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1 Introduction

The graphical interpretation of L-systems introduced in [11, 12| and extended to
parametric L-systems in [9, 16] has been extended by incorporating several features
aimed at improving the realism of generated plant structures. This report is intended
as a user’s guide to these features.

The graphical interpretation is based on a Logo-style turtle which is controlled
by commands associated with selected modules. The turtle is characterized by the
following parameters (see Figure 1):

position position in a three-dimensional coordinate system;
heading heading vector specifying turtle’s orientation (see Figure 1);
left left vector;

up up vector;

line width current width of a line or cylinder drawn by the turtle;
color index index of the current color or material;

texture index index of the current texture;
contour id of the current contour for generalized cylinders;

elasticities a set of parameters specifying the susceptibility of the direction ad-
justments due to tropisms.

Initial values of the turtle parameters are defined by global viewing parameters. Dur-
ing the interpretation, turtle parameters can be modified by various modules (see
Appendix C).

Following sections introduce new features in graphical interpretation of L-systems
and illustrate their use with several examples.

2 Circles and Spheres

Circles and spheres are useful primitives, and have been added to the list of interpreted
primitives.
Circles and spheres are defined by following modules:

@ draw a disk in plane z = 0. Turtle position determines z and y coordinates of
the disk center. The disk diameter is defined by turtle parameter line width.
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Figure 1: Turtle parameters.

Figure 2: A cylinder without and with caps.

@c  draw a disk in the plane of turtle heading and left vector, with the center at the
turtle position and diameter equal to turtle parameter line width.

@0  defines a sphere at the turtle position with diameter equal to line width.

If a parameter is added to any of the three modules, it specifies the diameter of the
disk or sphere.

Module @o can be used any time the simulated plant is two-dimensional, for exam-
ple, to visualize a signal traveling through the plant. In the case of a three-dimensional
structure, a module @0 would be used for the same purpose. For example, thefollowing
homomorphism makes use of module @c to terminate cylinders with circular caps (see
Figure 2).

F(len) —[&(90)@c]F(len) [&(90)@c]



a)

Figure 3: A branch rendered: a) with visible discontinuities, b) with sphere at the
end of each segment.

b)

Each symbol F is preceded and followed by module @c rotated by 90° in square brackets
to localize the effect of the rotation.

The next few examples illustrate the use of spheres.

When two subsequent branch segments are not in the same line, a visible crack
appears (Figure 3a). A simple solution is to draw a sphere at the top of each segment.
If segments are not tapered, i.e. the widths at the base and the top of the segment
are the same, a sphere can be inserted after each module F in the successor of all
L-system productions, or the following homomorphism production can be used:

F(len) —F(len)@0

If segments are tapered, the sphere must be inserted after the module ! or #
modifying the width at the top, otherwise segments would not be tapered and the
diameter of the sphere would be equal to the width of the segment at its base. The
branch in Figure 3a was generated by the following L-system in 3 steps:

w: FIA
pr: A —/(90)-(32)F!A
The smoother branch in Figure 3b was generated by the same L-system with the
following homomorphism
homomorphism
F! —=F!e0
A better solution to creating curved branchess is presented in Section 3.

An example of spheres used as an important part of the model is illustrated in
Figure 4 where a molecule of butane is rendered using spheres as atoms of carbon and



Figure 4: Molecule of butane generated using an L-system.

hydrogen and segments represent their chemical bounds. The molecule was created by
the following L-system which allows one to visualize hydrocarbon molecules of various
lengths (i.e. with different number of carbon atoms):

#define Len 4 /* length of the hydrocarbon chain */

#define 6 70.5 /* divergence angle */

#define Csize 0.6 /x diameter of carbon atom */

#define Hsize 0.5 /* diameter of hydrogen atom */

W

p1:
P2
Ps3:
D4

-(90)#(0.15) |HX(Len)

X(n) : n > 0 —FC["(A)FH]/(120) [~ (H)FH]/(120) [" ()X (n-1)]
X(1) : 1 ==0 —FH

C —[;e0(Csize)]

H —[;;00(Hsize)]

The simulation is run for Len + 2 steps to obtain a molecule with Len carbon atoms.

3 Generalized cylinders

It is often desirable to create smooth curvatures, especially when modeling plants
which contain many curved segments. One approach is to model a curved branch
segment with several short straight segments approximating the curvature. The ad-
vantage of this method is the possibility of the internal control of the curvature by
L-system productions. On the other hand, this approach makes L-system productions
rather complicated and elongates the generated string.

