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Abstract
 

A goal-driven mobile robot navigation system is proposed for unknown indoor envi

ronments. The proposed system can be subdivided into four main modules, namely, 

localization, mapping, motion control, and goal detection. 

In the proposed system, a mobile robot uses an odometry system and a Kinect sensor 

as its input devices. An optimal particle filter models the posterior over the robot 

trajectory while minimizing the variance of the importance weights of the particles. 

Occupancy grid maps are employed to represent the environment as they do not make 

any assumptions on distinguishable landmarks. A nearness-diagram reactive navigation 

technique generates motion commands based on the robot position and navigation goal 

location. A trajectory parameter space is used as an abstraction layer of the robot shape 

and kinematic constraints for the nearness-diagram method. A goal-driven situation 

assessment framework based on fuzzy cognitive maps is developed to verify navigation 

goals using sensory information and expert knowledge. 
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Chapter 1 

Introduction 

Robotics is an interdisciplinary field of study which combines the technologies from 

mechanical engineering, electrical engineering, biological science, and computer science. 

Active research in robotics has revolutionized many aspects of our lives. It finds useful 

applications in various fields such as industrial assembly lines [1, 2], household environ

ments [3], surveillance [4], search and rescue [5], military battle fields [6, 7], automotive 

industry [8], medical domain [9], and planetary explorations [10, 11]. Such robots have 

to fulfill highly demanding goals while coping with external constraints. Therefore most 

of the current robots are inspirited by nature [12], especially by human characteristics 

and behaviors [13]. With the present development in robotics, robots have become more 

efficient compared to their biological counterparts in many applications [14, 15]. They 

can now replace humans in many dangerous and hazardous environments. 

Traditional robotics mainly consists of manipulator arms which can be considered 

as a combination of several links and joints. Many of those manipulator arms imitate 

human arm in both appearance and functionality. They have been successfully utilized 

in assembly lines in industrial manufacturing factories all over the world. An end effector 

of a manipulator arm, the counterpart of human hand, reaches a point of interest in its 

workspace by using transactional and rotational motions between its links. However, the 

traditional manipulator arms are generally attached to a fixed point in the environment 

which limits them to stationary workspaces. Therefore, the lack of mobility is an obvious 

disadvantage of traditional manipulator arms. 

In contrast to traditional robots, mobile robots are capable of moving in a given 

environment without being attached to a fixed location. They use different locomotion 
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mechanisms to move themselves from place to place. Types of locomotion heavily depend
 

on the environment and applications that they are utilized in. With the added advantage 

of extra mobility over traditional robot arms, mobile robots become useful in many real 

world applications. In most of the situations, they are capable of reaching the exact 

point where their services are required. Motion control of mobile robots can be either 

manual or autonomous. Manual mobile robots are normally teleoperated by a human 

using their own vision and knowledge of the environment or using perception aids, such 

as cameras. These can be a single camera attached to the robot itself or multiple cameras 

placed in its workspace. In contrast to teleoperated mobile robots, autonomous mobile 

robots have to make their own decisions depending on their perception of the external 

world. 

Autonomous mobile robotics has become an extremely challenging problem due to 

inherent unpredictability of the physical world, limitations of real-time information, and 

incomplete prior knowledge. The level of unpredictability of the environment is governed 

by two main factors: a prior knowledge and randomness of the environment. The mobile 

robots which work in well structured environments such as industrial assembly lines or 

office rooms can use their prior knowledge about this environment to complete their 

tasks, as the structural change of environment over time is minimal. Nevertheless, 

in most of the situations the robots have to deal with highly dynamic, unstructured, 

very dense, and complex environments. Even a well structured environment can be 

highly unpredictable when people are working in there. This can be easily understood 

by identifying the difference of a cafeteria in a holiday and during busy hours. The 

situation becomes even worse if the robot does not have any prior knowledge about its 

target environment. 

Imagine you are suddenly dropped into a totally unknown place, say a city center, 

and asked to go to a coffee shop with a specific name. Without any external support 
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such as maps, how could you achieve this? You may use your vision system to see the
 

environment around you. You may also try to extract key features which will eventu

ally help you to understand the nature of the environment. You may localize yourself 

compared to other objects in the environment. Somehow you do not know where you 

are globally and you do not need to know it as your objective is to find a certain coffee 

shop available in your local environment. After you have localized yourself in the given 

environment, what will be the next step? You need to move in a direction where you can 

find the coffee shop. Without any prior knowledge about the current environment, this 

can be any random direction. However you may still be able to make an intelligent guess 

with similar kind of environments you have previously been in. Finally, you may start 

walking while further learning your environment, i.e. now you have more knowledge. 

How to identify your goal, viz. the coffee shop, while moving? Is it possible to do it just 

by reading names? Similar words might be available in advertising posters put on some 

other places in the city. Therefore you need to analyze and understand the situation 

to achieve your target successfully. Dealing with physical environments are challenging 

for the so called most intelligent creation of the natural world, the humans, as it is for 

the robots. In many real-world applications, the mobile robots have to deal with such 

challenging environments with limited computational resources. 

This thesis addresses the problems in goal-driven mobile robot navigation in unknown 

environments. Section 1.1 of this chapter identifies the challenges in autonomous mobile 

robotics, especially in unknown environments. Existing solutions and their drawbacks 

are reviewed in Section 1.2. The organization of this thesis is briefly described in Section 

1.3. 
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1.1 Challenges for Mobile Robots in Unknown Environments 

With rapid advancements in science and technology, scientists’ curiosity has stepped out 

of the planet earth and reached up to a level of exploring moon and other planets in the 

solar system. The achievements of the National Aeronautics and Space Administration 

(NASA) agency of the United States can be taken as examples for that. NASA’s Cu

riosity rover captured considerable public attention in the recent past for its exploration 

missions in planet Mars [16]. Terrestrial planet exploration rovers have to learn their 

environment while navigating around. The main objective of such robots is to maximize 

the knowledge about their environment within the shortest possible time. However, a 

pertinent and challenging issue remains unsolved to a large extent in finding solutions 

which deal with such situations where prior knowledge about target environment is un

known. In the rest of this section, search and rescue (SAR) robots are taken as an 

example to specifically identify the challenges for autonomous mobile robots that are 

employed in previously unknown and highly demanding environments. 

Hazardous situations arise mainly because of the irresistible natural causes such as 

earthquakes, tsunamis, tornados, and forest fire. Somehow, similar or even more danger

ous situations might occur due to man-made disasters such as the collapse of the World 

Trade Center in New York City in 2001 and the Fukushima Daiichi nuclear disaster 

in 2011. Either natural or man-made, rescue missions in these kind of situations are 

dangerous for human rescuers. If we consider a SAR situation in an urban environment, 

the rescuers usually have to deal with collapsed buildings, fire and explosions, victims 

trapped inside buildings, and other inherent problems to such environments. The au

tonomous mobile robots can be used in these kind of situations to assist rescue teams. 

The use of autonomous robots are invaluable, specially during an initial phase of a dis

aster, which is highly dangerous for human rescuers to deal with. Are robots capable of 

handling such situations? 
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One of the main challenges of SAR robot missions is the lack of information. Nor

mally the structure of an environment looks totally different after a disaster. Therefore 

the rescue robots have minimal or no information about the modified environment as 

they are unable to use the previous maps or other form of knowledge. Hence, they 

need to sense their environment to acquire required information. Sensing is one of the 

most important tasks of any kind of autonomous mobile robots. The type of the sensors 

used with autonomous robot are directly dependent upon the application of the robots 

and the nature of the environment. Therefore one needs to carefully select the sensors 

for robot platforms. One of the most common sensor types used in the SAR robots 

is cameras. They are helpful in capturing visual information of the surrounding envi

ronment which can be used to recognize the surrounding objects using computer vision 

techniques. Therefore robots should be able to distinguish people from other man made 

objects. However, the visual information gathered from single camera is not enough to 

navigate in the environment without any collisions. Because object avoidance cannot 

be achieved by simply identifying obstacles, the robots need to measure the distance to 

them. This can be accomplished either by using a stereo camera pair or by using depth 

sensors such as laser range finders or sonar sensors. Apart from that, the robots can use 

Global Positioning System (GPS) to identify their locations. 

However, sensors have their own limitations. For example, normal cameras cannot 

operate in the dark. Infrared cameras can be used to solve the problem, but they are 

unable to capture all the visual features on a surface. Ultrasonics sensors suffer the 

limited bandwidth and cross-talk. Laser range finders have successfully overcome these 

problems. However, laser range finders cannot detect transparent materials such as 

glass which can be easily detected using ultrasonic sensors. Likewise, each sensor has 

unique problems. Meanwhile, measurements of all the sensors are subjected to noise 

which degrades the quality of measurements. Uncertainty of sensor measurements is a 
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major problem which needs be addressed. This problem is usually addressed either by 

improving the quality of the materials and manufacturing process of these sensors or 

using advanced algorithms to filter the sensor noise. 

Although GPS is useful to localize mobile robots in outdoor environments, it cannot 

be used in indoor or very dense environments. Unfortunately in many situations robots 

have to work in such environments. Especially during rescue missions inside buildings, 

SAR are unable to use GPS to localize themselves. Localization is defined as a process 

of estimating the robot’s pose compared to an external reference frame [17]. It is a 

key task for any kind of mobile robots due to several reasons. Since the perception of a 

mobile robot depends on its current pose, accurate localization is required to accumulate 

those sensory information compared to an external reference frame. Mobile robot pose 

estimation data are also important in motion planning. Therefore it is necessary to 

use some other localization mechanisms when GPS fails. In some of the indoor mobile 

robot applications, local positioning systems can be used to localize the robots. However 

these type of solutions cannot be used to localize rescue robots. Odometry is another 

popular localization method for the wheeled mobile robots (WMRs), but they suffer 

from accumulating errors which result in uncertainty in pose estimations. 

In SAR missions, robots have to store their knowledge in a way such that both 

themselves and humans can use it later. As an example, SAR robots might be asked to 

explore open pathways in a hazardous environment. Also they might have to provide 

the locations of victims such that rescue teams can reach there within shortest possible 

time. Therefore, knowledge representation is another important task for mobile robotics. 

This is usually accomplished using robotics maps. Similar to mobile robot localization, 

mapping has attracted a considerable attention of the mobile robot research community. 

Robotics maps are useful not only for third parties, but also for the robots themselves 

to plan their own motion. Mapping is a challenging problem for robots due to several 
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reasons. 

If the environment is considerably large compared to the range of the sensors of 

the mobile robot, the map building might be difficult and time consuming. Also the 

robot might have to navigate in the environment to capture the whole map. This 

process definitely increases the uncertainty of the map due to the uncertainty of the 

localization and actuation. There are no perfect localization and actuation systems 

that exist in real robots. Noisy sensors and perceptual ambiguity can also add to the 

uncertainty of the robotics maps. Uncertainty of the map will later result in uncertainty 

of pose estimation when the robot tries to localize itself in the current map. Therefore, 

robotics researchers identify this as a chicken-and-egg problem and deal with it as the 

simultaneous localization and mapping problem (SLAM) [17]. However, solutions to 

SLAM are passive, i.e. they do not generate motion commands (actions) to guide the 

robot. Action selection is challenging in fully or partially unknown environments. There 

is a significant impact from action selection on the map built by SLAM. The task of 

controlling a robot in order to maximize its knowledge about the external environment 

using its sensors is referred as exploration [17]. Therefore, robotic exploration should 

be achieved through an integrated system which considers SLAM and action selection 

simultaneously. 

The action selection or motion control of mobile robots also depends on its naviga

tion target. However, in unknown environments, it is not possible to locate the target 

beforehand. Therefore robots need to understand the environment and estimate their 

navigation goals autonomously. If we draw our attention to the previous example again, 

i.e. the mapping of victims in an hazardous environment, how can a rescue robot distin

guish victims from normal people or rescuers? It is not possible to use face recognition 

algorithms or human detection algorithms for that purpose. In order to deal with the 

ambiguity of highly complex environments, the mobile robots need to employ high level 
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data fusion techniques to analyze the real-world situations.
 

1.2 Review of Existing Solutions 

The topic of decision making under uncertainly has been well studied in both science 

and engineering. As pointed out in Section 1.1, the uncertainty of pose estimation 

of WMRs basically depends on the odometry errors. The most common approach of 

eliminating the odometry errors is by using an auxiliary sensor to observe landmarks in 

an environment [18, 19, 20]. Different sensors, such as cameras [21], sonar sensors [22], 

and laser range finders [22] have been used to detect landmarks and obtain the required 

measurements. Leonard and Durrant-Whyte employ an extended Kalman filter (EKF) 

for mobile robot localization using geometric beacons which were extracted from sonar 

scans [23]. Salichs et al. also propose an EKF based mobile robot localization system 

with the aid of artificial landmarks [24]. Using artificial landmarks is both economical 

and feasible in some indoor environments. Kurazume et al. propose localization with 

multiple robots, where one of them equipped with a sophisticated laser range finder and 

other robots are used as movable landmarks [25, 26]. Particle filters (PFs) for mobile 

robot localization are first proposed by Dellaert et al. [22] and Fox et al. [27]. This is also 

referred as Monte Carlo localization (MCL). In robotics literature, many solutions have 

been proposed for mobile robot localization problem using PFs with cameras [28, 29, 30] 

while others [30, 31, 32] have proposed combining MCL with omnidirectional cameras. 

However, these methods assume prior knowledge about the environment which is not 

always available in many practical scenarios. Therefore, a growing attention is devoted 

by researchers for robotic exploration problem while minimizing the uncertainty of the 

environment. 

