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ABSTRACT 

An imaging spectrometer records spectral signatures with hundreds of spectral 

bands in very narrow intervals allowing subtle spectral difference among different materials 

to be detected. One major technique for quantitative analysis of imaging spectrometer data 

is linear spectral mixture modeling. In a linear mixing model, a number of scene 

components with relatively pure spectral properties, called endmembers, are often used. 

Two least squares methods, unconstrained and constrained, are used to invert the linear 

mixing model to extract quantitative information such as the proportion of each endmember 

in a pixel. Although hundreds of spectral bands are available for the purpose of spectral 

decomposition, only a small number of bands showing relatively large spectral 

separabilities among the endmembers need to be used. Therefore, the amount of 

computation can be reduced with the reduction of the number of bands. In decomposition 

analysis, the existence of noise may affect the accuracy of pixel decomposition results. 

In this study, some simulations were made to test the sensitivity of the inversion of 

a linear mixing model. Atmospheric noise and the effect of undefined endmember were 

artificially generated. Five methods were tested for the purpose of selecting spectral bands 

for image decomposition. These included the successive correlation examination method, 

averaged correlation analysis, interband minimum difference analysis, the combination of 

minimum difference and successive correlation examination method, and the step-wise 

principal component analysis. Efficiencies of these methods were evaluated based on the 

spectral separabilities among endmembers in selected bands, the reference decomposition 

results, and the ground truth. The effect of the atmosphere on pixel decomposition using 

selected bands was also evaluated through simulation. Those band selection methods with 

the consideration of spectral separability and correlation as well as the step-wise principal 

component analysis method are effective for band reduction and pixel decomposition. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

A widely used method for extracting information from remotely sensed data is 

image classification. In image classification, each image pixel is usually assumed to belong • 

to one pure class. The result is desirable when the amount of boundary pixels is small and 

the scene is nicely partitioned into regions of homogeneous cover types. Many agricultural 

and forestry areas satisfy this requirement when the resolution and classification scheme 

matches. However, a lot of areas do not satisfy this requirement. Classification may not 

be suitable because of the existence of a large amount of mixed pixels. In this case, it only 

can provide an estimate of various classes for the study area. When the size of image pixel 

is comparable to, or much larger than the natural size of ground cover unit, each image 

pixel may contain more than one ground component. This is the common situation in 

remotely sensed data. 

Unlike laboratory spectral reflectances which are usually measured from pure 

materials, a large portion of remotely sensed data are spectrally mixed [Settle et al, 1993]. 

This is due to the fact that the scales of spatial variation of natural phenomena are often 

smaller than the spatial resolutions of the sensors. Spectral reflectances from different 

materials within each instantaneous field of view (IFOV) of the sensor are recorded as one 

spectral response for each band. This causes a problem known as spectral mixing. Each 
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observation is spectrally mixed from several different materials in each band. In this case, 

traditional classification is far from an ideal tool for information extraction. 

A more crucial objective for estimating different components inside the study area is 

the extraction of quantitative information from each image pixel. This is the inverse 

process of spectral mixing, which is called spectral unmixing or decomposition analysis. 

The proportions of different materials contributing to one image pixel, which are called 

endmembers, are expected to be obtained. The imaging spectrometer, as a new tool, 

provides the opportunity for us to capture very narrow spectral features of various targets. 

Unlike traditional multispectral sensors such as Landsat Multispectral Scanner and 

Thematic Mapper, which have only a few relatively wide spectral bands, imaging 

spectrometers record spectral signatures with hundreds of spectral bands, such as the 

Compact Airborne Spectrographic Imager (casi) has 288 bands in approximately 1.8 nm 

spectral intervals. An Analytical Spectral Devices field spectrometer used in this project has 

512 bands in approximately 1.4 nm spectral intervals. High spectral resolutions of imaging 

spectrometers allow direct identification of ground targets and quantitative analysis of 

subtle spectral changes down to sub-pixel level. 

One major technique for quantitative analysis of imaging spectrometer data is the 

spectral mixing modeling. Two types of models have been developed to describe the 

spectral mixing process: macroscopic spectral mixing [Gong et al, 1991; Adams et al, 

1989; Boardman, 1989; Singer et al, 1979] and intimate spectral mixing [Mustard et al, 

1989; 1987; Shipman et al, 1987; Johnson et al, 1983; Hapke, 1981]. A macroscopic 

mixture is characterized by large homogeneous patches of different materials where 

electromagnetic energy reflected from a single material dominates. In contrast, intimate 

spectral mixing results from electromagnetic energy being multiply transmitted and 

scattered by more than one material. Spectra of macroscopic mixtures are linear 
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combinations of reflectance spectra from different materials, whereas intimate mixtures are 

nonlinear spectral mixing. Both linear and nonlinear spectral mixing models are simple 

tools used to describe spectral mixing processes. It has been reported that nonlinear 

spectral mixing can be linearized by converting reflectance to single scattering albedo 

[Johnson et al, 1983]. 

The basic physical assumption underlying the linear mixing model is that there is no 

significant amount of multiple scattering among the different cover types. Each photon that 

reaches the sensor has interacted with just one cover type. Under these conditions the 

received energy can be considered as a simple sum of the energy received from each cover 

component. In a real situation, the reflectance from neighboring areas contributes to the 

received signal. If the material near the target was not defined in the reflectance matrix, 

what will happen during the decomposition analysis? On the other hand, the reflectance 

matrix is generally obtained inside the laboratory. However, the data for analysis is 

obtained from remotely sensed imagery. Atmospheric effects exist in each band of the 

remotely sensed data. How does it affect the results obtained through linear decomposition 

analysis? For hyperspectral image, hundreds of narrow bands have very high correlation 

which provides redundant information. How can we reduce the redundancy and improve 

the computational efficiency without losing decomposition accuracy? These are the 

problems which are discussed in this study. 

1.2 Research Objectives 

In this study, linear mixing modeling will be adopted as the tool to decompose 

hyperspectral data for the estimation of spatial proportions or abundance of various 

component materials from their composites. It has only been used to determine the spatial 

proportions of known endmembers. The primary objectives are: 
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• to evaluate the sensitivity of linear unmixing analysis in situations where 

undefined endmember exists in the study area; 

• to simulate and evaluate the effect of atmosphere on the linear unmixing analysis; 

• to develop band selection methods for hyperspectral data analysis; 

• to assess the effectiveness of the band selection methods in linear spectral 

unmixing analysis. 

1.3 Thesis Outline and Contributions 

In Chapter 2, the fundamental concepts of the linear mixing modeling are first 

reviewed. Some basic definitions, such as endmember, reflectance matrix, observations, 

are introduced. The unknowns in the linear mixing process are the endmember 

proportions. Two methods for finding the unknown proportions are presented. 

Chapter 3 describes the characteristics of the data sets used in this thesis. Data 

acquisition methods are introduced. Two data sets, one extracted from a casi image and the 

other obtained from field measurements, have been used and analyzed. 

In Chapter 4, five band selection methods are developed and implemented. 

Threshold determination for each method is described. 

Chapter 5 introduces the experiment designed for two purposes of this project. One 

is to test the consistency of the linear mixing model either when undefined endmember 

exists in the study area, or when atmospheric effect is considered. Simulated data is used 

for these tests. The other is to evaluate results obtained through different band selection 

methods. The correlation of extracted proportions with reference proportions or with 
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ground truth, and the root-mean-squares (RMS) error obtained are used to evaluate the 

band selection effectiveness. The atmospheric effect on the decomposition results obtained 

using selected bands through different band selection methods are also presented. 

The last chapter, Chapter 6, gives conclusions of this research work, and presents 

recommendations for future research. 

The primary contributions of this thesis are as following: 

1. For the first time, the sensitivities of linear unmixing analysis to an 

undefined endmember inside a study area and to the atmospheric noise in the 

observations have been examined. 

2. Five band selection methods have been developed. Some of these methods 

can be used to select bands automatically. The results obtained using selected 

• bands through most of these methods are consistent no matter whether the 

atmospheric noise is included or not. This consistency implies that the effect of 

atmosphere on the results obtained with selected bands is the same as those 

obtained when all the spectral bands are used. 
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CHAPTER 2 

LINEAR MIXTURE MODELING 

2.1 Principles of Linear Mixing Model 

In laboratory spectral measurement, a small area with pure materials can be measured 

under controlled conditions. For remotely sensed data, however, different components 

may be detected in one measurement. This is due to the fact that the natural phenomena 

vary spatially. The spatial resolutions of sensors are generally lower than the scale of 

natural variation. For each band, the observed spectral reflectance is combined by those of 

different materials within an instantaneous field of view (]FOV) of the sensor. 

Accurate estimation of spatial components and spectral properties of various materials 

from remotely sensed data is of great importance to many research and application fields. 

In order to identify various original materials and to determine their spatial proportions 

from remotely sensed data, the spectral mixing process has to be properly modeled. 

The most popular model is the linear spectral mixing modeling. In a linear spectral 

mixing model, we assume that only a small number of pure materials mix together with 

various areal proportions in the observed spectra. These materials are called endmembers, 

components, or factors. 
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Linear mixing model: 

Suppose there are m bands in a remotely sensed data set, and p endmembers. rjk 

represents the spectral reflectance of kth endmember atjth band. All the reflectance can be 

arranged in an m xp matrix R as follows: 

R= 

r11 
r21 

r12 

rmi rm2 

The linear mixture model can be expressed as: 

d1 r11 ••• r1 

or d=R•f 

with the following constraints: 

r1 

r2 

p 
f11≥O and Ef ik =1, for i=l,2,...,n, 

k=1 

(2.1) 

(2.2) 

where n is the total number of image pixels. d1 is the spectral responses measured from the 

ith pixel which is recorded by sensors in m bands. fik denotes the fractional area of the kth 

endmember in the ith pixel. All the fractions of endmembers in pixel i compose a p x 1 

vector fi and they should sum to one. 

