider a single link flexible manipulator shown in figure 7.2 moving in the
horizontal plane. We want to move the end-point from its initial position to a desired final
position. At the beginning when we apply a torque to the hub, for a short time the payload

doesn't move, while the link is deforming. Since torque, which is the output of the inverse
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Figure 7.2. Point-to point motion of a single link flexible manipulator

dynamic problem, occurs before input, the system is anticausal at the beginning. At the
end, to keep the payload at its desired position, we should apply a torque which only
changes the curvature of the link. Thus, the system is causal at the final stage. Therefore,
the inverse dynamics of the flexible manipulator is noncausal.

As it was mentioned in chapter 2, Kwon and Book [87] decoupled the inverse
dynamics of a single flexible link manipulator into causal and anti-causal parts, then they
solved these two parts forward and backward in time, respectively. This approach can be
used only for linear systems in which the effects of gravity, Coriolis and centrifugal
accelerations are neglected. Bayo [86] and Bayo and Moulin [89] proposed an iterative
direct approach which finds the non-causal required torques by solving the inverse
dynamics equations of flexible manipulators in the frequency {86] and time [89] domains.
However, this approach is limited to manipulators with flexible links only and can not be
used if joints are also flexible.
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7.2.2 Time Delayed Response of a Single-Link Flexible Arm

As it was mentioned earlier, the inverse dynamics of flexible manipulators yields
non-causal or time delayed joint torques with respect to the end-point motion. In this
section, this phenomena is quantitatively shown for a single-link arm by using a simple
Galerkin approach.

Consider a one-link flexible robot arm shown in figure 7.3. A clamped free floating
coordinate system, which is fixed to the root of the link, is used to describe the elastic
deformation of the link. The variables v(x,t) and @(t) represent the deflection at point x
along the arm and the arm angle, respectively. The displacement s(x,t) of any point on the

arm is defined as

s(x,t) =x@(t)+v(x,t) (7149

Y |

X

T @ -
' )
0,0 X

Figure 7.3. A single-link flexible arm moving in horizontal plane



TRAJECTORY CONTROL OF MULTI-LINK MANIPULATORS 164

from which the velocity and acceleration of the point can be simply found.
The beam deflection is defined by a forth order partial differential equation

EB"™ +pAS =0 7.5

where EI is the flexural rigidity and pA is the mass per unit length of the beam. The
gravity effect is neglected and the motion is confined to a horizontal plane. After
substituting s from equation (7.4) into equation (7.5) we have

EIv"™ +pA(+x§)=0 (7.6)

In addition to equation (7.6), we obtain the following constraint equation which
expresses the overall balance of angular momentum of the system

( ! pAx’dx Jp+ ! pAxide =T (7.7

where L is the length of the link.
To approximate the field equations (7.6) and (7.7), we use a Galerkin approach. In
general, the variable v(x,t) can be assumed to be

Wxt) = (N (x) (7.8)

where a;(t) are time dependent generalized coordinates and Ni(x) are shape functions
which satisfy homogeneous boundary conditions. Using Galerkin approximation, equation
(7.6) can be substituted by

j[EIv*’ + pA(¥ +x§)]N,(x)dx =0, i=1luun (1.9)

¢

For simplicity, we choose n=1 and N, (x)=x?; therefore, v(x,t) is assumed to be
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v(x,t)=a(t)x? (7.10)

By assuming constant pA and EI, after using proper integrations by parts and applying the
boundary conditions, we will have the following system of equations describing the

dynamic behavior of the system
pAL’ _  pAL'
3 o+ i a=T (7.11-a)
4 p‘LS
piL o+ 5 d+4EI)La=0 (7.11-b)

If the end-point trajectory is given by y.=f(t), we want to obtain the required joint
torque for this motion. The y-coordinate of the end-point of the flexible arm can be

written as
y, = Lsin@+v, cos @ = Lsin@o+ L’a(t)cos@ (7.12)

where v., which is the elastic deflection of the end-point in the local coordinate system, is
substituted from equation (7.10). Using equation (7.12), we can obtain a(t) in terms of y.

and @ in the following form

a(t)= (y, —Lsing) (7.13)

L*coso

from which d(¢) and d@(¢) can be easily found. By substituting ¢( £ )and &(¢) in
equation (7.11-b), we have the following differential equation in terms of only one

unknown variable @.
pAL* pAL y,sing .
4 4 T 5 cosztpﬁp
3 . . =2 3 . o . . . — I
+pASL (Je 3@ )cos ¢+¢nn£:g)é Y cos@+ y.Qsing—LoJ, (7.14)

4Lcos¢p(y‘ —Lsing) =0
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This equation is highly nonlinear and can not be solved analytically. Fourth-order Runge-
Kutta method is used to solve this equation numerically. Having @, ¢, and §, we can find
a(t), d(t) and @(t) using equation (7.13). Then the required joint torque can be obtained
from equation (7.11-a) by substituting known @(¢) and d@(¢).

Let consider the motion of the end point from initial time t=0 to final time t=t; to
be described by

y.(t)=y,+at’ +a,t’ +a,t’ +a t’ +at’ (7.15)

where v is the initial y-coordinate of the end-point and a, to as are determined such that
Y(t; )=y, and y.(t; )=F.(t,)=F.(t,)=y".(¢t;)=0. This trajectory is shown in
figure 7 4.

The required joint torque for a counterpart single-link rigid manipulator is also
shown in figure 7.4. The initial position of the end point of the arm is considered to be
(x.(0)=L, y.(0)=0) and subsequently the initial arm angleis zero (¢(0)=0). The rigid
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Figure 7.4. Joint torque and y-coordinate of the end-point of a single-link rigid arm
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arm has the following physical properties: pA=5 Kg/m and L=1 m. The required joint
torque is accurately found from the following equations

simp='2—' (7.16-a)
3
M: ¢=T (7.16-b)

Figure 7.5 shows the y-coordinate and the require joint torque T(t) for the flexible
manipulator. Due to the divergence of the solution, only the first 0.072 second of the
motion is illustrated in this figure. As it can be seen, at the beginning of the motion instead
of positive torque (counter-clockwise) we should apply a negative torque in order to have
the desired trajectory for the end-point. The value of the joint torque is rapidly increasing
which causes the divergence of the solution.
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Figure 7.5. Joint torque and y-coordinate of the end-point of a single-link flexible arm
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If we consider a known joint torque, we can solve equations (7.11-a) and (7.11-b)
to find a(t) and @(t). Then equation (7.12) can be used to obtain the path of the end-point
of the arm. Figures 7.6 to 7.10 present the end-point y-coordinate of a single-link rigid
arm and that of various single-link flexible arms with different link flexibilities (EI= 500,
1000, 2000, 10000, 50000 N.m?). Constant torques (T=20 N, 100, 50 N.m) are
considered as joint torques. The same physical properties and initial configuration
introduced earlier are used in the aforementioned cases. As it can be seen, for each EI
regardless of the magnitude of the applied torque, all of the curves (corresponding to the
flexible arms) have a common point which shows zero y after movement of the end-point
in the negative y-direction for a short time (At,) at the beginning of the motion. It can be
shown that there is a relation between this delayed time interval (At,) for various cases and

the corresponding flexural wave speed ¢ = /EI/pA {127] in the form

¢ At, =0.226 (7.17)
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Figure 7.6. Y-coordinate of the end-point of a single flexible arm with EI=500 N.m?
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Figure 7.7. Y-coordinate of the end-point of a single flexible arm with EI=1000 N.m*
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Therefore, it can be concluded that the delayed response of the end-point of a flexible arm
with respect to the joint torque is related to a characteristic of the flexible link associated

with the finite speed of wave propagation.

