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Abstract

Privacy-preservation policies are guidelines and recommendations formulated to protect data provider’s pri-

vate, sensitive data in data repositories. These policies are implemented using privacy-preservation method-

ologies. Previous privacy-preservation methodologies have addressed privacy in which data are permanently

stored in repositories and disconnected from changing data provider privacy preferences. This becomes evi-

dent as the data moves to another data repository. The ability of data providers to flexibly update or change

their privacy preferences when it is required is a known challenge. Moreover, the ability for data providers

to control their existing privacy preferences due to changes in data usage continues to remain a problem.

This research proposes a Light-weight Privacy Infrastructure (LPI); which is a methodology/framework

for privacy-preservation of data provider’s private and sensitive data. The approach offers data providers

flexibility to easily change and monitor privacy preferences on their stored data when the data usage require-

ments change. Additionally, the approach offers data providers control over access and usage of their private,

sensitive data by data collectors and/or accessors and third-party data accessors. The research proposes to

tightly couple data provider’s private attribute data element to privacy preferences and data accessor data

elements. The implementation presents a framework of tightly-coupled relational Database Management

System (DBMS), blockchains, and genomic data store. The coupled database framework delivers a secure

and query-efficient platform for management and query processing of data provider’s private data.

The implementation adopts an Alberta biotechnology platform that provides commercial oncogenomic

services, as a case study. The healthcare platform processes both cancer-related healthcare data and next

generation sequencing (NGS) genomic data. Data privacy in healthcare data is a necessary requirement in the

processing of data provider private and sensitive data across varied data repositories. The implementation

provides data providers (i.e., patients) and data collectors and/or accessors (for e.g., physicians) the platform

to efficiently manage data whiles eliminating the risks of privacy breaches and unauthorized data access.

The major contributions are: first, provide an approach to tightly couple data provider private, sensitive

data with privacy preferences, and data accessor data elements into a privacy tuple. Second, provide a tightly-

coupled immutable, tamper-resistant data processing platform where data providers monitor and control all

forms of access to their private, sensitive data. Third, provide implementation of a privacy infrastructure

where data providers have maximum flexibility to change their privacy preferences on all transactions pro-

cessed on their underlying private, sensitive data without requiring the data collector. Finally, provide an

implementation framework applicable to healthcare and genomic data processing that uses a biotechnology

platform as a case study. The evaluation analysis from the implementation procedures offers a validation for

the research based on the query processing output of privacy-aware queries on the privacy infrastructure.
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Chapter 1

Introduction

Privacy-preservation in data repositories is a fundamental and necessary requirement in the processing

of personalized, private data across varied data management areas. The concept of preserving privacy

in data stores outlines methodologies and implementations that help protect data provider’s private and

sensitive; during data storage, management, and query processing in the data stores. Hence, privacy-

preservation methods offer data collectors and/or accessors the platfrom to process (and draw data utility)

from data provider’s private and transaction data without breaching privacy and personal identification. In

practical terms, the discussion and applications of privacy concepts has significant influences in different

domains, such as, legal frameworks, healthcare management, and government data platforms, amongst

others. The emergence of multiple diverse data collection points across different application domains allows

the processing of large data volumes on data providers. Most especially, associated transactions from collected

data provider’s private, sensitive data through Point-of-Contacts user interface platforms opens up important

requirements for storage and management of these data.

Consider the application domain of a healthcare system where patient healthcare records are collected

and maintained for healthcare service delivery. The primary source of data is from the patient and so we

classify the patient as the data provider. Different forms of data are collected from the data providers. These

collected data may be hypothetically categorized as less-sensitive, medium-sensitive, and highly-sensitive.

The categorization of these collected data defines an efficient specification of privacy preferences for related

data of the same sensitivity level. The varied data forms enable efficient methods for storage, management,

and disclosure of related patient private, sensitive data items. Moreover, this hypothetical approach enable

better query processing and data retrieval of related data values for intended data accessors. It is noted

that based on the information from the application domain and case study requirement analysis, we adopt

1



these attribute data categorizations. A different application domain implementation may present the need

specify related attribute data categorizations. For example, data item, such as, health insurance carrier and

consent witness name could be characterized as less-sensitive data, whiles patient last name and postal code

could be categorized as medium-sensitive data. Data items, such as, date of birth and personal health number

could be categorized as highly-sensitive data. Additionally, collected data in healthcare domain may be cat-

egorized as biographical information (i.e., first name, last name, date of birth, and gender, amongst others),

demographic information (i.e., home address, postal code, province), patient consent information (i.e., wit-

ness biographic data, witness address, dependent data, and allergies, amongst others), and health insurance

information (i.e., carrier name, policy number, and group number).

The healthcare system presents different categories of data collectors (or service providers) who collect

disparate data items at separate stages of healthcare delivery. Moreover, we identify data accessors who

are designated as individuals (or groups) that request data access and process the collected data. In some

instances, data collectors become data accessors due to their work needs and responsibilities. Data accessors

may be classified as clinical physicians, nurses, laboratory analysts, and third-party accessors (such as, allied

healthcare centres, courthouse, etc.), amongst others. To ensure efficient privacy preservation of collected

private, sensitive data, different data access levels must be provisioned to these data accessors.

We consider the case study of managing general data provider biographical and demographic data,

healthcare data, and next generation sequencing (NGS) genomic meta-data within the broader domain of

healthcare system. In this vein, we study procedures and analyse related data within the context of molec-

ular pathology requisition, medical consent management, and patient private data management. Moreover,

we analyse measures that offer data providers flexibility in management and monitoring of data privacy

preferences. We study measures that enable data accessors to acquire necessary accessibility permissions to

process data provider private healthcare data.

Processing massive data volumes demands enhanced operational efficiency, performance, and optimal

service delivery for both data and service providers (and third-party data accessors). Within the healthcare

domain, where private data management is vital, issues of information security and trust between parties

involved in service delivery must be adequately addressed. This motivates the need to secure data access

and authenticate users on data management systems. Conversely, the need to protect data provider’s data

privacy arises with the processing of such private, sensitive data provider healthcare data, such as, cancer-

related data [67]. Hence, demand for efficient data privacy merits better privacy-preservation policies and

methodologies to address critical service delivery on these data processing platforms.
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1.1 Motivation

Managing and protecting private information in data repositories has generated much research interest since

the seminal work on Hippocratic databases [15]. Recent studies focus on different processing and techniques

applicable to various areas, such as, information systems [96], cloud computing [95], and big data [94].

Research on contextual integrity (CI) and purpose-based privacy policies in data provider privacy preferences

provide results that seem to suggest improved methodologies and models in data privacy management [37,

38, 40, 41, 45].

Barth et al. [37] propose a privacy framework based on contextual integrity (CI) which outlines the

identification of temporal norms, the value of information, and the purpose of data collection, as requirements

to ensure integrity for information flow. Their research identifies a logical framework for expressing and

reasoning about norms of transmission of private data between data providers, data collectors and data

accessors. Subsequent research on purpose-based privacy by Jafari et al. [41, 42, 45] argue that workflow

models can be used as a framework for purpose-based privacy policies. Their approach assumes how data

providers behave and reflects the purpose or intent in the collection, storage, processing, and disclosure of the

data. They formulate and design a privacy protection methodology to support such behavioural activities.

Despite the results gained from contextual integrity and purpose-based privacy, the problem of a practical

implementation for protecting data provider’s privacy preferences for various application domains is still a

challenge. Moreover, a privacy-preservation approach for managing data provider’s private, sensitive data

that adopts an immutable, tamper-resistant data platform to process data provider’s privacy preferences on

large data volumes is yet to be devised.

The approaches studied so far do not adopt an ontology framework to model data provider preferences and

privacy semantics in their data protection policies. Moreover, current privacy ontologies provide insufficient

semantics to support the complex nature of data provider privacy preferences. The ontologies lack expressive

language and semantics to describe data provider preferences [29, 30]. These prior approaches based on

contextual integrity and purpose-based privacy are not easily applied to real-world scenarios and are not

readily applied in diverse application domains, such as, healthcare and genomic meta-data management.

1.2 Problem Statement

Previous privacy-preservation methodologies address privacy for data permanently stored in repositories –

sometimes called “data-at-rest.” Data provider privacy preferences are rarely considered (especially, as the

data moves to another data repository or third-party accessor).
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We address the problem statement from two main areas. First, with the persistence of these static data

in data repositories, data providers or data collectors infrequently or minimally respond to changes in data

provider privacy preferences. The addition of new data records or expectation of new privacy preferences on

new and/or existing data poses a major challenge in handling data provider privacy preferences [10]. This

opens up a situation where data providers do not have much access and control over their privacy preferences.

Zakerzadeh et al. [23], Iwuchukwu and Naughton [24], and LeFevre et al. [25] independently study data

privacy management for large data sets, but their approaches do not consider dynamic contextualized data

provider’s privacy preferences.

Second, one critical challenge in current data privacy management approaches is the inability of data

providers to flexibly update or change their existing privacy preferences when desired, or when data usage

changes. As a result, the inability to track and/or control privacy violations by service providers or third-

party accessors continues to remain a problem.

1.3 Research Assumptions and Limitations

Assumptions made to frame this research are:

(a) The implementation uses a private blockchain only accessible to the data providers and the data

collectors/accessors (i.e., service providers and/or third-party accessors, where necessary) through a

system framework.

(b) Encryption protocol is used for all transmissions including queries and results between user interfaces,

the blockchain platform, and the relational database repository. The encrypted data communication

medium sufficiently reduces (or best case prevents) any form of attack or data loss as data moves from

one system component to another.

(c) The relational database is secure from non-privacy related attacks.

(d) Communication through the Internet is secure, reliable, and appropriately encrypted.

1.4 Research Contributions

We propose a Light-weight Privacy Infrastructure (LPI) to preserve data provider privacy and protect sen-

sitive data offered by them. This approach addresses a practical implementation to protect data provider’s

private, sensitive data. We classify the methodology approach as ”light-weight” to illustrate a privacy model
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and privacy preservation infrastructure over a relational database using an external access control authen-

tication wrapper. A heavy-weight approach for privacy preservation needs to alter the database engine of

the relational database so as to offer privacy preservation for private and sensitive data values stored in the

database. This alteration process of the database engine will attempt to address privacy-aware procedures of

query parsing, query evaluation, and query execution as part of overall data processing and/or data retrieval

in the database engine.

The light-weight model/infrastructure builds a data processing wrapper for query processing, privacy

preferences access control, authentication, and authorisation over the relational database. This access control

authentication medium is implemented using a blockchain platform. The blockchain data platform is chosen

because it offers an immutable, tamper-resistant platform for data storage and access. With this light-weight

wrapper approach, every query processing and data retrieval activity is efficiently authenticated for each data

accessor.

The Light-weight Privacy Infrastructure (LPI) offers control on the access and usage of private, sensitive

data by service providers, and/or permitted third-party data accessors. The approach offers an efficient plat-

form for managing data provider’s personal data (such as, healthcare data), through controlled procedures

for data access authorizations by both data provider and data collector. The privacy infrastructure delivers

a better application framework and implementation to different domains. Additionally, the model platform

presents an effective medium where, on one hand, data providers manage and control access to their private

data. On the other hand, it offers data providers the flexibility to change privacy preferences on their private

data when desired.

The technical contributions are summarized as follows:

(a) In Chapter 3, we introduce a privacy framework where data providers have ultimate access and control

of their privacy preferences, and every change request is validated by both data providers and data

collectors (or service providers). This is achieved through a integrated privacy tuple generated from

the tight-coupling of data elements.

(b) We introduce an efficient procedure to tightly couple attribute data, data provider privacy preferences,

and data accessor data elements into a privacy tuple in Chapter 3. The tightly coupled privacy tuple is

transmitted through an encrypted application transmission medium and stored in an immutable data

platform, such as, blockchain.

(c) In Chapter 3, we introduce an efficient coupling between relational database management system

and private blockchains platform; as part of an encrypted, secured data processing platform for data

accessors is presented [55, 57]. We also discuss the implementation details of the system architecture
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in Chapter 4. We establish that the blockchain is feasible to use as an authentication platform for all

forms of data access and changes to data provider’s privacy preferences.

(d) Moreover, Chapter 3 introduces a privacy model framework that uses a formulated, dynamic con-

textualized privacy ontology as foundational model with crafted design constructs of semantics and

predicates. Additionally, in Chapter 4 we describe the ontology’s key characteristics of purpose, con-

text, data provider privacy preferences, user roles, contextual norms, transmission medium, and other

privacy-related factors that may be relevant in a data provider’s privacy policy.

(e) Finally, in Chapter 4, we discuss the implementation of the privacy model framework as applied to

patient healthcare data and genomic data. We use an Alberta biotechnology company (i.e., Tunote

Oncogenomics) which is interested in providing Alberta cancer patients with access to commercial

oncogenomic services, as a case study. This implementation validates overall research propositions.

We discuss detailed implementation overview in the next Section 1.5. An evaluation analysis of imple-

mentation query processing for privacy-aware queries and the privacy cost implications are discussed

in Chapter 5.

1.5 Application Domain Implementation

We implement the privacy model framework using Tunote Oncogenomics healthcare as a case study. Tunote

Oncogenomics is an Alberta biotechnology company interested in providing Alberta cancer patients with

access to affordable commercial oncogenomic services. Their main purpose is to provide affordable access

for all Alberta cancer patients using local expertise in oncogenomics. Moreover, they offer services to assist

in the planning and execution of cancer treatments, from diagnosis through every step along a patient’s

healthcare journey.

Tunote Oncogenomics utilizes a combination of distributed laboratory workflows and a state-of-the art

data management and informatics system. Tunote adopts locally outsourced laboratory processes to develop

an affordable approach to the traditionally high-overhead whole-genome sequencing workflow. To deliver

on the need for peak-performance analytics, Tunote leverages local technical expertise in bioinformatics,

including affiliates in some of the country’s leading local research cores. To provide patients with optimal

and guaranteed patient data control and ownership, Tunote is developing a hybrid blockchain-informed data

storage and transaction architecture.
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Tunote Oncogenomics believes that patients (i.e., data providers) should have full control over their

personal healthcare and genomic data. The proposition is that all Tunote-based healthcare and genomic

data are generated in a direct-to-patient framework, using an advanced blockchain-based authorization and

transaction control system. Furthermore, all Tunote patient clients have full and unhindered ownership and

control of their healthcare and genomic data.

A Tunote Distributed Ledger (TDL) is created from the onset of healthcare delivery and administration.

A client’s TDL account is used to store identifiable personal data, healthcare data, demographic data,

payment information, and data transaction data. Leveraging a blockchain architecture, the TDL provides

an immutable record of healthcare and genomic data ownership and all associated transactions. This data

management approach reduces Tunote and its partners of the liability of data privacy and security; such that

data access is allowed with the express permission and acknowledgement of the patient (i.e., data provider).

1.6 Research Significance

Management of large data sets has experienced varied challenges over the years with inherent data privacy and

security problems; and issues relating to data ownership and control. For example, in the area of healthcare

and genomic data management, data collectors from both public and private operate using centralized data

transaction architectures [69]. Current system data architectures run risks of data provider privacy breaches,

data loss or corruption, and unauthorized data access (and use by third-parties). This is because data are

stored and managed exclusively by data collectors, and data are housed in a way that data providers have very

little knowledge or control about how their data are accessed or used. Moreover, data providers are obligated

to data collector (i.e., service provider) data ownership privacy policies, and are exposed to having their

data used without their knowledge or consent [103]. Our proposition of a privacy tuple (of tightly-coupled

data elements) and coupled data platform offers an improved privacy infrastructure where data providers

contribute (and agree to) privacy preferences specified on their private data. Additionally, data providers

are offered much control and access to data and query processing procedures in the privacy-controlled and

authenticated coupled data platform.

Recent General Data Protection Regulation (GDPR) [104] in the European Union and emerging regula-

tions in both Canada and the United States of America require that personal and sensitive data be managed

in a highly protective way. Our research offers a data platform where data providers have greater access and

control to their privacy preferences over the underlying private data stored in databases. The privacy infras-

tructure enables data providers to verify data access and accuracy, revoke data access as required/desired,

delete data when desired, and ensure availability of verifiable access audit, to ensure that systems are in
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regulatory compliance.

We design a tighly-coupled data platform of blockchains, relational database, and genomic data store

for efficient data storage and authenticated privacy-aware query processing. Blockchain technologies provide

an immutable means of recording information relating to data provider preferences that includes ”how”,

”by whom”, and ”when” their data might be legitimately accessed for a given purpose [51, 53]. When

data provider privacy preferences are stored on a blockchain platform, access rights can be verified against

the privacy preferences; which guarantees compliance and transparency by all parties (of data provider,

data collector, and data accessor). The relational database stores content data and provides better data

transaction throughput which are not readily available in the blockchain. Moreover, the genomic data store

- which manages large genomic data sets - provides an optimum platform for processing NGS data types. The

incorporation of all these platforms provide sufficient data protection of data provider’s private, sensitive data

stored in relational database and/or genomic data store. Moreover, this architecture offers data providers

control over authorized access to their private data in the data repositories.

The proposed privacy model presents a novel approach where each data provider data item is tightly-

coupled or bound to privacy preferences and data accessor data items. This makes query processing for each

data item strongly tied to the privacy preferences and data accessor. Additionally, the methodology approach

employs a blockchain platform as an access control query processing medium. The privacy methodology is

implemented using a case study of healthcare data. The experimental implementation and evaluation results

offers relevant metrics on privacy overhead cost, query recall (i.e., visibility privacy), and query precision

(i.e., granularity privacy) for processing queries and data retrieval on privacy-aware relational databases.

1.7 Dissertation Outline

The dissertation is organized, as follows. In Chapter 2, we discuss background studies regarding data privacy

models and methodologies, privacy ontologies, purpose-based privacy models, blockchains and data privacy,

and database coupling approaches of blockchains and relational databases. Chapter 3 addresses and describes

the proposed privacy methodology of Light-weight Privacy Infrastructure (LPI). This chapter discusses

modelling constructs of formulated contextualized privacy ontology and tight-coupling of data elements.

Additionally, proposed tight-coupling approach and implementation of the blockchains and relational DBMS

platforms are discussed.

In Chapter 4, we discuss system design, development, and implementation of the research method-

ology of light-weight privacy infrastructure. We discuss implementation procedures for privacy ontology,

tight-coupling of data elements, and tight-coupling of relational database, blockchain platform, and genome
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data store. Chapter 5 discusses overview of the security or adversarial model on the system. We evaluate

procedures on the different aspects of system implementation for the proposed research methodology. Ad-

ditionally, we discuss system adversarial model, system security assessment on all system components, and

privacy model attacks. We discuss a comparison to other methodology approaches and address qualitative

analyses based on some defined criteria. Finally, we discuss and analyse query transaction evaluations, and

query processing and response times. In Chapter 6, we conclude by summarizing research contributions, and

consider vital areas for application in academia and industry. We also address some open issues and likely

areas of future work.
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Chapter 2

Background Research

There have been several studies into data privacy over the years, and recently in purpose-based privacy,

usable privacy, and context-based privacy-preservation. The results of these prior research bring into view

novel ideas, functional methodologies and models, and insights into data privacy. Other investigations study

cases where data provider private and sensitive data will be efficiently managed and protected in the near

future, despite sophisticated information processing and data analytics [94, 101, 102].

In this chapter, we discuss previous research studies. We highlight major contributions and address some

of their drawbacks. We discuss privacy-preservation models and methodologies in Section 2.1, and address

privacy ontology modelling, and contextual privacy in Section 2.2. In Section 2.3, we discuss blockchains

platform and its relationship to information security and encryption. Section 2.4 discusses research work

on coupling blockchains and relational databases. We discuss related research works on the application of

blockchains and privacy-preservation in healthcare and genomic data in Section 2.5. In Section 2.6, we

summarize research contributions on research works within the area of applying blockchains in data privacy

preservation. We also examine research gaps arising from these background studies and pertinent problems

that must be addressed.

2.1 Privacy-Preservation Models and Methodologies

Several data privacy-preservation approaches have been addressed and proposed by researchers in the data

privacy domain. This section addresses different forms of privacy-preservation models and methodologies for

data either stored in repositories or being published in the form of micro-data. First, we discuss techniques

and algorithms for data protection. Second, we discuss various models and privacy policies that formalize

these methodologies. Moreover, we address various approaches of privacy-preserving data publishing.
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2.1.1 Privacy Models and Methodologies

Privacy preservation approaches provide useful outcomes and/or results in policies, techniques, algorithms,

and useful knowledge in securing data provider’s private data in data repositories. The study of these

methodologies underline merits and foundations for reliable and robust data privacy.

The development of privacy-preserving anonymization methods prevents disclosure of private, sensitive

information of persons in published data. One early study on privacy-preserving anonymization methods is

provided by Sweeney’s k-anonymity [1]. There has been a succession of other approaches that seek to address

the weaknesses in earlier methods. These models and methodologies are presented in different anonymization

techniques (such as, generalization and suppression [1, 2, 3], randomization or data perturbation [4, 5, 6, 7, 8],

and data swapping [9]).

Privacy-preserving data mining methodologies are techniques and algorithms that are employed to protect

private, sensitive data while drawing relevant knowledge from underlying data repositories. Aggarwal and

Yu [10] provide a foundational study on privacy-preserving data mining. The authors propose an approach

that does not require recent problem-specific algorithms, but maps and condenses groups of original data sets

into new anonymized set. The approach uses statistical information to create anonymized data which has

similar statistical characteristics. Subsequent investigations of privacy-preserving data mining discuss critical

areas in handling broad data distributions. Additionally, other studies analyse the trade-off between sharing

information and privacy-preservation, and generate valuable methodologies and results [11, 12, 13, 14].

2.1.2 Privacy Models and Data Management

The study of better privacy-preserving polices, and privacy-aware database models have garnered interest

in the research community since the seminal work on Hippocratic databases [15]. Agrawal et al. [15] outline

and address several principles for protecting data stored in database management systems. Moreover, the

authors propose an architectural design framework (in terms of privacy meta-data schema, privacy policy

schema, privacy authorization schema, etc.). This design models a privacy-aware data repository where

measures for data collection, query processing, and data retention, amongst others, are outlined. Further

studies by Barker et al. [16] seek to outline a privacy taxonomy for the collection, sharing, and disclosure

of private data stored in repositories. The authors develop a privacy taxonomy to define parameters for a

privacy policy while protecting the data provider’s personalized information.
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Barker’s [18] conceptual approach to privacy protection addresses the need to identify trade-off between

maximizing data utility and optimum privacy in data repositories. His study proposes a conceptual ap-

proach where data provider approves or consents to privacy policies or changes in existing policies with the

service provider. Moreover, Kwakye and Barker [19] propose a privacy-preserving methodology in relation

to integrating multidimensional data models. This approach is based on Barker et al. [16] privacy policy

taxonomy and adaptation of Barker’s proposed conceptual model [18]. Other studies on privacy-preserving

policies and models focus on policy visualizations, and ability to represent different use cases on a number

of real-world scenarios [17].

2.1.3 Privacy-Preserving Data Publishing

In the broad overview of managing and publishing data that contains private, sensitive data provider data, a

number of studies have surveyed and presented reviews on efficient data publishing approaches [20, 21, 22].

Further investigations focus on large-scale data sets and these address insightful results in processing of large

data volumes [23, 24, 25]. Additionally, recent investigations in cloud services have gained much interest

in managing sensitive data, preserving data provider’s privacy, security, and identities, and data publishing

[26, 27, 28].

2.2 Privacy Ontology Modelling, Contextual and Purpose-Based

Privacy Models

The need to address data privacy from different contextual viewpoints and purposes generates better ways

of managing, analysing, and retrieving data provider private data. This section discusses research studies

on privacy ontologies, and how these ontologies are used as foundations in analysing contextualized data

provider’s privacy and purpose-based privacy policies.

2.2.1 Privacy Ontologies and Context-based Ontologies

Privacy ontologies form the structure and model for most context-based privacy policy formulation. On-

tologies formalize diverse preferences, unique attributes, and distinct rules for managing, processing, and

modelling privacy policies. Additionally, ontologies help in instantiating contextualized privacy policies for

different individuals or scenarios.

Several research efforts have investigated ontologies, and these studies define and describe how ontologies

are used in modelling real-world scenarios and application domains. Additionally, these studies discuss how
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predicates regarding these ontologies state the purpose of concepts (things) found in the real-world scenario.

Predicates describe behaviour of the concepts in the instance under review. The results gained from these

studies have been vital in drawing insights from ontologies and their predicates, especially in the framework

of controlling privacy in context-aware systems [29]. Bawany and Shaikh [30] model a data privacy ontology

for various ubiquitous computing platforms. Their research work defines ontology semantic constructs (of

data, producer, and consumer) and predicates for privacy preservation of data throughout its life cycle.

Other studies propose ontology modelling to protect private, sensitive data for various application do-

mains, such as, healthcare delivery, supply chain services, and financial services, amongst others. Some stud-

ies connect domain-specific ontology modelling to associated processing platforms, such as, mobile devices,

and Point-of-Contact (PoC) user interfaces [31, 32]. Accordingly, the study of context-aware and rule-based

ontologies offer many results that address such unique scenarios. Moreover, the outputs of context-aware

and rule-based ontologies are relevant in defining the semantics and predicates of privacy ontology modelling

[34, 35, 36].

2.2.2 Contextual Integrity and Purpose-based Privacy Models

Modelling ontologies to efficiently adapt to different application domains and unique data processing situ-

ations demands incorporation of context-specific predicates. The research paradigm of contextual integrity

(formalized by Nissenbaum et al. [37, 38]), focus on context-specific viewpoints, such as, role, norms, value,

and transmission principle, among others. These viewpoints provide further insights and perspectives to

modelling of privacy ontologies and frameworks. The proposition by Nissenbaum, combined with research

by Krupa and Vercouter [39] and Ajam et al. [40], seek to outline different context-based privacy norms

adopted in virtual communities and data processing paradigms. These contextual norms are used in ad-

dressing procedures for managing and controlling access to private, sensitive data in such situations.

Jafari et al. [41, 42, 45] investigate purpose-based privacy policies and modelling. Their studies address

different insights and motivations behind purposes for application domains. Moreover, the authors propose

a formal definition for purpose (being a condition of reason among inter-related actions) and its constraints.

The authors develop a framework model to express and enforce such purposes in privacy policies. Their

formal framework further discusses the properties of purpose and shows how purpose-based constraints can

be connected to more general access control policies. Finally, the authors specifically address enforcement of

purpose within the framework of purpose-based privacy using workflow-based information systems. Other

contributions in using purpose lattices and application of purpose in graph modelling are outlined by Kumar

and Shyamasundar [43], Tian et al. [44], and van Staden and Olivier [46].
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2.2.3 Usable Privacy

One aspect in modelling and application of ontologies for privacy data processing is the ability to make it

usable and functional for different technological platforms. This functional aspect must meet unique user-

specific data processing needs. Bolchini et al. [47], Gerber et al. [48], Birge [49], and Brodie et al. [50]

independently address different aspects of contextualizing privacy for user interfaces. Their studies outline

improved interface design and enhancements that come with achieving usable privacy (with extensions to

security). Moreover, their studies seek to investigate trade-offs between usability and privacy (and security)

in terms of adopting efficient data provider interactions and interfaces.

2.3 Blockchains and Data Privacy

The study of blockchains to manage secured data and transactions has gained much attention recently. This

section reviews studies on decentralized, distributed blockchains, private information processing on these

blockchains, and their encryption approaches. Additionally, processing of privacy-related data collected

from different application domains and platforms, and their relationship to blockchains are considered.

2.3.1 Blockchains Applications to Data Privacy

Blockchains (in comparison to the conventional relational database) offer a secured, tamper-resistant, and

immutable framework for data processing. These platforms provide a better “database” framework for pro-

cessing private, sensitive data provider’s data. Since the earlier introduction of blockchains as underlying

data base for Bitcoin cryptocurrency platform by Nakamoto [51], there have been varied proposed uses for

blockchains. Romano and Schmid [52] discuss the adoption of the blockchain technology platform in di-

verse data processing systems. In their study, the authors discuss the current and potential application of

blockchains for different domains. The authors discuss smart property management, where private informa-

tion, such as, copyrights and patents of data owners are protected. Additionally, the research discusses the

use of blockchains for smart contracts and other related fields of eScience, healthcare, and financial services.