Mobile robot exploration algorithms are mainly based on decision theory and in

formation theory. Most of these techniques focus on acquiring information about the 
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robot’s environment in the shortest possible time. Robotic maps are the most common 

representation of environmental information that they gathered using those techniques. 

Koenig et al. introduce an early exploration technique for learning topological maps [33]. 

On the other hand, Thrun introduce the idea of actively exploring for occupancy grid 

maps using dynamic programming [34]. In that work, real-world knowledge is presented 

using artificial neural networks and these networks are used to transfer knowledge across 

different environments once trained. Exploration strategies for feature based maps can 

be found in [35]. Cassandra et al. describe an exploration approach using the idea of 

information maximization [36]. They have formulated the action selection in mobile 

robot navigation as a partially observable Markov decision process. 

In order for the robot to move, it should have a target position. The navigation 

target selection is one of the main problems in exploration. Yamauchi et al. propose 

their frontier-based exploration technique in [37, 38]. Frontier cells define the boundary 

between explored and unexplored areas. These frontier cells offer the robot a possibility 

of visiting new places. If no more frontier cells exist in the map, the robot has explored 

the total area under consideration and the navigation process can be stopped. Gonzalez-

Banos et al. consider this to be similar to the next-best-view (NBV) problem in computer 

vision [39]. They introduce the concept of a safety region, which is the largest region that 

is guaranteed to be free of obstacles given the sensor readings made so far. The NBV 

position is chosen within the safe region in order to maximize the information gain. This 

approach also proposes how to keep a minimal overlap with the current global map, in 

order to allow for the registration of successive views under the localization uncertainty 

of the robot. 

The need for multi robot exploration stems from the objective of maximizing the 

area coverage. A team of collaborative robots has some clear advantages over a single 

robot: fault tolerance, faster task completion, and compensation of sensor uncertainty. 
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However, multi-robot exploration techniques have their own problems, such as balanc

ing the spatial distribution of the robots, collision avoidance among themselves, and 

communicating with other robots. The greedy exploration idea is adapted to teams of 

collaboratively exploring robots to maximize the map information in [40, 41]. Dias et al. 

propose a robust algorithm for multi robot coordination in dynamic environments [42]. 

Their technique addresses three existing malfunctions of the multi-robot systems: com

munication failures, partial failure of robot resources necessary for task execution, and 

complete robot failure. The minimization of the localization uncertainty in multi-robot 

systems is discussed in [43]. Burgard et al. introduce a decision-theoretic approach to 

coordinate the robots in order to maximize the overall utility and minimize the potential 

for overlap in information gain while accomplishing their goal quickly [44]. Brass et al. 

propose a graph based approach where they modeled an obstacle dense environment as 

a graph which is initially unknown and the existence of the edges become known, as 

the robots explore the environment [45]. More recently, a distributed value function 

for multi-robot exploration was introduced which enables each robot to decide upon a 

local strategy that minimizes the interactions between the robots and maximizes the 

space coverage of the team [46]. However, this thesis focuses on single-robot exploration 

techniques. A brief review of the multi robot exploration is presented for the sake of 

completeness. 

Within the context of SLAM, some exploration techniques have been proposed to 

actively control the robot during SLAM. Makarenko et al. propose an approach to inte

grated exploration [47]. Their algorithm detects the landmarks in laser range data and 

uses an EKF to solve the SLAM problem. It simultaneously determines the actions to 

be carried out. The next best action is selected according to the utility function which 

was designed to favor destinations that offer higher information gain. More accurate 

localization has been obtained by revisiting the landmarks. Newman et al. introduce 
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a similar feature-based exploration technique in which the next robot action was deter

mined using the geometric, spatial and stochastic characteristics of the current map [48]. 

The location uncertainty of each feature in the map is represented by a set of probability 

distribution functions that are used with previous robot actions to determine the next 

best action. The trajectory planning in SLAM was addressed in [49] by Sim et al. Their 

control algorithm utilizes a parameterized class of spiral trajectory policies with EKF

SLAM to create a map as large as possible. All these exploration techniques are based 

on the distinguishable features in the environment. These features should be uniquely 

determined during SLAM. 

A widespread category of exploration approaches to SLAM is the use of grid maps 

which make no assumptions of distinguishable landmarks. Bourgault et al. propose an 

exploration algorithm and demonstrated it in an indoor environment using occupancy 

grid maps with SLAM [50]. The mapping accuracy is increased by adaptively selecting 

the control actions during exploration that maximize the localization accuracy. Stach

niss and Burgard introduce an integrated technique combining the motion control and 

grid-based version of the FastSLAM algorithm [51]. Revisiting already explored areas 

increased the localization accuracy in their approach. In the next step, Stachniss et 

al. introduce the highly efficient Rao-Blackwellized particle filter for active SLAM [52]. 

Their decision theoretic approach decides possible actions after considering the uncer

tainty of both map and robot pose. However the RBPF-SLAM in [52] suffers from 

degeneracy problem which occurs due to the variance of particle weights growing with 

time. Mobile robot localization, mapping, and exploration algorithms are extensively 

reviewed in [17]. 
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Figure 1.1: Overview of the proposed goal-driven mobile robot navigation system. 

1.3 Layout and Contributions of Thesis 

In this thesis, the goal-driven mobile robot navigation problem is addressed with an 

integrated approach as illustrated in Figure 1.1. More detailed descriptions on each 

component can be found in the rest of the thesis, which is divided into five chapters. 

Chapter 2 describes the basics of robot motion and perception in the scope of WMRs. 

It also includes details on the mobile robot platform and sensors used in this work. 

WMR motion models and their applications are also described. An indoor mobile robot 

localization method using an inexpensive sensor system is proposed in Chapter 3. The 

information fusion of sensory data is achieved with an EKF and a PF in order to minimize 

the accumulating odometry errors. In Chapter 4, the mobile robot exploration system is 

proposed by performing localization, map building, and motion control simultaneously. 

In the proposed integrated approach, an optimal particle filter SLAM is employed which 

addresses the degeneracy problem. Motion control of the robot is accomplished using 

a reactive navigation method. Chapter 5 proposes a high level data fusion method for 

navigation goal detection. A goal-driven situation assessment framework verifies the 

navigation goals by using sensory data and prior knowledge. Fuzzy cognitive map is 

used as a high level reasoning engine. Concluding remarks are given in Chapter 6. 
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Chapter 2 

Mobile Robot Motion and Perception 

2.1 Robot Motion 

Robot motion has been studied thoroughly in the last few decades. Robots that have 

the capability of moving in their environment without being fixed to a single physical 

location are referred to as mobile robots. This thesis work is based on wheeled mobile 

robots (WMRs) utilized in indoor environments. WMRs are utilized in both indoor and 

outdoor environments. However, they are increasingly popular in industrial and research 

applications, particularly when flexible motion capabilities are required on reasonably 

smooth grounds and surfaces. Locomotion and wheel arrangement of WMR are decided 

based on the application it is utilized. It is not possible to use the same type of wheel 

arrangement with mobile robots operating in uneven outdoor terrains and planar indoor 

terrains. The following section discusses the motion mechanisms of WMRs operating in 

planar environments. 

2.1.1 Wheeled Locomotion 

Mobile robots employ locomotion mechanisms to move from one place to another. De

pending on the application, mobile robots use different locomotion mechanisms to nav

igate in the environment: legged mobile robots walk, bird-like robots fly, frog-like robot 

jump, and fish-like robots swim. WMRs uses a high energy efficient rolling mechanism 

which is quite simple to control as well. This has been the most popular locomotion 

mechanism for mobile robots. In comparison to the locomotion mechanisms of other 

ground robots, wheeled robots have high stability and balance. The stability of the 
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(a) (b)

(c) (d)

Figure 2.1: The four basic wheel types: (a) Standard wheel, (b) Castor wheel, (c) 
Swedish wheel, and (d) Spherical wheel. 

robot can be achieved by using minimum of three wheels. Wheel types and configura

tions of the mobile robots are decided according to the maneuverability and controllabil

ity requirements of the robot. Maneuverability and controllability always has an inverse 

relationship, where highly maneuverable WMRs are less controllable and vice versa. 

For an ideal rolling wheel, it is assumed that the wheel moves due to pure rolling 

and no slip occurs in any direction. According to the kinematic configurations, mainly 

there are four wheels types: standard wheel, castor wheel, spherical wheel, and Swedish 

wheel (Figure 2.1). Standard wheel can be fixed or center orientated. Any of those two 
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types has a primary axis of rotation. Centered oriented wheel has an added advantage
 

of rotating along the vertical axis that goes through the center of the wheel, whereas, 

the standard wheel can only be rolled in one direction. Unlike the standard wheel, 

castor wheel rotates around an offset axis. Generally in WMRs, castors are mounted 

on a pivot so that it can align itself in the direction of travel. The Swedish wheel (also 

known as Mecanum wheel) has an extra degree of freedom compared to the standard 

wheel or the castor wheel, i.e. it can move in more than one direction. It has small 

rollers attached to the wheel circumference to reduce the resistance which facilitates 

it to move in non-conventional directions. Swedish 90 and Swedish 45 are the most 

popular implementations of the Swedish wheel. In Swedish 90, the small passive rollers 

are attached to the wheel so that their axes are orthogonal to the wheel axis which 

allows WMRs to easily move perpendicular to the conventional directions. In Swedish 

45, those rollers are angled by 450 so that it has low resistance in the direction which 

is 450 angled to the conventional moving direction. The spherical or ball wheel is a 

omnidirectional wheel, i.e. it allows WMRs to move in any direction in the workspace. 

Actively powered rollers attached on top of wheel make it roll. 

2.1.2 Wheel Arrangement 

Even though the stability can be achieved with three wheels, most of the robots use 

four wheels or more. If more than three wheels are used for WMRs utilized in rough 

terrain, it needs to come up with a separate mechanism such as suspension to keep all 

the wheels in contact with the terrain. The number of wheels and wheel arrangement 

used also depend on the type of the wheels. The fundamental characteristics of WMRs, 

maneuverability, controllability, and stability are governed by these choices. 

For an ordinary WMR, static stability can be achieved using minimum of three 

wheels when the center of mass is inside the triangle formed by the ground contact 
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Figure 2.2: The H20 mobile wheeled robot platform. 

points of the wheels. However, stability conditions can be satisfied even with two wheels 

if the center of mass is below the axis connecting these two wheels. Such robots are 

highly maneuverable as they can move in a direction perpendicular to the conventional 

direction just by rotating itself about the center of the axis. WMRs with three or more 

wheels need to employ spherical or Swedish wheels to have this level of maneuverability. 

As WMRs becomes more maneuverable, they become less controllable. Omnidirectional 

WMRs generally comes with the wheels which has high degree of freedom (e.g. spherical 

wheels). This makes it more difficult to control in a specific direction. It is always 

advantageous to have WMRs which are highly stable, maneuverable, and controllable. 

However, there are no practical robot designs which can maximize all three factors 

simultaneously. 
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2.1.3 Design of the Motion System of H20 WMR
 

H20 (Figure 2.2(a)) is a WMR designed by DrRobot Inc. H20 is built on DrRobot’s i90 

robot base featuring 12” touch screen tablet featuring a 2.13GHz Intel Core i7 CPU, 

two large arms and dual-camera animated head. As shown in Figure 2.2(b), the H20 

WMR has two standard drive wheels and two castor wheels. The two drive wheels 

are connected to DC motors with quadrature encoders. These encoders are capable of 

monitoring the revolutions and steering angles of the drive wheels. The main advantage 

offered by these encoders is their high resolution. The odometry is implemented using 

the results from these encoders. The two output channels of the quadrature encoder 

indicate both position and direction of rotation. Motion control of the robot is achieved 

by changing the wheel velocities. Two basic motion models can be used to estimate and 

predict the motion of the WMRs: odometry motion model and velocity motion model. 

The basic purpose of these motion models are to control the robot motion by calculating 

the change in its pose, i.e. (δxk, δyk, δθk). 

2.1.4 Odometry Motion Model 

Odometry motion models are basically used for estimating the robot position. Odometry 

is based on the readings of the wheel encoders, which are available only after executing 

the motion commands. Hence, it cannot be used for the motion planning of the robot. 

In practice, encoder readings are taken in discrete time steps. Figure 2.3 illustrates the 

motion of an ideal WMR in kth time step. The robot pose in world coordinate frame in 

kth time step can be denoted by (xk, yk, θk), which describes the position of the mid-axis 

point (xk, yk) and heading angle θk of the WMR. When the wheel base (W ) is given, 

the change in orientation in one time step δθk can be calculated as follows 

(δrk − δlk)
δθk = θk − θk−1 = . (2.1)

W 
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Figure 2.3: The robot motion in the world coordinate system. 

