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Abstract 

In this dissertation, full-wave analysis techniques are used to analyze the behavior 

of microstrip transmission line discontinuities. The full-wave analysis method takes 

advantage of the closed-form 2-D spectral domain Green's functions, together with 

the application of the moment method (MoM), to solve the electromagnetic integral 

equations. 

A generalized spectral domain Green's function is derived, which can be used to 

analyze multilayer, multistrip, and vertical conductor structures. The asymptotic 

behavior of the Green's function is also studied. 

Infinite microstrip transmission lines in multilayer dielectric layers are studied. 

The frequency dependent propagation constant and characteristic impedance can be 

obtained, using a generalized analysis algorithm. 

Several typical microstrip transmission line discontinuities are analyzed and mea-

sured from low operating frequencies up to cut-off frequencies. These circuits in-

clude: 1-D discontinuities (open, gap), 2-D discontinuities (corner), vertical half 

wave dipoles, and 3-D discontinuities (shorting via). Good agreement has been ob-

served between results in this research and measurements and/or publications by 

other researchers. Some useful conclusions have been drawn. 

Also in this dissertation, a microstrip discontinuity de-embedding measurement 

technique (using non-time-domain network analyzers) is developed. This technique 

enables one to use a multiline calibration to determine the properties of the transi-

tions that surround the discontinuity being measured. Then the S-parameters of the 

discontinuity are determined. 

In 
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Chapter 1 

Introduction 

The spectral-domain analysis (SDA) method can be attributed to Sommerfeld, who 

first derived the Green's functions for electromagnetic (EM) field due to Hertz dipoles 

in stratified media, and summarized his work in his book [1]. The Green's functions 

that Sommerfeld obtained were in integral form and are known today as the Som-

merfeld integral. They are the exact spatial domain Green's functions expressed in 

integral form, which usually have to be evaluated numerically. This integral form of 

Green's functions are in fact the inverse Fourier transforms of the spectral domain 

Green's functions used in the spectral domain analysis [2]. 

Sommerfeld's technique was used in the analysis of microstrip line circuits by 

Yamashita and Mittra [3], and later further developed by Denlinger [4] and Itoh et 

al [5}-[9]. 

The spectral domain method is actually a Fourier-transformed version of the more 

general integral equation method applied to microstrip line and other printed circuits 

in layered structures, which can be used to analyze a wide range of printed circuits, 

such as aperture-coupled lines [10], microstrip-slotline and microstrip-microstrip 

transitions [11][12], cross and Tjunctions [13], strip crossovers [14], meander lines [15], 

1 
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microstrip filters [16][17], non-uniform transmission lines [18], coplanar waveguide 

(CPW) elements [19], wires [20], and multiconductor transmission lines [21], in lay-

ered dielectric structures. The dielectric layers are assumed to be infinitely large in 

the horizontal directions. The medium for each layer is assumed to be homogeneous 

and isotropic (uniaxially/biaxially anisotropic media maybe included [22][23][24]), 

with finite relative permittivity e,, finite relative permeability it, (magnetic di-

electrics [25][26]), and finite conductivity o. 

The integral equation method is a full-wave method: waves radiated into free 

space (space wave) and launched into the layered medium (surface wave) are in-

cluded. Compared to the finite element method, the integral method does not require 

large computer memories, and open structures can be analyzed as easily as closed 

ones. There are two kinds of integral equations: the electric field integral equation 

(EFIE) and the magnetic field integral equation (MFIE), where the electric field and 

magnetic field, respectively, are expressed as a convolution between the appropriate 

Green's function and the current source. It was shown in [27] that MFIE fails for 

zero-volume embedded conductors. Since this dissertation deals with zero-thickness 

strips, the EFIE will be used. 

A Green's function is determined by the composition of the physical structure, 

the electromagnetic (EM) properties of each layer involved, and the specifications 

of the source and the field: the locations of them in the structure, the orientations 

of the vector quantities, and their natures (electric or magnetic). It is one of the 



3 

basic building blocks in the integral equation method. If one inversely transforms 

(evaluates) the Sommerfeld integral Green's function back into the spatial domain, 

and uses it in the rest of the analysis, then this is the spatial domain integral equation 

method. This method does not require the basis functions for the moment method 

to have closed form Fourier transform. Therefore, it is flexible, and very suitable 

for odd shaped circuits. However, since there is usually no analytic solution to the 

inverse transform, one has to find a way to deal with the spatial domain Green's 

function. A straight forward but costly method is to calculate and tabulate the 

Green's function. A more effeètive way is to use approximate expressions. Good 

approximation work has been achieved to get closed form expressions for the spatial 

domain Green's function in references [28],[29] and [30], for example. Using the 

complex image method, Chow et al have obtained closed form Green's functions 

that give an error of only .1. 's-' 0.5% with a few terms [31] [32]. 

The spectral domain analysis (SDA) method does not use the inverse transform of 

the Green's function. Instead, it uses the transforms the basis and the testing func-

tions of the moment method in the Fourier domain as well. Therefore, it is suitable 

for analysis of circuits with conductors of simple shapes. The main advantages of 

SDA method are that one works with the non-integral form Green's function which is 

the exact analytic solution to the Helmholtz equation, and that the Green's function 

can be generalized to accommodate multilayer, multistrip structures, without ap-

proximations. The main drawbacks of the SDA method is that heavy mathematical 

manipulations are involved, and it is computationally time costly, because usually 
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the double improper integrals have to be evaluated numerically. 

The Green's function plays an important role in the analysis. It is the electric 

or magnetic field produced by an infinitesimal (point) electric or magnetic current 

source (Hertz dipole). The total field can then be determined by convolving (inte-

grating) the Green's function with the real source distribution. Since the Green's 

function describes the electromagnetic system of the structure, its application is 

not restricted to transmission line type circuits. Microstrip antennas, for instance, 

can be analyzed using the Green's function [33]-[36], where the layer thickness and 

dielectric constants can be adjusted to improve the antenna performance. The cou-

pling between the antenna elements through surface waves in the media, as well as 

space waves, can be calculated [37] [38]. Radiation and surface wave losses can be 

distinguished from each other [39]. The EM waves from slot radiators and the field 

distribution in semiconductors can also be analyzed [40][41]. 

In most cases, the distribution of the source is not known a priori, and it has to 

be determined in the analysis. This is a very practical problem. In this dissertation 

various structures of microstrip circuits are analyzed, where none of the current 

distributions are assumed to be known. Instead, they are determined in the course 

of the analysis. The technique used to determine the unknown current distribution 

is the method of moments (MOM). 

The moment method is a powerful tool for solving linear integral-differential 
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equations, such as the deterministic problem 

L(f)=g  

where L is a linear operator, f is the unknown solution function, and g is the function 

resulted from the application of L on f. In the moment method, the unknown 

function f (in our analysis, the current distribution function) is replaced by an 

approximate function f' which is a linear combination of a series of known functions 

(basis), the coefficients of which are to be determined in the process: 

f' = (1.2) 

Here, the moment method uses a finite number of terms (functions) to represent an 

unknown function. Thus the original problem becomes 

6+EoL(f)=g (1.3) 

where 6 is the error due to the introduction of f'. Another series of functions, 

called weighting functions or testing functions, w,,,, in the range of L, is used to take 

the inner product with Equation 1.3. The moment method lets the inner product 

<Wm, 6> be zero. Comparing Equation 1.3 with the original problem Equation 1.1, 

it is noted that by letting inner product < Wm, 6 > be zero, MoM approximates 

the exact solution f with f( in a sense that it equates the projections of L(f) and 

L(fa) on J(Wm ), where J(Wm) is the space spanned by the wm. Since the error S is 

orthogonal to the projections (inner product is zero), it is of second order, and the 

moment method solution minimizes the error 8 [42]. If the dimension of the linearly 
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independent basis functions is greater than the dimension of the solution space, the 

moment method solution is exact. 

The moment method is not only used in the spectral domain, it is also widely 

used in the spatial domain, where the domain of the basis functions can be more 

flexible (see [43], for instance). 

In this dissertation, a generalized Green's function is first derived in Chapter 2. 

It is generalized in that all the electric and magnetic field components generated by 

an infinitesimal, electric or magnetic dipole (Hertz dipole), can be calculated in the 

spectral domain for any multilayer structure. In other words, this Green's function 

can be used in the analysis of all kinds of layered structures. The electromagnetic 

(EM) waves generated by the Hertz dipole is decomposed into TM and TE waves 

with respect to the normal direction (z) of the layers, in the spectral domain. The 

propagation of the TE and TM waves within the structure is represented with a 

signal flow graph, which has not been used in this context in literature. Based 

on the transmission line theory and the signal flow graph manipulations, two layer 

removal methods are developed, which make the evaluation of the Green's function 

faster. 

Chapter 3 deals with the analysis of infinitely long microstrip transmission lines. 

This analysis determines the effective propagation constant iCe (or equivalently, the 

effective dielectric constant €), and the characteristic impedance Zo, the two most 

important calculated parameters for any transmission line. This step is important 
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and necessary, because the other chapters will have to make use of the infinite line 

analysis. 

The propagation constant calculation is quite straight forward. First a current 

on the strip, with assumed transverse magnitude profile, travels down the strip with 

an unknown propagation constant. The tangential electric field due to this current 

is obtained by convolving the assumed current with the generalized Green's func-

tion and then this tangential electric field is set to be zero on the surface of the 

strip (boundary condition). The inner product between this tangential field and the 

assumed current is taken to enforce the boundary condition. The inner product is 

still zero, because the tangential field and the testing current are complementarily 

zero (Galerkin's procedure of moment method). This results in a characteristic in-

tegral equation, the root being the unknown effective propagation constant ke. This 

method can be used to analyze microstrip transmission lines in any kind of multilayer 

structures, because the generalized Green's function is employed which takes care of 

the properties of the structures. 

Four sets of electric current basis functions are used and the results are compared. 

Useful conclusions on the choice of the basis current functions are given. 

The calculation of the characteristic impedance Z0 involves the computation of 

the transmitted power as well as the total current on the strip. The total current can 

be determined in the propagation constant calculation, where the moment method 

is used to determine the coefficients of the current basis functions. The power can be 
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obtained by integrating the Poynting vector over the transversal plane, whose normal 

is to the direction of the current flow. A generalized Poynting vector function for 

multilayered structures is derived for the calculation of the characteristic impedance 

of microstrip transmission lines. 

Chapter 4 and 5 cover the analyses of 1-D microstrip discontinuities: opens and 

gaps, so called because they have changes in only one of the three dimensions, in 

this case the transmission direction. Away from the discontinuity, the current on 

the strip is assumed to be a traveling wave, with the propagation constant obtained 

from the infinite line analysis. A unit traveling wave is incident from —co, and the 

reflected wave is from x = 0 back to —co with the same propagation constant but 

with the opposite sign. The amount of the reflected traveling wave, R, the reflection 

coefficient, is an uiiknown to be determined. In the vicinity of the discontinuity, the 

current distribution is not expected to be well organized traveling waves. There-

fore, the current at the discontinuity is locally expanded into a series of roof-top 

functions. The linear combination of these roof-top functions , together with the in-

cident and the reflected traveling wave, represent the true current distribution on the 

strip. The roof-top functions can be either triangle functions or piece-wise-sinusoidal 

(PWS) functions. The latter has been found to be more convergent, because the re-

constructed current is smoother [44]. Studies by other researchers have shown [4] [45] 

that the transverse current is only of significance for very wide strips. For most prac-

tical microstrip transmission lines the magnitude of the transverse current is usually 

-20.--'-40 dB below the longitudinal current. 
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If the discontinuity is an open, only the reflected wave and local current basis 

have to be determined. If the circuit is a gap, there are also transmission and local 

current on the coupled branch which are also unknowns to be determined. These 

two analyses, however, are very similar to each other. The modified Galerkin's 

procedure is applied to determine current distribution. It is noted that at locations 

away form the discontinuity, the traveling wave mode causes the boundary conditions 

to be automatically satisfied. This is because the traveling wave is obtained from 

the infinite line analysis, and at locations far away from the discontinuities, the 

transmission line behaves like an infinitely long line. Thus, the testing functions 

are needed only in the region of the discontinuity, where boundary conditions have 

to be enforced. Two Galerkin's procedures are compared, which validate the local 

need of the boundary condition enforcement at the discontinuities. Also, a step-up 

convergence test procedure is suggested, which increases the number of the basis 

functions one by one, while the convergence of the algorithm is monitored. 

Chapter 6 deals with the analysis of the 2-D discontinuity. Corners of microstrip 

transmission lines are analyzed. As 2-D implies, the configuration of the line changes 

in both the x and the y directions. At the discontinuity, the current can flow in either 

direction. This area is segmented into small rectangles, and x and y direction currents 

on these small cells are assumed. The magnitudes of these currents are determined by 

the moment method, which converts the electric field integral equation (EFIE) into 

linear equations, the unknowns being the magnitudes of the current basis functions; 

and the elements in the coefficient matrix of the linear equation are the reactions 
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(inner products) between current basis functions (PWS and traveling wave functions) 

and testing functions (all PWS functions) (For exact Galerkin's procedure they are 

the same). Unlike the 1-D analysis, where only one element in the dyadic Green's 

functions, G, is used, the 2-D analysis makes use of Zy, and Good 

agreement has been achieved between this analysis and the one by Harokopus et 

al [46]. 

The spectral domain analysis technique as it applies to circuits with vertical 

objects (3-D) is given in Chapter 7 and 8, where a vertical half-wavelength dipole and 

a via-shorted microstrip transmission line are analyzed. This analysis involves the 

use of the Green's functions for a vertical Hertz dipole. The combined use of vertical 

Green's functions with horizontal ones makes possible the analysis of virtually all 

layered structures with strips and vertical wires. If current expansion included the 

transverse current, better agreement with the measurement should be achieved. In 

that case, all nine elements in the Green's function dyad will have to be used. 

The de-embedding measurement of the microstrip discontinuities is discussed in 

Chapter 9, where two de-embedding techniques are presented. The first one makes 

use of redundancy (with multi-through-line references) measurements to reduce the 

random error due to the non-uniformity of the connectors, lines and discontinuities, 

and least-squared-error de-embedding results are obtained. This method does not 

need a time-domain loaded network analyzer, and the random errors can be reduced 

to a minimum with multiple reference through lines and DUT (device under test) 
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circuits. The second de-embedding technique takes advantage of the time-domain 

feature of an automatic network analyzer. It needs only one reference line and the 

required data processing is substantially reduced. Both techniques have been used 

in the research and have proved to be effective. 

Finally, the conclusion is presented in Chapter 10, where a brief summary is given 

on the research of the spectral domain technique in this dissertation. Future work is 

suggested to simplify and speed up the analysis method, to make it more useful. 

All fields and currents involved in this dissertation are assumed to be harmonically 

time dependent, and a factor of e is assumed throughout and is suppressed in the 

equations. 



Chapter 2 

Generalized Dyadic Green's Functions 

Green's function plays an important role in integral equation techniques. By defini-

tion, a Green's function is the response of a linear system to an impulse (6) input. In 

this dissertation, specifically speaking, the response is the electromagnetic field; the 

input is an elementary current source, which can be either an electric or a magnetic 

Hertz dipole; and the linear system is the multilayered dielectric structure in which 

microstrips and/or vertical conductors are embedded. Most Green's functions used 

in literature are only the field components involved in the analysis for the specific 

structures (usually a one or two dielectric layer structure). In this chapter, derivation 

of a generalized Green's function is made, which can be used to express any of the 

electromagnetic field components, for arbitrary multilayered structures. The point 

source carl be either an electric or a magnetic Hertz dipole. 

The generalized Green's function gives the electromagnetic field response to a 

point source in an arbitrary horizontally large, stratified dielectric structure. The 

analysis of the microstrip circuits, which is presented here in this dissertation, makes 

heavy use of the Green's functions. The generalization of the Green's functions in 

effect enables the analysis of multilayer, multistrip analysis. 

12 
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Dyadic Green's functions are concise representations of vector-input, vector-out-

put systems. For our analyses, they are the relationships between vector electromag-

netic fields and vector elementary source currents. For instance, G is the electric 

field in the x direction due to a Hrtz dipole in the y direction. In a matrix repre-

sentation of the dyadic Green's function, G,,y is just one of nine elements in a 3 x 3 

matrix. The 6 current vector is related to the vector electric or magnetic field by the 

dyadic Green's function. 

Generalization of the Green's function to accommodate multilayer, multistrip 

structures are performed by Das et al [47], Itoh et al [8)[9), and others [48] [49] [50], 

in various ways. Some of them, [8], for instance, uses quasi-TEM approximation to 

derive generalized Green's functions for shielded structures. Most of these analyses 

make use of magnetic vector potentials. 

Layered medium Green's function can be either in the spatial domain or in the 

spectral domain. The exact analytic expression in the spatial domain is the famous 

Sommerfeld integral [1]. The spatial domain integral equation analysis has some 

advantages: it is easier for one to work in the physical world because EM waves and 

electric current are physical phenomena and the circuits involved are all finite in size, 

one does not have to switch back and forth between the two domains, less manip-

ulation is required, and numerical work will be easier because the spectral domain 

method usually requires evaluation of infinite integrals. It is also easier to analyze 

odd shaped discontinuities even with lumped elements in the spatial domain [51]. To 
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make spatial domain analysis feasible one has to derive the spatial domain Green's 

function. The starting point of most of the derivations is the Sommerfeld integral, 

the exact Green's function. Some spatial domain Green's functions were derived for 

specific type of circuits, by Alanen and Lindell [28], Barkeshli et al [29] and Aksun 

and Mittra[30], for instance. The complex image method has been used by Chow et 

alto get approximate spatial domain Green's functions [52][53][54][31][32]. In [31], 

the closed form Green's function of a point charge in multilayered media was derived. 

In [32], the Green's function of a horizontal electric dipole in layered dielectrics be-

tween two ground planes was derived, which was used in the analyses of coplanar 

waveguide with air bridge [55] and multiconductor transmission lines [56]. The use 

of complex images can give the Green's functions an error of .1 0.5% with a few 

terms. 

In this chapter, a generalized spectral domain dyadic Green's function is de-

rived. The expressions obtained are in closed form and are the exact solutions to 

the Helmholtz equations. This spectral domain Green's function can represent all 

the Green's functions that are frequently encountered in planar structure analyses, 

as long as the media are homogeneous and isotropic. It can be used for arbitrary 

multilayer, multistrip, and vertical wire configurations. It is rigorous in that the 

losses due to space-wave radiation and surface-wave generation are included in the 

expressions. The power losses to the dissipative dielectric layers and the imperfect 

ground plane can also be included. The function itself is implemented in a C++ 

language program, and is easy to evaluate. The calculated response quantities can 
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be any of the electric or magnetic field components (Es, E, E2, H, H, and He), 

and the input can be either an electric or a magnetic current Hertz dipole in any 

orientation. 

The EM waves are decomposed into TE and TM waves (modes) with respect to 

the z direction (the normal direction of the layer planes). The propagation of the 

TE and TM waves within the structure is represented with signal flow graphs. A 

fast evaluation algorithm using layer removal method is developed. The asymptotic 

behavior as the arguments (the spectral domain variables )) become large is also 

studied and the expressions are derived. 

2.1 Mathematical Definitions 

2.1.1 Green's Functions 

The Green's function method is very powerful in solving linear partial differential 

equations. It can be applied to a large group of electromagnetic problems. The-

oretically, it is the response to an elementary point source, and the final solution 

to the given source is the convolution between Green's function and the real source 

distribution function. 

Suppose a linear inhomogeneous equation has the following form: 

IC UW) - f(i?) (2.1) 
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where £ represents a linear integral-differential operator, U(r) is the unknown solu-

tion function and f() is the input. Now, instead of solving Equation 2.1 directly, 

Green's function method tries to solve a related. auxiliary equation as follows: 

= 8(e) (2.2) 

where G() is called the Green's function, and ö() is the impulse function, which is 

also called the Dirac function. 6(t) is used to represent an elementary input. The 

boundary conditions and other parameters about the system are the same as the 

original problem. In other words, only the input function is replaced by the impulse 

function. 

If the solution G to Equation 2.2 exists and is known, then the solution to the 

original Equation 2.1, U(), can be obtained through the following expression: 

U(r') = f1f f(r)G(r - P)dv' (2.3) 

where the volume integration is conducted over the region (v') where the source f() 

is defined. This integrates all the contributions of f() onto U() as governed by 

G(— ). 

If the original integral-differential equation Equation 2.1 deals with the relation-

ship between an electromagnetic field component U and a current source distribution 

f (either electric or magnetic current), the solution G to the auxiliary Equation 2.2 

is the associated Green's function and the impulse source is a Hertz dipole. The 

original equation is called the Helmholtz equation, which is derived from Maxwell's 
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equations. If only electric current is the source, the equation takes the form 

V x V x E - k 2 E = —jwi8 (2.4) 

where V is the Nabla operator, k is the wave number of the medium, w is the angular 

frequency, E is the vector electric field intensity, and 1s is a vector current source. 

Equation 2.4 is a vector-input, vector-output equation. It is noted that a current 

source in one direction can cause a electric field in all three directions, and that 

a electric field in one direction can have contributions from the current source in 

all three direction. To apply the scalar Equation 2.3, one has to write as many 

as nine such integrals to have a complete representation of the vector electric field 

generated by a vector current source. It is very inconvenient to write these scalar 

equations. The problem can be eased by using the dyadic representation of the. 

Green's functions. 

2.1.2 Dyadic Green's Functions 

A dyad is a group of quantities, which is in this context refers to the relationship 

between a pair of vectors. The use of this terminology makes it easier to understand 

the application of dyadic Green's functions in our analysis. In this dissertation, a 

dyad is used to represent the relationship between a vector source and a vector field. 

The source is either an electric or a magnetic current filament (Hertz dipole), while 

the field is either an electric or a magnetic field excited by the source. 
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The dyadic representation of the Green's function simplifies the notations, and 

emphasizes the relationship between each pair of the field and the current vector 

elements. For example, if one needs to express the relationship between a vector 

electric current and its electric field, a nine-element dyadic Green's can be used. The 

elements in a dyadic Green's function, however, have to be derived in the usual way. 

In the stratified structures we are dealing with, a dyadic Green's function is a 

function of the coordinates of the source Hertz dipole (x', y', z') and the field (x, y, 

z), known as the source point and field point, respectively. The orientations of the 

source and the field vector are all included in the dyad. 

Using a dyadic representation, an elementary electric field dE can be written as 

the product between the dyadic Green's function G (x, y, zx', y', z') and an elemen-

tary current dJ as 

y, z) =G (x, y, zx', y', z') . dJ(a', y', z') (2.5) 

This can be expressed more explicitly in matrix form as 

dE(x,y,z) 

dE(x, y, z) 

dE(x, y, z) 

G G! v. (2.6) 

In Equation 2.6, each elementary field component is clearly expressed to be depen-

dent upon all the elementary current components. Conversely, each current element 

has contributions to all field elements, which means that if the source is only in one 

direction, one can still expect a field in all directions. From this equation it is also 
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seen that a dyad in Cartesian coordinate system has nine elements. However, in 

practical planar circuit analysis, after some simplifications, assumptions, and math-

ematical preprocessing, usually only one or two of the nine elements will be used. 

The integral form of Equation 2.5 is the spatial domain electric field integral 

equation (EFIE): 

E(x, y, z) = JJJ (x, y, zlx', y', z') J(x', y', z')dx'dy'dz' (2.7) +' + 
where the current J is usually the unknown and is determined in the analysis as the 

boundary conditions for the electric field E are applied on the conductor surfaces. 

2.1.3 Spectral Domain Analyses 

The dyadic Green's functions referred to hereafter can be used to represent any of 

the following combinations of source and field: 

• Electric field due to an electric current Hertz dipole. 

• Electric field due to a magnetic current Hertz dipole. 

• Magnetic field due to an electric current Hertz dipole. 

• Magnetic field due to a magnetic current Hertz dipole. 
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The 2-D Fourier transform of a spatial function into its spectral form is given by 

Stinson, for instance, as [57]. 

- (x)y,zx',y',z') 

(2.8) 

while the inverse transform is defined as 

y, zix', y', z') = if .X, Z, x', y', z') dAd\ (2.9) 

Note that the coordinates x and y have been transformed into the spectral domain 

variables ) and ),, respectively. The vertical coordinate z remains intact. This 

is because the structure is assumed to be infinite in the horizontal directions, and 

layered in the vertical (z) direction. 

The advantages of using the spectral domain analysis are that the Green's func-

tions are exact solutions to Helmholtz equation, and it is easy to generalize the 

analysis into multilayer, multistrip structures. The original problem is in the spatial 

domain, which is physically easy to view and understand. However, it is usually eas-

ier to solve the problem in the spectral domain. For instance, to solve Equation 2.2, 

one has to deal with a S function in the spatial domain. So far there are only a few 

special cases where simple analytical Green's function solutions can be obtained for 

this kind of problem. If transformed into the spectral domain, the b function simply 

becomes a constant, which is easier to handle. In addition, transforming from the 

spatial domain into the spectral domain also converts differential and integral op-

erations into simple algebraic operations, which further simplifies the problem. For 
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instance, in the spectral domain, the Helmholtz equation for Green's function G 

becomes {58] 

.1 
+ A2 - j,2\,-i - — 82 A G .X  Y ' xx 

Oz 
(2.10) 

If the Hertz dipole is at an interface between two adjacent layers, all the layers 

are source-free. If the Hertz dipole is within a layer, then an imaginary interface 

can be purposely defined in the plane where the Hertz current dipole resides. This 

imaginary interface divides that layer into two layers, and makes all layers source-

free. Now the Hertz dipole is at an interface, and can be accounted for in the 

application of the boundary conditions over that interface. The Helmholtz equations 

are now homogeneous (zero on the right-hand side) in all the layers. The spectral 

domain solutions are simply two exponential functions of z with two constants to 

be determined with solutions in other layers. With the application of boundary 

conditions on all the interfaces between the dielectric layers, the field due to this Hertz 

dipole can be obtained, which is known as the spectral domain Green's function. 

