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obtained the result that the diameter can be found in O(n?=*?(logn)!~*(?)
time where d is the number of dimensions and a(d) = 279! [13]. Aggar-
wal improved the result when n = 3 to get an algorithm which requires
O(n®/*(log n)*?) time [1]. The width problem has been considered by Houle
and Toussaint [8]. In two dimensions they showed that the width of n given
points can be found in O(nlogn) time using O(n) space and for the special
case of the width of a planar convex n-gon it can be found in O(n) time and
O(n) space. In three dimension the running time for finding the width of
n given points is O(nlogn + I'), where I is the number of pairs of edges of
the convex hull of the n points that admit parallel planes of support. In the
worst case I = O(n).

In Section 2 we discuss the two-dimensional case. It is clear that both the
width problem and our problem is almost the same in two dimensions. In
order to solve our problem in three dimensions we need to discuss a particular
class of search problems known as reciprocal search problems in Section 3.

We then give an algorithm for our problem in three dimensions in Section 4.

2 Two dimensions

Given a set S of n points we restate the problems in two dimensions as

follows.

Problem 1 (The diameter problem):
Find two vertices z,y of S such that



d(.’l;, y) = max{d(a:', yl) 'y’ € S} (1)

Problem 2 (The width problem) Find the minimum distance between par-
allel lines of support of S. (Two parallel lines are parallel lines of support of
S if there is a point of S on each of the two lines and where all points of S

are in between the two lines.)

Problem 3 Find the mazimum area inscribed triangle in a convexr hull where

one edge coincides with an edge of the convexr hull.

For convenience we suppose that S is the set of vertices of the convex hull
of S and let P denote the convex polygon with the vertex set S. We also

introduce some definitions.

DEFINITION 2.1 Two edges ey and eq are called an antipodal e-e pair if
they are contained in two parallel lines l,15, Iy # 1, such that e; € I} and

ez € ly. Such an edge pair is denoted by {e;, e2}.

DEFINITION 2.2 Two vertices vy and vy are called an antipodal v-v pair
if they are contained in two parallel lines ly,ly, [y # Iy, such that v; € [, and

vy € ly. Such a vertex pair is denoted by {vy,v,}.

DEFINITION 2.3 An edge e and a vertex v is called an antipodal v-e pair
if they are contained in two parallel lines Uy, 1y, ) # ly, such that v € l; and

e € l. Such a vertez-edge combination is denoted by {v,e}.

Using the above definitions the first two problems can be restated in the

following form [8].



Problem 1 Find an antipodal v — v pair {vy,ve} such that
d(v1,v7) = max{d(vy,v3) : {v},v3}. is an antipodal v-v pair} (2)
Problem 2 Find an antipodal v — e pair {v,e} such that
d(v,e) = min{d(v',¢') : {v', €'} is an antipodal v-e pair}. (3)

Let A(v,e) denote the triangle defined by an edge e and vertex v and let
|A(v, e)| denote the area of the triangle A(v,e). We then have the following

theorem.

THEOREM 2.1 Let e be an edge and v be a vertez. Then A(v,e) is the
largest area inscribed triangle rooted in P iff
(i)  {v,e} is an antipodal v-¢ pair 4)
(i) |A(v,e)| = max{|A(v',¢') : {v',€'} is an antipodal v-e pair}. (5)
Proof: (=) (ii) is obvious.
We construct a line lv through v such that ! is parallel to e and we suppose
that le is the line through e. It is easy to show that v and le are lines of

support of P. Therefore {v,e} is an antipodal v-¢ pair.

(<) Suppose that {v,e} is an antipodal v-e pair and that
|A(v,€e)| = max{|A(v',€)| : {v',€’}is an antipodal v-e pair}. (6)

We fix any edge €’. Then there is at least one vertex v’ such that {v’, e’} is
y edg ,

an antipodal v-e pair. Obviously
AV, €')| = max{|A(v",€’)] : v"is a vertez of P}. (7

5



Thus A(v,e) is the largest area inscribed triangle rooted in P. o
M. L. Shamos [11] presented a very elegant method called the rotating
caliper method which has been used to solve a number of problems [12].
Houle and Toussaint [8] used the method to generate all antipodal v-e pairs
and then to get the width of P. The running time is O(n). Obviously

Problem 3 can be solved by almost the same algorithm.
Algorithm 2.2
1. Find an initial antipodal v-e pair in O(logn) time.