In another approach, curved branches are modeled as generalized cylinders. A set



of control points defines the axis of a generalized cylinder as a parametric curve con-
sisting of a sequence of cubic curve segments. The cross-section of a branch segment,
for example a disc, is then swept along the cylinder axis creating a three-dimensional
object (see also [2]). In our case, segments of the parametric curve are defined as
Hermite curves [7]. A Hermite curve is a cubic polynomial curve specified by two
control points and tangent vectors in these points.

3.1 L-system defined parametric curve

During the interpretation of an L-system generated string, control points specifying
the axis of a generalized cylinder are created when following special modules are
encountered:

QGs start a generalized cylinder — defines the first control point.

@Gc(n) continue a generalized cylinder — defines a control point. The cylinder has
to be started with module @Gs. The optional parameter n specifies the number
of cylindrical mesh strips drawn between this and previous control point.

QGe(n) end a generalized cylinder — defines the last control point. The optional
parameter n has the same function as for module @Gc.

Each pair of consequent points specifies a Hermite curve.

The location of a control point is equal to the actual turtle position when the
module @Gx is interpreted. The direction of tangents of Hermite curves originating
or terminating at the control point is equal to the turtle heading vector. The length
of the two tangent vectors of a single Hermite curve is computed as the Euclidean
distance between the two control points multiplied by a tangent coefficient. This
allows the curve to be scaled up and down without changing the curvature. The
tangent coefficient defaults to 1.2 (an empirical value yielding a smooth curvature
along several connected curves).

For example, the following string defines a generalized cylinder around a single

Hermite curve:
@Gsf-(45)f0Ge (6) .

Figure 5a shows the turtle path in grey and the two control points with the resulting
curve in black. If a disk is swept along the curve, a generalized cylinder is created
(Figure 5b and 5c¢).

The resulting generalized cylinder has to be polygonized to be visualized on the
screen. For this purpose, it is split into several cylindrical mesh strips. The first
parameter of modules @Gc and @Ge specifies how many mesh strips are created between



a) b)

Figure 5: A simple generalized cylinder: a) the original Hermite curve, b) the longi-
tudinal section, ¢) a wireframe model.

two control points (the default value is 1). A cylindrical mesh strip is defined by two
points on the generalized cylinder axis. These points can be determined from the
parametric equation of the Hermite curve segment. If the parametric equation of the
curve segment is F'(u) for u going from 0 to 1, the i-th strip out of n is between points
F((i — 1)/n) and F(i/n). The disk swept along the axis is always perpendicular to
the axis and the axis tangent in a point F((¢ — 1)/n) or F(i/n) can be determined
from the derivation F’(u) of the curve cubic function. Sections 3.2.3 and 3.3 describe
in more detail the method of connecting two subsequent disks.

In the previous example, there are 6 cylindrical mesh strips along the generalized
cylinder. The same generalized cylinder with different number of mesh strips (1 to 5)
is visualized in Figure 6.

As a more complex example, the following L-system defines a fractal curve known
as the snake Kolam pattern [14] (Figure 7a); it is similar to Sierpinski space-filling
curve [17]:

w: FX+F+FX+F

p1:  X—=X-F-F+FX+F+FX-F-F+FX
To visualize the curve with a generalized cylinder, it is convenient to define a ho-
momorphism that replaces each module F representing a straight line segment with a
substring £@Gc (4)f defining one control point in the middle of an invisible line seg-
ment ff. The axiom is modified to differentiate between the first segment and any
other, because the generalized cylinder must be started using module @Gs. Also an
additional modules +F are added at the end of the axiom to define another control



a)

Figure 7: A fractal curve drawn using lines (a) and generalized cylinders (b).

point which would coincide with the first one closing the generalized cylinder:
w: G X+F+FX+F +F
p1:  X—=X-F-F+FX+F+FX-F-F+FX
homomorphism
G—0Gst
F—£0Gc(4)f
The resulting curve after 2 derivation steps is shown in Figure 7b.



3.2 Modifying the shape of generalized cylinders

The shape of a generalized cylinder segment between two consecutive control points
can be modified by modules:

@Gt (start,end) controls the length of tangents of a Hermite curve between two con-
secutive control points by modifying the default value 1.2 of tangent coefficients
(see Section 3.2.1).

QGr(anglel,lengthl,anglel,length2) specifies the slope and length of two tan-
gents of a Hermite curve defining the radius change as a longitudinal section
between two consecutive control points of a generalized cylinder axis (see Sec-
tion 3.2.2). As a default, the radii at the two control points are linearly inter-
polated along the segment.

@Gr(flag) switches on (flag=1) or off (flag=0) an automatic adjustment of tan-
gents of a longitudinal section for segments of non-unit length. The longitudinal
section is always defined for a segment of a unit length and then stretched onto
the segment of a non-unit length. As a default, tangents are not adjusted after
the stretching (see Section 3.2.2 for more details).