For the decomposition of a mixed pixel, three mixture parameters in Equation (2.1) 

are of interest: 
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(a) the total number of endmembers in the mixture pixel, p; 

(b) the spectral identity of endmember k in m bands, rj, i = l,2,...,m; 

(c) the proportion of each endmember in the pixel, fik. 

The solution to Equation (2.1) is limited by the knowledge of these parameters. If 

parameters (a) and (b) are known, it is possible to determine (c) pixel by pixel. Actually, 

this is a typical situation used to derive spatial proportions of various endmembers from 

remotely sensed data. It is easy to get the proportional solution by inverting matrix R. If 

(a) and (c) are known, (b) can be obtained from di and f1 [Hanan, et al, 1991]. This 

method is applicable to situations where available ground measurements of fj are used to 

derive R. There are circumstances when only (a) is known, or none of the three types of 

parameters is known. However, it is still possible to estimate these mixture parameters 

from a simultaneous analysis of a number of pixels rather than by analysis of each sample 

individually. The mixing proportions should vary from one pixel to the other. Obviously, 

in order to determine the solution from Equation (2.1), enough information has to be 

obtained to define some parameters. A number of methods have been proposed to achieve 

the expected solution by using principal component analysis [Smith et al, 1985], factor 

analysis [Klovan, 1975], and the use of mathematical programming [Liang et al, 1991]. 

In this research, the identity spectral matrix R is known from either a Compact 

Airborne Spectrographic Imagery (casi) or a field spectrometer. Therefore, the expected 

solution to Equation(2.l) is to derive the proportion vector fi in a pixel by pixel manner. 

2.2 Solutions to the Linear Spectral Problem 

When the number and the spectral identities of endmembers are known, there are 
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three possible cases existing to extract proportions of each endmember: (a) m+1<p, (b) 

m+1=p, (c) m+1>p. For case (b), it is a simple case to solve Equation(2.1) with the 

constraint Equation(2.2). When remotely sensed data were acquired from sensors with 

limited spectral bands, such as Landsat Multispectral Scanner, Thematic Mapper, and 

SPOT High Resolution Visible, the number of desired endmembers may be more than the 

number of spectral bands plus one which is in case (a). Under such circumstances, 

Equation(2.1) becomes undetermined. In order to obtain the spatial proportions for each 

image pixel, an optimal solution has to be explored. Some researchers recover the 

proportions f using the geometrical structure of data scattering in multispectral space in 

combination with evidence such as tasseled cap behavior of vegetation on a red-infrared 

scatter plot [Jasinski et al, 1989; 1990]. 

For the data from the imaging spectrometer containing hundreds of bands for each 

image pixel, Equation (2.1) is almost always overdetermined. That means the number of 

endmember m plus one is smaller than the number of bands. This is case (c). 

Combining Equation (2.2) with Equation (2.1), the following overdetermined 

Equation (2.3) can be solved by using the least squares method. 

in a vector form: 

r11 r12 r1 

r21 r22 r2 

rm l rm 2 rm p 

_1 1 •.. 

(R) of = (d,) 

The constraints to the solution are 

d1 
d2 

1 

(2.3) 

fjk≥0 (2.4) 

There are a number of methods which may be used to solve Equation (2.3). The 
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commonly used one is the direct inversion of this equation through 

[ T irRi_ir T 

f=([R 'J[i] {R 1].d (2.5) 

If the singular results are caused by the direct inversion, other methods are 

recommended for solving Equation(2.3). Two other algorithms are the unconstrained 

singular value decomposition method and the constrained nonnegative least squares 

method. In the later method, we obtain the solution of proportions fi by taking 

Equation(2.4) into consideration. 

2.2.1 Singular value decomposition 

A Singular Value Decomposition (SYD) algorithm is recommended to deal with sets 

of equations or matrices that are either singular or numerically very close to singular such 

as Equation (2.3) [Boardman, 1989; Press et al, 1992]. With this method, however, the 

constraint of nonnegative proportions is not considered. 

Based on the theorem of linear algebra, any m x n matrix A, whose number of rows 

m is greater than or equal to its number of columns n, can be written as the product of an 

mxm column-orthogonal matrix U, an m x n diagonal matrix W with positive or zero 

elements, and the transpose of an n x n orthogonal matrix V. This can be represented in 

the following form: 

[W O] V T 
A=U[ 0 0]V (2.6) 

UTUIm VTV = VVT = I (2.7) 

Because U and V are orthogonal matrix, for square matrix, their inverses are equal 

to their transposes. Because W is diagonal, its inverse is the diagonal matrix whose 
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elements are the reciprocals of the element wj. Therefore, the inverse of A is 

A = V [diag(1/wj)] UT (2.8) 

Where A = {RT iJ1j. If more than one of the wj have a zero value or very small values 
which are dominated by roundoff error, a solution may not be obtained at all. In order to 

obtain one particular number of solution set f for the linear equation 

R'f=b (2.9) 

Where b = [gT 1] • d. f has to be found so that it minimizes the norm of the residual of 

the solution IR • f - bi. It has been proven [Press et al, 1988] that the solution of f can be 

obtained by simply replacing 1/wj by zero if wj is zero or close to zero. Zeroing a singular 

value corresponds to throwing away one linear combination of the set of equations that is 

being solved. It may seem paradoxical to reduce the number of equations to make the 

linear system determined [Press et al, 1988]. This also means that precise combination of 

equations, which is not so reliable by roundoff error as to be at best useless, are thrown 

away. Then the solution of Equation (2.9) which is the proportion in Equation (2.3) is 

f = V [diag ( l/Wj)] (UT b) (2.10) 

When using the SVD algorithm, a threshold has to be specified for deciding how small wj 

may be before it is treated as zero. This threshold is determined based on experiments. 

When f is obtained, the appropriateness of the least squares estimation of f can be 

judged by the root-mean-squared error (RMS), 

RMS=.\J. ,l(dj_ kl rjk.fk)2 (2.11) 
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However, solutions of f in Equation(2.1O) do not guarantee O≤fk≤l. When 

situations such as fk>1 or fk<O happen, there are three things that need to be considered 

[Adams, et al, 1989]. First, the image endmembers should be examined to make sure that 

each image endmember is exactly what it is supposed to be. If image endmembers are 

appropriate and solutions like fk>1 or fk<O still occur, then second, ignore those fk's close 

to 0 or 1 which may be caused by roundoff errors during computer processing. Thirdly, 

those fk's significantly smaller than zero or larger than one imply that there are other 

possible image endmembers that have not been identified. When the RMS is high for 

certain pixels, it suggests that either the linear mixing model is inappropriate or a new 

image endmember has not been identified. 

2.2.2 Nonnegative least squares (NNLS) method 

Since Equation (2.3) is a set of linear functions with nonnegative constraint 

Equation (2.4), the proportions f1 can be solved through a nonnegative least squares 

strategy. 

For a general least squares problem with linear inequality constraints (LSI), the 

problem is defined to minimize II RI - d II subject to Gf ≥ h, where h is the constraint of 

I. The following theorem characterizes the solution vector of the LSI problem [Lawson, 

1974]. 

THEOREM 

An n-vector? is a solution for problem LSI if and only if there exists an rn-vector 

and a partitioning of the integers 1 through rn into subsets C and 8 such that 

GT RT(R?d) (2.12) 
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yi ≥O for i€ 8, 1=OforiE ö 

Let g denotes the ith row vector of the matrix G. The ith constraint, g f≥ h, 

defines a feasible half-space, { f: gf ≥ h1}. The vector gj is orthogonal (normal) to the 

bounding hyperplane of this halispace and is directed into the feasible halfspace. The point 

is interior to the halfspaces indexed in 8 and on the boundary of the halfspaces indexed 

in 8. The vector 

p=RT(Rfd) (2.13) 

is the gradient vector of p(f) = II R'f - d 112 at f = I. Since 5 = 0 for i 0 8, Equation 

(2.12) can be written as 

si(—gi) = —p 
ic 

(2.14) 

which states that the negative gradient vector of (p at f is expressible as a nonnegative () 

0) linear combination of outward-pointing normal (-gj) to the constraint hyperplanes on 

which f lies (i E P,). Geometrically, this means that the negative gradient vector -p lies in 

the convex cone based at the point f and is generated by the outward-pointing normal -gj 

The nonnegative least squares method is a special case of least squares problem 

with linear inequality constraints on the solution. This problem is defined as 

Minimize U RI- dli subject to 0≤f≤1. (2.15) 

Figure 2.1 shows the algorithm for solving NNLS. In this algorithm, R is an 

(m+1) x n matrix and f is a (m+1)-vector. The n-vectors w and z provide working space. 

Two index sets p and Z are defined and modified in the course of the execution of the 

algorithm. The set Z identifies the components of the current vector f that are zero. The 
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components off indexed in p are positive. The index t selects a coefficient not presently in 

set p that will introduce the positive solution. This coefficient is saved in the tentative 

solution vector z. If all other components of z indexed in set p remain positive, then the 

components of z are transferred to the vector f and returns to the beginning. In this 

process, set p is augmented and set Z is diminished by the transfer of the index t. This 

sequence of events simply repeats with the addition of one more positive coefficient on 

iterations until Z is empty or Wj ≤ 0 for aifi jE Z. However, if some coefficient indexed in 

set p becomes zero or negative in the vector z, then the algorithm remains performing a 

move that replaces x by f+a(z-x), 0<a≤ 1. a should be chosen as large as possible 

subject to keeping the new f nonnegative. This iteration is repeated until it eventually 

satisfies that all the components in z are positive. 