7.3 Numerical Treatment of Non-Causality of Flexible Manipulators
[129,130]

As it was mentioned earlier, due to the non-causality of the inverse dynamic
problem, the actuator torques should be applied from a negative time to a future time in
order to control the position of the end-point. Let t; and t; be defined as c;t; and ctq,
respectively, where ¢, and c; are two constants. As it is shown in figure 7.11, the time
duration of the motion of the system is considered t;+t-+t; instead of t;. It is obvious that
the correct values of t; and t; are required for pre-actuation and post-actuation times.

Since these time intervals are not known in advance, two large enough numbers ¢; and c»

T(i) /
/

t, t, t, |t

Figure 7.11. Extended time and torque discretization
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can be selected such that the pre-actuation and post-actuation times can be captured.

7.4 Numerical Optimization Algorithm

The numerical optimization is used to solve the aforementioned inverse dynamic
problem. A suitable parameterization of control torques T1(t) and Tz(t) is necessary. Ti(t)
and T,(t) are represented by finite discrete numbers at specific times instead of continuos
functions of time. Figure 7.11 shows a schematic diagram of torque discretization during
the extended time (t;+tc+t;). Let NM be the number of intervals for torque discretization
from t=t; to t=t;+tf and Ni;=c; NM and N,=c; NM be the numbers of torque intervals for
pre-actuation and post-actuation times, respectively. Therefore, T; and T, are
approximated by tw.o arrays each onme with N +NM+N;+1 components. Linear
interpolation is used to compute the torque values between the given time-nodal values.
Similarly the number of time steps in numerical integration of the equations of motion are
chosen as n;=cinm, nm, and n>=c,nm within pre-actuation time interval t;, main time
interval t;, and post-actuation interval t;, respectively. Using the aforementioned
parameterization of the control torques and considering the extended duration time of the
motion due to the non-causality of the system, an objective fuaction can be defined. This
function is the summation of squares of tracking errors at integration time points from end
of the pre-actuation time (t=t;) to the end of the post-actuation time (t=t;+tc+t2), can be
defined as:

mam+1

f(T,T,)=K, [[xi-fi-nllz'*'[yz"‘yi-n;]z}'*'
i=m+1 (7.18)
m+ m+1
K, {[X; = X1 ]2 + [ Yi = Fumer I}

i=m+nm+2
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where T; and T are the arrays of discretized joint torques as design variables, and K; and
K. are two enough large numbers. x; and y; present the position of the payload at
integration points between t=t, and t=t;+tctt,, while X; and y; show the desired position
of the payload at integration points between t=t; and t=t;+t;. It is clear that the exact
required joint torques which move the end-point through the specified trajectory make the
objective function defined in equation (7.18) zero. The purpose is to minimize this objective
function using an efficient optimization technique. The objective function is an implicit function
of design variables and its analytical differentiation is not possible. Thus, an iterative search
method together with numerical differentiation must be used. Having two arbitrary design
vectors T; and T2, we can numerically solve equation (7.1) by using Newmark method. Then
the result can be used for the evaluation of the objective function. BFGS introduced in the
previous chapter is used to solve the aforementioned unconstrained optimization problem.

7.5 Simulation Results

Consider a planar manipulator having two identical uniform links and two similar
joints. Let the physical properties of its links be

L=L,=1m
pIAl = pzAz =5 kg /' m (7.19)
ElI =E,],=1500 N.m?

and the stiffness of the joints and the mass of the stators and rotors, respectively, have the
following magnitudes

Kj, = Kj, =1000 N / rad
ms, =ms, =02 kg (7.20)
mr, =mr, =02 kg

The gear ratio of each joint is considered to be 1. The mass of the payload is 5 Kg and its
initial position (xa, ya) and final desired position (X3, ys) are assumed to be



TRAJECTORY CONTROL OF MULTI-LINK MANTPULATORS 174

x,=1l8 m y,=02 m
xp=16 m, yp=07 m (7.21)

For trajectory control, the desired motion of the end-point within t=0.5 second is
considered a straight line given by the following equations

(t)_____xn_xﬁ(t _tf_ : EE)_l,_
Y~ JYa tf , 2t
(t)= (t———sin—)+y
y tf o tf A (7.23)

The number of torque intervals within the main time interval t¢ is chosen NM=10.
By choosing c¢,=c;=0.2, the extended time is 0.7 second and the total number of the
torque intervals becomes 14. Since two joint torques at t=0 can be found from the static
equilibrium of the systemn, the number of design variables is 28. Computed joint torques
needed to track the desired end-point trajectory are shown in figures 7.12 and 7.13. Also
the corresponding rigid body torques are shown in the figures to illustrate the non-causal
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Figure 7.12. First joint torque (computed and rigid)
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Figure 7.13. Second joint torque (computed and rigid)
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nature of the problem. Figures 7.14 presents tracking errors for two cases of the loading,
namely, the rigid body torques and the computed joint torques. The maximum tracking
errors along x and y axes for rigid body torque case are 6.1 mm and 5 mm, while they are
reduced to 0.1 mm and 0.268 mm for the computed joint torque case.

- e

N
S 0.010 ¢} x—error *10  (Copmputed torque)
. — — x—error (Rigid torque)
----- y—error *10  (Copmputed torque)
Va) 0.005 L~~~ yerror (Rigid torque)
< o - -
-
&~
~ 0.000
V)
S 0005 TN NN
-~ -
-0.010

0.1 02 03 04 05 0.6
time (sec)

Figure 7.14. Tip errors along x and y axes

7.6 Summary and Conclusion

A technique based on numerical optimization is developed to find the joint torques
required to move the end point of flexible manipulators through specified trajectories. The
proposed approach takes into account the non-causality of such systems via considering

pre-actuation and post-actuation in the solution procedure.
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Results illustrate the non-causal nature of the inverse dynamics of flexible
manipulators. It is shown that by applying the computed joint torques obtained from the
proposed approach, the tracking errors are reduced significantly. The proposed technique
is a complete and effective approach which can be used to find the input controls for the
complicated flexible manipulators. The computed joint torques can be used as feedforward
controls which minimize the work of the feedback controllers needed to compensate
modeling errors.



CHAPTER 8

TIME OPTIMAL CONTROL OF MULTI-LINK FLEXIBLE
MANIPULATORS ALONG SPECIFIED PATH

8.1 Introduction

This chapter deals with time optimal control of flexible manipulators. This subject
is about controlling the position of the end-point of manipulators for a rest to rest motion
in minimum time along a specified path, while actuator torques are not exceeding the
limits due to physical capabilities of actuators or bending strengths of links. Although,
many approaches have been developed in the literature for time-optimal control of rigid
manipulators with and without path constraints, little work has been done in the area of
time-optimal control of flexible manipulators.

