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ABSTRACT  

A three-dimensional stress investigation in fiber 

composite models was carried out. Photoelastic composite 

models with Ef /E in of 26 were cast to simulate the behaviour 

of the graphite fiber composite A54/3501-6. The standard 

stress freezing techniques were applied to the composite 

models with 4O fiber volume fraction. 

It was observed that the slices from identical models could 

be combined for analysis and that a symmetric fiber 

arrangement results in a symmetrical stress distribution. 

Special care has to be taken in slicing the composite model 

to prevent the annealing of fringes and delamination along 

fiber direction. The shear stress, r xy , was observed to be 

zero under pure bending. 

Both two-dimensional and three-dimensional finite element 

analysis was performed with certain simplifications. These 

results could be used in conjunction with photoelastic 

analysis since both showed good correlation. FEM analysis 

found the neutral axis of the composite model to coincide 

with that due to geometric symmetry. 



Overall behaviour of the composite model showed a strong 

dependence on the three fiber plane. It was found that in 

order to obtain a complete analysis of three-dimensional 

stress distribution, reinforcing-fibers with photoelastic 

properties should be used. 

(iv) 
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NOMENCLATURE  

In addition to the nomenclature defined in this 

section, symbols have been defined throughout the text 

whenever it was felt necessary for clarity. 

a amplitude of plane polarised light 

A cross-sectional area 

A cross-sectional area of composite 

A  cross-sectional area of fiber 

A cross-sectional area of matrix 
m 

c distance from the neutral axis 

Cl) C2 Stress- optic coefficient 

E Young's modulus 

Young's modulus for composite 

E  Young's modulus for fiber 

E M Young's modulus for matrix 

f a material fringe constant 

C Shear modulus 

I Light intensity 

CV  Moment of inertia 

M Bending moment 

no Initial index of refraction 

n1,n 2 ,n 3 Principal indices of refraction 

N Fringe order 

N x Fringe order in x-direction 

(xv) 



N Fringe order in z-direction 

P Applied load 

Load carried by composite 

P1 Load carried by fibers 

P In Load carried by matrix 

R Radius of cam 

S 
xy 

S ' s 
x y 

t 

Shear stress used in FEM output 

Principal stress in x- and y-direction used in FEM 

output 

Thickness of slice/specimen 

T Temperature of the oven 

V Volume of material 

V1 Volume fraction of fibers 

V Volume fraction of matrix 
In 

V crit Critical volume fraction of fibers 

V. 
mm 

Minimum volume fraction of fibers 

GREEK LETTERS  

a coefficient of thermal expansion 

a retardation angle introduced by the stressed model 

relative retardation 

true strain 

strain in composite 

strain in fiber 

strain in matrix 



A wavelength of light 

V Poisson's ratio 

a applied stress 

all 02 principal stresses acting on planes 

a cu ultimate tensile strength of composite 

a fu ultimate tensile strength of fibers 

a mu ultimate tensile strength of matrix 

principal stress in x-direction 

a xy shear stress in xy-plane 

a principal stress in y-direction 

a  principal stress in z-direction 

o angle of principal stress direction with the axis 

of the polarizer 

r shear stress 

r maximum shear stress 
max 

r xy shear stress in the xy-plane 

r 2 shear stress in the yz-plane 
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CHAPTER ONE 

INTRODUCTION  

Fiber-reinforced composites are one of the most widely 

used in the family of composite materials. Fibre-reinforced 

materials have become important structural materials, and 

their utilization in the aerospace and transport industries 

is continuously increasing. Their study and development has 

been largely carried out due to their vast structural 

potential. In a fibre-reinforced composite, strong fibres 

are dispersed in a softer, more ductile matrix. In general, 

the fibres are brittle, or have little ductility prior to 

fracture, but when combined with a ductile matrix, the 

resulting material has excellent strength and toughness. 

Such composites are usually intended to be used where high 

strength and high strength to weight ratios are needed, 

where high temperature strength is desired, and where other 

special properties are required. 

The structural behaviour of a composite is intimately 

related to the internal stress level and stress distribution 

and depends on the load transfer between the constituent 

parts. The field of micromechanics comprises the study of 

these internal stresses and mechanics of internal reactions 
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and interactions of the constituent parts due to imposed 

forces. Knowledge of internal states of stress serve two 

main purposes; first, it contributes to the evaluation of 

average ( macroscopic) response and, secondly, it provides 

the basis for understanding failure modes and establishing 

failure criteria. 

Stresses in the matrix are of great importance when loads 

act in a direction normal to the fibres, since in this case 

initial failure may be governed by stress and strain 

concentration in the matrix. Failure initiation is related 

to the internal state of stress which is determined by the 

geometry, loading, and properties of the constituent 

materials. The state of stress may be very complex and 

difficult to determine by analysis, thus, experimental means 

are essential and sometimes indispensable. Experimental 

methods applicable to the study of mechanics of composites 

include photoelasticity, strain gauge analysis, moire fringe 

analysis, and holography. Because of its whole-field 

character, the use of photoelasticity would obviously be 

very advantageous for the evaluation of the stresses in 

composite materials. 

Photoelasticity [l_3]*, one of the traditional experimental 

*Numbers refer to the references at the end of this thesis. 
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methods, has been used for many years to analyse stress 

problems using models made from transparent plastics. The 

stress-optic relations, stated very simply, linearly relate 

the principal stress difference to the birefringence 

produced in the loaded model. The stress-optic relations of 

conventional photoelasticity do not apply to orthotropic 

materials. However, orthotropic elastic behaviour does not 

preclude the use of photoelasticity methods. 

The application of photo-orthotropic-elasticity to stress 

analysis of structures fabricated from composite materials 

involves the development of a model which is sufficiently 

transparent for light to be transmitted in a polariscope. 

Also, the model material must exhibit the required degree of 

anisotropy and show an adequate degree of birefringence. 

This thesis explores the use of a three-dimensional 

photo-elastic model to study orthotropic stress behaviour in 

fibre-reinforced composite materials. Scaled up models of 

composites are fabricated by casting PLM-4 1 epoxy around 

Nylatron GS' rods. These models are loaded in four-point 

'Product trade name of Intertechnology. 

'Product trade name of Polypenco. 
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bending to get the desired pure bending effect. The standard 

stress-freezing techniques are applied to the composite 

models with 4O fibre volume fraction. The models are then 

sliced and fringe patterns are observed in the polariscope. 

The shear- difference method in three-dimensions and the 

limited use of finite elements is applied in the analysis. 

Due to limited resources and time constraints this study is 

intended to lay groundwork for overall stress distribution 

in fiber-reinforced composites. Hence, establishing the 

scaling factors and application of results to the prototype 

is recommended for future work. 
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CHAPTER TWO 

BACKGROUND OF THEORETICAL METHODS  

Composite materials have fully established themselves 

as workable engineering materials and are now quite 

commonplace around the, world. The success of fibre 

composites results from the ability to make use of the 

outstanding strength, stiffness, and low specific gravity of 

fibres such as glass, graphite, or kevlar. Properties of 

composites are strongly influenced by the properties of 

their constituent materials, their distribution, and the 

interaction between materials. Besides specifying the 

constituent materials and their properties, in describing a 

composite material as a system, one needs to specify the 

geometry of the reinforcement with reference to the system. 

The geometry of the reinforcement may be described by the 

shape, size, distribution, and orientation. 

Composite materials can be classified on the basis of the 

geometry of a representative unit of reinforcement. Figure 

2.1 represents a commonly accepted classification scheme for 

composite materials. This particular study involves the use 

of unidirectional fibre-reinforced composites. 
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Composite 1materials 

Fibre-reinforced composites Particle-reinforced composites 

Random 
orientation 

Preferred 
orientation 

Single- layer composites Multilayered composites 

I I I 
Laminates Hybrids 

Continuous-fibre-reinforced Discontinuous-fibre-reinforced 
composites composites 

Unidirectional Bidirectional Random Preferred 
reinforcement reinforcement orientation orientation 

Figure 2.1: Classification of composite materials [ 4]. 

2.1 THEORY OF UNIDIRECTIONAL FIBRE REINFORCED COMPOSITES  

A unidirectional composite may be modeled by assuming 

fibres to be uniform in properties and diameter, continuous 

and parallel throughout the composite. It may be further 

assumed that a perfect bonding exists between the fibres and 

the matrix so that no slippage occurs at the interface and 

strains experienced by the fibre, matrix, and composite are 

equal: 

C = 6 6 
f m c (2.1) 

where, € is the strain, and subscripts c, f, and m stand for 

composite, fibre, and matrix respectively. 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 00 
F-

in 
/ 
P 
C 

P  

Figure 2.2 : Cross-section of a unidirectional fibre 

composite. 

If the fibres and matrix behave elastically and linearly, 

the stresses are 

of =E f 6f & a = E € 
in in in 

and the load carried by the fibres is 

P  = a  A  = E  €f A  

(2.2) 

(2.3) 

where: 

A cross-sectional area 

P applied load 

The resultant carried by the composite is the sum of the 

components, thus 

P = P + P 
c f in 

a c c A = a f f in A + a A in 

(2.4) 

(2.5) 

Equation ( 2.5) can be written in terms of volume fraction, 

V f  and V as follows: 
in 

a = a V + a V 
c f f in in (2.6) 



MAXIMUM LOAD CARRIED 

BY COMPOSITE 

COMPOSITE 

CD 
-J 

FIBER 

MATRIX 

EXTENSION - STRAIN 
a) b) 

FRACTURE 

FIBER 

COMPOSITE 

MATRIX 

FRACTURE 

FIGURE 23: CURVES FOR IDEALISED FIBER COMPOSITE CONSISTING 

OF CONTINUOUS BRITTLE FIBERS IN A DUCTILE MATRIX.. [ 5] 

a) LOAD US EXTENSION, AND 

b) CORRESPONDING STRESS US STRAIN 
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Differentiation of equation ( 2.6) yields 

do da f Vf do V 
c_ in in 

d6 de de 

(2.7) 

where, ( da/d€) represents the slope of stress-strain 

diagrams which are constant in the elastic region and can be 

replaced by corresponding elastic moduli. 

Ec f = E V .i. in in + E V (2.8) 

The relationships in equations ( 2.6) and ( 2.8) are called 

the rule of mixtures. These equations can be generalised as 

a 
c 

V. 
1 

n 
E = E E. V. 
C 

i=l 

(2.9) 

(2.10) 

The deformation of a composite may proceed in four stages. 

1.) Both fiber and matrix deform elastically. 

2.) Fibers continue to deform elastically, but matrix 

deforms plastically. 

3.) Fibers and matrix both deform plastically. 

4.) Fibers fracture followed by composite fracture. 

Stage 2 has a stress-strain curve that is no longer linear. 
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The composite modulus must be predicted at each strain level 

by 

V 
E = E V+ da 16M=6f cf 4,  

in 

(2.11) 

where, da/d6 m is the slope of the stress-strain curve of 

the matrix at the given strain of the composite. For stage 

3, the elastic modulus of the composite can be predicted by 

using equation ( 2.7). 

