THE UNIVERSITY OF CALGARY

HYPERSPECTRAL IMAGE ANALYSIS: A STUDY ON BAND SELECTION
METHODS AND THE SENSITIVITY OF LINEAR SPECTRAL UNMIXING

by

AIRONG ZHANG

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA
JUNE, 1994

© Airong Zhang 1994



National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)

KI1A ON4 KIAON4 Your file  Volre rélérence
Our file  Nolre rélérence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET
FORMAT, MAKING THIS THESIS SOUS QUELQUE FORME QUE CE SOIT
AVAILABLE TO INTERESTED POUR METTRE DES EXEMPLAIRES DE
PERSONS. CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.
THE AUTHOR RETAINS OWNERSHIP L'AUTEUR CONSERVE LA PROPRIETE
OF THE COPYRIGHT IN HIS/HER DU DROIT D'AUTEUR QUI PROTEGE
THESIS. NEITHER THE THESIS NOR SA THESE. NI LA THESE NI DES
SUBSTANTIAL EXTRACTS FROMIT EXTRAITS SUBSTANTIELS DE CELLE-
MAY BE PRINTED OR OTHERWISE CI NE DOIVENT ETRE IMPRIMES OU
REPRODUCED WITHOUT HIS/HER AUTREMENT REPRODUITS SANS SON
PERMISSION. AUTORISATION.

ISBN 0-315-99532-7

Canadi



Name A[ ROA/@’ ZH/(V\/Q‘

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Groneral_

ol s[5 UMI

SUBJECT TERM
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychology ........ Crereaserenneneeaees 0525
Architecture .....vvvrenciininirennines 0729 Reading ...... ....0535
ArtHISIOTY ovevevvereereorerensessnseaes 0377 Religious .. ...0527
Cinema 0900 Sciences ... 0714
Dance 0378 Secondary ....... ..0533
Fine ArtS wovsvsirircnensniiiesananes 0357 Socia] Sciences ...0534
Information Science ...0723 Sociology of .eurreicnsisesereisns 0340
Journdlism .......... ....0391 Specjal 0529
Library Science ...... ...0399 * Teacher Training ......coouerurerenense 0530
Mass Communicahions .........eueee 0708 Technol%gp[ ....0710
Music 0413 Tests and Measurements ..........
? eech Communication ............. 82122 Vocational
eater
LANGUAGE, LITERATURE AND
EDUCATION LINGUISTICS
General ....ovcvreeeecneeeeerenenenes Lanauage
Administration ....... er?eral
ﬁdul' Olnd ?Ontinuing . . Ancient ------------------------------
ricultural ..oveerereen e auletios :
A?t 0273 li;‘r:)%tg::‘lcs -
Bilingual and Multiculturdl ......... 0282 Lterature e
BUSINESS .overersrcnnennnenes .0688 Generdl
Communi'y College ....... . 0275 Classical .............................. 0294
Curriculum and Instruction .........0727 Comparative 0295
Elemenfary Modern ..... 0298
Guidance and Counseling ......... 0519 ﬁf:;ﬁgan 8237?
Healf 0680 ASION oo 0305
Higher i 8;‘218 Conadian {English) .............. 0352
History of .... : Canadian (French) ..............0355
Home Econo .0278 Englis 0593
Industril ... -0521 Germanic oo 0311
kxn uage an 8%58 Latin American .. ..0312
athematics ... 0595 Middle Eastern .. ..0315
mli’folgophy o 0998 ROMANCE .vvuveresienereresssrannns 0313
Physicel 0523 Slavic and East European .....0314
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES Geodesy ...mmminnnnrosssssnnserene 0370
Agriculture Geology ... ....0372
General c..c.ecereuerrensercininens 0473 Geophysics . 0373
AGrONOMY w.cucveeueeirererecsceses 0285 m’drology 0388
Animal Culture and ineralogy 0411
Nutrition Paleobotany 0345
Animal Pathology . 0476 Paleoecology 0426
Food Science and Paleontology 0418
Technology ... .0359 Paleozoology 0985
Forestry and Wi :0478 Palynology .. 0427
Plant Culture . .0479 Physical Geog 0368
glunt ll:ﬁiholtl)g . 81812139 Physical Oceanography ............ 0415
ant Physiolo .
Range Managoment '0777  HEALTH AND ENVIRONMENTAL
. Wood Technology .............. 0746 SCIENCES
Biology | 0306 Environmental Sciences ............. 0768
eneral ... 0587 Heclth Sciences
Analomy .. 028 [ D 0566
Biostatistics .0308 Audiology .. S 0300
?:Ofﬁ‘my.. 83(7)8 Chemotherapy .. 0992
Ee loan” ‘0329 Dentistry .... 0567
s 353 Education .. 0350
Entomology ... 933 Hospital Ma 0769
LQenel S resenee 10793 Human Development 0758
MGGy ... . Immunology 0982
Microbiology 0419 . Medicine and 0564
Molecular ........ : Mental Health .. 0347
Neuroscience ... .0317 Nursing ..... 0569
Qeeanography . 04l Nutrifion 0570
R )é":'°.°9)' "0821 Obstetrics and Gynecology .. 0380
V° IGHON woovvsoniese . Occupational Health an
elerinary Science -0778 Therapy ....ccooneisinncienenns 354
Bi Zl’:)ol‘ogy .............................. 0472 Opl\thcﬁnology : 70381
lopngE:d 0786 II;’::thologyl ......... . 8%‘;
S0 harmacslo N
@dICal vvvessvvvenrrsscvenesss 0760 Fmr'malc’(h"?')'l"" 20572
hysical Thera -
EARTH SCIENCES Public Healih -~ ~.0573
Biogeochemistry .......ccoouvveerenerane 0425 Radiology ... 0574
GeOChEMISITY cvevsvrrersensers 0996 Recreation .rerececsercscnees 0575

PHILOSOPHY, RELIGION AND

OCIAL SCIENCES

Canadian Studies

Commerce-Business

..............................

Speech Pathology

Home Economics

PHYSICAL SCIENCES

Elementary Particles an

Applied Sciences
Applied Mechanics
Computer Science

SUBJECT CODE

European.....

Latin American
Middle Eastern ..0333
United States ... ..0337
History of Science .......eceereserenes 0585
aw 0398
Political Science
Generdl ......vveeeeenenssereneins 0615
International Law and
Relations ...cverecrereerorennenes 0616
Public Administration ...........0617
Recreahion .......ccccereneenee ..0814
Social Work ...ceeeeeverereecenee 0452
Sociology
General ....veeeeeseenrerenseneens 0626
Criminology and Penology ... 0627
Demograp I{ ....................... 0938
Ethnic and Racial Studies ..... 0631
Individual and Family
Studies ..0628

Social Structure an

Development .......
Theory and Meth
Transportation ............. .
Urban and Regional Planning ....0999
Women's Studies ........oveeveenniee 0453
" Engineerin
General .....ooierenireererieens 0537
Aerospace ... ..0538
Agricultura 0539
Automotive 540
Biomedical 541
Chemical 542
Civil .... 543
* Electroni 544
Heat and Thermodynamics ... 0348
Hydraulic................... ..0545
Industrial . .

Marine ...........
Materials Science
mechﬁ:nico .....
etallurgy ...
Mining gy
Nuclear ...
Packaging ...
Petrolevm ..............
Sanitary and Municipal .
System Science .......
Geotechnology .........
Operations Research .
Plastics Technology ...

Textile Technology .........ecccerenne
PSYCHOLOGY

General ...covecrerereecrierenrenenians 0621
Behavioral . ..0384
Clinical ......... ..0622
Developmental . ..0620
Experimental ..... ..0623
“Industril ....... ..0624
Personality ..... ..0625
Physiological ..... ..0989
Psychobiology ... ..0349
Psychometrics .......coceerervreuresnnes 0632
Social 0451




1

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre

thése et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

SUJET

Catégories par sujets
HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS LECHUPe vceureeorereensenserserasrasersas 0535 PHILOSOPHIE, RELIGION ET
ArchiteCtUre ..eeesereresiersesscasssees 0729 Mathématiques .0280 THEOLOGIE

Beaux-arts .......... 0 Musique ...ccoeiinrierene .0522 Philosophie ...
Bibliothéconomie Orientation et consultat .0519 Religion

Cinéma Philosophie de I'éducatio .0998 énéralités

Communication verbale . Physique .........

.0523 Clergé ....
Etud%s bib

Communications ........ Programmes d' ibliques . -
anse enseignement .. 0727 Histoire des relilgions
Histoire de l'art Psychologie . .0525 Philosophie de fa religion .....0322
#\)urpulisme gcjences ..... - 82\]}3 Théologie ....veveremserensecireasessennas 0469
usique ..... ciences sociales ..., .
Scierzes del Sociologie de I'éducation ........:...0340 SCIENCES SOCIALES
Thédtre Technologie .veerecrsncrecnnes . 0710 Anﬂxo%qloFie‘
. . rchéologie
- EGDUCA]I'lON 515 LANGUE, LITTERATURE ET g}l:lturelleg...
ENEralitds ...covvenvenreinnresenneniaeens YSIQUE cecersermenreriansnseananaes
ﬁdministration .......................... 8%;51 ﬂﬁeilss TIQUE Eroit . d .
ot oS s conomie
Colléges communautaires .......... 0275 énéralites 0678 Généralités
Commerce ..0688 Anciennes . 0289 Commerce-Affaires .
Economie domeshque ..0278 k;\%%lg?::g: e 8%3? Economie agricole_ ..... ..0503
Eﬂuca:ion pe[ma?qnfe gg}g Likératore : Eic:n:crgie du travail ... gg(l)g
EdUCG}!Oﬂ pres'co aire ... T Générolités .0401 Hi ,OOireS ............... 0300
Enseignement Garicols....... Anciennes . 9294 Théorie .. 0511
Enseignemenf bﬁin veet Comparee <0295 Etudes américaines . ..0323
. “ I g Medlevale. ... 0297 E' C| n d 0385
£ mufticy uret X p— Moderne ... "0298 Etudgz fg ﬁﬁlzlsnes.. 0385
Ense!gnemen’ industriel . . Africaine 0316 : likl > éministes ..... - 0433
Enseignement brofessionnel ... 0747 /Américaine 0591 Gaographis ... 10366
Enseignement religieux .............. 0527 Asi%ﬁ ve . " 0305 GErontologie ......mmmerresmssissnees 0351
Enseignement secondaire ....... 0933 Canadienne {Anglaise] -.....0352 Geslion des affaires
Ense!gnemen' special ... 0745 Canadienne {Francaise) ....... 0355 Ag m?r?sltr?:sﬁ;;
Enselgr;_emen superieur . " 0988 Germanique .......ceceseesererersc 0311 B
F;’:aﬂgelgn """""""" 0277 Latino-américaine . ...0312 Cgr;?;tgli'l'iié
}f;ormatio(? c{es enseignants......... 82%8 AR/L?I)"(eJ?‘-eonentale 8%}2 i 'Marketing .
istoire de |"éducation...... . MY S istoire
Langues et litérature .......ccoeeencs 0279 Slave et est-européenne ....... 0314 Histoire générale ................. 0578
SCIENCES ET INGENIERIE
SCIENCES BIOLOGIQUES Géologie ....rrrurrrerismnrisesnseees 0372 SCIENCES PHYSIQUES
A s R e — 0363 Sciences Pures
FQHIES wovrrreererierennnenne. 0473 Hydrologie e en
AGronomie. .....c..veeenrusesuans 0285 N?ilnéralogie .................... 0411 Ch'”c‘;'e ralite
Alimentation et fechnologie Océanographie physique .......... 0415 ZENSraliies ...
: : 9 z P Biochimie
Cci imentaire .......cocorereinene 049'8 ga 2ol otclmlque .................. 831212 Chimie ag}.i.cole
Ulture ..o aléoécologie .....uniiiiiniininianns imi He .
Elevage et alimentafion ........ 0475 Pa éonlologie eerereereeneasesssrsnaans 0418 Eh!m!e ur]ulymlque .
Exploitation des péturages ...0777 Paléozoologie .......cieisicririnnen 0985 Ch!m!e m'"ﬁ“’. € .o.
gatﬂo ogie animale .......c. 0476 Palynologie ....eereererermesserenenee 0427 Ch;m;: g?g:;’igﬁé“
athologie végétale ............. . 1m
Ph{s_iolggie végétale T SCIENCES DE LA SANTE ET DE Ghinie pharmaceutique
Sy vhrcullfur.e ehiaune v L’ENVIRONNEMENT Polymicres -
Bi lTeg nologie du BoIS .eeseesees. Economie domestique ............... 0386 Radiation ...
1o ‘él‘e, lits - Sciences de l'environnement .....0768 MothEMAiGUES .....erreeesmresesroreres
Aen;ara'l €5 teecrrerararasircscnnnene Sciences de ICI santé P )’SI ve
B.“‘]’ °’."'?s'1'"t' o - Genéralités .......ooverersiererenns 0566 Gendralitds ..oveveeevereereerenee
Bl e Teculira Administration des hipitaux .. 0769 ACOUSHGUE +evrverreceressssrress
BK; ogie moleculaire Alimentation et nutrition ....... 0570 Astronomie et
ol?rflque Audiologie ....ccerrerrrecennererees 0 qslrophysique ,,,,,,,,,,,,,,,,,,,
ge IU e Chimiothérapie - Electronique et électricité ...... 0607
cologie ... Dentisterie ...uoeseerrererarnnses Fluides et plasma.......cone...... 0759
Enfomologi Développement humain Méféorolozie 0608
el Enseignement S —
M‘T‘m °.9|'e Immunologie . Particules (Physique
N|C"° ?‘0 o LOISIFS vevrerervereerrrsescsnasererses UClEaire) ...ovirieeinieneneene
Ocbonadan Médecine dv travail et Physique clomique .............
Phcegn!ogrop therapie «....ceeuesrcucrsinnces 0 Physique de ['état solide .......
R )és."”."g‘e Médecine et chirurgie .......... Physique moléculaire ...........
sﬂ, ia '0",}-;--,"--:'- Obstétrique et gynécologie ... 0380 Physique nucléaire ...
o M Ophtalmologie ... 1038] Radialion
Bi g s Orthophonie 0460 SHATSHOUES wereneerersererersersessreases
IOPGXSIHUTT Pathologie 571 Sci Apoliués Et
Mer(xlt_aruln B evrrerseneraieiessnens Pharmasic 572 ciences Appliqués
[=Te [Tele ] - Y gtcrm%colog . gé; 'I]'efchnotlog|e
siothérapie NIOrMANQUE eveneirceinrciecnieneene
E.CIEN(E}E DE LA TERRE 0425 Ru)éiologie P! 574 Ingénierie
Glggeﬁc T2 U 0422 Santé mentale 347 Généralités
Geodésie . 0370 gapté ptf:_bhque . ngg ﬁg{gzol% i
é [P . : mobile
Géographie physique ...........u... 0368 Tg)l(ri\:c;r;;r:lers