The structure of the equations of motion of multi-link flexible manipulators is
highly nonlinear and coupled and the nature of their inverse dynamics is non-causal.
Therefore, the exact minimal time solution:i; not available at the present time. This chapter
proposes a technique to find a near time-optimal control solution for a two-link flexible
manipulator with torque and path constraints. Both links and joints are assumed to be
flexible. The propused technique is based on transforming the optimal control problem
into an equivalent unconstrained optimum design problem using penalty function methods.
Then BSFG method is used to find the solution i.e. the minimum time and the time history
of the required joint torques. It is worth noting that this study takes into account the non-
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causality of the inverse dynamic system in describing the problem as an optimum design

one.

8.2 Time-Optimal Control Problem

Consider a rest to rest motion of payload P (figure 8.1), which tracks a specified
path f(x,,y,)=0 from point A to point B.

Y

Figure 8.1 A two-link manipulator and its desired end path

The purpose is to find the bounded joint torques Ty(t) and Ty(t) which will cause this
desired motion in minimum time. The bounds on the actuator torques are T <T <T e
and TP, <T><T? due to physical capabilities of the actuators or bending strengths of
the links.

The optimal control problem can be expressed as:

4

minimize: f; = fdt (8.1)
0

subject to:

MU)U + K(U,U)U =F(U,U)+QT (8.2-a)
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f(x,,y,)=0 (8.2-b)
vo)=U0, , U(0)=0 8.2-¢)
x,(t;)=xp, X,(t,)=0, £,(t,)=0 (8.2-d)
Yo(t,)=yp,Y,(t;)=0,§,(¢,)=0 (8.2-¢)

= 1,2 (8-2'ﬂ

T.lsT, <T.,]

where U represents all of the degrees of freedom of the system, Q is a non-square matrix
which maps joint torques from a 2X1 vector to a vector whose size is equal to that of U,
and x, and y, are coordinates of the payload which can be expressed as functions of some
components of state variable vector U.

This two-point boundary value problem is a variational problem, but different
from those in classical calculus of variation. Firstly, there are two different types of
variables, namely, state variables U and control variables T. Secondly, some equality
constraints have the form of nonlinear ordinary differential equations. These make the
problem very difficult such that its exact solution does not exist at the present time.

8.2.1 Classical Approach to Solve Time Optimal Control Problems

As it was mentioned in chapter 6, Pontryagin minimum principle can be used as a
mathematical tool to solve some optimal control problems.
Usually mechanical systems are assumed to be described by the following equations of

motion
.i:j = fj(x,-(t),u,(t),t), Li=1L2ececcam (8.3)

where m, x; , and u; are number of degrees of freedom of the system, state variables, and
control variables, respectively. The system is assumed to be in the states X(to)=Xo and



TIME OPTIMAL CONTROL OF MULTI-LINK MANIPULATORS 181

X(tg=X, respectively, at the time t=t; and at the final time t=t. In general, the mathematical
model of a system include certain constraints on the control vector U in the form of

N, <u(t)< M, l=12,....... k 8.9

where k is the number of constrained controls.

The time-optimal control problem can now be stated as: Given the dynamical system
described by its equations of the motion with initial state X,, the terminal state X, and the
constraints on the elements of the control vector U, find the admissible vector U which
transforms the system from X, to X¢ in the minimum time.

The minimum principle, which is based on using Lagrange multipliers in calculus of
variations, furnishes locally the necessary conditions which an optimal control U(t) must satisfy.
A Hamiltonian function, H, is defined as

H=1+3A,f,(X,U,t) 8.5)
=l

where the functions £(X,U.t) denote the right hand sides of equations (8.3). The variables A;
are called the adjoint variables. Pontryagin minimum principle states the following conditions
for the optimal solution: ’

a) controls uy(t) are piecewise continuous in the closed regions

b) adjoint variables A,(t),.......- Ax(t) , which are a set of continuous fonctions, must exist

and satisfy the following equations:
H df, .
i ="%x_.-='£ x,axi‘_, i=1.m @)

¢) and make the Hamiltonian a minimum MI[L(t), x;(t)] with respect to uy(t). This minirmum
has the following property:



TIME OPTIMAL CONTROL OF MULTI-LINK MANIPULATORS 182

MI[A; (¢),x;(£)]= const 20 8.7

These conditions become simple for linear problems, in which the performance index
and the constrains are linear. For example, in time minimization of a linear system with the
following equality constraints (n first-order ordinary differential equation ):

X=AX+BU (8.8)

If the eigenvalues of A are all real and M; <u; < N;, then each control u; is piecewise constant
(Bang-Bang Control) and at most has n-1 switchings during a time optimal transition [131].

Recently, W. Szyszkowski and D. Youck [101] have used Ponryagin principle for time
optimal control of single link manipulator moving in the horizontal plane. They derived the
bang-bang control law for a flexible arm based on rigid body dynamics. Then they tried to
improve it by examining its effectiveness through Finite Element analysis of the fully nonlinear
dynamics of the flexible arm. However, as it was mentioned earlier, the governing equationé of
motion for multi-link flexible arms are highly nonlinear and coupled. Therefore, they can not be
changed easily to the form of equations (8.3). Simply it means that Pontryagin minimum
principle can not be easily used for time optimal control of such problems. Moreover, the
constraint on the path of the end point is another factor which limits the use of minimum
principle in time optimal problems of multi-link manipulators.

8.2.2 Optimum Design Theory instead of Optimal Control Theory

As it was mentioned earlier, it is possible to transform some optimal control problems
to the optimum design problems. The purpose of this section is to solve time optimal control
problems of manipulators with both flexible links and joints by using nonlinear programming
instead of optimal control theory. In the following sub-section the suitable algorithms for doing
this job are described.
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8.2.2.1 Treatment of Non-Causality and Numerical Optimization Algorithm
[130,132]

By using an approach similar to the approach presented in the previous chapter,
we consider the non-causality of the inverse dynamics via defining two additional time
intervals t; and t; as pre-actuation and post-actuation. The difference between the time
optimal control problem and the trajectory problem is that the main time interval t¢ is
unknown in the first one, while t¢ is given for the second one. In order to use numerical
optimization, a suitable parameterization of control torques T(t) and Ty(t) is required.
Since the joint torques have side limits, each joint torque i can be expressed by the
following equations:

1 i i i i . (i .
T.-(t)=;[(r“’m+r‘  min ) (T e =T i )sin€ (1)), i=12  (39)

Therefore, the control inputs of the probleﬁi are transformed from bounded variables T)(t)
and Ty(t) to unbounded variables EV(t) and EP(t). In this study the free variables EV(t)
and E?(t) are represented by finite discrete numbers at specific times instead of continuos
functions of time. We consider NM intervals for torque discretization in the main time
interval. Moreover, N;=c; NM and Nz=c; NM are chosen to present the number of torque
intervals in the pre-actuation and post-actuation times, respectively. Linear interpolation is
used to compute torque values between the given time-nodal values. Also the number of
time steps in three different parts of motion are defined exactly similar to the previous
chapter. For the known extended time (t;+tc+t;) of the motion and known distribution of
the joint torques, based on the aforementioned parameterization, equation of motion of the
system can be solved numerically as an initial value problem. Then, we can define an objective
function presented by equation (8.10), in which ro is a positive constant, ry, r;, 3, and 1,
are large penalty coefficients. x; and y; are end-point coordinates at integration point i,
while y(x;) defines the y-coordinate obtained from the desired path equation.
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f(tf)al),g(z) )= i 2 +rl[(xq+l _xA)z +(ynl+l -yA)z]
1

m+ +1

P o
+n Yi—¥(x;)]* +n, [(xi—x3)*+(y:—yg)*]

i=m+1 i=m+mm+1

m +1
+r, “2?‘1’51“532*'93)

i=m+nam+l

The objective function in equation (8.10) is built using penalty function methods. The first
term corresponds to the main time interval t¢. The second term is the penalty regarding the
deviation of the coordinates of the payload from the given initial coordinates, while the
third term defines the penalty due to the deviation of the path from the desired one. The
payload should stay stationary at desired point B during the post-actuation time. The forth
and fifth terms present penalties due to no satisfying this requirement. The constraints
regarding payload acceleration are not taken into account.

