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1 Introduction and Motivation

This report presents a novel vector rendering pipeline that allows us
to easily break the pixel barrier and create high-quality illustrations.
Recently, most graphic research has been directed towards render-
ing pixel images that appear realistic. In contrast, we investigate the
generation of vector graphic illustrations using non-photorealistic
techniques such as line rendering and Gooch shading. By com-
bining vector output from both shading and line rendering of 3D
models we create high-quality illustrations that can directly be used
in print reproduction. Our approach uses a vector graphic pipeline
that tracks multiple attributes of strokes and uses them for styliza-
tion. This allows to have multiple layers of line rendering such as
different stroke types or visible and hidden parts of strokes, each
treated differently according to specific stylization rules.

Using high quality vector graphics (as opposed to pixel renditions)
for representing illustration is essential, in particular, in the print
reproduction process. Foremost, vector graphics can be reproduced
at any desired resolution; they do not suffer from the resolution
dependence of pixel images. In addition, only vector graphics can
capture fine details accurately while maintaining a reasonable file
size. Finally, vector graphics do not need to be half-toned when
printed as long as spot colors are used. Even if some layers of the
image use, e. g., shading, only those parts of the vector graphic need
to be half-toned that actually do not make use of the available spot
colors. Thus, we can combine both shading and line layers without
compromising print quality.

2 Approach/Method

Our approach for generating linear vector primitives is based on the
so-called G-strokes concept that captures and processes additional
stroke properties along with the stroke geometry and topology [Isen-
berg and Brennecke 2005]. G-strokes are inspired by G-buffers
[Saito and Takahashi 1990] but store properties of strokes rather
than pixels. Therefore, they have to meet other constraints such as
adaption to geometry and topology changes during stroke process-
ing. In addition, G-strokes maintain vector information through-
out the entire pipeline in 3D world coordinates until the strokes
are being rendered, thus, forming a vector rendering pipeline. This
pipeline is different from typical 3D rendering pipelines in that it
can have multiple stages that capture new properties as well as use
these properties to manipulate the stroke. A typical vector render-
ing pipeline comprises at least stages to extract strokes from another
data structure (e. g., a 3D model), determine their visibility, and to
render them in a specific line style.

In order to treat parts of the stroke set differently, the stroke pipeline
cannot be modeled as a linear structure but rather has to take hier-
archical form where each subtree represents the generation of one
layer. Thus, we use an OPEN INVENTOR scene graph approach to
realize the vector pipeline. To separate the treatment of individual
layers of stroke data from the main pipeline we implemented a filter
mechanism that not only facilitates different stylization but also the
treatment of only a subset of the whole stroke data (cf. Fig. 1).
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Figure 1: Example vector graphic pipeline modeled as a tree. More
stroke layers can be used to visualize other aspects of the model.

For realizing vector output of the stroke pipeline, we render the
stroke data using a dedicated render node based on the ClibPDF
library. Doing so, we have complete control over the rendering
process and we can produce high-quality strokes. For capturing
other parts of the scene such as non-photorealistic shading (e. g.,
Gooch shading, cf. Fig. 2) we employ the GL2PS library which
redirects OPENGL calls to a vector graphic format (PS, EPS, PDF).
It outputs the rendition as a 2D mesh and allows to capture Gouraud
shading. However, since GL2PS derives the visibility information
using an object-space BSP tree approach this has limitations in
terms of possible triangle counts (more than approx. 50,000 trian-
gles after backface culling did not seem feasible in our tests). On
the other hand, it is not necessary to render very dense meshes to
achieve a very good NPR shading. Although redirecting OPENGL
calls could also be used for outputting the stroke data we decided
against it because the resulting file would be based on meshes rather
than polygons which are more difficult to process further in com-
mon vector graphics suites such as Corel Draw R© and Adobe Illus-
trator R©. In addition, the separate treatment of shading and line out-
put has the advantage that the hidden surface removal of GL2PS
does not interfere with the desired layered rendering.

Figure 2: Gooch shading and lines in a vector graphic illustration.

We observed that the proposed pipeline provides great flexibility
for combining shading methods with line drawings and to export
the images into vector graphic formats. We are currently investigat-
ing labeling techniques to further extend the illustration’s informa-
tion/predication. Also, we would like to explore the potential of vec-
tor graphics for NPR on the reproduction of traditional illustration
media and techniques. This would include, for instance, methods
for clustering vector-based stroke sequences to cover scene/object
regions, and techniques to reproduce small but important artifacts
due to the interaction of the drawing/painting device and correspon-
dent drawing/painting surface (i. e., engraving). We see great poten-
tial in our approach since publishing in science and engineering can
greatly benefit from an easy generation of high-quality illustrations.
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Figure 3: Example of biologic illustrations: a high-resolution
model of a fly is visualized with the hidden lines rendered differ-
ently; Gouraud shading is used for the surface to show fine details.

Figure 4: Different view of Figure 2.

Figure 5: Illustration of an architectural object. Hidden lines, visi-
ble silhouettes, and visible feature lines are visualized using differ-
ent shades of gray. In this example, different levels of subdivision
were used for the line layer and the surface layer. Note that the
inner structure can well be understood.



(a) 522 triangles, flat shading,
12 kB (compressed PDF).

(b) 522 triangles, Gouraud shading,
12 kB (compressed PDF).

(c) 522 triangles, flat shading,
12 kB (compressed PDF).

(d) 522 triangles, Gouraud shading,
12 kB (compressed PDF).

(e) 2,088 triangles, flat shading,
37 kB (compressed PDF).

(f) 2,088 triangles, Gouraud shading,
35 kB (compressed PDF).

(g) 2,088 triangles, flat shading,
37 kB (compressed PDF).

(h) 2,088 triangles, Gouraud shading,
35 kB (compressed PDF).

(i) 8,352 triangles, flat shading,
146 kB (compressed PDF).

(j) 8,352 triangles, Gouraud shading,
135 kB (compressed PDF).

(k) 8,352 triangles, flat shading,
144 kB (compressed PDF).

(l) 8,352 triangles, Gouraud shading,
134 kB (compressed PDF).

(m) 33,408 triangles, flat shading,
560 kB (compressed PDF).

(n) 33,408 triangles, Gouraud shad-
ing, 491 kB (compressed PDF).

(o) 33,408 triangles, flat shading,
551 kB (compressed PDF).

(p) 33,408 triangles, Gouraud shad-
ing, 485 kB (compressed PDF).

Figure 6: Effects of Gouraud shading vs. flat shading and the Gooch illumination model (right) vs. a gray shading (left) in the produced
vector graphics shown for different levels of Loop subdivision. Note that for good results it is not necessary to have a high polygon count.
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