@#(id) replaces the default disk cross-section with a user-defined cross-section with
an index id (see Section 3.2.2 and Appendix B.1).

3.2.1 Specifying tangents of the axis curve

Module @Gt (start,end) modifies the tangent coefficients for tangents at the start
point and at the end point of a Hermite curve specifying the generalized cylinder axis.
The module @Gt has to be inserted before the module defining the second control
point of the Hermite curve segment. Figure 8 illustrates the use of the module 0Gt.
String:
©@Gs-(45)f-(45)0@Gt (start,end)@Ge(20)

is interpreted with different values of tangent coeflicients start and end. Visualized
tangent vectors are scaled by 1/4 to fit in the figure.

3.2.2 Modifying the longitudinal section

If the radii of the line cross-section associated with consecutive control points are
different from each other, the radius of cross-sections between the two control points
is interpolated. As a default, the radius is interpolated linearly. If the radius at the
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a) b) c) d) e)

Figure 8: Hermite curves with different values of tangent coefficients: a) default
1.2,1.2; b) 2,2; ¢) 0.5,0.5; d) 4,1; e)3,-2.

Figure 9: Radius interpolation: desired Hermite curve (a) applied to a generalized
cylinder of length 1.0 (b) and 1.5 (c,d) without (c) and with (d) adjustment of tangents
of the longitudinal section.

first control point is r, and the radius at the second control point is r,, the radii ;
and 7,41 of the ¢-th mesh strip out of n are:

ri = Tb+i—71(7"t—7"b)

z' .
Tit1 = Tb+g(7“t*7”b) 1=1,2,...,n.

It is also possible to define a two-dimensional Hermite curve R(t) = (R, (t), R,(t))
(for t € (0,1)) capturing the change of the “longitudinal section” of a straight gener-
alized cylinder with length 1 (Figure 9a and 9b). The first coordinate, R,(t), specifies
the position along the axis of the generalized cylinder (Figure 9a). The coordinate
R, (t) defines the radius at the computed point R,(t) on the cylinder axis.

The curve R(t) is defined by the radius r, at the bottom and radius r; at the top
of a generalized cylinder segment of a unit length, specifying two control points (0, 7;)
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and (1,7;), and two tangents at these control points. In the case of the default linear
interpolation, mentioned above, both tangents are (1,7, — ;).

Tangents of the curve R(t) can be modified by a module @Gr with two or four
parameters. The first two parameters specify the angle of the first tangent with the
v axis and the tangent’s length. Similarly, the third and fourth parameter define the
second tangent. If only two parameters are included with module @Gr the second
tangent is equal to the first one. If the length of a tangent is 0, the default tangent
(1,7: — rp) is used. As in the case of the module @Gt, the module @Gr has to be
placed before the module specifying the second control point of a single Hermite
curve segment.

Figure 9b illustrates the use of the module @Gt in a generalized cylinder of length
1, base radius 0.2, and top radius 0.1:

1(0.4)@Gsf(1)1(0.2)@Gr(30,4.5,0,3.5)0@Ge(20).
To specify tangents of the longitudinal section, a module @Gt with parameters 30°,
4.5, 0°, and 3.5 was inserted before the module @Ge which defines the second control
point.

If the line segment has a non-unit length len the longitudinal section is defined for
a segment of a unit length, using values R, (t) going from 0 to 1, as in Figure 9a and
then it is stretched along the axis of the segment. If the axis is represented as a line
F(u) = P+u-len- H oue (0,1), where Pisa point at the bottom of the segment
and H is the unit direction of the segment, then the i-th mesh strip is between points
F(R,(%1)) and F(R,(%)) with radii R,(1) and R,(%).

The generalized cylinder of length 1.5 in Figure 9¢ uses the same parameters for
QGr as in the previous example:

1(0.4)@Gsf(1.5)!(0.2)@Gr(30,4.5,0,3.5)@Ge(20) .

Note that in this case the specified angle 30° of the first tangent of the radius curve
R(t) does not correspond to the real angle of the longitudinal section curve with the
generalized cylinder axis. This is due to the scaling of the curve along just one axis
(u). It is possible to adjust the tangents after the mapping of the curve R(t) onto a
segment of length len to keep the angle with the cylinder axis the same as specified
by the module @r. The tangent adjustment, initially disabled, can be switched on
and off by a module @Gr(1) and @Gr(0), respectively. The cylinder in Figure 9d
was generated using the same string as in the previous example, with the tangent
adjustment switched on by a module @Gr(1).