The highlight of their study address the use of blockchains to protect private data scientific outcomes (as in

eScience), patient medical records and access to genetic data (as in healthcare), and financial transactions

and credit information (as in financial services).

A number of studies have investigated a background framework and design of blockchains data platform.

These studies outline unique benefits of offering data verifiability, identity, immutability, and decentraliza-

tion [58, 59]; necessary for protecting data provider’s private data and the transactions that are performed
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on them. Zyskind et al. [55] and Halpin and Piekarska [57] independently investigate aspects of blockchains

security, encryption, and extensions to protecting personal data within the framework of decentralized pro-

cessing. In these works, the research identifies ways in which users (data providers) can own and control their

data whiles having service providers offering them personalized services [55]. The research addresses how to

protect private data using blockhains as an access-control moderator with an off-blockchain storage solution.

Moreover, other research works discusses a variety of blockchain primitives in the form of centralized e-cash

with privacy properties that enforce privacy between senders and recipients of financial transfers. Other

approaches offer addition of some data anonymization forms to existing blockchain techniques [57]. All these

works address methods in protecting privacy and identities of data providers in domains where blockchains

are applied.

2.3.2 Blockchain Methodologies and Healthcare Data Privacy

The use of blockchains for managing and storing healthcare data has recently gained much consideration.

This approach has become necessary due to the sensitive nature of storage, management, and disclosure of

healthcare data to data accessors. Moreover, healthcare data in recent times have attracted strong reforms

in terms of data protection, privacy, and security [60]. Tian et al. [61] study an approach of medical data

management using blockchains to preserve privacy. In their work, the authors adopt the methodology of

storing encrypted medical data in a blockchain using a shared key; which is accessible by all authenticated

parties for medical diagnosis and treatment. Similar approach of storing medical data in blockchains is

addressed by Cao et al. [62]. The authors propose a reward mechanism for medical data management which

maximizes data processing benefits of sharing medical data to a medical data producer and/or medical data

miner. Their proposal outlines measures to reduce the risk of patient’s private medical information getting

leaked to unauthorised persons; whiles offering to achieve a reward on the shared medical data. In their

approach, the research addresses ways in which unauthorised access to the patient’s private information

is minimally reduced. The unauthorized data access could come from different persons (within the entire

medical healthcare management system) who might have access or even curious adversaries, such as, hackers.

Different authors study and propose methodologies for preserving privacy in healthcare or medical data

using blockchains and encryption methods [63, 64, 65]. Huang et al. [63], in their recent research address

the privacy needs of patients during the phase where information regarding medical data is transmitted

between several entities. Additionally, the authors address issues including the unsatisfactory transaction

processing capacity and implementation efficiency caused by the current blockchain-based medical system.

Their research presents a blockchain-based privacy-preserving scheme, which realizes secure sharing of med-
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ical data between several entities involved such as, patients, research institutions and semi-trusted cloud

servers. Similar methodology of a blockchain-based privacy preserving platform for healthcare data is pro-

posed by Al Omar et al. [64]. Their study proposes a storage system to attain privacy where preservation of

data providers’ (i.e., patients) identities and protection of their sensitive healthcare data are ensured using

cryptographic functions. In their work, the authors address accountability, integrity, security, and privacy of

healthcare data as critical functions that must be adhered to. Their work presents authorizations where data

sharing is predominantly managed by the patient, and the encrypted data is well-protected. Additionally,

in the case of system attack the stolen data makes no sense to the attackers. This claim by the study is

based on the fact that only encrypted data are stored by the parties in the system. Moreover, the blockchain

platform maintains data integrity on both parties in the system. Liu et al. [65] investigate a methodology

where electronic medical records are stored securely in cloud database servers and the indexes are reserved in

a tamper-proof consortium blockchain. In their approach, secure data sharing is accomplished automatically

according to predefined patient access permissions through blockchain smart contracts.

In line with security and privacy implications for adopting blockchains as a data platform for healthcare

or medical data, we review merits of genomic data storage using blockchains. Carlini et al. [66], Shabani

[67] and Ma et al. [68] study the need to adopt blockchains technology in protecting and improving the

wide availability of low-cost genomic data services. Carlini et al. [66] investigate the adoption of blockchain

technology as the foundation of an ecosystem for acquiring and sharing of genomic data. Their approach

presents the Genesy model of a blockchain platform, that transcribes genomic data. The project adopts the

Hyperledger Fabric blockchain platform to notarize genomic data and prevent their unauthorized use; while

making the data accessible for transactions between different parties.

Shabani [67] studies blockchain-based platforms as emerging solutions for technical and governance chal-

lenges associated with genomic data sharing. The author’s investigation highlights the need for effective ways

to enforce data access agreements and data ownership on blockchain platforms. The author identifies several

blockchain-based projects and describes their basic features and core functionalities. The key outcome of

the study addresses the emerging need of blockchains to provide a platform for maintaining data provider’s

personal genomic- and health-related data, and methodologies for data sharing and disclosure. Additionally,

the study outlines blockchain’s merits and capabilities, such as, participatory access control, automating

access agreements and consent, and data ownership and DNA coins. Ma et al. [68], on the other hand, study

the cross-site genomic data sharing system mechanism where a secure and transparent access control audit

ensures accountability. Their research identifies several propositions for blockchain-based access audit and

proposes a blockchain-based log system which is a light-weight module over existing blockchain platforms.

Their adopted and designed system module supports efficient range queries and complex queries that contain
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multiple predicates.

As part of adopting blockchain technology as an underlying data repository for genomic data, one critical

area that must be addressed is handling encrypted queries. Additionally, there is the need to consider

management of query results that are transmitted in-between the blockchains and other components of

the genomic data storage platform. Several studies have focused on controlling data access, encapsulation

mechanisms and data communication techniques. The research results serve as foundational knowledge to

determine which approach to adopt in handling encrypted queries and results [78].

2.4 Coupling Blockchains and Relational Databases

The approach of coupling blockchains to a relational database management system (DBMS) is a new problem

that is directed at obtaining merits from both data platforms for secured data processing. Few studies

regarding how to efficiently link blockchains and DBMSs or simulate the coupling of both platforms exist.

We consider some research work that attempt this approach in this section. Other studies on approaches of

query processing, scalability, and throughput on blockchain systems are reviewed, as well.

2.4.1 Blockchains and Relational Databases

The approach of coupling blockchains and relational database management systems arise because of the

unique properties of blockchains and relational databases, respectively. Blockchains present a platform for

an immutable, tamper-resistant, and encryption-enforced medium for distributed authentication of data

transactions by consenting parties. This authentication approach is designed in a non-trusting relationship.

Conversely, traditional relational databases provide an efficient platform to store and manage large data

volumes and process expected high transaction throughput.

Very little research has addressed the benefits of combining blockchains and relational database man-

agement systems. Mohan [81] in his introductory tutorial on blockchains and databases discusses ongoing

projects combining the merits of both database platforms. The highlights of the tutorial discuss the initial

studies on different open-source projects that involve platforms, such as, Hyperledger Fabric, Enterprise

Ethereum, and R3 Corda. The tutorial further discusses the architecture, components, and algorithms;

and their related open issues. Meunier [82], Dinh et al. [83], and Seng [84] independently investigate

database capabilities that a blockchain platform can exhibit, and how these capabilities are adopted in

traditional DBMSs. Meunier [82] addresses blockchains in the form of distributed database management

systems (DDBMS) that leverage on cryptographic functions to provide a decentralized multi-version and

concurrent control mechanism. This helps to maintain consensus about the state of data stored in each
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distributed database. Dinh et al. [83] study the evaluation work of designing a private blockchain platfrom.

Their research work addresses key components of using a private blockchain as a ”special case” of a database

platform. The work discusses four main layers to the private blockchain; namely, consensus, data model,

execution layer, and application layer. The research work by Seng [84] discusses the concept of a blockchain

as a database without a central data administration. The work does not present technical analysis or design

architecture of a blockchain, but identifies key data security guarantees of confidentiality and reliability; as

advantages of the blockchain platform in comparison to the conventional relational databases. Karafiloski

and Mishev [85] discuss the adoption of blockchain for big data and propose solutions to the challenges of

big data management. Their study address how these challenges are managed using a blockchain technology.

Notable research combining the merits of both blockchains and big data database platforms is ad-

dressed by McConaghy et al. [86]. In their studies, the authors simulate coupling distributed, decen-

tralized blockchains and big data database management systems. Their approach embeds the properties

of blockchains, such as, asset trust and autonomy, verifiability, tamper-resistance, and decentralized data

processing into data processes of big data DBMS. This approach offers storage of large data volumes, efficient

query processing, data scalability, and high transaction throughput.

2.4.2 Blockchains Query Processing, Data Scalability, and Transaction Through-

put

With the emergence of blockchains and the need for efficient transaction data processing, Li et al. [87], Xu

et al. [88], and Dinh et al. [89] independently investigate query semantics, transaction management, and

query framework protocols of blockchains. Tai et al. [90] propose a novel form of blockchains transaction

processing, known as SALT (Sequential, Agreed-on, Ledgered, and Tamper-resistant). This transaction

processing supports symmetric and time-consensual data processing. Additionally, the data transaction

processing is free from a central administrative control. Kiayias and Panagiotakos [91] analyse the trade-off

advantages on transaction data processing speed and data security in blockchain protocols. In their study,

the authors investigate a wide range of viewpoints regarding processing speed and security of transaction

queries over a blockchain protocol. These viewpoints are demonstrated in the data storage approach in

blockchains and the data protection that blockchains offer against all forms of data tampering.

An important challenge in blockchain data processing is the assessment of scalability and transaction

throughput for significant volume of stored data. Ren et al. [92] and Xu et al. [93] study and anal-

yse improved approaches for blockchain consensus mechanism to achieve high throughput during real-time

transaction processing (such as, e-commerce). The authors in Ren et al. [92] address current issues (such as,
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scalability of Byzantine fault tolerance (BFT), increasing throughput of proof-of-work, leader selection, and

sharding) as key provisions for successful deployment of blockhain platforms with large data volumes. Their

work introduces a permissioned blockchain-based distributed ledger that consists of four layers. Moreover,

their work outlines an overview of how BFT is handled, reliability guarantees of side-chain transactions, and

how some rational nodes are used to optimize storage and message transmission. On the other hand, Xu et

al. [93] study a blockchain consensus mechanism that is mainly focuses on an e-commerce platform. The case

study of e-commerce is chosen because of the expected real-time mode of transactions and high-throughput

data processing. The research design offers a two-layer peer blockchain network with a dynamic verification

network, and a negotiated consensus algorithm. The key advantage of the consensus algorithm is addressed

in the measure that it does not rely on computing power, and ensures credible block verification.

2.5 Related Research Works

We study and address some related research and developer projects on privacy-preservation of data provider’s

private, sensitive data. The discussion presents insights into how these methodology approaches protect

data provider’s private data and preserve data provider privacy and identities. Moreover, we address how

these applications (arising from the research works) manage domain-specific healthcare data, and more

specifically genomic data. We further identify novel propositions from these research work and discuss their

contributions.

2.5.1 Medicalchain – Blockchain-based Healthcare Data Management

Medicalchain is a decentralised platform that enables secure, fast, and transparent exchange and usage of

Electronic Health Records (EHR) medical data [70]. It uses blockchain technology to create a user-focused

electronic health record while maintaining a single true version of the user’s data. Each interaction with the

medical data is auditable, transparent, and secure on Medicalchain’s distributed ledger. These interactions

are recorded as transactions on the distributed ledger and the patient’s privacy is always protected. To ensure

privacy, health records are encrypted using symmetric key cryptography. Medicalchain enables users to give

conditional access to different healthcare agents, such as, doctors, hospitals, laboratories, pharmacists, and

insurers to interact as required.

Medicalchain is built using a dual blockchain structure. The first blockchain controls access to health

records and is built using Hyperledger Fabric. The permission-based Hyperledger Fabric architecture allows

varying access levels for users to control which data accessors can view their records, how much they see,

and for what length of time. The second blockchain is powered by an ERC20 token on Ethereum and
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underlies all the applications and services for the platform. Using blockchain technology, smart contracts,

and cryptocurrency functionality, Medicalchain provides the infrastructure for digital health applications

and services to be built. These applications and services are seamlessly powered by user’s healthcare data.

Medicalchain’s platform enables developer applications that complement and improve the user experience

to be built. Medicalchain offers an API that will permit third parties to obtain and interact with EHRs with

the user’s permission. All endpoints available in the UI are available to developers. Users can leverage their

medical data to control several applications and services. There is a marketplace that enables Medicalchain

users to negotiate commercial terms with third parties for alternative uses or applications of their personal

health data. For example, putting forward their data to be used in medical research.

2.5.2 Blockchain-based Genomic Data Processing Platforms

We identified some other research projects that use blockchain within the context of genomic data storage.

This work focus on patient data privacy protection in relation to genomic data, with others adopting a cloud

storage for the genomic data. These platforms use blockchains for some aspect of their network ecosystem

in storing genomic data file references [73]. Gürsoy et al. [71] study and develop a novel method of storing

reference-aligned reads on-chain in a private blockchain network. The authors develop tools that provide

open-source blockchain-based storage and access for advanced genomic analyses, such as, variant calling [71].

Other developer projects include CrypDist [72], Zenome [74, 75], Nebula Genomics [76], and Cancer Gene

Trust [77].

CrypDist uses a custom blockchain to store links to genomic data files (such as reference-aligned BAM

files), which are stored in Amazon Web Services (AWS) data buckets [72]. Zenome uses Ethereum smart

contracts to facilitate transactions of genomic data but appears to store the data off-chain in a distributed

file storage system [73, 74, 75]. Nebula Genomics uses Ethereum smart contracts to facilitate communication

between nodes and Blockstack file system; thus, providing safe data storage and access permissions. The

Blockstack infrastructure stores data off-chain either on a local drive or in the cloud (such as, Digital Ocean,

Amazon S3, and Dropbox) [76]. Cancer Gene Trust stores data off-chain in InterPlanetary File System and

raw genomics data locally. It uses Ethereum smart contracts to store references to the data files [73, 77].

2.5.3 Blockchain-based Privacy-Preserving Methodology Approaches

Some prior research work that use blockchain platform to protect data provider’s data and preserve privacy

and identities of these data providers have been addressed in the literature. These approaches adopt varied

methodologies in their privacy modelling and architecture. The research work of Peng et al. [136] and
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Azaria et al. [137] present overview of blockchain-based data management systems. Their methodologies

address the use of blockchains to establish trust between different collaborative databases, and using a

blockchain to manage data access and permissions, respectively. Notable works by Daidone et al. [129],

Fernandez et al. [130], and Griggs et al. [131] present important methodologies and outcomes with regard

to the adoption of blockchains to facilitate preservation of data provider’s private data. Daidone et al.

[129] propose a blockchain-based privacy enforcement architecture where users can define how their data are

collected and managed, and ascertain how these data are used without relying on a centralized manager.

Their methodology adopts a blockchain to perform privacy preferences’ compliance checks in a decentralized

fashion on IoT devices; whiles ensuring the correctness of the process through smart contracts.

Fernandez et al. [130] propose a cloud-IoT architecture, called Data Bank, that aims at protecting

users’ sensitive data by allowing them to control which kind of data is transmitted by their devices. Their

architecture consists of several layers of IoT objects, web and mobile applications, and a cloud layer for

enforcement and access control. Griggs et al. [131] propose a healthcare blockchain system for secure

automated remote patient monitoring. In their approach, the research outlines using blockchain-based smart

contracts to facilitate secure analysis and management of medical sensors. Their architecture uses a system

where the sensors communicate with a smart device that calls smart contracts, and writes records of all

events on the blockchain.

Other methodology approaches that use blockchains to enforce privacy on data provider’s private data are

addressed by Loukil et al. [132], Dwivedi et al. [133], and Alblooshi et al. [135]. Loukil et al. [132] propose a

privacy-preserving platform for IoT data sharing using a service-oriented approach based on the blockchain

technology. Their methodology for privacy preservation offers a generic set of services over applications

that take note of users’ privacy requirements, such as data purpose, disclosure, and retention. The system

modelling consists of five parties: data producer, Ethereum blockchain and smart contract, patriot platform,

distributed database, and data consumer. The overall system architecture and design present an IoT data

sharing platform, while adopting a service-oriented approach that provides several components including the

privacy preference matching service and privacy policy compliance service.

Dwivedi et al. [133] address a decentralized privacy-preserving healthcare blockchain for IoT platforms.

The research outlines use of blockchain platform to provide secure management and analysis of healthcare

big data. The approach employs a framework of modified blockchain models suitable for IoT devices that rely

on their distributed nature and other additional privacy and security properties (based on advanced crypto-

graphic primitives) of the network. The proposed blockchain model eliminates the concept of ”proof-of-work”

(PoW) to make it suitable for computation and data retrieval on IoT devices. Transactions in blockchain are

broadcast publicly in the blockchain network and contain additional information about the sender and re-
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cipient. The overall model architecture offers IoT privacy and security using a hybrid approach. The hybrid

approach combines advantages of private key, public key, blockchain and other lightweight cryptographic

primitives to develop a patient-centric access control for electronic medical records.

Alblooshi et al. [135] address a blockchain-based ownership management for medical IoT devices. The

research work presents a system architecture of Ethereum blockchain network, manufacturer smart contract

node, and IoT device smart contract node. Manufacturer smart contract is used by manufacturer in order to

deploy IoT device smart contract whenever IoT device is manufactured. The other smart contract gives the

IoT device owner the ability to set rules and conditions for access and records modification pertaining to the

medical IoT device. The medical IoT device records (from the data provider) are stored on the Ethereum

blockchain network. The authors discuss and analyse the security vulnerabilities and defences from their

methodology, and address some forms of attacks that can be mitigated.

We discuss three of the methodology approaches (namely; Daidone et al. [129], Fernandez et al. [130],

and Griggs et al. [131]) into detail in Chapter 5 (see Section 5.7). These research work present prominent

outcomes and technical contributions with regards to privacy preservation using blockchains, in comparison

to the others. For each research work, we discuss the overall privacy model and/or infrastructure and core

merits that arise from the research. Moreover, we perform a comparative analysis from these research work

to our proposed methodology based on some defined criteria in Section 5.7.4. Finally, we outline the areas

in which our proposed methodology offers better privacy-preservation solutions.

2.6 Research Gaps and Summary

Previous research has found some methods of protecting data provider’s private and sensitive information.

Some of these research are comparable to what is proposed in this research. However, a better blockchain-

based approach to efficiently manage and control data access, availability, and usage of data provider’s

private, sensitive data stored in data repositories is still a problem. This is because of: (1) the absence

of an expressive privacy model and/or ontology model, (2) lack of an adaptable privacy infrastructure and

architectural platform, (3) lack of adoption of an expressive and robust private blockchain platform, and (4)

minimal degree of data protection provided by data collectors (i.e., service providers). Moreover, the ability

to ensure data integrity and data monitoring to changes to data provider’s privacy preferences for data use

by data collectors/accessors (and consenting third-party accessors) continue to remain a challenge.

A formulated methodology in which there is tight-coupling of private, sensitive data, with contextualized

data provider privacy preferences, and data accessors’ profile has not been addressed yet. This coupling

approach will offer efficient control in storage, access, sharing, and usage of private, sensitive information
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of data providers. Furthermore, a technology that couples blockchains and relational database management

system is yet to be devised. This coupling approach will enable the storage of data provider’s privacy

preferences on their private, sensitive information in a completely tamper-resistant, immutable, and untrusted

platform.

The next chapter discusses key contributions and implementation approaches for a light-weight privacy

framework. We discuss an overview of the formal contextualized (dynamic) privacy ontology. We discuss

tight-coupling of attribute data, data provider privacy preferences, and data accessor data elements. We also

discuss tight-coupling of relational database, blockchain platform, and genomic data store. Moreover, we

discuss the query transaction processing approach on the system. This framework will efficiently manage and

control data provider privacy preferences from privacy policies that are agreed upon by both data providers

and data collectors (i.e., service providers).
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Chapter 3

Light-weight Privacy Infrastructure

Privacy preservation models offer important methodologies in management and processing of data provider’s

private, sensitive data. The formulation, and subsequent implementation, of these models presents an efficient

platform in the collection, storage, access, and query processing of related private data from data providers

by service providers (i.e., data collectors). We describe and discuss details of our proposed Light-weight

Privacy Infrastructure (LPI). This model offers an effective integration of various system components to

provide a platform where data provider’s information and transaction data are collected, processed, and

managed by data collectors.

The detailed outline of the methodology is as follows: (1) formulation of a formal contextualized and

usable privacy ontology; (2) tight-coupling of data elements (attribute data, data accessor profile, and privacy

preferences); (3) tight-coupling of decentralized blockchains and a relational database; (4) query processing

required for proposed methodology; and (5) encryption approaches on system architecture of (blockchains,

relational database, and genome data store). Each of these system components and methodologies work

together to provide privacy-preservation in a privacy-aware data platform.

We discuss the detailed implementation of each aspect of the methodology in Chapter 4. We discuss the

implementation modelling of the formal contextualized privacy ontology in Section 4.1. The implementation

of tight-coupling of data elements is described in Sections 4.2.3 and 4.2.4. Section 4.3 discusses the modelling,

design, and development of relational database, and Section 4.4 discusses the detailed design and development

of permissioned blockchain platform. Finally, we discuss data platform integration and data communication

between user interfaces, relational database, blockchains and genomic data store in Section 4.5.

In this chapter, we address the formulation of formal contextualized privacy ontology in Section 3.1,

and discuss the overview of the proposed system methodology in Section 3.2. We discuss tight-coupling of
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data elements to generate data privacy tuples in Section 3.3 and describe implementation approach of the

data elements coupling in Section 3.4. In Section 3.5, we describe the tight-coupling of relational database,

blockchains, a genomic data store, and the implementation approach in Section 3.6. Section 3.7 discusses

query processing approach on proposed research methodology, and we finally summarize the discussion in

Section 3.8.

3.1 Formal Contextualized Privacy Ontology

The overall approach is to formulate a contextualized privacy ontology with unique semantics and properties

for privacy preservation. This privacy ontology serves as a basis to formalize the privacy model for data

processing. The formulated contextualized privacy ontology becomes the foundation for the design of all

entities and predicates in the data privacy-preservation process. The privacy ontology provides a platform

for design of the proposed light-weight privacy infrastructure. This is necessary as the privacy ontology

offers a modelling framework for procedural activities and semantics for private, sensitive data and querying

processing by data collectors/accessors (i.e., service providers) and third-party data accessors.

In the formulated privacy ontology, entity classes, sub-classes, their respective attributes, and associated

properties are classified to handle prevalent privacy-related scenarios in privacy-preserving data manage-

ment. One important aspect that must be considered in a formal contextualized privacy ontology is the

need to address semantics in the ontology. To this end, the formulated contextualized privacy ontology

model details and defines language structure, semantic knowledge, and formalisms of the entities. These

modelling semantics handle privacy and data protection authorizations of related contextual privacy norms

and perspectives (of when, who, why, where, and how). Moreover, the formulated formal contextualized

privacy ontology addresses sensitive data provider data usage and authorizations applicable to various data

processing units in within the case study of genome application domain. The units could be identified as

medical examination and diagnosis, prescription and medication administration, laboratory and specimen

analysis, molecular pathology requisition, and genomic sequencing and analysis, amongst others.

An important aspect of the formulated formal contextualized privacy ontology addresses data provider

privacy violations and the obligations that must be applied. With the incorporation of semantic rules in the

adopted contextualized privacy ontology, the privacy model addresses different levels of related actions or

measures that are activated to control accessibility and usage of sensitive data attributes. The semantic rules

for the contextualized privacy ontology define procedural steps and actions that must be taken to correct

any form of data provider privacy violation. Moreover, the ontology retroactively outlines future procedural

actions for data protection.
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In Section 4.1, we discuss the overall implementation of the formulated contextualized privacy ontology.

We discuss abstraction ontology modelling (see Section 4.1.1), detailed ontology formulation and implemen-

tation overview (see Section 4.1.2), ontology maintenance update, and application domain adaptability (see

Section 4.1.3) of the formal contextualized privacy ontology.

3.2 System Methodology Overview

This section discusses and summarizes the methodology for protecting data provider’s private, sensitive

data in relational databases using privacy preferences stored in the blockchains. We discuss the details of

each implementation component and the data transmission between system components in Section 4. The

overall procedure for the methodology involves the following steps: data elements collection, binding data

elements into a privacy tuple, applying a hash function to the privacy tuple, storing the hashed privacy

tuple on the blockchains, storing data provider data and transactional data in the relational database, and

executing queries against privacy-aware stored data with reference to privacy tuples. In terms of data

elements collection, the attribute data element, data provider’s privacy preferences data element, and data

accessor profile data element are collected from system user interfaces.

First, privacy-related personal data values are collected from the data provider through Point-of-Contact

user interfaces. Devices designated as Point-of-Contact interfaces for data collection are portable mobile

devices and personal computing platforms. The privacy-related data values may come from biographical,

demographic, financial, and personal healthcare information data. Additionally, other application domain

transaction data are collected.

The data provider agrees to the privacy policy preferences needed to access data utility services by the

data collector (or service provider). Once the data elements are collected, attribute meta-data (from the

private, sensitive data) is extracted and bound together with data provider’s privacy preferences data (from

the privacy policy) and data accessor profiling data, to form a privacy tuple.

The privacy tuple is hashed, saved, and permanently stored on the blockchain platform, while the collected

data provider private data and transactional data are saved on the relational Database Management System

(DBMS). The raw privacy tuple data value is stored in the relational database. The transmission of the raw

and hashed privacy tuples to the relational database and blockchain platform, respectively, are facilitated

through encrypted data communication channels that exist between the system components: relational

database, blockchain platform, user interfaces, and genomic data store.

The general architecture of the blockchain platform (which involves the transaction ledgers, data streams,

and data items) are configured in a way that the data items are directly accessible to every (authenticated)
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user who has secured access to query the blockchain node. Hence, the adoption of hashing methodology on

the privacy tuples before they are stored on the blockchain provides another layer of data protection to the

privacy tuples. In terms of domain specific application for genomic data processing, the genome meta-data

arising from sequencing genomic data is encrypted and permanently stored on the blockchain platform, while

the actual genome data is stored on a Linux cluster Helix High Performance Computing (HPC) platform.

During query processing, hashed privacy tuples are retrieved from the blockchains. These hashed privacy

tuples are verified against the privacy tuples stored in the relational database (to check for data integrity).

In cases where there is data inconsistency in the verification process of the hashed privacy tuples from the

blockchains to the privacy tuples retrieved from the relational database, the query is aborted or otherwise

the overall query retrieval process is allowed to proceed. Based on the data value composition in the privacy

tuples, all privacy preferences (which are outlined in the privacy policy and) related to the attribute data to

be queried are enforced. The query parsing process is subsequently allowed, and the required privacy-aware

data records are then retrieved and provided to the requesting data accessor. Figure 3.1 provides a general

overview of the methodology.

Figure 3.1: System Methodology Overview and Architecture
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3.3 Tight-Coupling of Data Elements

The data coupling component of the overall approach combines three data elements (namely, attribute meta-

data, data provider privacy preferences data, and data accessor data) into a privacy tuple to be stored in

the blockchains. In this approach, we bind all data provider’s data elements for data privacy-preservation.

This binding enables data retrieval or query processing on the attribute data to be dependent on the privacy

preferences and data accessor profiles specified in the privacy policy and agreed upon by the data collector

and/or accessor.