Let δdk be the distance traveled by the mid-axis point which can be calculated as the 

average of the distance traveled by left and right wheels, 

(δlk + δrk)
δdk = . (2.2)

2 

According to Figure 2.3 and geometrical relationships, the displacement of the WMR 

over one time step can be calculated as follows 

δxk = xk − xk−1, (2.3) 

(δrk + δlk) sin(
δθ
2 
k ) δθk 

= cos(θk−1 + ). (2.4)
( δθk2 ) 2 

2 
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δyk = yk − yk−1, (2.5) 

(δrk + δlk) sin(
δθ
2 
k ) δθk 

= sin(θk−1 + ). (2.6)
( δθk2 ) 2 

2 

For a small δθk; 
δθk

δxk = δdk cos(θk−1 + ), (2.7)
2 

δθk
δyk = δdk sin(θk−1 + ). (2.8)

2 

Equations (2.7) and (2.8) are valid for calculating the WMR displacement during any 

type of robot motion for a small time period (so that δθ is small). There are two special 

cases of robot movements that we can consider under this model: straight motion and 

rotation about the center of the wheel axle. When the robot is moving straight, δθ → 0 

and δrk = δlk, which simplify Equations (2.7) and (2.8) as, 

δxk = δrk cos(θk−1), (2.9) 

δyk = δrk sin(θk−1). (2.10) 

When the robot is rotating around the center of the wheel axle, (W/2)δθ = δrk = −δlk, 

results in, 
δrk δlk

δθ = 2 = −2 , (2.11)
W W 

δx = δy = 0. (2.12) 

According to these equations, it is possible to calculate the change of pose after 

the robot moved. However in reality, odometry is erroneous due to wheel slippage, 

misalignment and drift. Odometry error modeling is discussed by Kleeman et al. in [53] 

and [54]. A probabilistic approach of representing odometry error was introduced by 

Thrun et al. in [17]. 
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Figure 2.4: The robot motion with constant velocities ωk and vk. 

2.1.5 Velocity Motion Model 

Velocity motion models are used for the motion planning of the WMRs. Accuracy 

of executing velocity commands are less accurate compared to measuring the wheel 

revolutions. Hence the velocity motion models are generally less accurate compared to 

the odometry motion models. This model assumes that the motion of the robot can be 

controlled through two velocities: the rotational velocity and the transactional velocity. 

In kth time step, the rotational velocity and transactional velocity can be denoted by ωk 

and vk. It is assumed that the positive transactional velocities indicates forward motion 

and positive rotational velocity corresponds to counterclockwise rotations. 

Let uk = (vk, ωk) be the control input in kth time step for an ideal WMR whose 

motion can be perfectly controlled using the rotational and transactional velocity. Let 

δtk be the duration of each time step. The change in orientation in kth time step can be 

calculated as follows 

δθk = ωkδtk. (2.13) 
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If we assume that vk and ωk are fixed during δtk, as illustrated in Figure 2.4, the WMR 

moves in a circle with radius r, 
vk 

r = | |. (2.14)
ωk 

There are two special cases that can considered under Equation (2.14): vk = 0 and 

ωk = 0. When vk = 0, the robot starts to rotate around the center of its wheel axle 

(r = 0). When ωk = 0, r →∞, i.e. the robot moves in a straight line. 

Let, (xo, yo) be the center of the circle where the WMR moves in during kth time 

step. According to the Figure 2.4, 

vk 
xo = xk−1 − sin(θk−1), (2.15)

ωk 

vk 
yo = yk−1 + cos(θk−1). (2.16)

ωk 

After time δtk, the WMR will be at (xk, yk, θk). Using simple trigonometry, current 

coordinates of the robot can be calculated as follows, 

vk 
xk = xo + sin(θk−1 + δθk), (2.17)

ωk 

vk 
yk = yo − cos(θk−1 + δθk). (2.18)

ωk 

By using Equations (2.15) - (2.18), it is possible to calculate the change in robot position 

in kth time step, 

δxk = xk − xk−1, (2.19) 

vk vk 
= − sin(θk−1) + sin(θk−1 + δθk). (2.20)

ωk ωk 

δyk = yk − yk−1, (2.21) 

vk vk 
= cos(θk−1) − cos(θk−1 + δθk). (2.22)

ωk ωk 

Although the velocity motion models are very useful in motion planning and control 

of WMRs, they are highly erroneous in practice due to mismatch with actual motion 
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controllers of the robot. They also suffer from the wheel misalignments and wheel drifts
 

similar to the odometry motion models. Thrun et al. have presented a probabilistic 

method of representing velocity motion model errors in [17]. 

2.2 Robot Perception 

Currently mobile robots are used in many different type of environments which can vary 

from a familiar home environment to a surface of an extraterrestrial plant. Regardless 

of the type of the environment they utilize, robots need to acquire information about its 

workspace in order to reach their goals. This is achieved by using sensor. A sensor mea

sures a physical quantity and converts that into a signal which can be read by the robot 

control program. The extraction of the required information about the environment 

from these readings is done after this step. 

The type of sensors used in robots varies according to the type of application and 

its environment. The class of sensors used depends on the applications. As an example, 

proximity sensors are used in manipulator arms to keep desired distance between the 

arm and surface [55] while the mobile robot platform may use infrared (IR) sensors to 

follow the lines in the factory floor. However, sometimes same sensor may be used in 

different type of robots. As an example, cameras are used in mobile robots for collision 

avoidance. At the same time, they are used in close to the end effector of manipulator 

arms to observe the objects it is handling. As we work with a WMR, we are more 

interested in sensors for mobile robots. A comprehensive study about such sensors can 

be found in H.R. Everett’s Sensors for Mobile Robots book [56] and Jacob Fraden’s 

Handbook of Modern Sensors book. 
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2.2.1 Sensor Classification
 

Sensors used in robots are mainly classified into two categories according how they mea

sure: active sensors and passive sensors [57]. Active sensors provide their own energy 

source for illumination. They emit energy which is directed towards the target to be 

investigated and measure the environmental reaction on that energy. Ultrasonic sensors, 

radar systems, and laser range finders are some examples for active sensors. These have 

the ability to obtain measurements anytime, regardless of the environmental condition. 

They are used for examining wavelengths that are not sufficiently provided by the sun, 

such as microwaves, or to better control the way a target is illuminated. However, ac

tive systems require the generation of a fairly large amount of energy to adequately 

illuminate targets. It may also interfere with other signals in the environment, specially 

the signals emitted from sensors in other robots or from the similar type of sensors in 

the same robot. The signals emitted by ultrasonic sensors are a good example in this 

case. Passive sensors, on the other hand, are used to detect energy in the presence of 

naturally occurring energy. Cameras, microphones, light and temperature sensors are 

some examples for passive sensors used in robots. These type of sensors cannot have a 

proper perception about the environment when there is no enough energy available in 

the environment. For example, cameras can obtain information only in the presence of 

adequate light. 

Sensors are also classified as proprioceptive sensors and exteroceptive sensors based 

on what they measure [57, 58]. Proprioceptive sensors are typically passive and mea

sure the internal state values of the robot, such as battery voltage, temperature, motor 

current, wheel speed, and position. Exteroceptive sensors, on the other hand, obtain 

the information about robot’s environment such as temperature, distance to an object, 

sound amplitude, and light intensity. As shown in Figure 2.2, our work is mainly based 

on the information acquired from two sensors: optical encoder and Kinect sensor. Func
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Figure 2.5: Functionality of quadrature wheel encoder.
 

tionality of those two sensors are described in the next two sections. 

2.2.2 Optical Encoder 

The optical encoders were first developed in the mid-1940s by Baldwin Piano Company 

[59]. They were used as tone wheels that allowed electric organs to mimic other mu

sical instruments. Currently in mobile robotics field, it has become the most popular 

mechanism of measuring the angular position and speed of the motor shaft. The opti

cal encoder is a proprioceptive sensor as it is used to measure an internal state of the 

robot. They can correctly estimate the position in the frame of robot. Mobile robots 

have heavily benefited from the high-resolution, low-cost wheel encoders available in the 

current market. 

Any optical encoder basically contains of a light source, a matched photo detector, 

and a rotor disc with a fine optical grid that rotates with the motor shaft. A focused 

beam of light aimed at the photo detector is periodically interrupted by the coded optical 

grid attached to the motor shaft. This results in a certain number of sine waves for each 

shaft revolution. The resulting sine wave is converted into a discrete square wave using 

a threshold value defined between the light and dark states. 

Single-channel optical encoders are incapable of determining the direction. Hence 

they cannot be used as position sensors of the WMRs. Quadrature encoders overcome 
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Figure 2.6: Kinect sensor. 

this issue by adding a second channel. In these encoders, a second illumination and 

detector pair is placed 90o shifted with respect to the original pair so that the resulting 

pulse trains are 90o out of phase as shown in Figure 2.5. It is possible to determine the 

direction of rotation of the wheel using this technique by identifying which square wave 

produces the rising edge first. Index output in the outer channel produces a reference 

pulse for each revolution. 

Encoder resolution is measured in counts per revolution (CPR) [60]. CPR rating 

can be improved by a factor of four using four different states in quadrature encoders. 

DrRobot’s H20’s quadrature encoders yield 400 CPR and HAWK’s quadrature encoders 

yield 800 CPR. The minimum angular resolution of the optical encoder can be calculated 

from its CPR rating. Also the actual moving distance of the drive wheels can be 

computed from the encoder readings and its CPR rating. 

2πR 
distance = Δe. (2.23)

(CPR) 

Here Δe is the associated encoder counts and R is the radius of the drive wheel. 

2.2.3 Kinect Sensor 

Kinect (Figure 2.6) is a motion sensing input device introduced by Microsoft for video 

gaming. It enables users to control the game with physical gestures and voice-based 
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commands. Lately it has been a very popular sensor among the robotics research com

munity [61, 62]. In mobile robotics, it plays a significant role as an exteroceptive sensor 

that replaces the ultrasonic sensors and laser range finders. Both ultrasonic sensor and 

laser range finder are based on the time-of-flight, a technique which uses the propagation 

speed of the emitted signal to measure the distance to the objects in its environment. 

This touch-free sensor is powered by an RGB camera and a depth sensor. Figure 2.7 

shows the RGB and and depth images captured by a Kinect sensor. 

Unlike traditional range finders, the Kinect depth image is acquired using the Light 

Coding technology [63]. The coded light is captured by the IR camera in order to 

produce the Kinect disparity matrix. The relationship between the Kinect disparity and 

actual depth value is given by, 

b × f 
z = 1 , (2.24)

(µ − dkinect)8 

where z is the actual depth, b is the distance between the IR camera and laser-based 

IR projector lenses which is about 7.5 cm, f is the focal length of the IR camera in 

pixels which is typically 580, dkinect is the Kinect disparity which provides 2048 levels 

of sensitivity in VGA resolution with 11-bit depth, and µ is an offset value for a given 

Kinect device. The factor 1/8 is used due to the fact that dkinect is in 1/8 pixel units. 

Unlike ordinary stereo pairs, the actual depth does not become infinity at the zero Kinect 

disparity. 

In Equation 2.24, the value for µ needs to be estimated using a calibration process. 

Our calibration setup is shown in Figure 2.8. The experimental values are obtained by 

manually measuring the physical distance to the target object (green circle) from the 

Kinect sensor. The target object is moved away from the Kinect sensor by 10cm each 

time and corresponding Kinect disparity values are obtained. Figure 2.9 illustrates the 

Kinect depth calibration results. The theoretical curve represents the results obtained 

using Equation (2.24). The value for µ is adjusted so that the experimental values 
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Figure 2.9: Kinect depth calibration results. 

coincide with the theoretical values. According to our calibrations, the value for µ is 

1091.50. However this calibration results may slightly differ from one sensor to another. 

Therefore each sensor should be calibrated separately before using it for depth estima

tion. Although the Kinect sensor has obtained huge popularity in recent past, it has its 

own limitations. 

The Kinect sensors has an operation range of 0.8 m – 3.5 m with the resolution of 1 

cm at a distance of 2 m [63]. The Hokuyo URG-04LX-UG01 scanning laser range finder 

works from 0.06 m to 4 m with 1% error [64], and more advanced Hokuyo UTM-30LX 

scanning laser range finder works from 0.1 m to 60 m [65], i.e. it can sense objects 

nearly 56m before Kinect can detect it. This is a huge advantage in large and dynamic 

environments. However these more expensive sensors also face the problem of close range 

blind spot as observed previously with the Kinect sensor. This can cause many problems 
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in dynamic environments, especially with the Kinect’s narrow field-of-view (FOV). The
 

depth image on the Kinect has a field of view of 58o [63], whereas the Hokuyo URG

04LX-UG01 laser comes with 240o FOV [64] and UTM-30LX with 270o [65]. It will be 

hard to detect if a dynamic obstacle approach from behind the Kinect and stay within 

its blind region (< 0.8 m). FOV can be increased by using more than single Kinect 

device. However, the main problem with this approach is the sheer volume of data. 640 

x 480 x 30 fps x (3 bytes of color + 2 bytes of Depth) puts us at close to the maximum 

speed of the universal serial bus 2.0 (USB 2.0), at least to the point where you are only 

going to get good performance with one Kinect per bus. FOV can be also increased by 

attaching a servo motor to pan the Kinect horizontally, or else, rotating the robot with 

the Kinect on its own axis of rotation. 

Compared to its closest counterpart, the laser range finder, the Kinect is considerably 

a cheap sensor. It also has a high horizontal angular resolution of 0.1o, whereas the 

Hokuyo URG-04LX-UG01 laser comes with 0.36o FOV [64] and UTM-30LX with 0.25o 

[65]. On the other hand, ultrasonic sensors are even cheaper than the Kinect sensor. 

Parallax Ping ultrasonic ranger has a detection range of 2 cm - 3 m[66]. However, 

ultrasonic range finders are becoming less popular among the robot community due to 

their low resolution, high cross sensitivity, and low bandwidth ( 50 Hz). 