2.2 Theory 

The generalized structure to be analyzed is shown in Figure 2.1. The total number 

of layers is n, with the Hertz dipole residing between kth and (k + 1)th layers. No 

matter whether the Hertz dipole resides in a physical interface, the plane in which it 

• resides is always defined as an interface. This insures that all layers are source-free. 

The inputs to the structure due to this Hertz dipole will be determined later using 
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boundary conditions. 

For any specific circuits, the number of dielectric layers, their thickness, and their 

dielectric constants should be known to the user. If there is no slot in the structure, 

only electric field and electric current are involved. The current distribution on the 

conductors is unknown. The electric field generated by a Hertz dipole in the place 

of the unknown electric current has to be determined first, where the electric field 

by definition is the Green's function. In the circuit analysis the Green's function is 

convolved with the unknown current distribution on the conductor surface, to get 

the expression for the total electric field. With the enforcement of the boundary 

conditions for the electric field on the conductor surface, and the application of the 

moment method, the true current distribution can be determined. The Hertz dipole 

has to be in the plane where the strip is embedded, hence the location of the Hertz 

dipole is known in the derivation of the Green's function. 

Now that we have defined the source to be at an interface, all the regions within 

the layers become source-free, which makes possible in layer i, for instance, the 

following spectral domain solutions (Green's functions) to the Helmholtz equations: 

OiAa, )',z) O±('AX  AY) +iz  
2 \  

A, z) fj+I)t ))—z +H qi T, )y)e+iz (2.12)' 

where electric fields Ar,) and magnetic fields ) are to be determined 

together with the fields in other layers, and qj = + ) - k2?, where k = 
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Figure 2.1: The generalized geometry of multilayer structures. 

It is noted that the sign of the square root 

qj = + ) - 1.2 

is carefully determined to denote the direction of the propagation of the spectral 

wave. For the open structures, the infinitely thick layers should only have outward 

bound waves, which decrease as an exponential function of z. 

Obviously the final determination of the Green's function in the structure involves 

the enforcement of the boundary conditions for electric and magnetic fields at each 

interface. The use of transverse-electric (TE) and transverse-magnetic (TM) modes 

makes the derivation systematic and very efficient. 

It is known that electromagnetic waves can be decomposed into TB and TM 

modes that depend only on longitudinal electric and magnetic fields, respectively, and 
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TE and TM waves do not couple to each other as they cross a dielectric interface [59]. 

This means that one can process TE and TM modes separately in the structure and 

superposition them at the final stage. The advantage of this decomposition is that 

one can apply transmission line and microwave network theory in the determination 

of the EM fields. 

In the stratified structures, due to their uniformity in the horizontal directions, 

the wave traveling upward and downward in the z direction can be decomposed into 

TE (which depends on H) and TM (which depends on E) waves, also known as 

LSM and LSE modes [60]. Therefore, all the field components can be expressed in 

terms of the longitudinal-to-z components H and E, Where the TE wave is totally 

determined by H, and the TM wave is totally determined by E. 

There are traveling waves in both +z and —z directions due to the reflection 

and the transmission at the layer interfaces. Therefore, in each layer, there are TE 

and TM waves traveling in both the +z and the —z directions. So by solving for 

H, H, E, and E one can determine the total electric and magnetic fields in 

the z direction in a layer i. The other field components can be determined from the 

electric and magnetic field in the z direction. Therefore, the most important step in 

obtaining the Green's functions is to determine the four unknown longitudinal fields 

in the layer of the field point. 

As a matter of fact, the decomposition of the fields in the stratified media into 

TM and TE takes Ez and H as potentials [61]. There are numerous choices for 
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the potentials. It is quite often a personal choice as to which potentials to use. 

The most commonly used ones are the magnetic vector potential A, and the electric 

vector potential P. One can choose to use different combinations of elements from 

A and P. For instance, there are Hertz-Debye potentials, Sommerfeld potentials, 

and transverse potentials. There are also mixed potentials which makes use of scalar 

potentials, as well as vector ones. Each set of these potentials has their own features, 

some lead to better numerical convergence; some are easy to handle; some give 

good symmetry of revolution. Mosig in [62] briefly introduces and compares the 

different potentials. His conclusion as to which choice is easer and more systematic 

for layered structure is that it is advisable to use the longitudinal field components 

E and H, or components of Hertz vector potentials which are in fact different from 

longitudinal fields by a constant factor. This is because, although the computation of 

the potentials is possible, the boundary condition across the layer interfaces have a 

simpler formulation with longitudinal field potentials; the other field expressions 

are easier to write; and the integral equation is easier to formulate. The most 

convenient part is that one can use EM wave knowledge directly in the formulation. 

For instance, the boundary condition can be formulated as soon as the field expression 

is obtained—one does not have to derive the boundary conditions for the potentials. 

Also the integral equations are concise and its physical meaning is clear. 

The boundary conditions for the dielectric interfaces are that the tangential elec-

tric and magnetic field have to be continuous across the interface, unless electric or 

magnetic current sources exist at the interface. It is known already that the only 
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source we are dealing with is the Hertz dipole. 

Since the S function current (the Hertz dipole) is located at an interface, and has 

been transformed into a constant in the spectral domain, the Hertz dipole at the 

interface can be easily accounted for in the application of the boundary conditions. 

The spectral domain boundary conditions due to the existence of the Hertz dipole 

at 

are derived as follows below. 

In the spatial domain, at the boundary where a surface current exists, the fol-

lowing boundary conditions apply 

n x (H2 - H1) = (2.13) 

fl X (E2 - E1) = —Jms (2.14) 

where Js and Jms are the surface electric and magnetic current densities, respectively, 

and n is the unit normal vector pointing from medium 1 to medium 2. If there is only 

an x directed electric Hertz dipole at the interface, for instance, all field components 

are continuous across this interface except for I[, which becomes 

H 1 - H 2 = S(x)S(y) 

By taking the 2-D Fourier transformation of the equation it becomes 

1  
H111 - fly  = 

4 7 2 

(2.15) 

(2.16) 
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Thus the boundary conditions at the interface where the dipole resides show that all 

tangential field components should be continuous except for lIp. 

At all the other interfaces the tangential fields (E, E, ft, and .fia,) are con-

tinuous, because there are no sources at those interfaces. 

As the multilayer structure is defined to be infinite in the x and y directions, 

it is layered only in the vertical (z) direction. The top and bottom layer, each of 

which has only one side facing the rest of the structure, are called boundary layers. 

The outer side of a boundary layer faces a termination, which is the boundary of 

the whole structure. For any structure there are two terminations, the top one and 

the the bottom one. A termination has no thickness. It is described by its reflection 

properties to TE and TM waves, which are usually jointly determined by the dielec-

tric properties of the boundary layers and that of the materials attached to the outer 

sides of the boundary layers. These terminations give the relationship between the 

incident and the reflected TE and TM waves. Examples of these terminations are 

1. a match where there are no reflected waves (leaving waves only, 111 = 0). 

2. a perfect conducting plate where the reflected wave has the same amplitude as 

the incident wave and the phase is either 00 (TM) or 180° (TE). 

3. any other known value of reflection coefficient (Irl ≤ 1) that can determine 

the reflected wave. 
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Free space is considered as a layer for an open structure. However, no layer 

can be specified as being infinitely thick. A practical way to treat any infinite 

layer thickness is to give it a very large value, say, 10 meters for an inch thick 

circuit, for instance. This thickness is irrelevant for propagation and S-parameter 

computations, as long as the reflection of the termination is set to be zero. For 

characteristic impedance computation, however, the layer thickness is important 

because the electromagnetic power flow has to be computed over a specified structure 

region in a plane whose normal is in the same direction as the transmission line. A 

perfect conductor termination is the most common for microstrip structures, where 

all incident TE and TM waves are reflected. If the ground plane is not a perfect 

conductor, an equivalent surface impedance can be used to determine the reflected 

TE and TM wave [63]. 

• If the structure has n layers total, with the possibility that the two outermost 

ones are semi-infinite, there are (n — i) interfaces and 2 terminations. The unknowns 

in solving for the Green's functions are the z direction electric and magnetic fields 

in each layer. To determine the total electric field Ei in the z direction in layer i 

one needs both Ej and E to be determined. The same is true for Hi. Therefore 

in each layer one has to determine four unknowns. The total number of unknowns is 

therefore n x 4. When enforcing the boundary conditions, each interface can give four 

independent equations, resulting from boundary conditions for E, E, JJ, and H 

across the interface, respectively. The interfaces then can give (n - 1) x 4 equations. 

The terminations can uniquely determine the reflected E (TM) and H (TE) in the 
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boundary layers. Then the terminations can give another 4 (2 for each termination) 

equations. There are now in total ii x 4 equations for n x 4 unknowns. Thus the 

solutions to the problem are unique. 

Since one can decompose the traveling wave into TE and TM components, which 

do not couple to each other in the structure, one can respectively determine the 

desired field components by the TE and TM waves, and superposition them at the 

final stage. The propagation of TE and TM modes within layered structures are very 

similar to that of EM waves in a circuit where networks are linked with transmission 

lines. In the layered structure, TE and TM modes get partly reflected and partly 

transmitted at the dielectric interfaces, which suggests that an interface acts like a 

network for microwave signals; within the layers the TE and TM waves travel with 

the spectral domain propagation constant qj as which is like the propagation of 

microwave signals in a transmission line, with spatial propagation constant 8 (&11). 

Due to these similarities, the behavior of the TE and TM waves within a layered 

structure can be treated as microwave signals in a cascaded network interlinked 

with transmission lines, where signal flow graphs can be used to present an accurate 

conceptual and mathematical picture. 

The topology of the signal flow graph, which is determined by the structure and 

the location of the Hertz dipole, is the same for both TE and TM waves, as shown 

in Figure 2.2. The branches between nodes in Figure 2.2 show that the TE and TM 

waves are transmitted and reflected at interfaces, and propagate within the layers 
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from one interface to another. The network parameters describing the interfaces and 

the terminations, and the inputs to the signal flow graph, are different for TE and 

TM waves, as expected. At each interface, if the TE and TM waves traveling to +z 

ah2 or ae2 

ahl or ael 

layer  layer (k+1) layer (n-1) I layer n 

Figure 2.2: Generalized signal flow graph for multi1aye structures. 

direction are incident from medium 1 to medium 2, the transmission and reflection 

coefficients are 

T 1—+2 
1  T 

r1-2 
£ TE 

rpl—+2 
£TM 

rl-+2 
1 TM 

where 

2 q  

- qi + q2 

- qi - q2 

- qi + q2 

2 q el 

q 2 + q2 e 

q, e2 q21 

q12 + q21 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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and 

r12 - 

TM - 

If the TE and TM waves are incident from medium 2 to medium 1 (in this case, 

the incident wave is traveling in the —z direction), the subscripts and superscripts 

"1" and "2" in the expressions above would be exchanged and thus another four 

expressions result. Therefore, for each interface in Figure 2.2, there are four net-

work parameters (two reflections and two transmissions) for each of the TE and TM 

waves. For the waves that travel within the layers, the branclis between the inter-

faces are simply exponential functions, as in layer i, for instance, where Di is 

the thickness of layer i. 

The four parameters ahi, ah2, ae1, and ae2 in Figure 2.2 are the inputs to the 

networks, which are excited by the Hertz dipole at the dielectric interface between 

layers lc and (k + 1). ah1 and ah2 are H; in the —z direction and H in the +z 

direction, respectively (TB modes). ae1 and ae2 are E; in the —z direction and E 

in the +z direction, respectively (TM modes). 

The values of the four parameters ah1, ah2, ae1, and ae2 are determined by 

solving the problem shown in Figure 2.3, where the radiation into two semi-infinite 

half spaces with different dielectric constants, by a Hertz dipole residing at the 

interface is solved for. This Hertz dipole launches ah2(H) and ae2(E) to the upper 

space, and ahi(H;) and ae1(E;) to the lower space. Their expressions are obtained 

simultaneously as the boundary conditions for the tangential electric and magnetic 
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field are applied at the interface. These inputs are in fact the TE and TM modes that 

the Hertz dipole launchs into the structure. If there is no other interfaces than the 

one in which the Hertz dipole is embedded, the total longitudinal field distribution 

will be expressed with these four inputs with spectral domain propagation constants 

qk and qk+1. However, we are dealing with a layered structure, where the TE and 

TM modes are bounced back and forth between layer interfaces, which changes the 

"initial" longitudinal field distribution by the four inputs; Therefore signal flow 

graph shown in Figure 2.2 has to be solved. 

Figure 2.3: Determination of the inputs to the generalized signal flow graph. 

The four inputs ah1, ah2, ae1, and ae2 as determined for an x directed Hertz 

dipole are: 

ah1 = -j  A  (TE) 
4R-2 qk + qk+1 

(2.21) 
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ae2 

where €j = Ori 

ah2 = -j AY 
4z2 q + qk+1 

Ax qk+j - 1 

42w qkk+1 + qk+1k 

—1 )x qk 

= 47 2W  
qk+1 + qk+1 Ek 

(TB) 

(TM) 

(TM) 
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(2.22) 

(2.23) 

(2.24) 

The expressions for the inputs by y and z Hertz directed dipoles are obtained 

with the same method as in the determination of the inputs by the x directed Hertz 

electric dipole. The inputs to the generalized signal flow graph Figure 2.2 for the y 

directed electric dipole are: 

ah1 = 

ah2 = 

.1 AX 
4.2 q + qk+1 

j AX 
4.2 qk. + qk1 

1 A q+i  

ae1 = 4ir2w qk6k1 + qk+1 ei 

—1 AY qk 
ae2 = 

4ii 2w qkck1 + qk16k 

The inputs for the z directed electric dipole are: 

ah1 = 0 (TB) 

ah2 = 0 (TB) 

ae1 = -j)2 (TM) 
8irwqk6k 

-j)2  
ae2 = (TM) 

8irwq€, 

(TB) 

(TB) 

(TM) 

(TM). 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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where )2 = ) + \2 
" V. 

It is noted that an interface has zero thickness and therefore a vertical electric 

Hertz dipole will have its two ends in different layers. This poses a problem here, 

as it is hard to determine the TM mode (there is no TE mode [62]) excited by such 

a vertical dipole at the interface. In all other other cases, where tangential dipoles 

are at the interface between two different dielectric layers, the inputs can be verified 

with a moving dipole method, where same results are obtained when the dipole is 

moved into the interface plane from either side of it. However, different TM mode 

inputs are obtained when a vertical dipole is moved, from different sides, into the 

plane of the interface between different dielectric layers. 

The cause to this problem is not very clear yet. It is probably due to the fact the 

dipole is lying across the interface, and therefore probably excessive charge accumu-

lates at the interface. Since no charge source is assumed in our analysis, there is an 

inconsistency in the field obtained. 

To avoid this problem in dealing with vertical wire circuits, the source point is 

kept in a homogeneous dielectric material, i.e. at an interface between two same 

dielectric layers. When determining the field produced by a vertical Hertz dipole 

next to the interface, a zero thickness imaginary layer is inserted between the dipole 

and the layer with different dielectric constant. That is why ae1 = ae2 for the z 

directed Hertz dipole. 
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Now that all the branches and the inputs in the generalized signal flow graph 

in Figure 2.2 are given, the longitudinal field components at any location in the 

structure can be determined by solving this signal flow graph. Once the longitudinal 

field components are obtained, the tangential components can be determined as well 

according to the following expressions [64]: 

-j  
ai = A2 +A Y 2 

G yi_A2+j +A2{ AV qj 

  Aqj(ft-ft)+jw' )} z Ay I+.  

Hyi  -j  
= 2 [+Aq(ft - kfl+ A  jw' (+ +E;)] 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Since the field components (both the longitudinal and the tangential) we obtained 

here are excited by a Hertz dipole in the structure, they are by definition the Green's 

functions. For a Hertz dipole in each of the three directions (x, y, and z), one can 

obtain three electric (magnetic) field components, which in effect are three electric 

(magnetic) Green's functions. All nine different such electric (magnetic) Green's 

functions can be obtained. Thus a complete dyadic electric (magnetic) Green's 

function due to an electric Hertz dipole can be obtained. 



36 

2.3 Generalization of the Dyadic Green's Functions 

2.3.1 Signal Flow Graphs for TE and TM waves 

Signal flow graph Figure 2.2 is used to represent the generalized multilayered struc-

ture. This representation can be used for all the structures that have homogeneous 

dielectric layers infinite in the x and y directions, a category into which almost all 

microstrip layered structures such as single-layer or multilayer, lossy or lossless, open 

or grounded terminations fall. For any structure, the known quantities include the 

number of layers, their thickness and dielectric constants, the locations and the ori-

entations of the source and the field, and the termination of the structure. It is 

noted that shape and size of the strip being investigated, however, is not part of the 

Green's functions. We are only looking at the field due to an elementary current 

(Hertz dipole) in the place of current carrying conductor surface. The signal flow 

graph in Figure 2.2 is used to get such Green's functions. For any specific circuit, 

the locations of the strips and wires are used to determine the locations of source 

and field points. As soon as the Green's function is obtained, it will be used in the 

analysis of any circuits that have the same structure and the same source and field 

locations, using the spectral domain integral electric field equation (IEFE) technique 

and the moment method. 

There are several ways of solving the signal flow graph in Figure 2.2. One of 

them is to use the linear equation method, where the values at all nodes are obtained 
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simultaneously. This method involves the manipulation of the coefficient matrix, and 

therefore it takes significant amount of CPU time. Since one only needs the values 

at a pair of specific nodes that corresponds to the observation point (field point), 

transmission matrix method can be used where layers are viewed as transmission lines 

and interfaces are viewed as two-port networks. This method, although faster than 

the linear equation method, is still considered slow because S-parameter matrices 

have to be converted to transmission matrices, and matrix multiplication will have 

to be performed. 

The recursive technique is a easy and time efficient method, because the time 

taken for the solution of the signal flow graph increases only linearly with the number 

of layers. In addition, the recursive method can be performed either numerically or 

analytically. This method takes advantage of the topology of the generalized signal 

flow graph, which behaves like a number of two-port networks cascaded together. 

For microstrip analysis purposes, it is almost always true that one should deter-

mine the tangential electric fields E and E in the plane where the Hertz dipole 

resides. Sometimes, however, there are some other locations where the fields need to 

be determined. If one wants to analyze a multimicrostrip structure, in order to apply 

the boundary conditions, one has to, for each of the strips, determine the electric 

tangential field due to the currents on all the other strips (mutual reaction), as well 

as the electric tangential field due to the current on this strip itself (self reaction). 

For instance, Figure 2.4 shows a microstrip crossover which is usually used in 
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monolithic microwave integrated circuits, VLSI, and microstrip antenna feed cir-

cuits [65]. To analyze it, one has to determine the tangential electric fields on strip 

B due to current on both strip A and B, and vice versa. Thus a pair of integral 

equations result, which can be solved by numerical methods such as the moment 

method. 

Strip A (along Y) 

Strip B (along X) 

Figure 2.4: A microstrip crossover in a multilayer structure. 

Generally speaking, one can determine the Green's function for a structure with 

the following quantities given: 

1. the number of layers n; 

2. the thickness D and the dielectric parameters 6r, [er, and o (or loss tangent) 

of each layer; 

3. the two terminations on top and at the bottom of the structure; 
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4. the location k and the orientation of the current dipole; and 

5. the location m and the orientation of the observation point. 

The locations where field intensities are of interest can be represented by a pair 

of nodes (a port) shown in Figure 2.2, and the field can be determined recursively 

by layer removal, or transmission matrices methods, as will be shown (Here it is 

assumed m ≥ k, which does not result in a loss of generality). 

2.3.2 Layer Removal— Total and Partial 

From the generalized signal flow graph representation Figure 2.2 it is noted that 

each layer is represented by a section of the graph, as shown in Figure 2.5. The 

whole structure is built up with such two-port blocks, with some modifications for 

the boundary layers. 

r 

Figure 2.5: A layer represented by a signal flow graph block. 
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The source point is where the inputs are located, i.e. the interface between layer 

k and layer (lc + 1). The observation (field) points can be any where in the signal 

flow graph, which are where the nodal values have to be determined. Since not 

all the nodes in Figure 2.2 are of interest in the analysis, one can just represent 

the portion of the signal flow graph beyond the observation point with an effective 

reflection, which can be obtained by a method which we named total layer removal. 

This removal procedure starts from the outermost (boundary) layer, which in fact is 

the simplification of the signal flow graph [66]. 

In transmission line theory, the input reflection coefficient can be obtained by 

starting from the load, calculating and including each component's effect on the 

line as the driving point moves to the input end. By analogy with transmission 

line theory and signal flow graph theory, the effective reflection coefficient at the 

observation point can be obtained by the following method: 

1. starting from the termination at the outermost layer (layer 1), calculate the 

reflection coefficient 1711, which is the input reflection coefficient if one looks 

into layer 1 from the right side of it; 

2. apply this r11 to the interface between layers 1 and 2, as load reflection coef-

ficient, and remove layer 1 conceptually (total removal, because layer 1 is no 

longer needed in the following derivation); 

3. the reflection coefficient looking into layer 2 from its right side can be obtained 
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by solving signal flow graph shown in Figure 2.5, where i = 1 and j = 2. 

4. repeat step 2 and step 3—each time solve the signal flow graph shown in Fig-

ure 2.5, and remove the layer that is no longer needed—until the excitations 

(interface between layers k and (lc + 1)) are reached, where the effective reflec-

tion coefficient rik is obtained. This Flk represents the effect of all the layers 

removed beyond the observation point. 

5. the same layer removal procedure is applied on the other side of the excitations 

in Figure 2.2, where the observation point is located at interface between layers 

m and (m + 1) (in ≥ k). Due to the existence of the observation point one 

can only do total layer removal until the pair of nodes that correspond to 

observation point is reached. 

In this recursive layer removal procedure, each layer is treated only once. The 

time needed to process the signal flow graph is proportional to the number of layers 

in the structure. 

After the total layer removal procedure is carried out, the signal flow graph is 

reduced in size, and consequently the evaluation time is reduced. Figure 2.6 shows 

the signal flow graph after the total layer removal. Nodes b and b should not be 

removed because that is where H and E are to be determined (observation point). 

However, in this case one can still partially remove each layer recursively from the 

observation point until one reaches the source interface. The partial layer removal is 
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ahi orael 

layer  layer (k+1) 

b+ 

-.. I 

layer m 

Figure 2.6: Signal flow graph after total layer removal. 

b-

r 1) 

layer (rn+I) 

in fact a signal flow graph simplification procedure and is illustrated in Figure 2.7. 

As one can see, after some simple manipulations of the signal flow graph, each 

layer can be converted into a transfer branch and a reflection branch. The transfer 

branches from all the layers can be accumulated (multiplied) to get the total transfer 

function from the excitation point to the observation point. The reflection branch of 

the outer section is treated as a load reflection r, for the inner section, which is used 

similarly to the total layer removal procedure. The layers are not totally removed, 

since the observation point nodes are still there. The process only simplifies the 

graph in a recursive procedure, and thus we named it partial layer removal. 

The layer removal idea is also used in the calculation of the characteristic impe-

dance in the infinite transmission line analysis, where a generalized Poynting vector 

function is formulated in the spectral domain. This generalization of multilayer 
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b+ 

b-
layerm layer(m+1) 

b+ 

layer  layer (m+1) 

Ii(m+1) M00-

b-
layer layer (m+1) 

b+ 

layer  Iayer(m+1) 

layer m layer (m+1) 

layer  Iayer(rrwl) 

Figure 2.7: Illustration of partial layer removal. 

b+ 

fi(rn+l) 

Poynting function enables the calculation of transmitted power along the line, and 

thus the characteristic impedance can be computed. 

2.3.3 Transmission Matrices Method 

This method is very simple and straight forward. As shown in Figure 2.2, the whole 

structure is represented by a chain of two-port networks cascaded together with 

transmission lines. It is noted that the signal flow paths (branches) in this signal 

flow graph are the similar to the scattering parameters in microwave network theory. 

A scattering parameter matrix can be easily converted into an ABCD matrix, or a 

transmission matrix. Therefore shown in Figure 2.8 all the layers and interfaces are 

represented with transmission matrices. It is noted that in such a combined network 
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where transmission lines are between the scattering networks, the transmission lines 

also have to be treated as networks and expressed with transmission matrices. 

ah2 or ae2 
excitation 

b1 

layer 1 Interface 1 layer 2 'irer1ace 2 

ahi or aol excitation 

observation point 

layer 3 layer n 

Figure 2.8: Transmission matrices for layers and interfaces. 

To solve this network problem, one has to 

1. first multiply the transmission matrices together on each side of the excitation 

interface to determine the effective reflection coefficients on each side of the 

excitation interface (in this example, interface 2). This simplifies the signal flow 

graph and consequently the signal fed into and reflected from the observation 

point side, a1 and b1, can be determined; 

2. if there are m transmission matrices between the excitation interface and the 

observation point (in this example, the observation point is located at the inter-

face between layers (n — i) and n), then the forward and backward longitudinal 
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fields am and bm are 

Fami Fail 
= [Tm] [T3] [T2] [T1] I I 

[bm j [bj 

Thus the signal flow graph is solved, and the Green's function can be obtained. 