The ultimate strength of the composite, 0cu' can be 

predicted by the rule of mixtures as: 

a CU = a V  + (a )  
fu 1116 

in 

(2.12) 

The strengthening effect of the fibres is obtained only 

when the ultimate strength of the composite exceeds that of 

the matrix alone; i.e. 

a = CU af V  111 + (a ) (1-V ) > a 
6f f - mu 

(2.13) 

This defines a critical volume fraction of fibres, V 
crit, 

that must be exceeded for strengthening: 

a -mu (a) 
1 - 

crit 
a -(a fu 111 ) 6 

(2.14) 
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If the fibre volume fraction is less than V . mm , then 

a = a ( 1-V ) 
cu mu f (2. 15a) 

and, the ultimate strength of the composite, a cu s with 

V f > V mm.  is given by 

cu mu f) (2. 15b) 

The equation ( 2.6) is applicable only when the fibre volume 

fraction exceeds the minimum fibre volume fraction; where, 

V. 
nun 

a -( a )Ie. mu m f 

a + a (a) 
fu mu- m 

(2.16) 

All these ultimate composite values have been plotted in 

figure 2.4 as a function of fibre volume fraction. 
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a LO 

FIBER VOLUME FRACTION 

FIGURE 24: IDEALISED VARIATION IN TENSILE STRENGTH OF 

COMPOSITE WITH VOLUME FRACTION OF BRITTLE FIBERS. 
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2.2 THEORY OF PHOTOELASTICITY  

Photoelasticity [ 1-3] is based on the phenomenon of 

temporary double refraction ( optical anisotropy) which 

certain isotropic transparent materials exhibit when 

subjected to stress. This optical phenomenon, when viewed in 

a field of polarised monochromatic light, is manifested in 

the form of interference fringes or alternate dark and light 

bands. These fringes, referred to as 

are ordered according to the number 

cycles that appear at a point as load 

tti sochromati c fringes" 

of darkness-brightness 

is increased from zero 

to its final value. The fringe order represents relative 

light retardation in wavelengths. The principal optical axes 

as found by Maxwell, coincide with the principal stress 

directions. 

Photoelastic models are examined in the polariscope. The 

simplest one, the plane polariscope, consists of a light 

source, a polariser, and an analyser. The last two elements 

convert ordinary light to plane polarised light. If a 

stressed model is placed in the field ( figure 2.5) with one 

principal stress direction at an angle o with the axis of 

the polarizer, the light intensity at a point 0 is given by 

I = 2a 2sin 229 sin 2c/2 (2.17) 



PLANE OF PLANE OF 
POLARIZATION POLARIZATION 

LIGHT SOURCE 

POLARIZER MODEL ANALYZER 

FLgure 25: Schemat.Lc arrangement of the eLements of a pLane 

poLarLscope ( o- cr2 are prCncLpaL stresses). 

PLANE OF 
POLARIZATION 

LIGHT SOURCE 

POLARIZER FIRST QUARTER WAVE PLATE MODEL SECOND QUARTER WAVE PLATE ANALYZER 

PLANE OF 
POLARIZATION 

Fgure 2.6: Schernatc arrangement of eLements of a crcuLar poLarLscope. 
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where ta' is the amplitude of the plane polarized light 

emerging from the polarizer and is the retardation 

introduced by the stressed model. Extinction occurs either 

when 9 = O,ir/2, or when a = 2nir, i.e., the retardation is an 

integral number of wavelengths ( integral fringe orders). 

These points of extinction form two families of fringes, 

isoclinics ( loci of points of constant inclination of 

principal stresses) and isochromatics ( loci of points of 

constant number of wavelengths of retardation, and therefore 

of equal principal stress-difference). 

The isoclinic family is eliminated in the so called 

"circular polariscope" by introducing two properly oriented 

quarter-wave plates ( figure 2.6). The optical transformation 

that takes place in this polariscope can be described as 

follows: 

(1) The polarizer transforms the ordinary light into plane 

polarized light. 

(2) The first quarter-wave plate transforms the plane 

polarised light into circularly polarised light. 

(3) The second quarter-wave plate restores the original 

plane polarised light or rotates it through 90 degrees 

depending on whether it is crossed or parallel to the first 

plate. 

(4) The analyser blocks or lets through the plane polarized 



16 

light according to the desired background. 

Isochromatic fringes are related to the state of stress by 

means of the stress- optic law. Motivated from the 

stress-strain relations, 

61 

S 

S 

2 

3 

[a - v(a 2 + as)] 

[02 - V(a, + 0 3 )] 

[0 3 - v(a + as)] 

we can write, 

- no = CI a,, + C2(a 2 + (Y3) 

- no = C,, a + C2 (a,, + 0 3 ) 

n. - no = C,, a3 + C2 (o,, + a) 

where C,., C2 are the stress-optic coefficients; 

(2.18) 

(2.19) 

na, n3 

are the principal indices of refraction; and, no is the 

initial index of refraction in the isotropic unstressed 

body. 

Due to the difficulties involved in measuring the principal 

indices and the principal optical directions, 

photoelasticity is usually confined to measuring relative 

birefringence. From equations ( 2.19) 

ni - n2 = ( C,. - C2) ( a,, - a) (2.20) 
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Also, 

A4 

ni - 2irt 

By substituting, 

= 

4 = 2rt ( C - 02) (0 1 0 2) 
A 

(2.21) 

(2.21a) 

If C 1- 0 2 is set equal to ' c', the relative stress optic 

coefficient, 

4 = 2irtc (a1 - c2) (2.21b) 
A 

or N = (t/f) (a1 - a) (a1-a2)/2 

= (2t/f a ) r max (2.22) 

or a - 02 = Nf/t (2.23) 

where, 

N 4/27r is the fringe order, 

t is the length of optical path or, in some cases, 

thickness of specimens, 

4 is the relative retardation, 

A is the wavelength of light, 

all a2 are the principal stresses acting on planes 

parallel to axis of light propagation, 

max 
is the maximum shear stress, and, 

is a constant,called material fringe value, 

kPa/fringe/in ( psi./fringe/in) 
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When the stress field is uniaxial, as it is on the nonzero 

boundaries, one of the principal stresses is zero and the 

nonzero component is determined directly from the 

stress-optic law above. In general, separation of principal 

stresses requires knowledge of some complimentary 

information or the use of some auxiliary numerical 

operations. 
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2.3 Three-Dimensional Photoelasticity  

Photoelastic techniques are applicable to two- and 

three-dimensional problems. A two-dimensional analysis is 

justified when the state of stress in the structure can be 

approximated by a plane stress or a generalised plane stress 

condition. However, for the photoelasticity solution of 

three-dimensional problems, a somewhat more involved 

technique is necessary. The observation of the loaded model 

in a field of polarized light does not result in a fringe 

pattern which can readily be interpreted. 

For three-dimensional problems, a three-dimensional scaled 

model of the prototype is machined or cast out of certain 

epoxies having the desired stress-freezing properties. The 

principle of stress freezing takes advantage of the 

visco-el.astic, time and temperature dependent material 

properties of certain transparent epoxy resins which may be 

used to make accurate scale models of engineering 

components. In the frozen stress method, the loaded model is 

slowly heated to a critical temperature, held there for some 

time, and, finally, slowly cooled to room temperature. This 

process freezes or locks- in the state of deformation 

corresponding to the elastic state of stress at the elevated 

temperature. This state of stress is not disturbed by 
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careful slicing of the model. Thin slices are removed from 

the model wherever the stress distribution is required. The 

material is calibrated by subjecting a loaded calibration 

specimen to the same temperature cycle as the model and 

observing the frozen fringe pattern. 

The fringe pattern from the slices can be interpreted in 

much the same manner as in the case of a two-dimensional 

model. Shear stress distributions throughout the slice and 

principal stresses on free and pressure- loaded boundaries 

can be determined directly from 

determination of principal stresses 

considerably more complicated and 

auxiliary methods. 

the patterns. The 

at interior points is 

requires the use of 



21 

2.4 The Shear-Difference Method in Three Dimensions  

[1,6) 

To determine the complete state of stress ( that is, 

a xx , a yy , a zz , r xy , r ye r zx ) at an arbitrary point in a 

three-dimensional model, the shear-difference method is the 

most practical technique available. It should be noted, 

however, that the method involves a stepwise numerical 

integration procedure which tends to accumulate error. 

Hence, considerable care must be taken in collecting the 

input data. 

The shear-difference method is based on the numerical 

integration of the first differential equation of 

equilibrium, 

aa 
xx + xy + xz =0 (2.24) 

If an arbitrary line OP is selected in the model in the 

manner illustrated in Figure 2.7, equation 2.24 can be 

integrated to obtain the stress a xx at the interior point 

'l Integrating, 

x ôa x r x <) 7-xz fl XXd+f ''T dx+f dx0 (2.25) 

x 0 x x 0 ay x 0 az 
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or, 

xz  xxj x xxi x x ar xy - f dx - f x1 ar dxu ( 2.26) 
l. l  

o x x 
0 0 

where, a xxx J denotes the stress at point 0 and a , the 
xxx i 

0 

stress at point x1 on the line AB. The partial derivative 

ar XY /aY is the rate of change of r XY with respect to y and 

or xz /xz az is the rate of change of r with respect to z. If 

finite but small values of 4x, 4y, and 4z are substituted 

for the partial differentials, it is possible to write, 

4r 4r 

a I = ° I - XY 4x 1X1 - XZ Ax I (2.27) 
XXXI xxx x x 

0 Ày o 4z o 

The value of Ar xy /4y is obtained by measuring the value of 

Txy along lines AB and CD ( shown in Fig. 2.7), subtracting 

the difference, and dividing by Ay. Similarly, the value of 

is obtained by determining r along lines EF and 

GH, subtracting the difference, and dividing by dz. For 

convenience, Ày and Az may be taken numerically equal to Ax. 

Then equation ( 2.27) becomes 

a = a 
xxxi xxx 

- Ar xyII - Ar(x+x)/2 xz ( x0+x)/2 ( 2.28a) 
0 



Y 

FLgure 2.1: An arbtrarg LLne OP and assocated auxLary Lnes ' n a 

generaL t.hree-dmens.onaL body. 
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in which 4r xy xz and 4r have the mean value in each interval 

1x. By continuing this integration in a stepwise procedure, 

it is possible to write 

a xx Ix2 = a xx Ix 1 - 4r x y( x 1+ x2)/ 2 - 4r xz I( + )/2 (2.28b) 

In concept the shear-difference method expressed in terms of 

Eqns. ( 2.28) is extremely simple; however, in application 

the method requires considerable input data obtained along 

lines OF', AB, CD, EF, and GH. To show the procedure for 

collecting these data, consider a slice taken from the model 

which contains the xy-plane shown in Fig. 2.7. This slice is 

then observed in normal incidence, and the isoclinic 

parameters and isochromatic fringe orders are established 

along lines OF', AB and CD. These data can be employed to 

obtain the shear stresses Txy along these three lines by 

using the following equation, 

1 1  f 
T =;; xy (a1,' - ° 2) sin2O =  z a sin2O 

2 t z 

where, 

(2.29) 
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N is the isochromatic fringe order observed by 

passing light through the xy-plane in the 

z-direction 

is the angle which a' makes with the z-axis as 

provided by the isoclinic parameter 

a', a2' secondary principal stresses 

A second slice lying in the xz-plane and containing line AB 

would furnish similar information for r, 2. Here a practical 

difficulty arises since the first slice removes an essential 

part of the second slice. One of several procedures may be 

used to eliminate this difficulty. 

1) In the general case two identical models, identically 

loaded, may be used, one for the xy-slice and one for the 

xz-s lice. 