2. Use the rotating caliper method to generate all antipodal v-e pairs in

O(n) time.

3. Calculate the areas of the triangles defined by the antipodal v-e pairs in
O(n) time.

4. Report the mazimal area inscribed triangle rooted on an edge in P.

3 A class of reciprocal search problem

Within the general class of search problems Guibas and Seidel [7] gives a
definition of a subclass which they call reciprocal search problems.

A reciprocal search problem can informally be defined as follows: Let B
be a set of blue objects and G be a set of green objects. A relation p is defined
between elements of D and G respectively. The resiprocal search problem is
then to find all pairs of differently coloured, related objects, i.e. find all {b, g}
with b € B and g € G, such that bpg.



Reciprocal search problems arise frequently in computational geometry.
Typically, the objects involved are points, line segments, rectangles or other
figures with simple descriptions, and the relation p might be something like
“having non-empty intersection.”

In this section we discuss a special class of reciprocal search problems.

A convex subdivision of the plane is a partition of the plane into a finite
number of open convex sets. It is not hard to see that convex sets can be
only the following three types: a set can be a 2-dimensional region, i.e. it is
an open convex polygon (possibly unbounded); a set can be a 1-dimensional
edge, i.e. a (possibly unbounded) interval on some straight line; and a set
can be a 0-dimensional vertex.

Let B be a set of n points of the plane, let C be a convex subdivision of
the plane and let G = {P : P is an open convex polygon of C}, where P is
the closure of P and |C| = n.

For each v € B we want to find a P € G such that v € P. This problem
is different from finding the set {{v, P}:v € B,P € G,v € P}.

Algorithm 3.1

1. Define a large triangle T(ABC) such that

(a) For each P € G if P is bounded then P C T;

(b) Every vertez of T must belong to some unbounded 1-dimensional
edge of C.
(See Figure 1)






Thus we get two subdivisions, one is Gr = {PNT : P € G} which
is subdivision of T and one which is Gre = {PNT°: P € G} which
is a subdivision of T¢ where T° is the complement of T. Furthermore,
Gre is divided into three parts Gre(AB), Gre(BC), Gr(AC) where
the element of Gre(AB) is an element of Gre which intersect the line

segment AB.
2. For a fized point z of B check whether Z is in T or not.
3. If zis not in T, then

(a) Check which one of UGr<(AB),UGr:(AC) and UGr<(BC) contains
the point z.

(b) If z € UGr<(AB) (or UGr«(AC), or UGr:(BC)), then check which
element Pre of Gr<(AB) contains the point z.

(c) Check which element P of G contains the above element Pre.
4. If zisin T, then

(a) Define a refinement of G to get a triangulation II (see Figure 3.1).

(b) Use the triangulation refinement method [9] to find which element

tz of Il contains z.

(¢c) Find the element P of G which contains tz.

5. For each point z repeat the above procedure to find an element of G

which contains the point z.



Analysis of the algorithm

From |B| = n and |C| = n, it follows that step 1) can be done in O(n) time.
Obviously steps 2), 3.a), 3.c) and 4.c) can be finished in constant time. Step
4.a) can be done in O(n) time because |C| = n and every polygon is convex.
Step 3.b) can be found by using binary search method, so the running time
is O(log n). By the result of Kirkpatrick [9] the running time of the step 4.b)
is O(logn). Thus using a divide-and-conquer analysis the running time of

the algorithm is O(n logn).

THEOREM 3.2 Let B be a set of n points in the plane and let C be a
convez subdivision of the plane and G = {P : P is an open conver polygon
of C}. The problem of determining a v € B for each P € G such that v € P

can be solved in O(nlogn) time using O(n) space.

4 Problem 3 in Three Dimensions

In 1979 K. Q. Brown [3] used several geometric transforms to obtain fast ge-
ometric algorithms. As an example he devised an O(n) algorithm for solving
the diameter problem in the plane. Houle and Toussaint [8] used his idea to
discuss the width problem in two and three dimensions.