This method, however, takes relatively more computer time than layer removal 

method, because matrix conversions and multiplications are involved. Also, un-

like the layer removal method, where layers are just treated as simple transmission 

lines, layers here are treated as networks, and have to be manipulated like interfaces. 

From this comparison, it is believed that the layer removal method is a better can-

didate for the determination of the longitudinal field components. Therefore, the 

layer removal method is used in the following analysis, and is implemented in the 

computer program. 

2.4 Example: Single Substrate layer 

As an example for the determination of the Green's function, we now use the general-

ized spectral domain Green's function to determine G and G for a single substrate 

layer, conductor-backed structure, with the x directed electric Hertz dipole at the 

substrate-air interface. Figure 2.9 shows the signal flow graph of this structure. It 

has to be pointed out that, as far as our definition is concerned, this structure has 

two layers, a dielectric layer and an air layer, although almost all other literature 

refers to it as a one layer structure. The reflection coefficients at a perfect conducting 
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surface are 1 for the TM wave, and -1 for the TB wave. The thickness of the air 

layer is assumed to be D for the moment. Later it will be shown that D does not 

contribute to the final expression, due to the fact that there is no reflection from 

the air-side termination. From Figure 2.9, it is easy to determine the longitudinal 

Ir!=1 

e 

& q1h I 121 

ahi orael 

layer 1 (sub.) 

ah2 or a92 

!T12 

layer 2 (air) 

Iri=o 

Figure 2.9: Signal flow graph of a grounded substrate-air (two-layer) structure. 

components H, Ej, and .E2j as follows: 

and 

ah1  
= 1 + rJe-2ih' 

- _ 1 .2qih 

z1 TEe 

= 1 - M_2qih12  

El -  

zl - 1 - TM6_2qih 
12 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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where rM and p12 E are given in Equation 2.20 and Equation 2.18, respectively, and 

ah1 and ae1 are given in Equation 2.21 and Equation 2.23, respectively. 

Substituting the expressions given above into Equation 2.33 and Equation 2.34, 

one can obtain the following expressions of the Green's function at the substrate-air 

interface due to an x directed Hertz electric dipole at the same interface: 

where 

and 

GXX 

avx 

—j Z0  k02A2 q1q2) 

= 4ir2k0A2 D(A) D(A)' sinh(qjh) m  

= jZoAA, k02 + q1q2  

4ir2k0A2 De(A) D(A) sinh(qih) D,,,, 

(A) = q cosh(qih) + q2sinh(qih) 

D,m(A) = q1 sinh(qih) + q€, cosh(q1h) 

qj = ij.A2 - 1 2 

A2 = A2 + ) 2 

ZO = j I - 
V €0 

(2.41) 

(2.42) 

As expected, the air thickness D is not in the final expressions of the Green's function. 

These formulae are proved to be the same as those obtained by other researchers [11]. 

D(A) and Dm (A) are the characteristic equations for TM and TE surface modes in 

the structure. Their zeros are the poles in the Green's function expressions. The 

poles from De(A) give rise to the TM modes and the poles from D,,, (A) give rise to 

the TE modes. The treatment of these poles are discussed later. 
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2.5 Asymptotic Expressions 

The integral equation methoa makes use of the Green's function to describe the field 

generated by a current source. The derivation of the exact expressions of the spectral 

domain dyadic Green's functions is given above. The spatial domain Green's func-

tion can be obtained by taking the inverse Fourier transform of its spectral domain 

counterpart. The resultant Green's function in the spatial domain is also a gener-

alized one in describing the multilayer, multistrip structure. It can be tabulated or, 

for the single layer case, written as asymptotic expression in the spatial domain [29]. 

The spatial domain Green's function is more flexible and suitable for the analysis of 

odd conductor shapes. 

In the spectral domain, it's very important to have the asymptotic expressions for 

the Green's function, because improper integration is involved. The exact Green's 

function derived in this chapter is mainly used in the integration over the region 

near the origin and A, are small). The evaluation itself, although theoretically 

and mathematically exact, takes a lot of computer time. In fact, more than 95% 

of the computation time is used for the numerical integration. To alleviate this 

problem, the number of computations requiring the exact Green's function should 

be kept to a minimum. One way of doing it is to use the exact value of Green's 

function only around the origin, where some poles are in the integration path and 

hence the behavior of the integrand is hard to predict. For regions where the function 

arguments are large, approximate expressions can be used. As the arguments (AX 
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and ),) become large, the Green's function will follow an asymptotic behavior, with 

the magnitude decreasing as the arguments increase. This is true for most of the 

elements in the dyadic Green's function. Some elementary Green's functions in the 

dyad increase with the arguments. In this case, an imaginary layer is defined between 

the source and the field points, whose thickness approaches to zero (see Chapter 7). 

The asymptotic expressions are usually in simple analytic forms, and therefore are 

easier and less time consuming to manipulate and compute. This suggests that 

one should use the asymptotic expressions in the numerical integration when the 

arguments are large, to get faster evaluations or even closed form integrations for 

the tail contributions. 

It is easy to derive the asymptotic expressions for single layer or double layer 

structures, as can be found in the literature [11][13]. In multilayer cases, however, 

the asymptotic expressions are not readily available, due to the general nature of the 

structures. However, this does not mean that there is no asymptotic expressions for 

multilayer Green's functions. It is shown that there are asymptotic expressions for 

multilayer Green's functions The price to pay is that it takes a larger argument ()) 

value to get the same accuracy as in single layer cases. 

As seen in the signal flow graph representation in Figure 2.2, each layer acts as 

a segment of a transmission line in the spectral domain. But they are not exactly 

transmission lines. The difference here is: as the TE or the TM waves travel across 

the layer, the magnitude of the waves decreases exponentially in the spectral domain. 
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The branches that correspond to the wave transmission in the layers in Figure 2.2 

are all exponential functions of q. In layer i, for instance, this signal flow branch 

is where D is the layer thickness and qj = + ) - 1c. When ) or 

A. are large, the branch becomes exponentially small. This means that the signal 

strength that reaches the next interface decreases exponentially with ) and ),. The 

amount that is reflected back is even smaller (double path). Also it is noted that, 

unless terminated with perfect conductor plane, the next interface does not give full 

reflections. As ) or Ay gets larger and larger, the Hertz dipole receives less and less 

reflected wave, and it is more and more as if the Hertz dipole is placed between two 

infinitely thick layers. A big advantage of this feature is that it enables one to derive 

asymptotic expressions for the multilayer Green's function. Basically, the method 

here is to treat a multilayer structure as one with two infinitely thick layers as the 

argument becomes very large, because when ) becomes large, the reflected wave from 

the next interface becomes exponentially small, and thus can be neglected. 

Therefore, the asymptotic expressions are based on the conditions 

and 

_2kDk _2k+1Dk+1 op• 0 

where the D's are the thickness of the two adjacent layers at the Hertz dipole. 

Under these conditions, the following asymptotic expressions can be drawn: 
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For the x directed electric dipole 

and 

j  2A 2 (k -  

47r2w(k + 6k+1) A A3 

jAA  2 (1c -  

4 2w(€ + fk+1)A + A3 

and for the y directed electric dipole 

Gxv 

and 

.' ' C) (72 - j2 

4ir2w( ( + + 6k+1) 'A A3 

j  2A (k -  k 1)A 

47r2w(k + 6k+1) A A3 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Note that they are actually exact Green's functions for a structure with two 

infinitely thick dielectric layers. As stated above, the asymptotic expressions are 

derived based on the condition that the dipole is radiating into two infinite dielectric 

hemispheres, in the spectral domain. Other dyadic elements' asymptotic expressions 

can be derived analogously. 

It should be noted that these asymptotic expressions are for the Green's functions 

only. The integrands in the calculation of the matrix elements in the moment method 

usually are the product of the Green's function, the base function, and the testing 

function, all in the spectral domain. To get a closed form analytical integration of the 

tail contribution, one also has to determine the asymptotic expressions for the base 

and the testing functions. Also noted is that the above asymptotic expressions are for 



52 

the cases where the source and the field are in the same plane in the structure. If they 

are not in the same plane, as in the analysis of multistrip circuits, the asymptotic 

expression can be simply assumed to be zero, because it decreases exponentially with 

A. 

2.6 Dyadic Green's Functions for a Magnetic Dipole 

In the previous sections in this chapter, electric and magnetic Green's functions for 

electric Hertz dipole have been derived. The electric and magnetic fields (Green's 

functions) generated by the Hertz dipole can be obtained by solving the signal flow 

graph shown in Figure 2.2, which can determine the longitudinal electric and mag-

netic fields. These are the following elements of the spectral domain dyadic Green's 

functions 

Ozx, zy Gzz fr, andft, 

where äZU are z directed electric Green's functions due to v directed Hertz dipole, 

and iI are z directed magnetic Green's functions due to v directed Hertz dipole. 

The tangential (to the horizontal plane) components can be derived from the 

longitudinal components, using Equation 2.33 through Equation 2.36. Therefore, a 

complete set of electric and a complete set of magnetic dyadic Green's functions of 

electric Hertz dipole can be determined. 

There are also dyadic Green's functions for the magnetic Hertz dipole. To general-
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ize the Green's functions in our program, a magnetic dipole dyadic Green's functions 

for multilayered structures are also derived. 

2.6.1 Derivation 

In the analysis of slot transmission lines and aperture microstrip antennas, where 

there are openings in infinitely large sheet conductors, magnetic current is usually 

involved. In this case, although the conductor with opening(s) is infinitely large, it 

can not be treated as a ground plane, because planar grounds do not have any open-

ings. The Green's functions for a structure that has a ground plane with openings 

are very difficult to derive, because the assumption that the structure is horizontally 

homogeneous and infinite is no longer valid. 

It is also impossible to use the moment method to determine the electric current 

on the infinite conductor surface with openings. 

To alleviate these difficulties, the electric field on the slot that is tangential to the 

plane, instead of the electric current on the conductor sheet, is used as the source. 

This is because the tangential electric field is nonzero only on the slot, a small, 

finite area. The tangential electric field can be treated as a magnetic current, by the 

equivalence principle [59] 

= i x E3, 

A physical magnetic current does not exist. As one can see, we are only using the 
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tangential electric field as a magnetic current, because in the Maxwell's equations, 

the tangential electric field on the surface that encloses the region of interest behaves 

like the magnetic current source on it. Although a mathematical assumption, the 

magnetic current can greatly simplify the derivation and the analysis, because the 

principle of duality (to electric current) can be applied now. An elementary tangen-

tial electric field is viewed by this equivalence principle as an elementary magnetic 

current source (magnetic Hertz dipole). The electromagnetic field generated by this 

elementary source is the Green's function for a magnetic Hertz dipole. 

If the tangential electric fields on the slot are already known, which means the 

distribution of the magnetic current is known, then the radiated field on each side of 

the sheet due to this known source can be computed separately on both sides, using 

the equivalence principle (to get the magnetic current) and the Green's function for 

a magnetic dipole. This Green's function is convolved with this known magnetic 

current distribution to get the total field. 

If the tangential electric field (or equivalently, the magnetic current) on the slot is 

unknown, such as in the cases of a slot line or aperture antenna analysis, the moment 

method should be used to determine the field distribution. First the distribution of 

the magnetic current is expanded according to the basis functions over the slot; 

then the assumed magnetic current is convolved with the Green's function for the 

magnetic dipole to get the total tangential magnetic field on each side of the slot; 

thirdly an equation between the tangential magnetic field on both side of the slot is 
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formed; finally the inner products are taken between the equation and the testing 

functions defined on the slot and a system of linear equations result. The solutions 

to the equations are the magnetic current distribution. The boundary condition that 

is enforced over the slot is that the tangential magnetic field be continuous. 

For any analyses of the slot lines, the aperture antennas, or like circuits, a mag-

netic Green's function has to be formulated. It can be derived as follows: 

1. The original problem is the radiation from an infinitely large conductor sheet 

with an aperture. The electric current occurs everywhere on the sheet except 

in the aperture, while the magnetic current (tangential electric field) is nonzero 

only in the aperture. 

2. To consider the radiation within an enclosed region, all the tangential fields on 

the surface that enclose the region are viewed as sources, and are sufficient to 

determine the field in the region (uniqueness theorem). The field outside the 

region can be assumed to be zero. 

3. Now consider an imaginary, infinitely large, planar conductor sheet brought 

into close proximity with the apertured conductor from outside of the area 

of interest. This imaginary sheet will short out all of the electric current 

on the apertured sheet (or it may be explained as the image of the electric 

current canceling out the real current). The magnetic current in the aperture, 

however, remains intact. The introduction of the infinitely large conductor 
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sheet is allowed because nothing enters the region of interest and the other 

side of the aperture has been assumed to have zero field. The change that 

this step introduces is that, now the problem is the radiation by the magnetic 

current in the presence of the infinitely large conductor sheet, while the old 

problem was the radiation by both electric and magnetic currents without the 

planar conductor. 

4. The remaining source in the region of interest is the magnetic current residing 

infinitely close to an infinitely large planar conductor. Since the conductor has 

no apertures on it, it can be viewed as a ground plane. 

5. Now consider the radiation by an elementary magnetic current in the slot, the 

Green's function for a magnetic Hertz dipole. Note the structure that the 

magnetic Hertz dipole "sees" is not exactly the same as the physical one. The 

original structure has been divided into two halves. The number of layers for 

the Green's function on the different sides may be different, and the inputs are 

always next to the ground. This is not the same as for the electric Green's 

function. 

6. Determination of the inputs to the altered structure are obtained by using the 

theorem of duality. As an example, the inputs due to an a directed magnetic 

dipole are 

4R2 qk + qk+i (TM) (2.47) 

be2= i  AY  
42 q + qk+1 (TM) (2.48) 
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bh1 = 1 kV qk+1  (TE) (2.49) 
47r2w qkpk-I-1 + qk+lpk 

bh2 =   (TE) (2.50) 
47r 2w qk[Lk1 + qk+1/k 

where yj = /.LOjrj. In practice, one can let qj = qk+1 and the distance between 

the dipole and ground plane be zero, and use the general signal flow graph Fig-

ure 2.2 and other relevant equations to get the final magnetic Green's function 

expressions. 

2.6.2 Boundary Conditions on the Slot and Aperture 

The boundary conditions for the openings on an infinite conductor sheet are not the 

same as that for strip problems. As one can see, the continuity of the tangential 

field across any interfaces should be enforced. One does not have to be concerned 

about the tangential electric field, because it has been considered as the magnetic 

current at the slot. Its continuity is guaranteed as the same magnetic current is 

assumed on both sides of the slot. The tangential magnetic field, however, has to 

be considered. The boundary condition here is that the tangential magnetic field 

has to be continuous across the slot [11][67]. It should be noted that one does not 

have to consider the boundary conditions over the slot and aperture until working 

on specific circuits, and this subsection is not part of the derivation of the Green's 

functions for a magnetic Hertz dipole. 

All the other properties of the magnetic Green's function are similar to the electric 
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one. No further derivation will be performed here, since in this dissertation, slot 

configurations are not given further consideration. 



Chapter 3 

Infinite Line Analysis 

Infinite line analysis is important in that it determines the characteristic impedance 

and the propagation constant of the microstrip transmission line, which are the two 

most basic and important parameters of a transmission line. Further microstrip 

circuit analyses will use these determined parameters. 

In this chapter, the current distribution on the microstrip is determined by ap-

plying the full-wave analysis with the moment method (Galerkin's procedure). The 

number of dielectric layers is arbitrary, the structure being described by the gener-

alized multilayer Green's function as derived in Chapter 2. For sub/super dielectric 

layer structures, frequency compensation is possible by properly choosing the thick-

ness and the dielectric constants of the layers. This is useful if transmission lines 

with low dispersion are required. 

The current is assumed to be varying along the transmission line with e i 

dependence, with k, the effective propagation constant, to be determined. It is 

also assumed that the current has longitudinal (along the strip) components only, 

because any transverse contributions have been proved to be very small (< —20 

—40dB) and can be neglected, if the width of the strip is not very wide[4] [45]. Also, 

59 
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the transverse directed current, if any, will be odd function over 'the width of the 

strip [68]. This odd function will not have significant contribution to the field until 

the strip width is significant in terms of the wavelength. 

Several combinations of current expansion are tested, and good agreement with 

measurement is observed. Some useful conclusions are drawn. 

The characteristic impedance of the transmission lines is also studied. Based on 

the ideas in the generalization of the Green's functions, a generalized transmitted 

power computation algorithm is developed. Using this algorithm, one can determine 

the characteristic impedance of a strip line in a multilayer structure. 

3.1 Formulation 

This formulation derives the algorithm for the calculation of the effective propagation 

constant ke, and the characteristic impedance Z0. 

Full-wave analyses of infinite microstrip transmission lines on single or double 

layer dielectric have been carried out by some researchers (see [4][5][69], for in-

stance). Most of them have obtained very good results for the propagation con-

stants. Hashimoto derived a closed form expression for Z0 for single layer microstrip 

lines [70]. In this chapter the generalized multilayer Green's function is used to 

compute the effective dielectric constant for microstrip transmission lines. Another 

important function—the generalized multilayer Poynting vector function—is derived 
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and implemented into a C++ program. This makes possible the analysis of virtually 

any kind of infinite microstrip transmission lines, which is especially meaningful for 

analyzing monolithic microwave integrated circuits (MMIC) and microstrip anten-

nas, where the structures are often multilayer and mutistrip with lossy dielectric 

media. 

Figure 3.1: A microstrip transmission line in a multilayer structure. 

The physical structure and the coordinate system used in this chapter are shown 

in Figure 3.1. There are n layers in the structure. The infinite microstrip resides at 

an interface between two layers and stretchs from x = —oo to x = +oo. The input 

wave is incident from x = —oo and propagates to x = +oo. 
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3.1.1 Electric Field 

If the current vector on the strip is assumed to have a longitudinal component only, 

i.e. no y direction current exists, then the current can be expressed as 

J('Y I) = on strip surface (3.1) 

0 otherwise 

where Iz(y') is the transverse (to the microstrip line) distribution of the current, and 

k is the effective propagation constant of the wave along the strip to be determined 

in this chapter. Ix(y') can be assumed to be the constant distribution across the 

width of the strip, or the Maxwellian distribution, or further expanded in term 

of the Maxwellian- cosine basis functions. All of these distributions are examined 

and compared in the following sections. The results are found to be in very close 

agreement with each other. 

The electric field at (x, y) due to the current in Equation 3.1 is 

Ex (x, y) = Jf G.. (X, yjx', y')J(x', y')dx'dy' (3.2) 

Note that only E is given in Equation 3.2. This is because 

1. E is not applicable in enforcing the boundary conditions on the strip; and 

2. A mathematical pre-manipulation shows that E becomes irrelevant (zero con-

tribution) as the moment method is applied, due to the symmetry of Ix(y'). 
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Equation 3.2 is the Pocklington integral equation [71] applied to the microstrip anal-

ysis [72]. 

3.1.2 The Characteristic Equation for ke 

The application of the boundary conditions on the surface of the strip, along with 

the use of the Green's function and the current distribution assumption, gives rise 

to the characteristic equation for the propagation constant ke. Usually the strip is 

assumed to be a perfect conductor. Nonperfect conductor strips, however, can also 

be accounted for by employing surface impedance boundary conditions[73]. 

Assuming that the strip is a perfect conductor, then boundary conditions on the 

strip surface specify that all tangential electric fields should be zero. If we constrain 

x and y to the surface of the strip, then the boundary conditions give the expression 

0 = ff G(x) ylx', y')J  (XI ) y')dx'dy' . (3.3) 

for 

Gxx does not have a closed form expression in the spatial domain. When transferred 

into the spectral domain, however, the Green's function can be expressed in a closed 

form (see Chapter 2). G then can be expressed as 

G(x, ylx', y') = If c(A3, (3.4) 
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Substituting Equation 3.4 into Equation 3.3, we get 

0 = jJ11 y)e(') ei h1 "d) 3d A , y')dx'dy' (3.5) 

for 

w w 
_OO<X< + OO,_ T < y < + . 

Substituting Equation 3.1 into the above equation, We get 

0 = J111 ã VX (As, A) e') e'''dx'dy' (3.6) 

for 

w  -OO<X<+OO---<Y<+ w 
j -2- . 

Interchanging the integration order and performing the integrations with respect to 

the variables x', y', and ), the following equation results 

= J (.7) 

for 

w w 
_OO<X< + OO,_ T < y < +T 

where 

= J I(y')e1'"dy' 
which is the 1-D Fourier transform of I (with a factor of 1/(2ir) different from the 

definition in Chapter 2). 

Equation 3.7 states that the electric field on the strip surface is zero (boundary 

condition for the conductor surface). To solve this equation, however, an inner 
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product has to be taken and evaluated. This is because Equation 3.7 also depends 

on y. The inner product is between the tangential electric field and the current that 

generates the field (Galerkin's procedure): 

<Es, J >= J EJdy = J & x(1ce, = 0 (3.8) 

where J' is the complex conjugate of J. 

Since the electric tangential field and the electric current are complementarily 

zero (one is non-zero only where the other is zero), the inner product is still zero but 

the specifications for the valid areas in Equation 3.7 can be removed. 

Equation 3.8 is the characteristic equation for the determination of the propaga-

tion constant k6 of infinitely long microstrip transmission lines. From this equation 

it is noted that the Green's function G, plays a very important role in describing 

the whole structure. The generalized Green's function includes all the possibilities 

of practical structures, and hence makes possible the analysis of microstrip lines in 

multilayer structures. 

3.1.3 The Characteristic Impedance 

Another important parameter for a transmission line is the characteristic impedance 

Z0, which, in case of TEM wave transmission line, is defined as the ratio of the 

traveling voltage wave to the traveling current wave. In microstrip configurations, 

however, a definition for a traveling voltage becomes problematic, since there is no 
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TEM traveling voltage wave. 

Using a method similar to analyzing the propagation constant ke, where a macro-

scopic effect of the waves is taken into account, the characteristic impedance can be 

defined by looking at the average power being transmitted. The definition thereby 

takes the form [74] 

2Pav 
(3.9) 

where P is the average power traveling in +x direction and I., is the total current 

flowing on the strip. This definition for the characteristic impedance makes use of 

the quantities that can be determined relatively easily ana accurately in the full-

wave analysis. The current can be obtained from the effective propagation constant 

analysis using the moment method; the power transmitted along the line is obtained 

from the integration of the Poynting vector. In time-harmonic case this power is 

defined as 

Pa,, = (1/2)ReJJ(EH: T EH;)dd (3.10) 

where the integrand is the average Poynting vector over a plane perpendicular to the 

direction of the propagation. 

Direct evaluation of Equation 3.10 is almost impossible, because field intensity 

values are required all over the plane, thus the inverse transform will have to be per-

formed everywhere. Fortunately Parseval's theorem [75] can be used [74] to simplify 

the procedure: 

Pay = irReJJ(Eyft: - Eft)dzd.A (3.11) 
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The following field components are needed in the integrand: 

Ey = 2irGyx(—k., .X)1)¼) 

= 2rG(—k, A)l(X) 

H: _21Hz*x f 
- ' e 

J1 = 27 H(ke, X)1(A) 

Since the z dependence of the integrand is of the exponential type, the spatial 

integration with respect to z in Equation 3.11 can be accomplished in closed form. 

This greatly reduces the evaluation time. 

A generalized version of this evaluation is developed. First the closed form expres-

sion for the spatial integration is derived similarly to the derivation of the generalized 

Green's function. Then the average power is obtained by numerically integrating the 

remaining part of the integrand in Equation 3.11, in the spectral domain. 

The generalized spatial integration is briefly described as follows. By examining 

the integrand in Equation 3.11, it is not difficult to find that the integrand depen-

dences on variable z are simply hyperbolic functions, which consist of exponential 

functions of z. Note that all field components can be derived from the longitudinal 

electric and magnetic fields, E and H, which are the superposition of their +z and 

—z traveling wave members. Therefore it is obvious that in each layer the integrand 

can be expressed as linear combinations of E, E;, H, and H;. All these four 



68 

components are exponentially varying with z. Their linear combinations and prod-

ucts are still z exponential. Thus the integrand can be integrated in closed form 

layer by layer. The determination of those z direction components are similar to the 

generalization of the Green's function. 

It should be noted that, since z components vary exponentially with qj and the 

latter increases with ), care must be taken not to take any positive exponential in 

the integrand, otherwise numerical instability occurs. For instance, if the thickness of 

layer i is Di and E; (z) is equal to A at z = 0 and B at z = Di > 0, and since this wave 

travels in —z direction it should be qz dependent. One should use, in the analytical 

integrand expression, E;(z) = , instead of E,, (z) = Aeqiz, because the 

latter grows exponentially as ) becomes large when the numerical integration with 

respect to ) is performed. (qi = + ) - 

3.1.4 Galerkin's Procedure and Moment Method 

The moment method is a very powerful tool in solving integral-differential equations. 

The basic idea is to expand the unknown function in terms of a series of known 

functions, called basis functions, with the complex magnitude of each one to be 

determined. This results in the linear combination of the basis functions in the place 

of the unknown function in the original integral-differential equation; another series 

of known functions, called testing functions, are then used to take inner products 

one by one with the altered integral-differential equation, which results in a system 
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of linear equations for the unknown complex magnitudes. Thus the moment method 

converts the integral-differential equation into a system of linear equations. The 

solutions to the latter form an approximated solution to the original problem. 