In this way, the optimal control problem is transformed to an optimum design
problem with 2(N;+NM+N+1 design variables including main time interval t; and
discretized £ and £® values at N+NM+N, specific time points.

We use numerical differentiation to find its gradient vector, then BFGS method which
required first derivatives to approximate Hessian matrix is used to find the optimum point of
the objective function.

8.3 Simulation Results

This section presents some simulation results of the proposed algorithm applied to
a planar manipulator which was used as an example in chapter 7. The initial and final
positions of the payload are (x4=1.8 m, ya=0.2 m) and (xg=1.6 m, yz=0.7 m), respectively.
The desired path of the payload is a straight line connecting these two points. Limits on
the actuator joints are considered as: T =-Tmn'” =300 N.m, Trm> =-Tin™>’ =120 N.m
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In this simulation the number of torque intervals within the main time interval t¢ is
chosen NM=10 and the post-actuation time is assumed to be 0.2t¢ (c;=0.2). c; is chosen 0
for no pre-actuation case and 0.2 for considering pre-actuation time, respectively. The
joint torques needed to track the desired end-point trajectory for a counter-part
manipulator with rigid links and joints are shown in figure 8.2-a. Figure 8.2-b shows the
tip errors if these torques are applied to the flexible manipulator. Also the variations of
joint velocities &, and @, and payload angular velocity Gp (in the second link coordinate
system) are shown in figure 8.2-c. As it can be seen the maximum error is about 2.5 cm
and the payload is not stationary at the end of the main time interval (t=t=0.4893 sec).
The computed joint torques for the flexible manipulator without considering pre-actuation
(c1=0) are presented in figure 8.3-a. As it can be seen from figures 8.3-b 8.3-c after t=t¢
=04940 sec, the tip error and the payload velocities are very small but at the beginning of
the motion the tip error has a considerable value (maximum error=3.5 mm). Figure 8.4-a
shows optimal joint torques by considering pre-actuation time (c;=0.2). From figures
8.4-b and 8.4-c, it is clear that not only the payload velocity is very close to zero after
t=0.5658 sec (t=0.4850 sec), but also the maximum error during the motion is only about

0.4 mm.
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Figure 8.2-a Optimal joint torques for a rigid manipulator
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Figure 8.2-b Tip error when optimal rigid joint torques are applied to the flexible
manipulator
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Figure 8.2-c Angular velocities when optimal rigid joint torques are applied to the
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Figure 8.3-a Optimal joint torques without pre-actuation considering flexibility
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Figure 8.3-b Tip error in the case of optimal flexible joint torques without pre-actuation
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Figure 8.4-b Tip error in the case of optimal flexible joint torques with pre-actuation
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8.4 Summary and Conclusion

In this chapter a technique based on numerical optimization is developed to find
near time-optimal control solution of a two-link flexible manipulator with both torque and
‘path constraints. Results show that by applying the computed joint torques without
considering pre-actuation, the tip errors become very small and the payload is almost
stationary at the end, but at the beginning of the motion the tip error has a considerable
value. By applying pre-actuated computed joint torques, not only the payload velocity is
very close to zero during post-actuation time, but also the maximum error is much smaller
than previous case. Therefore, the simulation results present the effectiveness of the
proposed approach which takes into account the non-causality of the system via

considering pre-actuation and post-actuation. The computed joint torques can be used
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as feedforward controls to minimize the work of feedback controllers.



CHAPTER 9

CONCLUDING REMARKS

9.1 Summary

This dissertation presents development of dynamic modeling, trajectory control,
and time-optimal control of multi-link flexible manipulators.

Two efficient finite element/Lagrangian approaches are used for dynamic modeling
of flexible manipulators. In the first approach, the nonlinear and coupled equations of
motion of multi-link planar manipulators with both flexible links and joints are derived
using minimum number of coordinates by considering joint or relative coordinates. The
dynamic model is free from assumption of nominal motion and takes into account not only
the coupling effects between rigid body motion and elastic motion, but also the interaction
between flexible links and actuated flexible joints. The validity of the model is shown and
the effects of link and joint flexibilities are illustrated by some case examples. It is shown
that the interaction between joint and link flexibilities has the most significant effect in the
dynamic behavior of the system.

In the second approach, equations of motion of spatial multi-link manipulators
with flexible links and joints are obtained. The constraint equations representing
kinematical relations among different coordinates due to connectivity of the links are
added to the equations of motion of the system by using Lagrange multipliers. This leads
to a mixed set of nonlinear ordinary differential equations and nonlinear algebraic






CONCLUDING REMARKS 194

9.2 Recommendations for Future Research

The following tasks and investigations can be suggested as extensions to the

present work:

1. Experimental verification of the models. This is due to the fact that regardless of how
precise the mathematical description is, 2 model should be tested experimentally.

2. Inclusion of various dampings in the dynamic models. Although, in the proposed
modeling, viscous damping at the joints was included, other types of damping were
neglected due to their complex nature. During the motion of a flexible manipulator,
damping is present in various forms such as aerodynamic damping due to the air
resistance, structural damping due to the internal losses of energy, and coulomb frictions
at the joints due to the contact of various surfaces. To have a reliable and accurate model,
the only way is to find various damping effects experimentally which is not a simple task.

3. Inclusion of the telescopic joints in addition to the revolute joints. In this work, all of
the joints were assumed to be of revolute type.

4. Modification of the dynamic models in order to get rid of their limitations. The basic
assumption used in the proposed dynamic modelings of flexible manipulators is small
elastic deformations. Moreover, the dynamic model developed for spatial manipulators is
limited to the manipulators whose tangené to various links do not become vertical during

the motion.

5. Transferring the models onto more powerful computers and utilizing parallel processing
capability in order to increase the computational speed.



BIBLIOGRAPHY

[1] Denavit, J., and Hertenburg, R. S., 1955, "A Kinematic Notation for Lower Pair
Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics, Vol. 22, pp. 215-
221.

[2] Uicker, J. J., Jr., 1969, "Dynamic Behavior of Spatial Linkages: Part I-Exact
Equations of Motion,” ASME Journal of Engineering for Industry, Vol. 91, No. 1, pp.
251-258.

[3] Paul, R. P., 1981, "Robot Manipulators: Mathematics, Programming, and Control,"
Cambridge, MIT Press.

[4] Greenwood, D., J., 1965, "Principles of Dynamics,"” Prantice-Hall Inc.

[5] Luh, J. Y. S, Walker, M. W, and Paul. R. P. C,, S., 1980, " On-line Computational
Scheme for Mechanical Manipulators,” ASME Joumnal of Dynamic Systems,
Measurements, and Control, Vol. 120, pp. 69-76.