2.3 Summary 

To summarize, in this chapter, the key concepts of mobile robot motion and perception 

which are required for the complete understanding of the novel work presented in this 

thesis have been reviewed. The basic concepts of robot motion relevant to this work 

have been discussed in Section 2.1. The locomotion and different wheel arrangement 

of the WMRs have been introduced in Subsections 2.1.1 and 2.1.2. The odometry and 

velocity motion models used in this thesis have been introduced in Subsections 2.1.4 
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and 2.1.5. An overview of the classification of sensors used in mobile robotics has been
 

given in Subsection 2.2.1 followed by more detailed discussions on the sensors utilized 

in this work: Optical encoders and the Kinect Sensor. The functionality of the optical 

encoders has been presented in Subsection 2.2.2. The calibration of the Kinect sensor 

and a comparison of the Kinect sensor with its counterparts are introduced in Subsection 

2.2.3. 
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Chapter 3
 

Indoor Mobile Robot Localization 

3.1 Introduction 

Mobile robot localization is one of the fundamental problems in mobile robot navigation 

and motion planning. It is an instance of general localization problem. It involves one 

simple question: where is the robot now? Although a simple question, answering it is 

not easy due to the nature of the environment and robot itself. In an indoor environment 

with a flat floor plan, localization is identified as a problem of estimating the pose, i.e. 

position and orientation of a mobile robot, when the map of the environment, sensor 

readings, and executed actions of the robot are provided [67]. Dead reckoning is the 

process of calculating current pose using previously determined pose and some internal 

measures of velocity, acceleration, and time [68, 69]. In most of the wheeled mobile robots 

(WMRs), this is achieved using odometry. The encoders mounted on the wheels provide 

robot motion information to update the mobile robot pose. However, odometric pose 

estimation unboundedly accumulates errors due to different wheel diameters, wheel-

slippage, wheel misalignment, and finite encoder resolution [53]. Experiment results 

presented in this chapter, together with previous studies [70], concur that the largest 

factor in odometry error is due to the rotation of the robot. 

This chapter proposes an accurate and low cost mobile robot localization method 

using odometry with a Kinect sensor. The odometry and Kinect sensor measurements 

are fused using an extended Kalman filter (EKF) and a Particle filter (PF) to pro

vide more accurate localization results. The correct detection of landmarks by applying 

Hough transform and depth estimation using the Kinect sensor have significantly con
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tributed towards a better performance of the robot localization. The experiments are
 

carried out with H20 mobile robot (see Figure 2.2(a)) and results are provided in or

der to interpret the accuracy of the proposed method. A shorter version of this text is 

presented in the IEEE International Conference on Emerging Signal Processing Appli

cations (ESPA’2012) [61]. 

3.2 Localization using Extended Kalman Filter 

Kalman filtering is a commonly used approach for reducing the error in measurements 

from different sources [71, 72]. In EKF, unlike in basic Kalman filtering, the state 

transition and observation models can be non-linear functions of the state. Therefore, 

the EKF is widely adopted in the robot community. It is applicable to non-linear 

systems where the associated uncertainties are assumed to be Gaussian [17]. In this 

work, the mobile robot localization is achieved by fusing odometry information with 

Kinect measurements of the landmarks using EKF. 

The system state xk and observation of the state zk at time step k are modeled by 

a non-linear system function f and measurement function h as follows 

xk = f(xk−1, uk) + qk−1, (3.1) 

zk = h(xk−1) + rk, (3.2) 

where the state vector xk = [xk yk θk]
T . The input vector uk = [δlk δrk]

T , which indi

cates the distances traveled by the left and right wheels, respectively, are used as inputs 

in the kinematic model. Parameters qk−1 and rk are the system and measurement noises. 
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3.2.1 Prediction Step 

−In the prediction step, the EKF predicts the future state of the system x̂k and the state 

error covariance matrix P− 
k such that 

x̂− 
k = f(x̂k−1, ûk), (3.3) 

P− = �fxk−1 Pk−1�fT + �fuk Uk�fT + Qk−1, (3.4)k xk−1 uk 

where Uk and Qk−1 are the covariances of the input and system noises, respectively. 

The Jacobians of f with respect to xk−1 and uk at the point (x̂k−1, ûk) are defined as 

∂f ∂f �fxk−1 = |(x̂k−1,ûk) and �fuk = |(x̂k−1,ûk). (3.5)
∂xk−1 ∂uk 

From the odometry model described in Section 2.1.4, the state of the system can 

mentioned in Equation (3.3) can be predicted as ⎤⎡ 
x̂k−1 + δdk cos(ˆ

δθk )θk−1 + 
2 

f(x̂k−1, ûk) = 

⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦
 
.
ŷk−1 + δdk sin(θ̂k−1 + δθk (3.6)
)


2 

θ̂k−1 + δθk 

Using Equations (3.5) and (3.6), �fxk−1 and �fuk can be calculated: ⎤⎡ 
1 0 −δdk sin(ˆ

δθk )θk−1 + 
2⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦
 
δdk cos(θ̂k−1 + δθk�fxk−1 (3.7)
0 1
 )
=
 ,


2 

0 0 1 

x̂k−1 + δdk cos(θ̂k−1 + δθ
2 
k ) 
⎤⎡ ⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦

ŷk−1 + δdk sin(θ̂k−1 + δθk�fuk (3.8)
)
=
 .
 

2 

θ̂k−1 + δθk 
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3.2.2 Landmark Detection with Kinect Sensor
 

In the update step, the WMR uses landmarks around it to estimate its pose. In this 

work, different colored circles are used as landmarks as shown in Figure 3.1. The images 

and their depth values are acquired by the Kinect sensor. The OpenKinect library 

was used in order to obtain data from Kinect sensor [73]. Hough transform filters are 

used to detect the landmarks (circles) in RGB image frames [74]. The landmarks are 

distinguished from each other using HSI color model. 

The observation of the state zk can be expressed using the measurements obtained 

from the Kinect sensor, � �T 

zk = . (3.9)αk λk 

As illustrated in Figure 3.2, the azimuth angle αk with respect to the WMR x-axis and 

the distance λk to the ith landmark Bi(xBi , yBi ) at a time instant k can be used to 

determine the value of the measurement function, ⎡ ⎤ 
− yBi −ŷk θ−tan−1( − ) − ˆ

− ⎢ xBi −x̂ k ⎥
h(x̂ ) = k ⎦ . (3.10)k ⎣ � 

− x̂−)2 + (yBi − ŷ−)2(xBi k k 

3.2.3 Update Step 

Once the measurement zk is available, the optimal Kalman gain matrix Kk can be 

determined as follows 

= zk − h(x̂−), (3.11)νk k 

Sk = �hxk Pk 
−�hx

T 
k 
+ Rk, (3.12) 

= P−�hT S−1Kk k xk k , (3.13) 

where νk is the innovation matrix which is assumed to be corrupted by zero-mean 

Gaussian noise with covariance Sk. Here, Sk and Rk represent the innovation covariance 

matrix and measurement covariance matrix, respectively. The Jacobian �hxk is given 
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by, 

∂h �hxk = 
∂xk⎡ 

− , (3.14)
|x̂k ⎤
 
∂hαk ∂hαk ∂hαk 
∂xk ∂yk ∂θk =
 ⎢⎣
 

⎥⎦
 (3.15)
.
 
∂hλk 

∂hλk 
∂hλk 

∂xk ∂yk ∂θk 

Here, 

∂hαk yBi − yk 
(3.16)
=

(xBi − xk)2 + (yBi − yk)2 
,

∂xk 

∂hαk −xBi + xk 
= , (3.17)

∂yk (xBi − xk)2 + (yBi − yk)2 

∂hαk = −1, (3.18)
∂θk 

∂hλk −xBi + xk 
, (3.19)� 

(xBi 

=
 
∂xk − xk)2 + (yBi − yk)2 

−yBi
∂hλk + yk 

, (3.20)=
 
∂yk (xBi − xk)2 + (yBi − yk)2 

∂hλk = 0. (3.21)

∂θk 

The measurement update is done using the optimal Kalman gain as calculated in Equa

tion (3.13). 

x̂k = x̂ − 
k + Kkνk, (3.22) 

Pk = P− 
k − KkSkK

T 
k , (3.23) 

where x̂k is the state estimate at the time step k. 

3.2.4 EKF Realization 

The initial state estimate is taken as xk = 0 and Pk = 0, i.e. the initial vehicle pose 

defines the base coordinate frame. The measurement update step of the EKF takes place
 

only when a landmark is detected. Whenever a landmark is not detected, the predicted
 

state and state error covariance matrix of the time update step are taken as the state
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δrk

δlk
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Figure 3.2: The robot coordinate system and position of ith landmark. 

38
 



� 

− 
kestimate and state error covariance matrix for the next iteration of the filter, x̂k = x̂

and Pk = P− 
k . 

Here, the system, measurement and input noises are assumed to be zero mean and 

uncorrelated. Hence, the noise covariance matrices, Qk, Rk, and Uk become diagonal. 

The system and measurement noises are also assumed to be time invariant, which leads 

Qk and Rk to be time invariant as well [21]. ⎤⎡ 
σx
2 
k 

0 0 

0 σy
2 
k 

⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦
 
Qk =
 (3.24)
0
 ,
 

0 0 σ2 
θk ⎤⎡ ⎢⎣
 

σα
2 
k 

0 ⎥⎦
Rk (3.25)
=
 .
 
0 σλ

2 
k 

The system position noise variances of (x, y) coordinates are denoted by σ2 and σ2 .xk yk 

Here, σ2 is the orientation noise variance, while σ2 and σ2 are the measurement noise θk αk λk 

variances. 

The variance of the noise generated by each encoder can be determined as the sum of 

the variance of each independent unit because the encoder measurements are statistically 

independent and they accumulate errors over time. Therefore it is possible to assume 

that the variance of each unit of travel is proportional to the total distance traveled [53]. ⎤⎡ 

Uk =
 ⎢⎣
 
σ2 0L ⎥⎦
,
 (3.26)
 
0 σ2 

R 

where, 

σ2 
L = k2 

L 

k� 

i=0 

|δli|, (3.27) 

and 
k

σ2 = k2 |δri|. (3.28)R R 
i=0 

Here, k2 and k2 are positive constants. L R 
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3.3 Localization using Particle Filter 

As a solution to the Gaussian density assumption inherent in EKF localization, Monte 

Carlo localization was introduced for mobile robots [22]. It can globally localize the 

robot due to its capability of representing multi-modal distributions. The basis of the 

PF localization is to create a sample-based representation of the entire distribution of the 

robot trajectory. It requires less amount of memory and returns more accurate results 

compared to grid-based Markov localization [22]. The uncertainty in state estimation is 

represented by a set of samples that are randomly drawn from the probability density 

function, which are also known as particles. 

Similar to the EKF localization, this PF localization also has predication and update 

steps which are evaluated recursively. If a landmark is detected, particle weights are re

evaluated based on the Kinect measurements. In addition to the prediction and update 

steps common to both the EKF and PF, the PF performs a resampling step. It avoids 

the depletion of the sample population after few iterations. In this application, the 

system state xk = [xk, yk, θk] or the pose of the robot is modeled by set of M particles 

[i] [i] [i]{x }M , and associated importance weights {w }M w defines the contribution of k i=1 k i=1. k 

ith particle to the overall estimate of the variable. 

3.3.1 Prediction Step 

In the prediction step, the particles are modified after each action according to the 

odometry model described in Section 2.1.4, including the addition of random noise in 

order to simulate the effect of noise: ⎤⎡ 
δθk+nθkx̂k−1 + (δdk + ndk ) cos(

ˆ )θk−1 + 
2 

=
 

⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦
 
, i = 1, 2, . . . , M. (3.29)
[i] δθk+nθk) sin(θ̂k−1 +x
 ŷk−1 + (δdk + ndk )
k 2 

θ̂k−1 + δθk + nθk 
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Here, ndk is translational noise which is assumed to be additive Gaussian noise with zero 

mean and standard deviation σtrnsδdk, i.e. ndk ∼ N(0, (σtrnsδdk)
2). nθk is rotational 

noise which is assumed to be additive Gaussian noise with zero mean and standard de

viation σrotδdk, i.e. nθk ∼ N(0, (σrotδθk)
2). The values of the σtrns and σrot need to be 

calculated experimentally. According to the Equation (3.29), xk and yk depend on both 

translational and rotational errors. During the forward translation of the robot, its ori

entation also changes resulting in deviation from the desired direction of the translation, 

which is generally referred to as drifting of the WMRs. 

3.3.2 Update Step 

If the landmarks are detected, importance weights are re-evaluated in the update step 

based on the sensory information in order to accurately describe posterior over robot 

pose. Sensor observation zk can be expressed by, �T 

zk = αk λk , (3.30) 

which is obtained using the method explained in Section 3.2.2. As illustrated in Figure 

3.2, the azimuth angle αk with respect to the WMR x-axis and distance λk to the ith 

landmark Bi(xBi , yBi ) at a time instant k can be used to determine the value of the 

measurement function: ⎤
⎡
 
[i]

hk,1 ⎥⎦
,
 
⎢⎣


[i]
hk (3.31)
=
 

[i]
hk,2 

yBi −y
[i] 

[i]ktan−1( ) − θ[i] k 

⎤⎡ ⎢⎣
 
⎥⎦
xBi −x , i = 1, 2, . . . , M. (3.32)
k=
 

[i] [i]− x )2 + (yBi − y )2(xBi k k 

In contrast to the measurement function explained in Section 3.2.2, here, we obtain M 

different values for it corresponding to each particle. 
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Once the Kinect sensor measurements are available, the importance weights of the
 

particles are updated as;
 

(δα
[i]

)2 (δλ
[i]

)2 
k − k 

[i] 1 − 1 
2σ2 [i]

2σ2 w = √ e α × √ e λ × w , i = 1, 2, . . . , M. (3.33)k k−1
2πσα 2πσλ 

where, 

[i] [i]
δα = αk − hk k,1, 

[i] [i]
δλ = λk − h (3.34)k k,2. 