If the generalized cylinder segment is not straight, the curve R(t) defines the
longitudinal section of a straight segment of a unit length with radii at the base and
at the top equal to radii of the curved segment. The longitudinal section is then
mapped onto the axis of a curved genralized cylinder similarly as in the case of a
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Figure 10: Curved generalized cylinders: a) with radius interpolation; b) sweeping of
a cross-section along the axis; ¢) crossed cross-sections when curvature radius is high.

straight segment of a non-unit length: if the axis is represented as a Hermite curve
F(u), u € (0,1), then the i-th mesh strip is between points F(R,(:*)) and F(R,(2))
with radii R,(*=*) and R,(%). In the case of a curved segment, it is not easy to
determine the length of the generalized cylinder axis. The adjustment of tangents of
the longitudinal section, when required, is thus made using the Euclidean distance
between control points of the cylinder axis.

An example of a curved generalized cylinder with the same longitudinal section as
in the previous example is in Figure 10a. The segment is specified by the following
string:

1(0.4)0Gs-(45)f-(45)1(0.2)@Gr(30,4.5,0,3.5)@Ge(20) .

The cross-section of a generalized cylinder is perpendicular to the cylinder axis
at each point F(R,(L)). Thus it can happen that if the radius of the axis curvature
is smaller than the radius of the generalized cylinder segment, two subsequent cross-
section are crossed (Figure 10b and 10c). Since the occurrence of these artifacts on
generalized cylinders representing parts of a plant is rare, there is no mechanism for

avoiding these artifacts implemented in the modeling program cpfg.

The shell in Figure 11a illustrates the default change in radius of a tapering gen-
eralized cylinder that follows a helico-spiral [4]. The shell was generated in 117 steps
using the following L-systems:

13



a) b)
Figure 11: Shells generated with the default radius interpolation (a) and with modified
radius tangents (b).

#define R 1.03 /* scaling between subsequent shell segments */

#define Angl 20 /* angle of rotation between segments */
#define Ang2 2.1 /* angle of twist between segments */
#define Wid 5 /* width scaling */

w: #(Wid)eGt(1.1)0GsA(1)

p1: A(s) — +(Angl)/(Ang2)F(s)A(s*R)

homomorphism

hy: F(s) — f(s)#(s*Wid)+(Ang1/2)@Gc(4)~(Angl/2)
The axiom w defines the first control point of the generalized cylinder axis and a
module A. The production p, replaces the module A by a straight line segment and a
new module A. The segment F is rotated in such a way that the sequence of segments
forms a helico-spiral. The homomorphism production h; replaces the segment F by an
invisible segment f of the same length with a control point at the end. The rotation
before and after the control point makes the turtle heading vector at the control point
approximately equal to the tangent of the helico-spiral.

The possibility to control tangents of the longitudinal section of a generalized
cylinder allows the user to create complex shapes, such as the Precious Wentletrap
shell in Figure 11b. To generate the shell, the previous L-system was modified to
distinguish odd and even segments F':
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#define R 1.02 /% scaling between subsequent shell segments */
#define Angl -15 /x angle of rotation between segments */
#define Ang2 -4 /* angle of twist between segments */
#define Wid 6.4 /¥ width scaling */

w: #(Wid)@Gt(1.1)@Gr(1)@GsA(0.9,0)

p1: A(s,n) — +(Angl)/(Ang2)F(s,n)A(s*R,n+1)

homomorphism
hi: F(s,n): n%2!=0 — f(s)#(s*Wid*0.75)-(Angl/2)@Gr(-100,2.5,0,4)
@Gc (12)+(Angl/2)

ho: F(s,n): n%2==0 — f(s*0.9)#(s*Wid)-(Ang1/2)@Gr(0,3,60,2.5)
QGc(12)@Gr(60,1,-100,1) £(s*0.1)@Gc(12)+(Angl/2)

The homomorphism production h; replaces odd segments F' by and invisible segment
f with a control point P at the end. This control point is in the middle between
two protruding ridges on the shell. Thus the diameter is reduced by one quarter.
The homomorphism production hy defines two control points R and S close to each
other. Both points are located on the ridge. The tangents between points P and
R, 0° of length 3 and 60° of length 2.5, define the first slope of the ridge. Tangents
(60°,1) and (—100°,1) between points R and S specify the tip of the ridge and tan-
gents (—100°,2.5) and (0°,4) control the second, concave slope of the ridge. Since the
distance between control points is increasing towards the shell opening, the scaling of
tangents is switched on by module @Gr (1) in the axiom.