Figure 3.2: Tight-coupling of Data Elements into Privacy Tuple

The attribute data (di) identifies each data provider private, sensitive attribute data collected from or

provided by the data provider; as part of service account creation, personal biographical, demographic,

and healthcare information, or data transactions performed by the data provider. Forms of attribute data

collected are birth date, phone number, home address, pathology requisition information, medical consent

witness information, and health insurance information, amongst others. In terms of the data provider

privacy preferences, forms of data values collected are purpose, granularity (data precision), visibility (data

accessibility), retention duration, effective date, data information, third-party data accessor, and purpose

contextual norms (of when, who, why, where, and how). It will be noted that these contextual privacy
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preferences are outlined based on the formal contextualized privacy ontology; which models and defines the

overall contextualized data provider data privacy. A data provider privacy preferences data (pi) is generated

based on the data values extracted from the data provider’s privacy preferences in the privacy policy.

Access to the underlying data values stored in the relational database is controlled and granted to data

accessors with assigned access privileges. The assignment involves setting up different access levels, in

accordance with the privacy policy statements. Moreover, the assignment outlines a number of pre-defined

parameters for various accesses to underlying data. The determination of the data accessor profiling is based

on factors and semantics, such as, user role (for e.g., laboratory analyst, clinical physician), data permission

level (for e.g., view data, update data), and data sensitivity level (for e.g., Level-2, Level-4), amongst others.

A data accessor profile data (ui) is generated to uniquely identify and grant access to which types of attribute

data the data accessors can query or retrieve information.

The three data elements (i.e., attribute data, data provider’s privacy preference data, and data accessor

profile data) are bound together to constitute the privacy tuple, pt = < di, pi, ui >. Hence, this privacy tuple

is always preserved and respected whenever an attribute data value is to be retrieved from the relational

database repository. Additionally, when the attribute data value is transferred to another data repository

(for example, a third-party accessor repository), the commitment to the privacy policy tuple is respected

and enforced. Consequently, access and data retrieval on the attribute data value at the secondary data

repository is granted. The descriptive illustration of the data elements combined into the privacy tuple is

illustrated in Figure 3.2.

3.4 Implementation Approach of Data Elements Coupling

The approach to tightly couple data elements involves development of user interfaces to collect data providers’

privacy preferences and for the user interfaces to serve as a medium for data providers to adjust privacy

preferences.

We adopt an object-oriented approach to binding the data elements. Each data element is classified

as an object. Hence, each of the objects is bound together to form the single object of a privacy tuple.

With regards to the attribute data element, we adopt a model in which attribute category data comprises

a number of related attribute data. For example, each of Street, City, Province, and PostalCode attribute

data is grouped into a single attribute category data of DataProviderDemographic. We then assign a single

object to the attribute category data. Hence, for an attribute category data, say DataProviderDemographic,

we assign an ObjectId value.
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The data provider’s privacy preference data element for the attribute category data is represented by an

ObjectId. This object has privacy preference methods that determine access, sharing, and disclosure under a

particular context and/or data processing purpose. Some forms of privacy preferences are: RetentionDura-

tionPrivacy, VisibilityPrivacy, GranularityPrivacy, PurposeUsePrivacy, and PurposeContextPrivacy. All

these privacy preferences are instantiated with unique data values to determine accessibility to attribute

data. Examples of instance values for these privacy preferences are of the form ‘1-Specific’ for Granulari-

tyPrivacy, ‘1-Single’ for PurposeUsePrivacy, and ‘2021-03-27’ for RetentionDurationPrivacy.

Finally, the data accessor profile data has a unique ObjectId assigned to it. This ObjectId has meth-

ods, such as, DataAccessorRole, which is instantiated with data values as in ‘Patient’, ‘ClinicalPhysician’,

’LaboratoryAnalyst’, and ‘Third-PartyAccessor’, amongst others. Other methods, such as, SecurityClassifi-

cationLevel, are instantiated with data values as in, ‘Level-1’, ‘Level-3’, and ‘Level-4’, amongst others; and

DataAccessorPurpose, with instance data values as in, ‘ViewData’, ‘AddViewData’ and ‘AddViewUpdate’,

amongst others.

As part of the system infrastructure, an encrypted application-level transport medium is established

between the user interface and the blockchain platform to aid data transmission between both components.

Access to the blockchain platform is done primarily through an API wrapper protocol. Each access to

the blockchain is done through authenticated username, password, host address, port, and chain (node)

name. All connections for data access and query processing are completely terminated after closure of data

processing activities. Moreover, all configuration settings for the blockchain platform are securely protected.

The implementation of secured connections and network monitoring application tools establish efficient

protection of the blockchain configuration. The encrypted data communication medium is enhanced to offer

a protected, secured, and tamper-resistant medium for the transmission of the privacy tuples. We discuss

the details of the system connection of the blockchain platform to the relational database and genomic data

store in Section 3.6. Figure 3.3 illustrates the system architecture to generate data objects, bind them into

privacy tuple, and transmit the hashed privacy tuples to the blockchain platform.

Figure 3.3: System Methodology of Generating and Storing Privacy Tuples on Blockchains
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Moreover, the data provider genomic meta-data information is encrypted and transmitted to the blockchain

platform. The data collector retrieves the meta-data from the genomic data that has been sequenced and

variant analysed. Some of the meta-data information saved on the blockchain platform are data provider per-

sonal health number, genomic data file date, genomic data sequencing date, genomic data file format, normal

(forward and reverse) genome file names, and cancer (forward and reverse) genome file names. These data

are saved on the blockchain platform to offer privacy protection over access and querying of data provider

genomic data.

3.5 Tight-Coupling of Blockchains Platform, Relational Database,

and Genome Data Store

The data storage mechanism proposed is based on the principle of coupling different database platforms:

namely, relational database, blockchain platform, and genome data store. All three data store components

are hosted on a single computing machine and this enables an efficient implementation of the data store

coupling. We explain data store tight-coupling to indicate that privacy-aware data and query references are

stored on the blockchain platform; and these are directly related to the content data stored on the relational

database and genome data store. These privacy preferences determine, authorize, and authenticate query

processing and data retrieval of privacy-aware data records (from the relational database and genome data

store) that need to be presented to the intended data accessor. Hence, data processing on the relational

database and genome data store is always dependent (or tightly-knit) to the privacy preferences stored on

the blockchains. Subsequently, this approach underlies no direct, independent query access or data retrieval

from the relational database and genome data store. For example, to query and retrieve data values from

the relational database, the data provider attribute data items need to reference privacy preferences stored

on the blockchain for authorized data retrieval to the intended data accessor. Additionally, to run NGS

data retrieval on the genome data store, the genome meta-data stored on the blockchain authenticates

privacy-aware query processing on the genome data store to the intended data accessor.

The reason for this approach is to maximize the merits of managing and processing transaction data

from each of the data platforms. The relational database offers a scalable, high throughput, and efficient

querying engine to meet the expected high data processing needs. Conversely, the blockchain platform offers

decentralized data control that is tamper-resistant, and immutable for the protection of privacy-related data

values. Additionally, the decentralized control of the blockchains offers efficient change request and approval

(from service providers and data providers, if necessary). The blockchains offers a platform that can be used
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to facilitate privacy audit procedures for data provider privacy preferences.

One key advantage for the incorporation of the blockchains in the privacy model is the ability to provide

a platform for all data accessors (data and service providers) to agree on the state and value of data

stored. Additionally, the blockchain platform provides an infrastructure platform to effect efficient changes

to privacy-related data values. The tight-coupling approach also enables either input of data provider and

service provider in the agreement of the parameters for privacy policies; thereby ensuring access consistency

for all data accessors. Moreover, the blockchain platform offers efficient monitoring and control of privacy

policy parameters that data and service providers have agreed upon, in a reliable data provider privacy and

identity management.

The genome data store (i.e., Linux cluster Helix HPC) is designed to store and manage NGS genomic

data (which do have very large file sizes). There is also tight-coupling between the blockchain platform and

the genome data store. Through this approach there is a safe procedure of identifying data provider genome

data with related data provider biographic, demographic, and healthcare information. The overall architec-

ture of data repository coupling presents an efficient process of coupling disparate, but related, healthcare

data on data providers within a uniform system architecture.

Figure 3.4: System Methodology and Architecture of Tight-Coupling of Blockchains, Relational Database,
and Genome Data Store
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The high-level methodology is, as follows: the entire set of data values (on data provider personalized

information and transaction data) are collected and stored in the relational database. Moreover, an instance

of the integrated privacy tuple data is stored in the relational database. Data provider genome data is

collected and stored in the genome data store, whiles the genome meta-data and data access information is

stored in the relational database. On the blockchains, another instance of the tightly-coupled privacy tuple

and privacy preferences (which is subsequently hashed) are stored. Furthermore, data provider genome meta-

data and data access information (which is subsequently encrypted) are stored in the blockchains. Figure 3.4

illustrates the proposed architecture of the relational database, blockchain, and genome data store. With

this data platform integration, every data retrieval request from the relation database or genome data store

is authenticated and authorized from the blockchain platform (through its related transaction ledger). This

establishes the tight-coupling approach of the integrated data platform, and no other data retrieval (on

the relational database or genome data store) is performed independent of the blockchain. The data and

communication connection between the relational database, the blockchains, and genome data store is via

an encrypted data communication protocol. Furthermore, any form of data transfer (query requests and

results) between the data repositories is completed in a secured, tamper-resistant access-controlled protocol.

3.6 Implementation Approach of Tight-Coupling of Blockchains,

Relational Database, and Genomic Data Store

The key components of the implementation for tight-coupling of data platforms are: a secured, completely-

protected relational database, private blockchains, and genome data store. Additionally, there is a tamper-

resistant and secured data transmission medium between the blockchains, relational database, and genome

data stores. There are Point-of-Contact (PoC) user interfaces, and a secured data transmission medium

between the user interfaces and the data platforms. The next sections describe the functional details of

these components, and ability of the framework to offer an efficient and robust data processing platform for

protection of data provider’s private, sensitive data.

3.6.1 System Architecture of Relational Database, Blockchain, and Genome

Data Store

The system architecture describes a tight-coupling of the data platforms for an integrated data processing

framework. Each data platform component presents unique functionality for transaction data management

and this is based on the type of data transaction. Figure 3.4 provides a description of the integrated data
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platform. The relational database stores and processes data provider private, sensitive data and transaction

data. The blockchain stores and processes the hashed form of privacy tuple and genome data access and

querying information. The genomic data platform stores and processes data provider genomic data.

We assume that native database security and protection measures that are embedded in the rela-

tional databases are configured to protect against unwarranted access and data retrieval. Recent relational

databases have been enhanced with efficient protection from compromised database administrators. These

preventive security controls include privileged user and multi-factor access control, database activity moni-

toring and blocking, consolidated auditing and reporting, and encryption key management, amongst others

[100]. Additionally, we assume safe use of database objects (such as, relational tables, views, and stored pro-

cedures, etc.) by database administrators in a manner where object access and management are performed

in a privacy-aware manner.

The data connection between the relational database, blockchains, and genome data stores is established

using an encrypted transmission medium to secure the communications. This encryption protocol offers a

protected application-level data transport medium for key agreement or establishment, entity authentication,

confidentiality and data integrity. Thus, we adopt efficient encryption methodologies for the transmission of

data accessor query requests or returned query answers (results) between the data repositories.

Figure 3.5: Tight-Coupling System Architecture of Blockchains and Relational Database
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We adopt a permissioned (private) blockchains for storage of data provider privacy policy preferences and

privacy tuple information. Figure 3.5 provides an illustration of the blockchain and its constituent validation

transaction ledgers. The diagram further describes the encrypted data connection between the blockchain

and user interfaces on one hand, and the relational database on the other hand. The blockchain is accessible

only to the data providers and data collectors (or service providers and possibly, third-party data accessors

via user interfaces). The blockchain contains a validated transaction ledger which stores transaction data

blocks (on privacy tuples) that are independently verified, accepted, and validated by data providers and

data collectors. Each transaction ledger is configured and composed of transaction data streams and each

data stream incorporates transaction data blocks which contains or stores actual privacy tuple transaction

data.

Typical blockchain transaction ledger consists of one or more data streams which stores transaction

data. The initial configuration of the blockchains consists of automatically generating a root (genesis) data

stream that does not contain transaction data blocks. Consequently, the first user-generated data stream

is appended to the existing root data stream, and all other subsequent data streams are also appended to

their preceding data stream. Processed and validated transaction data block (associated to a privacy tuple)

is appended to first data stream or any other related data stream (in the list of data streams created on

the chain). Thus, the privacy tuple (together with policy preferences) which are stored as transaction data

blocks become valid data, and are always accessed during query processing.

An illustration of the system architecture depicting the connectivity between the blockchain platform

transaction ledger (which contains data streams) and the relational database is displayed in Figure 3.5. In

the diagram, there are four data streams created and appended to the root data stream. The first data stream

which is appended directly to the root data stream stores the first data provider privacy tuple transaction

data block. Subsequent (and updated) privacy tuple transaction data block for the same data provider is

appended and stored in this data stream. When a new privacy tuple transaction data block for a different

data provider has to be appended to the transaction ledger, a new data stream is created and appended to

the second data stream. This makes up a total of three data streams contained in the validated transaction

ledger. In summary any new privacy tuple transaction data block for an existing data provider is appended

to the related data stream, whiles any other privacy tuple transaction data block for a new data provider

creates a new data stream by appending to the most recent data stream.

Following creation of a different transaction ledger and constituent transaction data streams for privacy

policy preferences and privacy tuples, we create another transaction ledger and transaction data streams to

store data provider genome meta-data and data access information. An illustration of the system architecture

depicting transaction ledger and transaction data streams for data provider genome meta-data is displayed
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in Figure 3.6. Here, four data streams are created and appended to the preceding data stream (which is

the root data stream). The first two data streams store genome meta-data for the same data provider but

with different genome analysis. Moreover, the next two data streams store different data provider genome

meta-data information. In summary, every new data stream genome meta-data and query information is

appended to the most recent data stream.

Figure 3.6: Tight-Coupling System Architecture of Blockchains and Genome Data Store

3.6.2 Procedural Data Operations on Blockchains Platform

The implementation procedures follow a scenario where a data provider completes and signs on to a privacy

policy with a service provider (via a user interface). Additionally, data provider can request changes to

the existing privacy policy preferences already in place. It is noteworthy that data provider privacy policy

preference requests are received at the blockchains as data transaction tuples. The procedural aspects that

discusses generation of tightly-coupled privacy policy tuple is described (recall Sections 3.3 and 3.4).

The service provider (via a user interface) accesses the privacy policy preferences and effects a signature

validation or acceptance of the privacy policy signed onto by the requesting data provider. The access by the

service provider to the data provider privacy preferences is routed to the blockchains. Each data provider

data attribute and its associated privacy preferences is signed, validated, and accepted as a single transaction

block in the blockchains.
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These privacy policy preference requests are transmitted to the blockchains. At the blockchains, each

privacy tuple is stored as a data item transaction block and appended onto the most recent transaction

block. For instance, in the transaction ledger (see Figure 3.5), the privacy tuple data stream for attribute

category data, “biographical information (first name, middle name, last name)” and data accessor, “labora-

tory analyst” is created. This data stream is appended to the “root transaction data stream. Consequently,

the privacy tuple data stream for attribute category data, “consent witness information (last name, first

name, phone number, street, city, postal code)” and data accessor, “physician” is created. The new data

stream is always appended to the most recently appended data item transaction block.

The validated data item transaction blocks (respecting all the privacy policy preferences) are perma-

nently committed on the validated data streams transaction ledger in the blockchains. This provides enough

information for privacy policy audit and privacy assessment in the occurrence of privacy breaches or viola-

tions. This is because the information saved in the blockchain incorporates all privacy preferences on the

data provider’s attribute data. More importantly, each privacy tuple instance data serves to identify infor-

mation on the attribute data, the data accessor’s access levels, and the set of privacy preferences (regarding

granularity or precision privacy, visibility or access privacy, purpose privacy, retention duration, third-party

accessibility, etc.) This privacy tuple data item can be queried from the blockchain transaction ledger (data

streams), and the query output can be used identify more privacy information about on the attribute data;

such as data accessors and their privacy privileges [121][122]. To query a privacy tuple, all blockchain data

stream transaction ledgers for a particular data provider are identified. Next, the unique data stream per-

taining to the attribute data and data accessor is retrieved. This data stream stores all current and previous

transaction data items on data provider privacy preferences; that are validated by both data provider and

data collector.

Figures 3.5 and 3.6 illustrate the overall implementation approach of the tight-coupling of blockchains

and relational database, and blockchains and genome data store, respectively.

3.7 Query Processing Procedures on the Proposed Methodology

The proposed methodology takes query requests to the relational database by first routing them to the

blockchains platform before delivering query results. The query request is first transmitted to the privacy-

aware query analyser. The privacy-aware query analyser parses the query, identifies and extracts attribute

data (regarding the requested query) that needs to be accessed for data retrieval. The privacy-aware query

attribute data are then transmitted to the blockchains.
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At the blockchains, the data provider’s data stream needed for data retrieval is identified. The blockchain

platform traverses through the transaction data stream to access the most recent privacy tuple transaction

data item block. Transaction data item block corresponding to privacy tuple is subsequently accessed and

retrieved. This data item contains recent data provider privacy policy preference’s tuple (on attribute meta-

data, contextualized privacy preferences data value, data accessor value, and other privacy preferences).The

MultiChain blockchain API delivers retrieved data items (in its hashed form) to the privacy-aware query

processer.

At the query processor, the privacy-aware query is rewritten and transformed. Data items consisting

of privacy policy preferences are verified against the retrieved hashed data values from the blockchain. In

cases where there is data inconsistency between both data item values, the query is denied and aborted.

By data inconsistency, we identify that the hashed data values stored in the blockchain is different from

data values retrieved from the relational database. Upon valid consistency check on data item values, the

query processor grants access for query processing and data retrieval. The privacy preferences on each data

attribute are used to rewrite or transform the privacy-aware query to conform to the current context based

on data provider preferences in the privacy policy. The privacy-aware query processor uses the privacy-aware

rewritten query statement to generate expected query result or data instance tuples. Consequently, data

instance tuples regarding the attribute data are retrieved and presented to the data accessor through user

interfaces.

In summary, the blockchain platform acts as a privacy-aware data access control and query analysing

medium to the underlying relational database. Hence, whenever a data accessor wants to query or retrieve

data values in the underlying relational database, access is routed to the blockchains before privacy-aware

data values stored in the relational database are retrieved and presented to the data accessor. Figure 3.7 illus-

trates the implementation of the query processing architecture for accessing data provider private, sensitive

data from the relational database repository.

The architecture presents an integrated query platform of user interface, relational database, blockchain,

and genome data store. The user interface provides the medium for data accessors to post queries and

display returned query results. The relational database is made up of the data store, privacy-aware query

analyzer, and privacy-aware query processor. The data storage stores all private, sensitive and transactional

data. The privacy-aware query analyzer is designed in the form of a database stored procedure, that accepts

data parameters to allow or reject queries. The privacy-aware query processor executes the queries. The

blockchain is composed of validated transaction ledgers for data provider privacy tuples and genomic data

access and retrieval information. The genome data store stores data provider genomic data. We discuss the

detailed implementation of query processing on the integrated data platform in Section 4.3.3.
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Figure 3.7: Query Processing Methodology on Blockchains, Relational Database, and Genomic Data Store
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3.8 Summary

This chapter discussed the proposed research methodology of Light-weight Privacy Infrastructure which

provides the framework platform for preserving data provider private, sensitive data. We provide our overview

of formal contextualized privacy ontology. Moreover, we discuss methodology approach of tight-coupling of

data elements (attribute data, data accessor, and privacy preferences), and its implementation approach.

We discuss methodology and implementation approach of tight-coupling of private blockchain platform,

relational database management system, and genomic data store. We discuss data transmission procedures

from the user interfaces to relational database, and between relational database and blockchain platform.

Finally, we discuss query processing approach and procedures for data retrieval on the proposed research

methodology.

Chapter 4 discusses system design, development, and implementation of the proposed research method-

ology. We discuss formulation of formal contextualized privacy ontology. We discuss system modelling and

design of user interfaces, as well as programming procedures to extract data values from system user in-

terfaces. We discuss modelling, design, and development of relational database management system and

permissioned (private) blockchain platform. Finally, we address data communication and encryption proto-

cols between system components and summarise all the discussions.
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Chapter 4

System Design, Development, and

Implementation

The proposed research methodology of Light-weight Privacy Infrastructure (LPI) discussed in Chapter 3

details methodology overview, tight-coupling of data elements, tight-coupling of database components of

relational database, blockchains, and genomic data store, integration of user interfaces to data repositories,

and query processing. We describe practical methods and implementation performed based on the proposed

methodology. These implementation activities and procedures lead to the desired research results.

In this chapter, we discuss formulation and modelling of formal contextual privacy ontology in Section 4.1,

and describe system modelling, user interface, and the privacy preferences tuple in Section 4.2. In Section 4.3,

we describe modelling, design, and development of relational database, and in Section 4.4, we discuss design

and development of permissioned blockchain platform. We then discuss integration of system components of

data communication and encryption protocols of user interface, relational database, blockchains and genomic

data store in Section 4.5, and a summary of the overall discussion in Section 4.6.

4.1 Formal Contextualized Privacy Ontology

In this section, we discuss adoption of formal contextualized privacy ontology for the overall research method-

ology (recall Section3.1). We discuss design modelling and identification of entities and predicates in the

formulation of the privacy ontology for healthcare (and genomic) application domain. Moreover, we discuss

measures in which the privacy ontology is updated, and the adaptation of the privacy ontology to different

application domains.
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4.1.1 Abstraction Modelling and Adoption of Formal Contextualized Privacy

Ontology

We model the privacy policy with a formal contextualized privacy ontology. A privacy ontology models or

designs a real-world environment with different entities and predicates; and describes entity behaviours and

relationships between the entities and their predicates. In the broader sense, the privacy model is defined

based on the privacy policy. Here, key entities of an attribute data value, data provider, data collector, and

data privacy policy, are identified. Moreover, specific instantiation of the privacy ontology to an application

domain needs to be specified and modelled (according to the entities and their behaviour in relation to the

application domain).

The research methodology adopts healthcare (and more specifically genomic) data management applica-

tion domain. The privacy ontology model attained is based on the information provided by domain experts

(that is, clinical physicians who collaborated with us in the overall research). We, therefore, state that the

adopted privacy ontology is verifiable by domain experts. In the formulation of the privacy ontology, we

identify specific entities, such as, data provider (i.e., patient), data collector (i.e., clinical physician, labo-

ratory analyst), data accessors (i.e., clinical physician, laboratory analyst, bioinformatic data analyst), and

third-party accessors (i.e., Alberta Cancer Repository, insurance analyst, and law court). With regards to

the data privacy policy entity, we identify general sub-entities, such as, GranularityPrivacy, VisibilityPrivacy,

etc. Moreover, we identify specific sub-entities and their instantiations (which are applicable to healthcare

and genomic data processing and management). For example, PurposeContextPrivacy is instantiated as,

MolecularPathologyRequisition, GenomicSequencingAnalysis, and LaboratorySpecimenAnalysis. We discuss

the detailed privacy ontology modelling in the next section (see Section 4.1.2).

4.1.2 Formulation and Modelling of Formal Contextualized Privacy Ontology

In the formulated privacy ontology, we model and design several entities, sub-classes and their predicate

classes. Each entity contributes to the overall modelling of the privacy policy regarding a particular data

attribute or category of attribute data. Figure 4.1 illustrates the overall formulated privacy ontology for the

proposed methodology. This privacy ontology outlines and details every aspect of the privacy policy for each

attribute data, and the procedures for data storage and management. We implement the ontology modelling

of formal contextualized privacy ontology using the Protégé Semantic Web Ontology [33] application tool.
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Figure 4.1: Formulated Contextualized Data Privacy Ontology Model
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Figure 4.2: Attribute Data Privacy Ontology Model

In the formulated privacy ontology, the primary (root) entity item is the AttributeDataValue; as each

attribute data has unique privacy policy for data storage and retrieval. The AttributeDataValue entity has

three sub-entity classes; namely, DataProvider, DataCollector, and DataPrivacyPolicy. Figure 4.2 illustrates

a summarized description of the formal contextualized ontology which focuses on the attribute data.

The DataProvider sub-entdescribes all information regarding the data provider, (that is, patient request-

ing healthcare service). This sub-entity has a predicate class, DataProviderType, which details data on the

various forms of persons who serve as the primary source of data. The instantiated values for this predicate

class are Patient and PatientLegalRepresentative; where Patient identifies with the patient who requests for

medical service and offers the necessary data for service delivery. The PatientLegalRepresentative is a legal

representative for the patient, in cases where the patient is a minor or does not have the capacity to offer

requested data. This individual may be a parent, family representative, close friend or an associate.

The DataCollector sub-entity describes the individuals who collect and store data on data subjects (i.e.,

patients). This sub-entity also has a predicate class as DataCollectorType, which has instantiated values as

ClinicalNurse, LaboratoryAnalyst, and ClinicalPhysician.
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Figure 4.3: Attribute Data Privacy Preferences Ontology Model

The DataPrivacyPolicy sub-entity is the most expressive sub-class of the AttributeDataValue class. It

describes all aspects of the privacy policy on each attribute data value; which has been fully authorized by

the data provider (i.e., patient) and validated by the data collector (i.e., clinical physician). We model this

entity class based on prior research work of Barker et al. [16] on privacy taxonomy for data privacy policies.

The DataPrivacyPolicy class incorporates other sub-classes which are called, PurposeUsePrivacy, Visibili-

tyPrivacy, GranularityPrivacy, and RetentionPrivacy. Each of these entities describe different aspects of the

privacy policy and offer unique modelling semantics for preserving data provider’s private and sensitive data.

We illustrate the broad description of the DataPrivacyPolicy entity for attribute data privacy preferences

modelling in Figure 4.3.

The PurposeUsePrivacy class describes data accessibility and usage of related attribute data values by

data accessors. This entity class is further described by a predicate sub-entity class, PurposeUse, which has

instantiated values as, Any (for data used for any purpose any multiple times), Reuse-Any (for data used for

un-foreseeable related purposes), Single (for data used for one time and for single purpose), Reuse-Selected

(for data used for primary purpose for which data), and Reuse-Same (for data used for same purpose and

multiple times).
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The VisibilityPrivacy class describes privacy preferences on data accessor’s access permissions or use

on data provided by the provider (i.e., the patient). This entity class has a predicate sub-entity class,

VisibilityType, which has instantiated values as, Owner (for data accessible to only the data provider),

House (for data accessible to everyone who collects, access, and utilize the data), Third-Party (for data

accessible to parties not covered by explicit agreement with House), and All-World (for data accessible to

anyone with access to the data repository).

The GranularityPrivacy class describes privacy preferences on the data which captures precision level of

retrieved data to facilitate appropriate use and for the intended purpose. The entity class has a predicate

sub-entity class, GranularityType, which has instantiated values as, Specific (for a specific data item retrieval

of which a query for data item returns actual data value), Partial (for a partial or altered and non-destructive

retrieval of data values to accessor), and Existential (to specify information released to the accessor indicate

the existence of data in repository, not actual data values).

The RetentionPrivacy class outlines privacy preferences on the attribute data for explicit retention period

for data retrieval by data accessors. This is to ensure data collected is for particular purpose and remain

current for that purpose. The RetentionPrivacy class has a predicate sub-entity class, RetentionValue,

which is instantiated as DateTime (for an explicitly stated date and time) and Infinity (for an undefined or

perpetual time for data retrieval).

Other sub-entity classes that uniquely express the DataPrivacyPolicy class are PurposeContextPrivacy,

ThirdPartyPrivacy, DataInformationPrivacy, LocationPrivacy, and DataAccessorPrivacy. The PurposeCon-

textPrivacy expresses data provider privacy preferences on the need, intended use, and/or contextualized

norm of data retrieval by the data accessor. The class has a predicate sub-entity, PurposeContext, which has

unique instantiated values for purposes of data collection, storage, disclosure, and access within the context

of genomic data processing. The instantiated values are MolecularPathologyRequisitionAnalysis (for data

collected and used for molecular pathology requisition and analysis), GenomicSequencingAnalysis (for data

collected and used for genomic sequencing and related analysis), MedicalExamination (for data collected

and used for patient medical examination and diagnosis), PrescriptionAdministration (for data collected and

used for prescription and administer medication), and LaboratorySpecimenAnalysis (for data collected and

used for laboratory and specimen analysis).