According to Equations (3.33) and (3.34), particles obtain higher importance weights 

[i] [i]
as the corresponding values for δαk and δλk get smaller. Once the particle weights are 

calculated, they are normalized so that the total of the importance weights is equal to 
M

[i]1 (i.e. w = 1). In the update step, the estimated pose is obtained either by using 
i=0 

the weighted mean, 
M

x̂k = w[i]xk 
[i] 

(3.35) 
i=0 

or by selecting the particle with highest weight as the best particle. 

3.3.3 Resampling 

After several iterations of the particle filter, the importance weights of most of the 

particles get close to zero, i.e. a small contribution to the posterior distribution of the 

robot pose. In literature, this effect is also known as the particle depletion problem [75]. 

In order to make sure that the particles represents the true posterior distribution, it 

is required to resample the particles at every time step. However resampling in every 

time step might lead to the loss of diversity in particles representing the robot path. 

In this work, we use effective sample size (ESS) [76] to measure the diversity of the 

particles. The ESS is calculated at the each iteration. If the calculated ESS value is 
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below a certain percentage of the number of particles, near-zero-weight particles are
 

replaced by duplicating the ones with higher weights. This is commonly known as 

particle resampling. There are several different methods that have been proposed for 

resampling [77, 76, 78]. In this application, we use linear time resampling [78] method 

to eliminate the near-zero-weight particles. 

3.4 Experiment Results 

The experiments were carried out in an indoor environment of 7m×2m with 4 landmarks. 

The starting point and 5 way points were marked on the floor with exact measurements. 

The WMR was maneuvered through the way points and measurements were taken. 

Figure 3.3 illustrates the statistical results obtain from 20 individual experiments. 

The ellipses around the mean values represent the standard deviations of the results. 

The mean values of the estimated results are close to the way points while their standard 

deviations are very small. It confirms that the proposed methods are capable of providing 

more accurate localization results compared to odometry. It should be noted that some 

pose errors, especially the errors in y-direction were due to the deviations in maneuvering 

the WMR onto the way points. Therefore the actual errors are expected to be slightly 

smaller. Since all methods under test are affected by such errors, the results remain 

qualitatively unchanged. 

The root mean squared error (RMSE) of localization at each way point is shown in 

Figure 3.4. According to the given results, the RMSE error of odometry measurement 

keeps increasing considerably with the distance traveled. This leads to an erroneous pose 

estimation of the WMR. However the RMSE has been reduced substantially using the 

EKF and PF with the Kinect sensor. This proves that the proposed estimation methods 

are robust and stable, while the results obtained using the PF are slightly more stable 

compared to the EKF. 
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Figure 3.4: Root mean squared localization error. 

Table 3.1: Euclidean distance error at each way point (cm). 
Way point 1 2 3 4 5 
Odometry 7.3634 5.6828 18.6643 34.9313 60.7425 
EKF 4.5655 5.1575 11.7987 16.5151 10.0205 
PF 3.9186 4.4614 3.9726 1.4753 4.8919 

The Euclidean distance error at each way point is given in Table 3.1. These values 

were obtained by calculating the Euclidean distance between the way points and the 

average of the measured/estimated robot positions. The errors in estimation results are 

significantly lower compared to the errors in odometry measurements. This suggests 

that the proposed methods using the Kinect sensor can perform accurate mobile robot 

localization. According to the given results, the PF pose estimation is more accurate 

compared to the EKF pose estimation with the Kinect sensor. 
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3.5 Summary 

The odometric pose estimation accumulates errors with time. More precise mobile robot 

localization can be achieved by reducing the uncertainty in the odometric pose estimation 

using a Kinect sensor to observe landmarks in an environment. Extended Kalman filter 

and particle filter can be used for the sensor fusion in pose estimation. The proposed 

measurement model for the Kinect sensor together with odometry model is capable of 

providing an accurate system model for a wheeled mobile robot. A robust and accurate 

mobile robot localization method using an inexpensive sensor system was proposed, 

implemented, and tested on the H20 mobile robot. 
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Chapter 4
 

Autonomous Exploration in Unknown Environments 

4.1 Introduction 

Mobile robot exploration is a task of controlling a robot in order to maximize its knowl

edge about the external environment using its sensors [17]. It has many application 

areas such as desert exploration [79], underwater exploration [80, 81], volcano explo

ration [82, 83], and outer planet exploration [10, 11]. This work mainly focuses on 

indoor robot exploration. Robotic exploration can be described using three subtasks, 

namely, map building, localization, and motion control. Robotic mapping is identified as 

a problem of creating the spatial models of physical environments using mobile robots 

[84]. In an indoor environment with a flat floor plan, localization estimates the pose, 

i.e. position and orientation of a mobile robot, provided that the map of the environ

ment, sensor readings, and executed actions of the robot are given [67]. Motion control 

is a task of steering the robot in order to efficiently guide it to a desired location [85]. 

Therefore, exploration should be achieved through an integrated system which considers 

localization, mapping and action selection simultaneously. 

Here, the exploration problem is addressed within the context of real-time navigation 

of non-holonomic mobile robots in unknown and uncertain environments. The architec

ture of the proposed exploration system is illustrated in Figure 4.1. An odometry system 

is used to obtain the robot motion information and Microsoft Kinect sensor [63] is used 

as a depth sensor to observe the environment. The issues caused by imperfect sensing 

is discussed in this chapter and the corresponding solutions are proposed. Information 

fusion of sensory data is achieved with the Rao-Blackwellied particle filter (RBPF) with 
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Figure 4.1: The proposed mobile robot exploration system architecture. 

an optimal proposal distribution [86]. The RBPF-SLAM together with scan matching 

produces an occupancy grid map of an environment. Reactive navigation methods can 

be used to generate motion commands to navigate the robot to the target location. 

Here, we employ nearness diagram (ND) reactive navigation method proposed in [87]. 

However, the ND method is only applicable to circular shaped holonomic robots. In 

our experiments, we use a humanoid wheeled mobile robot which is non-circular and 

kinematically constrained. A trajectory parameter space (TP-Space) [88, 89] is used as 

an abstraction layer of the robot shape and kinematic constraints for ND method. We 

combine the TP-Space method with ND navigation approach for non-holonomic robot 

exploration in unknown environments. 

The proposed integrated system for robot exploration in unknown environments aims 

to deal with imperfect control and sensing. In particular, this integrated approach does 

not require any distinguishable landmarks in the environment. It uses a RBPF to model 

the posterior about the trajectory of the vehicle using a finite set of particles. The 
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optimal proposal distribution can minimize the variance of the importance weights of 

the particles to reduce the uncertainty in the robot’s world model over time. TP-Space 

based reactive navigation approach enables non-holonomic robots to navigate through 

their environment without colliding with obstacles. Using the proposed navigation target 

selection method, the robot can maximize its knowledge about the environment while 

avoiding obstacles close to it. In addition, the limitations of the field-of-view (FOV) of 

inexpensive depth sensors (such as Kinect sensor used here) are overcome by rotating 

the robot around the center of its wheel axle when it is necessary. 

4.2 Optimal Particle Filter SLAM 

In our approach for active SLAM, we use RBPF with an optimal proposal distribution 

for mapping with an occupancy grid map m. A complete derivation of this optimal 

particle filter for SLAM can be found in [86]. Let x1:t = x1, x2, . . . , xt be the robot 

trajectory which is obtained using the odometry measurements u0:t = u0, u1, . . . , ut and 

observations z1:t = z1, z2, . . . , zt. RBPF is used to compute the posterior over maps and 

trajectories: 

p(x1:t,m|z1:t, u0:t) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u0:t). (4.1) 

The posterior over maps p(m|x1:t, z1:t) are calculated when x1:t and z1:t are available. The 

posterior over the trajectories p(x1:t|z1:t, u0:t) can be calculated sequentially by applying 

the Bayes rule: 

p(x1:t|z1:t, u0:t) = p(zt|x1:t, u0:t) · p(x1:t|z1:t−1, u0:t). (4.2) 

In contrast to parametric models, the pose and map estimations obtained using the 

particle filter are represented using finite set of particles. A potential trajectory of the 

[i]
mobile robot is represented by each particle. Also a map hypothesis mt is associated 

with each sample. Let {x[i]}N be a set of N robot path hypotheses at time step t,t i=1 
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distributed according to some proposal distribution:
 

[i] [i]
xt ∼ π(xt|x1:t−1, z1:t, u0:t). (4.3) 

The variance of the importance weights w[i] can be minimized by selecting π based on 

the most recent observations [90]. This choice for π is referred as the optimal proposal 

distribution. According to Doucet et al. [90], the optimal proposal distribution that 

minimizes the variance of the next weights for any generic particle filter is given by, 

[i] [i]
π(xt|x1:t−1, z1:t, u0:t) = p(xt|x1:t−1, z1:t, u0:t), 

[i] [i]
p(zt|xt, x1:t−1, z1:t−1, u0:t) · p(xt|xt−1, u0:t) 

= . (4.4) 
p(zt|x1:

[i] 
t−1, z1:t−1, u0:t) 

For the particles to represent the true posterior distribution, it is required to resample 

them at every time step. However, resampling at every time step may cause the particles, 

which represent the robot path, to lose its diversity. Here, effective sample size (ESS) 

[91] is used to measure the diversity of the particles. This quantity is computed as 

1 
ESS = (4.5)

N
[i])2(w

i=0 

The ESS is calculated at each iteration. If the ESS value is below the selected threshold, 

the particles are resampled using rejection sampling. The threshold for ESS is normally 

taken as half of the number of particles. In the optimal particle filter, a set of N 

particles is replicated into a set of auxiliary particles which are propagated according to 

the rejection sampling and the weights are updated according to the optimal proposal 

distribution [92]. In the resampling step, the final set of N samples are selected from 

the updated auxiliary particles with the probability proportional to their weights. This 

results in equal importance weights for all the selected particles. 

In this work, we use occupancy grid maps as a non-parametric representation of the 

environment. The occupancy grid map consists of a set of grids, which are two dimen

sional in our case. Once the final set of particles are selected in the resampling step, 
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[i] [i]
the corresponding map mt is estimated for each of those particles xt based on trajec

[i] [i] [i]
tory x1:t and observations z1:t, according to p(m |x , z1:t). The next target location is t 1:t

selected based on the estimated robot pose and up-to-date map. 

4.3 Navigation Target Selection 

At the beginning of the exploration in a fully unknown environment, all the grids of 

the occupancy grid map are initialized with a prior probability value (normally 0.5). 

Figure 4.2(a) shows such an initial grid map. As the exploration process continues, the 

probability values of the grids reach 1 if those grids are occupied by obstacles (black 

pixels in Figure 4.2(b) and Figure 4.2(c) represents the obstacle boundaries), otherwise 

0, if those are empty (white area in Figure 4.2(b) and Figure 4.2(c)). One of the main 

objectives of robot exploration is covering as much area as possible. Therefore the 

navigation targets should be selected so that the information is maximized. 

4.3.1 Frontier-Based Exploration 

One of the most popular approach for target selection is called as frontier based explo

ration, which was first proposed by Yamauchi [37]. Frontier cells define the boundary 

between explored and unexplored areas. These frontier cells offer the robot a possibility 

of visiting new places. If no frontier cells exist in the map, the robot has explored the 

total area under consideration and the navigation process will be stopped. The frontier 

grids are detected using techniques analogous to the detection and region extraction in 

computer vision. By moving the robot to new frontiers, it can extend its map to a new 

territory until the entire environment has been explored. The effect of false frontiers, 

generated mainly due to sensor errors, can be reduced by clustering the frontier grids and 

associating target candidates to the clusters with size comparable to robot dimensions. 

[i] [i]
As the map is updated according to p(m |x , z1:t), new observations are inserted into t 1:t
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the map only when a new set of particles representing the robot trajectory is available.
 

In the beginning there are no frontier grids in the map and the robot does not know 

where to navigate. If the robot initializes the navigating in any arbitrary direction, there 

is a chance of colliding with an obstacle as the map does not have any information at 

the beginning (Figure 4.2(a)). Also in partially explored environments, the robots might 

not be able to reach the frontiers due to its kinematic constraints. 

4.3.2 Proposed Target Selection Method 

With non-holonomic robots and range sensors with limited FOV (< 90o), our target se

lection method borrows the ideas of frontiers with a more human-like approach. Imagine 

that you are looking for a specific room in a previously unknown building. How will you 

navigate inside the building without any assistance? You may look around and take a 

clear passage visible to you. Once you come to the end of the passage, you turn around 

and look for more free space to move. In our approach, we use similar idea for target 

selection. The proposed method is presented in the algorithm in Figure 4.3. 

The algorithm starts with computing the clearance in front of the robot. In other 

words, the robot is looking for safe regions to navigate. In line 3, compute clearance 

function returns the distance to the frontier grids or obstacles located straight ahead of 

the robot in the area covered under the FOV of the Kinect sensor. It also considers the 

width of the robot to determine whether the available free space is enough to occupy 

the robot or not. When the safety margin for the width of the robot is increased, 

its resistance to navigate in the narrow passages also increases, and vice versa. If the 

distance of clearance is greater than the security distance (ds), it selects the next target 

position according to line 6 and line 7 in Figure 4.3. ds is defined as the minimum 

distance between the center of the robot wheel axle and the obstacle boundary without 

any collision. 
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1:	 function select next target(mt, xt, yt, θt) 
2:	 � (xt, yt, θt) is the current robot pose, mt is the map. 