2) In large models it may be possible to use a subslice from 

the main slice ( shown in Fig. 2.8) for determining r. 

3) In the particular case where a plane of stress symmetry 

exists, advantage can be taken of this symmetry in the 

slicing plan. 

The xz-slice is observed in the polariscope with the light 

passing through the subslice in the y-direction. Isoclinic 

parameters and isochromatic fringe orders along lines OF, 



St.i.ce for xg pLane 
Sert.es of cubes 
for yz pLane 

SubsLt.ce for xz pLane 

Fgure 2.89 The sLCcLng pLan normaLLj empLoged w.th the shear-dC.fIerence 

method L.n three dC.mensi.ons.. 
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EF, and GH give the shear stress r xz as, 

N f 
1 1 z a  

r = (a1tt-a 2 t) s1n20 =   sin29 ( 2.30) 
XZ 2 y 2 t 

where, ar", a2" are secondary principal stresses in xz-plane 

At this stage rxy xz and r have been established along OP, 

and sufficient data have been obtained to employ Eqs. ( 2.28) 

to arrive at a . The other two normal stresses a and a 
xx yy zz 

can be established once a xx is known by utilizing the 

following equations, 

a = a - 

yy xx 

N f 
z a 

t 
cos29 

z 

N f 
z a  

a a - cos28 
zz xx 

t 
z 

(2.31) 

To evaluate the final cartesian component of stress r yz , the 

subslice may be reduced to a series of cubes each containing 

an evaluation point x, x2, etc., as its center, as shown in 

Fig. 2.8. The yz-plane of these cubes is examined in the 

polariscope with the light passing through the cube in the 

x-direction. The isoclinic and isochroinatic data are then 

employed to give r yz as shown below: 

N f 
z a  

r sin2o 
yz 2t 

(2.32) 
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CHAPTER THREE 

LITERATURE SURVEY OF RELATED WORK  

The determination of stresses and strains in 

three-dimensional composite bodies is a difficult problem, 

both theoretically and experimentally. However, such 

problems are of practical importance and find application in 

many structures such as fiber-reinforced composites, 

adhesion joints, rocket propellent shells, and foundation 

structures [7]. When a composite body made of two different 

materials connected along the interface is in equilibrium 

under mechanical or thermal loading, then the stresses and 

displacements in each of these bodies will depend on the 

elastic constants of both bodies. Use of photoelasticity for 

composite materials has been investigated to some degree 

[8-17]. Composite models using the photoelastic method have 

been discussed by earlier investigators [ 18-26]. 

Several investigators conducted both analytical and 

experimental studies in an effort to develop stress-optic 

relationships for the birefringent fiber- reinforced 

composite materials. Pih and Knight [ 8] pioneered work in 

this area and developed a stress-optic law based upon a 
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stress-proportioning technique. 

N = 1 (C1a1 - C2o2) 

where, 

N = fringe order 

C1, C2 = principal stress coefficients 

a, 02 = principal stresses 

t = model thickness 

f = material fringe constant 

(2.24) 

Several authors [ 8-15] further carried on the theoretical 

work into the development of stress and strain-optic laws 

and theory of photoelasticity for fiber-reinforced 

composites. This work is well documented. 

Stresses in the matrix are of great importance when loads 

act in direction normal to the fibers. In this case initial 

failure may be governed by stress and strain concentration 

in the matrix. Most of the work in this area is theoretical. 

Related experimental work is very limited and it has 

consisted mainly of two-dimensional model studies. It is 

indicated [ 18] that there are a couple of problems which are 

inherent in the three-dimensional photoelastic analysis of a 
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fiber-reinforced composite, notably, i) model-material 

failure, and ii) loss of fringe pattern in slicing. 

Model-material failure arises when an insert material, such 

as steel or aluminum, is placed into an epoxy-matrix 

material. The steel or aluminum, which has a much lower 

coefficient of thermal expansion than the epoxy, causes the 

composite to fail either in bond along the insert or by 

cracking of the matrix material in the process of curing. 

Fringe pattern loss during slicing can occur during sawing 

of steel or aluminum inserts which raises the temperature of 

the epoxy matrix around the inserts sufficiently to anneal 

several fringes of the frozen photoelastic pattern. However, 

these problems are avoided by using plastic inserts in an 

epoxy-matrix material rather than steel or aluminum. 

Chandrashekhara [ 19] et al. studied the application of the 

stress-freezing technique to birefringent models having 

similar ratios of elastic constants compared to the 

prototype. The stress distribution is not directly dependent 

on the value of elastic constants but on their ratios such 

as E y x xy /y E , G /E etc. Durelli, et al. (27], conducted many 

two and three dimensional photoelastic studies for the 

determination of shrinkage and mechanical loading stresses 

in matrices with various types of inserts. They used a 

low-temperature-curing epoxy cast around plexiglass or other 
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epoxy inserts. Goree[28] investigated the case of in-plane 

loading of two rigid cylindrical fibers in an infinite 

matrix using a complex variable technique and pointed out a 

variation in maximum stress location with inclusion fiber 

spacing. For wide spacings, the maximum principal stress 

occurs at the interface, but for spacings less than one 

fiber radius, the location moves to the midpoint, he also 

indicated a considerable influence of Poisson's ratio of the 

mixture with the incompressible matrix producing the highest 

stress for a given spacing. For example, for a clear spacing 

of one-half the fiber radius, a Poisson's ratio of 0.5 

produces a 4O increase in stress over that for a ratio of 

0.25. In general, the influence of Poisson's ratio of the 

component materials has not been thoroughly investigated. 

Marloff and Daniel [ 22] carried out three-dimensional 

photoelastic analysis of a fiber-reinforced composite model 

and their results seem to indicate that the influence of 

Poisson's ratio may not be appreciable. Further, in their 

results the maximum stress occurs in the middle of the 

matrix section between fibers which is at variance with the 

theoretical prediction of maximum stress at the interface. 

Stress concentration factors varied from 1.80 at the 

interface to 2.0 at the midpoint of the matrix section 

between fibers. 
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Not only has most of the experimental work consisted of 

two-dimensional model studies, the limited amount of 

three-dimensional composite model studies have some 

shortcomings. In the study done by Chandrashekhara [ 19], 

fibre volume fractions used were less than 15 percent. This 

does not model a realistic range of composite materials as 

V  usually ranges from 3O to 70%. Secondly, in some of the 

work done in this field, the number of inserts vary between 

1 or 2, making it more susceptible to the free-edge effects. 

In the case of Marloff and Daniel [ 22], a period of one week 

was allowed for stabilization of the fringe pattern in the 

slices removed from the model. This procedure could lead to 

stress relaxation and consequently error. In the present 

study, an effort has been made to alienate most of these 

problems by using a better range of fiber volume fractions, 

and reducing the free-edge effects by utilising five rows of 

inserts. 
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CHAPTER FOUR 

EXPERIMENTAL PROCEDURE  

Scaled-up photoelastic composite models are used for 

the present study. An effort was made to model AS4/3501-6 

graphite fiber composite as closely as possible. Composite 

models that were cast consisted of 4O fiber volume 

fraction, with the diameter of the reinforcing rods being 

12.7 mm ( 1/2 in.). Governing criteria was established as the 

elastic modulus ratio of A54/3501-6 graphite fiber 

composite; i.e. Ef/E of 46, at the stress freezing 

temperature of 116 0C for the composite model. 

4.1 Materials  

4.1.1 Matrix 

The Photoelastic PLM-4 epoxy resin system was used to 

model the matrix material of the composite material. The 

Photoelastic PLM-4 epoxy has been formulated by the 

manufacturer specifically for use in making thick-walled or 

heavy-sectioned models for three-dimensional photoelastic 

analysis by stress freezing. This resin system is 

characterised by a low exothermic reaction, making it 
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feasible to cast large models without danger of overheating 

during polymerization. When properly cast and cured, this 

material offers excellent transparency, is relatively easy 

to machine, exhibits very little time-edge effect, and has 

high stress-optic sensitivity, with a stress-optical 

constant of 10.5 kPa/fringe/m at room-temperature and 0.40 

kPa/fringe/m at the critical temperature of 116°C. 

The PLM-4 resin system was supplied in a liquid resin and 

dry hardener combination, which can be mixed and cast to 

make any model configuration for which a mold is available. 

The following formula was used to mix the two components: 

100 parts ( by weight) of PLM-4 ( liquid resin) 

40 parts ( by weight) of PLMH-4 ( hardener) 

4.1.2 Fiber 

Considerable thought was made in the choice of the material 

for modelling the fibres. Mechanical testing was performed 

on Nylon 6-6, Teflon, Nylon 101, and Nylatron GS rods ( see 

Appendix A). Governing criteria for the selection was 

established as: high-temperature behaviour, Young's modulus 

(to model the carbon fibers), and coefficient of thermal 

expansion ( to reduce the shrinkage effects). It was found 

that Nylatron GS rods come the closest to satisfy the above 
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criteria. Table 4.1 shows the properties of the matrix 

material and the selected rod material at room temperature 

and at the stress-freezing temperature. The stiffness and 

tensile strength properties at the stress freezing 

temperature were obtained experimentally where as all other 

data was supplied by the manufacturer. Using these materials 

an elastic modulus ratio, Ef/Em of 26 at the stress freezing 

temperature is achieved. 

Property PLM-4 ( epoxy) Nylatron GS rods 

0 

116 0 R.T. 
0 

116 C 

Tensile MPa 60 2.0 69 - 96 12.5-14 

Strength ( psi) (9,000) (290) (10-14,000 (1.8-2,000 

Elastic GPa 3.1 0.017 3.1-4.1 0.442 

Modulus(10 3psi) (450) (2.5) (450-600) (64) 

Coeff. of 

Thermal 

Expansion 3.9x10 5 9.0x10 5 3.5x10 5 
C C( in/in/°F 

Stress-optical 
Constant 10.5 0.40 N/A N/A 

kPa/fringe/m 
(psi/fringe/in) 

(60) (2.2) 

V 0.36 0.50 

Table 4.1: Material properties. 

Another problem that had to be given consideration was the 
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choice of a right mold. release agent. After various tests it 

was observed that the best results are obtained by using Dow 

Corning 20L release coating. It provides a silicone parting 

film which effectively releases plastics and other 

elastomeric products. Since wetting was a problem for 

aluminum molds, Dow Corning 20 release coating was diluted 

by blending 10 parts ( by weight) of Dow Corning 20 release 

compound with 80 parts Isopropanol ( 99) and 10 parts 

Toluene. 

4.2 Design of Models  

Photoelastic composite models were designed to 

represent unidirectional single layer fiber-reinforced 

composites. Photoelastic PLM-4 epoxy was used for matrix 

material and 12.7 mm ( 1/2 in.) Nylatron GS rods were used to 

model the fibers. The elastic moduli of the matrix and fiber 

material were such that a modulus ratio (Ef/E) of 26 was 

achieved at the critical temperature. Five rows of rods were 

used to get away from the edge effects. The rods were 

aligned symmetrically, therefore, resulting in a square 

cross-section. The composite model with 40 fiber volume 

fraction had a final size of 69x69x300nun ( 2.75"x2.75'tx12't). 
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End View 

Figure 4.1: 

reinforcement. 