CODE

Ancienne ....
Médiévale
Moderne ..
Histoire de
Alricaine .....
Canadienne .
Etats-Unis ...
Européenne ...
Moyen-orientale ..
Latino-américaine ...

DE SUJET

_ Asie, Australie et Océanie....
Histoire des Sciences....ovverererenes

Loisirs

Planification urbaine et
régionale .....cciiiciciinieiiinnann
Science politique
GENEralités ....oesrevevererenes
Administration publique .......
Droit et relations

internationales ........enee.

Sociologie
Géneralités ....ovuvrirsineneninns
Aide et bien-atre socidl ........
Criminologie et

établissements
penltenhcnres ...................

Demographie .......covvrerererene
Etudesg depl’_individu et

de la famille ..........cen........

Etudes des relations

Structure et développement

o é 0 Od
Travail et relations

interethniques et
des relations racidles ........

industrielles .....

Biomédicale ...veuerrrvererereerees

Chaleur et ther
Conditionnement

Génie aérospatial
Génie chimique ..

MOdynamique .........ewerees

(Emballage) .....cocvcvinienenas

Génie Vil v
* Génie électronique et

Génie industriel ..
Génie mécanique
Génie nucléaire ..
Ingénierie des sys
Mécanique navale
Métallurgie .....
Science des ma
Technique du pétrole .
Technique miniére

élecirique

Techniques sanitaires et

UMIT

municipales.....c.c..cereeenne 0554
Technologie hydraulique ......0545

Mécanique appliquée................. 0346
Géotechnologie .ueveererereererense 0428
Matiéres plastiques

{Technologie) ......ccereereree 0795
Recherche opérationnelle ........... 0796
Texdtiles et tissus (Technologie) ....0794
PSYCHOLOGIE
GENBIAlItES .o.ercererecercncrerereennee 0621
Personnalité .. ..0625
PS)'L 10! Jiulugic ..... 0349
PS)’; 10 Ugic Cl inique .................. 0622
Psychologie du comportement ....0384
Psychologie dv développement ..0620
Psychologie expérimenidle ......... 623
PS)'L 10 usic industrielle .....cuu.ee.. 0624
Psychologie physiologique
Psyt. logie sociale
Psychomelrie .........ccoeveenrereunnnne




THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a dissertation entitled "Hyperspectral Image Analysis: a
Study on Band Selection Methods and the Sensitivity of Linear Spectral Unmixing"
submitted by Airong Zhang in partial fulfillment of the requirements for the degree of

Master of Science.

Supervisor, Dr. Peng Gong
Department of Geomatics Engineering

71 é///:/mm

Dr. M.A. Chapman 4

Department of Geomyatics Engineering

Y %~
lér. Steven E. Franklin

_Department of Geography
| / = -*(, '5/‘\{; y ‘L

Dr. Deren Li

Department of Photogrammetry and Remote Sensing
Wuhan Technical University of Surveying and
Mapping

Date: June 13, 1994




ABSTRACT

An imaging spectrometer records spectral signatures with hundreds of spectral
bands in very narrow intervals allowing subtle spectral difference among different materials
to be detected. One major technique for quantitative analysis of imaging spectrometer data
is linear spectral mixture modeling. In a linear mixing model, a number of scene
components with relatively pure spectral properties, called endmembers, are often used.
Two least squares methods, unconstrained and constrained, are used to invert the linear
mixing model to extract quantitative information such as the proportion of each endmember
in a pixel. Although hundreds of spectral bands are available for the purpose of spectral
decomposition, only a small number of bands showing relatively large spectral
separabilities among the endmembers need to be used. Therefore, the amount of
computation can be reduced with the reduction of the number of bands. In decomposition

analysis, the existence of noise may affect the accuracy of pixel decomposition results.

In this study, some simulations were made to test the sensitivity of the inversion of
a linear mixing model. Atmospheric noise and the effect of undefined endmember were
artificially generated. Five methods were tested for the purpose of selecting spectral bands
for image decomposition. These included the successive correlation examination method,
averaged correlation analysis, interband minimum difference analysis, the combination of
minimum difference and successive correlation examination method, and the step-wise
principal component analysis. Efficiencies of these methods were evaluated based on the
spectral separabilities among endmembers in selected bands, the reference decomposition
results, and the ground truth. The effect of the atmosphere on pixel decomposition using
selected bands was also evaluated through simulation. Those band selection methods with
the consideration of spectral separability and correlation as well as the step-wise principal

component analysis method are effective for band reduction and pixel decomposition.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

A widely used method for extracting information from remotely sensed data is
image classification. In image classification, each image pixel is usually assumed to belong
to one pure class. The result is desirable when the amount of boundary pixels is small and
the scene is nicely partitioned into regions of homogeneous cover types. Many agricultural
and forestry areas satisfy this requirement when the resolution and classification scheme
matches. However, a lot of areas do not satisfy this requirement. Classification may not
be suitable because of the existence of a large amount of mixed pixels. In this case, it only
can provide an estimate of various classes for the study area. When the size of image pixel
is comparable to, or much larger than the natural size of ground cover-unit, each image
pixel may contain more than one groﬁnd component. This is the common situation in

remotely sensed data.

Unlike laboratory spectral reflectances which are usually measured from pure
materials, a large portion of remotely sensed data are spectrally mixed [Settle et al, 1993].
This is due to the fact that the scales of spatial variation of natural phenomena are often
smaller than the spatial resolutions of the sensors. Spectral reflectances from different
materials within each instantaneous field of view (IFOV) of the sensor are recorded as one

spectral response for each band. This causes a problem known as spectral mixing. Each



observation is spectrally mixed from several different materials in each band. In this case,

traditional classification is far from an ideal tool for information extraction.

A more crucial objective for estimating different components inside the study area is
the extraction of quantitative information from each image pixel. This is the inverse
process of spectral mixing, which is called spectral unmixing or decomposition analysis.
The proportions of different materials contributing to one image pixel, which are called
endmembers, are expected to be obtained. The imaging spectrometer, as a new tool,
provides the opportunity for us to capture very narrow spectral features of various targets.
Unlike traditional multispectral sensors such as Landsat Multispectral Scanner and
Thematic Mapper, which have only a few relatively wide spectral bands, imaging
spectrometers record spectral signatures with hundreds of spectral bands, such as the
Compact Airborne Spectrographic Imager (casi) has 288 bands in apprbximately 1.8 nm
spectral intervals. An Analytical Spectral Devices field spectrometer used in this project has
512 bands in approximately 1.4 nm spectral intervals. High spectral resolutions of imaging
spectrometers allow direct identification of ground targets and quantitative analysis of

subtle spectral changes down to sub-pixel level.

One major technique for quantitative analysis of imaging spectrometer data is the
spectral mixing modeling. Two types of models have been developed to describe the
spectral mixing process: macroscopic spectral mixing [Gong et al, 1991; Adams et al,
1989; Boardman, 1989; Singer et al, 1979] and intimate spectral mixing [Mustard et al,
1989; 1987; Shipman et al, 1987; Johnson et al, 1983; Hapke, 1981]. A macroscopic
mixture is characterized by large homogeneous patches of different materials where
electromagnetic energy reflected from a single material dominates. In contrast, intimate
spectral mixing results from electromagnetic energy being multiply transmitted and

scattered by more than one material. Spectra of macroscopic mixtures are linear



combinations of reflectance spectra from different materials, whereas intimate mixtures are
nonlinear spectral mixing. Both linear and nonlinear spectral mixing models are simple
tools used to describe spectral mixing processes. It has been reported that nonlinear
spectral mixing can be linearized by converting reflectance to single scattering albedo

[Johnson et al, 1983].

The basic physical assumption underlying the linear mixing model is that there is no
significant amount of multiple scattering among the different cover types. Each photon that
reaches the sensor has interacted with just one cover type. Under these conditions the
received energy can be considered as a simple sum of the energy received from each cover
component. In a real situation, the reflectance from neighboring areas contributes to the
received signal. If the material near the target was not defined in the reflectance matrix,
what will happen during the decomposition analysis? On the other hand, the reflectance
matrix is generally obtained inside the laboratory. However, the data for analysis is
obtained from remotely sensed imagery. Atmospheric effects exist in each band of the
remotely sensed data. How does it affect the results obtained through linear decomposition
analysis? For hyperspectral image, hundreds of narrow bands have very high correlation
which provides redundant information. How can we reduce the redundancy and improve
the computational efficiency without losing decomposition accuracy? These are the

problems which are discussed in this study.