3:	 clear distance ← compute clearance(mt, xt, yt, θt) � returns the distance to 
frontier or to obstacle boundary. 

4: if clear distance > min allowed distance then 
5:	 � Defines the coordinates of the navigation target. 
6: xt

g ← xt + clear distance × cos(θt) 
7: yt

g ← yt + clear distance × sin(θt) 

8: if nav state1 =� ST RAIGHT then 
9: nav state2 ← nav state1 

10: nav state1 ← 0 
11: end if 

12: else if nav state1 =� ST RAIGHT then 
13: (mt, xt, yt, θt) ← rotate(mt, nav state1, φ) 
14: nav state2 ← nav state1 

15: (xt
g, yt

g) ← select next target(mt, xt, yt, θt) 

16: else 
17: (mt, xt, yt, θt) ← rotate(mt, −nav state2, φ) 
18: nav state1 ← −nav state2 

19: (xt
g, yt

g) ← select next target(mt, xt, yt, θt) 

20: end if 
21: return (xt

g, yt
g) 

22: end function 

Figure 4.3: Navigation target selection algorithm. Function names are noted in 
slanted text. Refer the Section 4.3.2 for more details. 
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nav state1 and nav state2 are system variables which carry the information about 

the navigation states of the robot in last two time states. Those variables are initialized 

and updated with three constant values ST RAIGHT , +ROT AT E, or −ROT AT E 

which correspond to three basic operations during the target selection: 

•	 ST RAIGHT - moving straight, 

•	 +ROT AT E - rotating counter clockwise around the center of the wheel 

axle, and 

• −ROT AT E - rotating clockwise around the center of the wheel axle. 

These two state variables are used in order to avoid robots being in circular loops. They 

are initialized with ±ROT AT E and updated as the robot moves, in lines 9, 10, 14, 

and 18. If the distance of clearance calculated in line 3 is smaller than ds, the robot 

cannot move forward anymore. Thus it rotates by an angle of φ either in clockwise or 

counter clockwise direction (line 13 and line 17). φ is a constant angle which is less than 

FOV of the range finder. The direction of rotation is decided according to the previous 

navigation states. If the operation command +ROT AT E or −ROT AT E is issued in 

the last time step (nav state1 = ±ROT AT E), it will issue the same command in this 

time step as well. If the operation command ST RAIGHT is issued in the last time step 

(nav state1 = ST RAIGHT ), it issues the opposite of the command issued in two time 

steps before (−nav state2). 

If we again consider the scenario of initializing the navigation in a fully unknown 

environment, using the proposed target selection method, the robot will first rotate an 

angle of φ as it does not have any prior information about the available safe regions, i.e. 

line 3 will return 0, which is obliviously less than ds. However with the first rotation, 

robot explores some area of the map (as shown in Figure 4.2), which will let it decide 

the next navigation target. As the robot moves forward, it will keep exploring the area 
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in front. Therefore the distance of clearance returned in line 3 is not limited by frontiers 

as the maximum coverage distance of the range finder is greater than ds in practice. 

Although the state variables hold the corresponding operations of the last two time 

steps in target selection process, it violates that when two ST RAIGHT commands are 

issued continuously. In such a scenario, it only updates nav state1 with ST RAIGHT 

(nav state1 = ST RAIGHT ), and keeps the last rotational action in nav state2 (lines 

8-10). The purpose of such a procedure is not to discard the information about the last 

rotational action. 

Once the navigation target is selected in a global coordinate frame (x
gt , y
gt ), it is
 

combined with current robot pose to decide the navigation target in robot coordinate
 

frame (x
rt , y
rt ). Then the calculated relative target position is sent to the autonomous
 

navigation system. 

4.4 Reactive Navigation for Exploration 

Autonomous navigation in an unknown and dynamic environment is one of the most 

challenging tasks in mobile robotics. This problem has been explored by mobile robot 

researchers for several decades. The mobile robot navigation algorithms can be clas

sified into two broad categories: motion planning algorithms and reactive navigation 

algorithms. Motion planning algorithms compute collision free optimal path from the 

current robot position to the goal position for the known environmental models, i.e. 

when the map of the environment is given. Collision free mobile robot navigation in 

unknown, dynamic, and unstructured environments cannot be achieved through motion 

planning algorithms. As a solution, reactive navigation algorithms (a.k.a. real-time 

obstacle avoidance) have been proposed which periodically generates motion commands 

during real-time navigation directly from the sensory information. 

56
 



d
 c

o
s(
α

)

d sin(α)

T
P

- 
O

b
st

ac
le

x 
(m

)

y (m)

0

0

-2
-2

2
-1

1

-112

0

0

-2
-2

2
-1

1

-112

T
ar

g
et

P
o
in

t 

o
b
st

ac
le

C
u
rr

en
t 

ro
b
o
t 

p
o
si

ti
o
n

−
2

−
1.

5

−
1

−
0.

5

0

0.
5

1

1.
5

2
−

2

−
1.

5

−
1

−
0.

5

0

0.
5

1

1.
5

2
−

3

−
2

−
10123

θ (rad)

y 
(m

)
x 

(m
)

C
−

O
bs

ta
cl

e

T
ar

ge
t

S
ta

rt
 p

oi
nt

d
 c

o
s(
α

)

d sin(α)

T
P

- 
O

b
st

ac
le

x 
(m

)

y (m)

0

0

-2
-2

2
-1

1

-112

0

0

-2
-2

2
-1

1

-112

T
ar

g
et

P
o

in
t 

o
b

st
ac

le

57 

(a
) 

(b
) 

(c
)

F
ig
u
re

 4
.4
: 

(a
) 

A
n

 e
x
am

p
le

 w
or
k
sp
ac
e 

of

 a

 m
ob

il
e 

ro
b
ot

 w
it
h

 a

 p
oi
n
t 

ob
st
ac
le
, 

(b
) 

A

 C
-O

b
st
ac
le

 i
n

 t
h
e 

C
-S
p
ac
e 

th
at

 r
es
u
lt
s

fr
om

 t
h
e 

p
oi
n
t 

ob
st
ac
le

 i
n

 t
h
e 

w
or
k
sp
ac
e,

 a
n
d

 (
c)

 A
 T

P
-O

b
st
ac
le

 i
n

 t
h
e 

T
P
-S
p
ac
e,

 w
h
ic
h

 c
an

 b
e 

se
en

 a
s 

th
e 

in
te
rs
ec
ti
on

 o
f

th
e 

th
e 

sa
m
p
li
n
g 

su
rf
ac
e 

w
it
h

 t
h
e 

C
-O

b
st
ac
le
s.

 



4.4.1 Nearness Diagram Navigation
 

Most of the reactive navigation algorithms are highly computationally complex to use in 

real-time scenarios. The ND reactive navigation method could comprehensively reduce 

the computational complexity in real-time obstacle avoidance in very dense, untidily, 

and complex environments. The ND method simplifies the navigation problem based 

on a divide-and-conquer strategy that defines a set of complete and exclusive situations. 

Once the situations are identified from the range data, the corresponding actions are 

applied which address the relative state of each problem entities. This perception-action 

process is completed using a situated-activity paradigm of the behavioral design. 

The reactive navigation system based on the situated-activity paradigm periodically 

receives the Kinect sensor data, relative goal location and estimated robot location. 

It analyzes the current safety level of the robot using those information. If there are 

obstacles close to the robot, it reports that the robot is in low safety, otherwise in high 

safety. The high safety situation is further divided into sub-situations according to the 

width of the passage connecting the robot and current goal location. If the goal is within 

the safety region in front of the robot, it directs the robot towards the goal. If the robot 

is facing a wide safety region and the goal is not within that area, it drives the robot 

close to the obstacle till it passes it. If the safety region is narrow and the robot can 

move without any collisions, it drives the robot through the central zone of the safety 

region. The low safety situation is also divided into sub-situations. If there are obstacles 

only on one side of the gap closest to the goal, it first moves the robot away from the 

closest obstacle and then towards the safety region. If there are obstacles on both the 

sides, it centers the robot between the obstacles and drives the robot towards the safety 

region. 

The motion command of the robot is also decided using the situated-activity paradigm 

of the behavioral design. If the robot is in a high safety situation in the tth time step, 
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the absolute value of the linear velocity is defined as
 

(β − |γ|) 
ṽt = ṽmax 

2 , (4.6)
)(β 

2 

where ṽmax is the maximum linear velocity, β is the FOV of the sensor, and γ is the linear 

velocity direction. The robot moves at the maximum speed when there is no obstacles 

ahead of it and γ = 0. It reduces the speed as it sees an obstacle. When it reaches low 

safety regions, the linear velocity is updated as 

dobs (
β − |γ|) 

ṽt = ṽmax 
2 , (4.7)

ds (β 
2 ) 

where dobs is the distance from the closest obstacle to the robot bounds. It reduces ṽt 

as it gets close to the obstacles. According to Equations (4.6) and (4.7), the absolute 

value of the linear velocity is also reduced as γ increases. Since we use a depth sensor 

with limited FOV which has been attached to the front of the robot, the robot avoid 

instantaneous backward motion. Therefore, direction of the linear velocity is restricted 

to γ ∈ [−β/2, β/2]. In both the low safety and high safety situations, the angular 

velocity is defined as 
γ 

ω̃t = ω̃max , (4.8)
(β 
2 ) 

where ω̃max is the maximum angular velocity. 

Although the ND method is a less computationally complex solution for obstacle 

avoidance in troublesome scenarios, it can only be employed with circular shaped holo

nomic robots. Therefore, we need to abstract vehicle shape and kinematic constraints 

before using ND navigation method as illustrated in Figure 4.5. 

4.4.2 Trajectory Parameter Space 

TP-Space is used as an abstraction layer of the robot shape and kinematic constraints for 

ND method. In TP-Space, problems of kinematics restrictions and obstacle avoidance 
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Abstraction of robot shape and kinematic constrains

Nearness diagram
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Virtual 

workspace 
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Figure 4.5: TP-Space based reactive navigation system. 

can be separated by using path models to transform compatible paths and workspace 

obstacles into a lower dimensional space. Therefore the robot can be treated as a free-

flying-object in TP-Space and ND navigation can be used for obstacle avoidance. Figure 

4.4 illustrates the conversion process from workspace to TP-Space. In motion planning 

approaches, configuration space (C-Space) is used to model the environment [93]. A 

mobile robot navigating in planar environment is represented by using three dimensions 

in C-Space: x,y, and θ. In the occupancy grids maps, the obstacles are represented as a 

combination of several points (occupied grids). An example workspace where a mobile 

robot navigating in a planar environment with a point obstacle is shown in Figure 4.4(a). 

The robot is represented as a point in the C-Space. The missing information about the 

robot shape is carried by the obstacles in the C-Space (called as C-Obstacles). However 

the C-Obstacles assume robots to be holonomic which is not always true in practice. In 

C-Space motion planning, any 3D curve linking the start pose and target pose which 

does not go through the C-Obstacle, can be selected as a continuous sequence of robot 

poses to reach the goal. However, in practice, not all of those pose sequences can be 

realized with non-holonomic mobile robots. 

In order to abstract the kinematic constraints, we extract the 3D curves from the C-

Space which satisfy the path models introduced in [89]. If we visualize all such possible 

paths from a given model, we obtain a 3D surface called as a sampling surface. TP
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Space is obtained by straightening out the sampling surface. An example for such a 

straightened out sampling space (TP-Space) is shown in Figure 4.4(c). Therefore, each 

point in TP-Space corresponds to a pose within a C-Space sampling surface. TP-Space 

is normally represented in polar coordinates: an angular component α and a distance 

d. The mapping between a TP-Space and a sampling surface is achieved by selecting a 

trajectory from a specific path model using α. The distance of the pose along the selected 

trajectory is substantiated by d. However, once the mapping is done, obstacle avoidance 

is achieved by the ND approach. However the motion command (ṽt, ω̃t) decided by ND 

method is only valid in the virtual TP-Space and needs to be mapped back to the real 

workspace motion command (vt, ωt) using the transformations explained in [89]. 

4.5 Experiment Results 

The proposed reactive navigation based exploration technique is tested in indoor envi

ronments with the H20 humanoid wheeled mobile robot (WMR) shown in Figure 2.2(a). 

The H20 is a non-holonomic mobile robot with a non-circular shape. The shape of the 

base of the mobile robot platform is shown in Figure 2.2(b). A detailed discussion on 

H20 WMR is provided in Section 2.1.3. In this work, we obtain the distance to the 

obstacles in the indoor environments using a Kinect sensor [63] mounted on H20. To 

the best of the our knowledge, this Kinect sensor has not been used in robot exploration 

application, however it has been used in indoor robot localization in [61]. The optimal 

particle filter SLAM algorithm and TP-Space based reactive navigation algorithm is 

implemented using the mobile robot programming toolkit [94] 

We present here two experiments carried out using H20 mobile robot in different parts 

of our laboratory at the University of Calgary. The environment was fully unknown to 

the robot at the beginning of each experiment. The robot started exploration in a 

random position in the test environment with any arbitrary orientation. The results 
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Figure 4.7: Results of the first experiment: (a) Execution time of the map building 
process and (b) Number of sensory-frames in the current map. 
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Figure 4.8: Results of the first experiment: (a) Linear velocity of the robot and (b) 
Angular velocity of the robot. 
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Figure 4.10: Results of the second experiment: (a) Execution time of the map building 
process and (b) Number of sensory-frames in the current map. 
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Figure 4.11: Results of the second experiment: (a) Linear velocity of the robot and (b) 
Angular velocity of the robot. 
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of the experiments are presented in Figures 4.6 – 4.11, in order to verify the three
 

goals of mobile robot exploration: map building, localization and motion control. The 

experiments were carried out without any kind of human interaction, except for issuing 

the commands to start and conclude the exploration. 