Upon termination, the solution vector f satisfies 1j > 0, jE p, and fj = 0, jE Z and is 

a solution vector for the least squares problem Rf d. 
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( 
i 

Set index P and Z, x=O 

4 

Compute the n-vector w <=R'( d -Rf) 

Find an index tin Zsuch that Wt=max {wj,j inZ} 

i 
Move the index t rom Z to P 

Let Rp denote the m x n matrix defined by 
column  of Rp = { column  of  if  in P, o if  in Z} 

The n-vector z is computed as a solution of the least squares 
problem Rp z - f. Only the components zj, j in P, are 

determined. zj = 0 for j in Z 

x=z 

Figure 2.1 Algorithm of nonnegative least squares (NNLS) 
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Find an index q in P such that 
xq/(xq zq) = mm ( Xj / xj - zj): Zj <= O j in P} 

i 
a = Xq I (Xq - Zq) 

x <= x+ a(z-x) 

4 

Move all indices i in P for Xj =0 from P to Z 

Figure 2.1 (Continued) Algorithm of nonnegative least squares (NNLS) 

2.3 Applications of Linear Mixing Model 

Techniques for spectral mixing analysis have been developed for more than twenty 

years in a number of disciplines, particularly in geology and chemistry. A lot of 

applications of this model have been implemented in remote sensing. Determination of 

mineral types and abundance from mixtures of minerals is an obvious example in 

geological and planetary studies [Bierwirth, 1990]. Smith et al [1990] applied these 

techniques to Landsat Thematic Mapper (TM) data acquired over a desert area in Ovens 

Valley, California. In their, study area, individual schrubs distribute discretely. They 
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derived seasonal changes of scrub abundance and analyzed the relationships between these 

changes and some environmental factors. Blunt et al [1990] used linear mixing technique 

to study regional variations of sand composition in Mexico with Landsat TM data. Duncan 

et al [1990] employed linear mixing technique to enhance differences between rock types in 

TM images for structural mapping in Saudi Arabia. Lithological image endmembers were 

selected for the linear mixing analysis. The same technique has been used in mapping the 

ophiolitic melanges of the Central Eastern Desert of Egypt with Landsat TM imagery 

[Rivard, 1989]. Adams et al [1986] applied these techniques to multispectral data obtained 

from Mars by Viking Lander 1 with 6 spectral bands. Four image endmembers were 

defined: shade with zero digital numbers, secondary illuminating effects, rock and soil. By 

isolating the shade and the secondary illumination effects, they found the rock and soil 

having close analogs in a library of laboratory spectra. Sabol et al [ 1990] studied material 

detectability using linear spectral mixing modeling by taking spectral contrast of materials, 

limitations of imaging systems, illumination conditions into consideration. They concluded 

that the contrast and sensor spectral resolution are important factors in material detection. 

Roberts et al [1990] studied the applicability of linear mixing analysis for leaf identification 

using a leaf radiative transfer model. They reported that at 450 to 650 nm, where leaves are 

relatively opaque, leaf spectra mix linearly. This implies that linear spectral mixing analysis 

at the scale of vegetation leaves, shorter wavelength may provide better results. Additional 

examples can be found in applications of this method in urban and forest environments 

[Cross et al, 1991; Gong et al, 1991]. 

There has been few research results published on linear mixing analysis of imaging 

spectrometer data. Boardman [1990] conducted linear spectral mixing analysis using 

Geophysical and Environmental Research Imaging Spectrometer data (63 channels ranging 

from 0.4 to 2.5 micrometers). He introduced an unconstrained version and a constrained 
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version of the least squares solution put forward by Lawson and Hanson [1974]. Because 

noise exist in the spectrometer data, the sensitivity of unconstrained method in linear 

decomposition analysis has been tested by Mang et al. [ 1993] using simulated white noise. 
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CHAPTER 3 

DATA ACQUISITION AND ANALYSIS 

Two sets of data were used in this research. One was the Compact Airborne 

Spectrographic Imager (casi) data which were acquired on board a small aircraft. The other 

was the field spectral data which were obtained using Analytical Spectral Device's (ASD) 

high spectral resolution Personal Spectroradiometer. 

3.1 Compact Airborne Spectrographic Imager (CASI) 

casi is an airborne pushbroom sensor sensitive in the visible and near-infrared 

portion of the spectrum. A line perpendicular to the aircraft flight path is imaged along one 

dimension with the two-dimensional sensors (CCD). 512 pixels of spatial resolution 

across the flight path is obtained. The spectrum is dispersed along the flight path. This is 

analogous to having an array of spectrographs simultaneously imaging adjacent points 

across the line in the scene. Figure 3.1 shows the operation of casi operation. 

Casi can be used onboard aircraft or in the laboratory. In order to achieve acceptable 

ground resolution during aircraft operation, data are normally collected in one of two 

modes, the spatial mode and the spectral mode. The spatial mode digitizes and records up 

to 19 spectral bands of information while maintaining full spatial resolution of 612 pixels of 

which the imaging field of view comprises 512 pixels. Each band is summed on-chip and 

may include any number of adjacent, non-overlapping spectral rows [Babey et al, 1992]. 
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CCD 
Detector 

Blue X*4000m 

Figure 3.1 Operation of CASI [Babey et al, 1992] 

228 
Spectral 
Pixels 

In spectral mod, full spectral resolution is maintained in which 288 elements 

encompassing the wavelength range specification of 417 nm to 917nm at 1.8 nm spacing. 

This kind of high spectral resolution reduced the spatial resolution due to data logging 

limitations. In this mode, each spectral band contains 40 CCD detectors acquiring different 

view directions and covering the whole scene [Staenz, 1992]. Recently, a third mode (full-

frame mode) has been added to the casi instrument software. This mode digitizes and 

records the entire data frame of 612 by 288 pixels. The recording of this amount of data 
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takes approximately 2s/frame [Babey, et al, 1992]. 

The original airborne casi data have to be calibrated in order to obtain reliable 

radiance with high spectral and spatial resolution. The data set used in this study were 

calibrated using the casi manufacturers parameters which reduced the noise caused by 

system design. There were still other noise sources. Two major kinds of noise were the 

atmospheric scattering and the radiometric error. In order to reduce the effects of these 

factors, the atmospheric effects may be suppressed using radiance to reflectance conversion 

either based on the ground truth data [Freemantle et al, 1992], or using radiative transfer 

model [Williams et al, 1992]. The radiance data used in our study were converted into 

reflectance based on the data obtained from field surveying. The radiometric calibration can 

be performed using a single radiance standard optical source to characterize the radiance 

sensitivity of the CCD and to indicate the wavelength of the sensor [Babey et al, 1992]. 

In this study, casi data were acquired during the period of May, 1991 in the middle 

of Oregon. The radiance values at wavelengths longer than 790 nm, in which the 

radiometric effects are stronger, were not used. Six endmembers are selected based on the 

ground truth investigated in the study area. Gravel at three sites are treated as three kinds 

of endmembers. Gravel.J is the relative pure gravel. Gravel-2 and Gravel-3 have some 

tuft grass cover. Two types of grass are tuft grass and snow grass. The other one is 

ponderosa pine. Figure 3.2 is the example of reflectance spectra extracted from the casi 

image. 
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Figure 3.2 An example of CASI data from 419 nm to 789 nm 

3.2 Field Data Acquisition 

An ASD high spectral resolution Personal Spectroradiometer II was used to take 

measurements in the field. This spectrometer contains a 100 mm focal length, holographic 

grating spectrometer designed to collect light from an external source through a bundle of 

19 optical fibers. The captured light travel through the fibers and strikes a grating which 

diffracts the light into its respective wavelengths. The diffracted light falls on the surface of 

a silicon photo diode array detector. The detector contains 512 elements, each of which 

records the number of photons striking on it. The number of photon are accumulated in 

each detector element and are recorded by incrementing counters which exist in each 

element. The number of photons striking over a period of time is converted into a voltage 
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to represent the amount of radiance of the target. In the silicon diode array, there is an 

undercurrent existing even if no photons strikes the array. This is referred to as the dark 

current. Any measured current is a combination of the signal current and the dark current. 

To eliminate the dark current effect, a mechanical shutter is built in the spectrometer to 

differentiate the dark current from signal current. When the shutter is closed only dark 

current is measured. When a signal is measured, the dark current should be subtracted 

from the measured current to produce the raw spectrum. The maximum number of photons 

accumulated by the array is 4095. To avoid achieving this saturation, the integration time 

for collecting photon should be adjusted based on the light conditions. The integration time 

is suitable when signal current has the dominant proportion in the measurement while it is 

not in saturated. It could be a shorter time in sunshine day, and longer in the laboratory. 

Whenever the integration time is adjusted, the dark current needs to be detected again. A 

reflectance spectra can be generated using a white panel whose radiance is assumed as all 

the incident light reaching to the target. The radiance of the target divided by the radiance 

of the white reference is the reflectance spectra of the target. This suppresses the effect of 

atmospheric distortion. 

During the field measurements, the spectrometer was mounted on a survey tripod. 

The sensor gun was pointed vertically to the ground target. A tube with a field of view of 

18° was screwed on the sensor in order to achieve accurate estimation of spatial resolution. 

A plumbing device was mounted along the tube. It was used to assure that the direction 

was vertical and also to locate the target. The distance between the sensor and the ground 

target was set at approximately 120 cm. The position of the sensor and the field of view 

determined the spatial resolution which was approximately 38 cm in diameter. The 

configuration of these devices is shown in the Figure 3.3. 

In our field measurement, the atmospheric distortion on the reflectance was 
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ignored. The reflectance values with stronger radiometric effect at the shorter or longer 

wavelength regions since the weak response of the detectors were not used. Four types of 

materials, concrete road, grass, soil, and aspen leaf, were measured to obtain the 

reflectances for identification. Some mixing spectrum were taken from the mixed area 

combined by any two of these materials. Figure 3.4 is an example of the reflectance 

spectra measured by the ASD filed spectrometer. Four endmembers are represented. 