1.2 Research Objectives

In this study, linear mixing modeling will be adopted as the tool to decompose
hyperspectral data for the estimation of spatial proportions or abundance of various
component materials from their composites. It has only been used to determine the spatial

proportions of known endmembers. The primary objectives are:
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* to evaluate the sensitivity of linear unmixing analysis in situations where

undefined endmember exists in the study area;
* to simulate and evaluate the effect of atmosphere on the linear unmixing analysis;
» to develop band selection methods for hyperspectral data analysis;

» to assess the effectiveness of the band selection methods in linear spectral

unmixing analysis.

1.3 Thesis Outline and Contributions

In Chapter 2, the fundamental concepts of the linear mixing modeling are first
reviewed. Some basic definitions, such as endmember, reflectance matrix, observations,
are introduced. The unknowns in the linear mixing process are the endmember

proportions. Two methods for finding the unknown proportions are presented.

Chapter 3 describes the characteristics of the data sets used in this thesis. Data
acquisition methods are introduced. Two data sets, one extracted from a casi image and the

other obtained from field measurements, have been used and analyzed.

In Chapter 4, five band selection methods are developed and implemented.

Threshold determination for each method is described.

Chapter 5 introduces the experiment designed for two purposes of this project. One
is to test the consistency of the linear mixing model either when undefined endmember
exists in the study area, or when atmospheric effect is considered. Simulated data is used
for these tests. The other is to evaluate results obtained through different band selection

methods. The correlation of extracted proportions with reference proportions or with



ground truth, and the root-mean-squares (RMS) error obtained are used to evaluate the
band selection effectiveness. The atmospheric effect on the decomposition results obtained

using selected bands through different band selection methods are also presented.

The last chapter, Chapter 6, gives conclusions of this research work, and presents

recommendations for future research.
The primary contributions of this thesis are as following:

1. For the first time, the sensitivities of linear unmixing analysis to an
undefined endmember inside a study area and to the atmospheric noise in the

observations have been examined.

2. Five band selection methods have been developed. Some of these methods

can be used to select bands automatically. The results obtained using selected

. bands through most of these methods are consistent no matter whether the
atmospheric noise is included or not. This consistency implies that the effect of
atmosphere on the results obtained with selected bands is the same as those

obtained when all the spectral bands are used.



CHAPTER 2

LINEAR MIXTURE MODELING

2.1 Principles of Linear Mixing Model

In laboratory spectral measurement, a small area with pure materials can be measured
under controlled conditions. For remotely sensed data, however, different components
may be detected in one measurement. This is due to the fact that the natural phenomena
vary spatially. The spatial resolutions of sensors are generally lower than the scale of
natural variation. For each band, the observed spectral reflectance is combined by those of

different materials within an instantaneous field of view (IFOV) of the sensor.

Accurate estimation of spatial components and spectral properties of various materials
from remotely sensed data is of great importance to many research and application fields.
In order to identify various original materials and to determine their spatial proportions

from remotely sensed data, the spectral mixing process has to be properly modeled.

The most popular model is the linear spectral mixing modeling. In a linear spectral
mixing model, we assume that only a small number of pure materials mix together with
various areal proportions in the observed spectra. These materials are called endmembers,

components, or factors.



Linear mixing model:

Suppose there are m bands in a remotely sensed data set, and p endmembers. rjk

represents the spectral reflectance of kth endmember at jth band. All the reflectance can be

arranged in an m X p matrix R as follows:

11 2 " 1p
R=|T2 T2 7 Tw
fo Tw " Tu
The linear mixture model can be expressed as:
dj 1y I1p fi
dlm rr;ﬂ I'mp flp

or di=R *f;

with the following constraints:

p
fix=0 and Xfy =1 for i=1,2,....n,

k=1

2.1)

22) |

where n is the total number of image pixels. dj is the spectral responses measured from the

ith pixel which is recorded by sensors in m bands. fik denotes the fractional area of the kth

endmember in the ith pixel. All the fractions of endmembers in pixel i compose a p X 1

vector fj and they should sum to one.

For the decomposition of a mixed pixel, three mixture parameters in Equation (2.1)

are of interest:



(a) the total number of endmembers in the mixture pixel, p;
(b) the spectral identity of endmember k in m Bands, Iik, 1= 1,2,...,m;
(c) the proportion of each endmember in the pixel, fik.

The solution to Equation (2.1) is limited by the knowledge of these parameters. If
parameters (a) and (b) are known, it is possible to determine (c) pixel by pixel. Actually,
this is a typical situation used to derive spatial proportions of various endmembers from
remotely sensed data. It is easy to get the proportional solution by inverting matrix R. If
(a) and (c) are known, (b) can be obtained from dj and f; [Hanan, et al, 1991]. This
method is applicable to situations where available ground measurements of fj are used to
derive R. There are circumstances when only (a) is known, or none of the three types of
parameters is known. However, it is still possible to estimate these mixture parameters
from a simultaneous analysis of a number of pixels rather than by analysis of each sample
individually. The mixing proportions should vary from one pixel to the other. Obviously,
in order to determine the solution from Equation (2.1), enough information has to be
obtained to define some parameters. A number of methods have been proposed to achieve
the expected solution by using principal component analysis [Smith et al, 1985], factor

analysis [Klovan, 1975], and the use of mathematical programming [Liang et al, 1991].

In this research, the identity spectral matrix R is known from either a Compact
Airborne Spectrographic Imagery (casi) or a field spectrometer. Therefore, the expected
solution to Equation(2.1) is to derive the proportion vector fj in a pixel by pixel manner.

2.2 Solutions to the Linear Spectral Problem

When the number and the spectral identities of endmembers are known, there are



three possible cases existing to extract proportions of each endmember: (a) m+1<p, (b)
m+1=p, (c) m+1>p. For case (b), it is a simple case to solve Equation(2.1) with the
constraint Equation(2.2). When remotely sensed data were acquired from sensors with
limited spectral bands, such as Landsat Multispectral Scanner, Thematic Mapper, and
SPOT High Resolution Visible, the number of desired endmembers may be more than the
number of spectral bands plus one which is in case (a). Under such circumstances,
Equation(2.1) becomes undetermined. In order to obtain the spatial proportions for each
image pixel, an optimal solution has to be explored. Some researchers recover the
proportions f using the geometrical structure of data scattering in multispectral space in
combination with evidence such as tasseled cap behavior of vegetation on a red-infrared

scatter plot [Jasinski et al, 1989; 1990].

For the data from the imaging spectrometer containing hundreds of bands for each
image pixel, Equation (2.1) is almost always overdetermined. That means the number of

endmember m plus one is smaller than the number of bands. This is case (¢).

Combining Equation (2.2) with Equation (2.1), the following overdetermined

Equation (2.3) can.be solved by using the least squares method.

Iy T2 T | ¢ dy
Tpp T2 I2p flé 2
2ol =] ok (2.3)
'mi Tm2 r ) dll
i g N b
in a vector form: (11{) of = (dli)
The constraints to the solution are fix=0 2.4)

There are a number of methods which may be used to solve Equation (2.3). The
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commonly used one is the direct inversion of this equation through
T Riar.r
f= ([R 1][ ) }) [R 1] od 2.5)

If the singular results are caused by the direct inversion, other methods are
recommended for solving Equation(2.3). Two other algorithms are the unconstrained
singular value decomposition method and the constrained nonnegative least squares
method. In the later method, we obtain the solution of “proportions f; by taking

Equation(2.4) into consideration.
2.2.1 Singular value decomposition

A Singular Value Decomposition (SVD) algorithm is recommended to deal with sets
of equations or matrices that are either singular or numerically very close to singular such
as Equation (2.3) [Boardman, 1989; Press et al, 1992]. With this method, however, the

constraint of nonnegative proportions is not considered.

Based on the theorem of linear algebra, any m X n matrix A, whose number of rows
m is greater than or equal to its number of columns n, can be written as the product of an
mXm column-orthogonal matrix U, an m X n diagonal matrix W with positive or zero

elements, and the transpose of an n X n orthogonal matrix V. This can be represented in

the following form:
: W 0|t
A=U \" 2.6
o ol .6
UTU =1, VIV=vVT=I, (2.7)

Because U and V are orthogonal matrix, for square matrix, their inverses are equal

to their transposes. Because W is diagonal, its inverse is the diagonal matrix whose
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elements are the reciprocals of the element wj. Therefore, the inverse of A is
A* =V [diag(1/wj)] UT (2.8)
T R
Where A = [R 1][ 1 ] If more than one of the wj have a zero value or very small values

which are dominated by roundoff error, a solution may not be obtained at all. In order to

obtain one particular number of solution set f for the linear equation
Ref=b (2.9)

Where b = [RT 1] » d. f has to be found so that it minimizes the norm of the residual of
the solution IR * f - bl. It has been proven [Press et al, 1988] that the solution of f can be
obtained by simply replacing 1/wj by zero if wj is zero or close to zero. Zeroing a singular
value corresponds to throwing away one linear combination of the set of equations that is
being solved. It may seem paradoxical to reduce the number of equations to make the
linear system determined [Press et al, 1988]. This also means that precise combination of
equations, which is not so reliable by roundoff error as to be at best useless, are thrown

away. Then the solution of Equation (2.9) which is the proportion in Equation (2.3) is
f=V [diag (I/wp] (UT b) (2.10)

When using the SVD algorithm, a threshold has to be specified for deciding how small w;

may be before it is treated as zero. This threshold is determined based on experiments.

When f is obtained, the appropriateness of the least squares estimation of f can be

judged by the root-mean-squared error (RMS),

RMS =\/J,,;j§1(dj—k§1rjk-fk)2 @.11)
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However, solutions of f in Equation(2.10) do not guarantee 0<fy<l. When
situations such as fx>1 or fx<O happen, there are three things that need to be considered
[Adams, et al, 1989]. First, the image endmembers should be examined to make sure that
each image endmember is exactly what it is supposed to be. If image endmembers are
appropriate and solutions like fx>1 or fx<0 still occur, then second, ignore those fx's close
to 0 or 1 which may be caused by roundoff errors during computer processing. Thirdly,
those fi's significantly smaller than zero or larger than one imply that there are other
possible image endmembers that have not been identified. When the RMS is high for
certain pixels, it suggests that either the linear mixing model is inappropriate or a new

image endmember has not been identified.

2.2.2 Nonnegative least squares (NNLS) method

Since Equation (2.3) is a set of linear functions with nonnegative constraint
Equation (2.4), the proportions fj can be solved through a nonnegative least squares

strategy.

For a general least squares problem with linear inequality constraints (LSI), the
problem is defined to minimize Il Rf - d Il subject to GT = h, where h is the constraint of
f. The following theorem characterizes the solution vector of the LSI problem [Lawson,

1974].

THEOREM

An n-vector £ is a solution for problem LSI if and only if there exists an m-vector §

and a partitioning of the integers 1 through m into subsets € and O such that

GT§ =RTRT -4d) (2.12)
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yi=0forie €, $i=0forie O

Let g;r denotes the ith row vector of the matrix G. The ith constraint, g;r £> h;,
defines a feasible half-space, {f: gin > h;}. The vector gjis orthogonal (normal) to the
bounding hyperplane of this halfspace and is directed into the feasible halfspace. The point
f is interior to the halfspaces indexed in & and on the boundary of the halfspaces indexed

in €. The vector
p=RTRT - d) | | (2.13)
is the gradient vector of ¢(f) = % IRF-dI2atf=1f. Since yi=0forie¢ €,Equation

(2.12) can be written as

3§ (-g) =-p (2.14)

iee

which states that the negative gradient vector of ¢ at fis expressible as a nonnegative (¥; 2

0) linear combination of outward-pointing normal (-g;) to the constraint hyperplanes on

which f lies (i € €). Geometrically, this means that the negative gradient vector -p lies in

the convex cone based at the point f andis generated by the outward-pointing normal -g; |

The nonnegative least squares method is a special case of least squares problem

with linear inequality constraints on the solution. This problem is defined as
Minimize Il Rf - d |l subject to O0<f<1. (2.15)

Figure 2.1 shows the algorithm for solving NNLS. In this algorithm, R is an
(m+1) x n matrix and £ is a (m+1)-vector. The n-vectors w and z provide working space.