Section of Side View 

Composite model with unidirectional 

4.3 Oesicn of Molds  

The molds to cast the photoelastic 

of aluminum. Two identical molds were 

volume fraction studied. In addition, a 

models were made out 

made for each fibre 

calibration specimen 

for each batch was made at the same time. The molds were 

designed in such a way that leakage of resin material would 

not occur and the rods 

frame consists of four 

plates. Mold assembly is 

were easily positioned. The mold 

rectangular plates and two end 

shown in figure 4.2. Positioning of 

the rods was accomplished through the use of end plates. The 

rods were placed in the recesses in the bottom end plate and 

aligned at the top through the holes in the top plate. After 

casting the bottom plate comes off easily whereas the resin 

and rods at the top plate must be sawed off. Provision was 

made in the top plate to pour the resin material, and, to 

let out entrapped air. The mold was held together by a set 

of screws and the end plates were kept in place by using a 

clamp, thus, making it easier to take the mold apart to 

remove the casting. 
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Figure 4.2: Composite model mold assembly; (a) & ( d) End plates for the mold, 

(b) & ( c) Bottom and Top End plates, respectively; (e) & ( f) Main rectangular 

frame of the mold with square inside cross-section. 
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4.4 Model Preparation  

4.4.1 Mold Preparation  

First, the surface of the mold was cleaned with 

acetone. Once this was accomplished, the 

completely coated with a smooth layer 

release coating. When the surfaces were 

casting surface was 

of Dow Corning 20 

dry ( usually 15-20 

minutes) the molds were assembled and ready for positioning 

of the plastic rods. The Nylaytron GS rods were cut to the 

desired length and the surfaces were wiped with acetone for 

clean surface bonding with the matrix material. The rods 

were held in position in the model by placing them through 

holes in the end plates at both ends of the mold. The mold 

was then clamped, as shown in figure 4.3, and placed in the 

oven and raised to a temperature of 105°C ( 220°F). 

4.4.2 Resin and Hardener Preparation  

Total amount of resin and hardener mixture required for 

the molds was calculated. PLM-4 liquid was weighed out in a 

container large enough to hold the total amount of mixture 

required. In a separate container, the desired amount of 

PLMH-4 hardener was weighed out. Both containers were placed 

in an oven at 105°C ( 220 °F), and left overnight ( 12-14 hrs). 
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Figure 4.3: Assembled mold in the clamp with plastic rods in 

place. 
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The soaking time was used to dry out any moisture trapped in 

the two compounds. 

4.4.3 Mixing and Pouring  

1. After the 12 hour drying period, the hardener was slowly 

added to the resin while maintaining the temperature at 

105°C. 

2. The two were mixed thoroughly with a mechanical stirrer 

so as to dissolve the hardener and thus produce a 

homogeneous mixture. Stirring was done in the furnace 

using a flexible drive shaft with an electric motor 

mounted outside, see figure 4.4. Stirring was kept slow 

to keep generation of air bubbles to a minimum. Stirring 

was continued for approximately six hours. During the 

mixing cycle, the temperature was maintained at 105°C. 

3. When thoroughly mixed, the resin was poured into the hot 

mold ( both resin and mold were at the same temperature 

of 105 °C). The resin was poured slowly as another 

precaution against the introduction of air bubbles. 

4. Once poured, the temperature of the cast liquid resin was 

held constant at 82°C for 44-48 hours until gelation 

occurred. 

5. After gelation has occurred, the temperature of the oven 

was slowly raised to 127 °C at a rate of 2-3 °C per hour. 
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Figure 4.4: Stirring equipment to mix PLM-4 liquid resin and 

PLMH-4 hardener in the oven at 105°C. 
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6. The temperature of the oven was maintained at 127°C for 

approximately 12 hours; the mold was removed from the 

oven and the cast resin is removed. At this point, the 

cast resin was in a hard, rubbery state and unmolding was 

relatively easy. Unmolding was done as rapidly as 

possible so that the casting does 

7. The complete procedure described 

days and the temperature cycle in 

not cool appreciably. 

above takes about five 

the oven was controlled 

by a cam. The cam motor is such that one rotation is 

achieved in 14 days. The cam/follower set up is shown in 

figure 4.5. 

4.4.4 Postcurini  

1. After the casting had been removed from the mold, it was 

placed on a smooth, flat plate of glass that had been 

dusted with talcum powder ( figure 4.6). The powder acts 

as a mold release to allow the casting to contract or 

expand during postcuring. 

2. The casting was placed back in the oven, with the 

temperature raised from 127 °C to 138°C at a rate of 2°C 

per hour. When the 138°C temperature has been reached, it 

was held constant for at least 48 hours. The casting 

(photoelastic model) is now fully cured. 

3. The casting was slowly cooled back down to room 

temperature. The rate of cooling is very critical, and 
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set up to control Figure 4.5: Cam/follower 

(temperature) cycles of the oven. 

the thermal 
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Figure 4.6: Photoelastic composite model castings, during 

the curing cycle in the oven. 
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must be done properly in order' to avoid any thermal 

stresses that may develop during cooling. Therefore, the 

following schedule was maintained: 

Temperature decrease Cooling rate  

138 to 93 °C 

(280 to 200°F) 

0.3 °C per hour 

(0.5°F per hour) 

93 to 60°C 0.4°C per hour 

(200 to 140 °F) (0.75°F per hour) 

60 to 38 °C 0.75 °C per hour 

(140 to 100°F) (1.5°F per hour) 

38 00 to Room Temperature 

(100°F to 1.T.) 

Turn oven off and 

allow the casting to 

cool to room temp. 

The temperature cycles- through the postcuring process 

were maintained through 13.5 day cam, which makes it one 

continuous procedure/cycle. The casting ( photoelastic 

model) was then ready for final machining and 

preparation prior to loading and stress freezing. 
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4.5 Loading and Stress Freezing  

The composite model casting was prepared for loading 

and stress freezing by sawing off the end plates and 

removing portions of the ends if they contained any defects. 

4.5.1 Loading  

The type of loading arrangement for the composite model 

was four-point bending. The bending moment/stress was held 

constant over a length of 63.5 mm or 2 1/2 in. ( i.e. between 

the inner two loading points). The desired amount of load 

was calculated to induce the necessary number of fringes in 

the model, and at the same time keeping the maximum stress 

level well below the yield stress in order to stay in the 

elastic region. The amount of load varied for composite 

models with different fibre volume fractions. The 

micro-mechanical prediction method and the transformed 

section theory were used for this determination. 12.7 mm 

(1/2 in.) steel rods are used as load distributors and 

support points to get concentrated load effects without 

inducing excessively high stress concentrations. The loading 

arrangement is shown in figure 4.7. A load cell was used to 

monitor the desired amount of load on the model in the oven 

during the stress freezing cycle. In the event of the model 

deflecting considerably, load springs are used to maintain 
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the load on the specimen. Springs act to keep the loading 

plate in contact, and the spring constant is such as to keep 

the load change to a minimum. Furthermore, during the whole 

cycle, the load cell output is monitored and any changes 

were compensated to maintain a constant load level. 

Calibration beam specimen ( 37.5 x 135 x 7.5 mm) made out of 

PLM-4 epoxy was also loaded in four-point bending and went 

through the same curing and loading cycle. A calibration 

specimen was used to establish the fringe factor constant 

for each batch of models cast. 

4.5.2 Stress Freezing  

Stress freezing operation consists of the fpllowing: 

- Heating the model above the softening point of the 

resin. 

- Loading the model at this elevated temperature. 

- Cooling the model slowly to 

retaining the load. 

room temperature while 

The stress freezing temperature for PLM-4 is approximately 

113°C ( 235°F). The model is heated to a temperature 5°C 

(10 °F) higher than the above, heating rate approaching this 
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temperature being slow = 2 to 3°C ( 5°F) per hour and 

maintained at 118°C ( 245°F) for about an hour so that a 

uniform temperature is achieved. After loading the model at 

this stress-freezing temperature, the cooling rate described 

previously for postcuring the casting is maintained. Again, 

a cam is used to control the temperature for the whole 

process, taking about 10 days. Now, the model is ready to be 

sliced and analysed in the polariser. 

It should be noted here that the total time involved in 

preparing the composite models and stress freezing them 

(excluding slicing and polishing) is close to 31 days. And, 

this procedure is repeated for different fibre volume 

fraction composite models. 

4.6 Slicing and Polishing 

Photoelastic composite models with frozen stresses were 

cut into 6-7 mm ( 1/4") thick slices and then polished. The 

slices were cut in a predetermined set pattern. These slices 

were analysed in the polariser. Required isochromatic fringe 

patterns and isoclinics were recorded on photographs. The 

slicing pattern is shown in figures 4.8 and 4.9. The slices 

were removed from the area between the inner two loading 
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points on the model. This is the region of interest because 

the bending moment is constant in this area. 

Slicing pattern shown in figure 4.9 was based on the 

convenience of analysis. The main thrust was to obtain as 

much information as possible. Slices were removed in the 

xy-plane and yz-plane. Slices in the xy- and yz-plane 

contain information about a xx yy zz xy yz , a , a , r and r . Slices 

in xz-plane were not removed for two reasons: 

1) it was almost impossible to slice due to the 

curvature of deflection, and 

ii) these slices were not necessary for the analysis 

since no additional information was forthcoming. 

A lot of problems were encountered and overcome in the 

cutting of the photoelastic composite model. Major problems 

were associated with brittleness of the matrix, delamination 

along fiber-matrix interface and sensitivity to heat buildup 

during cutting. Initially, the slices were cut on the 

milling machine using slitting saws. But due to the binding 

pressure exerted along the surface of saw, the material 

either shattered or delaminated during the cut. After trying 

a few test cuts, it was decided to slice the model using a 

thin 
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Figure 4.10: Band-saw unit for cutting slices from the 

composite model. 



55 

band saw. Since this produced an uneven finish, the slices 

were now required to be polished. A band saw unit was 

modified with a cooling and lubricating system as shown in 

figure 4.10. It was set up for cutting the photoelastic 

composite material. 

Slices were cut according to the slicing pattern discussed 

earlier. Most of the slices cut were 6-7mm thick. Exceptions 

were slices S l and S7 along the sides of the model. Due to 

the nature of these slices required, thickness dropped as 

low as 2-3 mm. The material being very sensitive, prescribed 

cutting techniques were followed. Cutting speeds were high 

and the feed rate kept low. For the slices in the 

longitudinal direction, feed rate was about 3-5 mm/mm. On 

average each slice took about 2 hrs. of cutting time with 

ample cooling lubrication. 

Once the slices were cut, they were hand polished to obtain 

a smooth finish. Slices were polished from 150 grit down to 

1000 grit. A distinctively smooth finish was obtained. This 

made the fringe patterns in the polarizer more resolvable. 

Though the fringe patterns were clear, use of oil with a 

matching refractive index on the surface of the slices 

showed a marked improvement. It especially helped for the 

slices which had fringe orders greater than 10-15. 
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CHAPTER FIVE 

RESULTS AND ANALYSIS  

Slices removed from the models were analysed in the 

polariscope. Both Isochromatic and Isoclinic fringe patterns 

were observed. In order to perform analysis on the slices, 

first the fringe constant value has to be determined from 

the calibration specimen. Isochromatic fringe pattern and 00 

isoclinics for the calibration specimen are shown in figure 

5.1 and figure 5.2. 