The LocationPrivacy class expresses information on the physical storage location of the data collected

from the provider. The class describes sub-entity classes, such as, TransmissionPrinciple and StorageMedia.

The TransmissionPrinciple sub-entity class identifies data transmission medium for data transfer. This

class could have instantiated values as Electronic-Softcopy and Hardcopy. The StorageMedia class expresses

information on the specific storage medium for data storage and management. Instantiated values for this
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class are Local-Server and Cloud-Server.

The DataInformationPrivacy class expresses the meta-data information about the attribute data value.

This class is further expressed by the ApplicationDomain and SecurityClassifications sub-entity classes.

The ApplicationDomain describes information relating to the application domain from which the intended

data is processed, while the SecurityClassification expresses the various forms of security classification upon

which data retrieval restrictions are applied. Predicate class values for the SecurityClassification class are

instantiated as Level-1 (for general public data retrieval), Level-2 (for internal use within the confines of

the collector’s data repository), Level-3 (for confidential use), and Level-4 (for the highest form of data

restriction; where maximum security clearance is needed for data retrieval).

The ThirdPartyPrivacy class provides the explicit definition of third-party persons or organizations that

the data collector must share or disclose the attribute data value with. For example, it is mandated by law

for the clinical physician (data collector) to share the data with the Alberta Cancer Centre (for purposes

of data and information sharing). The ThirdPartyPrivacy class is further expressed by 2 sub-entity classes:

namely, Individual and Organization. The Individual sub-entity class is expressed by the predicate classes

of SpecificName and AccessorProfile. The Organization sub-entity class is expressed by predicate classes of

Private, Public, and OrganizationDeliveryType.

The DataAccessorPrivacy class expresses and describes the individuals who will access the attribute

data. The access profiles and privileges are uniquely outlined in this entity class. The class is expressed by

sub-entity classes; namely, AccessorName, AccessorRole, AccessorDeliveryType, and AccessorSecurityClassi-

fication. The AccessorName class identifies with the unique name for the intended data accessor, whiles the

AccessorRole identifies with the access role and privileges for individuals requiring such intended data access.

The AccessorRole class is instantiated by predicate values, such as, AccessorClinicalPhysician, AccessorLab-

oraoryAnalyst, AccessorPatient, and AccessorCancerRepository. The AccessorDeliveryType is instantiated

by predicate values as AccessorHardCopy, AccessorEmailSoftCopy, and AccessorPhone. The AccessorSe-

curityClassification is instantiated by predicate class, Type, which has values in the form of Level-1 (for

general public data retrieval), Level-2 (for internal use within the confines of the collector’s data repository),

Level-3 (for confidential use), and Level-4 (for the highest form of data restriction; where maximum security

clearance is needed for data retrieval).

4.1.3 Privacy Ontology Update and Application Domain Adaptability

The management of privacy policies and data provider privacy preferences involve a regular change update

by both data provider and collector. This is necessary because conditions regarding data provider’s private

47



data keep changing, and this will necessitate required updates or changes in existing privacy preferences. We

discuss an overview of the update and maintenance procedures that are implemented on the privacy ontology.

These procedures underlie and validate the dynamic formulation of the privacy ontology to handle diverse

maintenance changes and its adaptability to different application domains. These update and maintenance

procedures are expressed based on two instances.

First, it essential to update and subsequently remodel the privacy model (regarding new changes in the

agreed privacy policy) for the overall private data management. This could arise in the context when third-

party privacy policies are updated, retention duration is updated, or new data accessor role is defined, for

some of the attribute data values. For example, in the event that new data access role needs to be defined

for Canadian Cancer Centre or oncogenomic data analyst. This implies that the ontology must evolve and

change to align with the new atrribute data value privacy preferences. Hence, as privacy preferences change,

the privacy policy ontology model also changes. For this form of ontology update, it is noted that the change

does not affect the core entity and predicate structure of the ontology. Moreover, the ontology changes

mainly affect the data instances aspect of the ontology and their required semantics for data retrieval.

Second, the privacy ontology evolves to support different application domain implementations. These

expected maintenance changes may affect some structural aspects of the overall ontology design. For instance,

the privacy ontology may be applied to a dental healthcare application domain; and this will require some

changes in the formulation of entity classes and their predicates. Thus, some predicates could be deprecated

while new predicates are modeled to instantiate query processing and data retrieval within the context of

current application domain.

In summary, we define the formulation of the privacy ontology as a generic (but dynamic) foundation

for the privacy model in the overall privacy infrastructure methodology. Moreover, the dynamic form of the

privacy ontology modelling allows it to be verifiable by domain experts to reflect the entire privacy-aware

data processing needs for an application domain.

4.2 User Interface Modelling and Development for Privacy Tuple

The overall user interface system architecture involves modelling and design of system internal component

activities and interaction with the environment. This modelling approach includes the design of user inter-

faces to collect and display data to the actors of the system. As part of data collection, the data provider

offers data privacy policy preferences which are validated by the data collector (or service provider). Addi-

tionally, the data provider produces private, sensitive transactional data. Other related data are collected

by data collectors alongside the privacy preferences data. These data privacy policy preferences and private,
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sensitive data are transferred from user interfaces and stored in the relational database for data processing

and report generation. Furthermore, a hashed form of the privacy preferences and privacy tuple is saved on

the blockchain platform.

As part of system design and implementation, we address the idea that the research implementation is a

preliminary work that displays reports on individuals (i.e., data providers, data collectors, consent witness),

laboratory requisition, and medical consent processing. Moreover, the implementation work does not allow

relational joins or other complex queries. We discuss further on these elaborate forms of query processing as

part of future work in Chapter 6 (see Section 6.4).

We now describe system modelling approaches for user interfaces and outline procedures of collecting

data privacy preferences to generate privacy tuple. Moreover, we describe the transmission of the data

privacy preferences and privacy tuple to the blockchain platform.

4.2.1 User Interface System Modelling – Uses Cases, Activities, and Actor(s)

We present system modelling for the entire user interface system implementation. A system modelling process

develops conceptual models of the system, with each model presenting a different view or perspective of the

system. This system modelling explains the system from different perspectives, such as: external context or

environment, interactions between the system components and the environment, organizational structure of

the data processed by the system, and dynamic behaviour of the system. It is important to note that the

system modelling and development are based on the outcome of the requirements engineering procedures

that were conducted from interactions with domain experts (i.e., clinical physicians).

Complete User Interface System Modelling

The overall user interface system modelling is presented with a Unified Modelling Language (UML) use case

diagrams. Use case diagrams show the interactions between a system and its environment. In this model,

there a several use cases which represent unique sub-system operations and modelling. Each use case provides

a coherent unit of functionality provided by the system. Each use case has actors that indicate a role played

by the outside objects. The actors for the system application domain case study are individuals, such as,

patient, clinical physician, laboratory analyst, third-party data accessor, or blockchain platform. In terms of

sub-system operations, a use case activity may have only one actor (for example, patient actor for “Register

Patient Record” use case) or several actors (for example, patient, clinical physician, and third-party data

accessor actors for “Generate Data Provider healthcare Report” use case).
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A use case activity may have an extension to another use case using Extends functionality; where this

extended use case activity presents a background activity needed for the primary use case to act. For example,

“Complete Medical Consent” use case activity extends “Generate Pathology Requisition” use case activity.

A use case activity may incorporate an instance where one use case activity will also “use” or “include” the

behaviour specified in another use case activity. For example, the “Update Patient Record” use case activity

will always need the behavioural existence of the “Register Patient Record” use case activity. Finally, the

system modelling is incorporated with a boundary, represented by a rectangle, which limits within which all

use case activities can be performed. Figure 4.4 illustrates the system modelling use case diagram for the

overall system design.

Each sub-system modelling has one or more use case activities, their associated use case activity ex-

tensions, and one or more actors that interact with use cases. We present a summary of each use case

functionality for the user interfaces design.

Register and/or Update Patient Data

This use case involves activities that capture patient basic bio-information, demographic information, as well

as, some personal healthcare information, such as, personal healthcare number. The entire use case has two

activities; namely, “Register Patient Record” and “Update Patient Record.” The “Register Patient Record”

activity saves initial patient information into the relational database, while the “Update Patient Record”

activity saves modification changes on already saved patient information into the relational database. The

only actor responsible for this activity is the patient who has sole system privilege to login, and subsequently

update his/her information.

Register and/or Update Physician Data

This use case outlines activities for saving and updating the physician information. Here, different types

of physicians are identified; namely, clinical physician, primary care physician, secondary care physician,

and dentist. The use case has 2 activities; namely, “Register Physician Record” and “Update Physician

Record.” The “Register Physician Record” activity saves initial physician information into the relational

database, while the “Update Physician Record” activity saves modification changes on already saved physician

information into the relational database. The actor that performs the use case activity is a clinical physician.
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Figure 4.4: System Use Case Modelling (of Actors and Activities)
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Generate Pathology Requisition

The “Generate Pathology Requisition” use case saves into the relational database data pertaining to molecular

pathology requisition for a patient. Different physician (that is, clinical, primary care, and secondary)

information is captured to make the data provider healthcare information available to them, where necessary,

for further or future analyses. Pathology information regarding CLS site, H&E, specimen data, and history

or diagnosis data are saved as part of the requisition. All other cancer markers information needed for

genomic analysis are saved. The use case activity requires and extends the performance of “Collect Pathology

Requisition Sample” activity. This use case requires “Laboratory Analyst” and “Clinical Physician” actors

to perform the activity.

Complete Medical Consent

The system modelling that captures data on completion and signing of medical consent is “Complete Medical

Consent” use case activity. This use case modelling involves saving of patient and legal representative

data, relationship type, and transmission medium of consent undertaking. Other details of consent witness

and health insurance information are also saved into relational database. Moreover, information regarding

dependent information and other medications and allergies, as well as consent date and confirmation sign

are saved into the relational database. The use case activity requires and extends performance of a prior

activity of “Generate Pathology Requisition”. The only actor for this use case activity is the patient.

Complete and/or Update Data Privacy Policy

This use case system modelling describes the task of signing off data privacy policy on attribute data. The

use case has two activities namely, “Complete Data Privacy Policy” and “Update Data Privacy Policy.”

The “Complete Data Privacy Policy” activity saves initial data privacy policy for a data attribute into the

relational database, whiles “Update Data Privacy Policy” activity saves modification changes on already

saved data privacy policy on an attribute data into the relational database. Each of these use case activities

requires and extends performance of a prior use case activity of “Complete Medical Consent”.

Each of the use case activities is performed by “Patient” and “Blockchain Platform” actors. The “Pa-

tient” actor saves primary privacy policy data into the relational database. The “Blockchain Platform”

serves as an external data platform that saves a hashed form of the privacy policy data that is already saved

in the relational database.
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Validate Data Privacy Policy

The “Validate Data Privacy Policy” use case system modelling involves the confirmation procedures per-

formed by the clinical physician (service provider and data collector) to authorize initial data privacy policy

signed by the patient (data provider). The use case activity has two main functionalities. The first function-

ality involves specific data retrieval of pre-saved data privacy preferences. The second functionality involves

either making changes on the pre-saved data preferences, and/or making final data save commitments of the

data privacy policy preferences into the relational database by the clinical physician. The “Validate Data

Privacy Policy” use case activity requires or extends a prior use case of “Complete Data Privacy Policy”

activity for initial one-time data privacy policy validation. Additionally, this use case requires or extends the

prior use case of “Update Privacy Policy” activity for a change modification of data privacy policy validation.

The use case activity is performed by “Clinical Physician” and “Blockchain Platform” actors. The

“Clinical Physician” actor saves primary privacy policy data into the relational database. The “Blockchain

Platform” serves as an external data platform that saves a hashed form of the privacy policy data that is

already saved in the relational database.

Update Data Provider Genome Meta-data

The “Update Data Provider Genome Meta-data” use case system modelling involves saving encrypted patient

genome meta-data into the relational database and blockchain platform. The use case activity is performed

by “Clinical Physician” and “Blockchain Platform” actors. The “Clinical Physician” actor saves encrypted

patient genome meta-data into the relational database. The “Blockchain Platform” serves as an external

data platform that saves a copy of encrypted data that is already saved in the relational database.

Generate Data Provider Health Report

This use case system modelling generates intended data report to data accessors. The use case activity

involves selecting data provider details, attribute data details, and data accessor details. Additionally, the

privacy context for data retrieval is selected for authorized data retrieval. For each activity, a prior use

case activity of “Verify Data Privacy Preferences” must be performed. This required and extended use case

activity authorize data retrieval by retrieving hashed data privacy preferences (saved on the “Blockchain

Platform”) for the attribute data and comparing with privacy preferences saved in the database.

Upon validate authorization of the privacy preferences, the details are used to generate correct data

values for a data provider healthcare report. The use case activity is performed by different data accessors

in the form of “Patient”, “Clinical Physician” and “Third-Party Data Accessor” actors.
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4.2.2 Programming of User Interfaces, Web Data Processing, and Relational

Database

The user interfaces are programmed using the PHP (PHP: Hypertext Preprocessor) [105] web development

application tool. We adopt PHP (version 7.3.21) for system development and implementation. PHP is a

general-purpose server-side scripting language embedded in HTML (Hypertext Markup Language) and suited

to web development. It is used to manage dynamic content, databases, and session tracking. Figure 4.5

illustrates the system architecture’s server-side programming.

PHP code is usually processed on a web server by a PHP interpreter implemented as a module, a daemon

or as a Common Gateway Interface (CGI) executable. We adopt an Apache HTTP (Hypertext Transfer

Protocol) web server (version 2.4.46) [106], which is configured to use PHP’s CGI executable to process all

requests to PHP files. On the web server, the result of interpreted and executed PHP code (which may be

any type of data, such as, generated HTML) forms the whole or part of an HTTP response. The HTML

response is then transmitted to an integrated database, file management system, email system, or HTML

browser interface.

With the functionality of PHP being an object-oriented and procedural language, the operability to

create dynamic content and transfer data to interact with databases is easily achieved. The integration is

done with several popular databases, including MySQL, PostgreSQL, Oracle, and Microsoft SQL Server. In

our system implementation, we employ MySQL relational database management system (DBMS) alongside

(HTML client-side) user interfaces and (web server-side) PHP scripting language.

Figure 4.5: System Architecture of Server-Side Programming
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The database integration with the web server is facilitated by native PHP functions, such as, mysqli,

mysql connect, and mysql query. Through this integration, we are able to add, delete, and modify data

elements within the database through PHP scripts. The adoption of MySQL relational database (version

8.0.21) [107] provides the platform for data processing on related information on data provider biographical

and demographic information, physician data, and data provider genome metadata. Additionally, processed

data transactions regarding molecular pathology requisition, data provider medical consent, and (validated)

data privacy policy preferences are transmitted to the MySQL relational database.

In terms of data storage, management, and query processing, native data objects in MySQL relational

database are adopted. These are databases, tables, and stored procedures. Three different databases are

created in the relational database integration. These are user admin, tunote ppdb, and tunote ngs genomics.

The user admin database serves to process and store data on system user login details and access privileges.

This database contains two relational tables. The tunote ppdb database processes and stores data on data

provider privacy policy preferences, such as, attribute category data, data accessor profiles, granularity

privacy, purpose use privacy, purpose context privacy, and visibility privacy. The database contains 16

relational tables. The tunote ngs genomics database processes and stores data on content data relating to

data provider information, physician information, pathology requisition details, and medical consent details.

The database contains 9 relational tables. The query processing functionality of the system is executed using

a stored procedure (which acts as a privacy-aware API over the database) to process and execute queries.

The stored procedure generates a privacy-aware SQL query statement and results to the data accessor.

4.2.3 Extraction of Attribute Data, Data Accessor, and Privacy Preferences

Data Elements for Privacy Tuples

The user interfaces provide a platform to collecting data values from the data provider (i.e., patient) and

other system users (such as, clinical physician, laboratory analyst). Most of the data values collected are

classified as data provider private sensitive data. For an efficient application of privacy policy on attribute

data, we categorize each of the attribute data elements and their associated data values. These are: data

provider consent witness, data provider health insurance, data provider demographics, data provider biograph-

ical information (medium-sensitive), data provider biographical information (highly-sensitive), data provider

healthcare record, data provider pathology requisition, and data provider genome meta-data. For example,

data provider demographics attribute category data comprises street, city, province, and postal code. Ad-

ditionally, data provider health insurance attribute data comprises health insurance carrier, health policy

number, and health group number.
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Each attribute category data value is assigned an ObjectId which serves to uniquely identify the attribute

category data tuple and all constituent attribute data values needed for data retrieval. For each data value

that is collected and permanently saved in the relational database, related attribute data elements are saved

in the database. Privacy-preservation procedures are applied and enforced on the attribute data elements for

storage, management, sharing and disclosure of their related data values to intended data accessors. Hence,

a privacy-aware set of data values are presented to data accessors during query processing and data retrieval.

In terms of data accessors, different types of accessors are identified. These are: clinical physician, pa-

tient, laboratory analyst, and third-party allied health. Each data accessor data value is uniquely assigned

an ObjectId. Each ObjectId serves as a tuple identifier for associated data accessor data values of DataSe-

curityClassificationLevel, DataAccessorPurpose, and DataAccessorDeliveryType. For example, the clinical

physician is assigned an ObjectId as ‘1’, DataSecurityClassificationLevel as ‘Level-4’, DataAccessorPurpose

as ‘Add-View-Update’, and DataAccessorDeliveryType as ‘OnlineSoftcopy’.

Data privacy policy preferences are extracted from the user interfaces and saved in the relational database.

On the user interface, a data provider makes a selection of different data privacy preferences for the com-

bination of each category of attribute data and each data accessor. As a result, each selection of a privacy

policy preference is assigned an ObjectId, that is instantiated as a data value. The composition of the object

data values of attribute category data, privacy preferences, and data accessor then constitutes a data privacy

tuple for the data provider pertaining to a particular attribute category data. The data values are saved

and permanently stored in the relational database.

4.2.4 Tight-Coupling of Data Elements to Generate Privacy Tuple

The data collector writes the privacy policy in agreement with the data provider on the terms of data

collection, data access, and third-party data sharing, etc. For each privacy policy item, the attribute data,

the data accessor profile, and the privacy preferences are each uniquely identified by ObjectId data values.

A privacy tuple is subsequently generated from these three data values by coupling the data values.

The privacy tuple on each attribute data value is generated by combining data values from attribute

data, data accessor, and privacy preferences. The privacy tuple is assigned a unique object identifier value;

that is ObjectId value. The ObjectId value of the privacy tuple, together with the constituent data values,

are saved, and permanently stored in the relational database. For purposes of time-stamping privacy tuple,

the current date is saved alongside the privacy tuple in the relational database.
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4.2.5 Transmission of Privacy Tuple to Blockchain Platform

Storage of privacy tuples and privacy preferences occurs in two different storage media. One form of storage is

performed in the relational database. The storage of the actual privacy tuples in the relational database offers

to control and authenticate access to data provider private and transactional data stored in the relational

database by data accessors. The second storage occurs on the blockchains. The blockchains offers a data

platform for storage and management of the hashed privacy tuples and privacy preferences that ensure data

validation and stable data provenance. Through this approach, the blockchain platform offers an immutable

medium where hashed data provider privacy tuple and privacy preference data values are preserved and

protected from direct public access and against unconsented changes. Additionally, hashed privacy tuples

stored on the blockchain offer an approach so that any unauthorized modifications can be detected (thereby

providing data integrity assurance).

Data values generated from data provider privacy preferences and privacy tuple are combined into single

data value. The resultant data value is hashed, transmitted through an encrypted communication medium,

and saved on the blockchain platform. In this approach, the adoption of hashing methodology on the

privacy data values offers an additional data security layer to the privacy data values so that data provider

privacy preferences are managed in an efficient and most-secured manner. The hashing process employs

Argon2i algorithm. The adoption of this algorithm offers a better and secure mechanism as opposed to a

simple hash function. Moreover, the hashing algorithm presents an efficient hashing procedure and offers

an effective defence against possible adversarial attacks, such as, offline dictionary attacks (in which an

adversary computes a set of hashes of likely privacy tuples and looks for a match in the blockchain). The

hashed privacy tuples stored in the blockchains are verified against the privacy tuples stored in the relational

database during query retrieval process. The generated hash value contains all information essential to verify

the hash. Hence, verification of hash value does not require separate storage for algorithm information.

4.2.6 Transmission of Genome Meta-data to Blockchain Platform

Data providers (i.e., patient) genome meta-data values are extracted and bound together into a single

tuple. This tuple comprises of meta-data, such as, data provider healthcare details, pathology requisition

details, genome vcf standard version, variant caller name, variant caller version, variant call date, variant

caller regions, annotation software name, annotation software version, annotation date, annotation reference,

annotation reference version, and annotation fields, etc. The meta-data tuple value is encrypted before it

is stored in the blockchains. We employ native PHP encryption libraries (i.e., Libsodium) [116, 117] for

the encryption procedure of the meta-data tuple. This encryption offers an additional data security to the
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private, sensitive genome meta-data of data providers during their storage in the blockchains. We discuss

the details of genome meta-data encryption using Libsodium encryption in Section 4.4.4.

The encrypted meta-data tuple is transmitted to the blockchain platform. The transmission is facili-

tated by an encrypted data communication medium between the user interface and blockchains. For ro-

bust and efficient data transmission encryption, we adopt TLS (Transport Layer Security) protocol - with

TLS AES 256 GCM SHA384 cipher suite - to ensure secure data communications for all forms of data pack-

ets transmission between system components.

4.3 Modelling, Design and Development of Relational Database

The relational database is an integral component of the overall system design and implementation. The

database stores and manages all related data provider data and transaction processing data by both data

provider and data collector (i.e., service provider). We develop different databases to manage different forms

of data, as part of system modelling and design.

In this section, we describe modelling and design of databases, relational entities, and their associated

relationships. Moreover, we describe various data objects that are useful in the operations of the relational

database component, and discuss database security, access control, and user permissions and privileges.

4.3.1 Relational Entities and Relationships Modelling, Database Development

We adopt conventional Entity Relationship Model to design the relational database. In the database de-

velopment, we adopt MySQL relational DBMS [107]. Three different databases are developed. These

are user admin, tunote ppdb, and tunote ngs genomics. The user admin database serves to process and

store data on system user login details and access privileges. This database contains two relational tables:

user login and user audit trail.

The tunote ngs genomics database processes and stores content data relating to data provider (i.e.,

patient) information, physician information, pathology requisition details, and medical consent and pri-

vacy details. The database contains five relational tables. The tables include: genome, patient, physician,

requisition, and consent. Moreover, the entity relationships are represented by patient physician, physi-

cian requisition, patient requisition, and patient requisition consent. Figure 4.6 illustrates the relational

model for data provider healthcare information and genome meta-data.
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Figure 4.6: Data Provider Healthcare Information Relational Model - Tunote ngs genomics Database
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Figure 4.7: Data Provider Data Privacy Relational Model - Tunote ppdb Database
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The tunote ppdb database processes and stores data on data provider (i.e., patient) data privacy policy

preferences, such as, attribute category data, data accessor profiles, and granularity privacy. The database

contains 16 relational tables: privacy statistics, attribute data, attribute category data, privacy policy tuple,

data accessor profile, privacy preferences, purpose context privacy, location privacy, third party privacy,

purpose use privacy, visibility privacy, granularity privacy, and data information privacy. Figure 4.7 illus-

trates the relational model on data provider privacy policy preferences on healthcare data and genome

meta-data.

In the relational model for data privacy preferences, two key relational tables are required: namely, pri-

vacy preferences and privacy policy tuple. The privacy preferences table stores data on all data provider data

privacy preferences for each attribute data. This relational table has foreign key relationships with related

tables for privacy preferences, such as, purpose context privacy, granularity privacy, and visibility privacy.

On the other hand, the privacy policy tuple table stores data on each privacy tuple for every related at-

tribute data, data accessor, and privacy preference. The relational table has foreign key relationships with

attribute category data, data accessor profile, and privacy preferences tables.

4.3.2 Development and Programming of Database Objects

Programming the database involves identifying all components necessary to define the logical data structure

and architecture of the relational database. We identify and discuss the following data objects in the database

development: tables, indexes, and stored procedures. Relational tables and indexes are created to hold data,

and these are for database data manipulation. Moreover, stored procedures consist of a logical definition

that help in creating and modifying other data objects.

Different relational tables are created, and for each table, we identify a unique column to function as a

primary key field. The creation of a primary key automatically creates index for the table data object. The

index helps in storage and management of tuple data in the tables. Additionally, the index helps facilitate

data retrieval and query processing. For example, in relational table Patient, a unique column field idPatient

is assigned as a primary key field. Additionally, idPatient idx is created as an index.

A stored procedure is created as part of programming the relational database. This stored procedure

serves as a privacy-aware API for query analyses, parsing, and transformation. Additionally, the privacy-

aware API helps to execute queries and present privacy-aware query results to the data accessor. In this way,

the privacy-aware stored procedure offers functionalities of data validation and access-control mechanisms.
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4.3.3 Privacy-Aware Query Processing

We describe the procedures for privacy-aware query processing in this section. We process queries using

database stored procedures. Our adoption of stored procedures for privacy-aware query processing is based

on the merits of: reusable query code, efficient query response where executable code is automatically cached,

increase in data retrieval scalability by isolating application processing on the server, and allows users to

manipulate data through secured access privileges.

Within the stored procedure, the privacy-aware API query analyzer and privacy-aware API query process-

ing are implemented (recall Section 3.7 and Figure 3.7). The data logic for privacy-aware query processing

on data provider privacy preferences are programmed in the stored procedure. The stored procedure accepts

parameters in the form of data provider privacy preferences object identifier values. The output from the

stored procedure is a set of privacy-aware data tuples based on the input parameters.

We define a stored procedure (i.e., GetPrivacyAwareUserData) which accepts parameter data values,

process query statements, and outputs privacy-aware data tuples. The complete definition of the stored

procedure is outlined in a Github repository (see https://github.com/mikemireku/PSecTunote). The in-

put parameters are: data provider id, attribute category data id, data accessor id, data info privacy id, pri-

vacy retention date, granularity privacy id, visibility privacy id, purpose use id, and purpose context id. To

process privacy-aware queries, we execute the following statement:

CALL tunote ngs genomics.GetPrivacyAwareUserData (data provider id, attribute category data id,

data accessor id, data info privacy id, privacy retention date, granularity privacy id, visibility privacy id,

purpose use id, purpose context id);

A typical instance data query processing is executed as:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 1, 3, 3, ’2021-09-01’, 2, 2, 2, 1);

where the object identifier data values (4, 1, 3, 3, ’2021-09-01’, 2, 2, 2, 1) represent the parameters in their

respective order as defined in the stored procedure.
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4.3.4 Database Security, Access Controls, and User Permissions

We enforce security over the relational database which delivers effective database access, use, and administra-

tion. The creation of access control and user permissions allow access to private data to authorised persons

(i.e., database users) while restricting access to unauthorised ones. This process involves two components

of authentication and authorisation. Authentication verifies the identity of a person who is accessing your

database, whiles authorisation determines whether a user should be allowed to access the data or execute

transactions.

The database administrator is the only permitted user role (i.e., root) to access and manage the database

in our relational database implementation. Database access control permissions and privileges are categorised

into account limits, administrative roles, and schema privileges. Account limits specifies parameters, such as,

Maximum Queries (number of queries the account can execute within one hour), Maximum Updates (number

of updates the account can execute within one hour), Maximum Connections (number of times the account

can connect to the server per hour), and Concurrent Connections (number of simultaneous connections to

the server the account can have).

The Administrative roles access control specifies parameters, such as, DBA (grants the rights to perform

all tasks),MaintenanceAdmin (grants rights needed to maintain the server), SecurityAdmin (rights to manage

logins and grant and revoke server and database level permissions), BackupAdmin (minimal rights needed to

backup any database), DBManager (grants full rights on all databases), and DBDesigner (rights to create

and reverse engineer any database schema).