Two index sets p and Z are defined and modified in the course of the execution of the

algorithm. The set Z identifies the components of the current vector f that are zero. The



14

components of f indexed in p are positive. The index t selects a coefficient not presently in
set p that will introduce the positive solution. This coefficient is saved in the tentative
solution vector z. If all other components of z indexed in set p remain positive, then the
components of z are transferred to the vector f and returns to the beginning. In this
process, set p is augmented and set Z is diminished by the transfer of the index t. This
sequence of events simply repeats with the addition of one more positive coefficient on
iterations until Z is empty or W;j < 0 for all je Z. However, if some coefficient indexed in
set p becomes zero or negative in the vector z, then the algorithm remains performing a
move that replaces x by f+o(z-x), O<a<1. o should be chosen as large as possible
subject to keeping the new f nonnegative. This iteration is repeated until it eventually

-~

satisfies that all the components in z are positive.

Upon termination, the solution vector f satisfies f; > 0, je p, and f; =0, je Z and is

a solution vector for the least squares problem Rpf =d.



Set index P and Z, x=0

'

| Compute the n-vector w <=R'(d -Rf )

Z empty?
or Wj <=0 for

alljin Z? End

Find an index t in Z such that Wt = max {wj, j in Z}

Y

Move theindex trom Z to P

Let Rp denote the m x n matrix defined by
column jof Rp={ column jof Rifjin P, 0if jin Z}
The n-vector z is computed as a solution of the least squares
problem Rp z ~ f. Only the components zj, jin P, are
determined. zj=0forjinZ

T
X=1Z >

No

Figure 2.1 Algorithm of nonnegative least squares (NNLS)
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®
v

Find an index q in P such that
xq/(xq-zq) = min { X /xj - zj): Zj <= 0,jin P}

Y

a=xq/(xq— q)

:

X <=X + a(z-x)

Y

Move all indices j in P for Xj = OfromPtoZ

Figure 2.1 (Continued) Algorithm of nonnegative least squares (NNLS)

2.3 Applications of Linear Mixing Model

Techniques for spectral mixing analysis have been developed for more than twenty
years in a number of disciplines, particularly in geology and chemistry. A lot of
applications of this model have been implemented in remote sensing. Determination of
mineral types and abundance from mixtures of minerals is an obvious example in
geological and planetary studies [Bierwirth, 1990]. Smith et al [1990] applied these
techniques to Landsat Thematic Mapper (TM) data acquired over a desert area in Ovens

Valley, California. In their study area, individual schrubs distribute discretely. They
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derived seasonal changes of scrub abundance and analyzed the relationships between these
changes and some environmental factors. Blunt et al [1990] used linear mixing technique
to study regional variations of sand composition in Mexico with Landsat TM data. Duncan
et al [1990] employed linear mixing technique to enhance differences between rock types in
TM images for structural mapping in Saudi Arabia. Lithological image endmembers were
selected for the linear mixing analysis. The same technique has been used in mapping the
ophiolitic melanges of the Central Eastern Desert of Egypt with Landsat TM imagery
[Rivard, 1989]. Adams et al [1986] applied these techniques to multispectral data obtained
from Mars by Viking Lander 1 with 6 spectral bands. Four image endmembers were
defined: shade with zero digital numbers, secondary illuminating effects, rock and soil. By
isolating the shade and the secondary illumination effects, they found the rock and soil
having close analogs in a library of laboratory spectra. Sabol et al [1990] studied material
detectability using linear spectral mixing modeling by taking spectral contrast of materials,
limitations of imaging systems, illumination conditions into consideration. They concluded
that the contrast and sensor spectral resolution are important factors in material detection.
Roberts et al [1990] studied the applicability of linear mixing analysis for leaf identification
using a leaf radiative transfer model. They reported that at 450 to 650 nm, where leaves are
relatively opaque, leaf spectra mix linearly. This implies that linear spectral mixing analysis
at the scale of vegetation leaves, shorter wavelength may provide better results. Additional
examples can be found in applications of this method in urban and forest environments

[Cross et al, 1991; Gong et al, 1991].

There has been few research results published on linear mixing analysis of imaging
spectrometer data. Boardman [1990] conducted linear spectral mixing analysis using
Geophysical and Environmental Research Imaging Spectrometer data (63 channels ranging

from 0.4 to 2.5 micrometers). He introduced an unconstrained version and a constrained
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version of the least squares solution put forward by Lawson and Hanson [1974]. Because
noise exist in the spectrometer data, the sensitivity of unconstrained method in linear

decompositibn analysis has been tested by Zhang et al. [1993] using simulated white noise.
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CHAPTER 3

DATA ACQUISITION AND ANALYSIS

Two sets of data were used in this research. One was the Compact Airborne
Spectrographic Imager (casi) data which were acquired on board a small aircraft. The other
was the field spectral data which were obtained using Analytical Spectral Device's (ASD)

high spectral resolution Personal Spectroradiometer.

3.1 Compact Airborne Spectrographic Imager (CASI)

casi is an airborne pushbroom sensor sensitive in the visible and near-infrared
portion of the spectrum. A line perpendicular to the aircraft flight path is imaged along one
dimension with the two-dimensional sensors (CCD). 512 pixels of spatial resolution
across the flight path is obtained. The spectrum is dispersed along the flight path. This is
analogous to having an array of spectrographs simultaneously imaging adjacent points

across the line in the scene. Figure 3.1 shows the operation of casi operation.

Casi can be used onboard aircraft or in the laboratory. In order to achieve acceptable
ground resolution during aircraft operation, data are normally collected in one of two
modes, the spatial mode and the spectral mode. The spatial mode digitizes and records up
to 19 spectral bands of information while maintaining full spatial resolution of 612 pixels of
which the imaging field of view comprises 512 pixels. Each band is summed on-chip and

may include any number of adjacent, non-overlapping spectral rows [Babey et al, 1992].
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Figure 3.1 Operation of CASI [Babey et al, 1992]

In spectral mode, full spectral resolution is maintained in which 288 elements
encompassing the wavelength range specification of 417 nm to 917nm at 1.8 nm spacing.
This kind of high spectral resolution reduced the spatial resolution due to data logging
limitations. In this mode, each spectral band contains 40 CCD detectors acquiring different
view directions and covering the whole scene [Staenz, 1992]. Recently, a third mode (full-
frame mode) has been added to the casi instrument software.” This mode digitizes and

records the entire data frame of 612 by 288 pixels . The recording of this amount of data
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takes approximately 2s/frame [Babey, et al, 1992].

The original airborne casi data have to be calibrated in order to obtain reliable
radiance with high spectral and spatial resolution. The data set used in this study were
calibrated using the casi manufacturers parameters which reduced the noise caused by
system design. There were still other noise sources. Two major kinds of noise were the
atmospheric scattering and the radiometric error. In order to reduce the effects of these
factors, the atmospheric effects may be suppressed using radiance to reflectance conversion
either based on the ground truth data [Freemantle et al, 1992], or using radiative transfer
model [Williams et al, 1992]. The Vradiance data used in our study were converted into
reflectance based on the data obtained from field surveying. The radiometric calibration can
be performed using a single radiance standard optical source to characterize the radiance

sensitivity of the CCD and to indicate the wavelength of the sensor [Babey et al, 1992].

In this study, casi data were acquired during the period of May, 1991 in the middle
of Oregon. The radiance values at wavelengths longer than 790 nm, in which the
radiometric effects are stronger, were not used. Six endmembers are selected based on the
ground truth investigated in the study area. Gravel at three sites are treated as three kinds
of endmembers. Gravel_1 is the relative pure gravel. Gravel_2 and Gravel_3 have some
tuft grass cover. Two types of grass are tuft grass and snow grass. The other one is
ponderosa pine. Figure 3.2 is the example of reflectance spectra extracted from the casi

image.
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Figure 3.2 An example of CASI data from 419 nm to 789 nm

3.2 Field Data Acquisition

An ASD high spectral resolution Personal Spectroradiometer I was used to take
measurements in the field. This spectrometer contains a 100 mm focal length, holographic
grating spectrometer designed to collect light from an external source through a bundle of
19 optical fibers. The captured light travel through the fibers and strikes a grating which
diffracts the light into its respective wavelengths. The diffracted light falls on the surface of
a silicon photo diode array detector. The detector contains 512 elements, each of which
records the number of photons striking on it. The number of photon are accumulated in
each detectdr element and are recorded by incrementing counters which exist in each

element. The number of photons striking over a period of time is converted into a voltage
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to represent the amount of radiance of the target. In the silicon diode array, there is an
undercurrent existing even if no photons strikes the array. This is referred to as the dark
current. Any measured current is a combination of the signal current and the dark current.
To eliminate the dark current effect, a mechanical shutter is built in the spectrometer to
differentiate the dark current from signal current. When the shutter is closed only dark
current is measured. When a signal is measured, the dark current should be subtracted
from the measured current to produce the raw spectrum. The maximum numBer of photons
accumulated by the array is 4095. To avoid achieving this saturation, the integration time
for collecting photon should be adjusted based on the light conditions. The integration time
is suitable when signal current has the dominant proportion in the measurement while it is
not in saturated. It could be a shorter time in sunshine day, and longer in the laboratory.
Whenever the integration time is adjusted, the dark current needs to be detected again. A
reflectance spectra can be generated using a white panel whose radiance is assumed as all
the incident light reaching to the target. The radiance of the target divided by the radiance
of the white reference is the reflectance spectra of the target. This suppresses the effect of

atmospheric distortion.

During the field measurements, the spectrometer was mounted on a survey tripod.
The sensor gun was pointed vertically to the ground target. A tube with a field of view of
189 was screwed on the sensor in order to achieve accurate estimation of spatial resolution.
A plumbing device was mounted along the tube. It was used to assure that the direction
was vertical and also to locate the target. The distance between the sensor and the ground
target was set at approximately 120 cm. The position of the sensor and the field of view
determined the spatial resolution which was approximately 38 cm in diameter. The

configuration of these devices is shown in the Figure 3.3.

In our field measurement, the atmospheric distortion on the reflectance was
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ignored. The reflectance values with stronger radiometric effect at the shorter or longer
wavelength regions since the weak response of the detectors were not used. Four types of
materials, concrete road, grass, soil, and aspen leaf, were measured to obtain the
reflectances for identification. Some mixing spectrum were taken from the mixed area
combined by any two of these materials. Figure 3.4 is an example of the reflectance

spectra measured by the ASD filed spectrometer. Four endmembers are represented.
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Figure 3.3 Measurement devices
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Figure 3.4 An example of field spectrometer data from 334 nm to 1062 nm

3.3 Characteristics of Hyperspectral Imagery

Hyperspectral data have some unique characteristics in comparison with other
multispectral data. The main advantage of hyperspectral data is the hundreds of bands
designed in a certain spectral range. The more bands used, the greater the spectral

resolution that can usually be achieved.

casi has 288 bands covering a spectral range from 417 nm to 917 nm with a
spectral resolution of approximately 3.5 nm. The field spectrometer used in this study has
512 bands within spectral range of 350 nm to 1067 nm at 1.4 nm spacing. This kind of

high spectral resolution supplies sufficient amount of information on spectral features. A
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little spectral variation of the different features may be recorded by the sensor. It provides a
possibility to distinguish features that are spectrally similar. Because every material usually
has a different reflectance spectra, even the materials with very similar spectra, such as
different vegetation species, have some spectral differences at certain wavelengths. Only
hyperspectral data with high spectral resolution can be used to distinguish these subtle

spectral differences.