3.2.3 Defining the cross-section

As a default, the cross-section (contour) of a generalized cylinder is a disk. It is
possible to use an arbitrary contour defined as a closed three dimensional parametric
curve consisting of several B-spline segments. The contour curve is specified by a set
of control points which are read from a text file (see Appendix B.1). Control points
are defined by two coordinates, in which case the third coordinates is assigned to be 0
(Figure 12a), or by three coordinates (Figure 13a). The dots in Figure 12a represent
the specified control points with the first control point (close to the y axis) a little
bigger. The circle with radius 1 represents the default circular contour for comparison.

If there are n control points P; (i = 0, ...,n— 1) specifying the contour, the contour
consists of n B-spline segments. Each segment is computed using a parametric B-spline
function F;(t), i =0,...,n — 1 for ¢t € (0,1), based on four control points P;, Pit1)%n,
Pit2)%n, and P 3%, (where 2%y denotes the remainder from the division of z by
y). Thus, segments F,,_3(t), F,_(t), and F,_;(t) are formed using control points at
the beginning of the sequence of control points, forming a closed curve.

Generalized cylinders are visualized using cylindrical mesh strips with a certain
number of polygons around the mesh. The number p is set at the beginning of the
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Figure 12: A 2D contour defined as a closed spline (a) is applied to both ends (b) or
just one end (c) of a generalized cylinder segment.
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Figure 13: A 3D contour defined as a closed spline (a) is applied to one end of a
generalized cylinder segment (b,c).

visualization (see Appendix B.1). The value of p is 32 in Figure 12b and 12c. When
a non default contour is used, it is necessary to find the required number p of vertices
on the contour. These vertices are computed in such a way that the length of the
contour between them is approximately constant along the contour. For this purpose,
10n points on the contour (n is the number of control points specifying the contour)
are computed with a constant step of the curve parameter ¢. Distances between the
points (in the Euclidean space) are used to determine the equally spaced vertices V;,
t=0,..,p—1, around the contour. To be able to connect vertices of different contours,
all vertices are rotated around the z axis so that the first vertex lies on the z axis (in
the contour coordinate space). In the Figure 12a, the first vertex is marked by a thick
line, thus in this case all vertices are rotated clock-wise by about 70 degrees.

During visualization of a generalized cylinder, contour vertices V; are used to
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compute vertices C; of the contour of a cylindrical mesh along the generalized cylinder:
C; = P+ radius(V; ;U + V; JR +V; .H)

using turtle’s position as the origin and the up, the right (opposite to the left turtle
vector), and the heading vector scaled by the turtle radius parameter as axes of
a coordinate system into which coordinates of vertices are transformed. Thus point
(0,0,0) in contour’s coordinates corresponds to the point P on the axis of a generalized
cylinder and vertex Vj, in our example rotated by 70° to lie on the z axis, is in the
direction of the turtle’s up vector U (see Figure 12b).

The default circle contour with index 0 can be changed by module @#(id) where
id specifies the contour’s index (see Appendix B.1). It is possible to use differ-
ent contours for subsequent control points of a generalized cylinder. Let F(u) =
(Fp(u), Fy(u), Fy(u)), u € (0,1), be the Hermite curve of the cylinder axis, R(t) =
(Ru(t), Ry(t)), t € (0,1), the curve representing the longitudinal section. If V; are
vertices on the contour at the bottom of the generalized cylinder and V; vertices on
the contour at the top, the contour vertices U; for a point P(t) = F(R,(t)), t € (0,1),
on the axis of the generalized cylinder are:

Ui(t) = Vi+ (Vi - Vi)

and the radius of the contour is R, (t) (see examples in Figures 12c and 13c).
Generalized cylinders in Figure 12b and 12c¢ were created by interpretation of the
string
0#(2)@Gs£(0.5) 1@Ge (6)&(90) @c
and
0#(2)@Gsf (0.5)@#(0) !@Ge (6)&(90) €c
respectively. Both strings specify two control points with one or two different contours
(with index 2 and a default 0)'. The number of polygons along the contour was set
to 32.

Figure 13a illustrates an example of a three-dimensional contour. The contour file
from the previous example was modified by adding a third coordinate to each contour
control point. This coordinate is equal to 0 in all but the first control point where
it is 1. The contour is applied to segments generated using the same strings as in
Figure 12b and 12c. The resulting generalized cylinders are in Figure 13b and 13c.