The Schema privileges access control specifies Object Rights (i.e., select, insert, update, delete, execute,

show view), DDL Rights (i.e., create, alter, references, index, create routine, create view, drop, trigger), and

Other Rights (i.e., grant option, create temporary tables, lock tables) on the database schema.

4.4 Design and Development of Permissioned (Private) Blockchain

Platform

We adopt a blockchain platform to offer data access authentication and authorize query processing on

data provider private, sensitive data and transaction data to data accessors. In this approach, the user

interface generates and issues data service requests to the blockchain platform, and subsequently receive data

responses from the blockchain platform to the user interface. The procedures of data privacy transactions

are performed through a blockchain API wrapper; which serves as an intermediary between the blockchain

platform, encrypted data communication channel, user interfaces, and relational database.
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In this section, we discuss the adoption of Multichain blockchain platform, design and development of

data stream transaction ledgers, generation and confirmation of privacy policy chain blocks on data stream

transaction ledgers, and generation and confirmation of genome metadata on data stream transaction ledgers.

4.4.1 Adoption of MultiChain Blockchain Platform

We adopt the MultiChain (version 2.1.2) [108] blockchain platform, which is one of the most prominent

open-source platforms for private blockchain development. The blockchain platform is designed and based

on a fork of the Bitcoin Core platform [109], the official client for Bitcoin network. MultiChain is an off-the-

shelf platform for creation and deployment of private blockchains, either within or between organizations

[110]. MultiChain is designed to offer functionalities which: (a) ensures that the blockchain’s activity is only

visible to chosen participants, (b) introduces controls over which transactions are permitted, and (c) enables

mining to take place securely without proof-of-work (PoW) and its associated costs.

Creation of Data Streams and Data Items

The primary configuration of MultiChain blockchain transaction ledgers involves the design and creation of

”data streams”. The data stream feature allows users to create multiple key-value, time-series, or identity

”databases” that can be used for data-sharing, time-stamping, and encrypted archiving [111]. Data streams

are append-only, on-chain lists of data where the key-value retrieval capability makes store and query func-

tionality extremely easy. Each data stream is an ordered list of items, with the following characteristics: one

or more publishers (string data type) - who digitally signed the data item; and one or more key-value pairs

(string data type) - which is set between 0-256 ASCII characters excluding whitespace and single/double

quotes - to allow efficient retrieval. Other information about data streams are storage of related data (hex

string) in JSON (JavaScript Object Notation), text or binary format - which can be on-chain (embedded in

the transaction) or off-chain (represented by a hash in the transaction). Moreover, some other information

are meta-data (about the transaction and block corresponding to the data item) in the form of transaction

ID txid (string data type), block-hash (hex string), block-time (integer data type), and confirmations (integer

data type) [111].

Our assessment of data streams identifies the creation of closed data streams. These data streams are

restricted to changes by the host node address. General data stream configuration specifies some permis-

sions set on the data streams when they are created. The create permission code syntax is used to create

data streams by a special transaction output, which must only be signed with the host node address. In

the blockchain setup for the privacy infrastructure, there is only one node address set up for transaction
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management. Hence, no other external node participates in creating data streams. The node address that

creates data streams automatically has admin, activate, and write permissions for the streams.

Data Publishing, Subscription, and Retrieval

MultiChain data streams make it possible for a blockchain to implement some basic data management

features of a general-purpose database. Storing data on the blockchain involves the process of publishing

data. The data published in every stream is stored by all nodes in the network. Each data stream on a

MultiChain blockchain consists of a list of data items. When data needs to be queried or ”streamed”, it can

be retrieved by searches using the key-value pairs. Publishing a stream item to a data stream constitutes

a transaction. When a node subscribes to a data stream, it indexes the stream items in different ways to

enable fast retrieval, and the index entry points to the transaction ID.

The core value of data streams is in indexing and data retrieval. The node address subscribes (with a

granted permission to retrieve transaction data) to the created data stream. After data stream subscription,

the node can retrieve data items in a specified order and retrieve data items with a particular key. Our

configuration of the blockchain API wrapper use start and count parameters; that allows subsections of long

lists to be efficiently retrieved (like a LIMIT clause in SQL). Moreover, the adopted API wrapper offers

functionalities to: (a) retrieve the first or last data item of a given stream entry, (b) retrieve a full data item

history for a stream entry, and (c) retrieve information about multiple data item entries, including the first

and last data items.

Transaction Access Privileges, Permissions Management, and Mining

In the design architecture of MultiChain, all privileges are granted and revoked using network transactions

containing special meta-data. Transactions submitted to the network are time stamped via Linux timestamp.

When a transaction happens, it is held in the memory pool. The miner of the first “genesis” block auto-

matically receives all privileges, including administrator rights to manage the privileges of other users [70].

The mining process does not follow the traditional Proof-of-Work procedures adopted by public blockchains;

where there is requirement of a difficult mathematical computation to create a new block. The mining and

signing of validated transactions are completed by the primary node and all other connected nodes. The

miner of a valid block must be on the permitted node list after applying all privilege changes defined within

that block’s transactions. This mining process offers many advantages, such as: faster rate of transaction

confirmations, and eliminates the risks of some miners refusing to confirm transactions for various reasons.

It will be noted that our implementation only uses only one node to process transaction data blocks; and

which is only accessible via the API wrapper protocol. After transaction mining is complete, the transaction
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is added to a block. Each block has a maximum transaction size, (i.e., after a block reaches its maximum

size or the time to create a block reaches its limit), and the block is sealed and appended to the chain. This

means a data stream in MultiChain can span multiple blocks based on the time of the transaction (i.e., time

of the publishing the data to the blockchain).

The architecture and implementation of MultiChain addresses keys and permission management based

on identity and security using public key cryptography. User nodes randomly generate their own private keys

and never reveal them to other participants. Each private key has a mathematically related public address

which represents an identity. Once keys are sent to a public address, those asset funds can only be used using

the corresponding private key to “sign” a new transaction. In this regard, access to a private key is equivalent

to ownership of any asset funds which it protects [70]. This type of cryptography enables any message to

be signed by a user node to prove that they own the private key corresponding to a particular address.

MultiChain uses this property to restrict blockchain access to a list of permitted users, by expanding the

“handshaking” process that occurs when two blockchain nodes connect. A description of the key management

is as follows:

(a) Each node presents its identity as a public address on the permitted list.

(b) Each node verifies that the other’s address is on its own version of the permitted list.

(c) Each node sends a challenge message to the other party.

(d) Each node sends back a signature of the challenge message, proving their ownership of the private key

corresponding to the public address they presented.

4.4.2 Design of Transaction Ledgers and Data Streams for Privacy Tuples

Privacy tuples created from the data privacy policy transaction represent privacy preferences validated by

both data provider (i.e., patient) and data collector or service provider (i.e., clinical physician). These

tuples denote unique attribute data, privacy preferences, and data accessor data elements for a particular

data provider. Data streams are created on the MultiChain blockchain for each privacy tuple. The initial

configuration of the blockchains consists of appending a root (genesis) data stream that does not contain

transaction data block. Consequently, the first data stream is appended to the existing root data stream, and

all other subsequent data streams are also appended to the preceding data stream. A validated transaction

data block (associated to a privacy tuple) is appended to first data stream or any other related data stream

(in the list of data streams created on the chain). Thus, privacy tuples stored as transaction blocks become

valid data items and are always accessed during query processing.
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The identification of data streams on the validated transaction ledger is based on a designated data

provider. To this end, each data provider is associated with a unique data stream for privacy tuple data

storage on the MultiChain blockchain platform. Moreover, each data provider is related to some attribute

data, that is designated as private. Since there are many private attribute data, there will be different data

streams for the same data provider, but on different attribute data. On another hand, each private attribute

data for a particular data provider will have different privacy policy preferences for different data accessors.

Based on these three data identifiers (that is, data provider, attribute data, and data accessor), we create

data streams on the transaction ledger with respect to three parameters for efficient data retrieval from the

blockchain platform.

The implementation approach for designing and creating data streams is as follows. We adopt a data

representation format of: Stream-X-Y-Z. The X component represents a data value for supposed data

provider, Y represents a data value for supposed attribute data, and Z represents a data value for the data

accessor. This approach offers a unique data stream creation and identification on MultiChain blockchain

platform. Furthermore, the methodology offers an efficient privacy tuple data storage for each data provider,

the associated attribute data, and the data accessor. In terms of data retrieval and query processing on

MultiChain blockchain platform, we reference the parameters using object identification data values to

uniquely identify data streams created on the blockchain platform.

With regards to practical implementation creating data streams on the MultiChain blockchain platform,

we use MultiChain API syntax: create (”stream”, stream name, True); to create a data stream from the API.

The parameter “create” indicates the method invoked to execute processing on the blockchain platform. The

“stream” parameter indicates the type of operation, whether data stream or wallet asset. The “stream name”

indicates the specific name assigned to the data stream. “True” is a value for “rescan” parameter that

indicates the node will index all items from when the assets and/or streams are created. The “create”

method can be incorporated with another parameter, such as, “restrict”; which can take values of offchain,

onchain, write, or read.

Figure 4.8 illustrates a set of subscribed data streams, containing the “root” stream (which is auto-

matically created) and user-created streams of “stream-4-5-3” and “stream-4-1-3”. It is noticed from the

diagram that all three data streams are created by the same node address. Data streams “stream-4-5-3”

and “stream-4-1-3” are designated to the same data provider with an object identifier value, 4. On the other

hand, each of the streams are associated with different attribute data with an object identifier value of 5 and

1, respectively. Finally, each data stream is related to the same data accessor with an object identifier value

of 3. Moreover, “stream-4-5-3” stores three data items and has one node address data publisher. Likewise,

“stream-4-1-3” stores four data items and has one node address data publisher.
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Figure 4.8: MultiChain Blockchain (Subscribed) Data Streams

4.4.3 Publish and Confirmation of Privacy Tuple Data Items on Data Streams

Publishing data is the methodology for saving and storing data value items on the MultiChain blockchain.

To publish a data value item requires initial creation of a data stream on which the data value item can be

stored. Hence, the process of publishing data value items involves identifying a data stream, specifying a key

value, and specifying the data value item. The unique feature of specifying a key value helps to efficiently

sign the data value item on the blockchain platform. The key value also helps in data retrieval for the data

value item.

When privacy tuple data items are generated into the data streams, there is a need to permanently

persist them in the data stream. The activity ensures that every ”created” privacy tuple data item is

permanently stored in the blockchain platform. Moreover, storing a privacy tuple data item guarantees its

availability for data retrieval and querying when needed. Publishing a privacy tuple data item requires the

identification of a particular data stream (which is already created and related to a unique data provider,

attribute data, and data accessor). Additionally, we identify the unique privacy tuple data item for data

publishing. One important requirement for data item publishing is the identification of a data token or key.

In the architecture of MultiChain blockchain with regards to data publishing, the key token helps to uniquely

save and effectively store the data items in the data streams. Moreover, the key value helps in efficient data
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retrieval and querying processing on the data items. Hence, three parameters needed to publish a data item

in the data stream are: data stream, data item, and key token.

As part of implementation, we adopt a hashing algorithm to transform privacy tuple data items before

finally saving them on the blockchains platform. We implement hashing on the data items based on the fact

that data items are stored in the data streams in their raw form. This means that data items are openly

exposed to anyone who accesses and queries data streams and their constituent data items. We implement

native hash algorithm offered by PHP Interpreter for web development. We use bcrypt algorithm (in the

form of Argon2i) to transform the privacy tuple and privacy preferences data. The resultant hashed value

contains the hash algorithm, hash cost and salt. Therefore, all information that is needed to verify the

hash is included in the resultant hash value. Hence, during hash value retrieval from the blockchains, and

subsequent verification for query processing, the function to verify the hash does not need separate storage

for the salt or algorithm information.

For practical implementation on the MultiChain blockchain platform, we use MultiChain API syntax:

publish (stream name, stream key, stream data); to publish or store a data item in the data stream. The

parameter “publish” indicates the method invoked to execute processing on the blockchain platform. The

“stream name” indicates the specific name data stream into which data is stored, and “stream key” param-

eter indicates the data value of key that is used to sign the storage of data item on the data stream. The

“stream data” indicates the actual data value item saved on the data stream.

Figure 4.9 illustrates the set of data value items for “stream-4-3-5”. Each storage item outlines data

publisher, key value, actual data value item (which is a text format), and storage date (which timestamps

the date and time for save the data value item). The data publisher references the blockchain node address

into which the data stream and data item are created and stored. The key token is used to digitally sign and

save the data item into the data stream. The added time designation is the timestamp for the calendar date

and time at which the data item is saved into the blockchain platform. It is observed (from the timestamp)

in the illustration that ordering of the data value items is in an ascending order from the bottom. Hence,

the latest data value item is displayed at the top. We notice that all the data storage streams are published

by the same node address. Moreover, the first data value item is signed with a key value of “key17” whereas

all subsequent data value items are signed with “key18”. It is also noted that all the data value items

are “confirmed” by the subscribing nodes to the data stream. This indicates the data value item has been

accepted as a valid data from each subscribing node.
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Figure 4.9: MultiChain Blockchain Data Stream Items – Data Provider Privacy Tuple
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4.4.4 Encryption, Publish, and Confirmation of Genome Meta-data on Data

Streams

Data provider genome meta-data are also independently saved and stored (that is, published) into data

stream in the blockchain platform. On one hand, creating a unique data stream for each data provider genome

meta-data ensures that every genome data requisition is efficiently identified in the blockhain platform and

effectively accessed in a privacy-aware approach. On the other hand, we create a data tuple data item which

comprises all genome meta-data values. These data tuple data items store relevant genome information on

the data provider in the blockchain platform.

As part of providing a privacy-aware data access medium on the blockchain platform, we encrypt the

genome meta-data data tuples before saving them on the blockchain platform. A unique (encryption-based)

data stream is created for each data provider genome meta-data. We adopted a PHP string encryption with

the Libsodium library. This library is a modern, easy-to-use software collection for encryption, decryption,

and signatures. The encryption schemes implemented in Libsodium are fast, and require a unique (nonce, key)

tuple for every plaintext. The encryption methodology employs generation of random 32 bytes nonce and

secret key ; where each nonce (or key) represents 256 bits and none of them are predictable by observing other

bits from that nonce (or key) or from previous nonce (or keys). This encryption methodology is considered

efficient against side-channel or server-side attacks [116, 117]. Our implementation with Libsodium encryption

adopts different algorithms for different purposes of: encryption/data integrity, AES key agreement, and

source/entity authentication. For encryption/data integrity, the encryption library employs XSalsa20 to

encrypt stream cipher and AES-GCM-256 is used for key agreement and for message-authentication code

(MAC) in one operation.

After genome meta-data encryption, the ciphertext output (encoded as hex value) is saved in the relational

database. Moreover, the encrypted genome meta-data data item is published onto related data provider

genome meta-data data stream. Each data provider genome meta-data is identified with a unique validated

transaction ledger and a data stream in the blockchain platform. Because each data provider (i.e., patient)

will make several medical pathology requests, and subsequent storage of different genome data on these

requests, we store genome meta-data for each of these genome data. We assign a data value to each pathology

requisition related to the genome meta-data. In terms of saving and storing genome meta-data, we identify

the data provider and designate a unique object identifier value. Additionally, we assign a unique object

identifier value to the pathology requisition. Based on these two object data identifiers (that is, data provider

and genome meta-data), we create data streams on the transaction ledger with respect to two parameters

for efficient data retrieval from the blockchain platform.
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Figure 4.10: MultiChain Blockchain Data Stream Item – Data Provider Genome Meta-data

The implementation approach for designing and creating genome meta-data data streams on the Multi-

Chain blockchain platform is as follows. We adopt a data representation format of: Stream-A-B ; where A

represents a data value for supposed data provider, and B represents a data value for supposed molecular

pathology requisition for the data provider (i.e., patient). This methodology offers a unique data stream

creation and identification on the MultiChain blockchain platform. Furthermore, the methodology offers an

efficient data storage for each data provider genome meta-data.

With regards to practical implementation on the MultiChain blockchain platform, we use MultiChain API

syntax: create (”stream”, stream name, True); to create a data stream from the API. The parameter “create”

indicates the method invoked to execute processing on the blockchain platform. The “stream” parameter

indicates the type of operation, whether data stream or wallet asset. The “stream name” indicates the

specific name assigned to the data stream. “True” is a value for “rescan” parameter that indicates the

node will index all items from when the assets and/or streams are created. The “create” method can be

incorporated with another parameter, such as, “restrict”; which can take values of offchain, onchain, write,

or read.

Figure 4.10 illustrates the published data value item for “stream-4-8”. The data stream stores genome

meta-data for data provider with ObjectId value, 4, and pathology requisition ObjectId value, 8. Moreover,

in terms of actual storage representation, this data stream outlines data publisher, key value, actual data

value item (which is a text format), and storage date (which timestamps the date and time for save the

data value item). The data publisher references the blockchain node address into which the data stream

and data item are created and stored. The key token is used to digitally sign and save the data item into
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the data stream. The added time designation is the timestamp for the calendar date and time at which the

data item is saved into the blockchain platform. This data value item is signed and permanently saved in

the blockchain with a key token value of “key8” and with a timestamp value.

4.4.5 Privacy Tuple Data Retrieval on MultiChain Blockchains

Once data has been successfully saved on the MultiChain blockchain, query processing and data retrieval

can be performed. Processing data retrieval from MultiChain blockchain involves two main procedures:

subscription to the data stream by the node address, and listing of data value items by the subscribed node.

A blockchain node’s subscription to a data stream offers access to the data items saved and stored

in the data stream. Data streams and their constituent data items are closed to data access by their

default settings. Subscription to a node’s data stream grants permissions of read, write, and execute. These

permissions opens up the data stream to the node addresses to process data items. In the architecture of the

MultiChain blockchain, we activate data stream subscription to allow utmost data access for data retrieval

and query processing.

For a node to subscribe to a data stream, we use MultiChain API syntax: subscribe (stream name, True).

The parameter “subscribe” indicates subscription method invoked to execute data access by the node. The

“stream name” indicates the specific name assigned to the data stream for node data access. “True” is a

value for “rescan” parameter that indicates the node will re-index all items from when the assets and/or

streams are created, as well as those in other subscribed entities.

The MultiChain blockchain API that enables data retrieval from a node’s data stream is the list-

streamitems. Listing the stream items displays rows of data items stored in a data stream and presents

them to the node in either ascending or descending order (based on timestamp on when the data item was

saved).

For a subscribed node to retrieve data items, we use MultiChain API syntax: liststreamitems (stream name,

verbose, countItems, -startItems, local-ordering). The parameter “liststreamitems” indicates the process of

retrieving data value items saved on the data stream. The “verbose” parameter is set to “True” for additional

information about each data value item’s transaction. The “countItems” and “startItems” parameters to

retrieve part of the list only, with negative “startItems” values (like the default) indicating the most recent

items. The “local-ordering” parameter is set to “True” to order data value items by what time each is first

accepted by this node, rather than their order in the chain.
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To retrieve data values stored in a data stream, we implement an approach that identifies data streams

created on the blockchain platform. Hence, for data retrieval on data stream, say “stream-4-5-3”, we specify

the same data stream name in the procedures of data subscription and listing data stream items. We execute

the following syntax: liststreamitems(Stream-4-5-3, True). This syntax retrieves all privacy tuple data items

saved in the data stream, Stream-4-5-3, for the data provider with object identifier value, 4, and attribute

data with object identfier value, 5, and data accessor with object identifier value, 3.

4.4.6 MultiChain Blockchain Query Processing, Data Scalability, and Transac-

tion Throughput

Multichain blockchain offers a platform for efficient query processing, robust scalability, and high query

transaction throughput. Regarding the size of data values per transactions, the current limit is 8 MB [112].

The default value is 4 MB. Moreover, there is the option of chaining multiple transactions together. To make

changes to transaction data size, one must set the max-std-tx-size and max-std-op-return-size parameter

values, high enough in the blockchain configuration parameters to support desired transaction data sizes.

The number of data streams created for the blockchain platform is essential. This could impact on the

data transactions to store in the blockchain. The architecture of MultiChain offers no limit to the creation of

data streams, apart from available disk space needed to maintain the data streams [113]. Data streams are

efficiently indexed using on-disk indexes that can expand to millions of items or beyond, if the blockchain

parameters are set correctly.

Data transaction scalability for blockchain data management is vital for efficient data storage, manage-

ment, and query processing. For each chain created on the blockchain platform, the maximum number of

transactions in a data stream block depends on the maximum size of a data stream block. This block size

can be configured to be up to 1 GB in size. The smallest conceivable transaction (with a real signature)

is about 200 bytes in size. Hence, theoretically, up to five million transactions can be processed in a data

stream block [114]. This projection of transactions depends on the hardware capabilities and large system

requirements to process such large data stream blocks.

In terms of transaction throughput, the number of transactions that can be processed per second may be

independent of how they are grouped into data item blocks in the data streams. MultiChain blockchain offers

an estimate of 1000 tx/sec (transactions per second) under ideal conditions on a mid-range server. Average

server conditions (depending on operating system, network setup, server performance, and the size of data

stream items) processes 600 tx/sec [114]. Generally, MultiChain blockchain processes transactions faster on

Linux operating system than on Windows operating system because of the Linux kernel configuration.
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4.5 Data Communication and Encryption Protocols between Sys-

tem Components

The key system components for the proposed methodology, which we discussed in the prior sub-sections, are

user interfaces, relational database, blockchain platform, and genomic data store. Each of these components

offers different functionality in their operation. The unified integration of the components delivers a seamless

platform for collection, processing, and storage of data provider’s private, sensitive data. Moreover, this

platform offers an efficient approach for privacy preservation in the operational data repositories.

In this section, we discuss data communication processes (for transaction data) that is transmitted

between user interfaces, relational database management system, and MultiChain blockchain platform. Ad-

ditionally, we discuss encryption protocols that are established in the data communication medium between

the system components.

4.5.1 Data Communication between System Components

We establish and implement secured data communication channels between user interfaces, relational database

management system, and blockchain platform. Here, we assume that the data communication network and

routes connecting one component to another is adequately protected from threats. Our assumption on the

adoption of a secured data communication medium is based on the premise that robust and efficient data

communication encryption (see Section 4.5.2) is employed in the integration of the system components. The

encryption algorithm provide confidentiality of the data message’s contents, verifies the data message’s origin,

and provides proof that a data message’s contents have not changed since it was sent. Hence, the encrypted

data communication medium sufficiently reduces (or best case prevents) any form of attack, data loss or

data leakage as data moves from one system component to another [123, 124, 125]. For instance, when data

provider’s private data is collected from the user interface, the transaction data is processed. The processed

data is further transmitted from the interface through communication channels to the relational database.

The function of the data communication channel is to offer an immutable transport medium where complete

and precise data value collected from the interface is permanently persisted at the relational database; and

there is no data loss or data modification.

Different forms of data communication security are implemented to achieve the desired secure data

transmission from one system component to another. We adopt several application tools to provide data

communication security over the entire system setup. These application tools are offered as part of hosting

the application on the corporate platform. The adoption of these application tools appeals to using best
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practices to secure the system. To this end, we specify the adoption of WhatsUpGold network monitoring,

System Center Operations Manager (SCOM), Vulnerability Assessment Scan, FortiClient virus updates and

scan, Privileged Access Management (PAM), Key Management Service (KMS) license manager, and windows

firewall to offer protection over the system infrastructure. It is noted that these application tools are not

exhaustive and other tools can be adopted to offer similar best practices for system protection.

4.5.2 Encryption Protocols for Data Communication between System Compo-

nents

We follow best practices of adopting secured application and transport protocols to provide data security

over the communication channels between system components. For robust and efficient data encryption, we

adopt TLS (Transport Layer Security) protocol - with TLS AES 256 GCM SHA384 cipher suite - to ensure

secure data communications for all forms of data packets transmission between system components. The

cipher suite helps to offer end-to-end security services including entity authentication, end-to-end encryption

and integrity protection above the network layer and transport layer, respectively. The adoption of AES

is based on the standard protection that the block cipher offers among other block cipher considerations

[123, 124, 125, 127].

4.6 Summary

This chapter presented overall system design, development, and implementation for the proposed research

methodology. We first describe formulation and modelling of formal contextualized privacy ontology. We

discuss that privacy ontology offers system modelling for provision privacy preservation platform, and pro-

cessing of related data provider’s private, sensitive data. Moreover, we discuss system modelling and design

of user interfaces. The user interfaces served as platforms to collect data from system users. We describe

system interaction modelling of use cases, activities, and actor(s) for data transaction processing.

We discuss programming procedures behind the software system user interfaces leading to the extraction

of related data values of attribute data, data accessor profiles, and privacy preferences of data providers.

We explain the methodology of tight-coupling of data values to generate privacy tuple, and discuss the

transmission of privacy preferences and privacy tuple to the blockchain platform. We discuss modelling,

design, and development relational database management system and permissioned (private) blockchain data

platforms. We discuss the security architectures on these data platforms, and describe the implementation

procedures for privacy-aware query processing on the light-weight privacy infrastructure. Finally, we discuss
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data communication and encryption protocols between system components.

Chapter 5 discusses the security or adversarial model for the system. We discuss the software security

assessment and data repositories design principles adopted for the privacy model. We discuss privacy model

attacks and their preventive measures. Additionally, we discuss query recall and precision criteria for query

processing evaluation analysis. We then summarise by addressing query processing rates on privacy-aware

and native (non-private) queries for all forms of queries executed on the system implementation.
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Chapter 5

System Security Assessment,

Evaluation, and Results Analysis

In this chapter, we discuss evaluation procedures on aspects of the system implementation for the method-

ology. Our analysis verifies and determines the completeness of the implemented privacy infrastructure. We

discuss security assessments for related system components. We discuss data repositories design principles

and assess their use as system components for the light-weight privacy infrastructure. Moreover, we discuss

evaluation of query processing on the system architecture. We compare and analyze query response time

for both privacy-aware and native (non-private) queries, and evaluate the privacy overhead cost in query

response time for privacy-aware queries.

We discuss the components of the security or adversarial model for the overall security infrastructure

in Section 5.1. Moreover, we examine the details of system security assessment in Section 5.2 and assess

the suitability of data repositories adopted for the privacy model system architecture in Section 5.3. We

discuss privacy model attacks and their respective preventive measures in Section 5.4. Section 5.5 discusses

query evaluation of recall and precision for granularity privacy preferences. Section 5.6 analyses query

processing and response time. We also analyse the average query response time for the queries and their

privacy overhead query cost. Section 5.7 discusses other methodology approaches in relation to our proposed

methodology. We evaluate the methodology contributions and perform comparative technical analyses based

on some defined criteria. Section 5.8 summarizes the overall discussions on software security assessment,

system evaluation, and query results analysis.
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5.1 Security / Adversarial Model

We present the overview of the security model based on the system design discussed in Chapter 4. The

security model addresses the design of secure schemes or protocols as applicable in the software and system

architecture. Figures 5.1 and 5.2 illustrate the security model design and components that describe the

assumptions, adversary, goals, and capabilities. We adapt this security model from the adversary model

components discussed and illustrated in Do et al. [128].

Figure 5.1: Adversarial Model System Design

5.1.1 Adversarial Model Components

From the illustrations, we describe the following components of the adversary model: assumptions, adver-

saries, goals, and assumed capabilities.

Assumptions

The assumptions framed for the adversarial model is based on the environment and resources available.

In terms of the environment, the primary platforms and devices are: the user interfaces, encrypted local

network, relational database, and blockchains platform. For example, the database administrator has direct

access to the relational database platform and probably the blockchains platform, whiles systems admin-
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istrator has access to the network and encrypted protocol infrastructure. Some resources available to the

adversaries are: access privileges to the user interface, relational database, blockchains platform, knowledge

of tight-coupling of relational database, blockchain, and genomic data store.