On the other hand, hundreds of bands contain a lot of data with redundant
information. They occupy large computer memory and cost a lot of computational time
when they are used for information extraction. This is the disadvantage of hyperspectral
data. For example, some vegetation species have almost the same reflectance at most
spectral regions. Only a few spectral bands can be used to distinguish between those
species. These bands may be sufficient in the feature extraction analysis. In order to

improve the computational efficiency, the number of redundant bands need to be reduced.

3.4 Noise Behaviour

Any remote sensing image contains noise. In most cases, the noise can not be
removed completely. The noise comes from two principal sources. One is the radiometric
error. The other is the atmospheric interference. The radiometric noise is caused by
hardware design of the sensor, and it is difficult to remove. The effect of atmospheric
interference on remotely sensed data is critical in the image analysis. The amount of effect
on the data may affect the accuracy of ground cover estimation and analysis. The
atmosphere influences the amount of electromagnetic energy that is sensed by the detectors
of an imaging system, and these effects are wavelength dependent [Curcio, 1961; Chavez,
1989]. The atmospheric effect is strong for systems, such as casi, that record data in the

visible and near infrared parts of the spectrum. The atmosphere affects images by
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scattering, absorbing, and refracting light. The dominant source of these effects is

scattering [Siegal et al., 1980; Slater et al., 1983].

Table 3.1 Atmospheric scattering models for different atmospheric conditions

Atmospheric Conditions Relative Scattering Model

Very Clear A-40
Clear | A-20
Moderate 2-1.0
Hazy 2-0.7
Very Hazy 2,-0.5

One possible set of relative scattering models are listed in Table 3.1 [Chavez, 1989]
These models were selected based on the fact that very clear atmosphere is characterized by
Rayleigh scattering, moderate atmosphere by Rayleigh and Mie scattering, while very hazy
atmosphere is influenced by both Rayleigh and Mie scattering, but with Mie being more

important than in the moderate atmosphere case [Slater et al., 1983].

The existence of the noise affects the accuracy of ground information estimation and
analysis. In a previous paper [Zhang et al, 1993], random white noise was added as the
atmospheric effect for testing the sensitivity of the linear decomposition analysis. In this

study, the Rayleigh scattering model was adopted instead.
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CHAPTER 4

BAND SELECTION

Band selection is traditionally treated as an important subject in image classification.
Groups of bands are selected based on the calculation of class signature separability
[Richard, 1986]. This involves not only class means but also class covariance matrix that
are difficult to obtain for thé case of hyperspectral data because of the large number of
statistically meaningful samples required. However, in linear spectral unmixing the
covariance matrix is not required for each endmember. Therefore, it is not possible to use

the traditional separability measures.

Because hyperspectral images have hundreds of bands, it requires a lot of
computation time for information extraction. It is desirable to use only those bands
containing the necessary information for a particular task to improve the computational

efficiency.

This is one of the major challenges for the use of the imaging spectrometer data. In
a general sense, it primarily means the reduction of data dimensionality. Those spectral
bands contain redundant information can be ignored. Several methods were developed in
this research. Our emphasis was put on choosing some of valuable bands from the
hyperspectral data set based on the relationship among the reflectance of different
endmembers. The spectral bands were selected based on their capability to differentiate

between different endmembers. More specifically, in the context of linear spectral
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unmixing, band selection is done after the spectral identities of various endmembers are
determined. The task of band selection is to examine which band contributes more to the

discrimination of these different endmembers.

4.1 Band Selection Based on the Successive Correlation Examination

The hyperspectral image has hundreds of bands. The data in each band have a very
high correlation with their neighboring bands. The effective channels in the pixel
decomposition analysis are those which represent significant properties of spectrél features.
Therefore, the neighboring bands with high correlation do not need to be kept. Only one of
them is sufficient in the subsequent analysis. The intention of this method is to drop some
bands whose correlation is high compared to its neighboring bands. High correlation

coefficient of two channel represents these two bands provide similar information.

In this method, the correlation coefficients between two successive neighboring
bands are calculated. A threshold is specified for determining which band can be dropped.
At the first step, the correlation of the first two neighbor bands is calculated. It is then
compared with the predefined threshold, the second band will not be taken into
consideration if the correlation is greater than the threshold. Otherwise, the second band is
kept for further decomposition analysis. In the sec;)nd step, if the second band was
dropped in the first step, then the correlation between the first and the third bands is
calculated and compared with the threshold. If the second band was kept in the first step,
the correlation between the second band and the third band is calculated and compared with
the threshold. If the correlation is larger than the threshold, the third band is dropped. If
not, it will be maintained. Going through all the bands in this manner, some bands will be
dropped from the decomposition consideration, some will be kept for subsequent analysis.

Ideally, after this process a small number of bands without losing any important
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information should be obtained.

The threshold is important in determining how many bands will be kept. It sets a
criterion for how high the correlation between two neighboring bands cannot be accepted.
Because hyperspectral data have many narrow bands, the correlation between two
originally adjacent bands is very high. Usually the correlation exceeds 0.99. The
correlation among any two original neighboring bands based on the six endmembers

selected from the casi data is shown in Figure 4.1.
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Figure 4.1 Correlation between two successive bands of CASI data

It is obvious that the hyperspectral data contain a lot of redundant information. The
threshold determination is critical. If a large threshold is selected, some redundant bands

may be kept. If a small threshold is selected, a small number of bands may be reserved.
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Those remaining bands, for the small threshold case, may not be sufficient for the
subsequent linear unmixing analysis. Because the correlation are all very high, the variance
among them is very small. Itis difficult to have a suitable threshold for discarding some of

the redundant bands.

Besides using a heuristic procedure, the thréshold determination can be made based
on the relationship between Qorrelaﬁon and the lag distance which is very similar to the
semivariogram estimation used in geostatistics [Curran, 1988, Curran and Dungan, 1989].
The difference is that in semivariogfam one examines the spatial variability along a profile
while in this method the average lagged spectral correlation is examined along a spectral

transact. The basic procedure is shown in Figure 4.2.
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Figure 4.2. Lags along a transa;:t of spectral bands

The correlation between a pair of bands, h intervals apart (the lag distance), was

calculated by
1 MNe<h Z(Xi,j“fi)(xmh),j"i(nn))
cor(h) = 15— & o 4.1
- i=1

n 2 n 9
(xi,j -X;) 2 (X(i+h),j - x(i+h))
1 J=1 .

j=

where NB is the total number of original bands, m is the pairs of bands separated by the

same lag, n is the number of endmembers in one band. Figure 4.3 shows the relationship
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between correlation and lag using the casi data with 210 bands. The threshold can be
estimated from a curve such as Figure 4.3 and the number of bands desirable. Then the
threshold will be adjusted through experiment in order to reach the exact number of bands
desired. When 50 bands are specified to be selected, the minimum lag distance is about 4
or 5 which is obtained from 210/50. From the curve, we can see the minimum threshold
should be set larger than 0.996. Through experimentation, 0.999 was set and 51 bands
were selected. It is difficult to control the procedure to get the exact number of bands. But

the number of bands may be chosen as close as expected.
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Figure 4.3 The mean correlation of all bands with different lags
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4.2 Averaged Correlation Analysis

In this method, the correlation coefficient between any two bands is calculated, and
a correlation matrix is generated. Because the endmember reflectance matrix has
dimensions m x p, the correlation matrix is a symrﬁetrical m x m matrix with diagonal
elements as one. In a previous study, the mean value of all the correlation coefﬁcients in
the correlation matrix was used as the threshold [Zhang et al. 1993]. A band with row-
wise (or column-wise) mean correlation exceeding this threshold was dropped. In this

study, an empirical formula was developed for determining the threshold.
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Figure 4.4 Row-wise ( or column-wise) sum of correlations for each band

Figure 4.4 shows the row-wise (or column-wise) mean correlation of each band

using casi data with 210 bands. It is hard to determine the threshold from this curve. . It



34

cannot be said that only the bands after 175 contains higher separability than at the rest
bands. For instance, from Figure 3.1, the separability in some other bands are higher than

band 180.

In order to avoid Vlosing some useful information, bands should be chosen fairly
along the spectral wavelength. The 210 band casi data were analyzed for estimating the
threshold. Based on the knowledge of the reflectance spectrum, the separabilities between
band 80 to band 130 are high enough to be used for the purpose of decomposition. The
mean correlation in these bands are, however, relatively high. The number of desirable
bands should be inversely proportional to the level of mean correlation. In other words,
we can select a small number of bands from a group of bands whose row-wise mean
correlation are high. On the other hand, a relatively large number of bands from a set of
bands whose row-wise mean correlation are low should be seiected. Therefore, we need to
rank all of the bands based on their row-wise mean correlation and divide them into
different groups based on their different ranges of row-wise mean correlation. When the
total number of spectral bands to be selected is detc_armined or specified, the distribution of
bands to be selected in each different group is determined by a non-linear empirical

function. The empirical non-linear function for selecting bands is defined as
NBi=w;*B “4.2)

I’lbi & nbi
wy=—ro/ ) —~- 4.3
Y corf El‘ corj *3)
where NB; is the number of bands to be selected in the ith range if we rank the range from
small correlation to large. B is the total number of desired bands. wj is percentage of the
number of bands in the ith range with respect to the total number of desired bands. nbj is

the number of bands in the ith range. corj is the correlation of the ith range. a is the
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parameter to be determined through experiment. The parameter a is used to balance the

effects of the correlation and the number of bands with this correlation.

In our experiment, the correlation was divided into eight ranges. The number of
bands in each range were counted. Then, a histogram was generated and shown in Figure
4.5. The power parameter a was set to 1.0, 2.0, 3.0, 4.0, respectively. 50 bands was set
as the desirable number of bands. The number of selected bands in each range is shown in
Figure 4.5. The greater the power a, the more effect of correlation has on the distribution
of desirable bands. The smaller the power a, the more effect of the number of bands in
each range has. By comparing the effects of the different powers in Figure 4.5, it is easy
to see the distribution of desirable bands is much more suitable when a is set to 2. In

subsequent experiments, the empirical formula

&b
NB, = (22 1y 2i)eB (4.4)
COr. j=1 Corj

1

was used to determine the distribution of desirable bands. After the number of bands to be
selected in each correlation range was determined, the bands were selected randomly within
each range. In this procedure, it is hard to obtain the exact number of bands specified at the
beginning. In order to compare each band selection method, the same number of bands has

to be chosen. Additional bands were added manually to reach the desirable number.
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Figure 4.5 Histogram of selected bands using the empirical formula with different

coefficients

4.3 Interband Minimum Difference Analysis

We can assess the separability between endmembers in each band based on how
different their spectral reflectances are. It is obvious that larger differences show higher

separability. Based on this kind of separability, bands can be selected.

The minimum distance of spectral reflectance among various endmembers is used to
describe the separabilities of different endmembers in each spectral band. Along the
spectral wavelength range, some of the endmembers may have the same or very similar

reflectances at certain bands. The desirable bands are those with relatively large minimum
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reflectance differences. The minimum difference among all endmembers in each band can
be calculated. Figure 4.6 shows the distribution of the minimum difference along the
bands by using the 210-band CASI data. Then these minimum differences can be ranked
from large to small. When the number of desirable bands is specified, those bands with
larger minimum reflectance differences will be selected. The drawback of this method is
that the selected bands still have high correlation between them. The other problem with
this method is the selected bands may be distributed in a small spectral range if the number

of desirable bands is small.
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Figure 4.6 The distribution of minimum difference in each band

4.4 Combining the Minimum Difference and Successive Correlation

Methods

Considering the problems existed in the method presented in Section 4.3, a method
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combining the minimum difference and the correlation is implemented. The initial band
selection can be done using the minimum difference method. The successive correlation
method described in Section 4.1 can then be applied to those selected bands. The
thresholds for minimum difference and for correlation of neighboring bands need to be
adjusted through experimentation. In order to preserve as much information as possible
after the first selection, more bands need to be selected with the minimum difference
method. The threshold for correlation can be adjusted to reach the number of desirable

bands.