Galerkin's procedure is a special case of the moment method, in which the testing 

function series are chosen to be the same as the expansion functions. Since Galerkin's 

procedure uses only one set of expansion functions, and has good convergence be-

havior, it has become one of the most widely used procedures. This procedure has 

proved to be a good choice in the infinite line analysis and its modified version is used 

in the following chapters (in some of the following chapters the Galerkin's procedure 

has been modified to obtain better numerical convergence). 

3.2 Numerical Techniques 

3.2.1 Basis Functions 

Before the moment method can be applied, the transverse expansion series for the 

electric current on the strip, I(y'), has to be determined. There are four sets of 

basis functions that are frequently used in the literature. All of them are examined 

and compared in the analysis. They are 
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1. Constant distribution (one term only): 

i for ly'I< 
JL?J(Y') = I (3.12) 

0 otherwise 

2. Maxwellian distribution (one term only): 

fr   

0 

for ly'! ≤ 1f 

otherwise 

3 Maxwellian-cosine distribution (N terms, method 1): 

N I (m-1)iry' fr _(i   cos[ ( I for !'J ≤ 
n=1 V 'l ' EWI2  

0 otherwise 

4. Maxwellian-cosine distribution (N terms, method 2): 

(3.13) 

(3.14) 

N 
2-.j 1rW cos[ (n-1)2iry j ', for y' ≤ 1f 

(3.15) 

0 otherwise 

The uniform transverse distribution is the simplest. It is not the faithful repre-

sentation of the physical current distribution. But it is found in the analysis that 

it gives fast convergence and fairly good results, compared to the more complicated 

ones. The single term Maxwellian is better than the uniform one, because it has 

two poles at the edges of the strip which reflect the static nature of the transverse 

distribution. 

The multiterm basis functions can reconstruct the current distribution in detail. 

It should be pointed out, about the two multiterm basis, that (1) the two multiterm 
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Maxwellian-cosine methods reduce to Maxwellian distribution when N is chosen to 

be one; and (2) method 2 is actually just a subset of method 1. H-Y Yang [76] used 

method 2 to determine the current distribution. However, as will be shown later, 

the contribution of the terms omitted from method 1 (the even numbered terms in 

method 1) should not be neglected, because each even numbered term's magnitude is 

usually nearly an order of magnitude higher than that of the following odd numbered 

term. Therefore, for a multiple term current expansion, method 1 is preferred. 

3.2.2 Numerical Quadrature 

In all the cases above, improper integrations are required to evaluate the inner prod-

uct, which forms the elements of the matrix in the linear equations. It has the general 

form of 

zij (3.16) 

Most of the integration is done with numerical integration (numerical quadrature) 

techniques in the spectral domain. There are singularities corresponding to the TE 

and TM surface waves [77] along the real axis, if the medium is lossless [78]{79}. If 

the medium is lossy, the singularities will be no longer on the real axis. Instead, 

they are located in the fourth quadrant of the complex ). plane [80].. For single 

or even double layered structures, it is possible to determine the locations of these 

singularities by numerically solving a pair of transcendental equations [81][82]. In 

that case one can use pole extraction techniques to get their contribution (residues) 
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from those poles [83], and have a real axis integration with Cauchy principal inte-

gral, or. use steepest descent path method to finish the numerical integration [84]. 

For multilayered structures, where the transcendental equations for TE and TM 

waves are even more complicated, the locations of the singularities can be very diffi-

cult to determine, and therefore no reliable and efficient numerical methods can be 

used to accurately locate them. All we know about these singularities is that they 

lie between [k0, koVmax(rj)] [47]. There are also infinite number of leaky wave 

poles [85], which need be taken care of. But as long as the integration path does not 

cross the branch cut, no leaky wave poles will be caught in the numerical integra-

tion [86] [87] [88]. It has been pointed out in [44] that for a conductor-backed single 

layer structure, the solution ke to the characteristic Equation 3.8 is always greater 

than the highest possible TM or TE surface modes, and therefore there is no risk of 

encountering a pole along the integration path if the solution k is approached from 

A> iCe. However, for multilayered general structures and in cases of discontinuities, 

there is the possibility that poles will be encountered [89]. To avoid encountering 

singularities, the integration path is deformed into the complex domain [57], as path 

2 shown in Figure 3.2. The integration along path 2 is the same as along path 1, 

because there is no singularities in the area enclosed by path 1 and path 2, and by 

Cauchy's theorem [90], the loop integration should be zero. 

A branch cut is introduced at ±k0 if the structure is open. If, on the other hand, 

the structure is closed by top and bottom ground planes, no branch cut is needed, 

because the EM waves are trapped in' the structure [32]. 
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When the path is off the real axis, the integrand increases exponentially; therefore 

care must be taken as how far the path should be deformed in the imaginary part. 

For single layered structures, H-Y Yang found [91] that the maximum of Im) and 

Im(A) should be .02h, where h is the layer thickness. For multilayer structures, 

it is even harder to determine the amount of deformation. It is determined with 

trial-and-error in this dissertation. 

The integration from 0 to co is accomplished in two parts: [0,Q] and [Q,00]. 

The first interval gives the main contribution. The contribution from the second 

interval is less significant, and is called the "tail" contribution. For the first interval, 

the integration is performed numerically using the Romberg or' Gaussian-Legendre 

quadrature techniques; for the second interval, where for a converged integration the 

contribution is not as big as that from [0,Q], the asymptotic expressions are used to 

evaluate the tail contribution. 

Q is adaptively determined by the computer program. The program is first 

given a subinterval length for numerical quadrature, over which a 96-point Gaussian-

Legendre quadrature [92] is performed; then the program moves forward in +AY di-

rection by such a subinterval and performs the Gaussian-Legendre quadrature again; 

this step is repeated as the program integrates over one such a subinterval after an-

other. The results from these subinterval integrals are summed up to get the total 

integral. When the contribution from a new subinterval integration is found to be 

less than a pre-set percentage of the total integral, the numerical process is trun-



74 

cated, and the upper limit of the numerical quadrature Q is passed to the asymptotic 

expressions. The tail contribution is calculated as the integral of the asymptotic ex-

pression over [Q,00). 

3.2.3 Complex Root Searching 

The solution to the characteristic equation for k is a complex value for ke that 

makes the equation equal to zero. There is no input or excitation to the equation, 

i.e. the equation is homogeneous. The solution is found when the determinant of the 

coefficient matrix is zero or less than a given small value. This can be achieved by an 

iterative root searching process. If there is no loss in the dielectric layer or the strip, 

a simple Newton's method or interval-halving should suffice, because the solution is 

real for lossless transmission lines. For the general solution, however, a complex root 

searching algorithm should be employed to compute both the phase velocity and the 

attenuation for the transmission line. It is found that Muller's three-point method 

is an efficient root searching algorithm. It can be used for complex root, as well as 

real root searching, and it converges relatively quickly. Usually a convergence can 

be reached in less than five searches. 
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3.3 Results 

3.3.1 Convergence Tests 

The convergence of the infinite line analysis algorithm is tested on several microstrip 

transmission lines. As shown in this section, the convergence can be reached for just 

two basis functions, i.e. N = 2. Results from N > 2 are virtually identical (i.e. 

overlapping on the converged curve). 

The basis functions for the current expansion are either uniform or method 1, as 

listed in Section 3.2.1, method 2 will be used later for comparison in the following 

sections. 

Figure 3.3 through Figure 3.6 show the convergence of the propagation delay 

factors of four different transmission lines. The assumption of the uniform trans-

verse current distribution is a reasonable one since the calculated square root of the 

effective dielectric constants (the propagation delay factors, /) are very close to 

the converged values. The Maxwellian distribution, however, is a better assumption, 

because it has poles at the two edges of the strip which reflects the transversely static 

nature of the longitudinal electric current on the strip (a pole at the edge of the strip 

is called the edge condition). Actually, when N = 1, it is the exact solution if the 

strip is in a homogeneous medium space [4] [93]. 
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3.3.2 Calculated and Measured Propagation Constants 

Figure 3.7 shows the comparison of the computed square root of the effective di-

electric constant for a single layer alumina microstrip transmission line with the 

measurements made by Fordham[69]. The agreement between the measurements 

and the computations is very good. 

The algorithm is also applied to multilayer structures. As shown in Figure 3.8, 

a two layer microstrip transmission line is analyzed. The substrate is alumina and 

duroid. The relative permittivity of the bottom layer is 2.2, and the top one is 9.8. 

Again the agreement between the measured data in [69] and the computed data is 

very good. 

I also made measurements of the propagation for some lines. Figure 3.9 and 

Figure 3.10 show the square root of the effective dielectric constants of trans-

mission lines printed on single layer substrates. The first measurement (Figure 3.9) 

was made on a HP network analyzer at TRLabs, and the second one (Figure 3.10) 

was at Novatel Communications, Inc.. There are some big discrepancies between the 

measurement and the analysis in Figure 3.9. This is due to the nonidentical con-

struction of the circuits and the reference lines, and the noise in the measurements. 

The measurement techniques and the data analysis method are described in Chapter 

9. 
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3.3.3 Calculated Characteristic Impedance 

The characteristic impedances of these four microstrip transmission lines are also 

calculated. These results are shown in Figure 3.11 through Figure 3.14. 

The results from the quasi-static analysis are also plotted for the single-layer 

microstrip transmission lines [94]. There is no quasi-static data available for multi-

layer transmission lines. The big advantage of the SDA method is that it be used 

to analyze multilayer structures. Measurement of Zo is a difficult issue. Getsinger 

suggested three measurement techniques for the determination of Zo [95]. They 

seemed to work reasonably well at relatively low frequencies. It is known that the 

characteristic impedance of microstrip has very strong frequency dependence, which 

makes the modeling of the coax-microstrip transition difficult at high frequencies. 

Since there is a lack of reliable methods and standards, no measurements of Zo and 

have been attempted at high frequencies. 

3.3.4 A Note on the Choice of the Basis Functions 

As listed in Section 3.2.1, four basis functions were proposed. The results from 

three of them (#1 .' #3) have been used. Very close agreement has been achieved 

with observations for the propagation constant and the characteristic impedance 

calculations. Method 2 (#4) is a subset of the more complicated method 1. In 

other words, terms 1, 2, 3, 4 ... in method 2 are terms 1, 3, 5, 7 ... in method 
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1. The even numbered terms in method 1 are omitted in method 2. Method 2 has 

also been tried in the analysis. As expected, the results are in reasonable agreement 

with those obtained with other basis functions, because the first term, which is the 

most important one, is retained. Good agreement comes from the fact that the 

parameters computed are not very sensitive to the choice of the basis functions and 

the main terms (the first ones) of these two methods are the same. Since method 2 

is a subset of method 1, one may wonder if the terms omitted by method 2 are really 

insignificant. The best way to compare the difference is to apply these two methods 

to the same circuit and investigate the results. 

The comparison was made on one of the four circuits, with Cr = 9.8, h = W 

.025". The current distribution coefficients from the application of these two methods 

are tabulated in Table 3.1 (for N = 2) and Table 3.2 (for N = 3). It should be noted 

that since there is no input to the system of the infinitely long transmission lines, a 

set of the solutions to the characteristic equations are still solutions if they are all 

multiplied by a common factor. Therefore the magnitudes of the first terms of these 

two methods are both given a 1.0 to normalize the results. 

It is noted from these two tables that the terms omitted by method 2 are not 

insignificant. Take f = 1.000GHz as an example. If N = 2 (two terms are used), 

the magnitude of the second term is .2423 for method 1, and .1032 for method 2. 

Remember the second term in method 2 is the third term in method 1, which is not 

included if N = 2 and the second term in method 1 is not included in method 2. 
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freq. 
(GHz) 

method 1 method 2 
'2 12 

1.000 .2423 .1032 
3.000 .2420 .1034 
5.000 .2453 .1047 
7.000 .2522 .1071 
9.000 .2615 .1105 
11.00 .2746 .1156 
13.00 .2907 .1211 
15.00 .3078 .1271 
17.00 .3263 .1335 
19.00 .3459 .1403 
21.00 .3680 .1472 
23.00 .3901 .1543 
25.00 .4131 .1616 
27.00 .4367 .1689 

Table 3.1: Comparison of the current coefficients by two basis functions (N = 2) (W 
= .025" ) h = .025", e,. = 9.8). 

This means that method 2 has omitted a term which is .2423 in magnitude, and has 

included a less important (.1032 in magnitude) term. As a rule of thumb, the finite 

terms used in any numerical algorithm should be able to best represent the reality. 

If only two terms are used, these two terms should be the two most significant parts 

in the function represented. 

The same phenomenon is observed in Table 3.2 where the magnitudes of the 

terms in method 1 are generally larger than those in method 2. This means that 

method 1 can more faithfully represent the current distribution on the strip surface. 

Theoretically this means that in order for the moment method to converge fast and 
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freq. 
(GHz) 

method 1 method 2 

'2 13 '2 13 
1.000 .2939 -.0231 .0896 -.0294 
3.000 .2922 -.0223 .0911 -.0261 
5.000 .3009 -.0247 .0906 -.0298 
7.000 .3081 -.0247 .0932 -.0297 
9.000 .1855 .0338 .0960 -.0318 
11.00 .3356 -.0262 .1000 -.0331 
13.00 .3621 -.0309 .1047 -.0345 
15.00 .4049 -.0415 .1104 -.0352 
17.00 .4048 -.0331 .1152 -.0385 
19.00 .4298 -.0349 .1222 -.0379 
21.00 .4589 -.0377 .1270 -.0425 
23.00 .4900 -.0410 .1332 -.0445 
25.00 .5151 -.0414 .1396 -.0461 
27.00 .4993 -.0251 .1465 -.0470 

Table 3.2: Comparison of the current coefficients by two basis functions (N = 3) (W 
= .025", h = .025", e, = 9.8). 

effectively to the true solution, one has to use a basis functions set that is as complete 

and realistic as possible. 
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Figure 3.2: Deformation of the integration path into the complex domain. 



82 

10 15 
Frequency (GHz) 

20 25 30 

Figure 3.3: Convergence test for a single layer substrate transmission line (W = 
.025" ) h = .025", e, = 9.8). 
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Figure 3.4: Convergence test for a double substrate transmission line (W = .05", h1 
= .01", h2 = .025", Cri = 2.2, Cr2 = 9.8). 
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Figure 3.5: Convergence test for a single layer substrate transmission line (W = 
8.99mm, h = 3.175mm, e, = 2.55). 
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Figure 3.6: Convergence test for a single layer substrate transmission line (W = 
37.0mm, h = 12.7mm, e, = 2.40). 
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Figure 3.7: VZ, of a single layer substrate transmission line with measurement made 
by Fordham [69] (W = .025", h = .025", e,. = 9.8). 
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Figure 3.8: \/ of a double layer substrate transmission line with measurement made 
by Fordham [69] (W = .05", h1 = .01", h2 = .025", En 2.2) Cr2 9.8). 
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Figure 3.9: .../1 of a single layer substrate transmission line with measurement made 
at TRLabs (W = 8.99mm, h = 3.175mm, e, = 2.55). 
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Figure 3.10: of a single layer substrate transmission line with measurement made 
at Novatel Communications, Inc. (W = 37.0mm, h = 12.7mm, e. = 2.40). 
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Figure 3.11: Characteristic impedance of a single layer substrate transmission line 
(W = .025", h = .025" ) 6, 9.8). 
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Figure 3.12: Characteristic impedance of a double layer substrate transmission line 
(W = .05", h1 = .01", h2 = .025", 6r1 2.2, 6,2 = 9.8). 
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Figure 3.13: Characteristic impedance of a. single layer substrate transmission line 
(W = 8.99mm, h = 3.175mm, e = 2.55). 



93 

0 

90 

85 

80 

75 

70 

65 

60 

55 

50 

1.5 2 
Frequency ((3Hz) 

2.5 3 35 

Figure 3.14: Characteristic impedance of a single layer substrate transmission line 
(W = 37.0mm, h = 12.7mm, c,. = 2.40). 



Chapter 4 

The Open 1-D Discontinuities 

One dimensional microstrip transmission line discontinuities (hereafter referred to 

as 1-D discontinuities) include opens and gaps. They are so named because the 

geometry of the strip changes in only one dimension. See Figure 4.1. 

The analysis of 1-D discontinuities involves that of the semi-infinite transmission 

lines, and the local behavior of the current at the discontinuity. Therefore the anal-

ysis is more complicated than that of the infinite line, but still simpler than other 

discontinuities, such as corners, and Tees, etc. 

Opens can be used as tuning elements in filters, or as feeders to microstrip radi-

ating patches [96]. 

In this chapter, the formulae for the analysis of open circuits and some examples 

are given. Good agreement with measurements and/or other published results are 

achieved. The analysis of the gaps is similar and is carried out in the next chapter. 

94 
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4.1 Formulation 

4.1.1 Current expansion - Basis Functions 

Since an open is a combination of a semi-infinite line and an open end, the basis 

functions have to reflect this geometry. One common way of analyzing this sort 

of circuit is to make the length of the transmission line finite and truncate it after 

several guided wavelengths from the discontinuity {44]. A more reasonable method 

is to keep the line the way it is, and apply a combination of infinite line and local 

subdomain analysis. 

At the open end discontinuity, high order modes are expected to be generated, 

and consequently the current distribution there will no longer be sinusoidal. To 

represent the local current distribution at the open end of the transmission line, a 

series of subdomain piecewise-sinusoidal (PWS) basis functions is used. At a location 

far from the open end, the electric current behaves as if it is on an infinite line, and 

thus the traveling wave base function is also used on the whole strip surface. 

Although it is quite arbitrary in the choice of the basis and testing functions in the 

moment method [42], it is advisable to choose the basis functions that can smoothly 

reconstruct the true current distribution. Smoothness means the differentiability of 

the basis functions should be as high as possible. Askun and Mittra [97] point out 

that the differentiability in the direction of the current flow is more important than 

in the orthogonal direction. 
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If the width of the strip is not e1ectriclly wide (with respect to the wavelength of 

the wave), as is the case for most practical transmission lines, the current that flows 

transversely (with respect to the direction of the transmission) can be neglected [4]. 

Therefore the current on the strip is assumed to flow in the x (longitudinal) direction 

only. Since it is a surface current over the strip, the current distribution is a function 

of both x and y, although it flows in the x direction only. 

The transverse variation profile of the longitudinal current (the x direction cur-

rent) is also determined from the infinite line analysis. The moment method is used 

here to determine the current distribution at the open end, and the current magni-

tude and phase of the reflected wave on the strip far away from the discontinuity. 

The chosen basis functions are shown as follows: 

f(x', y') = 
f(y')P(x' - x) i= 1,2,.- -N.  at the open end area 

f (yl) e" i N + 1 on whole strip surface 
(4.1) 

where f,(y') is the transverse distribution of the current, assumed to be Maxwellian, 

and k is the effective propagation constant of the wave along the strip, determined 

by the infinitely long line analysis in Chapter 3; and P(x' - x) is the piecewise-

sinusoidal subdomain function defined as 

sinke(d—j '— jj) 
sin kd 

P(x' - x) = {  for x' — xJ<d 

0 otherwise 
(4.2) 

The PWS function is a roof-top function shown in Figure 4.2(a). The half length 

of the PWS functions d (d = lxi - x+  l) is determined by a trial-and-error method. 
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The smaller the d, the smoother the reconstructed current distribution, but the 

longer the computer time and the more such functions that are needed to reach a 

convergence. On the other hand, if d is too large, the basis functions will not be able 

to reconstruct the current distribution faithfully, and convergence is hard to reach. It 

is found that by letting d = O.O3Ae one can obtain satisfactory convergence without 

losing detail in the current distribution. The total number of PWS functions required 

depends on the convergence of the moment method. Therefore, PWS functions are 

placed into the line one by one starting from the open end. The total number of 

PWS's is increased as the convergence of the reflection coefficient is monitored. As 

soon as convergence is reached, the numerical analysis is finished. This dynamic 

procedure is elaborated on later in this chapter. 

4.1.2 Testing Procedure 

In the moment method, a series of testing functions has to be selected to form the 

inner products with the given equation where the unknown solution function has 

been expressed as a linear combination of the basis function series. Each testing 

function, when taking the inner product with the equation, gives a linear equation, 

the coefficients of the basis functions being theunknowns. This whole testing proce-

dure results in a system of linear equations. The resultant solution is a least squared 

error average of the true solution [42] [98]. 

The testing functions are applied in conjunction with the enforcement of the 
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boundary conditions on the transmission strips. The boundary conditions can be 

enforced only in the region where the testing functions are defined. Therefore the 

selection of the testing functions is very important. If the testing functions are chosen 

to be the same as the basis functions, it is called Galerkin's procedure (or Galerkin's 

method). There are two versions of Galerkin's procedure usually used in the spectral 

domain analysis method, the exact one and the modified one [44] [76]. The exact one, 

so called because it is uses the whole set of the basis function as the testing functions, 

which include the traveling wave function as well. The modified procedure uses the 

testing series to be all local PWS functions. The exact one tries to enforce the 

boundary condition all over the strip, including the semi-infinite strip because the 

traveling wave is used as a testing function. Since the traveling wave function is 

obtained from the infinite line analysis, the boundary condition of zero tangential 

electric field on the strip surface is automatically met at the area far away from the 

open end. This is because the strip distant from the open end is locally an infinite 

line—the field due to the current at the open end can be neglected. Therefore it is 

suggested that more attention should be paid to the open end area when enforcing 

the boundary conditions. Thus the testing functions should all be defined around the 

open end. Apparently the PWS functions are the best candidates. The procedure 

that results is a modified Galerkin's procedure. Since the PWS functions are local 

to the open end only, the modified method meets the requirement that boundary 

condition should be enforced there. 

Both exact and modified Galerkin's procedures are tested and compared in the 
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analysis in this chapter. 

Numerical results show that the modified Galerkin's procedure is less oscillatory 

as the number of the basis functions increases, and thus converges faster than the 

exact one. The reason behind this phenomenon is obviously that, as stated above, 

away from the open end, boundary conditions are self met due to the use of traveling 

wave basis functions, and the modified Galerkin?s procedure emphasizes the need to 

enforce the boundary conditions at the open end. 

42 Numerical Considerations 

4.2.1 Traveling Wave Decomposition 

The PWS basis functions are shown in Figure 4.2(a) (note that they are not drawn 

to scale). They are used to construct the high mode current distribution at the open 

end. Away from the open end, the local current distribution should be the same as if 

the strip is infinitely long. The traveling wave base function is used to represent the 

current away from the open end. It is decomposed into a sine and a cosine function, 

using Euler's formula [44]: 

= cos(Jcex') ± j sin(kx') (4.3) 

This decomposition is not simply to get a different mathematical expression. The 
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defined region for the cosine function has been altered. The sine wave goes from —oo 

to 0 in x, while the cosine wave goes from —oo to —.A/4 (see Figure 4.2(b)). 

The decomposition results from the consideration of the convergence. As shown 

in Chapter 3, the matrix element Zij always takes the form of a double integration 

of the product of the Green's function, the base function f, and the testing function 

fj, all in the spectral domain. It is not difficult to obtain the transform of the 

traveling wave over x1 E (—co) 0]. Some researchers [44][99] have pointed 

out that the decomposition is necessary to get rid of the non-zero end current of the 

cosine function. Actually, non-zero end current is not a problem, because a half-PWS 

function can be placed at s' = 0 to cancel it out. It is found that a decomposition 

has to be performed to obtain better convergence, because the transforms of the sine 

and the cosine functions decrease with );2, while the transform of the exponential 

function varies with );1 only. 

The comparison of the transforms of decomposed and undecomposed traveling 

wave basis functions can be found in Appendix A. 

4.2.2 Step-Up Procedure 

The numerical procedure is very time consuming. Some parameters have to be 

determined by trial-and-error. In practice, some of them do not have to be changed 

once appropriate values are found. The half length of the PWS function d, for 
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instance, has to be determined before any matrix elements can be calculated. It is 

a trade-off between computer time and accuracy. The smaller the d, the more PWS 

functions that have to be placed in a given area, and thus the more faithful the 

re-construction of the current, and of course, the more the computer time that will 

be required. It is found that choosing d to be .O3Ae is a reasonable trade-off [100]. 

Once this is determined, it will be used in all the following analysis. 

Another hard-to-decide parameter is the total number of the PWS functions in 

the moment method, or in other words, the order of the matrix. It is conceivable that 

the farther away a location is from the open end, the lower the magnitude of the PWS 

function there, because the high order mode currents set up by the discontinuity get 

attenuated some distance away from the open end. 

The user is in more control if he can view the process of the convergence. A step-

up procedure is therefore suggested here which increases the number of the PWS 

functions one at a time. The convergence is printed as the function of the number 

of the total PWS. If convergence is reached, the user can terminate the program, 

or the program can do it automatically. By printing out the convergence progress, 

the program can let the user monitor how the program works, making it easier to 

debug the program. This step-up procedure can be quite easily realized by writing 

a shell script file on UNIX system. In addition, if the computer breaks down during 

the analysis, only one matrix element will be lost, because all the previous runs 

have already finished and the reusable datum have already been saved. The user 



102 

can restart the process from where it was abnormally terminated very easily. The 

program will only compute whatever it can not find in the data bank. 