5.1 Calibration Specimen  

The Isochromatic fringe pattern shown in figure 5.1 was 

used to calibrate the value of the stress-optical constant, 

f, for the photoelastic matrix material. Being a simple 

beam specimen loaded in four-point bending, theoretical 

stress distribution was known. As can be observed in figure 

5.2, the area of interest is enclosed by 00 isoclinics. 

Therefore, the specimen can be considered as a principal 

plane, and, ax and Cy as principal stresses. Away from the 

stress concentration points, the fringe pattern and fringe 

orders are clearly visible. Stress-optical constant, f, was 
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Figure 5.1: Isochroinatic fringe pattern for Calibration 

Specimen. 

Figure 5.2: 0 Isoclinics for Calibration Specimen. 
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calculated by substituting the known values of a and N into 

equation 2.23, 

a x - ay a N f /t 

d 

P/2 
 'I-

A1 P/2 
 'I-

1 I 

B1 

Figure 5.3: Loaded calibration specimen with analysis points 

A1 and B1. 

Cy = 0 at y = ± d/2 where, d = depth of bean specimen 

Therefore, 

N 

For the beam specimen shown in figure 5.3, fringe constant 

values were averaged for points B1 and A1 in tension and 

compression. For the first batch of composite models cast, 

fringe constant value was calibrated as 0.44 kpa/fringe/m or 

2.43 psi/fringe/in. 

5.2 Analysis of Slices  

The composite models tested were of a fiber volume 

fraction equal to 40 percent. Two identical models ( model A 
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& model B) were loaded to 2160 ± 44 N ( 485 ± 10 lb) while 

stress freezing took place. During slicing of model ' A', 

slices S2 and S4 were lost in cutting. These either broke or 

delaminated while slicing. However, the second model ' B' was 

salvaged completely. Combined with available information 

from model ' A', a total of 10 slices were analysed. 

Isochromatic fringe patterns and 0° Isoclinics for these 

slices were photographed. 00 Isoclinics appear as dark 

portions/bands superimposed on the isochroinatic fringe 

patterns. These fringe patterns are shown in figure 5.5 to 

5.23. 

Figure 5.4 shows the lines along which photoelastic analysis 

was conducted. In this study these lines are referred to as 

analysis lines. Analysis lines AA', CC' and EE' give stress 

distribution in the three fiber plane where as analysis 

lines BB' and DD' show stress distribution in the two fiber 

plane. 

The fringe patterns shown in figures 5.5 to 5.23 contain 

stresses induced by external loading only. An unloaded slice 

that went through the same stress freezing thermal cycle was 

checked for thermal stresses. This slice when analysed in 

the polariscope was devoid of any fringes. Therefore, it can 

be concluded that the thermal stresses introduced during the 
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stress freezing cycle were negligible. 

Slice C1 

Figures 5.5 and 5.6 show the isochromatic fringes and 

00 isoclinics for the slice normal to the fiber direction. 

Fringe pattern in this slice contains information about a, 

a z yz and r . Combined with slices in the xy-plane these 

stresses can be separated. Though it would be highly 

desirable to have the stress distribution known in the whole 

of the slice. However, physical limitations restrict the 

analysis along lines AA', BB', CC', DD' and EE'. These 

analysis lines are shown in figure 5.4. Observing figure 

5.6, it is obvious that these analysis lines fall in 00 

isoclinics. Therefore, slice C1 is a principal slice/plane, 

and, a and a are principal stresses. 

Starting from the top edge aO a can be determined by 

employing the method described in section 2.4. Difficulty 

arises as soon as the first fiber is encountered along any 

of the analysis lines. Because of these discontinuities 

encountered, fringe order between the fibers cannot be 

established with certainty. Therefore, to separate a and a2 

in this slice, one of the following is needed: 
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Figure 5.5: Isochromatic fringe pattern for slice CiA. 

Figure 5.6: 0 Isoclinics for slice C 1 ( model A). 
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- evaluate stress a from the slices in xy-plane. Based 

on some logical assumptions assign fringe order to 

fringes in slice C1. These assumptions can be based 

on a complimentary method of analysis such as finite-

elements. Thus, knowing a and fringe order N along 

analysis lines, a can be evaluated from slice C1. 

- use a different material with relevant optical 

properties for reinforcing fibers. This will help in 

establishing a continuity of fringe pattern and 

fringe order. Thus making it possible to separate the 

stresses. 

It will be seen later that the information from the xy-plane 

was not forthcoming. Therefore, the separation of stress 

and a z 1 in the slice C could not be carried out. Hence it 

can be concluded that reinforcing fibers with optical 

properties need to be used for a complete stress 

distribution analysis. 

Slices SlA S IB  and S7B 

Isochromatic fringe patterns and 0° isoclinics for 

slices S1A , S1B and S 7 are shown in figure 5.7, figures 5.8 

& 5.9, and, figures 5.10 & 5.11, respectively. Subscripts A 
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Figure 5.7: Isochromatic fringe pattern for slice S1A. 



65 

Figure 5.8: Isochromatic fringe pattern for slice SiB. 

Figure 5.9: 0 Isoclinics for slice SiB ( model B). 
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Figure 5.10: Isochromatic fringe pattern for slice S7B. 

Figure 5.11: 0 Isoclinics for slice S 7 ( model B). 
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and B refer to model A and model B. Slices S 1 and S 1 are 

from one side of the model and slice S 7 from the opposite 

side. They are comparable because of symmetrical loading and 

the geometrical symmetry of the cross-section. Slices S IA 

and 87B contain three fibers and are identical except for 

the thickness of the slice. Slice S is just the matrix 

part removed from the edge of the model. All of these slices 

have one surface as the free edge of the model where a=O. 

Also, because of varying position through thickness, the 

fringe patterns observed are at different points in the 

model. Therefore, slice 5Th should represent a fringe 

pattern that is compatible of one between slices SiB and 

S1A. Analysing the fringe pattern in figure 5.10 and 

comparing to those in figures 5.8 and 5.7, similarities are 

quite obvious. This helps substantiate the theory that 

slices removed from two identical models can be combined for 

analysis. These slices show that the fringe patterns change 

in a progressive manner. Photoelastic data obtained from 

these slices is tabulated in Table 5.1. 

Slices 52B--4B and 56B 

Isochromatic fringe pattern and 00 isoclinics for 

slices 52B' 54B and S6B are shown in figures 5.12 & 5.13, 

figures 5.14 & 5.15, and figures 5.16 & 5.17, respectively. 

All these slices have three fibers passing through them. 
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Theoretically, fringe patterns in these slices should be 

identical. Especially in slices S2 and s6• But looking at 

figure 5.12, 5.14 and 5.16, this is not the case. Fringe 

patterns do have similarities but the number of fringes 

visible and the fringe orders are different. Slices S and 

S 6 differ in their fringe patterns because the location of 

the slice varies. Both have the same thickness and are 

removed from adjacent positions along which slices S 1 and 

S 7 have been cut. Therefore, the analysis lines for slices 

82B and S 6 are not identically symmetrical. In other words, 

6-8 mm thick slices cut are not exactly in the center of 

12.7 mm thick fibers. Since three-fiber reinforcement 

dominates over that of a section with two-fibers, fringe 

pattern is sensitive to slight changes in position of 

slices. This means that extreme care must be taken in 

selecting the position of the slice to be cut. Unless the 

analysis dictates otherwise, the slice should always be 

removed from the center of the fiber thickness. 

Assuming that slice S4 is perfectly cut, it can be 

considered as a typical representation of the fringe pattern 

in a slice containing three fibers, since it is far removed 

from the free-edge effects. For stress analysis along lines 

AA', CC' and EE', stresses a x y and a have to be separated 

out. The region of most interest is the area between the 
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Figure 5.12: Tsochromatic fringe pattern for slice S2B. 

A& -;%.. AL 

Figure 5.13: 0 Isoclinics for slice S 2 ( model B). 
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Figure 5.14: Isochromatic fringe pattern for slice S4B. 

0 Figure 5.15: 0 Isoclinics for slice S 4 ( model B). 
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Figure 5.16: Isochromatic fringe pattern for slice S6B. 

I-

Figure 5.17: 0 Isoclinics for slice S 6 ( model B). 
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fibers. The problem encountered here is again that of 

discontinuity of fringes. Also, because a zero-order black 

fringe was not observed, an assumption has to be made for a 

given fringe order. It can be assumed that the fringe in the 

center has a zero order. It is based on two reasons: 

1) theoretically, due to the pure bending effect 

throughout the middle section, the shear stress 

should be zero. This is further confirmed by 2-D 

finite-element analysis for three-fiber slice in 

section 5.3. 

ii) the fringe pattern in the x-direction on either 

side of the analysis line is totally symmetrical. 

Since the fringe order has to be continuous in 

both directions (+x), therefore, the fringe in the 

center has a common value for the fringe order. 

Again further analysis is not possible due the 

discontinuities encountered in the fringe pattern. 

Slices S3AA3B  and S 5 

These slices contain two reinforcing rods. Isochromatic 
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fringe pattern and 00 isoclinics for slices SS A , S 3 and 55B 

are shown in figures 5.18 & 5.19, figures 5.20 & 5.21, and 

figures 5.22 & 5.23, respectively. Slice S 3 removed from 

model A represents half the fringe pattern of slices 53B and 

The fringe patterns are symmetrical about the middle 

i.e. analysis lines BB' and DD'. Fringe pattern in slice S 3 

is compatible with that of slices S 3 and SSB. Observing the 

fringe patterns in figures 5.18, 5.20 and 5.22, it confirms 

the earlier theory that slices from two identical models can 

be combined for analysis. 

Comparing the fringe pattern in figures 5.20 and 5.22 it is 

clear that they are almost identical. This is to be expected 

as the slices are symmetrical about the center of the 

composite model. This also shows that the fringe pattern in 

slices with two fibers is less sensitive to the location of 

cut as compared to the one in slices with three fibers. 

Slices S 3 and S 5 were the only ones in which a zero-order 

black fringe was visible. It was expected that this fringe 

would be located between the fibers since it would then be 

near the neutral axis due to geometrical symmetry. This 

would make it easier to interpret the exact location of 

neutral axis for the composite model. The FEM results 

confirmed this expectation. 
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Figure 5.18: Isochromatic fringe pattern for slice S3A. 

Figure 5.19: 0 Isoclinics for slice S 3 ( model A). 



I 
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Figure 5.20: Isochromatic fringe pattern for slice S3B. 

° Figure 5.21: 0 Isoclinics for slice S 3 ( model B). 
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Figure 5.22: Isochroniatic fringe pattern for slice SSB. 

Figure 5.23: 0 Isoclinics for slice S 5 ( model B). 
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The fringe pattern in the top portion of slices S3 and S5 

can be analysed in two ways. Theoretically, the portion of 

matrix material bounded by the fiber and the two loading 

points should end up in compression. Observing the fringe 

pattern in the top portion of slices S3 and S5 in Figures 

5.20 and 5.22. a=O at the top free-edge and the fringe 

pattern along the analysis line has 0 isoclinics. 

Therefore, the equation for a at any point becomes: 

a XX I X  xx Ix0 a - M xz Ix0+x/2 

Since there are no slices in the xz-plane, therefore, 4r5 

values cannot be determined. It is also obvious that 
xz 

cannot be zero, otherwise, it would indicate that a x can be 

determined from the fringe pattern in the top portion of 

slices S3 and S5 . It would be theoretically impossible 

because the stresses associated with this particular fringe 

pattern change signs about the zero order fringe. Therefore, 

if the fringe pattern corresponded only to a, it would 

result in the matrix in the top portion being in compression 

and tension. Since the above is theoretically impossible, it 

can be inferred that r cannot be zero and a has to be 
xz y 

known before the a distribution can be evaluated. 
x 

The fringe pattern in the top portion of slices S3 and S5 
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has been rationalised above using theoretical methods. 