Let P be a convex polyhedron. Similarly to the planar case we define
the antipodal v-v pair, the antipodal v-e pair, the antipodal v-f pair, the
antipodal e-e pair, the antipodal e-f pair, the antipodal e-f pair and the
antipodal e-f pair. Before we point out the difference between Problem 2

and Problem 3 in the three dimensions, we prove the following results.
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THEOREM 4.1 (i) For a facet f (2-dimensional face) of P there is at
least one vertez v such that the pair {v, f} is the antipodal v-f pair.
(it) For a facet f of P if {v1, f} and {v,, f} are antipodal v-f pairs then

the line segment Ty, 03 is parallel to f.

Proof: (i) Take a line ! which is perpendicular to f. We project all vertices
into the line I. There is at least one element v such that its projection
is maximum. We construct a plane 7, through v and perpendicular to .
Obviously 7, and 75 which is a plane through f are parallel planes of support
of P. So {v, f} is the antipodal v-f pair.

(ii) It is easy to show that (ii) follows from (i). m]

THEOREM 4.2 Let f be a facet of P and v be a vertex of P. Then T(v, f)

is the largest volume inscribed tetrahedron rooted in P if and only if

(i)  {v, f} is an antipodal v — f pair;

(it) T (v, f)| = max{|T (', f')| : {¢', f'} is an antipodal v-f pair of P},

where T'(v, f) denotes the tetrahedron defined by {v, f} and |T(v, f)| denotes
the volume of T'(c, f).

Proof: (=) (ii) is obvious. So we only need to show (i). We construct a
plane II, which passes through v and is parallel to f. All of the vertices of P
must be between II, and IIy which is a plane through f from the conditions
given. So {v, f} is an antipodal pair.

(«=) For each facet f of P by Theorem 4.1 there is a vertex v such that
{v, f} is the antipodal v-f pair and |T'(v, f)| = max{|T(v', f)| : v’ is vertex
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of P}. Soif {v, f} satisfy the condition (ii) then T'(v, f) is the largest volume
inscribed tetrahedron rooted in P.
[m]

Thus we get the following theorem directly from Theorem 3.1 and 3.2.

THEOREM 4.3 Let f be a facet of P and v be a vertex of P. Then T(v, f)

is the largest volume inscribed tetrahedron rooted in P if and only if

(i)  {v, f} is an antipodal pair;
(ii)  |T(v, f)| = max{|T(vy, f)| : f is a facet of P and {vy, f} is an
antipodal v-f pair}.

We suppose that there is no facet of P which is normal to v — y plane.
The slope of the non-vertical plane z = az+ by +c is really a two-dimensional

vector, so every such plane maps into a point in R? :

z=az+by+c— (a,b) € R (8)

Thus we get the following algorithm for the problem in three dimensions.
Algorithm 4.4

1. Divide the polyhedron into an upper half hull and a lower half hull.

2. Transform each half hull into a planar convexr subdivisions C, and Cy

respectively. For each of the subdivisions:

o A face on the half hull maps inio a vertex of the subdivision.
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o An edge of the half hull maps into an edge of the subdivision.

o A vertez on the half hull maps into an open convex polygon of the

subdivision.

Let V,, denote the set of all vertices of C, and V; denote the set of all
vertices of Cq. Let P, denote the set of all open convex polygons of C,
and P denote the set of all open convex polygons of C4.

. Let B, =V, (orBy =V;) and G,={P:P€ P} (orGy={P:P¢c
Pi}).

Use the reciprocal search method of section 3 to find the set

A = {{b,P}:Vbe By, P, is some element of G, and b € B}
U {{b,Pp} :Vbe By, P, is some element ofGy and b € B,}.(9)

. Define a set A* of antipodal v-f pairs
A* = {{vb,fb} : {b, Pb} € .A} (10)
. Calculate the volume of T (vs, f3) for each {uv;, fy} € A*

. Report the largest volume inscribed tetrahedron rooted in P.

Analysis of the algorithm 4.4

Step 1) is completed in linear time. Brown outlined the method for

computing the transforms in Step 2) in linear time [3]. By the reciprocal

research method of section 3 A can be found in O(nlogn) time. Steps 4)

and 5) can be done in linear time. Thus using a divide-and-conquer analysis

the running time of the algorithm is O(nlogn).
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THEOREM 4.5 Let P be a conver polyhedron. Then the largest volume
inscribed tetrahedron rooted in P can be found in O(nlogn) time and O(n)

space.
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