[6] Asada, H., and Soltine, J. J. E., 1985, “Robot Analysis and Control,” John Wiley and

Sons.

[7] Hollerbach, J. M., 1980 , "A Recursive Lagrangian Formulation of Manipulator
Dynamics and Comparative study of Dynamics Formulation Complexity," Transactions on
System, Man, and Cybernetics, Vol. 10, pp. 730-736.

[8] Kane, T. R., and Levison, 1985, "Dynamics, Theory and Application,” McGraw-Hill.



BIBLIOGRAPHY 196

[91 Book, W. J., 1984, "Recursive Lagrangian Dynamics of Flexible Manipulator Arms,"
International Journal of Robotics Research, Vol. 3, pp. 87-101.

(10] Usoro, P. B., Nadira, R., and Mahil, S. S., 1986, "A Finite Element/ agrangian
Approach to Modeling Lightweight Flexible Manipulators,” ASME Journal of Dynamic
Systems, Measurements, and Control, Vol. 108, pp. 198-205.

[11] Shabana, A., 1989, "Dynamics of Multibody Systems," John Wiley and Sons.

[12] Turcic, D. A., and Midha, A., 1984, "Generalized Equations of Motion for the
Dynamic Analysis of Elastic Mechanism Systems," ASME Journal of Dynamic Systems,
Measurements, and Control, Vol. 106, pp. 243-248.

[13] Hasting, G. G., and Book, W. J., 1987, "A linear Dynamic Model for Flexible Robot
Manipulators,” IEEE Control Systems Magazine, Vol. 7, No. 1, pp. 61-67.

[14] Naganathan, G., and Soni, A. H., 1988, "Nonlinear Modeling of kinematic and
Flexibility Effects in Manipulator Design," ASME Journal of Mechanisms, Transmission
and Automation in Design, Vol. 110, pp. 243-254.

[15] Biswas, K. S., and Klafter, R. D., 1988, "Dynamic Modeling and Optimal Control of
Flexible Robot Manipulators,” Proceedings of IEEE International Conference on Robotics

and Automation, Vol. 1, pp. 15-20.

[16] Benati, M., and Morro, A., 1994, "Formulation of Equations of Motion for a Chain
of Flexible Links Using Hamilton's Principle,” ASME Journal of Dynamic Systems,
Measurements, and Control, Vol. 116, pp. 81-88.



BIBLIOGRAPHY 197

[17] Canavin, J. R., and Likins, P. W., 1977, "Floating Reference Frames for Flexible
Spacecrafts," Journal of Spacecraft, Vol. 14, No. 12, pp. 724-732.

[18] Hasting, G. G., and Book, W. J., 1985, "Experiments in the Optimal Control of a
Flexible Manipulators,” Proceedings of American Control Conference, pp. 828-729.

[19] Wang, D., and Vidyasagar, M., 1986, "Modeling and Control of Flexible Beam Using
the Stable Factorization,” Proceedings of ASME Winter Annual Meeting, Robotics:

Theory and Application, pp. 31-37.

[20] Cannon, R. H., and Schmitz, E., 1984, "Initial Experiments on End-Point Control of
a Flexible One- Link Robot," International Journal of Robotics Research, Vol. 3, pp. 49-

54.

[21] Asada, H., and Ma, Z.-D., and Tokumaru, H., 1990, "Inverse Dynamics of Flexible
Robot Arms: Modeling and Computation for Trajectory Control,” ASME Journal of
Dynamic Systems, Measurements, and Control, Vol. 112, pp. 177-185.

[22] Simo, J. C., and Vu-Quoc, L., 1986, "On the Dynamics of Flexible Beams Under
Large Overall Motions-The Plane case: Part 1, ASME Journal of Dynamic Systems,
Measurements, and Control, Vol. 53, pp. 849-854.

[23] Yang, Z., and Sadler, J. P., 1990, "Large-Displacement Finite Element Analysis of
Flexible Linkages," ASME Journal of Mechanical Design, Vol. 112, pp. 175-182.

[24] Jonker, B., 1989, "A finite Element Dynamic Analysis of Spatial Mechanisms with
Flexible Links," Computer Methods in Applied Mechanics and Engineering, Vol. 76, pp.
17-40.



BIBLIOGRAPHY 198

[25] Crisfield, M. A., 1990, "A Consistent Co-rotational Formulation for Non-linear,
Three-dimensional, Beam-elements,” Computer Methods in Applied Mechanics and
Engineering, Vol. 81, pp. 131-150.

[26] Hsiao, K. M., and Jang, J. Y., 1991, "Dynamic Analysis of Planar Flexible
Mechanisms by Co-rotational Formulation,” Computer Methods in Applied Mechanics
and Engineering, Vol. 87, pp. 1-14.

[27] Reissner, E., 1972, "On a One Dimensional Large-Displacement, Finite Strain Beam
Theory," Studies in Applied Mathematics, Vol. 52, pp. 87-95.

[28] Song, J. O., and Haug, E. J., 1980, "Dynamic Analysis of Planar Flexible
Mechanisms," Computer Methods in Applied Mechanics and Engineering, Vol. 24, pp.
359-381

[29] Avello, A., and Garcia de Jalon, J., 1991, "Dynamics of Flexible Muitibody Systems
Using Cartesian Co-ordinates and Large Displacement Theory,” Computer Methods in
Applied Mechanics and Engineering, Vol. 32, pp. 1543-1563.

[30] Nagarajan, S., and Turcic, D. A., 1990, "Lagrangian Formulation of the Equations of
Motion for Elastic Mechanisms with Mutual Dependence Between Rigid Body and Elastic
Motions, Part I: Element Level Equations," ASME Journal of Dynamic Systems,
Measurements, and Control, Vol. 112, pp. 203-214.

[31] Mirro, J., 1972, "Automatic Feedback Control of a Vibrating Beam," Master's
Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering,
Cambridge, Massachusetts.



BIBLIOGRAPHY 199

[32] Book, W. J., 1973, " Study of Design and Control of Remote Manipulators. Part II:
Vibration Considerations in Manipulator Design," NAS8-28055 Cambridge,
Massachusetts, MIT, Department of Mechanical Engineering.

[33] Book, W. J., Maizz-Neto, O., and Whitney, D. E., 1975, "Feedback Control of Two
beam, Two Joint Systems with Distributed Flexibility,” ASME Journal of Dynamic
Systems, Measurements, and Control, Vol. 97, pp. 424-431.

[34] Sadler, J. P., and Sandor, G. N., 1973, "A Lumped Approach to Vibration and Stress
Analysis of Elastic Linkages,” AMSE Journal of Engineering for Industry, Vol. 95, pp.
549-557. o

[35] Sadler, J. P., 1975, "On the Analytical Lumped-Mass Model of an Elastic Four-Bar
Mechanism,”" AMSE Journal of Engineering for Industry, Vol. 97, No. 2, pp. 561-565.

[36] Book, W. J., 1979, "Analysis of Massless Elastic Chains with Servo Controlled
Joints," ASME Journal of Dynamic Systems, Measurements, and Control, Vol. 101, pp.
187-192.

[37] Meirovitch, L., 1967, "Analytical Methods in Vibrations,” Macmillan.

[38] Judd, D., and Falkenburge, 1985, " Dynamics of Nonrigid Articulated Robot
Linkages," IEEE Transactions on Automatic Control, Vol. 30, pp. 499-502.