In the first experiment, the robot had to explore an unstructured passage with hard 

asymmetries. We set the maximum linear velocity to 0.2 m/s and maximum rotational 

velocity to 0.34 rad/s (20 deg/s). The occupancy grid map of the test environment 

and estimated robot trajectory are shown in the Figure 4.6. The map was built using 

the RBPF based on 83 sensory-frames from the Kinect sensor shown in Figure 4.7 

(b). The execution time of each map building step is shown in Figure 4.7 (a). The 

motion commands were generated using the ND approach based on the Kinect sensor 

measurements. Figure 4.8 (a) and Figure 4.8 (b) illustrate the linear and angular velocity 

components of the motion commands in each time step. During its complete exploration, 

the robot navigated 12.35 m without any collisions. In the second experiment, the 

robot also had to explore an unknown and unstructured environment, which was longer 

compared to the previous one. Here, we set the maximum linear velocity to 0.14 m/s 

and maximum rotational velocity to 0.34 rad/s (20 deg/s). The robot navigated 14.74 m 

without any collisions throughout the whole run. The results of the second experiment 

are shown in Figures 4.9 – 4.11. 

4.6 Summary 

Autonomous exploration is a key component in search and rescue robots. Simultaneous 

localization, mapping, and motion controlling are required for exploring unknown en

vironments with such robots. Although the SLAM problem is widely discussed among 

the robotic research community, the problem of simultaneous motion controlling in an 

unknown environment has been unable to attract the adequate attention. In this work, 
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we address the mobile robot exploration problem using an integrated system which is 

capable of generating motion commands for the robot while performing the SLAM. We 

do not make any assumptions about distinguishable landmarks in the environment with 

the occupancy grid maps used in this application. The optimal particle filter SLAM 

models the posterior about the robot trajectory while minimizing the variance of the 

importance weights of the particles. We use a human-like approach to select the navi

gation target in the up-to-date map. The ND reactive navigation system generates the 

motion commands based on the estimated robot position and next target position. As 

we carried out our experiments with a non-circular and non-holonomic mobile robot, 

we used TP-Space as an abstraction layer of the robot shape and kinematic constraints 

for ND navigation method. The proposed system was implemented and tested on a 

mobile robot platform with an inexpensive sensor system. Despite its low cost sensor 

system, experimental results have validated the robustness and real-time applicability 

of the proposed method. 
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Chapter 5 

High Level Data Fusion for Goal Detection 

5.1 Introduction 

In many applications, mobile robots have to decide the location of their goal for motion 

planning. These goals depend on the application that the robots are utilized in. For 

example, the mobile robots utilized in military battlefields need to determine their en

emies and allies correctly based on their behavior and appearance. Search and rescue 

robots need to identify the victims in hazardous environments to assist human workers. 

Such real-time applications require on-line fusion of sensory data so that the situation 

awareness is maximized. Within a given volume of time and space, situation awareness 

can be defined as the perception of the elements in the environment, comparison of their 

meaning and projection of their status in near future [95]. This chapter proposes a 

system developed with the objective of reaching targets under tangible situations based 

on sensor information. 

State-of-the-art mobile robot platforms use multiple sensors to gather information 

about their environment. Those sensors may be used to observe a single situation in 

the environment. The proposed situation assessment framework (SAF) analyzes sensory 

information with respect to prior knowledge to provide decision support. A fuzzy cog

nitive map (FCM) based SAF has been previously used in CanCoastWatch project for 

high level data fusion [96]. Situation assessment is also used in unmanned air vehicles to 

organize and represent a skilled human’s situation assessment behavior in troublesome 

situations [97]. The concept of FCM is introduced in [98, 99] by considering fuzzy val

ues for the concepts in the cognitive maps. FCMs have been applied in many different 
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applications such as analyzing electrical circuits [100], modeling intelligent supervisory 

control systems [101], and analyzing graph theoretical behavior [102]. The proposed 

FCM based SAF for navigation goal detection can efficiently process the information 

coming from a large number of sensors and make the decisions effectively. 

An experimental scenario is developed as a proof of concept and therefore has limited 

number of situations. Here, the navigation goal of the robot is to find a cup on a box in 

an office environment. The robot needs to observe the environment using its sensors and 

identify the exact situation which matches its goal, i.e. the proposed system should be 

able to distinguish between isolated boxes and a box with a cup on top of it as its goal 

location. Here, we use Microsoft Kinect as our sensing device [63]. The RGB camera 

and depth sensor of Kinect are used as two separate input devices to our decision fusion 

architecture. The information captured by RGB camera is used to observe the color of 

the box and the cup. The data received through the depth sensor of the Kinect is used 

for recognizing the shape of the objects. 

5.2 Situation Assessment Framework 

Situation assessment has been used in different domains [96, 103, 97]. In the context 

of information fusion, it can be defined as a process of estimating and predicting the 

relationship among entities while including the physical context, perceptual influences, 

and communications [104]. The hierarchy of components in a data fusion model is given 

in Table 5.1 [105]. The first two steps of this data fusion model can be recognized as 

feature extraction and object detection. Situation assessment comes third in the data 

fusion hierarchy. In our case, recognizing the color or shape of a box or a cup can be 

categorized under feature extraction, which uses relevant features from sensor readings 

such as RGB (red, green, and blue) data and depth information. Recognizing the box or 

cup can be identified as object detection. Somehow, in order to evaluate most real-world 
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Table 5.1: Hierarchy of components of a data fusion system.
 
Data fusion level Estimation process Entity estimates 
L0: Sub-object assessment Detection Signal 
L1: Object assessment Attribution Physical Object 
L2: Situation assessment Relation Situation 
L3: Impact assessment Plan interaction Effect 
L4: Process refinement Control Action 

scenarios, we actually need to assess the situation. For example, if you are asked to find 

a coffee mug, you will not look for it inside drawers, instead, you will look for it on the 

tables or in cupboards. Searching in the most likely cup locations first, reduces the time 

needed for locating a cup. Similarly in our work, we have defined our target test case as 

locating a cup, which the robot will start looking for on tables (instead of tables, we use 

boxes in our experiments). Situation assessment is highly useful in such scenarios as it 

combines expert knowledge and sensor information together. 

The primary objective of this work is to develop a goal-driven SAF wherein a nav

igation goal needs to be verified using prior knowledge and sensor information. The 

proposed SAF for navigation goal detection is shown in Figure 5.1. The robot’s nav

igation goal is passed to the SAF and the orientation manager describes it through 

appropriate sub-goals. The degeneration of a goal will continue until the sensor readings 

are sufficient to describe the sub-goals. The break down of various goals into sub-goals 

is defined by the expert knowledge. Taking our setup as an example, the goal is to 

detect a cup located on a box (isCupOnBox ). This is defined using sub-goals that can 

be identified as intermediate decisions, such as isCorrectBox and isCorrectCup. The 

proposed goal-driven situation assessment works backwards from the initial goal and 

tries to prove it by associating it to several sub-goals. 

The inference mechanism in SAF first selects the rules with conclusions matching 

the goal. Rules are stored in knowledgebase, for example: IF isCorrectBox AND is-

CorrectCup THEN isCupOnBox. Likewise, multiple rules can be stored within the 
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Figure 5.1: Structure for situation assessment. 

knowledgebase depending upon the number of goals needed to be verified by the SAF. 

Once the correct rule is extracted from the knowledgebase corresponding to its currently 

assigned goal, the goal is replaced by the rule’s premises which then become sub-goals. 

Then it passes the information about sub-goals to the FCM. Verification of each sub-goal 

is achieved by the FCM using the fuzzy probability and prior knowledge. Goal assertion 

confidence for each sub-goal is decided using FCM inference and returned to the orien

tation manager. The SAF recursively works backward until all sub-goals are verified. 

Consideration of the next sub-goal depends upon the rules and assertion confidence of 

previous sub-goals. If we consider the previously mentioned rule as an example, a failure 

in assertion of either sub-goal will result in a negative outcome of the final decision as 

all the sub-goals are connected using AND operators. 
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5.3 High Level Data Fusion using Fuzzy Cognitive Maps 

FCM can be considered as a combination of fuzzy logic and neural networks [106]. The 

proposed system occupies multiple FCMs for high level decision making in detecting 

navigation goals. Once sub-goals have been identified, the fuzzy cognitive map inference 

uses fuzzy probabilities and expert knowledge to assert goal confidence. Fuzzy prob

abilities (membership values) are generated by the fuzzy probability generator (FPG) 

which relies on selected sensor information and expert knowledge in the form of fuzzy 

membership functions for color and shape of objects. Fuzzy membership functions for 

color and shape of boxes are shown in Figure 5.2. Similar membership functions can be 

obtained for the cup as well. Based on the degree of match in color and shape, described 

in Section 5.3.2, fuzzy probabilities are generated for all selected sensor information. The 

expert knowledge within the FCM inference refers to the method of fuzzy probability 

fusion. Here, fuzzy gamma fusion is used to combine the fuzzy probabilities generated 

by the FPG. 

5.3.1 Fuzzy Gamma Fusion 

Given multiple fuzzy membership functions for the same situation, there are several 

operators that can be used to combine membership values together. Fuzzy gamma 

fusion is one such method which incorporates expert knowledge for combining data sets 

[107]. It can be defined as � �n �γ � 
n

�(1−γ) 

µfused(x) = 1 − (1 − µi(x)) × µi(x) (5.1) 
i=1 i=1 

where µi is the membership value of ith membership function and µfused is the assertion 

confidence for each sub-goal generated by FCM inference. Fuzzy gamma fusion provides 

a flexible compromise between the increasive effects of the fuzzy algebraic sum and 

decreasive effects of the fuzzy algebraic product where γ is judiciously given by the 
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expert interface to reflect the subjective decision-making of a typical human. By varying
 

γ from 0 to 1, fuzzy gamma fusion changes from a purely fuzzy algebraic product to 

a purely fuzzy algebraic sum. Although, the fuzzy algebraic sum provides the largest 

maximization to object detection, it is susceptible to false positives within feature fusion. 

For example, µcolor(x) = 0.1 and µshape(x) = 1.0 corresponds to a perfect shape but a 

poor color match. Therefore, when γ = 1, µfused(x) = 1.0 and an incorrect assertion 

is made by the FCM inference resulting in a false positive generated by the orientation 

manager. However, if γ = 0.7, µfused(x) = 0.50 is sent to the orientation manager which 

can refer to its knowledgebase rules for detection thresholds. Figure 5.3 illustrates the 

effect of different γ values on detection probabilities. 

5.3.2 Feature Extraction for Object Recognition 

For real-time situation assessment, the 3D shape recognition must be fast and reliable. 

Kinect provides dense depth and RGB maps, here referred to as point clouds. However, 

the raw point cloud data is dense and comes with high computational cost, therefore 

filtering and segmentation are required before recognition can be carried out by the 

fuzzy probability generator. The 3D shape recognition module was implemented using 

Point Cloud Library (PCL) [108]. The raw point cloud is first down-sampled using a 3D 

voxelized grid filter and then segmented using Euclidean cluster extraction [109]. The 

clusters are then transformed into a viewpoint feature histogram (VFH), an accurate, 

computationally efficient 3D feature descriptor [110] and used in a fast, simple nearest 

neighbor (NN) classifier in [111]. The NN classifier provides the degree of match between 

an arbitrary VFH and a trained VFH as a distance measurement (which is referred to 

as distance of mismatch in Figure 5.2 (b)), where 0 corresponds to an exact match. The 

orientation manager sends distance of mismatch as the selected sensor information to 

the FPG for probability generation. 
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Figure 5.2: Membership functions for the box: (a) membership degree of hue value 
(µcolor) and (b) membership degree of distance of mismatch (µshape). 
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Figure 5.3: Membership values of FCM for isCorrectBox (a) when γ = 0, (b) when 
γ = 0.7, and (c) when γ = 1. 
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Since the VFH descriptor only makes distinctions based on 3D features, additional
 

features were required to differentiate between geometrically similar objects. RGB color 

was an easily extracted feature from the point cloud data but the additive blend of RGB 

values that make up an arbitrary color are unintuitive and are highly prone to variation 

with changing lighting conditions. Therefore, the RGB colors were transformed into 

hue, saturation, and value (HSV) and the averaged hue was used as the color feature 

of an arbitrary point cloud. The HSV color model is more robust to changing light 

conditions which typically affect the saturation and value in HSV descriptions. The 

degree of match between an arbitrary hue and a trained hue is modeled as a Gaussian 

function with a mean defined by the average trained hue and variance defined by the 

correlation between training sample hues (see Figure 5.2(a)). The orientation manager 

sends the average hue value of clusters as selected sensor information to the FPG for 

probability generation. 

5.4 Goal Location Estimation 

After the SAF correctly identifies the goal, its location has to be decided by the robot 

in order for it to reach there. In this implementation, a dedicated Kinect sensor is used 

for goal detection in addition to the Kinect sensor which is used for obstacle avoidance. 

The H20 mobile robot with both the Kinect sensors is shown in Figure 5.4. The upper 

Kinect is used for goal detection. As explained in Section 2.2.3, the Kinect sensor has 

the problem of close range blind spot. The appropriate position and attachment of the 

second Kinect sensor renders the robot with a better capability of seeing nearby objects. 