It is found that a total coverage of .5 .7 guided wavelength gives convergence 

of a few percent variation or less. This length is equivalent to approximately a total 

of 20 "-' 25 PWS functions. 

4.3 Matrix Formulation 

4.3.1 Derivation 

The moment method is used to determine the current distribution by the following 

procedure. First the tangential electric field is formulated from the Green's function 

and the assumed current distribution, as follows 

N 

= if GXX (J - PJ + >If)dx'dy' 
n=1 

(4.4) 

where J1 is the input current source incident from x' = —oo with unit magnitude; 

Jf is the reflected. wave from the open whose magnitude r is to be determined, and 

the function is different from the incident wave only for the sign of ice; and f's are 

the PWS functions, whose magnitudes I, are also to be determined. 

As soon as the tangential electric field is formulated, the next thing to do is to 

determine the testing functions. The choice of testing functions determines where 
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and how the boundary condition on surface of the strip is enforced. I have used both 

exact and modified Galerkin's procedures. For the modified procedure the testing 

functions are all PWS. Since there are N + 1 unknown magnitudes (N PWS's and 

one r) but only N PWS's, another PWS has to be added. This one is chosen to be 

one more step from the last base PWS function, bridging the PWS basis and the 

pure traveling wave areas(x = (N + 1)d). In this configuration, the area covered by 

the testing PWS functions is larger than that covered by the basis PWS functions, 

by half the length of a PWS function. 

The final matrix forms of the moment method are shown in Equation 4.5 and 

4.6, respectively, that is 

r'7NXN1 fqNxli frNxl 
V'pp J V'pR J Vp 

ro-lxNi r''lxl 
V-Rp J t'RR 

for the exact Galerkin's procedure, and 

F r(N..i)xNi [Z 1)<1]] 
L1 i 

for the modified Galerkin's procedure. 

I 
I = - I 1V(N) 

L I 

(4.5) 

(4.6) 

It is noted that the only difference between the two equations is the last row 

in the matrix, which results from the different choice of the last testing function, a 

traveling wave or a PWS function. 
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The matrix elements are defined as follows: 

+00 P+00 

zm=  (4.7) 
-OO 

+00f +00 

pR = 1  (4.8) 
J-00 OO 

'7fl - '7fl 

- L/pR 

I'+OO I 

+ZRR =  ax ()s j, cos(----))dAdA 
OO  .00 

1-. 
+00J-00 +00 

c2=  XY)fi( Y  /,(A)6_mdAdA, U 

and 

where 

(4.9) 

(4.10) 

(4.11) 

+00 +00 -. 

VRI = 2j L00 (4.12) 

- 21cc  cos(kd) -  cos(Ad)  
= sin(kd) A  i2 

X 

(4.13) 
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= Jo()), (4.14) 

and 

O 
= (e 2ke + j) f sin(kex)e'dx, 

oo 

0 

frx (Ax)= (e 2ke -j) I sin(kex)e''dx, 
J—oo 

(4.15) 

(4.16) 

[ OO 0 sin(kx)e_'kdxdx =  2 2 + [6(w + k) - ö() - ks)]. (4.17) 
J 

The function ),) is the spectral domain Green's function which is ob-

tained from Chapter 2. Since it is generalized, this analysis is applicable to multi-

layer microstrip opens. One only has to change the description of the structure and 

the width of the strip to analyze a microstrip in a new structure. 

The S functions in the last expression shown above should not cause any problems, 

because when substituted into the integrand, it samples Ax at ±ke, and the rest of 

the integral is with respect to ) and should be zero, which is the root searching 

result in the infinite line analysis. 
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4.3.2 The Toeplitz Matrix 

All the integrals for the elements above can be simplified into two semi-infinite in-

tegrals, and then transformed into polar integrals which consist of a finite integral 

and an infinite one. This can significantly reduce the time taken for evaluation of 

the integrals. 

It is also noted that the submatrix [Z] is a Toeplitz matrix, which means that 

if the first row is known, the rest of the matrix can be determined by using the 

expression 

zij = (4.18) 

This reduces a great amount of computation time. The fact that this matrix 

is Toeplitz comes from the layout and the numbering of the PWS functions along 

the line (Figure 4.2). From the element expression Equation 4.7 it is noted that 

the element values are determined by the distance between the two PWS functions 

involved. 

The submatrix [ZR ] is the same as [ZPR], thus the whole Z-matrix is symmetrical 

for the exact Galerkin's procedure, but asymmetrical for the modified one, due to 

the fact that the testing functions are not exactly the same as the basis functions. 
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4.4 Results 

If one is concerned only with the circuit performance, then finding only the reflection 

coefficient is sufficient. However, the moment method analysis can reveal more in-

formation. The current distribution at the open is determined from the magnitudes 

of the PWS functions. If, for instance, a microstrip antenna is being analyzed, the 

current distribution is very important in determining the radiation pattern. Since 

this dissertation deals only with the circuit performance of the microstrip disconti-

nuities, we shall restrict our considerations to the magnitude and the phase of the 

reflection coefficient and other network parameters. 

4.4.1 Comparison of the Two Galerkin's Procedures 

The results form the two Galerkin's procedures - the exact one and the modified 

one, are shown and compared in this subsection. 

Figure 4.3 shows the convergence behaviors of the two procedures for an open 

circuit at 20GHz. The vertical axis is the magnitude of the reflection coefficient Irl 

and the horizontal one is the number of PWS functions used. It is clear that the 

modified procedure is far better than the exact one, which converges much more 

quickly. The exact procedure, on the other hand, is still lightly oscillatory over the 

range of the analysis. After first a few trials (N < 8), the modified procedure gives 

stablized results and reaches convergence as soon as the number of PWS's is over 8. 
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It is expected that many more PWS functions are required for the exact Galerkin's 

procedure to reach the same convergence, since the oscillation decays very slowly. 

The critical number of PWS functions, where convergence starts, is readily ex-

plainable, if one takes a look at the traveling wave truncation at the open end. Recall 

that the cosine part of the traveling wave starts one quarter of an effective wave-

length away from the open end, and the length of each PWS function is .03 of an 

effective wavelength. Eight PWS functions are just enough to cover the gap between 

the tip of the cosine wave and the open end, making the current continuous from the 

open end to —cc. 

It is noted that even for the modified Galerkin's procedure, there is still some 

residual oscillation about a stable value. This phenomenon can be due to the fact that 

the number of PWS functions is not large enough to totally cover all the high order 

mode area, or the size of each PWS function is not small enough to reconstruct the 

local current distribution in fine detail. As discussed before, this is simply a trade-off 

between the computation time and the accuracy. A better result can be obtained by 

having some after processing of the results. For instance, the average value in the 

oscillation can be extracted from the convergence plot, and can be taken as the final 

converged value. 

Another comparison is made for the phase convergence of the reflection coefficient 

ZIP, shown in Figure 4.4. This is the same board at the same frequency as the one 

above. Although the modified Galerkin's procedure starts with very poor output for 
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the first few tests, it reaches the convergence very quickly and demonstrates good 

stability once it reaches convergence. The exact procedure, on the other hand, is 

again somewhat oscillatory. 

From the two figures shown, it is clear that the modified Galerkin's procedure is a 

better choice, because the importance of the local boundary condition is emphasized. 

For locations far away from the open end the boundary condition is automatically 

met due to the choice of the traveling wave base function. It should be noted that 

the modified Galerkin's procedure provides poor output for the first a few tests, due 

to the small area covered by the PWS functions. As the number of PWS becomes 

large enough, the convergence is smooth and stable. This is understandable because 

the staggered cosine and sine combination (Figure 4.2) is not a real representation 

of the traveling waves Many PWS functions and the staggered cosine and 

sine are required o obtain a full reconstruction of the traveling wave and the local 

current. 

4.4.2 Convergence Test 

The convergence test is always important, because this tells the user how the algo-

rithm output varies as the number of the PWS's increases. The program should be 

terminated as soon as the pre-set convergence criteria is met, since any further effort 

is unnecessary. 
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Figure 4.5 and 4.6 show the convergence response of a microstrip open on a 

single board. The frequency is set to 10GHz. All the other parameters of the board 

are the same as in Figure 4.3. Also shown is the convergence behavior of the exact 

Galerkin's procedure. This is another demonstration that modified procedure is a 

better choice. Figure 4.5 shows that an accuracy of about .3% for the magnitude 

can be achieved if N is chosen to be around 20, or making the PWS coverage about 

.5),. For the same PWS coverage, phase accuracy of less than 10 can be achieved 

(Figure 4.6). 

As the frequency increases, the total number of the PWS's may have to be in-

creased. This is understandable because the higher the frequency, the greater the 

high order mode waves with greater amplitudes, and consequently the farther they 

travel before vanishing. It should also be noted that the higher the frequency, the 

shorter the guided wavelength, and the smaller the covered area by the same number 

of PWS's. 

These effects are shown in Figure 4.7 and 4.8, where the convergence of the 

magnitude and the phase are plotted. In these two figures, only the results from the 

modified Galerkin's procedure are plotted. As the frequency is increased from 5GHz 

to 25GHz, the magnitude and the phase become more and more oscillatory, which 

suggests that at high frequencies, more PWS functions should be employed in order 

to achieve high accuracy. 
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4.4.3 Comparison with the Measurement 

Figure 4.9 plots the phase of the reflection coefficient for the same circuit together 

with the measurement made by Gronau and Wolff [101]. As the figure shows, the 

agreement is reasonably good. The magnitude of the reflection coefficient for this 

open circuit is plotted in Figure 4.10. Since measurement data is not available for 

the magnitude, only the calculated data is plotted. 

Results for another open circuit are plotted in Figure 4.11 and 4.12. The magni-

tude and its phase as a function of the frequency show trends similar to those shown 

by other circuits. It is clearly shown that the higher the frequency, the smaller the 

magnitude of the reflection, and the more negative its phase. This clearly demon-

strates the effect of the radiation loss at the open end, and the so-called extension 

length (excess length) beyond the physical end of the line. Since the electrical size 

of the open end increases with the frequency, the return loss increases with the fre-

quency. It should also be noted that the radiation loss includes the radiation into 

the medium as surface waves, as well as into the free space as space wave. 

The calculations from Touchstone[102], a commercial circuit analysis package, 

are also plotted along with the results from this theory. Touchstone uses a model 

developed by Kirschning et al [103], with modifications, which is based on quasi-static 

analysis. Good agreement was obtained in Figure 4.12 over a reasonable frequency 

band. At very high frequencies, however, a significant discrepancy was observed. It 

is notable that Touchstone model failed to predict any change in the magnitude of 
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the reflection coefficient - it simply gave a constant unit magnitude as shown in 

Figure 4.11. This is due to the static nature of the model used in Touchstone, which 

does not fully account for the high frequency response of the circuit. Also notable is 

the phase change with frequency. Touchstone model simply predicts that the phase 

linearly decrease with frequency as shown in Figure 4.12, which is resulted from a 

fixed extension length. The SDA, on the other hand, gives a nonlinear change, which 

indicates that the excess length is not a fixed value. 
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(a) Open 

(b) Gap 

Figure 4.1: A microstrip transmission line open and gap discontinuities. 
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Figure 4.2: Basis functions for the open circuit. 
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Figure 4.3: Comparison of the two Galerkin's procedures for Iii for an open ended 
line (freq = 20GHz, W = .60mm, h = .635mm, e, = 9.9). 
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Figure 4.4: Comparison of the two Galerkin's procedures for Zr for an open ended 
line (freq = 20GHz, W = .60mm, h = .635mm, e, = 9.9). 
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Figure 4.5: Convergence test for the two Galerkin's procedures for jri for an open 
ended line (freq = 10GHz, W = .60mm, h = .635mm, e, = 9.9). 
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Figure 4.6: Convergence test for the two Galerkin's procedures for Zr for an open 
ended line (freq = 10GHz, W = .60mm, h = .635mm, e, = 9.9). 
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Figure 4.7: Frequency response of convergence for modified Galerkin's procedure fOr 
Fl for an open ended line (W = .60mm, h = .635mm, e, 9.9). 
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Figure 4.9: Calculated reflection coefficient (LF) for an open ended line with mea-
surement made by Gronau and Wolff [101] (W = .60mm, h = .635mm, c, = 9.9). 
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Figure 4.10: Calculated reflection coefficient (IFI) for an open ended line (W = 
.60mm, h = .635mm, 6, = 9.9). 
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Figure 4.11: Calculated reflection coefficient (IFI) for an open ended line: SDA and 
Touchstone (W = 8.99mm, h = 3.175mm, e, = 2.55). 
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Figure 4.12: Calculated reflection coefficient (Li') for an open ended line: 'SDA and 
Touchstone (W = 8.99mm, h = 3.175mm, c, = 2.55). 



Chapter 5 

The Gap 1-D Discontinuities 

In this chapter, analysis of microstrip transmission line gap discontinuities is dis-

cussed. Since the analysis is similar to that of the microstrip open, the discussion 

will emphasize those features unique to the gap. 

A microstrip transmission line gap is shown in Figure 4.1(b), in Chapter 4. The 

gap can be viewed as two opens face to face, with some distance between their open 

ends. Therefore, the analysis of a gap can then borrow the techniques used in the 

open circuit analysis. 

Since a gap consists of two semi-infinite transmission lines and two open ends, 

more computation time is needed for gap analysis than for the open. Computation 

time is not doubled since the reactions between elements on each branch are the 

same and need not to be re-computed. The extra time needed is to calculate the 

reactions between the elements on opposite sides of the gap. 

125 
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5.1 Formulation 

5.1.1 Basis and Testing Functions 

First, a traveling wave is incident from x = —oo to x = 0 on strip 1. It is partly 

reflected back to x = —oo, and partly transmitted over the gap to the other side 

and travels on strip 2 to x = +00. In this case, there will be three traveling waves 

occurring on the strip, namely, incident f', reflection fR, and transmission fT. 

Secondly, the current at the discontinuity is not distributed the same way as 

on the regular lines. High order modes are produced by the discontinuity. This 

irregularity will be accounted for by the PWS functions again. It is expected that 

the high order mode currents will disappear at points distant from the gap, thus the 

PWS functions will be restricted to the gap region only as shown in Figure 5.1. Also, 

the number of PWS functions is increased one by one until convergence is reached. 

(Note that Figure 5.1 is not drawn to scale) 

As observed in Chapter 4, the modified Galerkin's procedure for the moment 

method has been found to be superior to the exact one. Thus in this chapter the 

modified Galerkin's procedure is used without further comparison. In the case of a 

gap analysis, the number of unknowns will be (2 x N) + 2, where N is the number 

of PWS functions on each branch. So there are (2 x N) PWS plus 2 traveling wave 

(one reflection and one transmission) unknowns. The modified Galerkin's procedure 

needs two more testing functions to form a system of linear equations. They are 
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(a) PWS Funétions 

(b) Traveling Wave Functions 

Figure 5.1: Basis functions for the gap circuit. 

chosen to be PWS's as well which center at the edges of area covered by the basis 

PWS functions on each branch, respectively. This arrangement makes the testing 

area cover the basis PWS function area. The boundary conditions are thus enforced 

only in the gap region, as the traveling wave self-enforces the boundary condition on 

the regular lines away from the gap. 
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5.1.2 Matrix Formulation 

Using the modified Galerkin's procedure, the matrix form of the moment method 

takes the form: 

L Z(N+1)XN1 [Z1)><1] r2(N-l-1)xNi [Z (N+l)Xl] 
Ipp J L psp J 

Irz(N+i)xNi [Z''<1] rz(N+1)xN1 [Z'11} 
1 pp J 

ITNX1 
12p1 

r 

vNX 1 
p2 

T 

(5.1) 

One half of the above equation is from the open analysis, which in this equation 

are the two diagonal blocks of the coefficient matrix, and the top half of the voltage 

vector. The expressions for these matrix elements have been shown in Chapter 4, 

and will not be re-written here. It is noted that this formulation takes advantage 

of the fact that the two branches are of the same width, and therefore the reactions 

between the PWS's on one branch are the same as those on the other. The same is 

true for reactions between the PWS's and the traveling waves. 

The rest of the equation is introduced for gap analysis. The remaining blocks of 

the coefficient matrix are the reactions among the PWS's and the traveling waves 

across the gap; the bottom half of the voltage vector are the reactions between the 

testing PWS functions on the output branch and the incident traveling wave. The 

matrix elements that are first introduced in this chapter are as follows (note that the 
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PWS's are symmetrically numbered from the gap): 

00 + 00 + 

- I f cos[(rnd + rid + s)A}d)dA PMIP -  I 
./-00 J—OO 

P+00 +00 

Z= / J -I ' (AxUAy 

./-00 —00 

and 

a+O0 '+00 

T' 1  G22l7¼, Ày) dAdA 
F-0O J-00 

where again 

0 

= (e jrA2ke +j)f—co sin(kx)e3'dx 

and 

[0 sin(k0x)edx = 2 + + 1cc) - 6(A - 

J-00 AX 2 

The numerical procedure to obtain the matrix element values is the same as in 

Chapter 4, where a 2-D numerical integration is performed. Making careful observa-

tions of the properties of the matrices can save a lot of computer time. The reactions 

between PWS's in diagonal blocks [Z' 1)<'] are Toeplitz, as pointed out in Chap-

ter 4. Only the first row needs to be calculated. The cross-gap reactions [Z 1)<N] 
SP 

have a similar symmetry. Elements in this sub-matrix have the same value if they 
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are on a same line that is parallel to the cross diagonal line. So if the main diagonal 

and the next parallel sub-diagonal elements are known, the rest of the matrix can 

be determined, using the expression 

zi,j = 
if (i +i) is even 

Z(i3_1)/2,(ij1)/2 if (i + j) is odd 

5.2 Results 

5.2.1 Convergence Test 

It is important to apply a convergence test for all numerical processes. In a manner 

similar to the microstrip open analysis, the gap analysis uses the step-up procedure 

to test for convergence. The number of the PWS basis functions on each side of the 

gap increases one by one from zero until convergence is reached. 

In the previous chapters, the transverse distribution of the longitudinal current 

was chosen to be Maxwellian. This is based on the infinite line analysis. The 

uniform transverse distribution is easy to handle by it is not the reflection of the 

physical distribution [69]. The multiterm Maxwellian-cosine distributions are better 

because they reflect the static nature of the transverse distribution of the current. 

The transverse charge distribution is like in the static field case, where most charges 

are pushed to the edges of the strip by their electric field. The choice of the basis 

functions is in reality a trade-off between computer time and accuracy. It is found 
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Figure5.2: Comparisons of the three different transverse distributions (ITI) (freq = 
5GHz, W = .508mm, s = .04mm, h = .508mm, e, = 8.875). 

that the uniform distribution is not in good agreement with the measurement, but the 

Maxwellian choice in most cases can faithfully give the correct answer. The question 

is, will this distribution still be good enough when applied to the 1-D discontinuity 

analysis? It is found to be true after the convergence investigation. As an example, 

the results from using three different transverse distributions are shown in Figure 5.2 

through 5.5. The frequency is 5GHz. The gap distance is 0.04 mm, and the board 
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parameters are shown in the figures. 

It is noted from these figures that uniform distribution gives the best convergence 

(the least oscillatory curve), as far as results stability is concerned. However, care 

must be taken not to be fooled by this convergence, because this convergence is 

obtained based on a loose assumption - the uniform distribution (see Chapter 3). 

The other two distributions, single term and multiple term Maxwellian, agree with 



133 

-10 
0 5 

.508mm m0 .04mm 

- 
h1 0.508mm 

15 
number of PWS's 

Uniform - 

Maxwellian (single) 
Maxwellian(multi)   

20 25 30 

Figure 5.4: Comparisons of the three different transverse distributions (Zr) (freq = 
5GHz, W = .508mm, s = .04mm, h = .508mm, r = 8.875). 

each other very well. They follow the same oscillating trend. Detailed plots show 

that the multiple term oscillates less in magnitude than the single term, indicating 

the multiple term is more accurate. On the whole, the Maxwellian is still a valid 

choice for the transverse distribution. 

Using a single Maxwellian distribution and 26 PWS basis functions on each side 

of the gap, the accuracy of the magnitude of the reflection coefficient is better than 
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1% (Figure 5.2), the phase variation is less than 10 (Figure 5.4). For the transmission 

parameter S21 or T, the relative convergence is not as good as for the reflection. Its 

magnitude varies between 0.05 to 0.06 (Figure 5.3). This large relative variation 

is due to the fact that the magnitude of T is so small that it has less effect than 

the reflection coefficient in the convergence test process. In cases like this, where 

there is a nearly-zero parameter with some large ones, care must be taken to get 
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even convergence. One way of getting less varying T is to tighten the convergence 

criteria, but it will inevitably prolong the numerical process. A better way is to 

pre-magnify T by multiplying it with a large weighting factor to make T the same 

amplitude as F. When convergence is reached, both r and T will have the same 

relative variances. 

Also noted in these figures, the gap changes the transmission properties signifi-

cantly no matter how small the gap is. Even if the gap size is practically zero, there 

is still a discontinuity in current flow. A high frequency wave can be coupled over 

the gap and transmitted to the other end. The lower the frequency, the higher the 

reflection that is expected. This is shown in the following discussions. 

5.2.2 S-parameters as a Function of Frequency 

Figures 5.6 through 5.9 show the response of a microstrip transmission line gap as 

a function of frequency, together with our measured data. The gap size is chosen to 

be 2.0 mm. The frequency is spanned from 2GHz through 20GHz. 

For the purpose of comparison, the calculated reflection coefficient for a pure 

open on the same board and with the same line width is also plotted along with 

the calculated and the measured gap response (Figure 5.6 and 5.7). Also plotted 

are the results obtained with Touchstone[102], which uses a gap model developed by 

Hammerstad [104]. 
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Figure 5.6: Reflection coefficient irl as a function of frequency for a gap (W = 
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For the magnitude of the reflection coefficient (Figure 5.6), the results from the 

open and gap analyses are very close to each other. The small discrepancies can be 

due to the presence and absence of the output branch. The SDA method results are 

shown to be very close to the measurement. It is noted that Touchstone predicts a 

stronger reflection than the SDA algorithm. This can be due to the fact that the 

model used in Touchstone is not a full-wave model and can not fully account for all 
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the EM wave behaviors. For instance, it is to be expected that any discontinuities 

will radiate power into the substrate and free-space, which results in lossy circuit 

model. However, Touchstone does not give any prediction of the power loss into free 

space and the substrate - its model is lossless. The difference as regards the power 

loss will be discussed and shown later. 

The magnitude of the transmission ITI (Figure 5.8) shows good agreement be-
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tween this theory (SDA) and Touchstone, except that at very high frequencies (rela-

tive to the dimensions of the circuit) the discrepancy becomes significant (0.75/0.62 

at 20GHz for this circuit). It is noted that the measured data closely follows the SDA 

simulation up to 18GHz, which is an indication that the SDA method works well 

for the gap analysis. The oscillation in the measured data can be due' to the finite 

size of the substrate board, which can cause surface waves to be reflected back and 
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Figure 5.9: Transmission coefficient LT as a function of frequency for a gap (W = 
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forth. These reflections can be either constructive or destructive. The measurement 

method will be discussed later. 

As far as the phase is concerned, the spectral domain method and Touchstone give 

very close phase predictions for reflection coefficient. The reflection phases obtained 

with/without the output branch (gap/open) are close to each other (Figure 5.7). 

The measured reflection phase, however, is in poor agreement with the simulation. 
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This discrepancy is caused by the poor fabrication of the circuit. The measure-

ment accuracy of the reflection depends on how much the two connector-microstrip 

transitions are similar to each other. See the following section for details about the 

measurement method. 

For the transmission phase, a big discrepancy was observed between SDA and 

Touchstone predictions (Figure 5.9). The agreement between the measurement and 

SDA simulation, however, is very good. This further that the spectral domain 

method is a reliable analysis technique. 

Figure 5.10 shows the relative power loss of the gap which is defined as 

D _ i - c11 - ' 2 2 
- ' o21 

The SDA method predicts that there is power loss into the substrate and free space. 

the Touchstone model, on the other hand, fails to predict this loss. The SDA also 

predicts a non-monotonic change of the power loss with frequency. The power loss 

does not increase after 15GHz. Instead, it starts to decrease. An interpration of this 

behavior is that as frequency gets higher, more and more high modes are created, 

which are launched into the substrate as surface waves. The surface waves are picked 

up by the strip on the other side of the gap. Therefore the total coupled power is 

increased, and the total power loss into the substrate and free-space is decreased. 

It is notable that the discrepancies between the SDA method and the Touchstone 

model are not consistent. The magnitude of the transmission agrees very well, but 
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Figure 5.10: Power loss as a function of frequency for a gap (W = 8.99mm, s = 
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that of the reflection does not. The reverse is true for the phase: the phase of the 

reflection agrees well, but that of the transmission has poor agreement. It is con-

ceivable that the Touchstone models only emphasizes certain aspect of the problem 

(recall that, in the open circuit analysis, the Touchstone model failed to show any 

change of magnitude of the reflection with frequency but the phase prediction was 

very good). It is understandable that in the early days the microwave engineers were 
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mainly concerned with the phase of the reflection coefficient for an open circuit, and 

the power coupled across a gap for a gap circuit. Touchstone can only go so far 

to accommodate these needs. On the other hand, the spectral domain method is 

a full wave analysis, which uses rigorous formulation to cover all the aspects of the 

analysis. The power loss was accounted for as surface wave into the substrate and 

as space wave into free space. All the EM wave coupling mechanisms are inherently 

included in the spectral domain analysis. It is thus believed that the data obtained 

with the spectral domain method are more reliable. 