More realistic examples of the use of closed contours are shown in Figure 14 and
Figure 15. The contour in Figure 14a was applied to branch segments (Figure 14b)
of a cactus Lemaireocereus chende in Figure 14c. The cactus was modeled by the

IThe two-dimensional contour was created in the drawing program xfig and converted to a text
file with coordinates of control points.
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Figure 14: A 2D contour (a) applied to a generalized cylinder (b) that was used as a
part of a cactus model (c).

following L-system:
w: @#(2)@Ts(1,0.07)!(0.9)S FA(0)7H(0,0,0)E
pr: ACord) > ?H(x,y,z) : y<0 — %
p: A(ord) — FB(ord)/A(ord)
p3: Blord) : ran(l) < 0.2-ord*0.1
— [-(90)/(nran(90,30))SA(ord+1) ?H(0,0,0)E]
[+(90) / (nran(90,30))SA(ord+1)7H(0,0,0)E]
py: B(ord) : ran(l) < 0.2-ord*0.1
— [-(90)/ (nran(90,30))SA(ord+1)?H(0,0,0)E]
ps: B(ord) : ran(1l) < 0.2-ord*0.1
— [+(90)/ (nran(90,30))SA(ord+1)?H(0,0,0)E]
pe: Bord) --> ¢
homomorphism
hi: S — QGs
hy: E — @Gr(0,1,-45,1)!(0.01)@Ge(4)
hs: F — £(0.5)0Gc(2)£(0.5)
The simulation starts with a single line segment F' followed by an apex A defined in
the axiom w. The production p, replaces the apex with a segment F', a branch marker
B, and a new apex A. Productions ps, ps, and ps create either two branches or just
one to the left or one to the right with a probability decreasing with an increasing
branch order (specified by the parameter of modules A and B). If none of them is
applied, production pg removes the branch marker B. Each apex is followed by a
module 7H for querying the turtle heading vector. If an apex is oriented downwards,
it is removed by the production p;.

18
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Figure 15: A 2D contour (a) applied to a leaf (b). The whole plant with the whorl of
leaves (c).

Generalized cylinders are introduced by homomorphism productions. The produc-
tion hy replaces a module S appearing at the base of each branch by the first control
point of a generalized cylinder. A module F terminates a generalized cylinder with a
pointed tip by changing the tangent of the longitudinal section at the tip to (—45°,1).
The production hj replaces a straight line segment F' with an invisible line segment
with a control point in the middle.

The plant (Aloe variegata) in Figure 15¢ was generated using the following L-
system:

w: @Gr(1)A(25)!(0.8),(3)F(12)!(0.4)P(30)
p1: A(n): n>1 — £(0.1)/(137.5) [-(15+2*n)L(10)JA(n-1)
pe: P(n): n>1 — F(0.05+n/80)/(137)
[-(n*4)G(0.7+n/15)]P(n-1)
homomorphism
hi: L(s) — [e#(2)eTx(1),(1)!(s/4)@Gs-(10)f(s)-(15)
QGr(5,1,-20,1)!(s/100)@Ge (10)]
hy: G(s) — 1(0.1)F(0.7)[1!(0.4),(2)
Q#(3)1(2.7/4)0Gs-(10)f(s)-(15)
@Gr(0,4,-50,0.3)!(2/100), (2)@Ge (10)
The axiom defines the plant structure which consists of a whorl of thick leaves at the
bottom (the module A) a tapered stem F and a phyllotactic pattern of flowers at the
top (the module P). The production p; produces a whorl of leaves L with a decreasing
initial angle. Each leaf is then visualized using the homomorphism production h;
specifying two control points of a generalized cylinder axis with a user-defined contour
(Figure 15a). The shape of the leaf is also controlled by the module @Gr modifying
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Figure 16: A contour defined as an open spline (a) is applied to a generalized cylinder
(bye).

the tangents of the leaf longitudinal section. The production p, produces flowers G
visualized using the production hy. The flower contour is similar to the contour from
the previous example (Figure 14a) and again only two points of a generalized cylinder
are defined.

Open contours

The previous section describes the use of closed contours. It may be useful to consider
also open contours which can be used to define the cross-section of a long thin leaf
blade, for example.

Open contours are defined in the same way as closed contours. The only difference
is that n control points P; define (n — 3) B-spline segments specified by parametric B-
spline functions F;(t), i = 0,...,n—1for ¢ € (0, 1), based on four control points P;, Py,
P15, and P;13. Since the same number p of polygons is drawn along the open contour
as along the closed contour, the same number of contour vertices V;, i = 0,...,p — 1
is computed along the contour. This allows to use the same interpolation techniques
between two different open contours or an open contour and a closed contour as
described above.