Fiber Cable 

I 
ASD Spectrometer 

Figure 3.3 Measurement devices 

Triport 

Sensor Gun 

Tube 

120 cm 

Ground Target 
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Figure 3.4 An example of field spectrometer data from 334 nm to 1062 nm 

3.3 Characteristics of Hyperspectral Imagery 

II  
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Hyperspectral data have some unique characteristics in comparison with other 

multispectral data. The main advantage of hyperspectral data is the hundreds of bands 

designed in a certain spectral range. The more bands used, the greater the spectral 

resolution that can usually be achieved. 

casi has 288 bands covering a spectral range from 417 nm to 917 nm with a 

spectral resolution of approximately 3.5 nm. The field spectrometer used in this study has 

512 bands within spectral range of 350 nm to 1067 nm at 1.4 nm spacing. This kind of 

high spectral resolution supplies sufficient amount of information on spectral features. A 
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little spectral variation of the different features may be recorded by the sensor. It provides a 

possibility to distinguish features that are spectrally similar. Because every material usually 

has a different reflectance spectra, even the materials with very similar spectra, such as 

different vegetation species, have some spectral differences at certain wavelengths. Only 

hyperspectral data with high spectral resolution can be used to distinguish these subtle 

spectral differences. 

On the other hand, hundreds of bands contain a lot of data with redundant 

information. They occupy large computer memory and cost a lot of computational time 

when they are used for information extraction. This is the disadvantage of hyperspectral 

data. For example, some vegetation species have almost the same reflectance at most 

spectral regions. Only a few spectral bands can be used to distinguish between those 

species. These bands may be sufficient in the feature extraction analysis. In order to 

improve the computational efficiency, the number of redundant bands need to be reduced. 

3.4 Noise Behaviour 

Any remote sensing image contains noise. In most cases, the noise can not be 

removed completely. The noise comes from two principal sources. One is the radiometric 

error. The other is the atmospheric interference. The radiometric noise is caused by 

hardware design of the sensor, and it is difficult to remove. The effect of atmospheric 

interference on remotely sensed data is critical in the image analysis. The amount of effect 

on the data may affect the accuracy of ground cover estimation and analysis. The 

atmosphere influences the amount of electromagnetic energy that is sensed by the detectors 

of an imaging system, and these effects are wavelength dependent [Curcio, 1961; Chavez, 

1989. The atmospheric effect is strong for systems, such as casi, that record data in the 

visible and near infrared parts of the spectrum. The atmosphere affects images by 
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scattering, absorbing, and refracting light. The dominant source of these effects is 

scattering [Siegal et al., 1980; Slater et al., 1983]. 

Table 3.1 Atmospheric scattering models for different atmospheric conditions 

Atmospheric Conditions Relative Scattering Model 

Very Clear -4.0 

Clear 

Moderate A.-1.O 

Hazy ? -0.7 

Very Hazy -0.5 

One possible set of relative scattering models are listed in Table 3.1 [Chavez, 1989] 

These models were selected based on the fact that very clear atmosphere is characterized by 

Rayleigh scattering, moderate atmosphere by Rayleigh and Mie scattering, while very hazy 

atmosphere is influenced by both Rayleigh and Mie scattering, but with Mie being more 

important than in the moderate atmosphere case [Slater et al., 1983]. 

The existence of the noise affects the accuracy of ground information estimation and 

analysis. In a previous paper [Zhang et al, 1993], random white noise was added as the 

atmospheric effect for testing the sensitivity of the linear decomposition analysis. In this 

study, the Rayleigh scattering model was adopted instead. 
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CHAPTER 4 

BAND SELECTION 

Band selection is traditionally treated as an important subject in image classification. 

Groups of bands are selected based on the calculation of class signature separability 

[Richard, 19861. This involves not only class means but also class covariance matrix that 

are difficult to obtain for the case of hyperspectral data because of the large number of 

statistically meaningful samples required. However, in linear spectral unmixing the 

covariance matrix is not required for each endmember. Therefore, it is not possible to use 

the traditional separability measures. 

Because hyperspectral images have hundreds of bands, it requires a lot of 

computation time for information extraction. It is desirable to use only those bands 

containing the necessary information for a particular task to improve the computational 

efficiency. 

This is one of the major challenges for the use of the imaging spectrometer data. In 

a general sense, it primarily means the reduction of data dimensionality. Those spectral 

bands contain redundant information can be ignored. Several methods were developed in 

this research. Our emphasis was put on choosing some of valuable bands from the 

hyperspectral data set based on the relationship among the reflectance of different 

endmembers. The spectral bands were selected based on their capability to differentiate 

between different endmembers. More specifically, in the context of linear spectral 
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unmixing, band selection is done after the spectral identities of various endmembers are 

determined. The task of band selection is to examine which band contributes more to the 

discrimination of these different endmembers. 

4.1 Band Selection Based on the Successive Correlation Examination 

The hyperspectral image has hundreds of bands. The data in each band have a very 

high correlation with their neighboring bands. The effective channels in the pixel 

decomposition analysis are those which represent significant properties of spectral features. 

Therefore, the neighboring bands with high correlation do not need to be kept. Only one of 

them is sufficient in the subsequent analysis. The intention of this method is to drop some 

bands whose correlation is high compared to its neighboring bands. High correlation 

coefficient of two channel represents these two bands provide similar information. 

In this method, the correlation coefficients between two successive neighboring 

bands are calculated. A threshold is specified for determining which band can be dropped. 

At the first step, the correlation of the first two neighbor bands is calculated. It is then 

compared with the predefined threshold, the second band will not be taken into 

consideration if the correlation is greater than the threshold. Otherwise, the second band is 

kept for further decomposition analysis. In the second step, if the second band was 

dropped in the first step, then the correlation between the first and the third bands is 

calculated and compared with the threshold. If the second band was kept in the first step, 

the correlation between the second band and the third band is calculated and compared with 

the threshold. If the correlation is larger than the threshold, the third band is dropped. If 

not, it will be maintained. Going through all the bands in this manner, some bands will be 

dropped from the decomposition consideration, some will be kept for subsequent analysis. 

Ideally, after this process a small number of bands without losing any important 
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information should be obtained. 

The threshold is important in determining how many bands will be kept. It sets a 

criterion for how high the correlation between two neighboring bands cannot be accepted. 

Because hyperspectral data have many narrow bands, the correlation between two 

originally adjacent bands is very high. Usually the correlation exceeds 0.99. The 

correlation among any two original neighboring bands based on the six endmembers 

selected from the casi data is shown in Figure 4.1. 
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Figure 4.1 Correlation between two successive bands of CASI data 

It is obvious that the hyperspectral data contain a lot of redundant information. The 

threshold determination is critical. If a large threshold is selected, some redundant bands 

may be kept. If a small threshold is selected, a small number of bands may be reserved. 
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Those remaining bands, for the small threshold case, may not be sufficient for the 

subsequent linear unmixing analysis. Because the correlation are all very high, the variance 

among them is very small. It is difficult to have a suitable threshold for discarding some of 

the redundant bands. 

Besides using a heuristic procedure, the threshold determination can be made based 

on the relationship between correlation and the lag distance which is very similar to the 

semivariogram estimation used in geostatistics [Curran, 1988, Curran and Dungan, 1989]. 

The difference is that in semivariogram one examines the spatial variability along a profile 

while in this method the average lagged spectral correlation is examined along a spectral 

transact. The basic procedure is shown in Figure 4.2. 

... 

.\_• 

lag h = 2 

lag h = 1 

- - - 

lag h = 3 

Figure 4.2. Lags along a transact of spectral bands 

The correlation between a pair of bands, h intervals apart (the lag distance), was 

calculated by 

NB-h I  (xL,J x1)(x(1+h),j i+h)) 

cor(h) = NB— h 2 2 

- . (x1, -) I (x(j+h),J i+h)) 

\ j=i j=1 

(4.1) 

where NB is the total number of original bands, m is the pairs of bands separated by the 

same lag, n is the number of endmembers in one band. Figure 4.3 shows the relationship 
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between correlation and lag using the casi data with 210 bands. The threshold can be 

estimated from a curve such as Figure 4.3 and the number of bands desirable. Then the 

threshold will be adjusted through experiment in order to reach the exact number of bands 

desired. When 50 bands are specified to be selected, the minimum lag distance is about 4 

or 5 which is obtained from 210/50. From the curve, we can see the minimum threshold 

should be set larger than 0.996. Through experimentation, 0.999 was set and 51 bands 

were selected. It is difficult to control the procedure to get the exact number of bands. But 

the number of bands may be chosen as close as expected. 
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4.2 Averaged Correlation Analysis 

In this method, the correlation coefficient between any two bands is calculated, and 

a correlation matrix is generated. Because the endmember reflectance matrix has 

dimensions m x p, the correlation matrix is a symmetrical m x m matrix with diagonal 

elements as one. In a previous study, the mean value of all the correlation coefficients in 

the correlation matrix was used as the threshold [Zhang et al. 1993]. A band with row-

wise (or column-wise) mean correlation exceeding this threshold was dropped. In this 

study, an empirical formula was developed for determining the threshold. 

200 

180 

160 

o 140 

100 

80 

60 

I I I I I I I I I I I I I I I I I I I I 

I I I I 11111 I 1111 

0 30 60 90 120 150 180 210 

Band 

Figure 4.4 Row-wise ( or column-wise) sum of correlations for each band 

Figure 4.4 shows the row-wise (or column-wise) mean correlation of each band 

using casi data with 210 bands. It is hard to determine the threshold from this curve. It 
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cannot be said that only the bands after 175 contains higher separability than at the rest 

bands. For instance, from Figure 3. 1, the separability in some other bands are higher than 

band 180. 