[39] Singh, S. N., and Schy, A. A., 1986, "Control of Elastic Robotic Systems by
Nonlinear Inversion and Modal Damping,” ASME Joumnal of Dynamic Systems,
Measurements, and Control, Vol. 108, pp. 180-189.



BIBLIOGRAPHY 200

[40] Yuan, B. S., Book, W. J., and Huggins, J. D., 1993, "Dynamics of Flexible
Manipulator Arms: Alternative Derivation, Verification, and Characteristics for Control,”
ASME Joumal of Dynamic Systems, Measurements, and Control, Vol. 115, pp. 394-404.

[41] Singh, R. P., VanderVoort, R. J., and Likins, P. W., 1984, "Dynamics of Flexible
Bodies in Tree Topology- A Computer Oriented Approach,” AIAA paper 84-1024, pp.
327-337.

[42] Abduljabbar, Z., EIMadany, M. M., and Al-Dokheil, H. D., 1993, "Controller Design
of a One-Link Flexible Robot Arm," Computers and Structures, Vol. 49, No. 1, pp. 117-
126. |

[43] Benati, M., and Mormo, A., 1988, "Dynamics of Chain of Flexible Links", Journal of
Dynamic Systems, Measurement, and Control, Vol. 110, pp. 411-415.

[44] King, J. O., Gourishankar, V. G., and Rink, R. E., 1987, "Lagrangian Dynamics of
Flexible Manipulators Using Angular Velocities Instead of Transformation Matrices,” IEEE
Transaction on Systems, Man, and Cybemnetics, Vol. 17, pp. 1059-1068.

[45] Li, C-J.,, and Sankar, T. S., 1993, "Systematic Methods for Efficient Modeling and
Dynamics Computation of Flexible Robot Manipulator,” IEEE Transaction on Systems, Man,
and Cybernetics, Vol 23, pp. 77-95.

[46] Neubauer, A. H., Jr., Cohen, J. R., and Hall, A. S., Jr., 1966, " An Analytical Study of the
Dynamics of an Elastic Linkage," AMSE Journal of Engineering for Industry, Vol. 88, pp.
311-317.






BIBLIOGRAPHY 202

[55] Midha, A., Erdman, A. G., and Frohrib, D. A., 1978, "Fmite Element Approach to
Mathematical Modeling of High Speed Elastic Linkages”, Mechanism and Machine Theory,
Vol. 13, pp. 603-618.

[S6] Bahgat, B. M., and Willmert, K. D., 1976, "Finite Element Vibrational Analysis of
Planar Mechanisms,"” Mechanism and Machine Theory, Vol. 11, pp. 47-71.

[57] Khan, M. R., and Willmert, K. D., 1981, "Finite Element Quasi-Static Deformation
Analysis of Planar Mechanisms with External Loads Using Static Condensation,” ASME
paper 81-DET-104., pp. 1-8

[58] Sunada, W., and Dubowsky, S., 1981, "The Application if Finite Element Methods to
the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems," ASME Journal
of Mechanical Design, Vol. 103, pp. 643-651.

[59] Nath, P. K., and Ghosh, A., 1980, " Kineto-Elastodynamic Analysis of Mechanism by
Finite Element Method,"” Mechanism and Machine Theory, Vol. 15, pp. 179-197.

[60] Nath, P. K., and Ghosh, A., 1980, " Steady State Response of Mechanisms with
Elastic Links by Finite Element Methods,"” Mechanism and Machine Theory, Vol. 15, pp.
199-211.

[61] Kalra, P., and Sharan, A. M., 1991, "Accurate Modeling of Flexible Manipulators
Using Finite Element Analysis," Mechanism and Machine Theory, Vol. 26, pp. 299-313.

{62] Spong, M. W., 1987, "Modeling and Control of Elastic Joint Robots" ASME Journal
of Dynamic Systems, Measurements, and Control, Vol. 109, pp. 310-319.



BIBLIOGRAPHY 203

[63] Good, M. C., Sweet, L. W., and Strobel, K. L., 1985, "Dynamic Models for Control

System Design of Integrated Robot and Drive Systems,” ASME Journal of Dynamic
Systems, Measurements, and Control, Vol. 107, pp. 53-59.

[64] Soni, A. H., and Dado, M. H. F., 1987, "Dynamic Response Analysis of 2-R Robot with
Flexible Joints,” IEEE International Conference on Robotics and Automation, pp. 479-483.

[65] Readman, M. C., and Belanger, P. R., 1992, "Stabilization of the Fast Modes of a
Flexible-Joint Robot", The International Journal of Robotics Research, Vol. 11, No. 2, pp.
123-134.

(66] Gebler, B., 1987, "Feed-Forward Control Strategy for an Industrial Robot with Elastic
Links and Joints," Proceedings of IEEE International Conference on Robotics and
Automation, pp. 923-928.

[67] Jonker, B., 1990, "A Finite Element Dynamic Analysis of Flexible Manipulators,” The
International Journal of Robotics Research, Vol 9, No. 4, pp. 59-74.

[68] Huang, S-J., and Wang, T-Y,. 1991, "Structural Dynamics Analysis of Spatial Robots
with Finite Element Approach,” Computers and Structures, Vol. 46, pp. 703-716.

[69] Yang, G. B., and Donath, M., 1988, "Dynamic Model of a one-Link Robot Manipulator
with both Structural and Joint Flexibility," Proceedings of IEEE International Conference on
Robotics and Automation, Vol 1, pp. 476-481.

[70] Yang, J-H., and Fu, L-C,, 1993, "Analysis and Control for Manipulators with Both Joint
and Link Flexibility," Proceedings of IEEE International Conference on Robotics and
Automation, pp. 984-989. '



BIBLIOGRAPHY 204

[71] Gogate, S., and Lin, Y-J., 1993, "Formulation and Control of Robots with Link and Joint
Flexibility," Robotica, Vol 11, pp. 273-282.

[72] Xj, F., Fenton, R. G., and Tabarrok, B., 1994, "Coupling Effects in a Manipulator With
Both a Flexible Link and Joint,” ASME Journal of Dynamic Systems, Measurement, and
Control, Vol. 116, pp. 827-831.

[73] Lieh, J., 1994, "Dynamic Modeling of a Slider-Crank Mechanism with Coupler and Joint
Flexibility," Mechanism and Machine Theory, Vol. 29, pp. 139-147.

[74] Sakawa, I. Y., 1985, "Feedback Control of Second Order Evolution Equations with
Unbounded Observation,", International Journal of Control, Vol. 41, pp. 713-731.

[75] Siciliano, B., Prasad, J. V. R,, and Calise, A. J., 1992, "Output Feedback Two-Time
Scale Control of Multilink Flexible Arms,” ASME Journal of Dynamic Systems,
Measurement, and Control, Vol. 114, pp. 70-77.

[76] Siciliano, B., and Book, W. J., 1988, "A Singular Perturbation Approach to Control
of Lightweight Flexible Manipulator,” International Journal of Robotis Research, Vol. 7,
No. 4. pp. 79-90.

[77] Khorrami, B., and Ozguner , 1988, "Singular Perturbation Analysis of a Distributed
Parameter Model of Flexible Manipulators,” Proceedings of American Control
Conference, pp. 1704-1709.

[78] Sakawa, Y., Matsuno, F., and Fukushimo, S., 1985, "Modeling and Feedback
Control of a Flexible Arm," Journal of Robotic Systems, Vol. 2, pp. 453-472.