Figure 5.2: Adversarial Model Components

Adversaries

An adversary to the system is described as an individual or a system (whether authorised or unauthorised)

that tries to access data from either the relational database or blockchains platform, or both. Some end

users who serve as system threats are the database administrator and system administrator. These users

have direct access to the relational database and blockchain platform. They may be categorised as either

active or passive threats. Some passive adversaries are curious authorised data providers who try to access

unauthorised data through different means, and curious web application developers. Active adversaries are

represented in the form of dishonest bioinformatics (genetic) data scientists or analysts, health insurance

data analysts, and government actors who may need further (unauthorised) private, sensitive information of

data providers.

Adversary Goals

The primary goal of the adversary is to have the ability to access data values in the relational database without

querying the blockchain platform; which serves as an access control authentication medium. Another goal

is to execute queries on the relational database (through the blockchains) to identify unauthorised data and
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make inferences to the data provider. Additionally, the adversary may try to make changes to the privacy

tuple generated for a data provider (by either changing the data values for data provider, privacy preferences,

or data accessor).

More importantly, the adversary may try to modify existing privacy policy preferences entries, for exam-

ple, granularity privacy, visibility privacy, retention duration, etc. The adversary may have access to read

data provider healthcare information and genomic meta-data (from the relational database and blockchains

platform) and make data inferences or perform data linkage to other unauthorised data items. Secondly,

the adversary may try to access the transaction ledgers and data streams on the blockchain platform. The

adversary may try to query hashed privacy preferences data values (regarding data provider information

such as healthcare, demographic, requisitions, and insurance coverage) stored on the blockchain platform.

Assumed Capabilities

In terms of the security infrastructure, the systems administrator or network engineer (or other active

adversary) may have listen capability that allows her to track or eavesdrop into data packets flowing through

the application network medium.

On the other hand, the database administrator may have the access to read (or query) data items

from the relational database or blockchain platform. In some other instances, the database administrator

may modify data values regarding the data provider, privacy tuples, privacy policy preferences, healthcare

consent information, and genomic meta-data. Subsequently, the database administrator may have access to

the blockchains platform to read data items stored in the data streams and the transaction ledgers.

Other assumed capabilities may be represented in the form where insurance professionals and/or gov-

ernment actors may have access to read data provider insurance and healthcare related data items from the

relational database or blockchain platform for data provider (i.e., patient) insurance coverage and liabilities

assessment.

5.1.2 Privacy Infrastructure Security Assessment

We discuss the privacy infrastructure systems security overview in terms of the defences it offers for data

provider’s private data and overall data processing for data accessors. We discuss these assessment based on

the following: confidentiality, integrity, and availability.
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Confidentiality

We address the proposed methodology to offer security assurance of confidentiality based on the adopted

privacy infrastructure. We evaluate the system to protect sensitive, private information from unauthorized

access using defined data provider privacy preferences saved on the blockchain platfrom. Through this

privacy methodology, each data accessor is allowed data retrieval only on the data values defined in the

privacy preferences. Moreover, the composition of the privacy tuple authorizes data access to each defined

accessor based on privacy preferences. Beside these privacy modelling constructs, we envisage that every

other unauthorized data access is denied.

Integrity

In terms of integrity, our proposed methodology offers a framework where private, sensitive data and the

preferences defined on them are protected from deletion or modification from unauthorized individuals. We

assess the privacy infrastructure to ensure that changes to privacy preferences (regarding data provider’s

private, sensitive data) stored in the blockchain platform is completed in ”consensus” or agreement by both

data provider and data collector. The agreement is completed through a privacy preferences validation

process performed in the blockchain transaction ledgers; using the user interfaces as a connection platform

to the blockchains. Moreover, the privacy infrastructure protects data provider’s private data (stored in the

relational database) from changes, and these changes are allowed with the data provider’s consent. Regarding

query processing, we determine that query statements are protected from changes due to external attacks.

We adopt a form of parameterized queries to retrieve supposed data values to intended data accessors. This

query processing approach is discussed further in SQL injection query attacks (see Section 5.4.2).

Availability

We address the security assurance of availability based on the tight-coupling of the data storage and pro-

cessing platforms. The configuration of network communications channel, user interfaces, and web server

components deliver effective platform for the data they protect, and ensure data values are available to

data accessors when needed. The architecture and configuration of the blockchain nodes offer functional

transaction ledgers and data streams that ensure controlled data throughput to the API and the relational

database. The relational database is configured with stable query analyzers and processors to parse, analyse

and execute query statements, and to deliver data values to data accessors via the user interfaces. We discuss

into detail the ability of the system components to ensure security availability in Section 5.2.
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5.2 System Security Assessment

As part of system implementation, we develop a software platform to realize the privacy model and/or

infrastructure. The details of system modelling and user interface design are discussed in Chapter 4 (recall

Section 4.2). System security assessment addresses security architecture of an entire system’s implementation

and various measures to prevent attacks. This software security assessment generally outlines vulnerabilities

and proposed defences.

We identify four main system components for software security assessment and evaluation. These are:

application transmission medium (for network data communications), client-side user interface, web server

code, and data repositories. Our assessment establishes building a verifiable software system for the light-

weight privacy infrastructure. Furthermore, we discuss the security assessment, and design principles and

assessment on the data repositories (of relational database and blockchains platform). In this section, we

discuss measures for secure and reliable operations in the user interface and web server code of the system

implementation.

5.2.1 Network Communications Component: Application Data Transmission

Assessment

Application data transmission medium is the communication pipeline between system components of user

interface, relational database, and blockchain platform. We assess the application transmission medium by

ensuring that communication is effectively secured and safe from any form of external tampering. We assess

the security infrastructure for network communications in various ways:

How adversaries could attack

An adversary could try to access the data communication channel to tamper with or change data provider’s

privacy preferences data or actual private, sensitive data and transaction data during data transmission

through the channel. Moreover, an adversary may try to capture access credentials of authenticated users

that are transmitted over the data channels. Finally, an adversary could try to break down the data

transmission channel.

What adversaries try to achieve

An adversary’s aim is to make changes to important data provider’s private information. For example,

an adversary could change the health information so as to increase the monetary claims for an insurance

coverage. Secondly, when an adversary tries to access the data communication channel, the adversary’s aim is
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to capture relevant data for malicious purposes. For example, an adversary can use the data provider’s login

credentials and biographic information, such as, name, birth date, and other relevant data to impersonate

the data provider and make fraudulent health insurance claims on altered false information. Moreover, when

an adversary breaks down the transmission channel, the aim is take hold and prevent data movement from

one system component to another.

How attack is prevented

These threats are adequately prevented based on secured data access and transmission channel. We employ

best practices to secure the system by adopting standard application tools. We ensure that there is a

protective firewall to monitor incoming and outgoing network traffic based on defined security rules. We

adopt WhatsUpGold application tool which delivers network availability and performance monitoring. This

tool provides complete visibility into the status and performance of applications, network devices and servers.

Moreover, we adopt FortiClient application to protect the server against malware by leveraging real-time

scanning and detecting vulnerabilities. The application tool helps to centrally manage, monitor, patch,

quarantine, dynamically categorize and provide deep real-time endpoint visibility for the server hosting the

system components. It is noted that these application tools are not exhaustive and other tools can be

adopted to offer similar best practices for system protection.

An encryption protocol is adopted to provide data security over the communication channels between

system components. The encryption protocol helps prevent these aforementioned attacks, such as, passive

attacks (i.e., data snooping, eavesdropping, etc.), and active attacks (i.e., brute-force, linear crypt-analysis,

etc.). For robust and efficient data encryption, we adopt TLS (Transport Layer Security) protocol - with

TLS AES 256 GCM SHA384 cipher suite - to ensure secure data communications for all forms of data

packets transmission between system components. The cipher suite helps to offer end-to-end security services

including entity authentication, end-to-end encryption and data integrity protection above the network layer

and transport layer respectively.

5.2.2 User Interface Component: Design Principles and Assessment

The user interface is the primary medium through which the data provider inputs private data into the

relational database or blockchains. Additionally, the user interfaces provide the medium through which data

records retrieved from the relational database are displayed to the data accessors (or possible third-party

accessors). We discuss ways in which an adversary could attack the system (through the user interfaces),

the aim of the adversary attack, and how these attacks are prevented.

84



How adversaries could attack

An adversary could try to inject false data pertaining to a data provider into the data fields of the user

interface. This develops into a form of HTML script injection. Additionally, the adversary could use a web

application to send malicious code, generally in the form of a browser side script. Moreover, the adversary

may try to inject some malicious code (or any form of a malware) into the website address link.

An attacker can use cross site scripting (XSS) to send a malicious script to an unsuspecting user. The

end user’s browser has no way to know that the script should not be trusted, and will execute the script.

Because end user’s browser thinks the script came from a trusted source, the malicious script can access any

cookies, session tokens, or other sensitive information retained by the browser and used with that site.

What adversaries try to achieve

When false data are added to the data fields on the user interface, the adversary aims to alter the correct

data input (in the user interface data fields) from the data provider before the data is submitted over to the

web server and/or relational database across the communication channel. Secondly, when a malicious code

is injected into the website address link, the adversary aims to send a malware or other harmful codes (in

the form of tags or script codes) to tamper with the data transmitted over the channel. Moreover, when

an adversary sends a malicious script to the unsuspecting user, the malicious script can access any cookies,

session tokens, or other sensitive information retained by the browser. These scripts can even try to rewrite

the content of the HTML page. For most of the attacks, the main purpose of the malicious code is to

successfully travel through the transmission channel and get to the relational database or blockchains and

effect changes in the stored data.

How attack is prevented

We assess efficient security at the client-side user interface by proposing measures to prevent cross-site script

attacks, HTML script injection, and cross-site request forgery. Each user interface is designed with labels (to

display vital information to the user) and data input fields (to collect data from the user or data provider).

We develop user interfaces in which many of the data fields are drop-down lists. These drop-down lists are

populated with read-only data for user selection. Some other data fields that require specific user inputs are

equipped with validation features to authenticate the kind of data provided by the user.

We implement validation on the input data collected from the user interfaces by checking for character

length, type (for e.g., input data consisting of alphanumeric characters), format (for e.g., data field rejects

any tags or characters, such as “<script>” tags), and data range. These HTML development mechanisms
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ensure robust scripts that deliver secure user interfaces for data collection from users and display of relevant

data values and information to intended data accessors.

With regards to protecting the application website link from adversary attacks, we adopt an approach

where the website link is protected with an encrypted Transport Layer Security (TLS)-enhanced communi-

cation protocol. This offers secured host authentication by delivering privacy protection and data exchange

integrity while private, sensitive data is in transit. Moreover, the web hosting of the user interfaces is secured

with efficient encryption protocols to present protection against “man-in-the-middle” attacks, etc. The pro-

vision of bidirectional encryption of communications between client-side user interface and web server code

offers protection against eavesdropping and tampering attacks.

5.2.3 Web Server Component: Codebase Security Assessment

The web server offers to serve as an intermediary platform to process and execute code on every data

generated on HTML user interface. These data are further transmitted for onward storage into the relational

database or blockchains. The web server usually accepts requests through HTTPS, and can also accept and

store resources sent from the web browser user agent. We discuss ways in which an adversary could attack

the web server, what the adversaries aim to achieve, and how these adversary attacks are prevented.

How adversaries could attack

An attacker may try to access the data connection between the web server and relational database or

blockchain platform and add some malicious query code to run on these data platforms.

An adversary may cause a denial-of-service (DOS) attack by sending numerous service request packets;

which ends up causing a service request overload. This affects the service delivery operation of the web

server and may cause a buffer overflow attack or HTTP GET Request Flooding. Additionally, the attacker

may try to exploit a programming error in the web application causing a DOS attack.

The attacker could determine that input data fields are not validated properly, and can add data values

or SQL strings to maliciously craft a query which is processed by the web browser and subsequently executed

by the web server. This could lead to a form of SQL injection attack. The attacker may store malicious or

unrelated data in the database.

What adversaries try to achieve

When the attacker accesses the data connection to run some malicious code in the relational database or

blockchain platform, the attacker aims at using the query code to alter some data stored in the data platform.
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In terms of buffer overflow attack or HTTP GET Request Flooding, the attacker hopes block all access

from authenticated users. This results in denying overall web service of uploading and downloading data

from the source relational database or blockchain platform. This activity could lead to some forms of session

attacks in terms of data connectivity from the web server to the user interfaces or data platforms.

When the attacker adds SQL strings into the input data fields, the aim is to change the actual program

code query. Through this process, malicious or unrelated data is stored in the database. As a result, when

the website is requested, it will show irrelevant data on the website, thus displaying a defaced client-side user

interface website. Secondly, the added SQL string introduces a wrong query code which could be executed

by the relational database query processor. Moreover, the added data in the input data fields could result

in buffer overflow, integer overflow, or format string attacks.

How attack is prevented

We determine the effectiveness of server-side code in preventing attacks by adopting secure coding for the

software application operations. For code that runs behind the user interfaces, we establish safe and secure

connection to the relational database server with an authenticated administrator access. With regards to the

blockchain platform, we establish a secure connection through the API; where we specify the host address,

port, username, and password. We also identify the chain name as part of defining complete connection

parameters for the blockchain. After each successful connection to the web server and subsequent database

operational activities, we activate a permanent closure to the connection for the database server or blockchain

platform to avoid unauthorized access and data leakages. These processes help prevent any form of data

connection attacks by the adversary.

We prevent every form of session attacks, as follows. For every operation on the web server, we initiate

user sessions which controls all activities from the client-side user interfaces to the web server (as well as

data transfers to relational database server and blockchain platform). Some of the session activities include,

but not limited to: LoginFrequency, LocationFrequency, SessionElapsedTime, SessionOutput, SessionIO,

SessionPages, SessionLastActivity, and LocationFails. All server session information are destroyed after

successful connection closure from the relational database server and blockchain platform.

We assess web server code to prevent buffer overflow, integer overflow, format string attacks, and return-

oriented programming attacks. With regards to buffer and integer overflows, we declare and initialize data

variables or identifiers before using them. Moreover, we determine other measures for appropriate identifier

data sizes, release of the memory buffer after identifier usage, ensure proper integer identifier conversions,

and ensure opened unsigned integer operations. We prevent format string attacks by properly validating

user input and specifying formatted strings as part of the program, and not using the data string.
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For SQL injection attacks, we adopt parameterised queries in the programming code to prevent attackers

from running malicious code in the relational database. We discuss into detail how SQL injection attacks

are prevented in Section 5.4.2.

5.3 Data Repository Design Principles and Security Assessment

We discuss the measures established for each data repository based on the security or adversarial model

discussed. We examine varied configurations for data storage and management in the relational database

and blockchain platform. Additionally, we discuss design approaches for data consistency, comprehensive

data scalability, and high data transaction throughput. This section discusses our assessment of the data

repositories architecture to offer an efficient tight-coupling for light-weight privacy infrastructure.

5.3.1 Relational Database Design and Security Assessment

The relational database is assessed to determine effectiveness of data access, data storage and management,

and query processing. We discuss how adversaries could attack the data platform, the aim of the adversary

attacks, and measures designed to prevent the intended attacks.

How adversaries could attack

An adversary may use malicious means to access the relational database by impersonating the login creden-

tials of the system administrator. Secondly, the adversary may use unauthorized login credentials execute

query statements to retrieve data values.

What adversaries try to achieve

The adversary aims to alter or make changes to data values stored in the relational database that pertains to

data provider’s privacy preferences, personal data or transaction data. Moreover, the adversary anticipates

to retrieve unauthorized data provider private, sensitive data values and/or make inferences to stored private

data values in the relational database by executing SQL query statements. Finally, the adversary expects to

alter or make changes to data objects (that is, the relational tables, indexes, stored procedures) definition

that are configured for effective operation of the relational database.

How attack is prevented

In relation to the security model discussed in Section 5.1, we ensure access to the relational database is enabled

through secured access credentials. The access credentials of each user is authenticated through secured
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username and password. The primary access to the relational database is by the database administrator,

data architect, or any system engineer. All other access to the relational database is through secondary means

of using the user interfaces. The user interfaces (and related data communication channels) are equipped

with robust and secured encryption protocols to control unauthorised access to the relational database.

Through this approach, we ensure that access threats (such as query processing, data values tampering) are

substantially reduced or prevented.

The entire design and development of the relational database offer a robust platform for management

of data provider’s private, sensitive data, non-private data, and other transactional data. We build strong

relational constraints on the database and data objects, such as, relational tables, indexes and stored pro-

cedures. We model and develop domain integrity constraints where we enforce restrictions on the attribute

data values in a relational table. All these domain constraints ensure that the right type of data value, as

well as the expected data size for data values are stored in the attribute fields. Any data value that violates

the restrictions is flagged and prevented from getting stored in the schema database.

We also develop and establish entity integrity constraint where every relational table has a unique at-

tribute that stores distinct data values. The development of entity constraint ensures data consistency, data

completeness, and uniqueness in the storage of entity instance data. We establish and enforce referential

integrity constraint to ensure that storage and management of tuple data values that require prior instance

of another tuple data is processed in a safe and complete procedure. Any violation of the constraint prevents

new data insertion and update or subsequent modification of existing data values. We develop referential

integrity constraint cardinality to control the number of tuple occurrences in a relational table. All these

constraints help to maintain data consistency and prevent unauthorised data modifications by adversaries.

There is real-time monitoring of the query statements executed on the relational database to monitor

regular queries programmed and identify all unfamiliar query statements. We adopt tools embedded in

the relational database management system to facilitate overall monitoring of server performance, views of

input-output hotspots, SQL statements, network, and data engine. These tools are performance dashboard,

explain plan, and query statistics. Additionally, we use these tools to implement real-time monitoring of

the transaction logs for data insertion, data modification and updates. Through these procedures we ensure

data consistency on all data provider’s privacy preferences data and actual private personal data stored in

the relational database.
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5.3.2 Blockchain Platform Design and Security Assessment

The MultiChain blockchain platform stores and manages all data provider’s privacy preferences on private,

sensitive data, and genomic meta-data information. We discuss various ways in which adversaries can attack

the blockchain platform, the objective of the attackers, and how the attacks can be prevented.

How adversaries could attack

An adversary could deny data communication services from the blockchain platform to the other system

components. Secondly, an adversary could to use the chain (node) name, host address, and port credentials

to access the transaction ledgers and data streams on the blockchain platform; so as to query the data values

stored in the data streams.

What adversaries try to achieve

When the adversary tries to deny data communication service from the blockchain platform, the aim is to

alter or delete the configuration settings on the blockchain. Secondly, the main aim of the adversary in

querying the data values (regarding privacy preferences on data provider private, sensitive data) stored in

the blockchain is to obtain unauthorised privacy preferences information about a data provider. In this

approach, the adversary aims to retrieve, make changes to the existing privacy preferences, or delete the

existing privacy preferences data values stored in the blockchain platform.

How attack is prevented

Based on the security model discussed in Section 5.1, we establish secured access to the blockchain platform.

Access to the blockchain platform is done primarily through an API wrapper protocol. Each access to the

blockchain is through authenticated username, password, host address, port, and chain (node) name. All

connections for data access and query processing are completely terminated after closure of data processing

activities. Moreover, all configuration settings for the blockchain platform are securely protected in the

server platform, and monitored by the WhatsUpGold application tool (which delivers network availability

and performance monitoring for all network devices and servers). The implementation of secured connections

and network monitoring application tools establish efficient protection of the blockchain configuration against

adversary access (or attacks).

The primary configuration of MultiChain blockchain transaction ledgers involve the creation of data

streams. The data streams store hashed data value items in the blockchain. The application of hashing

algorithm on the stored data offers another layer of data security to the data values. This security layer
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prevents any goal of data access or tampering by adversaries.

The design and development of transaction ledgers and data streams deliver optimum data management,

data retrieval, data scalability, and transaction throughput. Each data stream is an ordered list of items,

with the following characteristics: one or more publishers who digitally signed that item, and one or more

keys between 0 and 256 bytes in length, to allow efficient retrieval. Information about data item’s transaction

and block, include txid (transaction id), blockhash, and blocktime. The data streams created are identified as

closed data streams. The closed feature restrict data access and data item changes to be effected primarily by

the host node address. Data streams are created by a special transaction output, which must only be signed

with the host node address with create permission privilege. The node address that creates data streams

automatically has admin, activate, and write permissions for the streams. In the blockchain setup for the

light-weight privacy infrastructure, there is only one (host) node address set up for transaction management.

Hence, no other external node participates in creating data streams. This feature further restricts adversaries

to gain access (and query hashed data items stored) in the blockchain platform.

5.4 Privacy Model and Related Attacks

Privacy attacks expose different forms of vulnerabilities that affect a privacy model. A privacy attack devises

methodologies and mechanisms to disclose data provider’s private, sensitive information to unauthorized

data accessors; which may be through authorized or unauthorized means. Sensitive data, such as, healthcare

records, biographical identity information, demographic information, or data provider consent information

may be retrieved from the underlying data store by adversaries. When these adversary attacks are successfully

executed, then the privacy model becomes undesirable.

The description and analyses of privacy attacks address likely vulnerabilities that may be exploited in

the overall architecture and design of the privacy model, which is discussed extensively in Chapter 4 (recall

Section 4.1). We consider attack forms that may be posed to the overall privacy model (and ultimately access

unauthorized private data stored in the data repositories). We identify privacy model provisions to overcome

these potential compromises to private data disclosure. Our assessment of standard (and best) practices

implementation adopted in both system infrastructure (recall Section 4.2, Section 4.3, and Section 4.4) and

security infrastructure (recall Section 5.2) address these provisions against the related privacy attacks. We

identify system implementation best practices (in the design of user interfaces and query preparation and

processing) to address compromises to unauthorized private data disclosure. To this end, we discuss and

demonstrate inference attacks (see Section 5.4.1) and SQL injection attacks (see Section 5.4.2) by using

instance examples.
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5.4.1 Inference Attacks

Inference attacks identify data relationship between attribute data that allows an attacker to determine

whether data about a data provider is stored in the database. This form of attack enables the attacker to

suggest or make deductions on other data values from known data values. In our privacy model, we adopt

a data accessor-centric form of data retrieval, where every data tuple retrieved is based on tight-coupling of

the attribute data, privacy preferences, and data accessor profile. Hence, the methodology approach offers

to minimally reduce different forms data retrieval inferences. We demonstrate and analyse inference attacks

using the instance example below.

Query Description

Suppose we want to retrieve data values on data provider pathology requisition information. The attribute

data elements from which the query transaction is performed, include: Date Collected, Specimen Type, Tissue

Fluid Source, and History Diagnosis. The query statements for privacy-aware and native query syntaxes are

outlined in the Appendix (see Section 7.1).

Query Analysis and Discussions

Analysing the query, we identify a form of data decoupling for unique data categories. There are different

attribute data categories that are specified for different data accessor sensitivity or classification levels.

Hence, we categorise the data elements (from the query) different from highly-sensitive data elements on

cancer biomarkers (such as, mutation analysis, translocation analysis, epigenetics, etc.) for the pathology

requisition. Moreover, data retrieval for the query above does not reveal or infer data values in the other

attribute category data (such as, cancer biomarker). As a result, for each data accessor we determine the

attribute data category that is allowable for data access, and all other data are deemed inaccessible. Through

this mechanism, data retrieval inferences (or inference attacks) are appreciably reduced, as data report (and

their underlying query statement) are analysed through privacy-aware (query analyser and processor) API

for private data preservation.

5.4.2 SQL Injection Attacks

SQL injection is a technique where malicious users can inject SQL commands into a database SQL statement

via web page input. One approach of SQL injection query attack is the introduction of SQL statement

that unknowingly runs on your database, instead of regular user input data like a valid data value for a

username. Other forms involve the use of dynamic query statements where user input is string concatenated
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or appended to SQL statement to build queries that run “on-the-fly”. We adopt prepared query statements

with parameterized queries to prevent SQL injection query attacks on the privacy model and relational

database from the user interface. This approach requires binding of query statements with parameters

entered by the user as its values. We demonstrate measures adopted to prevent query attacks using the

example below.

Query Description

Suppose we want to retrieve data values on data provider information. The attribute data elements from

which the query transaction is performed, include: personal health number, last name, first name, birth date,

and gender, etc. The PHP web server-side program code that illustrates adopted approach to prevent SQL

injection attacks on the query statements is outlined in the Appendix (see Section 7.2).

Query Analysis and Discussions

In the PHP web server-side code snippet, we describe the procedure for query processing. The query syntax

is presented as a string and transformed into a parameterised query (denoted by a question mark sign). The

attribute on which a parameter value is expected is “patient id”. The query statement is “prepared” together

with the database connectivity for the parameterised query. The parameterised query is then bound with

parameter value before the query is finally executed. With this approach, all forms of dynamic queries are

eliminated, and attackers are unable to secure unauthorised access to data provider’s private data.

On the other hand, we use stored procedures (which are programmed to enforce data providers’ privacy

preferences) to run SQL queries for report generation. Generally, stored procedures offer another framework

approach to prevent manipulation of unrelated database tables. Stored procedures check the data type and

data size of input parameters and prevent supposed input data that violates data field type designation.

5.5 Query Processing Evaluation and Analysis

We discuss the evaluation of our methodology by analysing queries processed. Firstly, our analysis focuses

on query recall and precision evaluation, where we discuss two key components of the data provider’s privacy

preferences. These are: visibility privacy and granularity privacy. Secondly, we discuss the rate of query

processing and query response times for different forms of predominant expected queries. Finally, we discuss

privacy overhead cost and analyse their impact on overall query processing.
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5.5.1 Experimental Implementation, Framework Setup, and Query Processing

To evaluate the system implementation discussed in Chapter 4, we perform query processing on the privacy-

aware model infrastructure. The data storage, management, and query processing is processed on a single

computing machine with eight logical processor(s), 3.6 GHz processing speed, and 16 GB of RAM. Moreover,

the single computing machine has 900 GB of total disk storage capacity. This single computing machine hosts

all three main components of the system; namely, blockchain, relational database, and genomic data store.

The single site hosting for all three system components help to minimize the latency in data transmission

from one component to another.

We implement our methodology using data sets for patient (genomic) healthcare service delivery. We

work with two different data sets: healthcare data and genomic data. For experimental implementation,

all data sets are free from personally-identifiable data provider (i.e., patient) information. The healthcare

data contains data provider information in the form of healthcare, biographical and demographic, physician,

medical consent, and pathology laboratory requisition. We use an experimental testing data set that consists

of 1,526 records for the patient relational table. Other relational tables have the following record numbers:

physician relational table - 5 tuples, requisition relational table - 10 tuples, consent relational table - 6

tuples, and genome meta-data relational table - 26 tuples. An overview of the detailed data description for

the healthcare data set is discussed in Chapter 4 (recall Section 4.3.1).

In terms of the genome data, we use the genome meta-data and de-identifiable genome data (of both

forward and reverse reading for normal and cancerous genomes). The meta-data consists of the following

information: vcf standard version, variant caller name, variant caller version, variant call date, variant

caller regions, annotation software name, annotation software version, annotation date, annotation reference,

annotation reference version, and annotation fields, amongst others. The genome data stored on the genomic

data platform consists of the following data sizes: normal genome forward reading - 18,026,662 KB, normal

genome reverse reading - 18,647,746 KB, first cancer genome forward reading - 18,474,818 KB, first cancer

genome reverse reading - 19,188,434 KB, second cancer genome forward reading - 17,760,848 KB, second

cancer genome reverse reading - 17,883,908 KB, and human genome reference of 3,173,742 KB. We use

lymphoma cases data set with total file size of 4,815,248 KB.

We record query response times for four different query categories. We discuss the detailed description and

analyses of each formulated query in Section 5.6 - where we discuss statistical metrics and privacy overhead

cost for processed queries. Our analysis approach is primarily based on comparing query processing for

native (or non-privacy aware) queries in relation to privacy-aware queries. Each (native or privacy-aware)

query is run in isolation on the single computing machine and independent from other resource processing
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interferences. This query processing approach offers a unique method of accessing each query (parsing and

execution) and determines optimum response time for processed queries.