4.5 Step-Wise Principal Component Analysis

Principal component analysis is widely applied in remote sensing for reducing data
dimensionality [Mather, 1987]. It is often used to determine a linear combination of
spectral bands, resulting in a smaller number of uncorrelated dimensions in the feature
space. This approach determines the importance of each original band in each resultant
feature and finds some optimum features without a significant loss of information in terms

of the proportion of total variance of the original data set.

A modified stepwise principal component analysis (MSPCA) procedure is applied
for spectral band selection. The MSPCA can be efficiently used to select particular subset
of original bands to decrease the dimensionality of the original data. It does not use linear
combinations of all the input bands as has been done in Chen and Landgrebe [1989]. In

MSPCA we select a subset of the entire input bands by preserving most information.

Before performing MSPCA, the correlation of any two bands is calculated to
generate a correlation matrix, A. This correlation matrix is used as the input to MSPCA.

Eigenvalues and eigenvectors can be extracted from A. They will satisfy the following
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Equation _(4.5)
(A - UV =0 (4.5)

U is the eigenvalue of A, and V is the eigenvector of A. Larger eigenvalues correspond to
higher magnitudes of variances which implies more information for discrimination
purposes. Smaller eigenvalues correspond to lower variances which corresponding to less

amount of information.

In contrast to the general PCA strategy, the feature accounting for the smallest
amount of variance is considered first in MSPCA. The smallest amount of variance
corresponds to the feature with the lowest eigenvalue. The original band having the highest
weight in the eigenvector corresponding to the lowest eigenvalue is considered to contain

the least amount of information. This band is dropped from further processing.

The MSPCA procedure iteratively drops bands by finding the lowest eigenvalue
with the highest weight until the desirable number of bands is reached. It will not decrease
the correlation among the original bands as efficiently as the original PCA, but it preserves

the original physical meaning of each spectral band.

Since the computation involved in the MSPCA is relatively large, the band selection
is actually done through making a log file to record the number of iterations and the
corresponding dropped band. Figure 4.7 shows the sequence of initial dimensionality
reduction through the MSPCA procedure. The horizontal axis is the band index. The
vertical axis shows the number of iteration. The horizontal bars represent the bands
dropped at a particular iteration. When the number of desirable bands is specified, the
bands will be chosen in a reverse order beginning from the end of the file. The number of

bands is easily controlled to reach the expected number.
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CHAPTER 5§

IMPLEMENTATION AND EXPERIMENTS

5.1 Data Preprocessing

Two data sets obtained from different sources were used to test the sensitivity of the
linear unmixing and band selection methods. One data set was the Compact Airborne

Spectrographic Imager (casi) data. The other was the field spectrometer data.

5.1.1 CASI Data

The casi data used in this research were obtained on May 20, 1991 from Metolius
River (44923' N, 121040' W) in middle Oregon. In this experiment, the spectral mode of
the casi data which provides reflectance spectra from 417 nm to 927 nm in 288 bands was

used.

Although the casi spectral-mode data were calibrated using the manufacturer's
parameters, the radiance values for each image pixel were noisy which can be seen from
Figure 3.1. The noise came from atmospheric interference and the radiometric effect
[Gong et al. 1992]. Because the radiometric noise has a high effect in longer wakfelengths,
the casi reflectance imagery between 417 and 788 nm were used in this experiment. In
order to reduce radiometric noise effect on the separability analysis, a 1 X 7 smoothing filter

has been used to smooth the reflectance curves. To suppress the atmospheric effect, the
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radiance was converted to reflectance using the field-measured- gravel spectra as a pseudo-

invariant reflectance target [Freementle et al., 1992].

The reflectance spectra used in this project were extracted from the calibrated
spectral-mode casi image. Some relatively pure areas were selected as endmembers for
generating the reflectance matrix. These endmembers are three kinds of gravel in three
sites, two kinds of grass which are tuft grass and snow grass, and ponderosa. These areas
were chosen based on the knowledge of study sites. The spectra displayed in Figure 5.1 is
a smoothed version of Figure 3.2. They have been smoothed by a1 X7 méan filter. Other
45 samples were extracted from the casi image as the mixtures which were used as
observation vectors bjin Eq.(2.3). Same processing was applied to these observation

vectors as those endmember spectra.
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Figure 5.1 Smoothed CASI reflectance curves for six endmembers using a 1x7 filter
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5.1.2 Field Measurements

Another set of reflectance spectra used in this study was measured on the campus of
The University of Calgary in September, 1993. The Analytical Spectral Device's (ASD)
personal spectrometer II was used with a field of view of 18°. These spectra were
collected for the purpose of linear unmixing analysis and evaluating the efficiency of the

band selection methods.

The reflectance spectra of four kinds of targets, grass, soil, aspen leaf and concrete,
were collected. These targets were very easy to find, and was relatively easy to take
reflectance spectra from relatively pure targets thanks to the limited field of view of the
spectrometer. The spectra of these pure targets constituted a reflectance matrix. Figure 5.2
shows the reflectance spectra of these four endmembers. The mixing targets were
artificially generated. Any two of those four pure materials were mixed to generate a
mixing spectra in specific proportions. On the other hand, three kinds of mixtures were
measured on the campus. These mixtures are soil and grass, soil and spruce leaf, concrete
and grass. In each mixture, we selected mixtures such that the proportion of each
endmember was approximately 50%. However, because the surveying conditions were
hard to control, it cannot be guaranteed that the measured spectra is mixed by two pure
endmembers with exactly equal proportions. Because the field spectrometer used in our
experir;ent is less sensitive in the longer wévelength and the shorter wavelength regions,

the reflectances shorter than 378 nm and longer than 952 nm were discarded. Only 430

bands out of the 512 bands from the raw data were preserved for further analysis.
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5.2 Experiments

In this research, the sensitivity of linear spectral unmixing was tested under two
conditions. The first é:ondition was when there was undefined endmember inside a study
area. The second condition was when atmospheric effect was considered existing in the
observation data. On the other hand, the five band selection methods were implemented
and were used to reduce the number of spectral bands. Figure 5.3 shows the experimental

design.
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Figure 5.3 Experimental design
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5.2.1 The Sensitivity of Linear Mixing Model

5.2.1.1 Undefined endmember inside study area

Sometimes, some endmembers existing in a study area may not be identified and
thus will not be included in the endmember matrix. They may contribute to the observation
vector. This experiment was designed for testing the performance of the linear spectral

unmixing under these conditions.

An artificial observation data set was created by proportionally mixing the six
endmembers from the casi image, with the proportions of 0.005, 0.27, 0.11, 0.025, 0.44
and 0.15 for the six endmembers, respectively. The observation vector was linearly
combined by these six endmembers, but one of these endmembers was not included in the
endmember matrix. Thi's one was assumed to be the neighboring effect, and the prdportion
of its contribution in the mixing spectra could be small. Table 5.1 shows the results
obtained from linear spectral unmixing when one of the combination endmember does not

exist in the reflectance matrix.

Table 5.1 Decomposition results with an undefined endmember

" Endmember | Gravel 1 Ponderosa C-}rass_l Gravel_Z 5rass_2 aravel_S
Real

Proportion 0.005 0.27 0.11 0.025 0.44 0.15
Unconstrained Method (SVD)

Fractionl * 0.27 0.11 0.01 0.44 0.17

Fraction2 0.00 0.28 0.10 * 0.44 0.19
Constrained Method (NNLS)

Fractionl * 0.27 0.11 0.01 0.44 0.17

Fraction2 0.00 0.27 0.09 * 0.45 0.18

The “*'s in Table 5.1 represents the endmember which had certain proportion in
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creating the mixed pixel but was not included in the endmember matrix. All the bands were
used in the linear decomposition process. Two methods, which were the unconstrained
singular value decomposition (SVD) and the nonnegative least square (NNLS) method,
were used to decompose the mixture. From the results shown in the table, the endmember
with very small proportion did not affect the decomposition analysis very much. The linear
mixing model still provided reasonable estimation when the material near the target had little

contribution to the spectra of the desirable target.

5.2.1.2 Atmospheric effect

This test was designed to test the sensitivity of the linear spectral unmixing when
atmospheric scattering exists in the observation data set. Generally, the reflectance of
endmembers are measured in the field or obtained in the laboratory. The atmospheric effect
on these measurements may be ignored. However, the data obtained from remotely sensed

image are always affected by the atmospheric scattering.

In this experiment, the atmospheric effects were simulated. With the assumption of
clear atmosphere, Rayleigh scattering was used to generate the artificial atmospheric
component to test the sensitivity of linear decomposition. Rayleigh scattering can be

simply represented by
Sr=k/ A4 5.1

k is the parameter changing with wavelength. A completely dark object on the ground has
zero reflectance should be used to estimate k. Actually, this kind of dark object does not
exist in the image. Chavez [1989] suggested that a one percent minimum reflectance be
used to represent atmospheric scattering. Because k only has a role on modifying the

magnitude of the atmospheric effect, it was assumed as a constant in our study in order to
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simplify the problem. It was estimated from the minimum reflectance in wavelength near
420 nm that is corresponding to blue light. Light at the shorter wavelength region has
stronger scattering. One percent of the minimum reflectance in that wavelength was

assumed as the minimum atmospheric scattering. Then k can be obtained by
k=5 A4 (5.2)

For the casi data, k was calculated as 7.67 x 109. The atmospheric effect on other

wavelengths was simulated based on Eq.(5.1).
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Figure 5.4 Simulated Rayleigh scattering added onto the artificially created spectra

The simulated atmospheric noise was added on the artificially mixed observation
data. Figure 5.4 shows the atmospheric effect on the observation data along the spectra.
The artificial observation was mixed by six endmembers using proportions of 0.05, 0.27,

0.11, 0.07, 0.35, 0.15, respectively. The magnitude of the Rayleigh scattering increases
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from index one to five with the percentage of minimum reflectance at 420 nm from 0.5 -
2.5%. Table 5.2 shows the atmospheric effect on the pixel decomposition analysis. Two

decomposition methods were used.

From Table 5.2, it can be seen that as the magnitude of Rayleigh scattering
increases, the reliability of the décomposition results decreases. The results are poorer for
the constrained method than for the unconstrained method. When the atmospheric effect is
low, the results show that the linear decomposition analysis may provide reliable
estimation. However, the results from the linear decomposition analysis may not be
reasonable if the atmospheric effect is strong. Therefore, atmosphere calibration is required

before the remotely sensed image is used for decomposition analysis.