Figure 16 illustrates the use of an open contour (a) in a long leaf blade visualized
using a generalized cylinder (Figure 16b and 16¢). The leaf blade is defined by the
string:

-(40)@#(2)@Gs-(90)£(10)@Gr(1)@Gr(20,1.5,-20,1.5)QGt (2,1)-(50)@Ge (20) .
The first and the last contour control point is repeated three times to have the contour
curve starting and terminating at the first and last contour control point, respectively.

Another example illustrates the application of an open contour to the shell model
from Section 3.2.2. Shells in Figures 17a and 17b use a conical and a triangular
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Figure 17: Shells generated by sweeping an open contour along a helico-spiral. Two
contours are interpolated in the third shell.

contour. The L-system from Section 3.2.2 was modified by adding a rotation around
the turtle heading vector to properly orient the contour:

#define R

#define Angl -20

#define Ang2 -3.9

#define Ang3 78
#define Wid 5
w: #(5)@Gt(1.0)e#(2)\ (Ang3)@Gs/(Ang3)A(1)
p1: A(s) — +(Angl)/(Ang2)F(s)A(s*R)
homomorphism
hy: F(s): — f(s)#(s*Wid)-(Ang1/2) \(Ang3)@Gc(4)/(Ang3)+(Angl/2)
In the case of the shell with the triangular contour, the L-system parameters are as
follows: R = 1.02, Angl = —20, Ang2 = —3, and the contour rotation angle is

Ang3 = 80.

1.04

/*
/%
/*
/*
/*

scaling between subsequent shell segment */
angle of rotation between segments */

angle of twist between segments */

initial rotation of the contour */

width scaling */

The shell in Figure 17c was generated using the L-system:

#define
#define
#define
#define
#define

R 1.02
Angl -20
Ang2 -3
Ang3 86
Wid 5

/*
/*
/%
/*
/*

scaling between subsequent shell segment */
angle of rotation between segments */

angle of twist between segments */

initial rotation of the contour */

width scaling */
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Figure 18: Pelican shell.

w: #(5)@Gt(1.0)@#(2)\ (Ang3)@Gs/ (Ang3)A(1,0)

p1: A(s,n) — +(Angl)/(Ang2)F(s,n)A(s*R,n+1)

homomorphism

hi: F(s,n): n%2==0 — f(s)#(s*Wid)-(Ang1/2)\ (Ang3)
@#(3)@Gc(6) / (Ang3) +(Angl/2)

he: F(s,n): n%2!=0 — f(s)#(s*Widx1.04)-(Ang1/2)\ (Ang3)
Q#(2)0Gc (6) / (Ang3) +(Angl/2)

in which the odd and even shell segments have different contours.

The Pelican shell in Figure 18 uses two contours as in the previous example plus
the third contour for the opening. To generate the shell, the previous L-system was
extended by the following homomorphism production:

hi: F(s,n): n==Steps-1 — +(ANG1/2)f (2+s)#(s*Wid)-(Ang1/2)\ (Ang3)

@#(4)QGc(6)/(Ang3)+(Angl/2)
changing the contour for the very last shell segment (the index of F' is equal to the
number of simulation steps minus one). The L-system parameters are: R = 1.025,
Angl = =20, Ang2 = 3.6, and Ang3 = 84.

3.3 Twist of generalized cylinders

As mentioned in Section 3.2.3, coordinates of contour vertices are rotated around the
z axis in the contour coordinate space so that the first vertex is on axis z. In the
world coordinate space it means that the first contour vertex lies in the direction of
the turtle’s left vector. It may happen, though, that the turtle left and up vectors
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Figure 19: A branch segment rendered with the original twist (a) and minimized twist
(b). Sometimes the twist is desired (c).

are rotated around the heading vector (using symbols / or \) between two control
points. If contour vertices are always aligned with the turtle orientation and the first
vertex on the first contour is connected with the first vertex on the second contour, the
resulting generalized cylinder is twisted. An example of twisted generalized cylinder
is shown in Figure 19a. It results from the interpretation of the string

@Gsf-(30)f\ (180)@Ge (10) .

To avoid the twist, the cross-section (contour) of a cylindrical mesh strip is aligned
with respect to the contour of the previous strip. Instead of rotating the first contour
vertex to lie on the turtle left vector, a new reference vector V' is computed and the
first contour vertex is placed in its direction from the turtle position. Thus, the turtle
position P, the heading vector H , the vector 17, and the vector H x V form a reference
frame defining position and orientation of the contour at a given point along the axis
of the generalized cylinder.

There are several methods for constructing reference frames along a parametric
curve. A brief overview is given in [3]. For example, it is possible to determine three
orthonormal frame vectors from the parametric equation of the curve, as in the case
of the Frenet frame [5]. Unfortunately, the Frenet frame is undefined along straight
line segments or can be suddenly reversed on either side of an inflection point.