In order to avoid losing some useful information, bands should be chosen fairly 

along the spectral wavelength. The 210 band casi data were analyzed for estimating the 

threshold. Based on the knowledge of the reflectance spectrum, the separabilities between 

band 80 to band 130 are high enough to be used for the purpose of decomposition. The 

mean correlation in these bands are, however, relatively high. The number of desirable 

bands should be inversely proportional to the level of mean correlation. In other words, 

we can select a small number of bands from a group of bands whose row-wise mean 

correlation are high. On the other hand, a relatively large number of bands from a set of 

bands whose row-wise mean correlation are low should be selected. Therefore, we need to 

rank all of the bands based on their row-wise mean correlation and divide them into 

different groups based on their different ranges of row-wise mean correlation. When the 

total number of spectral bands to be selected is determined or specified, the distribution of 

bands to be selected in each different group is determined by a non-linear empirical 

function. The empirical non-linear function for selecting bands is defined as 

NB1=w'B (4.2) 

W 

m . 

no1 c-i no1 
a 'La 

c0r1 i=1 c0r1 
(4.3) 

where NBi is the number of bands to be selected in the ith range if we rank the range from 

small correlation to large. B is the total number of desired bands. Wj is percentage of the 

number of bands in the ith range with respect to the total number of desired bands. nbi is 

the number of bands in the ith range. corj is the correlation of the ith range. a is the 
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parameter to be determined through experiment. The parameter a is used to balance the 

effects of the correlation and the number of bands with this correlation. 

In our experiment, the correlation was divided into eight ranges. The number of 

bands in each range were counted. Then, a histogram was generated and shown in Figure 

4.5. The power parameter a was set to 1.0, 2.0, 3.0, 4.0, respectively. 50 bands was set 

as the desirable number of bands. The number of selected bands in each range is shown in 

Figure 4.5. The greater the power a, the more effect of correlation has on the distribution 

of desirable bands. The smaller the power a, the more effect of the number of bands in 

each range has. By comparing the effects of the different powers in Figure 4.5, it is easy 

to see the distribution of desirable bands is much more suitable when a is set to 2. In 

subsequent experiments, the empirical formula 

NB1 (nbl  /-).B 

cor1 j=1 corj 
(4.4) 

was used to determine the distribution of desirable bands. After the number of bands to be 

selected in each correlation range was determined, the bands were selected randomly within 

each range. In this procedure, it is hard to obtain the exact number of bands specified at the 

beginning. In order to compare each band selection method, the same number of bands has 

to be chosen. Additional bands were added manually to reach the desirable number. 
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Figure 4.5 Histogram of selected bands using the empirical formula with different 

coefficients 

4.3 Interband Minimum Difference Analysis 

We can assess the separability between endmembers in each band based on how 

different their spectral reflectances are. It is obvious that larger differences show higher 

separability. Based on this kind of separability, bands can be selected. 

The minimum distance of spectral reflectance among various endmembers is used to 

describe the separabilities of different endmembers in each spectral band. Along the 

spectral wavelength range, some of the endmembers may have the same or very similar 

reflectances at certain bands. The desirable bands are those with relatively large minimum 
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reflectance differences. The minimum difference among all endmembers in each band can 

be calculated. Figure 4.6 shows the distribution of the minimum difference along the 

bands by using the 210-band CASI data. Then these minimum differences can be ranked 

from large to small. When the number of desirable bands is specified, those bands with 

larger minimum reflectance differences will be selected. The drawback of this method is 

that the selected bands still have high correlation between them. The other problem with 

this method is the selected bands may be distributed in a small spectral range if the number 

of desirable bands is small. 
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Figure 4.6 The distribution of minimum difference in each band 

4.4 Combining the Minimum Difference and Successive Correlation 

Methods 

Considering the problems existed in the method presented in Section 4.3, a method 
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combining the minimum difference and the correlation is implemented. The initial band 

selection can be done using the minimum difference method. The successive correlation 

method described in Section 4.1 can then be applied to those selected bands. The 

thresholds for minimum difference and for correlation of neighboring bands need to be 

adjusted through experimentation. In order to preserve as much information as possible 

after the first selection, more bands need to be selected with the minimum difference 

method. The threshold for correlation can be adjusted to reach the number of desirable 

bands. 

4.5 Step-Wise Principal Component Analysis 

Principal component analysis is widely applied in remote sensing for reducing data 

dimensionality [Mather, 1987]. It is often used to determine a linear combination of 

spectral bands, resulting in a smaller number of uncorrelated dimensions in the feature 

space. This approach determines the importance of each original band in each resultant 

feature and finds some optimum features without a significant loss of information in terms 

of the proportion of total variance of the original data set. 

A modified stepwise principal component analysis (MSPCA) procedure is applied 

for spectral band selection. The MSPCA can be efficiently used to select particular subset 

of original bands to decrease the dimensionality of the original data. It does not use linear 

combinations of all the input bands as has been done in Chen and Landgrebe [1989]. In 

MSPCA we select a subset of the entire input bands by preserving most information. 

Before performing MSPCA, the correlation of any two bands is calculated to 

generate a correlation matrix, A. This correlation matrix is .used as the input to MSPCA. 

Eigenvalues and eigenvectors can be extracted from A. They will satisfy the following 
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Equation (4.5) 

(A - UI)V =0 (4.5) 

U is the eigenvalue of A, and V is the eigenvector of A. Larger eigenvalues correspond to 

higher magnitudes of variances which implies more information for discrimination 

purposes. Smaller eigenvalues correspond to lower variances which corresponding to less 

amount of information. 

In contrast to the general PCA strategy, the feature accounting for the smallest 

amount of variance is considered first in MSPCA. The smallest amount of variance 

corresponds to the feature with the lowest eigenvalue. The original band having the highest 

weight in the eigenvector corresponding to the lowest eigenvalue is considered to contain 

the least amount of information. This band is dropped from further processing. 

The MSPCA procedure iteratively drops bands by finding the lowest eigenvalue 

with the highest weight until the desirable number of bands is reached. It will not decrease 

the correlation among the original bands as efficiently as the original PCA, but it preserves 

the original physical meaning of each spectral band. 

Since the computation involved in the MSPCA is relatively large, the band selection 

is actually done through making a log file to record the number of iterations and the 

corresponding dropped band. Figure 4.7 shows the sequence of initial dimensionality 

reduction through the MSPCA procedure. The horizontal axis is the band index. The 

vertical axis shows the number of iteration. The horizontal bars represent the bands 

dropped at a particular iteration. When the number of desirable bands is specified, the 

bands will be chosen in a reverse order beginning from the end of the file. The number of 

bands is easily controlled to reach the expected number. 
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CHAPTER 5 

IMPLEMENTATION AND EXPERIMENTS 

5.1 Data Preprocessing 

Two data sets obtained from different sources were used to test the sensitivity of the 

linear unmixing and band selection methods. One data set was the Compact Airborne 

Spectrographic Imager (casi) data. The other was the field spectrometer data. 

5.1.1 CASI Data 

The casi data used in this research were obtained on May 20, 1991 from Metolius 

River (44023' N, 121040'W) in middle Oregon. In this experiment, the spectral mode of 

the casi data which provides reflectance spectra from 417 nm to 927 nm in 288 bands was 

used. 

Although the casi spectral-mode data were calibrated using the manufacturer's 

parameters, the radiance values for each image pixel were noisy which can be seen from 

Figure 3.1. The noise came from atmospheric interference and the radiometric effect 

[Gong et al. 1992]. Because the radiometric noise has a high effect in longer wavelengths, 

the casi reflectance imagery between 417 and 788 nm were used in this experiment. In 

order to reduce radiometric noise effect on the separability analysis, a 1 x 7 smoothing filter 

has been used to smooth the reflectance curves. To suppress the atmospheric effect, the 
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radiance was converted to reflectance using the field-measured. gravel spectra as a pseudo-

invariant reflectance target [Freementle et al., 1992]. 

The reflectance spectra used in this project were extracted from the calibrated 

spectral-mode casi image. Some relatively pure areas were selected as endmembers for 

generating the reflectance matrix. These endmembers are three kinds of gravel in three 

sites, two kinds of grass which are tuft grass and snow grass, and ponderosa. These areas 

were chosen based on the knowledge of study sites. The spectra displayed in Figure 5.1 is 

a smoothed version of Figure 3.2. They have been smoothed by a 1 x 7 mean filter. Other 

45 samples were extracted from the casi image as the mixtures which were used as 

observation vectors b1 in Eq.(2.3). Same processing was applied to these observation 

vectors as those endmember spectra. 
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Figure 5.1 Smoothed CASI reflectance curves for six endmembers using a 1x7 filter 
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5.1.2 Field Measurements 

Another set of reflectance spectra used in this study was measured on the campus of 

The University of Calgary in September, 1993. The Analytical Spectral Device's (ASD) 

personal spectrometer II was used with a field of view of 18°. These spectra were 

collected for the purpose of linear unmixing analysis and evaluating the efficiency of the 

band selection methods. 

The reflectance spectra of four kinds of targets, grass, soil, aspen leaf and concrete, 

were collected. These targets were very easy to find, and was relatively easy to take 

reflectance spectra from relatively pure targets thanks to the limited field of view of the 

spectrometer. The spectra of these pure targets constituted a reflectance matrix. Figure 5.2 

shows the reflectance spectra of these four endmembers. The mixing targets were 

artificially generated. Any two of those four pure materials were mixed to generate a 

mixing spectra in specific proportions. On the other hand, three kinds of mixtures were 

measured on the campus. These mixtures are soil and grass, soil and spruce leaf, concrete 

and grass. In each mixture, we selected mixtures such that the proportion of each 

endmember was approximately 50%. However, because the surveying conditions were 

hard to control, it cannot be guaranteed that the measured spectra is mixed by two pure 

endmembers with exactly equal proportions. Because the field spectrometer used in our 

experiment is less sensitive in the longer wavelength and the shorter wavelength regions, 

the reflectances shorter than 378 nm and longer than 952 nm were discarded. Only 430 

bands out of the 512 bands from the raw data were preserved for further analysis. 
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Figure 5.2 Smoothed ASD spectrometer reflectance curves for four endmembers using a 

1x7 filter 

5.2 Experiments 

In this research, the sensitivity of linear spectral unmixing was tested under two 

conditions. The first condition was when there was undefined endmember inside a study 

area. The second condition was when atmospheric effect was considered existing in the 

observation data. On the other hand, the five band selection methods were implemented 

and were used to reduce the number of spectral bands. Figure 5.3 shows the experimental 

design. 
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5.2.1 The Sensitivity of Linear Mixing Model 

5.2.1.1 Undefined endmember inside study area 

Sometimes, some endmembers existing in a study area may not be identified and 

thus will not be included in the endmember matrix. They may contribute to the observation 

vector. This experiment was designed for testing the performance of the linear spectral 

unmixing under these conditions. 