5.2.3 S-parameters as a Function of Gap Distance 

The behavior of the S-parameters is also analyzed as the size of the gap changes 

by varying the gap size from 0mm to 10mm. The transmission line width and the 

substrate height are the same as the circuit shown in Figure 5.6. The frequency was 

chosen to be 10GHz. The results are shown in Figure 5.11 through 5.14. Again, the 

results from Touchstone are plotted along with the measurement. 

It is noted that, as far as the SDA analysis is concerned, zero gap size is not the 

same as no gap in an infinite transmission line. Zero gap size is an infinitely small gap, 

whereas no gap is an unbroken transmission line. For zero size gap, the current is not 

continuous, and the traveling wave on the other branch is coupled electromagnetically 

over the gap. Therefore, it is not a full transmission. The reflection is also non-zero. 
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W = 8.99mm, h = 3.175mm, e, = 2.55). 

As the gap size increases, the reflection S-parameters of the gap tend to become 

constant values, which are found to be the values of the open circuit of the same line. 

This is a good way of verifying the algorithm, because the input branch virtually 

faces an open if the gap size becomes big enough. 

Good agreements between the measurement and the analysis have been observed 

for Ii, ITI, and LT, except for Zr, where big discrepancy is observed. Again, it is 
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probably due to the assumption in the measurement that the two transitions are the 

same. See the measurement section for further discussions. 

The power loss of the gap is also shown as a function of its size in Figure 5.15. 

As is shown again, the Touchstone model failed to predict any power loss by the 

gap discontinuity, while the SDA gives a changing power loss. As expected, the 

power loss increases monotonically with the size of the gap. This is due to the fact 
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Figure 5.13: Transmission coefficient ITI as a function of the gap size (freq = 10GHz, 
W = 8.99mm) h = 3.175mm, e, = 2.55). 

that as the gap becomes bigger, the reflection tends to be constant (open), but the 

power picked up by the coupled branch becomes smaller and smaller. Accordingly 

the fractional power loss is going to be larger and larger. At about 5GHz, the total 

power that is lost into the substrate and free space is about half of the total incident 

power. 
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5.3 Measurement 

Full discussions on measurement can be found in Chapter 9. Since the agreement 

between the measurement and the analysis is not very good for Zr in this chapter, 

it is necessary to have a brief discussion here. 

The measurement method here uses an automatic network analyzer with time-
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domain features. The time-domain feature is used to get one-pass travel of the signal, 

which greatly simplifies the processing of the measured data. 

The measurement starts with a straight through line. A gap is later formed on 

the same board by cuting away a segment of the microstrip. The size of the gap can 

be increased gradually to get the measured data as a function of gap size. As can 

be seen, this method is destructive. The measurement can not be repeated, because 
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the original circuit will be destroyed in the measurement. Therefore, it is important 

to take each step carefully. 

The straight microstrip line consists of two connector-to-strip transitions and 

a piece of microstrip, configured as connectorl-taperl-strip-taper2-connector2. A 

tapered line is needed to form a smooth transition between the coaxial connector 

and the strip. The connector and the tapered line form the transition. Efforts have 

been made to fabricate the two transitions as similar as possible. The measurement 

procedure is described as follows: 

1. With the network analyzer properly calibrated, the time-domain feature is used 

(time-domain gate is turned on) to measure a one-pass travel of the signal 

through the straight line. This measured qvantity is S 21  which is expressed 

as 

qthrtt - qt1 -1L qt2 
'-'21 - 21e '-p21 (5.2) 

where 'y is the propagation constant of the microstrip transmission line; tj and 

t2 stand for transition 1 and transition 2, respectively; and L is the length of 

the microstrip line. 

2. From the middle of the strip towards port 2, cut away a part of the strip to 

form a gap of size L. Now the configuration of the circuit is transitioni-stripi-

gap-strip2-transition2. With time-domain gate still on, measure S,-, and S, 
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which gives 

qm - (S)2e_21Sf? 
'-'11 -  

and 

qm qt1 _L1 Se-L2 ('t2 
'-'21 - '-'2le '-'21 

Note that 

2xL1=L 

and 

(5.3) 

(5.4) 

3. Using the information obtained from Equation 5.2, the S-parameters of the gap 

can be obtained as 

and 

ga Cjm Qt2 
- '-'p  11  '-'21 
-. Qthrucjti 

'-'21 '-'21 

('?it 
qyal) -  '-'21  --y 
'-'21 - Cythru e 

'-'21 

(5.5) 

(5.6) 

In the procedure shown above, -y in Equation 5.6 can be obtained either by 

multiline measurement (see Chapter 9), or by using numerical analysis (SDA). The 
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Figure 5.16: The reflection phases from port 1 and port 2 (W = 8.99mm, s = 2.0mm, 
h = 3.175mm, e, = 2.55). 

determination of S' in Equation 5.5, however, depends heavily on the similarity of 

the two transitions. If Sj and S221 are not equal to each other, error results. It is 

expected that their magnitudes are very close, but the phases can differ significantly, 

because at high frequencies, small length change can result in large phase change. 

That is why the agreement between the analysis and measurement is very good 

for jI, but very poor for Li'. This argument can be supported by the difference 
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between the two reflections looking into the circuit from port 1 and port 2, as shown 

in Figure 5.16, where the phase of port 2 has been compensated as if it faced the 

same length of the strip as the port 1. 

Also noted in the measurement is in effect due to the finite size of the board, 

there is a cavity-like effect in the frequency response of the circuit parameters. This 

effect demonstrates an oscillation as the S-parameters change with frequency. This 

effect can be removed to some extent by smoothing the results. 

5.4 Discussions 

The gap analysis depicts a clear picture of how the electromagnetic wave behaves 

and reacts with electric current in a stratified medium. Electric current, which can 

only flow in a conductor, is the source of EM wave. In our case, the current carrying 

body is the conductor strip embedded in a multilayer structure. The EM wave and 

the current (conduction current, not displacement current) react to each other in the 

structure. The laws of the reactions between current and EM waves are Maxwell's 

equations, which govern how EM waves travel in the media, cross interfaces between 

layers, and reflect from conductors. 

The reaction between the EM wave and the electric current converts one to the 

other. The Green's function determines how electric current generates an EM wave 

by giving the EM field generated by an infinitesimal electric current dipole (Hertz 
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dipole) in a specific multilayer structure. When we have a given electric current 

distribution (although it maybe an assumed one to start with), the total EM field 

can be determined by the convolution between the Green's function and the current 

distribution. The EM field generated by this assumed current distribution exists all 

over the structure. However, the electric current can only be carried on conductors, 

while the EM wave has to satisfy certain boundary conditions. These boundary 

conditions can be viewed as the requirement that the EM wave imposes upon its 

creator, the electric current on the strip. Hence now the question is what kind of 

electric current distribution can generate the right EM field in this structure that 

can meet the boundary condition on the strip? 

The approximate solution is obtainable using the moment method. First, make 

some reasonable assumptions about the current distribution on the strip surface 

by choosing the right basis functions; then get the expression for the strip surface 

tangential electric field generated by the assumed current distribution; finally enforce 

the boundary condition on the strip surface by defining the testing functions that 

are non-zero only on the strip surface, and letting the inner products between the 

tangential field and these testing functions be zero. 

To get acorrect solution, one has to bear in mind that all conductor surfaces will 

carry induced current due to the influence of the EM wave. The induced current will 

also radiate to the structure thereby making a contribution to the whole EM field. 

Equilibrium will be reached when the total radiated field satisfies the boundary 
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conditions on all the conductor surfaces, i.e. the total tangential electric field be 

zero on the conductor surface. The current distribution at equilibrium is the unique 

solution to the problem. 

In the microstrip gap circuit, the incident current radiates EM waves into the 

structure, which in turn induce currents on both input and output strips. The 

induced current also radiates into the structure, and also causing induced current on 

the strips. Equilibrium will be reached when the total radiated EM field has a zero 

tangential electric field on all the strip surfaces. Under this unique equilibrium, both 

input and output strips will have new current distributions other than the incident 

current. This determines the reflection and the transmission coefficients of the gap. 



Chapter 6 

2-D Discontinuity - Corner 

Microstrip discontinuities are in various forms. According to their particular config-

urations, they can be divided into 1-D, 2-D, and 3-D three groups. 

1-D discontinuities include opens and gaps, where the microstrip line has a change 

in only one dimension (in the wave traveling direction), either an abrupt end (open) 

or an absence of a segment of the strip (gap). 

1-D discontinuities have been analyzed in the previous two chapters. 

The 2-D group has more members, including the corner, the impedance step, the 

bend, the Tee, etc, which have changes in at least one lateral dimension. Actually, 

all arbitrarily shaped planar circuits should be regarded as 2-D. The current flow on 

the strip surface consequently has two directions, no matter how low the frequency 

is. 

If there is a vertical conductor in the circuit, the discontinuity should be regarded 

as 3-D, because the introduction of the vertical conductor will cause the current flow 

on the strip surface to have both x and y directions, in addition to the vertical current 

flow (in z direction) on the vertical conductor, thus there will be current flow in all 

154 
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three dimensions. 

The 3-D discontinuity analysis will be carried out in Chapter 7 and 8. 

In this chapter, the corner will be studied as an example of 2-D discontinuity 

analyses. 

6.1 Theory 

6.1.1 Current on the Microstrip Surface 

A microstrip corner is shown in Figure 6.1. In this analysis, the input is assumed 

to be a traveling wave from x = —oo, as in all the other analyses of the circuits 

with a semi-infinitely long transmission lines. At the corner, the incident wave is 

reflected and transmitted. The reflection produces a traveling wave back to a = 

—oo and the transmission produces a traveling wave to y = —oo. The dielectric 

substrate is assumed agaiil to be infinitely large, so that no horizontal boundary 

effects are present. This significantly simplifies the analysis, because the Green's 

function is derived based on this assumption, and subsequently the reaction between 

any two PWS functions will depend only on their relative vectorial separation. This 

assumption is valid for most practical cases, where the board is large compared with 

both the wavelength and the discontinuity itself. If for some circuits the board is 

small and the boundary effects have to be considered, in order to make sure the 
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Figure 6.1: A microstrip corner and its PWS function covered area. 

circuit work properly, an absorbing material may be applied to the boundary to 

remove the reflected waves. In this case, the discontinuity will behave as if the board 

is large. 

The analysis in this chapter is similar to [99], except that (1) triangle functions 

are used as the basis in [99], whereas here PWS functions are used which have been 

proved to have a better convergence; and (2) multilayer Green's functions instead of 

single layer ones are employed, which can be used to analyze corners in multilayered 
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dielectric structures. 

Unlike in the 1-D analyses, where the input and the reflected traveling waves 

are represented with functions that stretch over all the semi-infinite line, the trav-

eling waves here are truncated to a finite size, to be an integer number of effective 

wavelengths. The reason for this truncation will be discussed later. 

High order modes are generated by the non-transmission line nature of the corner. 

This effect is taken care of by the introduction of local current basis functions (using 

PWS functions). These functions are used to reconstruct the complicated current 

distribution at the corner and on the two transmission lines close to the corner. The 

magnitude of the high order modes decrease as they move away from the corner. 

The convergence is tested again as the area covered by the PWS functions expands. 

The traveling waves are similar to those used in the microstrip open and gap 

analyses, which is staggered sine and cosine waves, except there is coordinate shift 

and rotation when representing the transmitted traveling wave (in y direction). The 

traveling wave functions have been truncated into finite size. The incident and 

the reflected traveling waves terminate at the far edge of the output strip (x = 0), 

overlapping with the output strip. Because the transverse edge condition of the strips 

(pole at the edge) at the corner area is not met, a uniform transverse distribution 

of the traveling wave is assumed. If, on the other hand, the Maxwellian distribution 

is used, one will have to use much smaller PWS functions to cancel the effect of the 

traveling wave's non-physical behavior (infinite amplitude) in the corner area. This 
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will take considerably longer computer time. 

The transmission waves are defined to start at the far edge of the corner area 

(y = 0), which means that the traveling waves on the two branches overlap at the 

corner region. The PWS functions, still defined as one unit length (i.e. one segment) 

wide, and two units long, have both x and y directions. To account for the high 

order modes at the discontinuity, current in the transverse direction is expected to 

appear on the input and the output branches regardless of the operation frequency. 

Since some transverse PWS functions are assumed to appear on the input and 

output strips, the transmission line has to be divided into at least two parts in the 

transverse direction. This is because a PWS function is defined to be two segments 

long. The number of transverse segments is determined automatically in the numer-

ical process by checking on the electrical length of the width of the two strips. 

6.1.2 Numerical Considerations 

As shown in Figure 6.1, the area affected by high order modes is divided into small 

rectangles (cells). Depending on the strip width, the input strip is transversely 

divided into n1 parts, and the output strip into n2 parts. This local high order mode 

area is extended on each strip next of the PWS functions. The number ne,t is to be 

increased one by one until convergence is reached. 

It is noted that the reactions between the traveling waves and the testing functions 
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that are on different branches of the corner do not decrease rapidly as the distances 

separating them increase. This is due to the unphysical assumption that the lines 

are infinitely long. The field due to the contribution from the current on an infinitely 

long transmission line can be indefinite, if the propagation of the wave on the strip 

is slower than the speed of the wave in the horizontal direction on the same level 

without the strip. For example, a suspended strip with an infinitely thick dielectric 

superstrate has a propagation speed that lies between the wave speeds in the air and 

in the dielectric media; the horizontal wave speed without the strip, however, can 

be higher than the wave propagation speed on strip. If this is the case, an indefinite 

field can result at some lateral locations. This phenomenon has been briefly analyzed 

by Das[73]. In ordinary microstrip configurations, this is unlikely to happen. The 

decease of the magnitude of the field in the lateral direction, however, is very slow. 

With the inclusion of the effects of the two 8—functions in Equation 4.17, it is possible 

to alleviate the problem. However, it is more convenient to use a finite sized traveling 

wave. The convergence can thus be improved. 

The finite traveling wave is defined such that the sine and cosine waves are both 

an integer number of the effective wavelength long. Four or five of suèh wavelengths is 

found to be sufficient to give very good convergence. It has proved to be unnecessary 

to assume more such wavelengths because the electric field at the high order mode 

area due to the current at the far end is negligible. Since the cosine wave is one 

quarter of a wavelength retarded from the open end, it is terminated one quarter of 

a wavelength farther than the sine wave. 
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The MoM uses the modified Galerkin's method again in the determination of the 

current distribution. All of the x and y directed PWS functions are also used as 

testing functions. Since the two traveling waves are not to be used as the testing 

functions as in the case of the exact Galerkin's method, two more testing functions 

are needed to form a square matrix of reaction. These two testing functions, t1 and 

are chosen to be PWS functions as well. Their widths are the same as the widths 

of the two strips, respectively. tj is centered at the edge of the high order mode 

area covered by the basis PWS functions on the input branch. t2 is similarly put on 

the output branch. In other words, these two testing functions bridge the local high 

order mode and pure traveling waves areas. This selection of location and type of the 

additional testing functions emphasizes the local nature of the boundary conditions 

and minimizes the number of function types dealt with in the program, because all 

the testing functions are now the PWS type. The moment method is therefore a 

modified Galerkin's procedure. 

The integer numbers n1 and n2 are determined in such a way that under no 

circumstances should the cell size be larger than the predetermined value - 0.03Aej. 

Take the input strip as an example: if the infinite line analysis reveals that the 

effective wavelength is i, then the number n2 should be: 

. 
122= max (2,f  w2  1) 

U. 0 

where the function lxi represents the smallest integer that is greater than or equal 

to x, and W2 is the width of the second strip (in the y direction). This guarantees 
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that the length of x direction PWS functions on input strip will not exceed O.O3)ei. 

As can be expected, the number of the basis functions is now greatly increased. 

Since the most time consuming part in the numerical process is filling up the matrix 

whose elements are reactions between basis or input functions and testing functions, 

care must be taken not to calculate any elements that are already known. For 

instance, if the two strip widths are the same, it is advantageous that one calculation 

be applied to more than one element. If the two strips are not the same width, there 

is still the possibility that the cells can be square after the partition. In this case the 

reactions between x direction functions will be the same as those between y direction 

functions. Also a time saving consideration is that the reaction on opposite sides of 

a traveling wave should have the same value, or at least they are different only in 

sign. In any case, the reactions are determined by the functions involved and the 

vectorial separation between them. If any symmetrical layout exists, or separation 

and function pattern matches with other known reactions, the known values can be 

used to fill up the element. The reactions obtained are therefore stored according to 

the relative vectorial separation of the two functions involved. 

It is also possible to use this method to analyze fairly irregular shaped disconti-

nuities [99]. For instance, Flarokopus and Katehi [15] uses small cells to form a zigzag 

type mitered corner. There are also non-rectangular shaped basis functions which 

can be used to have a conformal representation of the mitered corner [105]. If a data 

bank is set up where the reactions for all the different separations are stored, then 
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all the matrix elements are known and, the current distribution can be determined. 

Thus the circuit behavior is obtained. The main limitation is that the shape of the 

patch has to conform to certain discrete sizes. 

6.1.3 The Matrix Formulation 

Since there are both x and y direction currents and fields, it is expected that Green's 

functions G, Gxy, G, and Gry are to be used, in determination of the total x 

andy direction electric field. However, no z direction dyadic elements of the Green's 

function are to be used, due to the fact that the circuit is planar. 

Using the basis and the testing functions described above, the matrix form of the 

MoM can be derived as follows: 

First, the total tangential electric fields generated by all the currents considered 

are (in the spatial domain) 

E(x, y) = ff (G I + G, E 4)dx'dy' (6.1) 

and 

E(x, y) = jj(Gyx E I + G, E I)dx'dy' (6.2) 

'where again the Green's functions are determined by the structure of the stratified 

media and the vertical location of the strip, but not by the shape of the strip. 

According to the boundary conditions, these tangential fields have to be zero on 
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the strip surface. This is enforced by making the inner products of these fields with 

the testing functions defined on the strip surface and letting the inner products be 

zero. This step results in a system of linear equations, which in the matrix form is 

[Z] [ZXY] 

[ZYX] [ZY} 

[Z] [Zt1] 

[Zt2z] [Zt2Y] 

[ZR] [ZXT] 

[ZY'] [ZYT] 

[Zu1R] [Zu1T] 

[Zt2R] [Zt2T] T Zt2I 

(6.3) 

It is noted that the inner product is in a sense both vectorial and integral inner 

product. The vectorial product occurs when the directions of the two parts are at a 

right angle. The product is zero, e.g. 

<E,I >= 0. 

The integral product is defined as before in the other chapters, e.g. 

Z = JJ 

The last two equations in Equation 6.3 are from the inner products between the 

additional testing functions and the basis functions. On the right side of the equation 

are the reactions between the testing functions and the input, which is the incident 

traveling wave. 

From Equation 6.3 it is observed that the input to the system, in our case the 

incident current wave, plays a key role in determining the whole current distribution. 
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The governing law here is the boundary condition on the strip: the total tangential 

electric field on the strip surface has to be zero. The incident current radiates into the 

structure causing induced current on the strip surface, which also radiates. The total 

current thus consists of the incident current (also called the impressed current [59]) 

and the induced current. The total current distribution can not be arbitrary - it 

has to be such that the total generated tangential fields on the strip surface are 

zero, the fields being determined jointly by the current distribution and the Green's 

function of the structure. 

The moment method enforces the boundary condition on the strip surface by 

introducing the inner products between the generated fields and some functions non-

zero only on the strip, and letting the inner products be zero. So there are two 

approximations in MoM: the first one is the expansion of the unknown solution 

function into a linear combination of a series of basis functions; and the second one 

is introduction of the inner products. The first" approximation causes some loss of 

detail in the real current distribution; while the second one enforces the boundary 

condition in a piecewisely average sense. Since MoM only makes the integral (the 

inner product) zero, there can be some positive-negative cancellations in the integral 

region. Therefore, it is very important to have small size basis and testing functions, 

in order to have a valid analysis. Also, the selections of the basis and testing functions 

are important in obtaining good convergence. On the other hand, one has to bear in 

mind that small size basis functions increase the total number of unknowns, which 

takes more computer time to fill up the matrix. As pointed out before, this is a 
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trade-off between accuracy and speed. 

6.2 Results 

6.2.1 Convergence Test 

The convergence of the algorithm is tested as the area covered by the local PWS 

functions expand. The number of PWS functions on each branch of the corner is in-

creased as the variations of the reflection and transmission coefficients are monitored. 

When adding more PWS functions does not change the results much, convergence is 

reached since the PWS functions have covered sufficient part of the high order mode 

area. 

The convergence test is carried out at the frequency of 30Hz. The circuit's 

parameters are shown in Figure 6.2 and 6.3, along with their convergence behavior 

as the number of the PWS functions increases. It is noted that the results start 

to converge after the PWS functions have filled up the areas not covered by the 

traveling wave modes, which is between the tip of the cosine function and the outer 

edge of the corner. 

The frequency at which the convergence is tested is relatively low compared to 

the dimensions of the strip and the discontinuity. Therefore it is expected that the 

reflection is very small and the transmission is almost complete (ITI 1.0). Also, 
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Figure 6.2: Magnitude convergence test for a corner (freq = 3GHz, Wi = W 2 = 
.508mm, h = 1.016mm, e, = 10.2). 

the corner does not impose a large phase shift on the incident wave. The phase 

of the reflection suggests a strong imaginary part in the equivalent impedance at 

the corner. This can be explained as follows: at low frequency, the bent strip acts 

like a capacitance to ground on the input strip, whose susceptance is formed by the 

product of the frequency and the capacitance. Since the frequency also determines 

the susceptance, the reflection phase is to be expected to be between those of pure 
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Figure 6.3: Phase convergence test for a corner (freq = 3GHz, Wi = W 2 = .508mm, 
h = 1.016mm, e, = 10.2). 

open and pure short circuits. The lower the frequency, the larger the capacitance 

(due to the larger area of the load strip that is covered by the larger wavelength), 

but the susceptance can change in either direction. Therefore frequency and the 

equivalent load capacitance do not change in the same direction. Thus it is hard to 

predict the zero frequency response of the reflection phase. 
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6.2.2 Corner Circuit Parameters as Functions of Frequency 
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Figure 6.4: Frequency response of ISiiI for a corner (W1 = W 2 = .508mm, h = 
1.016mm, e,. = 10.2). 

Having tested its convergence performance, we can now use this algorithm to obtain 

more data. The frequency response of a corner with equal input and output strip 

width is analyzed. 

The results are shown in Figure 6.4 through 6.7, with the magnitude results 
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Figure 6.5: Frequency response of LS11 for a corner (W1 = W 2 = .508mm, h = 
1.016mm, e, = 10.2). 

obtained in [46]. Good agreement between them has been achieved. The magnitude 

of the reflection IS111 and the transmission IS211 are as expected. The reflection 

has very small magnitude at low frequency, suggesting that the incident wave is 

not greatly affected by the existence of the corner. The transmission, on the other 

hand, is very high, which validates the applicability of the corner at low frequencies. 

As frequency goes up, however, the reflection becomes larger and the transmission 
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Figure 6.6: Frequency response of IS2iI for a corner (W1 = W 2 = .508mm, h = 
1.016mm, e, = 10.2). 

smaller. This is because more high order modes are generated as the frequency 

becomes higher. High frequencies represent short wavelength, making the electrical 

dimensions of the circuit and the structure large, which includes the width of the 

strip, the size of the corner, and the thickness of the substrate. It is noted that even 

at the frequency of 13GHz, there is still a considerable amount of power that passes 

through this corner, due to the small size of the strip and the substrate. The small 
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Figure 6.7: Frequency response of LS21 for a corner (W1 = W 2 = .508mm, h = 
1.016mm, e, 10.2). 

size also introduces a small phase shift as the wave passes the corner, as shown in 

Figure 6.7. 

It is concluded that corners are useful in configuring the layout of the circuit. 

However, care must be taken not to choose large strip width and substrate thickness, 

because at high frequencies, the corners can impose a certain amount of blockage to 

the propagation of the wave on the strip, which has been taken into consideration in 
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the design of the circuit. 



Chapter 7 

Vertical Dipole Analyses 

Vertical conductors in stratified medium are often seen in various applications. In 

microstrip circuits, vertical metallized holes are often used as a method of supplying 

ground contact for the circuits on the substrate surface; in VLSI, vertical conductors, 

which are called via holes, are used to connect strips in different layers; and coax-

fed microstrip antennas are excited by the center conductors of coax-lines from the 

ground plane. 

In this chapter, a vertical dipole is investigated in the spectral domain. The 

results are in good agreement with the results obtained with the spatial domain 

method. 

7.1 Theory 

7.1.1 Circuit Discussions 

The vertical dipole to be analyzed is shown in Figure 7.1. Generally it is embedded 

in a multilayer medium. The vertical dipole is assumed to be a perfectly conducting 

cylinder, whose radius is far less than the shortest wavelength for any medium in the 
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Figure 7.1: A vertical wire in a multilayer structure. 
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 / 
 / 

 / 

structure (It is understood that the wavelength varies from one dielectric layer to 

the other). The small radius means that the current flowing on the top and bottom 

surfaces can be neglected, thus a line current can be assumed to flow along the center 

of the cylinder. 