However, it has to be acknowledged that this is based on 

simple beam theory for a homogeneous material. Therefore, a 

distinct possibility exists that the fringe pattern and the 

stress reversal is real. This might be due to the strong 

influence of the surrounding three fiber planes on the two 

fiber distribution. But to confirm or prove any of the above 

interpretations more experimentation without discontinuities 

is needed for this particular behaviour to be studied. 

Separation of Stresses for Slices in XY-Plane  

To separate the stress a and one of the stress 

components has to be known at a point. It is known that a=O 

at the free edge. But the analysis cannot proceed much 

further because of the discontinuity encountered in the form 

of reinforcing rods. Observing the 00 isoclinics for these 

slices it is seen that the analysis lines fall under these 

dark bands. Therefore, these slices are principal planes and 

and 0y principal stresses. With the fringe orders 

established, ax Cy is given by equation 2.23. 

Combined with slice C1, results in 

a x y - a z a N f /t 

and, 

o y - az x c = N f /t 
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It is obvious that more information is needed to solve for 

a x y z , a and a . Another equation is required to solve for the 

three unknowns. Therefore, to complete the analysis either 

one of the stress components has to be found by another 

complimentary method, or, the reinforcing rods should be 

changed for ones with optical properties. 

The only point where stress a can be evaluated is at the 

top free edge in slice S 3 and SSB. Observing figures 5.20 

and 5.22, Nl. Since a,=O at the free edge, substituting in 

equation: 

a x y a - a = N f /t 

a x 3B 5B can be evaluated. Thickness ' t' for slices S and S is 

7.35 mm and 7.65 mm respectively. Therefore, the average 

stress at the top edge is 59 kPa. While calculating the load 

desired for stress freezing, the stress at the top edge was 

calculated as 360 kPa for the two fiber plane and 103 kPa 

for the three fiber plane. As it can be seen a value of 

360 kPa is not comparable to 59 kPa. One of the reasons for 

this descrepancy is the fact that simple transformed section 

theory was applied for the load calculation. Basically this 

calculation was performed only to approximate a load to stay 
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in the elastic range. A better comparative study is carried 

out by using the results from the FEM analysis and the 

experimental photoelastic analysis. 

Table 5.1 shows the photoelastic data from the composite 

model slices. Thickness of individual slices shown is after 

polishing. Most of the slices were about 7.3 to 7.8mm thick. 

Table 5.1: Photoelastic data from composite model slices. 

Slice Thickness 

t, mm 

Fringe Order N, 

at loading points 

Left Right 

Range of Fringe 

Order along 

Analysis Lines 

Calib.l 7.75 > 8 > 8 0 - 6.2 

C1 5.15 N/A N/A 0 - 3 

S 1 4.8-5.3 > 12 > 12 0 - 1 

S 3 6.40 N/A > 22 0 - 2 

S 1 2.45 16 15 0 - 1 

S 2 7.80 * * 0 - 2 

S 3 7.35 > 28 > 24 0 - 2 

S 4 7.35 * * 0-2 

S 5 7.65 > 24 > 24 0 - 2 

S 6 7.80 * * 0 - 2 

S 7 4.45 > 14 14 0 - 1 

* - Not Resolvable. 
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Main exceptions being slices S1A , SiB and S7B. This is 

because these slices were cut from the edge of the model. 

Maximum thickness that could have been achieved for slice 

S 1 was 3 mm, since it contains only the matrix part at the 

edge of the composite model. Fringe order N, at the left and 

right loading points is high because of stress 

concentrations at that point. Values shown are of maximum 

resolved fringe order. In most cases the actual fringe order 

was higher than what could be resolved. Along analysis lines 

in the slices in the xy-plane ( slices S.), fringe order 

varied from 0-2. The reason being that most of the loading 

is taken by the reinforcing rods. Therefore, the fringe 

order is low because stresses in the matrix are small as 

compared to the fibers. 

In retrospect, even though the modelling based on stiffness 

ratio was satisfied, discontinuities in the stress field 

cannot be tolerated if a full field stress analysis is to be 

determined. Initially this problem was not fully appreciated 

since the interest was in the stress distribution in the 

matrix. Therefore, to perform a complete three dimensional 

stress analysis using photoelastic techniques, reinforcing 

fibers with photoelastic behaviour must be used. 
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5.3 FINITE ELEMENT ANALYSIS  

Finite element analysis for the photoelastic composite 

model was undertaken for two reasons: 

i) to be used as a complimentary method for 

photoelastic analysis. Primarily to get some 

starting points to help establish fringe orders in 

photoelastic fringe patterns. 

ii) to study the applicability of finite element 

results in the overall analysis. 

The finite element study for the composite model was done by 

using the finite element package ANSYS. Finite element 

analysis simulated the actual loading conditions of the 

composite model. Two-dimensional analysis simulated 

individual slices cut, whereas, three-dimensional analysis 

gave a rough approximation of the overall behaviour. For two 

dimensional analysis 2-D Isoparametric Solid elements were 

used. Each element was defined by four nodes and each node 

had two degrees of freedom. For three dimensional analysis 

3-D Isoparametric Solid elements were used. Each node was 

defined by eight nodes and each node had three degrees of 

freedom. The degrees of freedom allowed were translation in 
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X-, y- and/or z-direction. Fiber and matrix behaviour was 

simulated by assigning different stiffness values to the 

corresponding elements. The stiffness values assigned were 

the measured values of Young's modulus of the fiber and 

matrix material at the stress freezing temperature. 

Two dimensional finite element analysis was carried out for 

both two fiber and three fiber slices. Two fiber analysis 

simulated the behaviour of slices 53 and 55 as shown in 

figure 5.24. Three fiber analysis simulated the behaviour of 

slices S2, 54 and S6 as shown in figure 5.25. The analysis 

was done as a thin beam loaded in four-point bending with 

the thickness being 6.4 nun ( 1/4"). Loads were calculated by 

dividing the total uniformly distributed load into 

individual slices. Results and stresses shown are for the 

region along the analysis lines described earlier. 

5.3.1 Two-Dimensional Analysis  

Three Fiber Analysis  

Finite element analysis for the three fiber plane 

simulated the behaviour of slices S2, S4 and S6. Finite 

element mesh used to model the slices is shown in figure 

5.26. This mesh consisted of 378 nodes and 338 elements. 
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Figure 5.26: Finite element mesh for composite model slice 
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Elements marked 1 and 2 indicate the matrix and fiber 

sections. Arrows indicate the concentrated load of 89 N 

applied on nodes 369 and 374 at the top edge of the model. 

Lines connecting node 7 to node 371 and node 8 to node 372 

simulate the analysis lines AA', CC and EE shown in figure 

5.4. The stress distributions S , S 
x y 

these node numbers. Also, S x and 

and S xy are plotted for 

S xy contour maps are 

plotted for comparison with the fringe pattern in the 

corresponding photoelastic slice. The stress distributions 

and contour maps are shown in 

distance marked on the x-axis 

analysis line measured from the 

figures 5.27 to 5.32. The 

is the distance along the 

bottom of the cross-section 

to the top. Therefore, as a beam, the stresses are plotted 

from the tensile to the compressive region. 

Figures 5.27 and 5.28 show the S x stress distribution in the 

complete section and along the analysis line AA'/CC'/EE', 

respectively. Observing figure 5.27 it is clear that the 

stresses are concentrated in the fibers. Figure 5.28 shows 

S x to be maximum in the fibers. Stresses in the middle fiber 

are low because of the proximity to the neutral axis. 

Maximum stress in the fibers is 700 kPa where as, maximum 

stress in the matrix is 30 kPa. The Neutral axis as 

indicated by the zero stress level coincides with the 

centroid. 



Figure 5.27: Average Sx distribution 

slice with three fibers ( Sx stress contours). 
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Figure 5.28: Sx distribution along the simulated analysis 

line in the three fiber slice. 
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Stresses in the matrix follow a linear distribution through 

the neutral axis. Stresses in the matrix are almost 

negligible in comparison to stresses in the fibers. This is 

especially true of the regions between fibers where the 

stresses are almost zero. The maximum a f /am ratio is = 24 

which is close to E1/EM = 26. This behaviour is as expected 

because of the strain compatibility between the two 

components. 

The S stress along the analysis line is plotted in figure 

5.29. The stress is zero at the bottom and maximum at the 

top. Theoretically, S should be also be zero at the top 

free edge. The reasons for such deviation are not apparent. 

In, general, the stress values are low and S 

than 3 of S 
xmax 

ymax 
is less 

The Sxy stress contours and stress distributions along the 

node numbers indicated are plotted in figures 5.30 to 5.32. 

Observing S xy plots the values are almost negligible as 

compared to stresses in the x-direction. From figure 5.30 

is zero in the middle ( corrresponds to analysis line), 

and in general low in the pure bending region. Also, 

observing figures 5.31 and 5.32, Sxy values are equal in 

magnitude and opposite in direction on either side of the 

analysis line. This behaviour is expected and is in 
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Figure 5.29: Sy distribution along the simulated analysis 

line in the three fiber slice. 



Sxy=O along this 

Figure 5.30: Average Sxy distribution in composite model 

slice with three fibers ( Sxy stress contours). 
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Figure 5.31: Sxy stress distributionalong node 7 to node 

371 to simulate the analysis line in the 

three fiber slice. 
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slice. 
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agreement with the fringe pattern for slices S2, S4 and S6. 

Since S, is zero in the center along the analysis line it 

can be concluded that away from the stress concentrations 

the shear stress is zero under pure bending. 

Two Fiber Analysis  

Finite element analysis for the two fiber plane 

simulated the behaviour of slices $ 3 and S 5*Finite element 

mesh used to model the slices is shown in figure 5.33. This 

mesh consisted of 350 nodes and 312 elements. Elements 

marked 1 and 2 indicate the matrix and fiber sections. 

Arrows indicate the concentrated load of 89 N applied on 

nodes 341 and 346 at the top edge of the model. Lines 

connecting node 7 to node 343 and node 8 to node 344 

simulate the analysis lines BB' and DD'. Stress 

distributions Sx, Sy and Sxy are plotted for these node 

numbers. Also, a x xy and r contour maps are plotted for 

comparison with the fringe pattern in the corresponding 

slices. The stress distributions and contour maps are shown 

in figures 5.34 to 5.39. 

Figure 5.34 shows the S stress contours for the complete 

slice where as figure 5.35 shows the S x stress distribution 

along analysis lines BB' and DD'. Again, observing figure 
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Figure 5.33: Finite element mesh for the composite model 

slice with two fibers. 
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Figure 5.34: SXavg distribution in the 
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Figure 5.35: Sx distribution along the simulated analysis 

line in the two fiber slice. 
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5.34 it is obvious that stresses are concentrated in the 

fibers. Overall behaviour of two fiber slice is similar to 

that of three fiber slice. In figure 5.35 the maximum stress 

S in the fiber is = 1125 kPa which occurs in the top and 

the bottom fibers. In comparison, maximum stress in the 

matrix is = 100 kPa which occurs at the top and bottom end 

i.e. node 343&344 and node 7&8 respectively. This is to be 

expected as these two points are the farthest away from the 

neutral axis. Stresses in the matrix are linear and 

symmetrical about the neutral axis which coincides with the 

centroid. The S stress values are higher in the reinforcing 

fibers in the two fiber slice than in the three fiber slice. 