We undertake the evaluation as follows: For each formulated query type, we run both native and privacy-

aware queries. We first randomly run a native (or non-privacy aware) query independently on the relational

database, without applying data provider privacy preferences stored on the blockchains platform. We then

randomly run a privacy-aware query on the same formulated query type with the query processor and query

execution plan allowing an access control parsing on the blockchains platform. It will be noted that query

processing for both native and privacy-aware queries are performed in a non-concurrent manner.

Based on the query processing evaluation, for each formulated query and for each form of either native or

privacy-aware query, we record the query response times for 20 random executions of the formulated query.

We then compute averages for each native or privacy-aware query form. The average query response time

for each native and privacy-aware query on formulated query type is computed and the privacy overhead

cost is calculated. As a result, we effectively compare the query results and establish the effectiveness and

efficiency of the privacy-aware query medium.

5.5.2 Evaluation and Analysis of Query Recall and Precision

We evaluate the outcome of the query processing experiments performed based on a set of criteria from

information retrieval proposed by Junker et al. [115]. We perform a gap analysis on their study and adapt an

approach and criteria for evaluating data value correctness and query processing rate. We propose standard

measures of recall and precision as adequate measures to evaluate data retrieval on queries performed on

the proposed system.

Query Recall Evaluation

Recall is the fraction of the relevant data values that are successfully retrieved. It computes the number of

tuples that are retrieved by the privacy-aware API divided by the number of tuples retrieved by native query

syntax. It is therefore a definition of the ratio of the number of relevant tuples returned to the total number

of relevant tuples that should have been returned from the relational database. For recall, an evaluation of

100% is trivially attained and verified. The verification is based on the assertion that the formulated query

executed through the privacy-aware API presents the exact set of tuple values as the queries that were run

through native query syntax. In some instances, recall is 0% because of privacy policy preferences set on

visibility (or access) privacy which prevents data retrieval for certain data accessors. In such cases, there is

no visibility (or access) privacy to the underlying data due to the data provider’s privacy preferences.
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Query Precision Evaluation

Precision is the fraction of retrieved data values that are relevant to the query. It computes the correct

number of tuples retrieved through privacy-aware API divided by the number of tuples retrieved through

native query syntax. Thus, precision measures the ratio of correct number of relevant tuple values returned

to the total number of tuple values for a given query. Precision evaluation is very important, as it evaluates

the number of correct results divided by the number of all returned results based on a formulated query

through the privacy-aware API. Based on the privacy policy modelling from the formulated privacy ontology

(recall Section 4.1), we identify three main parameter types for granularity (or precision) privacy. These are:

‘Specific’, ‘Partial’, and ‘Existential’. Each of these parameters are set for an attribute data based on the

sensitivity level of the attribute data and the data accessor.

We attain precision rates of 100% for privacy-aware data values which has the granularity privacy value

set to ‘Specific’. By the granularity privacy of ‘Specific’, we mean that the exact data values stored in the

relational database are returned as query results based on the formulated query.

For privacy policy preferences where granularity privacy is set to ‘Partial’, we mean that a proportion

of data value characters stored in the relational database is returned as query results. We attain variable

precision rates for different privacy-aware attribute data due to indeterminate number of data characters

stored in the relational database for these attribute data. This is because in the implementation of granularity

privacy, we set granularity privacy policy preference to retrieve only the first five data characters for ‘Partial’

granularity. To evaluate Partial granularity privacy, we formulate a query for data retrieval on the privacy-

aware API. The formulated query retrieves data provider demographic attribute data (such as, street, city,

province, postal code, and phone number). Our analysis is based on data retrieval on a single data tuple.

The number of actual instance data characters retrieved using native (non-private) query syntax are 17, 7,

2, 7, and 12 for the attribute data: street, city, province, postal code, and phone number, respectively. Hence,

a precision level of 29.41%, 71.43%, 100%, 71.43%, and 41.67% are returned for the identified attribute data

based on the preset granularity privacy of first five data characters for ‘Partial’ granularity. It will be noted

that for the same set of attribute data, these granularity (precision) rates may vary for different data tuples

and their related number of instance data characters.

Finally, for privacy policy preferences where granularity privacy is set to ‘Existential’, we attain average

precision rates of 0%. This is because an existential granularity privacy only indicates a default value of

“Yes” to signify that the actual data value is present in the underlying database, without revealing the

actual instance data values. It will be noted that setting the granularity privacy preference to ‘Existential’ is

determined by the high-level sensitivity of the attribute data for the intended data accessor. This is because
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of the expectation where the actual data value is not retrieved and presented to the data accessor, but a

data value that indicates the presence of the actual data value stored in the relational database.

In summary, the form of granularity privacy that is set for each attribute data (and their intended

data accessor) in the system implementation largely determines the precision level of data tuples and query

retrieval. As a result, highly sensitive attribute data are assigned granularity privacy of ‘Existential’ whiles

low sensitive attribute data will have a granularity privacy of ‘Specific’. For moderately sensitive attribute

data, their granularity privacy are set to ‘Partial’.

5.6 Query Processing and Response Time Analysis

We analyze query processing rate on the privacy infrastructure system implementation to evaluate the

effectiveness of running data queries. We identify four categories of queries (on data provider demographic,

healthcare information, consent witness information, and genome meta-data information) and discuss the

results output from running these queries. Each query presents unique set of attribute data elements, as

well as, different set of data provider privacy preferences. We run random independent queries for both

privacy-aware and native queries for each query type.

Our presentation of query evaluation results is based on comparing each privacy-aware query alongside

the corresponding native queries. The evaluation of each query category type assesses data provider privacy

preferences specified in the data privacy policy; namely, granularity privacy, visibility privacy, purpose use,

and purpose context privacy, amongst others. For each query category type (of both native and privacy-

aware), we determine statistical metrics of highest, lowest, and average query response time for all random

independent queries. Moreover, we determine the privacy overhead cost (in terms of query response time)

on the privacy-aware queries in relation to the native queries. This offers a random distribution of the query

response time for each execution run. The inferences on these statistical metrics offer a deductive confidence

interval of valid data values for query response times on privacy-aware and native queries. Based on these

statistical inferences, outlier query response data values are rejected and a better random distribution of the

data values is attained. Furthermore, the statistical inferences offer the merit to retroactively produce query

response data values based on the implementation framework setup.

We discuss and analyse the query processing rate for each query category type in the next sections.

Moreover, we determine the statistical metrics (of highest, lowest, and average) query response time and

evaluate the privacy overhead cost. Finally, we discuss a summary of average query response time and

privacy overhead cost for all processed queries. The gives an evaluation overview of privacy-aware queries in

comparison to native queries processed.

97



5.6.1 Query 1: Data Provider Demographic Information

Suppose we want to retrieve data values on data provider demographic information. The attribute data

elements from which the query transaction is performed, include: Street Name, City, Province, Postal Code,

Original Province, and Phone Number, etc. The result of query processing rate for data provider demographic

information is illustrated in Figure 5.3. The privacy-aware queries and native queries are designated with

blue and gray colouring, respectively. We define the query syntaxes for both privacy-aware and native

(non-private) queries in the Appendix (see Section 7.3.1).

Figure 5.3: Query Processing Rate for Data Provider Demographic Information

Results Analysis and Discussion

In Figure 5.3, we observe an increase in the query processing time for the privacy-aware queries in comparison

to native queries. This is expected because of the added activity of privacy-aware query parsing, processing,

and execution which leads to an increase in query data retrieval load or query cost. From the query results,

we realize the highest and lowest query processing time for native queries are 19.01 ms (milli seconds) and

11.52 ms (milli seconds), respectively. Moreover, an average query processing time of 13.37 ms is attained.

In terms of privacy-aware query processing, we attain highest and lowest query processing time of 24.86 ms

and 19.48 ms, respectively. We also record an average privacy-aware query processing time of 22.99 ms.
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We observe privacy overhead cost of 41.85% for privacy-aware query processing. This is indicative of the

varied number of demographic attribute data and the instance data stored on these attribute data. More

importantly, we analyze the privacy preference parameters of data information privacy with instance data

representation of: ’Level-4: Restricted’, granularity privacy with instance data representation of: ’Specific:

Specific data item is accessed. A query for data item returns actual data value’, visibility privacy with

instance data representation of: ’Third-Party Allied Health Access: Data accessible to parties not covered by

explicit agreement with House’, and purpose privacy with instance data representation of: ’Reuse-Same: Data

used for same purpose and multiple times’. This analysis by the privacy-aware query analyzer increases the

query overhead cost for the overall query processing. Based on the query response times attained from both

privacy-aware and native query processing, we determine that query processing on the light-weight privacy

model architecture is efficient, and there is safe, cost-effective data retrieval on the overall architecture.

5.6.2 Query 2: Data Provider Healthcare Information

Suppose we want to retrieve data values on data provider healthcare information. The attribute data

elements from which the query transaction is performed, include: Personal Health Number, Medical Record

Number, Chart Number, Personal Care Physician Name, and Dentist Physician Name, etc. The result of

query processing rate for data provider healthcare information is displayed in Figure 5.4. The privacy-aware

queries and native queries are designated with blue and orange colouring, respectively. We define the query

syntaxes for both privacy-aware and native (non-private) queries in the Appendix (see Section 7.3.2).

Results Analysis and Discussion

Similar to Query 1, Query 2 also shows an increase in the query processing time for the privacy-aware queries

in comparison to the native queries. In terms of native (non-private) query processing, we attain highest

and lowest query processing time of 18.38 ms and 9.74 ms, respectively. We also record an average query

processing time of 13.38 ms. Regarding privacy-aware query processing, we note that the highest and lowest

query processing time are 23.97 ms and 19.03 ms, respectively. Moreover, an average privacy-aware query

processing time of 21.67 ms is attained.

In terms of privacy overhead query cost, we observe 38.26% for privacy-aware query processing in rela-

tion to native (non-private) query processing. It will be noted that data provider healthcare information

processed here involve unique set of privacy-aware attribute data, which are not many in comparison to

demographic data in Query 1. Moreover, the privacy overhead query cost is attributed to data provider

privacy preference parameters of data information privacy with instance data representation of: ’Level-3:
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Confidential’, granularity privacy with instance data representation of: ’Partial: Partial or altered and

non-destructive data values returned to accessor’, visibility privacy with instance representation value of:

’Third-Party Allied Health Access: Data accessible to parties not covered by explicit agreement with House’,

and purpose privacy with instance data representation of: ’Reuse-Selected: Data used for primary purpose

for which data’. Finally, we note that query response times attained from both privacy-aware and native

query processing determine that light-weight privacy model architecture offers an efficient platform for pro-

cessing data provider private information.

Figure 5.4: Query Processing Rate for Data Provider Healthcare Information

5.6.3 Query 3: Data Provider Consent Witness Information

Suppose we want to retrieve data values on data provider health information. The attribute data elements

from which the query transaction is performed, include: Witness Last Name, Witness First Name, Witness

Phone Number, Witness Street, Witness City, Witness Province, and Witness Postal Code, etc. The result of

query processing rate for data provider consent witness information is displayed in Figure 5.5. The privacy-

aware queries and native queries are designated with orange and green colouring, respectively. We define the

query syntaxes for both privacy-aware and native (non-private) queries in the Appendix (see Section 7.3.3).
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Figure 5.5: Query Processing Rate for Data Provider Consent Witness Information

Results Analysis and Discussion

We observe that query processing rate is in the same range of query response time as the preceding queries.

Similar to preceding queries (i.e., Query 1 and Query 2 ), there is an increase in query processing time on

privacy-aware queries in comparison to native (non-private) queries. From the query results, we note that

the highest and lowest query processing time for native queries are 12.57 ms (milli seconds) and 9.15 ms

(milli seconds), respectively. Moreover, an average query processing time of 10.28 ms is attained. In terms

of privacy-aware query processing, we attain the highest and lowest query processing time of 21.85 ms and

16.71 ms, respectively. We also record an average query processing time of 18.24 ms.

We observe privacy overhead cost of 43.65% for privacy-aware query processing. This is attributed to

data retrieval that involves greater number of attribute data elements in comparison to queries Query 1 and

Query 2. Moreover, the privacy-aware query parsing and analyzes involving these attribute data contribute

to the increase in privacy query overhead cost. An analysis on the data provider privacy preferences indi-

cate parameters of data information privacy with instance data representation of: ’Level-2: Internal Use’,

granularity privacy with instance data representation of: ’Existential: Information released to indicate the

existence of data in repository, not actual data values’, visibility privacy with instance data representation

of: ’House: Data accessible to everyone who collects, access, and utilize the data’, and purpose privacy

with instance data representation of: ’Reuse-Selected: Data used for primary purpose for which data’. We
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determine that based on the query response times attained from both privacy-aware and native query pro-

cessing, the light-weight privacy infrastructure offers an efficient platform for data provider privacy-aware

query processing.

5.6.4 Query 4: Data Provider Genome Meta-data Information

Suppose we want to retrieve data values on data provider genome meta-data information. The attribute data

elements from which the query transaction is performed, include: VCF Standard Version, Variant Caller

Name, Variant Caller Version, Variant Call Date, Filters Applied, Variant Caller Regions, Annotation Soft-

ware Name, Annotation Software Version, Annotation Date, Annotation Reference, Annotation Reference

Version, and Annotation Fields, etc.. We note that there are 46 attribute data covering different meta-data

on genome files (that is, fastq, bam, and vcf ). The result of query processing rate for data provider genome

meta-data information is displayed in Figure 5.6. The privacy-aware queries and direct queries are desig-

nated with red and purple colouring, respectively. We define the query syntaxes for both privacy-aware and

native (non-private) queries in the Appendix (see Section 7.3.4).

Figure 5.6: Query Processing Rate for Data Provider Genome Meta-data Information
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Results Analysis and Discussion

Similar to previous queries, there is an increase in the query processing time for the privacy-aware queries

in relation to native queries. From the query results, we note that the highest and lowest query processing

time for native (non-private) queries are 10.70 ms (milli seconds) and 7.19 ms (milli seconds), respectively.

Moreover, an average query processing time of 8.32 ms is attained. In terms of privacy-aware query pro-

cessing, we attain highest and lowest query processing time of 17.49 ms and 14.58 ms, respectively. We also

record an average query processing time of 16.19 ms.

Compared to the previous three queries, this query shows the highest privacy overhead query cost.

We note 48.61% privacy overhead cost for privacy-aware query processing. This is mainly based on the

higher number of attribute data on which privacy-aware data retrieval is performed. Additionally, privacy-

aware query parsing and processing also contribute to this overhead cost. We analyzed the data provider

privacy preferences and noted the following parameters for privacy-aware data retrieval: data information

privacy with instance data representation of: ’Level-4: Restricted’, granularity privacy with instance data

representation of: ’Specific: Specific data item is accessed. A query for data item returns actual data value’,

visibility privacy with instance data representation of: ’House: Data accessible to everyone who collects,

access, and utilize the data’, and purpose privacy with instance data representation of: ’Reuse-Selected:

Data used for primary purpose for which data’. We determine that the query response times attained

from both privacy-aware and native (non-private) query processing indicate an effective platform for query

processing on the light-weight privacy model architecture.

5.6.5 Average Query Processing and Privacy Overhead Cost Analysis

We compute average query processing rate for all four queries and analyse the query response time for each

query form. We note that there is a considerable increase in the query response time for privacy-aware

queries in relation to direct queries. This is mainly attributed to the privacy overhead query cost from

privacy-aware query parsing, analyzes, and execution.

Table 5.1 illustrates the average query response time and their respective privacy overhead cost. Here,

we note that queries, Query 1 (Data Provider Demographic Information), Query 2 (Data Provider Health

Information), Query 3 (Data Provider Consent Witness Information), and Query 4 (Data Provider Genome

Meta-data Information) deliver privacy overhead query response time of 9.62 ms, 8.29 ms, 7.96 ms, and 7.87

ms, respectively. Moreover, an average privacy overhead cost of 8.44 ms (milli seconds) is realized for all

queries processed. These privacy overhead query response times translate into 41.85%, 38.26%, 43.65%, and

48.61% for queries: Query 1, Query 2, Query 3, and Query 4, respectively. We note an average of 43.09%
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privacy overhead query cost for all queries processed. We illustrate the average query processing time and

privacy overhead cost for all queries in Figure 5.7.

Table 5.1: Summary of Average Query Response Time and Privacy Overhead Cost

Queries Average Query Response Time and Overhead Cost (ms)

Native (Non-
private) Query

Privacy-Aware
Query

Privacy Over-
head Cost

Query 1: Data Provider Demographic
Information

13.37 22.99 9.62 (41.85%)

Query 2: Data Provider Health Infor-
mation

13.38 21.67 8.29 (38.26%)

Query 3: Data Provider Consent Wit-
ness Information

10.28 18.24 7.96 (43.65%)

Query 4: Data Provider Genome
Meta-data Information

8.32 16.19 7.87 (48.61%)

All Queries 11.34 19.77 8.44 (43.09%)

Figure 5.7: Average Query Processing Time and Privacy Overhead Cost
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In general, we note that the average privacy overhead query cost is relatively very low. This indicates an

effective privacy-aware query processing platform from the light-weight privacy infrastructure, and infers an

optimum run of privacy-aware queries in comparison to native (non-private) queries. A review of the attained

privacy overhead cost indicates that the light-weight privacy model system architecture and infrastructure,

and resultant privacy overhead cost does not excessively or negatively impact on overall query transaction

processing. Hence, we establish that the light-weight privacy infrastructure offers an efficient, reliable, and

robust framework for privacy-aware query processing on data provider data (and related genome meta-data).

5.7 Comparison to Other Methodology Approaches

There have been some recent significant studies in the area of using blockchain platforms to enforce privacy on

data providers’ private and sensitive data. These approaches present important contributions with regards to

various data protection measures against unauthorized data access to data provider’s private data. For each

research work, we discuss the overall privacy model and/or infrastructure and core merits that arise from

the research. In comparison to our methodology, our approach addresses the privacy-preservation problem

from important concepts of data element coupling, privacy-preservation modelling using privacy ontologies,

and data store coupling. We comparatively explain how our methodology approach offers efficient and better

measures for data provider’s private data protection and identity preservation.

5.7.1 Daidone et al. [129]: Blockchain-based Privacy Enforcement in IoT do-

main

Daidone et al. [129] propose a blockchain-based privacy enforcement architecture where users can define

how their data are collected and managed, and ascertain how these data are used without relying on a

centralized manager. Their methodology adopts a blockchain to perform privacy preferences’ compliance

checks in a decentralized fashion on IoT devices; whiles ensuring the correctness of the process through

smart contracts. The overall system is based on a privacy model designed for IoT systems and which has

been outlined in Sagirlar et al. [134]. This privacy model supports standard privacy-related elements (e.g.,

purpose). Moreover, the privacy model supports set of features to allow data owners to limit how and which

data can be retrieved during IoT analytic processes. The privacy model allows the automatic generation

of privacy preferences for newly derived data (e.g., information resulting from data fusion). The research

considers the privacy model to focus mainly on the traditional privacy preference components (e.g., purpose,

retention time).
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The system architecture identifies the registration of both data owner (i.e., user) and consumer devices

on the blockchain. The smart environment at the data owner’s device and consumer servers constitute the

IoT network. The IoT network senses data from the user environment and sends these data to the consumer

servers. For each of the data owner’s IoT network and consumer IoT network, there are attached gateway

blockchain nodes. Data collected by the gateway nodes are complemented with metadata that encodes the

data owner’s privacy preferences. Consumers register their privacy policies into the blockchain. For each

IoT device, manufacturers specify system-defined privacy preferences. On the other hand, the data owner

is free to add further restrictions to system-defined privacy preferences; by specifying owner-defined privacy

preferences.

The system architecture relies on smart contracts for the enforcement of privacy preferences. The gate-

way nodes (which contains the smart contracts) verifies whether the consumer policy satisfies the constraints

specified by the data owner in his/her privacy preferences. The proposed architecture leverages on a per-

missioned blockchain that is configured such that only given stakeholders are authorized to join the privacy

compliance check. The system adopts Hyperledger Fabric blockchain platform. The Hyperledger Fabric cre-

ates peer-to-peer links between two or more nodes to exchange off-chain information, and keeping on-chain

an evidence of the data exchange. Sensitive data are processed only within the data owner’s IoT blockchain

node. The remaining nodes only see the hashed data stored on the blockchain as a result of the smart

contract execution. All communications take place via an encryption layer, established through Transport

Layer Security (TLS).

5.7.2 Fernandez et al. [130]: Privacy-Preserving Architecture for Cloud-IoT

Platform

Fernandez et al. [130] propose a cloud-IoT architecture, called Data Bank, that protects users’ sensitive data

by allowing them to control which kind of data is transmitted by their devices. The system architecture

provides users (i.e., data owners) with mechanisms to specify data-collection policies at device level and

data-sharing policies at cloud level. Both cloud and local data repositories to allow users to keep their

private data safe. Before data is transferred to the cloud repository, it will be temporarily stored in the local

Data Pocket. The Data Pocket, which is under the user’s control, consists of memory (e.g., disk storage)

and a microprocessor to keep pre-defined data collection policy and filter users’ data before uploading to the

cloud repository.

The system architecture contains a privacy-utility mechanism. This mechanism aims at finding the right

balance between benefits gained and privacy lost when data is provided to external services. It recommends

106



services to users based on users’ pre-defined privacy criteria. Users can view and customise their privacy

policy via the interface provided. The system offers enforcement of access control policies to restrict access

to users’ data by third parties.

Their system architecture consists of a four-tier architecture for cloud-IoT platforms: application, cloud

layer, data pocket, and sensors. The application layer is the topmost layer and consists of a user interface.

This specifies how users should interact with the Data Bank. The application layer could be deployed

on internet-connected devices, via a website and/or mobile application. Moreover, there is a data-sharing

interface/manager, which is considered as the application program interface (API) and controls the data

visible to the services. The cloud layer contains five main components: (1) access control enforcement

module, which receives requests from services and checks whether the service is authorised to access the

requested data according to the policy; (2) auditing module keeps a log of all transactions that occur in the

Data Bank; for example, granted access to data, denied access to data, data transfer transactions, etc; (3)

repository is located in the cloud, and stores all the users’ data in the form specified by the data collection

policy (for example, data might be filtered/processed before it is stored in the cloud repository); (4) privacy-

utility mechanism suggests services to the user, taking into account the specified preferences/privacy settings

and the benefits provided by the services, trading data for benefits; (5) Privacy policy is a reference schema

which is suggested by the privacy-utility mechanism and customised by the user. It is a specification for the

access control enforcement module to check whether a service is authorised to access the requested data and

for the privacy-utility mechanism to allocate tokens to services.

The data pocket layer runs in a local computing device (e.g., the IoT hub) and deals with the data-

collection policies. The purpose of the user interface in this layer is to capture the user’s privacy preferences.

The sensors layer contains IoT devices connected through the internet or local networks. The physical devices

connect to the Data Bank via embedded drivers. The objects in this layer are not allowed to communicate to

each other. In summary, the system provides a privacy preservation architecture where the user has control

of the data collection and data sharing policies enforced, and the user can update the policies at any time.

5.7.3 Griggs et al. [131]: Healthcare Blockchain System using Smart Contracts

for Secure Automated Remote Patient Monitoring

Griggs et al. [131] propose a healthcare blockchain system for secure automated remote patient monitoring.

In their approach, the research outlines using blockchain-based smart contracts to facilitate secure analysis

and management of medical sensors. The overall system architecture uses a private blockchain based on

Ethereum protocol. The system architecture approach involves using sensors to communicate with a smart
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device that calls smart contracts, and writes records of all events on the blockchain.

The system activity flow is described as follows. A data provider (i.e., patient) is equipped with various

medical devices, such as blood pressure monitor, and is remotely monitored by a service provider (i.e.,

doctor). The raw data is sent to a master “smart device,” typically a smartphone or tablet, for aggregation

and formatting by the application. Once complete, the formatted information is sent to the relevant smart

contract. In the Ethereum blockchain protocol, the source for information fed to the smart contracts is

known as the “Oracle”. The Oracle in the smart device (master device) communicates directly to the smart

contracts. The smart contract will then evaluate the provided data and issue alerts to both the patient

and healthcare provider, as well as automated treatment instructions for the actuator nodes, if desired.

Through this approach, no confidential medical information is stored on the blockchain or in the smart

contracts because government privacy compliance specifications. The actual data transaction measurements

are forwarded to a designated Electronic Healthcare Records (EHR) storage database. Moreover, the trace

of new transactions are added to the blockchain platform.

Hence, blockchain transactions are linked to the EHR in order to provide authentication of the data in the

data provider’s medical history as a comprehensive record of healthcare. This authentication helps prevent

and detect alterations of a data provider’s EHR, whether it be on purpose or accidental. The system has a

private and consortium-led blockchain which offers the functionality that only authorized viewers can read

the blocks and only designated nodes can execute smart contracts and verify new blocks. In the consortium

style of blockchain management, a set of pre-approved members operate the nodes in the blockchain, and a

valid block must contain signatures from a minimum number of members. The smart contracts are modular

and customizable for each data provider and their devices. The structure is tiered; having all master devices

calling the same initial smart contract. This will in turn call the relevant sub-contract for the specific data

provider (that is, patient’s) device and pass it the input data and custom threshold values for privacy-aware

data retrieval.

5.7.4 Methodology Evaluations and Comparison

We access each of these methodology approaches and compare with our proposed methodology. We identify

some criteria for qualitative comparative analysis between the different methodology approaches. These

criteria present different aspects of assessing the effectiveness of each methodology, and how the methodology

delivers an efficient privacy preserving architecture for data provider private data. We outline the criteria as

follows: data processing platform, blockchain platform technology, privacy model, privacy methodology and

infrastructure, and data and query processing approach. Based on each criterion, we discuss the technical
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contributions and address the shortcomings of the methodology approaches. Finally, we highlight some ways

in which our proposed methodology offers a better privacy preservation solution to data provider’s private,

sensitive data.

Data Processing Platform

With regards to data processing platform, our proposed methodology processes data primarily on a relational

database and genomic data store. The methodology approach presented in Griggs et al. [131] states an

Electronic Healthcare Record (EHR) database. The literature does not clearly specify the data processing

or management model. Conversely, Daidone et al. [129] and Fernandez et al. [130] adopt an IoT device

platform. It will be noted that data storage and organization in an IoT platform is completely different from

relational database platform. These different data processing platforms bring into focus the comparison for

data processing efficiency in between our proposed methodology to the other methodologies. As a result, we

are unable to clearly specify which data platform offers an effective data storage and processing platform.

Blockchain Platform Technology

In terms of the adopted blockchain platform, Fernandez et al. [130] methodology does not employ any form

of blockchain platform; as it uses a cloud repository for privacy management. The methodology in Daidone et

al. [129] and Griggs et al. [131] adopt Hyperledger Fabric and Ethereum blockchain platforms, respectively.

Ethereum blockchain platform is a decentralized, open-source blockchain with smart contract functionality.

Moreover, the platform uses Proof-of-Work algorithm for the mining procedures. The public nature of

Ethereum blockchain, coupled with Proof-of-Work mining algorithm, creates an overhead of processing

power, energy requirements, additional configurations for private data management. This makes it an

undesirable adoption for an effective privacy-preserving architecture. The methodology in Griggs et al. [131]

adopts separate, private chain using Ethereum’s protocol. This enables the privacy infrastructure access to

experiment outside the set parameters of the Ethereum blockchain and eliminates the need to spend Ether

cryptocurrency.

Hyperledger Fabric uses a number of different setup configurations and parameters. This blockchain

platform does not use Proof-of-Work for the mining procedures. Hyperledger offers ”plug-and-play” ability

to integrate components such as consensus algorithm and membership services. Moreover, it offers smart

contracts; which are hosted using a form of data container technology. Our proposed methodology adopts

Multichain blockchain. From the literature and platform documentation, Multichain blockchain is an off-

the-shelf platform for creation and deployment of private blockchains. It is one of the robust and effective

blockchain platform designed to offer functionalities of dynamic private blockchain activity. Additionally,
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the blockchain platform offers a mining procedure to securely process a consensus agreement without Proof-

of-Work (PoW) and its associated overhead computational costs.