An artificial observation data set was created by proportionally mixing the six 

endmembers from the casi image, with the proportions of 0.005, 0.27, 0.11, 0.025, 0.44 

and 0.15 for the six endmembers, respectively. The observation vector was linearly 

combined by these six endmembers, but one of these endmembers was not included in the 

endmember matrix. This one was assumed to be the neighboring effect, and the proportion 

of its contribution in the mixing spectra could be small. Table 5.1 shows the results 

obtained from linear spectral unmixing when one of the combination endmember does not 

exist in the reflectance matrix. 

Table 5.1 Decomposition results with an undefined endmember 

Endmember Gravel-1 Ponderosa Grass—i Gravel-2 Grass-2 Gravel-3 
Real 

Proportion 
0.005 0.27 0.11 0.025 0.44 0.15 

Unconstrained Method (SYD) 
Fractioni * 0.27 0.11 0.01 0.44 0.17 
Fraction2 0.00 0.28 0.10 * 0.44 0.19 

Constrained Method (NNLS) 
Fractioni * 0.27 0.11 0.01 0.44 0.17 
Fraction2 0.00 0.27 0.09 * 0.45 0.18 

The "*"s in Table 5.1 represents the endmember which had certain proportion in 
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creating the mixed pixel but was not included in the endmember matrix. All the bands were 

used in the linear decomposition process. Two methods, which were the unconstrained 

singular value decomposition (SVD) and the nonnegative least square (NNLS) method, 

were used to decompose the mixture. From the results shown in the table, the endmember 

with very small proportion did not affect the decomposition analysis very much. The linear 

mixing model still provided reasonable estimation when the material near the target had little 

contribution to the spectra of the desirable target. 

5.2.1.2 Atmospheric effect 

This test was designed to test the sensitivity of the linear spectral unmixing when 

atmospheric scattering exists in the observation data set. Generally, the reflectance of 

endmembers are measured in the field or obtained in the laboratory. The atmospheric effect 

on these measurements may be ignored. However, the data obtained from remotely sensed 

image are always affected by the atmospheric scattering. 

In this experiment, the atmospheric effects were simulated. With the assumption of 

clear atmosphere, Rayleigh scattering was used to generate the artificial atmospheric 

component to test the sensitivity of linear decomposition. Rayleigh scattering can be 

simply represented by 

Sr=k/ A4 (5.1) 

k is the parameter changing with wavelength. A completely dark object on the ground has 

zero reflectance should be used to estimate k. Actually, this kind of dark object does not 

exist in the image. Chavez [1989] suggested that a one percent minimum reflectance be 

used to represent atmospheric scattering. Because k only has a role on modifying the 

magnitude of the atmospheric effect, it was assumed as a constant in our study in order to 
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simplify the problem. It was estimated from the minimum reflectance in wavelength near 

420 nm that is corresponding to blue light. Light at the shorter wavelength region has 

stronger scattering. One percent of the minimum reflectance in that wavelength was 

assumed as the minimum atmospheric scattering. Then k can be obtained by 

k=SrA4 (5.2) 

For the casi data, k was calculated as 7.67 .x 109. The atmospheric effect on other 

wavelengths was simulated based on Eq. (5.l). 
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Figure 5.4 Simulated Rayleigh scattering added onto the artificially created spectra 

The simulated atmospheric noise was added on the artificially mixed observation 

data. Figure 5.4 shows the atmospheric effect on the observation data along the spectra. 

The artificial observation was mixed by six endmembers using proportions of 0.05, 0.27, 

0. 11, 0.07, 0.35, 0.15, respectively. The magnitude of the Rayleigh scattering increases 
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from index one to five with the percentage of minimum reflectance at 420 nm from 0.5 - 

2.5%. Table 5.2 shows the atmospheric effect on the pixel decomposition analysis. Two 

decomposition methods were used. 

From Table 5.2, it can be seen that as the magnitude of Rayleigh scattering 

increases, the reliability of the decomposition results decreases. The results are poorer for 

the constrained method than for the unconstrained method. When the atmospheric effect is 

low, the results show that the linear decomposition analysis may provide reliable 

estimation. However, the results from the linear decomposition analysis may not be 

reasonable if the atmospheric effect is strong. Therefore, atmosphere calibration is required 

before the remotely sensed image is used for decomposition analysis. 

Table 5.2 Decomposition results from data contaminated by atmospheric effect 

Endmember Gravell Ponderosa Grass 1 Gravel2 Grass2 Gravel3 RMS 

Real 
Proportion 

0.05 0.27 0.11 0.07 0.35 0.15 0.0 

Index Unconstrained Method (SVD) 
1 0.06 0.23 0.19 0.04 0.34 0.17 0.0169 

2 0.08 0.18 0.28 0.02 0.33 0.19 0.0339 

3 0.09 0.14 0.36 -0.01 0.32 0.21 0.0508 

4 0.11 0.10 0.45 -0.04 0.31 0.23 0.0678 

5 0.12 0.06 0.53 -0.07 0.30 0.24 0.0847 

Index Constrained Method (NNLS) 
1 0.06 0.23 0.19 0.04 0.34 0.17 0.0169 

2 0.08 0.18 0.28 0.02 0.33 0.19 0.0339 

3 0.10 0.14 0.37 0.00 0.32 0.19 0.0509 

4 0.12 0.09 0.46 0.00 0.31 0.17 0.0680 

5 0.15 0.04 0.55 0.00 0.31 0.15 0.0852 

5.2.2 Evaluation of band selection methods 

The purpose of optimal band selection is to reduce the dimensionality of the original 

data for further pixel decomposition analysis. Ideally, we expect that the reduction of data 
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dimension does not affect the accuracy of the decomposition analysis. Theoretically, any 

band reduction should not affect the linear decomposition result if the observed reflectance 

is linearly mixed by the reflectances from components in the study area. However, this 

assumption may not hold true in reality. If this assumption does not hold, band reduction 

affects the decomposition results. To evaluate the effectiveness of different band selection 

methods, the following four criteria were used in this study [Csilag et al. 1993]: 

1. the separability of reflectance curves of different endmembers, 

2. the reference proportion of same kinds of components in each pixel, 

3. the ground-truth proportion of different components in one measurement, 

4. the root mean squared error (RMS). 

The first criterion is based on expert experience in manual band selection. With the 

second criterion, the reference proportion for an endmember was assumed to be the one 

obtained from the data with all the bands being used. The correlation between the reference 

proportions and the proportions obtained from the selected bands were calculated for 

evaluation. It is a relative evaluation criterion that does not take the non-linear mixing into 

consideration. The third criterion is more reliable. The RMS can be used to evaluate the 

appropriateness of proportions extracted from selected bands. 

We used the casi and field spectrometer data for evaluating the five band selection 

methods. The band selection results obtained from the casi data will be evaluated by of all 

the methods except the third one because the ground-truth is not available. Because of the 

shortage of ground samples, the band selection results obtained from the field spectrometer 

data will not be evaluated using the second criterion.. 
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In order to compare the effectiveness of different band selection methods, the 

number of selected bands has to be the same in each band reduction method. In this study, 

the number of spectral bands was specified as either 20 or 50. 

5.2.2.1 The first evaluation criterion 

The spectral separability of different endmembers is an obvious way to evaluate the 

selected bands. It provides us with the preliminary evaluation of different band selection 

methods. Figure 5.5 (a) - (e) shows the positions of selected bands obtained from the five 

band selection methods when 20 bands were specified. The casi data were used here. 

Figure 5.5 (a) shows the bands selected using the successive correlation method. Some 

selected bands are not at wavelength positions where different endmembers have high 

separability. The reason for this phenomenon is that this band selection method is not 

based on the reflectance separability of endmembers. Only the correlation between pairs of 

neighboring bands is considered. Nevertheless, the selected bands are well distributed 

along the wavelength axis. The smaller the change of the reflectance curves, the fewer 

bands are selected. The larger the change of the reflectances, the more bands are selected. 

From Figure 5.5 (a), most bands selected based on the neighborhood correlation have 

acceptable spectral separability. Figure 5.5 (b) shows the selected bands obtained through 

the correlation of each band with all the others. Some of the selected bands still have low 

reflectance separability. Similar to the first band selection method, this method is only 

based on the overall correlation with other bands. The largest reflectance separability is not 

guaranteed. Comparing with Figure 5.5 (a), the selected bands in Figure 5.5 (b) is not as 

well distributed as in (a). No band was selected in the shorter wavelength region since it 

might affect the subsequent linear decomposition analysis. Figure 5.5 (c) shows the 

selected bands obtained based on a reflectance separability analysis. Most of the bands 
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selected are centralized in longer wavelength region. The result is caused by the threshold 

determined for this method. Only these bands with higher reflectance separability were 

kept without considering the correlation among those bands. The selected bands shown in 

Figure 5.5 (d) were obtained from the improved method which selected bands based on 

both reflectance separability and the correlation of the reserved bands. This band selection 

method is much better than the one considering reflectance separability only. Figure 5.5 (e) 

shows the bands selected with the step-wise PCA method. The distribution of those bands 

are very similar to those in Figure 5.5 (a). Whether or not the successive correlation 

method consistently produces similar band selection results to those from the step-wise 

PCA method needs further study. 