Table 5.2 Decomposition results from data contaminated by atmospheric effect

Endmember | Gravell | Ponderosa | Grassl | Gravel2 | Grass2 | Gravel3 | RMS
Real
Proportion 0.05 0.27 0.11 0.07 0.35 0.15 0.0
Index - Unconstrained Method (SVD)
1 0.06 0.23 0.19 0.04 0.34 0.17 0.0169
2 0.08 0.18 0.28 0.02 0.33 0.19 0.0339
3 0.09 0.14 0.36 -0.01 0.32 0.21 0.0508
4 0.11 0.10 0.45 -0.04 0.31 0.23 0.0678
5 0.12 0.06 0.53 -0.07 0.30 0.24 0.0847
Index Constrained Method (NNLS)
1 0.06 0.23 0.19 0.04 0.34 0.17 0.0169
2 0.08 0.18 0.28 0.02 0.33 0.19 0.0339
3 0.10 0.14 0.37 0.00 0.32 0.19 0.0509
4 0.12 0.09 0.46 0.00 0.31 0.17 0.0680
5 0.15 0.04 0.55 0.00 0.31 0.15 0.0852

5.2.2 Evaluation of band selection methods

The purpose of optimal band selection is to reduce the dimensionality of the original

data for further pixel decomposition analysis. Ideally, we expect that the reduction of data
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dimension does not affect the accuracy of the decomposition analysis. Theoretically, any
band reduction should not affect the linear decomposition result if the observed reflectance
is linearly mixed by the reflectances from components in the study area. However, this
assumption may not hold true in reality. If this assumptilon does not hold, band reduction
affects the decomposition results. To evaluate the effectiveness of different band selection

methods, the following four criteria were used in this study [Csillag et al.1993]:

1. the separability of reflectance curves of different endmembers,

2. the reference proportion of same kinds of components in each pixel,

3. the ground-truth proportion of different components in one measurement,
4. the root mean squared error (RMS).

The first criterion is based on expert experience in manual band selection. With the
second criterion, the reference proportion for an endmember was assumed to be the one
obtained from the data with all the bands being used. The correlation between the reference
proportions and the proportions obtained from the selected bands were calculated for
evaluation. Itis a relative evaluation criterion that does not take the non-linear mixing into
consideration. The third criterion is more reliable. The RMS can be used to evaluate the

appropriateness of proportions extracted from selected bands.

We used the casi and field spectrometer data for evaluating the five band selection
methods. The band selection results obtained from the casi data will be evaluated by of all
the methods except the third one because the ground-truth is not available. Because of the
shortage of ground samples, the band selection results obtained from the field spectrometer

data will not be evaluated using the second criterion..
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In order to compare the effectiveness of different band selection methods, the
number of selected bands has to be the same in each band reduction method. In this study,

the number of spectral bands was specified as either 20 or 50.

5.2.2.1 The first evaluation criterion

The spectral separability of different endmembers is an obvious way to evaluate the
selected bands. It provides us with the preliminary evaluation of different band selection
methods. Figure 55.5 (a) — (e) shows the positions of selected bands obtained from the five
band selection methods when 20 bands were specified. The casi data were used here.
Figure 5.5 (a) shows the bands selected using the successive correlation method. Some
selected bands are not at wavelength positions where different endmembers have high
separability. The reason for this phenomenon is that this band selection method is not
based oh the reflectance separability of endmembers. Only the correlation between pairs of
neighboring bands is considered. Nevertheless, the selected bands are well distributed
along the wavelength axis. The smaller the change of the reflectance curves, the fewer
bands are selected. The larger the change of the reflectances, the more bands are selected.
From Figure 5.5 (a), most bands selected based on the neighborhood correlation have
acceptable spectral separability. Figure 5.5 (b) shows the selected bands obtained through
the correlation of each band with all the others. Some of the selected bands still have low
reflectance separability. Similar to the first band selection method, this method is only
based on the overall correlation with other bands. The largest reflectance separability is not
guaranteed. Comparing with Figure 5.5 (a), the selected bands in Figure 5.5 (b) is not as
well distributed as in (a). No band was selected in the shorter wavelength region since it
might affect the subsequent linear decomposition analysis. Figure 5.5 (c) shows the

selected bands obtained based on a reflectance separability analysis. Most of the bands
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selected are centralized in longer wavelength region. The result is caused by the threshold
determined for this method. Only these bands with higher reflectance separability were
kept without considering the correlation among those bands. The selected bands shown in
Figure 5.5 (d) were obtained from the improved method which selected bands based on
both reflectance separability and the correlation of the reserved bands. This band selection
method is much better than the one considering reflectance separability only. Figure 5.5 ()
shows the bands selected with the step-wise PCA method. The distribution of those bands
are very similar to those in Figure 5.5 (a). Whether or not the successive correlation
method consistently produces similar band selection results to those from the step-wise

PCA method needs further study.

Bands selected using different band selection methods from the spectrometer data

have similar characteristics to those obtained from the casi data.
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Figure 5.5 (a) Separability for 20 selected bands obtained by the successive correlation
examination method (the first method)
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Figure 5.5 (b) Separability for 20 selected bands obtained by the averaged correlation

method (the second method)
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Figure 5.5 (c) Separability for 20 selected bands obtained by the interband minimum

difference analysis method (the third method)
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Figure 5.5 (d) Separability for 20 selected bands obtained by combining the minimum

difference and successive correlation method (the fourth method)
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Figure 5.5 (¢) Separability for 20 selected bands obtained with the step-wise principal

components method (the fifth method)
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5.2.2.2 The second evaluation criterion

This method is used to compare the decomposition results obtained from different
methods when the ground truth is not available. A total of 45 samples extracted from the
casi image were used to test the different band selection methods. The results obtained
using all the bands were assumed to be the true proportions of endmembers and were used
as a reference. The correlation between the reference results and the results obtained from
the selected bands through different band selection methods were calculated for

comparison. A correlation close to one is desirable.

Figure 5.6 (a) shows the correlation coefficients between the unmixing results
obtained from the unconstrained decomposition method using 50 selected bands through
each band selection method and the results obtained using all the bands. Figure 5.6 (b)
shows the results obtained with the constrained decomposition method. The correlation
shown in Figures 5.6 (a) and (b) indicate that the third band selection method which only
considers the reflectance separability is the worst one among the five methods. The
inconsistent result may be caused by the threshold determination for this method. All of the
selected bands obtained from this method closely distribute in a narrow spectral range. It
implies that the linear spectral unmixing is sensitive to the distribution of selected bands
along the wavelength. If the selected bands cannot provide the sufficient information for
separating different materials, the results will not be reliable for quantifying the ground
cover at the subpixel level. The fourth method is not stable in decomposing different
mixing samples especially when the constrained unmixing algorithm (NNLS) was used.
The decomposition results obtained from the selected bands using other methods are

relatively stable with both the unconstrained (SVD) and the constrained (NNLS) linear
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unmixing procedure, and the correlation coefficients are close to the one with most testing
samples except for one case. The explanation for this is that the linear mixing model itself
does not perfectly describe the spectral mixing process. If the reflectance of the mixture is
linearly combined, the band reduction should not affect the decomposition results.
However, even the linear decomposition results are obtained from all the bands may not
provide accurate proportions of different endmembers in a particular mixture pixel. When
the results are used as the reference to evaluate the other results obtained from a selected
number of bands, the correlation between these results and those others may not be
reliable. But it still provides a means to evaluate the decomposition results obtained from

selected bands when no other information is available.
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Figure 5.6 (a) The correlation between the results obtained from all the bands and from 50

selected bands using the SVD method
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Figure 5.6 (b) The correlation between the results obtained from all the bands and from 50

selected bands using the NNLS method

5.2.2.3 The third evaluation criterion

When data is collected with well known conditions, the data provides us with an
opportunity to use ground-truth for evaluating the decomposition results. Three kinds of
mixture were measured and tested. Table 5.3 shows the results obtained from the SVD and
the NNLS linear decomposition procedures with all the bands and 20 selected bands.
Because the field measured target is not combined by two types of materials in exactly half

proportions, these results do not show 50% of each combined endmember. The
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decomposition results obtained from those selected bands except those from the third one
are reasonable. Their root mean squares (RMS) are very low. However, the proportions
extracted from different subsets of bands are not the same. This inconsistent proportions
‘of endmembers may be caused by the assumption of the linear mixing process itself. The
results obtained from bands selected with the third band selection method are not reliable.
Its RMSs are much larger than those from other band selection methods. This implies that
optimal band selection methods should select bands whose wavelengths are well distributed
along a spectral range. The effect of band reduction on the decomposition analysis may be

caused by the least square solution of the overdetermined equations.
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Table 5.3  The decomposition results obtained through SVD and NNLS procedure from
field measurements
Mixture Soil | Concrete | Grass | Leaf | RMS
~ Unconstrained Method (SVD)
All soil - grass 0.45 0.00 0.37 0.15 0.0048
the soil - leaf 0.54 -0.06 -0.05 0.55 0.0033
bands | con - grass 0.06 0.34 0.52 0.09 0.0024
soil - grass 0.48 0.00 0.47 0.06 0.0068
Method_1 | soil - leaf 0.56 -0.05 0.01 0.48 0.0046
con - grass 0.04 0.34 0.54 0.07 0.0025
soil - grass 0.49 -0.01 0.37 0.14 0.0051 |
Method_2 | soil - leaf 0.57 -0.06 -0.06 0.55 0.0037
con - grass 0.05 0.33 0.52 0.10 0.0030
soil - grass|  -0.31 1.75 0.98 -1.42 0.3314
Method_3 | soil - leaf 0.08 1.01 0.07 -0.15 0.2086
con - grass 0.40 -0.43 0.13 0.91 0.1421
soil - grass 0.47 0.01 0.48 0.04 0.0072
Method_4 { soil - leaf 0.56 -0.05 0.01 0.48 0.0048
con - grass 0.04 0.34 0.54 0.07 0.0025
soil - grass 0.47 -0.01 0.49 0.05 0.0090
Method_S | soil - leaf 0.55 -0.04 0.04 0.46 0.0060
con - grass 0.05 0.32 0.52 0.11 0.0054
] Constrained Method (NNLS)
All soil - grass|  0.45 0.00 0.38 0.14 0.0048 |
the soil - leaf 0.41 0.00 0.08 (0.42 0.0061
bands | con - grass 0.06 0.34 0.52 0.09 0.0024
soil - grass 0.48 0.00 0.47 0.06 0.0068
Method_1 | soil - leaf 0.51 0.00 0.14 0.35 0.0111
con - grass 0.04 0.34 0.54 0.08 0.0025
soil - grass 0.49 0.00 0.38 0.13 0.0054
Method_2 | soil - leaf 0.53 0.00 0.07 0.39 0.0098
con - grass 0.05 0.33 0.52 0.10 0.0029
soil - grass 0.17 0.68 0.15 0.00 0.1429
Method_3 | soil - leaf 0.15 0.85 0.00 0.00 0.1786
con - grass 0.20 0.00 0.28 0.52 0.0608
soil - grass 0.47 0.01 0.48 0.04 0.0072
Method_4 | soil - leaf 0.51 0.00 0.12 0.36 0.0106
Ccon - grass 0.04 0.34 0.54 0.07 0.0025
soil - grass 0.46 0.00 0.50 0.04 0.0092
Method_5 | soil - leaf 0.51 0.00 0.13 0.36 0.011
con - grass 0.05 0.32 0.52 0.11 0.0054
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5.2.2.4 Result evaluation based on RMS

The RMS is calculated based on Eq.(2.9). The proportions obtained from different
methods are used to reconstruct an observation for each band. The root mean squared
errors are used to evaluate the accuracies of those proportions. Figure 5.7 (a) shows the
RMS results obtained from the SVD procedure using all the bands and 20 selected bands.
Figure 5.7 (b) shows the RMSs obtained with the SVD method using all the bands and 50
selected bands. Since the error magnitudes for Method 3 are much greater than the rest of
the band selection methods, the RMS results for Method 3 are not shown in Figures 5.7(a)
and (b). Figures 5.7 (c) and (d) show the RMSs obtained from the NNLS method using
all the bands or 20 selected bands, and all the bands or 50 selected bands, respectively.
Comparing these four figures, the third band selection method is very sensitive to the band
reduction. It cannot provide stable result when the number of bands is reduced. All of the
other methods give relative consistent results although the RMS increased slightly when the
number of selected bands is small. The results obtained from NNLS have larger RMS
relative to those obtained from SVD when Figures 5.7(a) and (c) or Figures 5.7(b) and (d)
are compared. This is reasonable because the NNLS method has more and stronger

constraints in the search of optimal solution than the SVD method.
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Figure 5.7 (a) The RMSs of the decomposition results obtained from all the bands and

from 20 selected bands using the SVD method
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Figure 5.7 (b) The RMSs of the decomposition results obtained from all the bands and

from 50 selected bands using the SVD method



63

2.5 [ T | ]
i —All bands |7
B — — Method 1 | ]
2 - - - -Method 2 }
- —-- Method 3 |1
R 1% N R ' R Method 4 }]
_ — - = Method 5 ]|
1.5