BIBLIOGRAPHY 205

{79] Shchuka, A, and Goldenberg, A. A., 1989, "Tip Control of a Single-Link Flexible
Arm Using a Feedforward Technique,” Mechanism and Machine Theory, Vol. 24, pp.
439-455.

[80] Pfeiffer, F., 1988, "A Feedforward Decoupling Concept for the Control of Elastic
Robots," Journal of Robotic Systems, Vol. 6, No. 6, pp. 406-416.

[81] De Luca, A., Lucibello, P., and Ulivi, G., 1989, "Inverse Techniques for Trajectory
Control of Flexible Robot Arms," Journal of Robotic Systems, Vol. 6, No. 6, pp. 325-344.

[82] De Luca, A., Lanari, L., Lucibello, P,, Panzieri, S., and Ulivi, G., 1990, "Control
Experiments on a Two-Link Robot with a Flexible Forearm," Proceedings of IEEE
Conference on Decision and Control, Vol. 2, pp. 520-527.

[83] Wang, S. H., Hsia, T. C., and Wiederrich, J. L., 1986, "Open-Loop Control of a
Flexible Robot Manipulator,” Intemational Journal of Robotics and Automation, Vol. 1,
No. 2, pp. 54-57.

[84] Idler, S. K., 1995, "Open-Loop Flexibility Control in Multibody Systems Dynamics,"
Mechanism and Machine Theory, Vol. 30, pp. 861-869.

[85] Xi, F., 1995, "Trajectory Tracking of a Spatial Flexible Link Manipulator Using an
Inverse Dynamics Method,” Mechanism and Machine Theory, Vol. 30, pp. 1113-1126.

[86] Bayo, E., 1987, "A Fnite Element Approach to Control the End-Point Motion of a
Single-Link Flexible Robot,"” Journal of Robotic Systems, Vol. 4, pp. 63-75.



BIBLIOGRAPHY 206

[87] Kwon, D-S., and Book, W. J, 1994, "A Time-Domain Inverse Dynamic Tracking

Control of a Single-Link Flexible Manipulator,” ASME Joumnal of Dynamic Systems,
Measurement, and Control, Vol. 116, pp. 193-200.

[88] Moulin, H. and Bayo, E., 1991, "On the Accuracy of End-Point Trajectory Tracking for
Flexible Arms by Noncausal Inverse Dynamic Solutions,” ASME Journal of Dynamic Systems,
Measurement, and Control, Vol. 113, pp. 321-324.

[89] Bayo. E., and Moulin, H., 1989, "An Efficient Computation of the Inverse Dynamics of
Flexible Manipulators in the Time-Domain,” Proceedings of IEEE International Conference
on Robotics and Automation, pp. 710-715.

[90] Ledesma, R., and Bayo, E., 1992, "A Non-Recursive Lagrangian Solution of the Non-
Causal Inverse Dynamics of Flexible Multibody Systems: The Planar Case,” International
Journal for Numerical Methods in Engineering, Vol. 36, pp. 2725-2741.

[91] Ledesma, R., and Bayo, E., 1994, "A Lagrangian Approach of the Non-Causal Inverse
Dynamics of Flexible Multibody Systems: The Three-Dimensional Case," Intemnational Journal
for Numerical Methods in Engineering, Vol. 37, pp. 3343-3361.

[92] Kahn, M.E., and Roth, B., 1971, "The Near-Time-Minimum Control of Open-Loop
Articulated Kinematic Chains," ASME Journal of Dynamic Systems, Measurement, and
Control, Vol. 93, pp. 164- 171.

[93] Luh, J. Y. S., and Lin, C. S., 1981, "Optimum Path Planing for Mechanical Manipulators,”
ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 102, pp. 142- 151.



BIBLIOGRAFHY 207

[94] Lin, C. S., Chang, P.-R., and Luh, J. Y. S., 1983, "Formulation and Optimization of Cubic
Polynomial Trajectories for Industrial Robots," IEEE Transactions on Automatic Control, VoL
28, pp. 1066-1073.

[95] Sahar, G., and Hollerbach, J. M., 1986, "Planning of Minimum-Time Trajectories for
Robot Arms," The Intemational Journal of Robotics Research, Vol. 5, No. 3, pp. 91-100.

[96] Niv, M., and Auslander, D. M., 1984, " Optimal Control of a Robot with Obstacles,"
Proceedings of American Control Conference, Vol. 1, pp. 280-287.

[97] Shiller, Z., and Dubowsky, S., 1985, "On Time Optimal Control of Robot
Manipulator with Actuator and End-Effector Constraints,” Proceedings of IEEE
International Conference on Robotics and Automation, pp. 614-628.

[98] Bobrow, J. E., Dubowsky, S., and Gibson, J. S., 1985, "Time-Optimal Control of Robotic
Manipulators Along Specified Paths,” The International Journal of Robotics Research, Vol
4, No. 3, pp. 3-17.

[99] Pao, L. Y.. and Franklin, G. F. , 1990, "Time-Optimal Control of Flexible Structures,"
Proceedings of IEEE Conference on Decision and Control, Vol S, pp. 2580-2581.

[100] Hecht, N.K, and Junkins, J. L., 1991, "Time-Optimal Reference Maneuvers for a
Flexible Arm," Proceedings of AIAA Guidance, Navigation and Control Conference, pp.
1592-1598.

[101] Szyszkowski, W., and Youck, D., 1993, "Optimal Control of a Flexible Manipulator,"
Computers and Structures, Vol. 47, No. 4, pp. 801-813.



BIBLIOGRAPHY 208

[102] Eisker, G. R., Robinett, R. D., Segalman, D. J., and Feddema, J. D., 1993, "Approximate
Optimal Trajectories for Flexible-Link Manipulator Slewing Using Recursive Quadratic
Programming,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol 115, pp.
405- 410.

[103] Hwang, S.-T., and Eltimsahy, A., 1994, "Simulation Studies for Effect of Link Flexibility
on a Near-Minimmm-Time Controller for Planar Flexible Manipulator,” IASTED Control and
Computers, Vol. 22, No. 2, pp. 42-50.

[104] Hildebrand, F. B., 1965, "Methods of Applied Mathernatics,” Pretice-Hall, New Jersy.

[105] Farid, M., and Lukasiewicz, S. A., 1997, "Dynamic Modeling of Spatial Flexible
Manipulators,” Computational Methods and Experimental Measurments, Vol. 3, pp. 255-264.

[106] Arora, J. S., 1989, "Introduction to Optimum Design,” Wiley.

{107] Pontryagin, L. S., 1962, "The Mathematical Theory of Optimal Control Processes",
Interscience Publishers, New York.

[108] Roberts, S. M., and Shipman, J. S., 1971, "Multipoint Solution of a Two-Point
Boundary Value Problems," Journal of Optimization Theory and Applications, Vol. 7, pp. 301-
318.

[109] Roberts, S. M., and Shipman, J. S., 1972, "Two-Point Boundary Value Problems:
Shooting Methods,"” American Elsevier Publishing Company Inc, New York.

[110] Bryson, A. E., and Ho, Y.-C, 1975, "Applied Optimal Control,” Hemisphere Publishing,
New York.