Bands selected using different band selection methods from the spectrometer data 

have similar characteristics to those obtained from the casi data. 
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Figure 5.5 (a) Separability for 20 selected bands obtained by the successive correlation 

examination method (the first method) 
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Figure 5.5 (b) Separability for 20 selected bands obtained by the averaged correlation 

method (the second method) 
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Figure 5.5 (c) Separability for 20 selected bands obtained by the interband minimum 

difference analysis method (the third method) 
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Figure 5.5 (d) Separability for 20 selected bands obtained by combining the minimum 

difference and successive correlation method (the fourth method) 
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Figure 5.5 (e) Separability for 20 selected bands obtained with the step-wise principal 

components method (the fifth method) 
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5.2.2.2 The second evaluation criterion 

This method is used to compare the decomposition results obtained from different 

methods when the ground truth is not available. A total of 45 samples extracted from the 

casi image were used to test the different band selection methods. The results obtained 

using all the bands were assumed to be the true proportions of endmembers and were used 

as a reference. The correlation between the reference results and the results obtained from 

the selected bands through different band selection methods were calculated for 

comparison. A correlation close to one is desirable. 

Figure 5.6 (a) shows the correlation coefficients between the unmixing results 

obtained from the unconstrained decomposition method using 50 selected bands through 

each band selection method and the results obtained using all the bands. Figure 5.6 (b) 

shows the results obtained with the constrained decomposition method. The correlation 

shown in Figures 5.6 (a) and (b) indicate that the third band selection method which only 

considers the reflectance separability is the worst one among the five methods. The 

inconsistent result may be caused by the threshold determination for this method. All of the 

selected bands obtained from this method closely distribute in a narrow spectral range. It 

implies that the linear spectral unmixing is sensitive to the distribution of selected bands 

along the wavelength. If the selected bands cannot provide the sufficient information for 

separating different materials, the results will not be reliable for quantifying the ground 

cover at the subpixel level. The fourth method is not stable in decomposing different 

mixing samples especially when the constrained unmixing algorithm (NNLS) was used. 

The decomposition results obtained from the selected bands using other methods are 

relatively stable with both the unconstrained (SVD) and the constrained (NNLS) linear 
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unmixing procedure, and the correlation coefficients are close to the one with most testing 

samples except for one case. The explanation for this is that the linear mixing model itself 

does not perfectly describe the spectral mixing process. If the reflectance of the mixture is 

linearly combined, the band reduction should not affect the decomposition results. 

However, even the linear decomposition results are obtained from all the bands may not 

provide accurate proportions of different endmembers in a particular mixture pixel. When 

the results are used as the reference to evaluate the other results obtained from a selected 

number of bands, the correlation between these results and those others may not be 

reliable. But it still provides a means to evaluate the decomposition results obtained from 

selected bands when no other information is available. 
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Figure 5.6 (a) The correlation between the results obtained from all the bands and from 50 

selected bands using the SVD method 
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Figure 5.6 (b) The correlation between the results obtained from all the bands and from 50 

selected bands using the NNLS method 

5.2.2.3 The third evaluation criterion 

When data is collected with well known conditions, the data provides us with an 

opportunity to use ground-truth for evaluating the decomposition results. Three kinds of 

mixture were measured and tested. Table 5.3 shows the results obtained from the SVD and 

the NNLS linear decomposition procedures with all the bands and 20 selected bands. 

Because the field measured target is not combined by two types of materials in exactly half 

proportions, these results do not show 50% of each combined endmember. The 
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decomposition results obtained from those selected bands except those from the third one 

are reasonable. Their root mean squares (RMS) are very low. However, the proportions 

extracted from different subsets of bands are not the same. This inconsistent proportions 

of endmembers may be caused by the assumption of the linear mixing process itself. The 

results obtained from bands selected with the third band selection method are not reliable. 

Its RMSs are much larger than those from other band selection methods. This implies that 

optimal band selection methods should select bands whose wavelengths are well distributed 

along a spectral range. The effect of band reduction on the decomposition analysis may be 

caused by the least square solution of the overdetermined equations. 
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Table 5.3 The decomposition results obtained through SVD and NNLS procedure from 

field measurements 

I Mixture I Soil I Concrete I Grass I Leaf I RMS 
I Unconstrained Method (SVD) 

All 
the 

bands 

soil -  grass 0.45 0.00 0.37 0.15 0.0048 
soil - leaf 0.54 -0.06 -0.05 0.55 0.0033 
con - grass 0.06 0.34 0.52 0.09 0.0024 

Method-1 
soil -  grass 0.48 0.00 0.47 0.06 0.0068 
soil - leaf 0.56 -0.05 0.01 0.48 0.0046 
con - grass 0.04 0.34 0.54 0.07 0.0025 

Method_2 
soil -  grass 0.49 -0.01 0.37 0.14 0.0051 
soil - leaf 0.57 -0.06 -0.06 0.55 0.0037 
con - grass 0.05 0.33 0.52 0.10 0.0030 

Method-3 
soil -  grass -0.31 1.75 0.98 -1.42 0.3314 
soil - leaf 0.08 1.01 0.07 -0.15 0.2086 

con - grass 0.40 -0.43 0.13 0.91 0.1421 

Method_4 
soil - grass 0.47 0.01 0.48 0.04 0.0072 
soil - leaf 0.56 -0.05 0.01 0.48 0.0048 
con - grass 0.04 0.34 0.54 0.07 0.0025 

Method_5 
soil - grass 0.47 -0.01 0.49 0.05 0.0090 
soil - leaf 0.55 -0.04 0.04 0.46 0.0060 

con - grass 0.05 0.32 0.52 0.11 0.0054 

I Constrained Method (NNLS) 

All 
the 

bands 

soil -  grass 0.45 0.00 0.38 0.14 0.0048 
soil - leaf 0.41 0.00 0.08 0.42 0.0061 

con - grass 0.06 0.34 0.52 0.09 0.0024 

Method_i 
soil - grass 0.48 0.00 0.47 0.06 0,0068 
soil - leaf 0.51 0.00 0.14 0.35 0.0111 
con - grass 0.04 0.34 0.54 0.08 0.0025 

Method-2 
soil - grass 0.49 0.00 0.38 0.13 0.0054 
soil - leaf 0.53 0.00 0.07 0.39 0.0098 
con - grass 0.05 0.33 0.52 0.10 0.0029 

Method-3 
soil -  grass 0.17 0.68 0.15 0.00 0.1429 

soil - leaf 0.15 0.85 0.00 0.00 0.1786 
con - grass 0.20 0.00 0.28 0.52 0.0608 

Method-4 
soil -  grass 0.47 0.01 0.48 0.04 0.0072 
soil - leaf 0.51 0.00 0.12 0.36 0.0106 
con - grass 0.04 0.34 0.54 0.07 0.0025 

Method-5 
soil - grass 0.46 0.00 0.50 0.04 0.0092 

soil - leaf 0.51 0.00 0.13 0.36 0.011 
con - grass 0.05 0.32 0.52 0.11 0.0054 
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5.2.2.4 Result evaluation based on RMS 

The RMS is calculated based on Eq.(2.9). The proportions obtained from different 

methods are used to reconstruct an observation for each band. The root mean squared 

errors are used to evaluate the accuracies of those proportions. Figure 5.7 (a) shows the 

RMS results obtained from the SVD procedure using all the bands and 20 selected bands. 

Figure 5.7 (b) shows the RMSs obtained with the SVD method using all the bands and 50 

selected bands. Since the error magnitudes for Method 3 are much greater than the rest of 

the band selection methods, the RMS results for Method 3 are not shown in Figures 5.7(a) 

and (b). Figures 5.7 (c) and (d) show the RMSs obtained from the NNLS method using 

all the bands or 20 selected bands, and all the bands or 50 selected bands, respectively. 

Comparing these four figures, the third band selection method is very sensitive to the band 

reduction. It cannot provide stable result when the number of bands is reduced. All of the 

other methods give relative consistent results although the RMS increased slightly when the 

number of selected bands is small. The results obtained from NNLS have larger RMS 

relative to those obtained from SVD when Figures 5.7(a) and (c) or Figures 5.7(b) and (d) 

are compared. This is reasonable because the NNLS method has more and stronger 

constraints in the search of optimal solution than the SVD method. 
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Figure 5.7 (a) The RMSs of the decomposition results obtained from all the bands and 

from 20 selected bands using the SYD method 
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Figure 5.7 (b) The RMSs of the decomposition results obtained from all the bands and 

from 50 selected bands using the SVD method 
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Figure 5.7 (c) The RMSs of the decomposition results obtained from all the bands and 

from 20 selected bands using the NNLS method 
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Figure 5.7 (d) The RMSs of the decomposition resu1ts obtained from all the bands and 

from 50 selected bands using the NNLS method 

5.2.3 The sensitivities of band selection methods to atmospheric noise 

The same artificial data used in testing the sensitivity of linear unmixing in Section 

5.2.1.2 were used here. The atmospheric noise was added to the observation in the same 

manner as shown in Figure 5.3. A sum of squares (SSD) for the difference of each set of 

results with the real proportion is used to rank these five methods. Table 5.4 displays the 

decomposition results obtained using the SVD method derived from all of the bands or 50 

selected bands. RMSs are also listed in the table. Table 5.5 shows the decomposition 

results obtained using the NNLS method. From the RMSs in both tables, it can be seen 
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that the effect of atmospheric scattering on the linear decomposition analysis is larger in the 

results obtained from selected bands than those obtained from all the bands. This is 

because the reflectances in certain wavelengths may contain more noise components. If 

only a small number of bands are selected for linear decomposition analysis, and some of 

the selected bands are in the shorter wavelengths, the linear unmixing may be affected more 

by the false spectral features exhibited through larger amount of noise in the shorter 

wavelengths. In this case, more bands may be helpful for the decomposition analysis. The 

third method presents much better results compared to other methods based on SSD. This 

is because most of the bands selected using this method are in the longer wavelength 

regions, where the atmospheric effect is small. Therefore, the results of linear spectral 

unmixing are better than all the other methods. Based on the results shown in Table 5.4 

and Table 5.5, these band selection methods still can provide reliable estimation of 

proportions when the noise is relatively small. When the magnitude of noise increases, 

even the result obtained with all of the bands are not consistent. Therefore, some of those 

band selection methods are effective for the purpose of decomposition analysis when 

compared with the results obtained from all the bands. The linear mixing model itself is 

actually affected more by noise than band selection. 