Unfortunately it is not possible to get a direct measurement of the goal location with 

respect to the same coordinate frame where the robot is localized. Instead the PCL gives 

the location vector of the goal with respect to the Kinect coordinate frame (XK , YK , ZK ). 

Also the coordinate frames of the robot (XR, YR, ZR) and the Kinect sensor are not 
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Figure 5.4: H20 mobile robot with a dedicated Kinect sensor for goal detection. (a) 
Side view and (b) front view of the robot which illustrates the relative position and 
orientation of the the local coordinate frames of the Kinect and robot. 

aligned with each other. Figure 5.4 illustrates front and side views of the H20 robot 

with the position and orientation of each coordinate frames. The transformation of these 

coordinates to the robot’s coordinate frame can be accomplished using the homogeneous 

transformations which combine the position vectors and rotation matrices into a compact 

notation [58]. Let rTk be the transformation matrix from Kinect coordinate frame to 

robot coordinate frame which is given by, 
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⎤⎡ 

rTk =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

0 − sin β cos β xk 

−1 0 0 yk 

0 − cos β − sin β zk 

0 0 0 1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (5.2)
 

Here, (xk, yk, zk) is the position of the Kinect with reference to the robot’s coordinate 

frame. β is the angle between Kinect optical axis and horizontal plane. Similarly, we can 

define the transformation matrix from robot coordinate frame to the ground reference 

as
 ⎤⎡ 

gTr =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

cos θt − sin θt 0 xt 

sin θt cos θt 0 yt 

0 0 1 0
 

0 0 0 1
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (5.3)
 

Here, (xt, yt, θt) is the robot pose in tth time step with respect to the ground reference. 

Using Equations (5.2) and (5.3), the transformation matrix from Kinect coordinates to 

ground reference can be obtained, 

gTk = gTr × rTk, (5.4) ⎤⎡ 

gTk =
 

⎢⎢⎢⎢⎢⎢⎢⎣
 

sin θt − cos θt sin β cosθt cos β xt + xk cos θt − yk sin θt 

− cos θt − sin θt cos β sin θt cos β xt + yk cos θt + xk sin θt 

0 − cos β − sin β zk 

0 0 0 1 

⎥⎥⎥⎥⎥⎥⎥⎦
 

.
 (5.5)
 

The location vector of the goal with reference to the Kinect coordinate frame is given 

by, 

k k kkP = (x , y , z ) (5.6)t t t 

Using Equations (5.5) and (5.5), we can obtain the goal location compared to the ground 
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reference frame, 

gP = gTk × kP (5.7) ⎤⎡⎤⎡ 
g kx
 x
t t⎢⎢⎢⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

=
 gTk × 

⎢⎢⎢⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎥⎥⎥⎦
 

kyg y
t t 
,
 (5.8)
 

k 
t 

gzt z


1 1 

g k k k xt = xt sin θt − yt cos θt sin β + zt cos θt cos β + xt + xk cos θt − yk sin θt, (5.9) 

g k k k y = −x cos θt − y sin θt sin β + z sin θt cos β + yt + xk sin θt + yk cos θt.t t t t 

Here, (xt
g, yt

g) are the coordinates of the navigation goal in ground reference frame. In 

this implementation, xk = 0, yk = 0.08 m, zk = 1.18 m, and β = 26.2o . Therefore, 

Equation (5.9) can be further simplified as 

g k k k x = x sin θt − 0.4421y cos θt + 0.8970z cos θt + xt − 0.08 sin θt, (5.10)t t t t
 

g k k k
 yt = −x cos θt − 0.4421y sin θt + 0.8970z sin θt + yt + 0.08 cos θt.t t t 

Using Equation (5.10), the actual location of the navigation goal can be calculated once 

the robot pose estimation is available. It is combined with current robot pose to decide 

the navigation target in robot coordinate frame (xr
t , yt

r) as illustrated in Figure 4.1. 

5.5 Experiment Results 

The proposed FCM based SAF for goal detection was tested in an indoor environment 

using a Kinect sensor. As explained in the introduction of this chapter, the goal of the 

robot is to detect a cup which is located on a box. In this experiment, red colored boxes 

and a green colored cup are used for better feature extraction. 
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Figure 5.6: Sub-goal assertion confidence for isCorrectBox (a) when γ = 0, (b) when 
γ = 0.7, and (c) when γ = 1. 
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Figure 5.7: Sub-goal assertion confidence for isCorrectCup (a) when γ = 0, (b) when 
γ = 0.7, and (c) when γ = 1. These results were obtained after removing the cup from 
the box. 
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Figure 5.6 illustrates the detection performance of the FCM for the box. The pro

posed FCM based approach was tested with several γ values. According to the real-time 

experiment results, the goal assertion confidence of isCorrectBox depends on the value 

selected for γ. In the case of fuzzy algebraic product where γ = 0, the goal assertion 

confidence is close to 0, i.e. high mismatch, as it needs to correctly match both shape 

and color of the box. Therefore FCM cannot identify the sub-goal correctly. On the 

other hand, in the case of fuzzy algebraic sum where γ = 1, the goal assertion confidence 

is close to 1 (perfect match) as it only needs to match either shape or color of the box. 

However, γ = 1 can result in false alarms in many practical situations. In order to 

illustrate that, the cup is moved away from the box and the goal assertion confidence for 

isCorrectCup is calculated. As we can observe from the experimental results in Figure 

5.7, goal assertion confidence is close to 1 when γ = 1, which is simply due to the false 

alarms. After several experiments, γ is set to 0.7 for this test case. The threshold for goal 

assertion confidence is selected as 0.75 such that it increases the probability of correct 

detection and decreases the probability of false alarms. However values of the γ and the 

threshold depend on the application and need to be tuned carefully. 

In the next experiment, the accuracy of the goal location estimation is evaluated. 

The robot was moved away from the goal 25 cm each time and the distance to the goal 

was estimated. Figure 5.8 illustrates the statistical results of the experiment. Mean and 

standard deviation of the estimation error are calculated using minimum of 150 sensory 

frames at each distance. As illustrated by the results, the estimation error increases 

with the distance to the goal. Thus the errors can be minimized by estimating the goal 

location repeatedly while moving towards the goal. However, it should be noted that 

some parts of the errors are due to measurement errors. Therefore the actual errors are 

expected to be slightly smaller. 

As the last part of the experiment, the overall performance of the goal-driven mobile 
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Figure 5.8: Average error of goal location estimation. 

robot navigation system is tested. The robot and its navigation goal are arranged such 

that the robot cannot see the final navigation goal directly from its starting position. 

The geometrical setup of the experiment is shown in Figure 5.5. The robot has to explore 

a passage with hard asymmetries and detect its goal. Once it verifies the final naviga

tion goal, the robot obtains the goal position using the homogeneous transformations 

described in Section 5.4. Then the final navigation goal position is sent to the reactive 

navigation system as illustrated in Figure 4.1. We set the maximum linear velocity to 

0.2 m/s and maximum rotational velocity to 0.34 rad/s (20 deg/s). The robot is asked 

to stop its navigation when it reaches the final goal within a range of 0.5 m. The oc

cupancy grid map of the test environment and estimated robot trajectory are shown in 

the Figure 5.9. It also shows the positions of the isolated boxes and a box with a cup 

(final goal) which are detected during the robot navigation. According to the results 

obtained, we verify that the proposed high level data fusion system is successfully used 

for data fusion in navigation goal detection. 
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- Isolated Boxes

- A box with a cup

Starting Point

Figure 5.9: Occupancy grid map of the environment with the estimated robot path and 
goal location. 

5.6 Summary 

In mobile robotics, navigation goal detection is a challenging problem due to the un

certainty of the environment. Robots need to carefully analyze the situation in order 

to detect their goals correctly. A fuzzy cognitive map based goal-driven situation as

sessment framework is presented in this chapter for navigation goal detection. Multiple 

sensors may be used to observe a single object in the environment and the decision 

fusion system combines sensory information to verify the sub-goals. Based upon these 

sub-goals, proposed situation assessment framework operates recursively on the global 

goal to verify it. The FCM is used as a high level reasoning engine. The goal assertion 

confidence for each sub-goal is decided using FCM inferences. The navigation goals are 

verified based on the goal assertion confidence of sub-goals and the rules which connect 
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sub-goals together. The experimental results presented in Figures 5.6 and 5.7 confirm
 

that the fuzzy gamma fusion can be used effectively with proposed situation assessment 

framework to maximize the goal detection accuracy while minimizing the number of false 

alarms. Finally, the experimental results presented in Figures 5.8 and 5.9 have validated 

the real-time applicability of the proposed goal-driven mobile robot navigation system. 
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Chapter 6 

Conclusion 

In most of the real-world applications, dealing with the uncertainties in the environments, 

sensors, and actuators is challenging for autonomous mobile robots. This thesis proposes 

three possible solutions to overcome the uncertainties in a goal-driven mobile robot 

navigation system. Proposed approaches are tested on DrRobot’s H20 wheeled mobile 

robot platform. Odometry and Microsoft Kinect sensors are used as input devices. A 

detailed discussion on the mobile robot platform and sensors used in the experiments is 

presented in Chapter 2. 

A solution to indoor mobile robot localization problem is presented in Chapter 3. 

Although global positioning systems (GPS) are popular for mobile robots, it cannot be 

used in indoor environments. Also the accuracy of non-military GPS is within several 

meters, which is unacceptable for small scale mobile robots. Odometry is one of the 

popular solutions for indoor mobile robots. However, odometry measurements accu

mulate errors due to wheel misalignment, wheel slippage, and uneven wheel diameters. 

Accuracy of the odometry pose estimation can be improved using auxiliary sensors to 

observe the environment. Commonly used accurate depth sensors such as laser range 

finders are, however, expensive to use in most applications. 

In the proposed approach, the odometry errors are minimized using a Kinect sensor 

to observe landmarks in the environment. Kinect is a relatively inexpensive sensor 

compared to its counterparts. It provides a resolution of 1 cm at a distance of 2 m [63]. 

Artificial landmarks are distributed in the target environment before experiments. Using 

artificial landmarks is an inexpensive and feasible solution for indoor environments. The 

landmark measurements obtained from Kinect are fused with odometry information 
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using an extended Kalman filter (EKF) and a particle filter (PF). The results of the
 

experiments are presented in Section 3.4. According to the experiment results, pose 

estimations obtained using the EKF and PF are closer to the ground truth compared 

to odometry estimations alone. Moreover, PF pose estimations are more robust and 

accurate compared to EKF pose estimations. 

Even though it is possible to use artificial landmarks in some environments, au

tonomous mobile robots have to frequently operate in unknown environments without 

any prior knowledge. Also, they have to create maps of the environment on their own 

and localize themselves in the maps. This has been a challenging problem for mobile 

robotics community and commonly known as simultaneous localization and mapping 

(SLAM) problems. However, SLAM does not address the motion control of the robots. 

Therefore, the necessity of an integrated approach that is capable of localizing, mapping, 

and motion controlling simultaneously has emerged. This is also known as the mobile 

robot exploration problem. 

In Chapter 4, an integrated mobile robot exploration approach has been proposed. 

The overall architecture of the proposed system is illustrated in Figure 4.1. In the pro

posed system, a particle filter with an optimal proposal distribution [86] has been used 

to solve the SLAM problem. An occupancy grid map is used to represent the robot’s 

knowledge on target environment which does not make any assumption on landmarks. 

Intermediate navigation goals are selected in the up-to-date map such that the robot 

can maximize its knowledge on the target environment. The proposed navigation tar

get selection method is discussed in Section 4.3.2. A nearness-diagram (ND) reactive 

navigation method [87] is used for mobile robot navigation in unknown environments. 

However, the ND navigation method is only applicable for circular shaped holonomic 

mobile robots regardless of the fact that most of the mobile robots are non-circular 

and kinematically constrained. For example, a humanoid wheeled mobile robot was 
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used in our experiments. Therefore, a trajectory parameter space [88, 89] is used as 

an abstraction layer of the robot shape and kinematic constraints for the ND method. 

The proposed integrated exploration system is extensively tested in unknown indoor 

environments. The experimental results presented in Section 4.5 verify the real-time 

applicability of the method. 

Mobile robots have to determine the location of their navigation goal for motion 

planning . However, in unknown environments, it is not always possible to locate the 

navigation goal beforehand. Hence autonomous mobile robots need to detect their tar

gets and localize them using the available sensory information. In real-world applica

tions, navigation goals can be complicated and difficult to identify using a single sensor. 

Therefore, multiple sensors are utilized with most of the mobile robots. However, due 

to the ambiguity in mobile robot perception, goal detection has become a challenging 

problem. 

Chapter 5 of this thesis proposes a high level data fusion system for navigation goal 

detection. A situation assessment framework (SAF) is used to verify the navigation 

goals based on sensory information and prior knowledge. The proposed architecture 

of the SAF is shown in Figure 5.1. The navigation goal is first replaced by sub-goals 

according to the rules stored in the knowledgebase. These sub-goals are verified using 

fuzzy cognitive map (FCM) inferences. The SAF recursively works on all the sub-goals 

until it verifies the goal. Depending on the goal assertion confidence of the sub-goals and 

the rule combining them, a final decision about the goal is made. In this implementation, 

fuzzy gamma fusion is used as the inference mechanism of the FCMs. Experiment results 

given in Section 5.5 shows the goal detection capability of the FCM-based SAF. 

In summary, three methods are proposed for autonomous mobile robot localization, 

exploration, and goal detection. All the proposed methods have been implemented on a 

mobile robot platform and verified through experimental results. 
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