Up to Chapter 6, all the horizontal dyadic Green's function's elements G,,, where 

z and ii are either x or y, have been used to some extent. They are sufficient to 

describe all electromagnetic behavior of all the planar structures in a multilayer 

medium, because no vertical source or field components need to be considered. If a 

vertical object or any vertical field components are to be analyzed, however, the rest 
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of the elements in a dyadic Green's function have to be used completely or partly. 

Tithe circuit has both vertical and horizontal objects, all the elements have to be 

used to provide a comprehensive analysis. An example of this kind of circuit is a 

microstrip line with a shorting pin, which is to be analyzed in the next chapter. In 

this chapter, since the circuit (a vertical dipole) has only vertical objects, and its 

horizontal dimensions are negligibly small, only is needed in the analysis. 

7.1.2 Matrix Formulation 

The boundary condition is to be enforced on the dipole surface. In the calculation 

of the z direction electric field, a generalized multilayer structure is dynamically 

formed to describe the source and field points relationship for the generalized Green's 

function (see Chapter 2 for details). Having this relationship is sufficient for the 

evaluation of the unshifted Green's function Since the observation point is at 

the cylinder surface but the source current is at the center, a shift factor ee" 

has to be added to the final expression, where a is the radius of the dipole. It is noted 

that the circuit is rotationally symmetrical about the z axis, thus the cylindrical 

coordinate system is more suitable here. In the cylindrical coordinate system, the 

dipole surface is represented as p = a. 

In this procedure, the basis current functions are still the PWS functions as in 

previous chapters, except that they are now z directed. Unlike the transmission line 

type discontinuities, the dipole has a finite structure, and does not have a traveling 
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wave input source. In this analysis the commonly used S gap source in the middle 

is chosen as the input to the dipole. It is assumed that there is a small voltage gap 

in the middle of the dipole. The gap size is h, the voltage is 1.0 volt, and thus the 

electric field over the gap is 1/h. To meet the boundary conditions, the vectorial 

summation of the electric field produced by all of the induced currents should be 

zero on the dipole surface, except at the feeding point, where it is equal to —1/h in 

order to make the total tangential field zero at that point. 

The z directed electric field generated by a line current J (z') in the same direction 

is 

p+oo f +oo 

E2(x,y,z) = J., dz' 1  (7.1) 
J—oo oo 

The boundary condition states that this electric field should be zero on the dipole 

surface. It is noted that it is independent of the variable q. Converting the coordinate 

system into polar form gives the following expression (Appendix B): 

E(p, z) = J,:, dz' j 00 J(z')O27 (A, zIz')Jo(p)Ad (7.2) 

This expression is actually the famous Sommerfeld integration [1]. It is a demon-

stration that the Sommerfeld integration of Green's function's expressions is simply 

a polar coordinate version of the 2-D Fourier domain formulation. 

Using PWS's as both basis and testing functions, with the above electric field 

expression, a MoM matrix equation can be formulated as follows: 
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Z1,1 Z172 

Z2,1 Z2,2 • • 

'1 

'2 

bi 

(7.3) 

- ZN_i,1 ZN_i,2 ,N—i - IN-1 - - bN_i 

where I 's-' IN—i are the current function coefficients to be determined in the process; 

N is the number of the segments the dipole is divided into (Figure 7.2); Zj's and 

b1's are reactions between testing functions and basis functions, and testing functions 

and the source, respectively. Their expressions are as follows: 

Zij = J00 d\ I dz' 
0 Jz'  Z 

bi 0 iffeed 

fJ(z)dz lf=feed 

where if,,d is the segment where the dipole is excited. 

7.1.3 Consideration on Diagonal elements 

is the z directed electric field due to a Hertz dipole in the same direction. Since 

the structure is multilayer in z direction, the field in each location of interest is 

determined by the inverse 2-D Fourier transformation. It does not take much time 
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to compute G if the observation point and the source point are not on the same 

plane (z 54 z'), because the integrand decreases exponentially with A. If, however, 

these two points are on the same plane, the integral is not convergent. This is the 

case when one considers the elements whose base and testing functions have some 

vertical overlaps. There is no doubt that in reality the z direction field produced by 

a vertical dipole at the same plane exists and is finite. This divergency is due to the 

fact that the field varies as as the observation point approaches the source on the 

same plane. In other words, the forward Fourier transform does not exist in the first 

place, therefore one can not expect the inverse transform to exist. An acceptable 

way of getting around this problem is to re-define the integral as a limit as follows: 

oo 

E(p,O) = lim I -,o (7.4) 
jo 

where A = z - z'. This limit exits because any non-zero A is an exponential factor in 

the integrand and thus the convergence is guaranteed. Physically this change means 

that we insert an imaginary layer between the source and the observation points. If 

the thickness of this layer is small enough, the field obtained should be close enough 

to the field without the layer. 

Numerically, ä is obtained by passing the key word "Gzz" and a pre-determined 

very small A to the generalized dyadic Green's function in the program. 
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7.2 Results 

For the purpose of simplicity and for comparison to the spatial domain method, 

the vertical dipole is assumed to be embedded in a homogeneous medium, which 

can be viewed as a special case of the multilayer media case. If a multilayered 

structure is used, much more computer time will be taken for the analysis, because 

the reaction coefficient matrix will no longer be Toepolitz. The Toepolitz matrix 

has elements that are determined only by the separation of the base and testing 

functions involved. Additionally, there is not a spatial domain analysis of a vertical 

dipole for comparison. The operation frequency is chosen to be 3GHz. A dipole 

length of half wavelength in free space is chosen. The effects of different dielectric 

constants are investigated. The results compare favorably with the spatial domain 

method proposed by Harrington [42]. 

7.2.1 Results from SDA 

The results obtained using the spectral domain method are shown in Figure 7.3 and 

7.4. The dielectric constant e, of the medium is chosen to be 1, 2, and 4. At the 

dielectric constant of 4, the dipole is actually one full wavelength in length. In other 

words, it has become a full wavelength dipole. This is clearly seen in the current 

magnitude distribution (Figure 7.3). 



180 

7.2.2 Results from the Spatial Domain Method 

To compare the SDA results with the existing spatial domain method, the well 

known Harrington's method is used to analyze the same dipole. The results are 

shown in Figure 7.5 and 7.6. As can be seen, they match the spectral domain results 

Figure 7.3 and 7.4 very well. The major discrepancies are that the spatial method 

gives smoother curves on the dipole arms and more detailed sharp variations at the 

feeding point. This is because for the spatial method 65 segments of current were 

used, whereas for SDA only 20 PWS current basis were used. It is expected that 

with more PWS functions in the SDA method, the curves will be smoother and the 

results should be identical to those obtained by the spatial method. Also noted is 

that SDA uses PWS as the basis functions and the total number of them is even, 

whereas the spatial domain method uses pulse functions as the basis and the total 

number is odd. That is why for the spatial domain method there is a center peak 

for some graphs, and the SDA graphs are relatively flat at the center. The most 

important thing in this comparison is that the Green's function should be the same. 

The next subsection will compare the Green's function values obtained with different 

methods. 

7.2.3 Comparison of the Green's Functions 

As discussed in this chapter, the spectral domain Green's function G,, for two points 

on the same plane is not convergent, nor is it Riemann integrable. A limit definition 
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is introduced as in Figure 7.4. This is to give some off-set in the observation point, 

which is equivalent to introducing a thin layer between these two points. The choice 

of this layer thickness is a trial-and-error process. It is found that choosing the off-set 

to be 10 3a is satisfactory. Table 7.1 shows the Green's function values calculated 

with the two methods (freq = 3GHz, e, = 1, a = .5mm, off-set = .0005mm). 

Although there is some off-set in the observation point for the spectral domain 

method, the Green's function thus obtained is very close to the exact one obtained 

in the spatial domain (without any off-set). The relatively big difference for the 

imaginary part is due to the much larger real part, which is the dominant term 

in the complex number. Therefore this imaginary part will not make a significant 

contribution to the whole complex number for either the magnitude or the phase. The 

error due the off-set observation point becomes smaller and smaller as the separation 

() becomes larger and larger. Numerical truncation of the infinite integration is 

another source of error. 
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Layer Thickness 
(mm) 

Spectral G7 Spatial 
IM Re IM Re 

0.0000 -7.936176 382046.3 -7.899535 382046.0 
0.1983 -7.936023 180739.7 -7.900444 180739.7 
0.3966 -7.935623 -29767.09 -7.899521 -29767.14 
0.5948 -7.934976 -77389.56 -7.897985 -77389.64 
0.7931 -7.934082 -66562.48 -7.890542 -66562.50 
0.9914 -7.932940 -48629.21 -7.903650 -48629.16 
1.1897 -7.931551 -34510.14 -7.900283 -34510.25 
1.3880 -7.929915 -24695.75 -7.891000 -24695.69 
1.5862 -7.928032 -18019.85 -7.896985 -18019.82 
1.7845 -7.892801 -13439.26 -7.897064 -13439.29 

Table 7.1: G values calculated using two different methods (freq = 3GHz, €,. = 1, 
a = .5mm, off-set = .0005mm). 
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Figure 7.2: PWS functions on a vertical dipole. 



184 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0 
S 10 

Element Number 
15 20 0 

Figure 7.3: Magnitude of the current on a dipole by SDA (freq = 3GHz, a = .5mm, 
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Figure 7.4: Phase of the current on a dipole by SDA (freq = 3GHz, a = .5mm, L 
50mm). 
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Figure 7.5: Magnitude of the current on a dipole by spatial domain method (Har-
rington's method [41]) (freq = 3GHz, a .5mm, L 50mm). 
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Figure 7.6: Phase of the current on a dipole by spatial domain method (Harrington's 
method [41]) (freq = 3GHz, a = .5mm, L = 50mm). 



Chapter 8 

3-D Discontinuity - Shorting Via 

In microwave integrated circuits, shorting vias are usually used to ground components 

on the substrate surface. A microstrip transmission line with a shorting via is a 

good example of a 3-D discontinuity. In this chapter, the spectral domain method is 

applied to a circuit with a semi-infinite microstrip and a shorting via at one end. 

Some research has been done on the analysis of circuits with both planar and 

vertical conductors. Becker et al used finite difference time domain (FDTD) method 

to analyze vias in a computer chip package [106]. Gu et al used an equivalent network 

approach to analyze vias in multilayered integrated circuits [107]. 

Using the spectral domain method, coax-fed microstrip dipoles are analyzed 

in [108]. Microstrip lines terminated with shorting vias are analyzed by Tsay and 

Aberle [109]. In that analysis the attached mode (the current on the strip surface) 

due to the existence of a shorting via is expressed with an infinite series, determined 

by an equivalent cavity method. This method is difficult to extend to multilayer 

cases. The attached mode expression in this chapter is similar to the one used 

in [108], where a strip loaded, coax-fed antenna was analyzed. Although this expres-

sion is simplified, it is easy to extend it to multilayer cases, and reasonable results 
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are obtained. 

8.1 Theory 

8.1.1 Circuit Discussions 

microstrip horting pin 

h substrate er 

t ground plane 

4y 

Xp 

p 

2a 
---0. 4— 

Figure 8.1: Microstrip with a shorting via. 

The microstrip line with a shorting via is shown in Figure 8.1. The via is assumed 

to be at x and yp, joining the microstrip on top of the substrate with the ground 
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plane on the bottom of the substrate. 

As stated in Chapter 1 and 2, a full representation of a dyadic Green's function 

needs nine scalar elements, each of which has two subscripts as which means 

the It directed field due to a ii directed Hertz dipole. Here i and z.' should be x,y, or 

z. Since an assumption was made that the medium is multilayer in the z direction 

and homogeneous in x and y, a series of simplifications can be made. Gxx can be 

easily transformed into G y through coordinate transformation, for instance. In the 

numerical process, the reaction between two y elements is the same as that between 

two c elements, if their relative locations are the same. This is also used to save on 

computation time. 

Although theoretically sound and clear, the analyses of 3-D circuits are numer-

ically complicated. It needs the calculation of the reactions for each pair of the 

currents and the fields involved, which may need all nine elements of the dyadic 

Green's function. Some simplifications, however, can be made, according to the 

specific circuit under investigation. For instance, if the line is narrow in terms of 

effective wavelength, transverse current can be neglected[108]. It is also noted that 

the analysis can make use of the algorithm developed for the open circuit analysis, 

because the short circuit consists of an open circuit and a shorting via. To analyze 

a short circuit, one has to include the reactions involving the current on the via. 

The introduction of the reactions of the current on the via with the current on 

the strip plays a key role in the analysis. The input is again a traveling current wave 
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from x = —oo, which radiates into the whole structure causing induced current on all 

conductor surfaces (except the ground plane, which has been taken into consideration 

in the Green's functions.). The induced current also causes radiation. The total 

current has to radiate in such a way that the boundary conditions on the conductor 

surfaces be met. In other words, the total current distribution adjusts itself to 

radiating a field pattern which has zero tangential electric field on all conductor 

surfaces. When there is a shorting via, current is induced on its surface as well, 

which re-radiates into the structure. The conductor shorting via supplies a current 

path to the ground, and consequently causes the phase of the reflection coefficient 

to be different from that for an open circuit. 

8.1.2 Matrix Formulation 

Basis Functions 

The current on the strip and the via are expressed as linear combinations of the 

basis functions. Due to the fact that the strip is not electrically wide, no transverse 

current flow is assumed on the strip. The basis functions around the discontinuity on 

the strip surface are again chosen to be PWS functions, with a uniform transverse 

distribution. The input from and the reflection to x = —oo are traveling current 

waves. These are the same as in the open circuit analysis. 

The shorting via is assumed to carry a constant current flow along the cylinder 
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center, because the substrate thickness is very small comparing to the wavelength. 

If the substrate is thick, and consequently the via is long, the current on the via has 

to be expressed with multiterm z direction PWS functions, as in the case of vertical 

dipole analysis. 

The current basis functions have to be kept continuous, in order to avoid using 

any electric charge as source, because any discontinuity in current flow means an 

accumulation of electric charge, according to the current continuity law. There is 

concern about the continuity if one checks at the top of the via, where the current on 

the via stops abruptly and forms a discontinuity in current flow. Therefore one has 

to add an attached mode to the strip surface to make the current flow continuous. 

Physically this means that the current flowing upward on the via turns onto the 

strip surface and joins the current on the surface. This attached mode splits from 

attached mode 

microstrip 

h 

t 
substrate er 

ground plane Iv 

Figure 8.2: Attached mode due to the current flow on the via. 

the point where the center of the via touches the strip and flows in opposite direc-

tions (Figure 8.2). It looks like a PWS function, but its two parts flow in opposite 

directions. The PWS function is even, but the attached mode is odd. It should be 

pointed out that the current from the vertical via does not necessarily stop at the at-
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tached mode on the strip surface. It will continue to flow on the strip surface, which 

will be accounted for by the PWS functions on the strip. The current on the shorting 

via and the attached mode together form a base function in the determination of 

the whole current distribution. If there are N PWS basis functions, in addition to 

the reflection coefficient and the vertical current flow, there will be totally (N + 2) 

unknowns to be determined. 

Testing Functions 

The testing functions are chosen to be almost the same as the basis functions. There-

fore this is a quasi-Galerkin's procedure, or can be regarded as a modified Galerkin's 

procedure. All of the PWS functions are again used as the testing functions. Two 

more testing functions are needed to form a square reaction matrix for the linear 

equation solution. Similar to the method used in open circuit analysis, one more 

PWS testing function is defined on the surface at the edge of the area covered by 

the basis PWS functions. The last testing function is chosen to be the same as the 

vertical current, which is a uniform function over the length of the via. Therefore, 

in this formulation, all the basis functions but two have been used as the testing 

functions as well. One base function that is not used as the testing function is the 

reflected traveling wave, which is replaced by an extra PWS function on the strip 

surface. The other one is the via base function. Only part of it is used in the testing 

function. The attached mode on the strip surface is not used because the boundary 

condition on the strip surface has been taken care of by the PWS functions. 
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Formulation of Linear Equations 

The electric field due to the current on the conductor surfaces is expressed as follows: 

E(x,y) = Jf (GsEI + GI)dx'dy'dz' 
E(x, y) = J1 (G,. 1v + Gz I)dx'dy'dz' 

(8.1) 

(8.2) 

where the x directed current E I includes the input and the reflected traveling 

waves, the PWS functions on the strip surface, and the attached mode caused by 

the vertical current on the shorting via; and the vertical current I is a uniform 

current flowing at the center of the via. The Green's functions are obtained from 

the generalized computer algorithm. 

Now each of the testing functions is applied to the field expressions above, to get 

the inner product between the testing function and the electric field. Note that the x 

directed testing functions can only produce zero inner products with the z direction 

field. The same is true between the z direction testing function and the x direction 

field. Therefore each application of the testing function results in one equation. A 

total of (N + 2) equations are formed and are shown as follows: 

I rz(N+1)xNi [Z 1><1} [Z 1<1} 11 PP pR PV 

[ Z1 ] 1,N [r71X11 
V-'VRJ [Z,'] 

r 

Iv 

117(N+1) xl 
L'pI 

liilXl 
Ivy' 

(8.3) 

where 4 is the PWS function coefficients matrix which determines the magnitude of 



195 

the PWS functions; r is the reflection coefficient of the short circuit; and I is the 

magnitude of the current on the via.' 
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Figure 8.3: Convergence test of the reflection coefficient (LI') (freq = 2GHz, W 
2mm, h = 1mm, a = .1W, x, = -5mm, y, = 0mm, e, = 2.5). 

30 

The elements in the above equations are the reactions (inner products) between 

electric field and the testing functions, the evaluation of which is done in the same 

way as in the other chapters. The numerical details will not be elaborated on here. 
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Figure 8.4: Convergence test of the reflection coefficient (IFI) (freq = 2GHz, W = 
2mm, h = 1mm, a = .1W, x, = -5mm, y 0mm, 6r 2.5). 

8.2 Results 

8.2.1 Convergence Test 

The convergence of the algorithm to analyze microstrip transmission lines terminated 

with a shorting via is tested with an example. The frequency is chosen to be 2GHz. 
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The width of the strip W = 2mm, the height of the substrate h = 1mm, the 

dielectric constant c, = 2.5, and the via radius a = 0.1W. The via is assumed to be 

at x = —5mm and yp = 0mm. 

The convergence behavior of the algorithm as the number of the PWS basis func-

tions increases is shown in Figure 8.3 and 8.4, where the phase and the magnitude of 

the reflection coefficient are investigated. As shown in these graphs, the convergence 

can be reached shortly after there are enough PWS functions to cover up the area 

between the cosine traveling wave and the end of the strip. 

8.2.2 Frequency Response of the Short Circuit 

As the frequency increases, it is expected the shorting via will demonstrate proper-

ties different from those at low frequencies. This is because that the shorting via 

becomes electrically longer at higher frequencies. The surface waves launched into 

the substrate and the radiation into free space will increase with the frequency. 

Figure 8.5 shows the change of the magnitude of the reflection coefficient as the 

frequency changes. As the frequency sweeps from 2GHz to 16GHz, the magnitude 

changes from 0.998 to 0.901, suggesting that some power has been lost into the 

surface waves and the free space waves. It is also noted that the drop of the reflection 

coefficient is not as severe as in the open circuit cases. This is understandable because 

the short circuit is not as "open" in its structure as an open circuit, and therefore 
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Figure 8.5: Frequency response of the reflection coefficient (IJ) for a shorting via 
(W = 2mm, h = 1mm, a .1W, x, = -5mm, y = 0mm, 6r 2.5). 

the radiation mechanism has been suppressed. 

It is notable that there are some discrepancies between the SDA computed results 

and the measurement. It is believed that this is due to the technique used in the 

measurement. Since there is an open end beyond the via, a signal flow loop is 

formed between the open end and the via. Using time domain feature of the network 

analyzer can only gate on a specific object. So the measurement just measures the 
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Figure 8.6: Frequency response of the reflection coefficient (LI') for a shorting via 
(W = 2mm, h = 1mm, a = .1W, x, = -5mm, y, = 0mm, 6r = 2.5). 

reflection from the via, without good inclusion of the effect of the open end. The 

SDA method, on the other hand, gives the the combined effect of the via and the 

open end. In other words, the signal flow loop is included in the analysis. 

The same explanation can be applied to Figure 8.6, which shows the computed 

and measured phase of the reflection coefficient as a function of frequency. It is noted 

that at low frequency (f = 2GHz) the phase is very close to that of an ideal short 



200 

circuit, that is, a perfect 1800. It is apparent that at D.C. this phase will be 180°. 

The higher the frequency, the smaller the phase. This means that as the frequency 

becomes higher, the reactance of the shorting via becomes larger. 



Chapter 9 

Measurement of Microstrip Discontinuities 

Microstrip discontinuities are usually embedded in microstrip circuits. The most 

often seen discontinuities are corners, steps, opens, and gaps. They are all connected 

to transmission lines, in other words, they are embedded in a microstrip transmission 

line environment, which is in turn embedded in a coaxial line environment. This kind 

of configuration is most frequently seen, because almost all functional modules and 

measurement equipment use coaxial connectors as their input and output ports. 

The question arises as to how one can measure embedded microstrip elements at 

the coaxial connectors? The procedure involved is called the de-embedding measure-

ment. To directly measure a discontinuity is impractical, since there is no measure-

ment equipment that can measure in microstrip without a coax-microstrip adapter. 

In addition, it is very difficult to manufacture highly accurate calibration standards 

for microstrip. 

Therefore, the measurement has to be made at a pair of coaxial ports with a 

network analyzer. The behavior of the microstrip discontinuity can only be obtained 

with de-embedding techniques after the measurement has been made at coaxial con-

nectors. Various de-embedding techniques have been studied and proposed by other 

201 
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researchers [110] [101] [111] [112]. Most of these methods make use of precise microstrip 

standards. Some methods, [101], for instance, have to use an automatic network an-

alyzer with a time-domain reflection and 1ransmission analysis feature, to which the 

accessibility is not guaranteed for every one. 

TRL (Thru-Reflect-Line) technique was proposed by Engen and Hoer [110], and 

it is widely used in the measurement of non-coaxial circuits, such as microstrip 

transistors. In the calibration process, thru, reflection, and line are connected in 

turn to the network analyzer. This technique does not require the reflections to 

be known standards, which is a good feature for microstrip circuits measurement, 

where it is very difficult to build standards such as opens and shorts. To apply 

this technique, however, one has to use carefully fabricated fixtures that can give 

very good connections when the thru (T) is formed, and line (L) standard and 

later the DUT (Device Under Test) are inserted. For microstrip this is not easy 

to achieve. This method could have been used to determine the performance of 

microstrip discontinuities, however, it was not as another method was derived. 

In this chapter, a new, simple technique is proposed for the measurement of mi-

crostrip discontinuities [113]. The method is similar to the TRL method, but it 

replaces the reflection component with another line of different length. The method 

uses a Linel-Line2-Line3 (multiline) calibration and it assumes that the two transi-

tions (coax to microstrip) are identical. This method does not require any one-port 

standards, such as opens, shorts, and loads in microstrip. The de-embedding is 
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achieved with non-linear least squared error algorithm. The random errors in the 

fabrication of the circuits and in the measurement are minimized by using multi-

pie through lines to introduce redundancy. The measurement can be made with 

any conventional network analyzers including those that do not have a time-domain 

feature. 

Also in this chapter another de-embedding technique is briefly described, which 

makes use of the time-domain feature of automatic network analyzers [114]. Some 

discussions and observations are given. 

9.1 Formulations 

In microwave measurements, the discontinuity is often referred to as the DUT (De-

vice Under Test), and the network surrounding it is called the intervening network. 

The process of determining the intervening network is called untermination. The 

process of obtaining the parameters of the DUT from measured data is called de-

embedding [111]. 

9.1.1 DUT Circuit and Its Signal Flow Graph 

A corner, as an example of the microstrip discontinuity circuits, is shown in Fig-

ure 9.1. The discontinuity is located between two sections of microstrip transmission 

line. The transmission lines are connected to the transition section which is be-
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DUT 

Figure 9.1: A microstrip discontinuity (corner) embedded in microstrip lines. 

tween the microstrip transmission line and the coaxial line. The transition section 

usually consists of a coax-microstrip adapter, and/or a tapered microstrip line to 

have a smoother transition (match) between the microstrip transmission line and 

the adapter. 

The signal flow graph representation of the circuit in Figure 9.1 is shown in Fig-

ure 9.2. It is noted that this is a simplified signal flow graph. The cross-talk couplings 

between the adapters at the two ports through substrate waves are neglected. The 

traveling wave is assumed to be TEM-like, with an effective propagation constant 

y. The transition sections at the two ports of the circuit are modeled into two-port 

networks, the parameters of which, together with the effective propagation constant 
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Figure 9.2: Signal flow graph for discontinuity measurement circuit. 

'y, are to be determined in the unterminating process. 

If the parameters of the transition network and the propagation constant 'y are 

known, the parameters of the DUT can be easily determined from the measured 

data. 

9.1.2 Through Lines as Standards 

To determine the networks surrounding the discontinuity, standards have to be used. 

The number of these standards and the measurements usually depends on how com-

plicated the intervening networks are. For most applications, simplifications can be 

applied to reduce the number of the unknowns, which consequently simplifies the 

untermination process. 



206 

The standards used in this method are simply through lines of different lengths, 

with the same type of transitions at the microstrip-coax adapters. The standards 

replace the DUT and its sections of transmission line temporarily in the measurement 

circuit (Figure 9.3). In reality the standards are fabricated on the same substrate 

and with the same connectors as the DUT. 

Length = Li 

Figure 9.3: Through lines with different lengths as standards. 