BIBLIOGRAPHY 209

[111] Menon, P. K A., and Lehman, L. L., 1986, "A Parallel Quasi-Linearization Algorithm
for Air Vehicle Trajectory Optimization,” Jounal of Guidance, Vol. 9, pp. 119-121.

[112] Hacco, A. V., and McCormick, G. P, 1968, "Nonlincar Programming: Sequential
Unconstrained Minimization Techniques,” Wiley, New York.

[113] Hestenes, M. R., 1969, "Multiplier and Gradient Methods,"” Journal of Optimization
Theory and Application, Vol. 4, pp. 303-320.

[114] Powell, M. J. D., 1969, "A Method for Nonlinear Constraints in Minimization
Problems," in R. Fletcher (ed.) Optimization Academic Press, New York.

[115] Bertsekas, D.P., 1976, "Multiplier Methods: A Survey”, Automatica, Vol. 12, pp. 133-
145.

[116] Arora, J. S., Chahande, A. I, and Paeng, J. K., 1991, "Multiplier Methods for
Engineering Optimization”, Int. Journal for Numerical Methods in Engineering, Vol 32, pp.
1485-1525.

[117] Fletcher, R., 1980, "Practicai Methods of Optimization Vol 2: Constrained,” Wiley,
Chichester.

(118] Haftka, RT. and Gurdal, Z., 1992, "Elements of Structural Optimization", Kluwer
Academic Publishers.

[119] Rao, S. S, 1984, "Optimization: theory and application”, Wiley.

[120] Davidon, W. C., 1959, "Variable Metric Method for Minimization," U.S. Atomic Energy
Commission Research and Development Report No. ANL-5990, Argonne National



BIBLIOGRAPHY 210

Laboratories.

[121] Fletcher, R., and Powell, M. J. D., 1963, "A Rapidly Convergent Descent Method for
Minimization,"” Computer Journal, Vol. 6, pp. 163-168.

[122] Broyden, C. G., 1970, "The Convergence of a Class of Double Rank Minimization
Algorithms: Parts I and II,” Journal of the Institute of Mathematics and its Applications., VoL
6, pp. 76-90 and 222-231.

[123] Fletcher, R., 1970, "A New Approach to Variable Metric Algorithms," Computer
Journal, Vol. 13, pp. 317-322.

[124] Goldfarb, D., 1970, "A Family of Variable Metric Methods Derived by Variational
Means," Mathematics of Computations, Vol 24, pp. 23-26.

[125] Shamno, D. F., 1970, "Conditioning of Quasi-Newton Methods for Function
Minimization,” Mathematics of Computations, Vol. 24, pp. 647-656.

[126] Papalambros, P., and Wilde, D. J., 1988, "Principles of Optimum Design, Modeling and
Computation,” Cambridge University Press.

[127] Dimarogonas, A. D., and Haddad, S., 1992, " Vibration For Engineers,” Prentice-Hall. _

[128] Farid, M., and Lukasiewicz, S. A., 1996, "Time Optimal Control of Flexible Structures
Using Multiplier (Lagrange Augmented) Method,” Fourth Annual Mechanical Engineering
Conference of ISME and Second International Mechanical Engineering Conference, Shiraz,
Iran, Vol 4, pp. 1033-1040.



BIBLIOGRAPHY 211

[129] Farid, M., and Lukasiewicz, S. A., 1996, "On Trajectory Control of Mult-Link Robots
with Flexible Links and Joints," Proceedings of IEEE Canadian Conference on Electrical and
Computer Engineering, Vol. 2, pp. 513-516.

[130] Farid, M., and Lukasiewicz, S. A., 1997, "Optimal control of Multi-Link Manipulators
with both Flexible Links and Joints," Submitted to the Intemational Journal of Robotics and

Automation (IASTED).
[131] Ian, M., 1969, "Introduction to Optimal Control,” Wiley.
[132] Farid, M., and Lukasiewicz, S. A., 1996, "Optimal Control of a Two-Link Flexible

Manipulator Along Specified Path,” Proceedings of ASME International Mechanical
Engineering Congress and Exposition, Atlanta, Vol. 52, pp. 535-540.



APPENDIX

DERIVATION OF ELEMENTS OF CONSTRAIN
JACOBEAN MATRIX C, AND VECTOR Qc

As it was mentioned in chapter 5, due -to introducing redundant variables at each
joints i (i>1), ten constraint equations are needed to represent the continuity of the
manipulator system. These constraints were shown by the following equations for each

joint i=2,...,n.

GO(1):  RL-RE —(L,_ef Ve —wlis{e(tt —y( gl =0 (A-D)
G(2):  Ry~R™ —(Lefs{? —w( Vs VsV 4v[ (V)= 0 (A2)
G(3): Ri~RI—(L_s{™ +w[™e{™)=0 (A3)
Gi'(4): sin®, ) =n™ (A4)
GOS): [IP ) +(m™ )?] cos? B —(I ) =0 (A-5)
GO(6): -8 +(O +©7 )i, i, =0 (A.6)
GO eos(y )=, i, =0 @D
GV (8): sin‘[’zm = ns'¥ (A.8)
G(9): K1 )+ (ms™ )] cos> W[ (1) =0 (A-9)

Gi'(10):  cos(q,)—i., i, =0 (A.10)
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To find Jacobean matrix C, of the constraints, first we differentiate the constraints
of each joint i with respect to various variables to build submatrices Cj”, Then by
assembling these submatrices, C, is found.

For each joint i, the non-zero components of submatrix Cj”, are:

Gie(J,5+2N;-1) =z°§;—;,(’2, j=123 (A1)
Ge(j,5+4N;-1) =%—?—»-, j=123 (A.12)
G (L7+5N,) =-§(—%-;):—(m (A.13)
G'“.(L10+5N; +7+5N,,,) =§(—§%§£i (A.14)
G (28+5N,) =9-(%}(2’1 (AL5)
Gi*“;(2,10+5N,; +8+5N,,, )= _a_(g%&@ (A.16)
Gi*.(3,9+5N,;) =—a(—%—w (A.17)
G'"¢(3,10+5N, +9+5N,,,) =a(—ct.:;—’,(l3l (A.18)
er"“q(j,4)=m, j=L...,10 (A.19)

g
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Cf“’q(j,5)=£g%?l, j= L0 (A.20)
GV, (55+2N;)= 2(93—:,;—{52, i=1..,10 ‘ (A.21)
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G4 j,6+5N, ) = ————3“37;51 D _ , j=L...,10 (A.23)
GV (j,10+5N, +10+5N,,,) =% F=Lhew7 (A.24)
G, (4,10+5N; +5) =l%%—”l (A.25)
2
Gi'¢(510+5N; +4) =ig({}# (A.26)
G (6,5+4N; +1) = i—%ﬁ@ (A.27)
Gi*?,(6,10+ 5N, +6+5N,,,) =i(%;;(f—» _ (A.28)
G, (j,10+5N, +1)=a(—6'%m, i=89,10 (A.29)
G (8,10+5N,+3) = é(—a%i(f?)l (A.30)

Vector Qc in equation (5.51) can be found by using following equation found in

chapter 3.
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Oc=—[Cy +(Cp§)yd+2Cxq] (5.146)

Since the constrains are not explicitly functions of time, equation (5.146) can be simplified

as

Qc=—(C,q4),4 (A.31)

Vector Qc can be found by assembling subvectors, @j. obtained for various joints.
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