66 

Table 5.4 The atmospheric effect on linear decomposition by using SVD with 50 

selected bands 

Endmember A B C D E F SSD RMS 
Fraction 0.05 0.27 0.11 0.07. 0.35 0.15 0.00 0.00 

All 
the 

bands 

0.06 0.23 0.19 0.04 0.34 0.17 0.010 0.017 

0.08 0.18 0.28 0.02 0.33 0.19 0.042 0.034 

0.09 0.14 0.36 -0.01 0.32 0.21 0.092 0.051 

0.11 0.1 0.45 -0.04 0.31 0.23 0.156 0.068 

0.12 0.06 0.53 -0.07 0.3 0.24 0.251 0.085 

Method_i 

0.06 0.23 0.19 0.03 0.34 0.19 0.011 0.019 

0.07 0.19 0.27 -0.02 0.33 0.23 0.047 0.038 

0.08 0.15 0.35 -0.06 0.33 0.27 0.105 0.057 

0.09 0.11 0.42 -0.1 0.32 0.31 0.179 0.076 

0.1 0.07 0.5 -0.14 0.31 0.35 0.250 0.095 

Method_2 

0.07 0.23 0.2 0.06 0.34 0.14 0.010 0.018 
0.09 0.2 0.28 0.05 0.32 0.13 0.037 0.037 
0.12 0.16 0.37 0.04 0.31 0.12 0.088 0.055 
0.14 0.12 0.45 0.03 0.3 0.11 0.152 0.072 
0.16 0.08 0.54 0.02 0.29 0.1 0.242 0.092 

Method_3 

0.07 0.28 0.11 0.05 0.35 0.15 0.001 0.060 

0.09 0.28 0.1 0.04 0.35 0.16 0.003 0.120 

0.1 0.29 0.1 0.02 0.35 0.16 0.006 0.180 

0.12 0.29 0.09 0.01 0.35 0.17 0.010 0.240 

0.14 0.3 0.09 -0.01 0.35 0.17 0.016 0.300 

Method_4 

0.06 0.25 0.16 0.02 0.34 0.19 0.007 0.027 

0.08 0.23 0.2 -0.03 0.34 0.23 0.027 0.054 

0.09 0.22 0.25 -0.08 0.33 0.28 0.064 0.081 

0.11 0.2 0.3 -0.13 0.32 0.32 0.114 0.108 

0.12 0.18 0.35 -0.18 0.32 0.36 0.178 0.135 

Method-5 

0.07 0.23 0.18 0.05 0.34 0.16 0.008 0.022 

0.09 0.2 0.25 0.02 0.34 0.17 0.029 0.044 

0.11 0.16 0.32 0 0.33 0.18 0.066 0.067 

0.13 0.13 0.39 -0.03 0.33 0.19 0.116 0.089 

0.16 0.09 0.45 -0.05 0.32 0.2 0.178 0.111 



67 

Table 5.5 The atmospheric effect on linear decomposition by using NNLS with 50 

selected bands 

Endmember A B C D B F SSD RMS 

Fraction 0.05 0.27 0.11 0.07 0.35 0.15 0.00 0.00 

All 

the 
bands 

0.06 0.23 0.19 0.04 0.34 0.17 0.010 0.02 

0.08 0.18 0.28 0.02 0.33 0.19 0.042 0.03 

0.10 0.14 0.37 0 0.32 0.19 0.094 0.05 

0.12 0.09 0.46 0 0.31 0.17 0.167 0.07 

0.15 0.04 0.55 0 - 0.31 0.15 0.263 0.09 

Method_i 

0.06 0.23 0.19 0.03 0.34 0.19 0.011 0.02 

0.08 0.18 0.27 0 0.34 0.21 0.043 0.04 

0.10 0.13 0.36 0 0.33 0.19 0.092 0.06 

0.13 0.08 0.45 0 0.32 0.17 0.164 0.08 

0.16 0.03 0.54 0 0.32 0.15 .0.260 0.09 

Method_2 

0.07 0.24 0.19 0.06 0.34 0.15 0.008 0.02 

0.09 0.20 0.28 0.04 0.32 0.1.5 0.037 0.04 

0.11 0.17 0.36 0.03 0.31 0.14 0.079 0.05 

0.13 0.13 0.44 0.01 0.30 0.14 0.141 0.07 

0.15 0.10 0.53 0 0.28 0.14 0.225 - 0.09 

Method_3 

0.07 0.28 0.11 0.05 0.35 0.15 0.001 0.06 

0.09 0.28 0.10 0.04 0.35 0.16 0.003 0.12 

0.10 0.29 0.10 0.02 0.35 0.16 0.006 0.18 

0.12 0.29 0.09 0.01 0.35 0.17 0.010 0.24 

0.14 0.30 0.09 0 0.35 0.16 0.014 0.30 

Method-4 

0.06 0.25 0.16 0.02 0.34 0.19 0.007 0.01 

0.09 0.22 0.22 0 0.34 0.20 0.024 0.02 

0.12 0.18 0.29 0 0.33 0.17 0.051 0.04 

0.15 0.14 0.36 0 0.33 0.15 0.095 0.05 

0.18 - 0.09 0.43 0 0.33 0.12 0.158 0.07 

Method-5 

0.07 0.23 0.18 0.05 0.34 0.16 0.008 0.02 

0.09 0.20 0.25 0.02 0.34 0.17 0.029 0.04 

0.11 0.16 0.32 0 0.33 0.18 0.066 0.07 

0.14 0.11 0.40 0 0.33 0.15 0.123 0.09 

0.17 0.06 0.49 0 0.32 0.13 0.209 0.11 

5.3 Summary 

In this chapter, artificial data were generated to test the sensitivity of the linear 

mixing model with the existence of undefined endmembers or the atmospheric effect. In 
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this experiment, all the bands were used in the linear unmixing process with the SVD and 

the NNLS methods. The decomposition results were compared with the real proportion to 

detect the sensitivity of the linear mixing model. 

Five band selection methods were developed using casi data sets and field data sets. 

Through the SVD and the NNLS solutions, the decomposition results were evaluated using 

four criteria: the separability of selected bands, the correlation coefficients between the 

results obtained through selected bands and the reference result which was defined as the 

one obtained through all the bands, the comparison with the ground truth, and the RMS 

values. Artificial mixture was also used to test the sensitivity of those selected bands 

during the linear decomposition process. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this thesis, all of the objectives listed in Section 1.2 were achieved. The first one 

was to test the linear mixing model using simulated data by considering the presence of an 

undefined endmember. The second one was to simulate and evaluate the atmospheric effect 

on the linear unmixing analysis. The third was to develop band selection methods for 

hyperspectral data. The fourth was to assess the effectiveness of the band selection 

methods. Based on the experimental results and analyses, the following conclusions can 

be drawn: 

1. When a truly linear combination of endmembers is simulated, an undefined 

endmember with a relatively small proportion in the mixing spectra does not 

have a strong effect on the decomposition results obtained from both linear 

unmixing methods. Under such circumstances, the solution based on a linear 

mixing model can still provide reasonable estimation of proportions of other 

endmembers. This suggests that the spectral effect from the neighbor material 

near the target can be ignored in linear spectral decomposition. 

2. Linear mixing model is sensitive to atmospheric effects regardless which 

decomposition method is used. When the amount of atmospheric noise is 
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small, inversion of this model can still generate reasonable results. Otherwise, 

it will provide unreliable estimates. 

3. If a real mixture is simulated linearly by endmembers, the band reduction does 

not affect the decomposition results as long as the number of bands is greater 

than the number of endmembers. Based on the results obtained from the 

experiments with real data, band reduction does affect the decomposition 

results. This implies that the linear mixing model does not completely describe 

the actual spectral mixing process. 

4. The selected band set for the decomposition analysis should be well distributed 

along the entire spectral range with low correlation to each other and high 

separability among different endmembers. By using the decomposition results 

obtained from all the bands as the reference, decomposition results from 

selected bands with various band selection methods were evaluated. The 

successive correlation examination, the averaged correlation analysis, the 

combining minimum difference and successive correlation method and the step-

wise principal components analyses are more effective than the interband 

minimum difference analysis. Assuming that the spectral mixing is a linear one, 

the decomposition results obtained from selected bands through different band 

selection methods implemented in this research have similar response to the 

atmospheric effect as those obtained from all the bands. 

5. The results obtained using the constrained decomposition method (NNLS) have 

larger RMS than those obtained using the unconstrained method (SVD). It is 

due to the procedure of constrained method in which NNLS forces the results 

into the range of [0, 1]. 
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6.2 Recommendations 

More work needs to be done on testing the linear mixing model and the band 

selection methods proposed in this thesis. More ground truth data should be used to assess 

the decomposition results. The measurement design should be well controlled to measure 

the proportions of mixture components. Different atmospheric scattering models may be 

used by considering different kinds of weather condition. The endurance of the linear 

mixing model to noise effect needs to be tested further in a more quantitative manner. The 

reliability of the band selection methods needs to be tested under, the situation of noise. The 

decomposition analysis with selected bands needs to be performed on the complete image 

to further test the linear mixing assumption and the effectiveness of various band selection 

methods. 
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