Since the majority of the loading is taken up by the fibers, 

the distribution of stresses in the two fibers is higher 

than in the three fibers for the loading condition used 

here. 

The S stress distribution along analysis lines BB' and DD' 

is plotted in figure 5.36. Majority of the S stress values 

are less than one percent of S xmax ymax with S being 

approximately two percent. The change in 5y from compression 

to tension and back in compression has no theoretical 

explanation. Theoretically, the final S value should be 

zero at the free edge. Though it is not the case, stress is 

low enough to be assumed as such. 
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Figure 5.36: Sy distribution along the simulated 

analysis line in the two fiber slice. 
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The Sxy stress contours and stress distributions along the 

node numbers indicated are plotted in figures 5.37 to 5.39. 

Shear stress distribution in the two fiber slice is similar 

to that in three fiber slice. The shear stress S is zero 
xy 

in the middle, and in general, low in the pure bending 

region. The S xy values in figure 5.38 and 5.39 are within 

0.5-1.8 percent of S xmax . Again, observing figures 5.38 and 

5.39, shear stress values are equal in magnitude and 

opposite in direction on either side of the analysis line. 

This behaviour is in agreement with the fringe pattern for 

slices S and 55• 
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Figure 5.37: Average Sxy distribution in the composite 

model slice with two fibers ( Sxy stress contours). 
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5.3.2 Three-Dimensional Analysis  

Three-dimensional analysis was undertaken to acquire a 

whole field effect. Based on symmetry only a quarter of the 

composite beam was analysed. Also, due to computing power 

limitations the fibers were modelled as square fibers. The 

fiber volume fraction was kept constant at 40 by matching 

the cross-sectional area of the square fiber with the actual 

circular one. Spacing between the fibers was maintained at 

12.7mm ( 1/2"). 

The finite element mesh used to model three-dimensional 

behaviour is shown in figure 5.40. This mesh consisted of 

980 nodes and 702 elements. Elements marked 1 and 2 indicate 

the matrix and fiber sections. Line connecting node 869 to 

node 882 simulates the analysis line AA', node 911 to node 

924 similates BB' and node 967 to node 980 simulates the 

analysis line CC'. Stresses S x y z xy , S , S and S plotted along 

lines AA', BB' and CC' are shown in figures 5.41 to 5.52. 

The distance marked on the x-axis is the distance along the 

analysis line measured from the bottom of the cross-section 

to the top. 

In the finite element analysis major emphasis is on stresses 

in the x-direction. Due to the nature of loading applied in 
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Figure 5.40: Finite element mesh for three-dimensional 

composite model ( cross-sectional view). 
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the xy-plane, the loading stresses induced are in the 

x-direction. Stresses in y- and z-direction are Poisson 

stresses. 

Stress S x is plotted for both three-fiber and two-fiber 

sections in figures 5.41 to 5.43. Figures 5.41 and 5.43 

simulate the stress distribution along the analysis lines 

AA'/EE' and CC' in the three fiber sections. Figure 5.42 

simulates the Sx stress distribution along the analysis line 

BB'/DD' in the two fiber section. Stress distribution in the 

fibers in the three-fiber section is similar but higher than 

in the two-fiber section. It is opposite to that of 2-D 

analysis where maximum stress values in individual fibers 

occurred in two-fiber slices. This can be explained because 

the two-dimensional analysis is not representative since it 

does not take into account the effect of surrounding three 

fiber distribution. For example, a two-fiber slice analysis 

in figure 5.35 would not show the influence of three-fiber 

distribution surrounding it as in the real situation. As 

expected, for both two fiber and three fiber sections 

stresses in the matrix are low. Similar to two dimensional 

behaviour these stresses are linear and symmetrical about 

the neutral axis. Again the neutral axis coincides with the 

centroid. Overall, stresses in the matrix from three 

dimensional analysis are comparable to those from two 

dimensional analysis. For example, in figure 5.35 in the two 
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fiber slice at the bottom free edge ( node 7 or 8) S x =100 

kPa, where as in figure 5.42 in the two fiber section at 

node 967 S x ll5 kPa. This indicates that stresses in the 

matrix for 2-D and 3-D analysis are comparable. Something 

that is clear from three-dimensional analysis is that 

three--fiber distribution does dominate the overall behaviour 

in the composite model. 

Stresses S xy are plotted in figures 5.44 to 5.46. Figures 

5.44 and 5.46 show the stress distribution along the 

analysis lines AA'/EE' and CC' in the three fiber sections. 

Figure 5.45 shows the stress distribution along the analysis 

line BB'/DD' in the two fiber section. In both two fiber and 

three fiber sections the shear stress values are low in the 

matrix but much higher in the fibers. Also, as seen in 

figures 5.44 to 5.46, Sxy stress values are minimum in the 

center which is the neutral axis. This behaviour is opposite 

to that of homogeneous materials where the maximum shear 

stress occurs at the neutral 

in figure 5.45 shear stress 

is completely linear. These 

axis. For the two fiber section 

distribution within the fibers 

stress values are lower in the 

two fiber section as compared to the three fiber sections in 

figures 5.44 and 5.46. 

Values for S xy x are low as compared to S . Observing figures 
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5.44 to 5.46 it is clear that away from the top free edge 

S is close to zero. This is consistent with the results xy 

obtained from the two-dimensional analysis. Most of the S 
xy 

stress values are within one percent of the S xmax . Stresses 

at the top edge may have been influenced by the stress 

concentrations in the loading plane. 

Stress S is plotted in figures 5.47 to 5.49. Figures 5.47 

and 5.49 show Sy stress distribution along the analysis 

lines AA'/EE and CC , in the three fiber planes. Figure 5.48 

shows the Sy stress distribution along the analysis line 

BB'/DD' in the two fiber plane. The Sy stress distribution 

is similar for both the two fiber and the three fiber 

sections. This stress is low along lines AA' and BB' but a 

little higher along line CC'. These stress values are 

minimum at the bottom free edge but increase steadily to the 

top free edge. The stress S is maximum at the top edge 

where theoretically it should be zero. It is in total 

deviation from results in the two-dimensional analysis. The 

reason for such an error is that the finite element mesh is 

not fine enough. For example, in figure 5.40 along nodes 911 

to 924, at the top and bottom free edge in the finite 

element mesh only one element bridges the gap between the 

free edge and the fiber. Due to computation limitations 

finite element mesh cannot be further refined. Therefore, 
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because of the averaging effect within an element the stress 

value appears higher than it actually should be. 

The S stress distribution is plotted in figures 5.50 to 

5.52. Figures 5.50 and 5.52 show the stress distribution 

along the analysis lines AA'/EE' and CC' in the three fiber 

sections. Figure 5.51 shows the stress distribution along 

the analysis line BB'/DD' in the two fiber section. This 

stress distribution is completely different for the two 

fiber and the three fiber sections. In the two fiber section 

the stress Sz is zero at the top free edge where as in the 

three fiber section it is maximum at that point. Observing 

figure 5.51, S stress values are less than one percent of 

S xmax . Also, the stress distribution is linear in the bottom 

fiber but almost constant in the top fiber. In the three 

fiber sections the Sz stress distribution is linear in the 

top and the middle fiber. In figures 5.50 and 5.52 S values 

along analysis lines AA' and CC' oscillate about zero stress 

value. These oscillations diverge to a maximum stress value 

at the top free edge. The reason for the stresses appearing 

to be high along the top free edge could be the effect of 

loading points in that plane. In general, S stress 

distribution is negligible as compared to stress S. 

The analysis carried out in sections 5.3.1 and 5.3.2 gives 
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some indication of the overall behaviour of the fiber 

composite model. Three-dimensional finite element analysis 

indicates that the three fiber plane dominates the overall 

behaviour of the composite model. Stresses in the matrix are 

linear and symmetrical about the neutral axis. The neutral 

axis is found to coincide with the centroid for both two-

and three-dimensional analysis. Under pure bending the shear 

stress is zero away from the stress concentration or loading 

points. 
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CHAPTER SIX 

DISCUSSION  

In the previous chapter results from photoelastic and 

finite element analysis were conducted separately. 

Quantitative results from finite element analysis are not 

directly applicable because of the approximations and 

simplifications made. However, qualitatively these results 

do offer some insight into the overall behaviour of the 

composite model under four-point bending. From the finite 

element results it can be inferred that: 

majority of the load is taken up by the reinforcing 

fibers and the maximum stress occurs in the middle 

of the fibers. 

three-dimensional and two-dimensional results 

indicate that the neutral axis for the composite 

beam coincides with the neutral axis due to 

geometrical symmetry. 

iii) the three fiber plane dominates the overall 

behaviour of the composite model, with nominal 

contribution resulting from the two fiber plane. 
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Similarities in the FEM results and photoelastic fringe 

pattern are easy to observe. Shear stress is zero along the 

analysis line for both methods. Secondly, in the 

two—dimensional study r xy (xy S ) results are symmetrical about 

the analysis line and have opposite signs. This is in 

agreement with photoelastic results where the symmetrical 

fringe pattern about the analysis line has opposite signs 

for the shear stress. Before proceeding further, one point 

needs to be made clear, the FEM stress plots are for each 

individual stress component. Photoelastic fringe pattern 

contains a combination of a Cy and r xy stress components. 

Therefore, when comparing the two results the above has to 

be kept in mind. 

Since the photoelastic analysis does not show the stress 

distribution in the fibers the comparison is carried out for 

stresses in the matrix part. Comparing the maximum and 

minimum stress values it is observed that the low values 

occur in the matrix material. It is true for photoelastic 

analysis as well since the fringe order along the analysis 

line in the matrix is quite low. In the two fiber slice the 

stress c can be evaluated at the free edge in the top 

matrix part through photoelastic analysis. Observing figure 

5.17, a = 0 at the top edge and the fringe order N = 1. 
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This gives a x = 70 kPa. Comparing the values for a at the 

top edge for the two fiber slice: 

Photoelastic analysis 

3-D and 2-D two fiber plane 

finite element analysis 

(fig. 5.42 and 5.36 respectively) 

59 kPa ( 9 psi) 

100-112 kPa 

(14.5-16.2 psi) 

To calculate the amount of load desired to stay in the 

elastic region, simple transformed section theory was 

applied. Using this theory the stresses were predicted for 

the same load. Stress a at the top free edge was 103 kPa in 

the three fiber slice and 360 kPa in the two fiber slice. It 

is evident that the stress value for the two fiber slice is 

not comparable to the experimental value. There could 

basically be two reasons for this. First, the transformed 

section theory is not totally applicable to a fiber 

composite material.For example, in the case of reinforced 

concrete beam, reinforcing steel bars are in tension and the 

concrete in compression. However, in the present study the 

reinforcement is not limited to a region in tension or 

compression and therefore, the overall behaviour may or may 

not be symmetrical about the neutral axis. Secondly, since 

the calculation for the loads involved a two-dimensional 

approach, it does not represent the effects of reinforcement 

in the adjacent planes. This could be true as the evidence 
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already discussed showed that the stress distribution in the 

two fiber plane is influenced by the dominating behaviour of 

the surrounding three fiber plane. 