In summary, the Hyperledger Fabric delivers a private platform, but the overhead setup configurations

and parameter settings require much more specialized knowledge for its adoption and deployment. This

offers a better motivation for our adoption of Multichain blockchain as an efficient approach for user-friendly

API connectivity, data/asset management, and application programming.

Privacy Model

A privacy model for privacy-preserving system infrastructure presents a framework and data flow design for

private data management. Hence, a privacy model offers an efficient design construct to manage, protect

data provider’s private data, and provide the foundation for the privacy infrastructure. The methodologies

presented and discussed in Fernandez et al. [130] and Griggs et al. [131] do not clearly specify any form of

privacy model. Fernandez et al. [130] implement a form of a privacy design which adopts a cloud layer of

different components (of privacy utility mechanism and privacy policy reference) for privacy management.

Griggs et al. [131], on the other hand, use a smart contract framework embedded in the blockchain network

to enforce a privacy model.

The methodology in Daidone et al. [129] adopts privacy model defined in Sagirlar et al. [134]. This

privacy model is designed specifically for IoT devices. The privacy model supports standard privacy-related

variables (e.g., purpose and retention time). Moreover, the privacy model supports set of features to al-

low data owners to limit how and which data can be retrieved during IoT analytic processes. The privacy

model allows automatic generation of privacy preferences for newly derived data (e.g., information resulting

from data fusion). Our proposed methodology adopts a formal (dynamic) contextualized privacy ontology

that applies to different application domains and platforms. The contextualized privacy ontology offers the

foundation for the design of all entities and predicates in the data privacy-preservation process. Addition-

ally, it offers a modelling framework for procedural activities and semantics for private, sensitive data and

querying processing by data providers, data collectors/accessors (i.e., service providers) and third-party data

accessors. The privacy ontology defines constructs for attribute data, data provider, data collector, and data

privacy policy. The data privacy policy construct expresses purpose, granularity, visibility, retention duration,

location, and third-party privacy semantics.

In summary, the privacy model adopted in our proposed methodology offers a better modelling and design

construct for data provider’s private data. This is because of its dynamic adaptability and application to

different data processing domains and device platforms.
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Privacy Methodology & Infrastructure

Relevant and useful outcome for a privacy-preservation approach is dependent on the underlying privacy

methodology and infrastructure. A privacy methodology outlines design principles, procedures, and adopted

technology platforms to protect data provider’s privacy and identity. Griggs et al. [131] adopt a system

architecture that involves coupling a master (smart) device, Electronic Healthcare Record (EHR) database,

and an Ethereum protocol (that consists of private and consortium-led blockchain platforms). In their

approach, data provider private medical data and transactions are stored in the EHR database, and a smart

contract embedded in the blockchain stores, processes, and authenticates data provider privacy preferences.

From the evaluation, we observe that the literature in Griggs et al. [131] does not specify procedures and

activities for private data protection. There is no information on how the smart contract is customized

for each patient and their devices. Moreover, the methodology does not discuss how the smart contract

generates and processes privacy preferences and their linkage to data provider private data.

Fernandez et al. [130] propose privacy methodology/infrastructure that consists a four-tier platform of:

application, cloud layer, data pocket, and sensors. The system architecture involves cloud and local data

repositories and data provider IoT devices. In their approach, the privacy infrastructure contains a Data

Bank that facilitates both cloud and local data repositories to allow users to keep their private data safe.

Before data is transferred to the cloud repository, it is temporarily stored in the local Data Pocket. The Data

Pocket, which is under the user’s control, consists of memory (e.g., disk storage) and a microprocessor to keep

the pre-defined data collection policy, and filter users’ data before uploading to the cloud repository. The

Data Bank, which contains a privacy-utility mechanism, controls the right balance between benefits gained

and privacy lost when data is provided to external services. Users can view and customise their privacy

policy via the interface provided. Our evaluation indicates that the Data Bank enforces access control

policies to authenticate access to users’ data. This component is housed in the cloud layer and its protection

from attacks is based on adopted encryption protocols and security infrastructure. This highlights a major

drawback as the encryption protocols could be susceptible to different attack techniques and vulnerabilities.

The privacy methodology and infrastructure addressed by Daidone et al. [129] present an architecture

that involves user IoT smart devices, blockchain platform, and consumer (i.e., service provider) system

servers. The methodology adopts a blockchain to perform privacy preferences’ compliance checks in a decen-

tralized fashion on IoT devices; whiles ensuring the correctness of the process through smart contracts. The

system architecture identifies the registration of both data owner and consumer devices on the blockchain.

The smart environment at the data owner’s device and consumer servers constitute the IoT network. For

each of the data owner’s IoT network and consumer IoT network, there are attached gateway blockchain
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nodes. Data collected by the gateway nodes are complemented with metadata that encodes the data owner’s

privacy preferences. Consumers register their privacy policies into the blockchain. For each IoT device,

manufacturers specify system-defined privacy preferences. On the other hand, the data owner is free to add

further restrictions to system-defined privacy preferences; by specifying owner-defined privacy preferences.

The system architecture relies on smart contracts for the enforcement of privacy preferences. The gateway

nodes (which contains the smart contracts) verifies whether the consumer policy satisfies the constraints

specified by the data owner in his/her privacy preferences. The use of a Hyperledger Fabric blockchain

platform offers an important contribution in which the privacy preferences are well secured, and the smart

contract efficiently authenticates data retrieval. One drawback from the methodology is that the literature

does not offer information for a conceptual privacy methodology for data provider attribute data protection.

Our proposed methodology tightly couples data elements (of attribute data, privacy preferences data,

and data accessor data) to generate a privacy tuple. Moreover, the methodology tightly couples different

data repositories of relational database and genomic data store with blockchain platform. Based on the

unique database architectures, each data repository stores different data values. The database coupling

architecture (which is primarily controlled by the blockchain platform for private data query authentication

and data retrieval authorization) offers a robust platform for storage of data provider private data and

privacy preferences.

In summary, we observe that none of the previous approaches distinctively specify a conceptual privacy

methodology or model for attribute data protection and data accessor query processing. Most of the ap-

proaches focus primarily on the system architecture framework and the technological platform of either using

IoT devices, or smart contracts coupled together with blockchains, and/or cloud computing networks.

Data & Query Processing Approach

The ability to process data and query request on a privacy system infrastructure determines the efficiency

in data processing; whiles delivering data protection in the underlying data provider’s private data. The

methodology approach addressed in Daidone et al. [129] specifies an evaluation based on: (1) the data

throughput (that is, the amount of data that the blockchain can manage in a time unit); (2) the space over-

head implied by the additional information (metadata) that our solution requires to insert in the original IoT

device streams; and (3) the time spent in privacy preference enforcement and data release. The evaluation

results indicate that data throughput is largely dependent on the time and continuous rate of data trans-

mission from an IoT device system. Additionally, there is an overhead cost in the data processing of private

data transmitted from the IoT device and the privacy compliance checks. The overhead cost increases with

large data streams and increase in consumers.
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In Fernandez et al. [130], the authors do not discuss an evaluation of the privacy infrastructure. From the

literature, the research work indicates a conceptual overview, and discusses guidelines for implementation

using class diagrams; without actual system implementation. Hence, we are unable to access and evaluate the

effectiveness of the overall privacy methodology and infrastructure. The privacy infrastructure addressed in

Griggs et al. [131] do not discuss evaluation and assessment of data retrieval and query processing. Though

the research work specifies implementation, the literature does not outline evaluation metrics and privacy

overhead cost in adopting a blockchain platform.

Methodology Evaluation Analysis

We determine that the research work in Daidone et al. [129] present relevant propositions and recommen-

dations for devising an efficient privacy methodology to protect data provider’s private data. Moreover, the

work outlines expressive and practical metrics for privacy preservation in the context of IoT domains. A

closely-related research work in Azaria et al. [137] addresses adoption of blockchain to manage data access

and permissions on medical records. The system methodology enables patient-initiated data exchange be-

tween different medical parties, and there are specific authorizations and restrictions, such as, an expiration

date for viewership rights. Moreover, medical records are stored locally in separate service provider and

patient databases whiles copies of authorization data are stored on each node in the blockchain network.

Conversely, our proposed methodology approach identifies data and query processing based on the privacy

preferences compliance, authentication, and authorization from the blockchain platform. Our work addresses

query recall (visibility privacy), query precision (granularity privacy), query response time, and privacy

overhead cost of privacy-aware queries over corresponding native (non-private) queries. Evaluating and

assessing the effectiveness of all methodology approaches, we can deduce that based on the uniqueness of

each privacy model, privacy methodology and infrastructure, and the type of adopted blockchain platform,

it is impractical to compare the performance of data and query processing of our methodology approach in

relation to the other approaches.

We present a comparative analysis and evaluation of our proposed methodology in relation to other

approaches in Table 5.2. This tabular analysis summarizes the discussions regarding methodology approaches

addressed in the literature, and outlines the key contributions from each of the approaches.
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Table 5.2: Qualitative Analysis of Proposed Methodology and Other Approaches

Methodology
Approach &
Criteria

(1) Proposed
Methodology

(2) Daidone et al.
[129]

(3) Fernandez et
al. [130]

(4) Griggs et al.
[131]

(1) Data Stor-
age Platform

Relational database IoT device platform Cloud-IoT platform Electronic Health-
care Records (EHR)
storage database

(2) Blockchain
Platform Tech-
nology

Multichain (permis-
sioned or private
blockchain platform
accessible by data
providers and data
collectors/accessors)

Hyperledger Fabric
(permissioned or pri-
vate blockchain plat-
form accessible by
data owner and con-
sumer devices)

No defined
blockchain platform.
Uses a cloud repos-
itory for privacy
utility mechanism

Ethereum proto-
col (private and
consortium-led
blockchain platform)

(3) Privacy
Model

Adopts a formal
(dynamic) contex-
tualized privacy
ontology that ap-
plies to different
application domains
and platforms

Adopts privacy
model defined in
Sagirlar et al. [134]
(that handles pur-
pose and retention
time privacy), and
is designed for IoT
devices

No clearly defined
privacy model.
Adopts a cloud layer
of different compo-
nents (of privacy
utility mechanism
and privacy policy
reference) for pri-
vacy management

No clearly defined
privacy model.
Uses a smart con-
tract embedded in
a blockchain network
node to enforce a pri-
vacy model

(4) Privacy
Methodology &
Infrastructure

1. Tightly couple
data elements
(attribute data,
privacy prefer-
ences data, and
data accessor
data) to generate
a privacy tuple

2. Tightly couple
data stores (re-
lational database
and genomic
data store) with
blockchain plat-
form

1. The architecture
involves user
IoT smart de-
vices, blockchain
platform, and
consumer (i.e.,
service provider)
systems servers

2. Each of the
blockchain nodes
are embedded
with smart con-
tracts

3. A gateway node
processes data
and enforces pri-
vacy preservation

1. System archi-
tecture involves
cloud and local
data repositories
and data provider
IoT devices.

2. System archi-
tecture consists
of four-tier plat-
form: application,
cloud layer, data
pocket, and sen-
sors.

3. Architecture con-
trols user data to
cloud services

1. System architec-
ture involves cou-
pling of master
(smart) device,
EHR database,
and Ethereum
protocol (private
and consortium-
led blockchain
platform)

2. Smart contract
is embedded
in the private
blockchain plat-
form

(5) Data/Query
Processing Ap-
proach

Privacy preferences
are stored in the
blockchain platform.
The blockchain
platform serves as
an access control
and query authen-
tication medium.
All queries are
processed through
the blockchains
to ensure privacy
preservation

Privacy prefer-
ences are stored
in the data owner
blockchain gateway
node.
The gateway node
processes and au-
thenticates data
values before data
moves to consumer

Data pocket repos-
itory keeps pre-
defined data col-
lection policy and
filters users’ data
before uploading to
the cloud repository.
Privacy-utility mech-
anism determines
data retrieval based
on users’ pre-defined
privacy criteria

Smart contract
stored in the
Ethereum blockchain
contains user pri-
vacy preferences.
Smart contract and
blockchain control
access and prevent
changes to users’
data stored in the
EHR database.
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In summary, a deductive and prudent recommendation for a preferred choice of privacy methodology

from among other methodology approaches discussed could be made. Based on the analysis of data storage

platform, blockchain technology, privacy model, privacy methodology and infrastructure, and data or query

processing approach, the methodology approach by Daidone et al. [129] can be chosen as a preferred

methodology approach. This is based on the detailed examination of the unique and expressive adopted

privacy model; which handles peculiar privacy metrics, such as, purpose, retention privacy, etc. Moreover,

the methodology approach adopts permissioned Hyperledger Fabric blockchain platform which is of an open-

source architecture and can be configured uniquely for different application domains. Finally, there is a better

and efficient approach (as compared to the other methodology approaches) in the storage and management

of privacy preferences regarding data provider’s private, sensitive data.

5.8 Summary

This chapter discusses software security assessment, data repositories design principles and assessment, query

processing evaluation, and query response results analysis on proposed light-weight privacy infrastructure.

We address software system security assessment procedures for an effective system design. The procedures

focus on application data transmission medium, client-side user interface, and web server code assessments.

Moreover, we discuss data repository evaluation on the effectiveness of the coupled data platform to offer

efficient data processing, storage, and management. We address inference and SQL injection privacy model

attacks and discuss their preventive measures from the architecture of the light-weight privacy infrastructure.

Finally, we discuss overall query processing on the privacy infrastructure. We evaluate query effectiveness

in terms of query recall (visibility privacy) and query precision (granularity privacy). We discuss query

processing and response time for four query categories, and analyze the average privacy overhead cost

of privacy-aware queries over corresponding native (non-private) queries. We discuss other methodology

approaches and evaluate qualitative comparison of our proposed methodology to these related methodology

approaches, based on some defined criteria. We highlight key technical contributions and discuss areas where

our proposed methodology offers better a privacy-preservation infrastructure.

Chapter 6 concludes this dissertation. We summarize our research propositions, and outline major

contributions from this research. We discuss some key research significance and applications in line with

managing genomic data. We address possible open issues areas and future work.
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Chapter 6

Conclusion

This dissertation addresses the need for a practical approach to protect data provider’s private and sensitive

healthcare data using immutable, tamper-resistant data platforms. We discuss different data provider at-

tribute data categories and address the need for efficient privacy-preservation methods on these data. We also

discuss research methodology and implementation methods to provide a framework platform of light-weight

privacy infrastructure. Moreover, we discuss the security model for the light-weight privacy infrastructure,

and analyse evaluations and query results of privacy-aware query processing. We address merits and key

outcomes from the proposed methodology framework.

In this chapter, we review discussions on providing an efficient platform of light-weight privacy infrastruc-

ture in Section 6.1. We discuss overall contributions arising from this research in Section 6.2, and address

likely areas of research applications in Section 6.3. In Section 6.4, we address some areas of open issues and

future work based on which the research may be pursued further.

6.1 Research Overview

Data privacy-preservation is a necessary requirement in the processing of data provider’s personalized, pri-

vate data across varied data stored in repositories. Much more important is the need to preserve privacy

in data provider demographic, biographical, healthcare data (and genomic meta-data within the case study

application domain of genomic healthcare). Privacy-preservation policies provide guidelines and recommen-

dations to protect data provider’s private, sensitive data in data repositories. Additionally, the formulation

and implementation of methodologies offer efficient platforms to preserve privacy in the private data.

We propose a light-weight privacy infrastructure. This model offers an effective integration of various

system and data repository components to provide a data platform where data provider’s private infor-

116



mation and transaction data on private data are proficiently collected, processed, and managed by data

collectors. The overall approach for the proposed research is to formulate a contextualized privacy ontology

with unique semantics and properties for privacy preservation. We implement tight-coupling of three data

elements (namely, attribute meta-data, data provider privacy preferences data, and data accessor data) into

a privacy tuple to be stored in the blockchains. Moreover, we implement tight-coupling of different data

platforms of relational database, blockchains, and genome data store. The key reason for this approach is to

maximize the merits from all data management platforms. We discuss that the methodology approach and

the evaluation results attained validate a better approach for managing data provider’s private, sensitive

data. Our evaluation and result analysis establishes a robust infrastructural implementation for the light-

weight privacy infrastructure. This privacy model offers a secured, immutable, and efficient privacy-aware

query processing platform for data provider private data.

6.2 Research Contributions

We discuss the main research contributions arising from the dissertation in line with the light-weight privacy

infrastructure discussed in Chapter 3, and the implementation procedures described in Chapter 4. Moreover,

the evaluation and results analysis discussed in Chapter 5 establishes these research contributions outlined

in Chapter 1 (recall Section 1.4). We summarize the technical contributions as follows:

6.2.1 Data Provider Access and Control of Privacy Policy Preferences

In Chapter 3, we formulate a privacy framework where data providers have ultimate access and control

of their privacy preferences. The system methodology overview of the privacy framework is discussed in

Section 3.2. This is based on tight-coupling of data provider’s attribute data, privacy preferences, and

data accessor data elements. We discuss this tight-coupling approach in Section 3.3 and its implementation

in Section 3.4. Additionally, this privacy framework offers the platform where data providers can flexibly

update or change their privacy preferences, and every change request is validated by both data providers

and data collectors (or service providers). The privacy model framework platform delivers a permanent and

immutable record of all data provider privacy preferences, which is easily referenced and offers a necessary

input platform for privacy audit. Hence, this framework offers opportunities to review all forms privacy

violations and presents an essential tool for privacy obligations.
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6.2.2 Formulated Contextualized Privacy Ontology

In Chapter 3, Section 3.1 proposes a privacy model framework that uses a contextualized privacy ontology

as foundational model; with crafted design constructs of semantics and predicates. We discuss the detailed

implementation of the privacy ontology in Chapter 4 (recall Section 4.1). This formulated privacy ontology

outlines key characteristics of purpose, context, data provider privacy preferences, user roles, contextual

norms, transmission medium, and other privacy-related factors per data provider’s privacy policy. Moreover,

the formulated privacy ontology presents different entity classes, sub-classes, their respective attributes, and

associated properties to handle prevalent privacy-related scenarios in privacy-preserving data management.

6.2.3 Tight-coupling of Data Elements

We propose and implement an efficient procedure to tightly couple attribute data, data provider privacy

preferences, and data accessor profile data elements into a privacy tuple. We discuss the data element tight-

coupling in Section 3.3 and its implementation approach in Section 3.4. Moreover, we discuss the detailed

implementation in Chapter 4; where Section 4.2.3 discusses the extracting the data elements from user

interfaces, and Section 4.2.4 discusses the coupling procedures of the data elements to generate the privacy

tuple. The attribute data identifies each data provider private, sensitive attribute data value collected from

or provided by the data provider. These data are derived from personal biographical, demographic, and

health information, or transactions on healthcare data. The data provider privacy preferences are derived

from privacy policy taxonomy items in the form of purpose use, granularity (data precision), visibility (data

accessibility), retention duration, effective date, data information, third-party data accessor, and purpose

contextual norms.

The data accessor profile data are derived from different access levels and permissions in line with privacy

policy statements. These permissions are used to uniquely identify different data access user roles on which

types of attribute data accessors can query or retrieve information. The data element binding enables data

retrieval or query processing to be dependent on the privacy preferences and data accessor profiles specified

in the privacy policy. The tightly-coupled privacy tuple is transmitted through an encrypted application

transmission medium and stored in the blockchain platform.

6.2.4 Tight-coupling of Relational Database, Blockchains, and Genome Data

Store

We implement an efficient data platform coupling that uses relational database, private blockchains, and ge-

nomic data store to deliver an encrypted, secured data processing platform for data accessors. In Chapter 3,
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Section 3.5 discusses the methodology for data platform coupling, whiles Section 3.6 discusses the implemen-

tation approach. The relational database offers a scalable, high throughput, and efficient querying engine

to meet the expected high data processing needs. Conversely, the blockchain platform offers decentralized

data control that is tamper-resistant, and immutable for the protection of privacy-related data values. The

blockchains offers efficient change request and approval (from service providers and data providers, where

necessary).

The genome data store (i.e., Linux cluster Helix HPC) provides a platform to store and manage NGS

genomic data (which do have very large file sizes). Additionally, the genome data store has specialized

mode of transaction and query processing for genomic data. The overall architecture of data repository

coupling presents an efficient process of coupling disparate, related, healthcare data on data providers (i.e.,

patients) within a uniform system architecture. The detailed implementation of the data platforms coupling

is discussed in Chapter 4. Section 4.3 discusses modelling, design, and development of the relational database,

whiles Section 4.4 discusses design and development of permissioned (private) blockchain platform. Moreover,

we discuss the implementation for privacy-aware query processing in Section 4.3.3.

6.2.5 Research Application for Healthcare Data

We implement the light-weight privacy infrastructure framework using healthcare data as a case study. This

implementation involves building software user interfaces to connect to a relational database and blockchain

platform. We adopt secured data communication channel for data transfer between the system components

of relational database, blockchains, and genomic data store. We use an Alberta biotechnology company (i.e.,

Tunote Oncogenomics) which is interested in providing Alberta cancer patients with access to commercial

oncogenomic services, as the case study. In Chapter 4, Section 4.2 discusses user interface system modelling

and development for generation of privacy tuple. Our implementation establishes the concept of developing

the light-weight privacy infrastructure using a verifiable software and database platform. Moreover, this

implementation validates overall research propositions. In Chapter 5, we discuss evaluation analysis of the

implementation, where Section 5.3 assesses the suitability of the data repositories. Section 5.6 discusses

query processing for privacy-aware queries and the privacy overhead cost in relation to native (non-private)

queries.
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6.3 Research Applications

The dissertation research project delivers a system prototype for managing patient healthcare data and ge-

nomic data. The case study for the research project is Tunote Oncogenomics Inc. We discuss the private

healthcare and genomic data management procedures of Tunote Oncogenomics in Chapter 1 (recall Sec-

tion 1.5). This is a local Alberta company specialized in genome sequencing and analysis for cancer-related

diseases.

Our proposed system aims to offer healthcare end-users access to practice-informing data, with patient-

centred data access assurances. The proposed system provides a platform that offers a made-in-Alberta

solution, utilizing resources readily available in Alberta. Moreover, the system prototype provides potential

secondary benefit of driving state-of-the-art bioinformatic and computational biology centres (B/CB) best-

practices in Alberta. The potential advancements in patient-centred security that the system prototype

suggests will serve to highlight the prospects in Alberta’s B/CB resources. It is expected that with further

developments to fully operational system, patients will willingly share genomic and other healthcare data

with bioinformatic and computational biology centres. This will stem from the knowledge that state-of-

the-art security measures and prospective data usage consent management have been improved and duly

established from the system architecture.

Through further system interaction improvements in the design, implementation and evaluation mea-

surement of this system prototype, this research offers an excellent opportunity to survey best-practices in

B/CB in Alberta. Given the importance of data and its availability to the practice of B/CB, our research

has the potential to inform database structure and utilization standards.

6.4 Open Issues and Future Work

We envision some areas of open issues and future work, as part of the proposed methodology of a light-

weight privacy infrastructure. In terms of some open issues, we address the choice of private blockchain

adopted for the privacy model architecture. It must be noted that different (private) blockchain platforms

are incorporated with distinct and peculiar functionalities for data storage and retrieval. The functionalities

deliver merits that tend to offer improved performance or otherwise negatively affect performance with

relational database coupling. For example, in our system architecture we adopt Multichain blockchain

platform. This blockchain is designed with a data stream transaction ledger functionality, that functions like

relational database schema and tables. This functionality offers efficient storage structure and indexing of

transaction data items in the data streams. Moreover, there is a better data retrieval and query processing
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on the blockchain.

Another open issue is the form of system administration on the private blockchain. It is expected that

the blockchain is properly secured and protected from unauthorized access. The only medium of transaction

processing is through the API connection from the application Point-of-Contact user interfaces. Any other

interaction aside the user interfaces compromises the purpose of the blockchain platform in the overall system

architecture of the light-weight privacy infrastructure.

There are some areas of future work that this research may be pursued further. We outline some of them

briefly.

First, we anticipate the execution of complex relational join queries on data provider biographic, de-

mographic, and healthcare data. Relational join queries present elaborate data retrieval from relational

databases. Thus, processing such queries will improve the query processing experience on the tightly-coupled

data repository platforms.

Second, we envision an approach of storing some relevant parts of the genomic data on the blockchain

data platform. This, we believe will enhance the greater possibility of protecting patient (i.e., data provider)

privacy on the genomic data. Additionally, this will offer a better authentication approach of data access

and query processing on the genomic data.

Finally, we expect to have a better mechanism or mode of comparatively analysing our proposed method-

ology with other methodology approaches in terms of query performance. We propose to implement their

privacy models and methodologies, and adopt similar data storage platform to enable running related queries

in comparison to our methodology. As a result, we are able to practically analyse and compare the metrics

of data retrieval and query processing rate among the privacy methodologies.
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Chapter 7

Appendix: Program Code, Query

Definition and Syntax

7.1 Inference Attacks

7.1.1 Embedded Query Statements

Privacy-Aware Query Syntax:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 7, 6, 4, ’2021-12-31’, 1, 3, 2);

Native (Non-privacy) Query Syntax:

SELECT Date collected, Specimen type, Tissue fluid source, History diagnosis

FROM tunote ngs genomics.requisition WHERE PatientId = 4 and RequisitionId = 5;

7.2 SQL Injection Query Attacks

PHP Web Server-side Code

<?php

// Load database connection parameters

require once ”config/config-data.php”;

// Check for active login and ”last activity” session; if false, then redirect to login page

require once ”config/login-session-activity.php”;
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$param patient id = ””;

// Process form data when form is submitted

if ($ SERVER[”REQUEST METHOD”] == ”POST”) {

$param patient id = TRIM($ POST[”patient id”]);

$sql = ”SELECT personal health number, last name, first name, date of birth, gender FROM patient

WHERE patient id = ?”;

If ($stmt = mysqli prepare ($connection data, $sql)) {

mysqli stmt bind param ($stmt, ”s”, $param patient id);

mysqli stmt execute ($stmt);

}

// Close query statement

mysqli stmt close($stmt);

}

?>

7.3 Evaluation Analysis Query Processing

7.3.1 Data Provider Demographic Information

Embedded Query Statements

Privacy-Aware Query Syntax:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 3, 5, 4, ’2021-07-31’, 1, 3, 2);

Native (Non-privacy) Query Syntax:

SELECT Street, City, Province, Postal Code, Origin Province, Phone Number

FROM tunote ngs genomics.patient WHERE idPatient = 4;

7.3.2 Data Provider Healthcare Information

Embedded Query Statements

Privacy-Aware Query Syntax:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 6, 3, 3, ’2021-09-30’, 2, 3, 3);
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Native (Non-privacy) Query Syntax:

SELECT Personal Health Number, Medical Record Number, Chart Number, Personal Care Physician Name,

Dentist Physician Name FROM tunote ngs genomics.patient WHERE idPatient = 4;

7.3.3 Data Provider Consent Witness Information

Embedded Query Statements

Privacy-Aware Query Syntax:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 1, 3, 3, ’2021-09-01’, 3, 2, 2);

Native (Non-privacy) Query Syntax:

SELECT Witness Last Name, Witness First Name, Witness Phone Number, Witness Street, Witness City,

Witness Province, Witness Postal Code FROM tunote ngs genomics.consent WHERE patient id = 4;

7.3.4 Data Provider Genome Meta-data Information

Embedded Query Statements

Privacy-Aware Query Syntax:

CALL tunote ngs genomics.GetPrivacyAwareUserData (4, 8, 1, 4, ’2021-12-01’, 1, 2, 2);

Native (Non-privacy) Query Syntax:

SELECT VCF Standard Version, Variant Caller Name, Variant Caller Version, Variant Call Date, Filters Applied,

Variant Caller Regions, Annotation Software Name, Annotation Software Version, Annotation Date, An-

notation Reference, Annotation Reference Version, Annotation Fields FROM tunote ngs genomics.genome

WHERE patient id = 4 AND requisition id = 8;
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