RMS
S~

0.5

0 10 20 30 40
Test Sample

Figure 5.7 (¢) The RMSs of the decomposition results obtained from all the bands and

from 20 selected bands using the NNLS method
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Figure 5.7 (d) The RMSs of the decomposition results obtained from all the bands and
from 50 selected bands using the NNLS method

5.2.3 The sensitivities of band selection methods to atmospheric noise

The same artificial data used in testing the sensitivity of linear unmixing in Section
5.2.1.2 were used here. The atmospheric noise was added to the observation in the same
manner as shown in Figure 5.3. A sum of squares (SSD) for the difference of each set of
results with the real proportion is used to rank these five methods. Table 5.4 displays the
decomposition results obtained using the SVD method derived from all of the bands or 50
selected bands. RMSs are also listed in the table. Table 5.5 shows the decomposition

results obtained using the NNLS method. From the RMSs in both tables, it can be seen
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that the effect of atmospheric scattering on the linear decomposition analysis is larger in the
results obtained from selected bands than those obtained from all the bands. This is
because the reflectances in certain wavelengths may contain more noise components. If
only a small number of bands are selected for linear decomposition analysis, and some of
the selected bands are in the shorter wavelengths, the linear unmixing may be affected more
by the false spectral features exhibited through larger amount of noise in the shorter
wavelengths. In this case, more bands may be helpful for the decomposition anz;lysis. The
third method presents much better results compared to other methods based on SSD. This
is because most of the bands selected using this method are in the longer wavelength
regions, where the atmospheric effect is small. Therefore, the results of linear spectral
unmixing are better than all the other methods. Based on the results shown in Table 5.4
and Table 5.5, these band selection methods still can provide reliable estimation of
proportions when the noise is relatively small. When the magnitude of noise increases,
even the result obtained with all of the bands are not consistent. Therefore, some of those
band selection methods are effective for the purpose of decomposition analysis when
compared with the results obtained from all the bands. The linear mixing model itself is

actually affected more by noise than band selection.
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Table 5.4 The atmospheric effect on linear decomposition by using SVD with 50

selected bands
Endmember A B C D E F SSD RMS
Fraction 0.05 0.27 0.11 0.07 0.35 0.15 0.00 0.00
0.06 0.23 0.19 0.04 0.34 0.17 0.010 ]| 0.017
All 0.08 0.18 0.28 0.02 0.33 0.19 | 0.042 | 0.034
the 0.09 0.14 0.36 | -0.01 0.32 0.21 0.092 | 0.051
bands 0.11 0.1 0.45 | -0.04 ] 0.31 0.23 | 0.1566 | 0.068
0.12 0.06 0.563 | -0.07 0.3 0.24 0.251 ] 0.085
———— —— ]
0.06 0.23 0.19 0.03 0.34 0.19 | 0.011 ] 0.019
0.07 0.19 0.27 | -0.02{ 0.33 0.23 | 0.047 | 0.038
Method_1 0.08 0.15 0.35 | -0.06{ 0.33 0.27 | 0.105 | 0.057
0.09 0.11 0.42 -0.1 0.32 0.31 0.179 1] 0.076
0.1 0.07 0.5 -0.14 0.31 0.35 0.250 | 0.095
0.07 0.23 0.2 0.06 0.34 0.14 0.010} 0.018
0.09 0.2 0.28 0.05 0.32 0.13 0.037 | 0.037
Method_2 0.12 0.16 0.37 0.04 0.31 0.12 0.088 | 0.055
0.14 0.12 0.45 0.03 0.3 0.11 0.152 | 0.072
0.16 0.08 0.54 0.02 0.29 0.1 0.242 1 0.092
0.07 0.28 0.11 0.05 0.35 0.15 0.001 | 0.060
0.09 0.28 0.1 0.04 0.35 0.16 0.003 ] 0.120
Method_3 0.1 0.29 0.1 0.02 0.35 0.16 | 0.006 ] 0.180
0.12 0.29 0.09 0.01 0.35 0.17 0.010 ] 0.240
0.14 0.3 0.09 | -0.01 0.35 0.17 | 0.016 | 0.300
0.06 | 0.25 | 0.16 | 0.02 | 0.34 | 0.19 [ 0.007 ] 0.027
0.08 0.23 0.2 -0.03 0.34 0.23 0.027 | 0.054
Method_4 0.09 0.22 0.25 -0.08 0.33 0.28 0.064 | 0.081
0.11 0.2 0.3 -0.13] 0.32 0.32 | 0.114 | 0.108
0.12 0.18 0.35 | -0.18| 0.32 0.36 | 0.178 | 0.135
0.07 | 0.23 | 0.18 | 0.05 [ 0.84 | 0.16 [ 0.008 [ 0.022
0.09 | 0.2 | 0.25 | 0.02 [ 0.34 | 0.17 | 0.029 | 0.044
Method_5 0.11 0.16 0.32 0 0.33 0.18 0.066 | 0.067
0.13 0.13 0.39 | -0.03 ] 0.33 0.19 | 0.116 | 0.089
0.16 0.09 0.45 | -0.05 | 0.32 0.2 0.178 | 0.111
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Table 5.5 The atmospheric effect on linear decomposition by using NNLS with 50

selected bands
Endmember A B C D E F SSD RMS
Fraction 0.05 0.27 0.11 0.07 0.35 0.15 0.00 0.00
. 0.06 0.23 0.19 0.04 0.34 0.17 | 0.010 | 0.02
All 0.08 0.18 0.28 0.02 0.33 0.19 0.042 0.03
the 0.10 0.14 0.37 0 0.32 0.19 | 0.094 | 0.05
bands 0.12 0.09 0.46 0 0.31 0.17 0.167 0.07
0.15 | 0.04 | 0.55 0 0.31 | 0.15 [ 0.263 [ 0.09 |
0.06 0.23 0.19 0.03 0.34 0.19 0.011 0.02
0.08 0.18 0.27 0 0.34 0.21 0.043 0.04
Method_1 0.10 0.13 0.36 0 0.33 0.19 0.092 0.06
0.13 0.08 0.45 0 0.32 0.17 | 0.164 | 0.08
0.16 0.03 0.54 0 0.32 0.15 |.0.260 | 0.09"
0.07 0.24 0.19 0.06 0.34 0.15 | 0.008} 0.02
0.09 0.20 0.28 0.04 0.32 0.15 0.037 0.04
Method_2 0.11 0.17 0.36 0.03 0.31 0.14 0.079 0.05
0.13 0.13 0.44 0.01 0.30 0.14 | 0.141 0.07
0.15 0.10 0.63 1 0O 0.28 0.14 | 0.225 | 0.09
T 0.07 0.28 0.11 0.05 0.35 0.15 | 0.001 0.06
0.09 0.28 0.10 0.04 0.35 0.16 0.003 0.12
Method_3 0.10 0.29 0.10 0.02 0.35 0.16 0.006 0.18
0.12 0.29 0.09 0.01 0.356 0.17 | 0.010 | 0.24
0.14 0.30 0.09 0 0.35 0.16 | 0.014 | 0.30
0.06 0.25 0.16 0.02 0.34 0.19 0.007 0.01
0.09 0.22 0.22 0 0.34 0.20 0.024 0.02
Method_4 0.12 0.18 0.29 0 0.33 0.17 | 0.051 0.04
0.15 0.14 0.36 0 0.33 0.15 | 0.095 ] 0.05
0.18 0.09 0.43 0 0.33 0.12 | 0.158  0.07
0.07 | 0.23 J 0.18 | 0.05 | 0.34 | 0.16 | 0.008 ] 0.02
0.09 | 0.20 | 0.25 | 0.02 | 0.34 | 0.17 | 0.029 | 0.04
Method_5 0.11 0.16 0.32 0 0.33 0.18 | 0.066} 0.07
0.14 0.11 0.40 0 0.33 0.15 | 0.123 | 0.09
0.17 0.06 0.49 0 0.32 0.13 | 0.209 | 0.11

5.3 Summary

In this chapter, artificial data were generated to test the sensitivity of the linear

mixing model with the existence of undefined endmembers or the atmospheric effect. In
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this experiment, all the bands were used in the linear unmixing process with the SVD and
the NNLS methods. The decomposition results were compared with the real proportion to

detect the sensitivity of the linear mixing model.

Five band selection methods were developed using casi data sets and field data sets.
Through the SVD and the NNLS solutions, the decomposition results were evaluated using
four criteria: the separability of selected bands, the correlation coefficients between the
results obtained through selected bands and the reference result which was defined as the
one obtained through all the bands, the comparison with the ground truth, and the RMS
values. Artificial mixture was also used to test the sensitivity of those selected bands

during the linear decomposition process.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this thesis, all of the objectives listed in Section 1.2 were achieved. The first one
was to test the linear mixing model using simulated data by considering the presence of an
undefined endmember. The second one was to simulate and evaluate the atmospheric effect
on the linear unmixing analysis. The third was to develop band selection methods for
hyperspectral data. The fourth was to assess the effectiveness of the band selection
methods. Based on the experimental results and analyses, the following conclusions can

be drawn:

1. When a truly linear combination of endmembers is simulated, an undefined
endmember with a relatively small proportion in the mixing spectra does not
have a strong effect on the decomposition results obtained from both linear
unmixing methods. Under such circumstances, the solution based on a linear
mixing model can still provide reasonable estimation of proportions of other
endmembers. This suggests that the spectral effect from the neighbor material

near the target can be ignored in linear spectral decomposition.

2. Linear mixing model is sensitive to atmospheric effects regardless which

decomposition method is used. When the amount of atmospheric noise is
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small, inversion of this model can still generate reasonable results. Otherwise,

it will provide unreliable estimates.

. If a real mixture is simulated linearly by endmembers, the band reduction does

not affect the decomposition results as long as the number of bands is greater
than the number of endmembers. Based on the results obtained from the
experiments with real data, band reduction does affect the decomposition
results. This implies that the linear mixing model does not completely describe

the actual spectral mixing process.

. The selected band set for the decomposition analysis should be well distributed

along the entire spectral range with low correlation to each other and high
separability among different endmembers. By using the decomposition results
obtained from all the bands as the reference, decomposition results from
selected bands with various band selection methods were evaluated. The
successive correlation examination, the averaged correlation analysis, the
combining minimum difference and successive correlation method and the step-
wise principal components analyses are more effective than the interband
minimum difference analysis. Assuming that the spectral mixing is a linear one,
the decomposition results obtained from selected bands through different band
selection methods implemented in this research have similar response to the

atmospheric effect as those obtained from all the baﬁds.

The results obtained using the constrained decomposition method (NNLS) have
larger RMS than those obtained using the unconstrained method (SVD). It is
due to the procedure of constrained method in which NNLS forces the results

into the range of [0,1].
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6.2 Recommendations

More work needs to be done on testing the linear mixing model and the band
selection methods proposed in this thesis. More ground truth data should be used to assess
the decomposition results. The measurement design should be well controlled to measure
the proportions of mixture components. Different atmospheric scattering models may be
used by considering different kinds of weather condition. The endurance of the linear
mixing model to noise effect needs to be tested further in a more quantitative manner. The
reliability of rthe band selection methods needs to be tested under the situation of noise. The
decomposition analysis with selected bands needs to be performed on the complete image
to further test the linear mixing assumption and the effectiveness of various band selection

methods.
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