Similarities in the results from both methods indicate that 

the two techniques can be used in combination. However, for 

the required three-dimensional finite element results to be 

directly applicable a much more refined mesh has to be used 

to model the exact behaviour. The cross-section of the 

reinforcing fibers have to be modelled accurately rather 

than making any approximations. This means a large number of 

nodes and elements are needed which would require a super 

computer. 

Results obtained from the photoleastic analysis indicate 

that a complete investigation of stresses within a fiber 

composite is possible provided some modifications are made. 

Firstly, the material for fibers should be replaced with one 

having some photoelastic properties. One option would be to 

use another resin/epoxy with photoelastic properties but a 

higher Young's modulus. The reinforcing rods could be cast 

out of this material prior to the casting of the complete 

composite model. This would result in a fiber composite 

model that is totally transparent with both the fiber and 

the matrix having photoelastic properties. This will enable 
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a complete analysis of stresses in a composite model because 

discontinuities in the fringe orders would be eliminated. 

Such an analysis would include knowledge of stress 

distributions in both the matrix and the fibers. Knowing the 

stress distribution and the applied loads, it will be 

possible to derive a theoretical relationship from the 

experimental data. 

For a homogeneous material under bending, stress is given 

by: 

Mc 

I 
(6.1) 

Therefore, for a composite material the relation can be 

assumed as: 

Mc 
a = 

I 

where, 

(6.2) 

'k' is an unknown constant to account for the 

non-homogeneous behaviour of the composite. Since, ' k' is 

the only unknown in eqn.(6.2), substituting for known values 

of stress and load it can be evaluated. Further, by testing 

composite models with fiber volume fraction varying from 3O≤ 

to 6O will provide information on change of overall 
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behaviour and in the value for ' k' for variation in fiber 

volume fraction. 

In order to apply the results from the experimentation to 

the AS4/3501-6 graphite fiber composite, results have to be 

extrapolated down to the actual size of fibers. It means 

that scaling factors have to be established. It is proposed 

that fiber diameters of 3mm, 6mm and 25mm ( 1/8", 1/4" and 

1") be used for a given fiber volume fraction. These sizes 

are based on physical and practical limitations for 

photoelastic analysis. Combined with the data from composite 

models with 12.7mm ( 1/2") diameter fibers, sufficient data 

points would be available for an extrapolation curve. 
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CHAPTER SEVEN 

CONCLUSIONS  

A three-dimensional stress distribution study was 

undertaken for photoelastic fiber composite models using 

photoelasticity and finite element techniques. Results from 

both of the methods were obtained and discussed. The 

following conclusions may be drawn: 

1. Two identical photoelastic fiber composite models can 

be used for three-dimensional stress analysis. Slices 

removed from these models can be combined for overall 

analysis. 

2. The three fiber plane dominates the overall behaviour 

of the composite model as compared to the two-fiber 

plane. 

3. A material with photoelastic properties for 

reinforcement fibers should be used in the photoelastic 

composite model. This should 'provide for a complete 

analysis of three-dimensional stress distribution in a 

fiber composite model. 
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4. Based on experimental photoelastic analysis it is 

possible to derive a theoretical method of predicting 

stresses in the composite material under bending loads. 

5. Results from photoelasticity and finite elements show 

good correlation. It indicates that the two techniques 

can be used in conjunction with each other for better 

results and accuracy. 

6. Under pure bending, the shear stress, r, is zero in 

the matrix part of the fiber composite model. 

7. Fringe pattern in the photoelastic material was very 

sensitive to the heat buildup during slicing and 

polishing. A constant stream of coolant lubrication 

has to be maintained for an unaffected fringe pattern. 

8. Technique was developed for cutting composite 

photoelastic model without delamination along fibers. 

9. The technique of photoelasticity proved to be a time 

consuming method. Thus, care must be taken in future 

work. 
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CHAPTER EIGHT 

RECOMMENDATIONS  

Preceeding work done can be considered as groundwork 

for future studies. Much needs to be done to understand the 

stress distribution inside a fiber composite. Future work 

has to be continued on composite photoelastic models. The 

scaling factors need to be investigated by using composite 

models with varying fiber diameters. All equipment and 

instrumentation is now in place for continuation of such 

work. This equipment and instrumentation was made specially 

for stress freezing methods and is able to withstand higher 

temperatures for extended periods of time. 

It is recommended that a material with photoelastic 

properties be used for reinforcing fibers in the composite 

models. It is further recommended that 

fiber diameters of 3mm, 6mm and 25mm 

scaling factors. The application of 

photoelastic experimental data should 

prediction method. Such a prediction 

composite models with 

be used to establish 

scaling factors and 

lead to a theoretical 

equation/method could 

be verified by using an alternate loading method such as 

uniform pressure loading or three-point bending. 
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Other investigations that could be undertaken involve the 

study of stress distribution between fibers in a diagonal 

direction. This should help in understanding the influence 

of reinforcing fibers in adjacent planes on the stresses in 

the matrix material. 



134 

REFERENCES  

1. J. W. Daily and W. F. Riley,"EXPERIMENTAL STRESS 

ANALYSIS", McGraw-Hill ( 1965). 

2. S. Redner,"PHOTOELASTICITY", John Willy ( 1968). 

3. H.T. Jessop and F.C. Harris,"PHOTOELASTICITY - 

Principles and Methods", Dover Publications ( New York), 

1949. 

4. B.D. Agarwal and L.J. Broutxnan,"Analysis and 

Performance of Fiber Composites", John Willy ( New 

York), 1980. 

5. I. Le May, "Principles of Mechanical Metallurgy", 

Elsevier, New York, Oxford, 1980. 

6. M.M. Frocht and R. Guernsey Jr.,"A Special 

Investigation to Develop a General Method for Three-

Dimensional Photoelastic Stress Analysis", Selected 

Papers of M.M. Frocht On Photoelasticity, Pergamon 

Press, 1969, pp.233-270. 

7. K.A. Jacob and K. Chandrashekhara,"Photoelastic 

Analysis of a Composite Prism Subjected to Partial 

Compression," J. of Applied Mechanics, vol. 45 no 2, 

June 1978, pp.436-440. 

8. H.Pih and C.E. Knight,"Photoelastic Analysis of 

Anisotropic Fiber-reinforced Composites", J. of 

Composite Materials, vol 3, Jan. 1969, pp.94-107. 



135 

9. R. C. Sampson,"A Stress-optic Law for Photoelastic 

Analysis of Orthotropic Composites", Exp. Mechanics, 

vol 10 no 5, May 1970, pp.210-215. 

10. C. W. Bert,"Theory of Photoelasticity for Birefringent 

Filamentary Composites", Fibre Science and Technology, 

vol 5 1972, pp. 165-171. 

11. J. Cernosek,"On Photoelastic Response of Composites", 

Exp. Mechanics, vol 11 no 8, Sept. 1975, pp. 354-357. 

12. R. B. Pipes and J.W. Dally,"On the Fiber-reinforced 

Birefringent Composite Materials", Exp. Mechanics, 

August 1973, pp.348-349. 

13. C.E. Knight and H. Pih,"Orthotropic Stress-optic Law 

for Plane Stress Photoelasticity of Composite 

Materials", Fibre Science and Technology, vol 9, 1976, 

pp.297-313. 

14. H.T. Hahn and D.H. Morris,"Anisotropic Photoelasticity 

with Application to Composites", Fibre Science and 

Technology, vol 11 1978, pp.113-125. 

15. B.D. Agarwal and S.K. Chaturvedi,"Improved Birefringent 

Composites and Assessment of Photoelastic Theories", 

Fibre Science and Technology, vol 11 1978, pp.399-412. 

16. E.E. Gdoutos,"Isochromatic Patterns in a Plate with a 

Rigid Fibre Inclusion", Fibre Science and Technology, 

vol 15 1981, pp.299-311. 



136 

17. J.W. Daily and H. Prabhakaran, " Photo-orthotropic--

Elasticity", Experimental Mechanics, vol 11 no 8, Aug. 

1971, pp.346-356. 

18. R.G. Craig, M.J. Gutzwiller, R.H. Lee and E.O. Stitz,"A 

Composite Three-dimensional Photoelastic Method", 

Experimental Mechanics, vol 17 no 11, Nov. 1977. 

pp. 433-438 

19. K. Chandrashekhara, K.A. jacob and H. Prabhakaran, 

"Towards Stress Freezing in Birefringent Orthotropic 

Composite Models", Exp. Mechanics, vol 17 no 8, August 

1977. pp.317-320. 

20. D.R. Sutliff and H. Pih,"Three-dimensional 

Scattered- light Stress Analysis of Discontinuous 

Fibre-reinforced Composites", Exp. Mechanics, vol 13 

no 7, July 1973. pp.294-298. 

21. L.B. Greszczuk,"Interfiber Stresses in Filamentary 

Composites", AIAA Journal, vol 9 no 7, July 1971. 

pp.1274-1280. 

22. R.H. Marloff and I.M. Daniel,"Three-dimensional 

Photoelastic Analysis of a Fiber-reinforced Composite 

Model", Exp. Mechanics, April 1969. pp.156-162. 

23. D.F. Adams and D.H. Doner,"Transverse Normal Loading of 

a Unidirectional Composite", Journal of Composite 

Materials, vol 7 1967. pp.152-164. 



137 

24. I.M. Daniel,"Photoelastic Investigation of Composites," 

Composite Materials, vol 2 1974, pp.433-489. 

25. J. Hancock,"Residual Stresses In The Photoelastic 

Analysis Of Composite Material", STRAIN, vol 11 no 4, 

1975. pp.174-175. 

26. H. Pih and D.R. Sutliff, "Effect of Fiber End, Fiber 

Orientation and Spacing In Composite Materials", 

Composite Materials, 5th Southeastern Conference On 

Theoretical and Applied Mechanics, 1970-71. pp.883-913. 

27. A.J. Durelli, V.J. Parks, H.C. Fend and F. 

Chiang,"Strains and Stresses in Matrices With Inserts", 

Catholic Uni. of America Report, contract No. 

Nonr2249(06), May 1967. 

28. J.G. Goree,"In-Plane Loading in an Elastic Matrix 

Containing Two Cylindrical Inclusions", Journal of 

Composite Materials, vol.1 1967. pp.404-412. 



138 

APPENDIX A 



139 

Table A.1: Properties of materials tested at 116 C. 

Material Young's Modulus Yield Strength Tensile Strength 
(ksi) (psi) (psi) 

Matrix: 

PLM-4 2.5 280 280 

Fiber: 

Nylon 6-6 40-45 2850-3300 4900-5250 

Nylon 101 50.4 4300-4400 4900-5000 

Nylatron OS 64-66 2000 4000 

Teflon Melted at 116 C. 
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FIGURE A.1 
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*Upto the yield strength. 

FIGURE A.2 
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Experimental a-e diagram for Nylatron GS rods at 116C 

jpto the final fracture strain.  

FIGURE A.3 
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FIGURE A.4 
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*Composite model strength based on equation 2.6.  
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FIGURE A.5 
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LOAD VS STRAIN(j) 
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Figure A.6: Calibration curve for load cells. 

*Load cells marked #1 & #2 are identical except for the sensitivity. 



146 

TEMPERATURE vs CAM RADIUS 
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Figure A.?: Calibration curves for Blue-M furnace. 