For most discontinuity circuits the two microstrip-coax transitions are identical 

(if not, another set of through lines is needed). These two networks are just placed 

in different orientations, which means, for instance that Siia = 8 22b = S11. Thus, 

for the transitions there are only 3 complex unknowns (S11 , S22, and S21). The 

two transmission lines connected to the DUT have the same propagation constant 

. It is clear now that the task of the untermination process is to determine the 

S-parameters of the transition network (adapter) and the propagation constant of 
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Figure 9.4: Signal flow graph for the through line standards. 

the transmission line leading to the DUT. The signal flow graph of the through lines 

is shown in Figure 9.4. 

The standards should be different from each other only in the lengths of the 

transmission lines. The other parameters should be kept as identical as possible. 

Each of these standards can provide two independent equations in the measure-

ment: i9i m , and S m, because they are symmetrical through lines. Therefore, 

theoretically, two of these type of standards should be enough to determine the 4 

unknowns. However, due to the small differences between the physical circuits (other 

than the length difference) and the random errors in the measurement, two through 

line standards usually can not provide satisfactory results. One good feature for the 

proposed technique is that one can use more than two through lines in the untermi-

nation. The redundancy is used to minimize the random error effect. The results 
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can be obtained from a least squared error algorithm. 

9.1.3 Multi-line Nonlinear Least Square Error De-embedding Techniques 

As stated above, each through line can provide two independent equations from the 

measurement, namely, 

where Sjjt 

S m = Siii +  
1 - S 2je_21hi 

Sm =  S1 e"1S22t  
1 - S, 2e_2thi 

(i=1,2,3,...N) 

(9.1) 

(9.2) 

(i, j are either 1 or 2) are the S-parameters of the transition, 'y is the 

propagation constant of the microstrip line, Ii is the length of ith through line, and 

N is the total number of the standard through lines used. 

Choosing N = 2 will provide four independent equations. Theoretically these 

four equations are enough to solve for the S-parameters St and the. propagation 

constant 'y of the transmission line. However, if the measurement is noisy, redun-

dancy has to be used to reduce the effect of the random noise and a least squared 

error untermination results. In this case, N is chosen to be greater than 2. 

Using Newton's method, the iterative root searching algorithm will be: 

= - [jT 2N • 4x2N 4x1 (9.3) 

where X is a vertical vector whose elements are the four unknowns: S1 , S22, S2 

and 'y at the n—th step in the iteration; J2NX4 is the so-called Jacobi matrix, defined 
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as 
Of, Of,. Of,  
82 1 8X2 OV3 8X4 

Oh a a 
Oxi 0x2 âv3 8x4 

J2NX4 = 

Of2N Ofnr Of2N Of2N  

Oii 0X2 8x3 O4 - 

and F(X("))2N1 is the equation value at X(). 

After the root vector to the equations is obtained, one can use it to de-embed 

the DUT with the following expression: 

[T] DUT = [T] linei trans.f [T] ;nsb [T] 1ine2 (9.4) 

where all [T] 's are the ABCD matrices of the circuit components, and particularly, 

[T]irans.i and [T]jrans.& are the ABOD matrices for the forward and the backward 

transitions, respectively. 

9.2 Results 

9.2.1 Untermination 

The first circuit studied here is a microstrip corner. The circuit parameters are as 

follows: substrate thickness h = 12.7mm, dielectric constant = 2.40, and strip 

width w = 37.0mm. 
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Figure 9.5: Im(y) of the intervening transmission line (W 37.0mm, h = 12.7mm, 
= 2.4). 

The untermination process determines the four network parameters of the inter-

vening networks, using the nonlinear least squared error techniques (Equation 9.3). 

Figure 9.5 is the imaginary part of the propagation constant of the transmission line. 

Three standard lines are measured to unterminate the intervening networks. It is 

known that this imaginary part is also called wave number, and is defined as: 

Im(7) = fi =  f 
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Figure 9.6: S-parameters of the coax-microstrip transition obtained with three stan-
dard lines. 

Since Je(f) changes very slowly with the frequency, Im(y) as a function of 
frequency is expected to be basically a linear function of frequency. As shown in 

Figure 9.5, the combinations of any two standard lines failed to give this result. The 

combination of line 1 and 3 does not even converge after around f = 800MHz (It 

is not very visible because it overlaps with other lines). It is notable that the three 

line combination gives a smooth and straight line. There are still some small ripples 
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on the curve, but the random error effects have been greatly reduced. 
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Figure 9.7: Comparison of 3-line and 2-line untermination of the coax-microstrip 
transition. 

Figure 9.6 is the S-parameter of the transition part of the circuit determined 

with three standard lines (N = 3). If, on the other hand, only two lines are used, as 

shown in Figure 9.7, the results are obviously incorrect (note again The combination 

of line 1 and 3 does not even converge after around f = 800MHz). For the purpose 

of comparison, the three-line results for IS2uI is replotted in Figure 9.7. All of the 
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two-line combination results give some unrealistic values (IS21J > 1.0) over certain 

frequency bands, while three lines gives bounded results. 

It is notable from Figure 9.5 and Figure 9.7 that the data of S21, blows up at 

the frequency where @ bends down. This is due to the error in the construction of 

the circuits and the noise in the measurement. This argument is supported by the 

noiseless simulations made on computers where two through lines always gave good 

straight line for 3 and bounded S21. 

9.2.2 De-embedding of the DUT 

The network parameters obtained from the untermination process are then used 

to remove the effects of the intervening networks from the measured data, using 

Equation 9.4. The measured data for the corner are first transformed into the ABCD 

matrix format, then the matrix is left or right multiplied by the inverse of the ABCD 

matrices of other cascaded networks. 

Figure 9.8 shows the comparison of ISiiI between the de-embedded and unde-

embedded (raw measured) results. As shown in this figure, the de-embedding process 

successfully removed the effects of the multiple reflections between the two connec-

tors, which causes the data to oscillate about the real value. It is also noted that 

there is still room for improvement in the final data. Some ripple effects can still 

be seen as the plot is still not a completely smooth curve. The ripple can be due 
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Figure 9.8: Comparison of a corner's de-embedded IS,, I with measured data (W1 = 
W 2 = 37.0mm, h = 12.7mm, e, = 2.4). 

to the noise in the measurements, the imperfect fabrication of the (standards and 

DUT) circuits , and surface waves propagation between the two transitions. It is 

believed that to further remove the random error effects, a multi-DUT circuit might 

be recommended. This way, a reasonable mean behavior may be obtainable which 

would provide smoother measurement results. 

Figure 9.9 is the comparison of the transmission scattering parameter ((S21 1) of 
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Figure 9.9: Comparison of a corner's de-embedded IS2iJ with measured data (W1 = 
W 2 = 37.0mm, h = 12.7mm, er = 2.4). 

the same corner. This figure shows very close agreement between the measured 

and de-embedded results. This is due to the relative large magnitude of the corner 

transmission (I S21I) itself, and small reflection of the transitions so that the one-pass 

trip makes very significant contribution to the measured data. The oscillatory effects 

are again seen to be removed to some extent. 
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9.3 Other De-embedded Discontinuities 
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250 

200 

150 

w 100 
'I, 

w 
50 

0 

-50 

-100 

-150 

-200 

-250 
0 

De-embedded - 

Measured ----• - 

500 1000 1500 2000 2500 3000 
Frequency (MHz) 

Figure 9.10: Comparison of an open circuit reflection: de-embedded and measured 
(W = 37.0mm, h = 12.7mm, e, = 2.4). 

The technique can also be applied to one-port discontinuities such as opens and 

shorts, because the basic idea is to solve a cascaded network problem. 
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Figure 9.10 shows the phase of an open circuit on the same board and with the 

same strip width. The rapid phase change caused by the transition and the length 

of the transmission line is removed and smooth phase curve results. It is noted that 

the phase decreases as the frequency increases. This effect has been widely observed 

and analyzed as an excess length effect (see Chapter 4). There are still some random 

error effects on the de-embedded results. If better results are required, two or more 

similar open circuits should be used. 

9.3.2 Short 

Figure 9.11 shows the phase of a short circuit on the same board and with the same 

strip width. The rapid phase change is again removed by the de-embedding process. 

Unlike the open circuit, the phase for the short does not decrease as rapidly as the 

open circuit. This is because the reference plane is moved next to a real short end. 

The only effect that changes the phase is the physical thickness of the board, which is 

not very sensitive to frequency. It is noted that the higher the frequency, the bigger 

the oscillation. This suggests that variations in the standard line transitions differed 

from the transition in the shorted line, especially at higher frequencies. For better 

accuracy at high frequencies, more precise standards may be needed. 

9.3.3 Zero Length Transmission Line 
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Figure 9.11: Comparison of a short circuit reflection: de-embedded and measured 
(W = 37.0mm, h = 12.7mm, e, 2.4). 

To further investigate the proposed technique, an imaginary network is assumed to 

be placed at the center of a standard through line. This network is a zero length 

transmission line, whose S-parameters are ideal, i.e, all pass for transmission param-

eters and zero for reflection parameters. 

Figure 9.12 and 9.13 are the de-embedded S-parameters of this imaginary net-

work. As shown in these figures, the results are reasonably good at relatively low 
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Figure 9.12: Magnitude of zero length transmission line S-parameters (W = 37.0mm, 
h = 12.7mm, e, 2.4). 

frequency. At higher frequencies, the error becomes significant. The magnitude is 

not very large, compared relatively. The phases of the reflection parameters change 

drastically. But that of the transmission parameters are constantly small. This is 

because that at nearly zero reflection magnitude, the phases are hard to measure. 

They are basically the phases of noise, whereas for transmission parameters there is 

a predominant signal part that determines the phase. 
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Figure 9.13: Phase of zero length transmission line S-parameters (W = 37.0mm, h 
= 12.7mm, 2.4). 

9.4 Conclusions on the Multi-Line Method 

The error in the zero length transmission results is not necessarily that of the DUT 

de-embedding. The error here is merely that between the least squared error results 

of the multiple through line and this particular through line where the imaginary 

network is assumed. The main error source is the nonidentical construction of the 
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transitions in the through lines . Since this construction error is random and re-

movable, good results with minimum error could be obtained with multiple DUT 

circuits along with multiple through line standards. Although this technique may 

not be the most convenient way of measuring discontinuities, when accurate circuit 

measurement is required, this method can give good results. The penalty for the 

accuracy is the cost of the extra circuits, measurement, and numerical work. 

9.5 De-embedding with Time-Domain Network Analyzers 

If an automatic network analyzer with the time-domain option installed is available, 

one can make use of the time-domain feature to de-embed a DUT relatively easily. 

If the standard line and the DUT circuit are designed to be of the same length, one 

only has to use one standard to have the DUT de-embedded. 

The method is simple and straight forward. The measurement procedure is as 

follows: 

1. a standard through line is measured for the one-trip pass response on a 11P8510 

automatic network analyzer (ANA), in the inverse Fourier-transformed time 

domain, with low-pass time domain gate turned on [115], Since the through line 

is a combination of transitionl-line-transition2, the measured one-trip response 

S 18 is 

SLS - (9.5) 
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where 13 is the length of the transmission line, and S[1] 3213 and ri[2] s21st are the 

S21 's of the two transitions in the standard through line. 

2. The DUT circuit is constructed in a way that the two sections of the transmis-

sion line (11 and 12) are of the same length, and satisfies the relationship: 

3. For SfUT, a one-trip pass response measurement Sim is made on the DUT 

circuit. The following result is obtained: 

Sim = S dje_ h1 STe_hl2 Sdt (9.6) 

where S,)d and S are the S21 's of the two transitions in the DUT circuit. 

SfUT can be obtained simply using the expression 

cjDUT - S2im 
- c LJ2t 1s 

4. For SRUT, a one-trip reflection response measurement Siim is made on the 

DUT circuit, and one has 

Siim = (Sdt)2e_2h1 11 S T 

Since i. = 2 x 1, SHUT can be obtained as 

ki DUT - Sum  
ll - (f 

L'218 

(9.7) 
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This time-domain de-embedding technique does not require heavy data process-

ing. But, needless to say, one has to have access to a network analyzer with a 

time-domain feature, and since there is no redundancy in the measurement, the cir-

cuit must be fabricated very precisely in order to have an accurate result. A great 

deal of attention has to be paid to the identicalness of the four transitions in the 

standard through line and the DUT circuit so that the following relationship holds: 

Q[1] [2] [1] 
-'21st '-'2ldt 21dt 

During this dissertation research, the access to E1P8510 automatic network ana-

lyzer was not possible until early 1992. So some early measurements were made on 

a HP8410 network analyzer at Novatel Communications, Inc., which does not have 

time domain feature. In addition, the cables used were not in good condition, and 

the circuit board was relatively thick ( .5"). Therefore, the early measurements were 

somewhat noisy, and the frequencies at which reliable measurements could be made 

ware only as high as up to 3GHz. 



Chapter 10 

Conclusions 

In this dissertation, various typical microstrip discontinuities in multilayered media 

have been investigated. Attempts have been made to generalize the analyses. The . 

use of the spectral domain method enables the inclusion in the analysis of all the 

aspects of the main concerns of microwave engineers have, namely, the power loss into 

the sub/superstrates (surface waves), into free space (radiation), and to the media 

bulk resistance (heat loss). With modified boundary conditions, it is also possible 

to account for the loss to the microstrip surface resistance. Due to its rigorousness, 

this spectral domain method is a full-wave method of analysis. 

For each discontinuity type, an analysis program has been written in C++ which 

is intended to cover all the aspects in which microwave engineers may possibly be 

interested. The numerical method used is the moment method. The exact and mod-

ified Galerkin's procedure have both been used. In some instances, the convergence 

behavior of them is compared. It is found that the modified version is more suit-

able for microstrip discontinuities where the local nature of the boundary conditions 

needs to be emphasized. The programs are also generalized in that the user only 

needs to provide the description of the media, and the dimensions of the strip. A 

step-up procedure is used to let the user view the convergence of the process. As soon 
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as satisfactory convergence is reached, the user can stop the process. This step-up 

procedure saves time at no loss of accuracy. 

The Green's function plays a key role in all analyses, because it describes the 

geometries and the electromagnetic properties of the whole medium. The definition 

of the Green's function as the response to an impulse source makes it easier to get 

a closed form expression in the 2-D Fourier domain. The generalization is successful 

in accounting for multilayer and lossy media structures with or without top and 

bottom conductor layers. All of the nine elements in a dyadic Green's function can be 

calculated, which lays a solid foundation for analyses of any possible configuration of 

microstrip transmission line discontinuities and microstrip antennas with or without 

vertical coax-feed in multilayer structures. 

The infinitely long microstrip transmission line is the most basic component in 

all microstrip circuits. Its analysis has been generalized in Chapter 3. A careful 

convergence test is carried out. The algorithm is also used in the following chapters 

where discontinuities with semi-infinite transmission lines are studied. The two most 

important parameters for a transmission line, propagation constant y (or alterna-

tively, the effective dielectric constant and characteristic impedance Zo, can be 

calculated for any multilayer structure. A generalized Poynting vector function is 

derived for the computation of the transmitted power along the transmission line in 

a multilayered structure. The results have been found to be in good agreement with 

measured data and in good agreement with quasi-static results at low frequency, 
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which suggests that the spectral domain method is full-band applicable, if appropri-

ate basis functions are used. The application of the multilayer sub/superstrates can 

result in low dispersion transmission lines, and possibly frequency compensation is 

achievable. 

Opens and gaps are analyzed as typical 1-D discontinuities. The moment method 

used, unlike the one in the infinite line analysis, is a modified Galerkin's procedure. 

The testing function corresponding to the traveling wave base function is changed to 

a PWS function local to the discontinuity. This has been shown to be able to give 

better convergence, because the locality of the boundary condition is emphasized. 

The results are found to be in good agreement with the measurements. The results 

are also compared with the predictions by commercial software package Touchstone. 

Some meaningful results have been observed. One good feature of this technique is 

that it can predict the loss of power into the substrate and the space at the open 

or the gap. Touchstone, and most other quasi-static analyses, on the other hand, 

assume lossless discontinuities. 

The most commonly seen discontinuities in microstrip circuits are two dimen-

sional. These 2-D discontinuities include the corner, step, bend, and Tee. To an-

alyze them, the horizontal current flow has to be assumed to be in both x and y 

direction. Therefore the analysis is more involved, because the reactions are now 

between the base and testing functions in different directions as well as in the same 

directions, and transverse direction current on each branch of the discontinuity can 
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not be neglected. Although the analysis is more complicated for 2-D discontinuities, 

the basic principle remains unchanged. A corner is analyzed in Chapter 6. The 

moment method is applied again to reconstruct the local current distribution in the 

corner region. 

Through the examples of a corner and many others in other chapters, a picture has 

become very clear as to how Green's function and the moment method solve a specific 

problem. Taking the corner as an example, the input is the traveling wave on branch 

1. This is the only known quantity given. There are many unknown quantities in 

this problem: how large is the reflection on branch 1? how large is the transmission 

on branch 2? and how are local piece-wise-sinusoids (PWS) distributed?. Before 

applying the testing functions in the moment method, all we know is the expression 

for the EM field produced by the input current and the assumed currents (reflection, 

transmission, and the PWS's). When the testing functions are applied to form the 

inner products with the tangential electric field on the strip surface, the input and 

the output (unknown currents) are joined together. The PWS functions play very 

important roles in this joint, because the corner region is where the input current 

transfers the energy to the reflected wave and transfers the energy on to the output 

branch to finish the transmission. These basis PWS functions construct the local 

current distribution. The testing functions (also PWS) make sure the boundary 

conditions are not violated on the strip surface. 

Vertical objects are often seen in microstrip circuits. For instance, in active 
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circuits usually screws or metalized holes are used to ground devices; microstrip 

antennas are usually fed with a coaxial line from the ground plane. A vertical 

dipole has been analyzed as an example of a vertical conducting object in a stratified 

medium. Good agreement has been observed with the results obtained from the 

spatial domain method. As a matter of fact, the spectral domain method only 

converts the horizontal coordinates into the Fourier domain. The vertical coordinate 

z remains intact. The spatial domain Green's function in a homogeneous medium is 

readily available [58]. However, it is difficult, if not impossible, to get a closed form 

expression in the spatial domain for Green's function in stratified media. It is 

even more difficult if this Green's function is for a source and a field pair in different 

directions. It takes much computer time to evaluate Green's function for vertical 

objects unless the vertical wire is a short one such as the feed pin from the coaxial 

line. 

An example of comprehensive use of the dyadic Green's function is the analysis 

of the shorting pin at the end of a semi-infinite microstrip transmission line, where 

almost all nine elements of the dyad are used. Again the input is a traveling wave 

from x = —oo, which reflects and radiates at the discontinuity. The moment method 

is used to determine the current distribution, by enforcing the boundary conditions 

on the conductor surface. The magnitude and the phase of the reflected wave is thus 

determined. This procedure can be viewed as the input wave being converted to 

the local currents (PWS's and the current on the pin) and the reflected wave, with 

the help of the testing functions enforcing the boundary conditions. In other words, 
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without the testing functions enforcing the boundary conditions, no currents can be 

excited on the pin, for the PWS's, and for the reflected wave. 

Also in this dissertation, a de-embedding technique for accurate measurement of 

discontinuities is developed and applied successfully to some of the discontinuities. 

This method uses redundancy to reduce the effects of random errors in the mea-

surement and in the fabrication of the standard lines and the DUT circuit. The 

most serious source of errors is believed to be the un-identicalness of the transitions 

between microstrip lines and the coaxial connectors. Using multiple through lines 

and multiple DUT circuits this error can be minimized in a least squared error sense. 

Thus the procedure is an over-determined, nonlinear least squared error numerical 

method. While this method appears to be inefficient and uneconomical, it is, how-

ever, a good choice for accurate measurements. The main advantage of this method 

is that one can use circuits that are not precisely fabricated. They only have a rea-

sonably good average, and the redundancy introduced from extra circuits is used to 

minimize the error. 

The transmission lines involved in this dissertation are all assumed to be slender 

strips, which makes possible the assumption that only longitudinal current flows 

on the strip away from the discontinuity. For electrically wide strips transverse 

current flow should be included in the analysis. The main drawback of the spectral 

domain method is the relatively long CPU time it takes to fill out the matrices of the 

MoM. There are two ways to speed up the process in the spectral domain: (1) one 
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can truncate the numerical integration early and use the asymptotic expressions to 

calculate the tail contribution, which can be very tedious; (2) one can consider the 

effects (field) of the elements (current patch) only in close proximity and neglect the 

field generated by the distant elements. It is not a big problem in the spatial domain, 

where Green's functions can be approximated with complex images [31][32]. In other 

words, assume that the distant elements do not exist. The error thus introduced, 

however, must be known a priori. These two methods, of course, can be used together 

to get even shorter computational time. 

The analysis of more complicated configurations is possible. With the generalized 

Green's function, almost all possible microstrip circuits are analyzable. The only 

restriction is that they have to comply with the assumption that the dielectrics are 

isotropic, and the medium is stratified and is essentially of a planar construction. 

(For finite size stratified medium, it is viable to use the discrete 2-D Fourier transform 

to get a discrete spectral domain Green's functions). 

In addition to speeding up of the numerical process, future work could also be 

done on other types of circuits. For instance, work can be done on a coaxial or strip 

line fed patch and slot antennas now used widely in indoor communications, the 

mutual coupling between transmission lines in multilayer structures such as VLSI, 

MMICs, microstrip phased arrays, and coupler designs. Also an interesting area is to 

extend the analysis into the discrete spectral domain, because the circuits involved 

are in reality finite in size. Jackson used side wall image to compute the package 
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effect of MMIC circuits [116]. or the combinations of different analysis techniques, 

such as the spatial-spectral domain approach [117], for instance, which have proved 

to be effective in overcoming difficulties and drawbacks if only one single technique 

is employed. 
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Appendix A 

Comparison of Decomposed and Undecomposed 

Traveling Wave Functions 

In the analysis of the discontinuities with semi-infinite microstrip transmission lines, 

the traveling wave (either incident, reflected, or transmitted) is in reality an exponen-

tial function with a complex argument, i.e. When an open or a gap is being 

analyzed, the reflection coefficient and/or the transmission will be the unknowns 

to be determined in the process, which makes this traveling wave one of the basis 

functions. 

If the exponential function is not decomposed (we now call it method 1), a half 

PWS function will have to be added to the open end of the strip to cancel out the 

non-zero current there. The reflection base function will be, for instance 

f1R = - fhpws 

where fhpws is defined as 

.in[k.(h+x)] 

fhpws = sin(kh) 
if —h<x<O 

0 ifx<0 

If, on the other hand, the exponential function is decomposed into sine and cosine 

terms, and the cosine term is terminated at x = ii/(2ke) (we now call it method 
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2), then the half PWS function is not needed and the base function for the reflection 

will be 

f = cos(kx) + j 51fl(keX) 

Theoretically both method 1 and 2 are valid basis functions for MoM. Numer-

ically, however, the existence and speed of the convergence has to be considered. 

When transformed into the spectral domain, they become: 

2R  3  2 
\ 1 +Jhpws 

and 

_  2R 
J 

respectively. As )a approaches co, fj varies only as a function of A;', while f 

varies as A;2. Therefore, it is clear that method 2 is a better choice for the traveling 

wave basis functions. 



Appendix B 

Conversion of the 2-D Spectral Domain Green's 

Function into the Sommerfeld Integral 

The well-known Sommerfeld integral is written in the cylindrical coordinate system. 

The spectral domain method is written in the Cartesian coordinates to conform with 

the straight edge geometry of the microstrip circuits. If there is rotational symmetry 

in the microstrip circuit, however, use of the cylindrical coordinate system can lead 

to a simpler and a faster analysis. 

In Chapter 7, a vertical dipole is analyzed. Since the current is assumed to occur 

at the center on the axis of the dipole, and the electric field is examined at the surface 

of dipole, the cylindrical coordinates are recommended. The Green's function for the 

z direction electric field due to the Hertz dipole in the same direction is 

+00 +00 

Y, z, z') = L00 L00 dzz(Ax v' z, z/)eieiAvYd.\d.X, (B.1) 

On the dipole surface, the coordinates are 

x=acosq , y=asinq5 (B.2) 

Substituting the above expressions into Equation B.1, and expressing the spectral 
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domain variables in cylindrical form, one obtains 

+00f 2ir 
E, (a cos q, a sin q, z, z') = 1=0   Ozz  z, 

O 

(B.3) 

Due to the symmetry, the electric field should be q independent. For convenience in 

getting the electric field, let q = 0. This simplifies the above expression to give 

+ 2ir 

E(a,z,z') = 1 00 I äzz(),z,z/))ei  cos dMco 
J4=O 

It is noted that [59] 

10 21r ejAaCosd = 

= 2j cos7¼acosço)d 

= 2irJo(ta) 

where J0 is the zero-order Bessel function. Thus 

z, z') 2ir 1=0 (A, z, z')Jo(Aa)AdA 

fir [cos(Aa cos - j sin\a cos ço)]dço 

(B.4) 

Since this is the relationship between a Hertz dipole at the center to its z direction 

field at the dipole surface, E(a, z, z') actually is a Green's function for this particular 

problem in the spatial domain. To get the total field at z due to a known current 

J(z') at the dipole center, the following expression holds: 

00 + 

E(a,z) = 2irJ Jz(z')dz' I (A, z, z') Jo (Aa) AdA 
ZI 

This is the well-known Sommerfeld integral. 