Other methods for constructing frames applicable to our problem include the
rotation-minimizing method used by Bloomenthal [2] to compute frames of tree limbs
and the double-cross method proposed by Sloan (mentioned in [3]).

The Bloomenthal’s rotation-minimizing method was selected. Having a previous
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Figure 20: Two consecutive frames with different angles between vector V; and the
normal N of the plane of rotation.

set of vectors (ﬁl, Vi, H, x l_/'l) the curent frame (Hg, Vg, H, x Vg) for a glven vector
H, is determined by rotatmg the frame (Hl, Vl, H, x Vl) around H; x H, so that
rotated H1 matches with Hz Let us con31der two adjacent stem segments. If they
lie in one line (H1 Hg) the vector V2 of the second one is the same as vector V1
of the first one. If they define a plane (with normal vector H; x H2) vectors V;
of both segments have the same angle with this plane and the same angle with the
plane’s normal H; x H2 because the active frame 2 was constructed by rotating frame
1 around the vector H, x H,. Figure 20 shows three > examples in which the angle of
vectors V; with the two- segment plane normal N = H; x H, is (from left to right) 0,
45, and 90 degrees.

By default, generalized cylinders are drawn in such a way that their twist is min-
imized to obtain smooth connections (see Figure 19b). To be able to create twisted
segments (e.g. ornamental structures such as the one in Figure 19c) it is possible to
switch off the minimization of the twist (see Appendix B).

3.4 Branching of generalized cylinders

Branches in an L-system generated string are delimited by modules [ and J. When
module [ is interpreted, actual turtle parameters are pushed onto a stack. When a
branch is finished and module ] is encountered, the turtle parameters are retrieved
from the stack and another branch can be interpreted. For example, the string:
FI[+(40)!'F!1[-(25)F!]

is visualized in Figure 21a. The first segment F supports two branches: to the left
with an angle of 40 degrees from the original direction and to the right with an angle
25 degrees. Module ! reduces the segment width by 0.1.

The branches can be visualized using generalized cylinders. A module B is placed
at the beginning of the branch and a module E at the end of each terminal branch
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c)

Figure 21: A branch fork rendered as: a) straight segments, b) parametric curves
(dots denote control points), c¢,d) generalized cylinders (wireframe and shaded).

d)

segment to start and terminate generalized cylinders:
BF! [+(40) 'F!E] [-(25)F'E]

The following homomorphism productions replace each straight segment F of length
1 with an invisible segment of the same length with one control point in the middle
(Figure 21b):

homomorphism

pi: B — @Gb

p2: E — @Ge(2)

pa: F — £(0.5)0Gc(4)£(0.5)
creating a generalized cylinder shown in Figure 21¢ and 21d. Placing a control point
in the middle of each straight segment results in a generalized cylinder that closely
follows the original branching structure in Figure 21a.

Information about the active control point (the last one specified) is associated
with the turtle as one of the turtle parameters. Thus when the first branch is finished
and turtle parameters are retrieved from the stack, the second branch connects to the
same control point (in Figure 21a represented by a bigger dot) as the first branch.

Note that the branch visualized using generalized cylinders is very similar to the
original one, only the connection of branches is smoother. Since it is slower to draw
generalized cylinders than straight line segments, plant models are often developed
using straight lines to represent branches. If one module, for example B, is placed at
the beginning of the string and another symbol, e.g. E, at the end of each branch, the
final structure can be visualized using generalized cylinders with control points in the
middle of each line segment by applying the above homomorphism.
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4 Surfaces

The material presented in this section has originally appeared in Jim Hanan’s Ph.D.
dissertation [9].

4.1 Predefined surfaces

A standard computer graphics method for defining surfaces makes use of parametric
bicubic patches [1, 6]. This technique is well suited for interactive design of arbitrary
surface shapes. The control points that define an individual patch can be modified
using a graphical interface [8, Section 4.2], and several patches can be combined to
create a more complex surface [8, Section 3.5]. The resulting surface definition can
then be stored in a file for use during turtle interpretation.

Predefined surfaces are incorporated into a plant model by extending the L-system
alphabet. When the turtle encounters a symbol representing a surface preceded by a
tilde (~), the corresponding surface is drawn. The exact position and orientation of
a predefined surface S is determined using the user-defined contact point Ps, heading
vector H s, and up vector ﬁs as references. The surface is translated in such a way
that its contact point matches the current position of the turtle, and is rotated to
align its heading and up vectors with the corresponding vectors of the turtle. If a
surface represents an internal part of a plant’s structure, the turtle is positioned at a
user-defined end point once the surface has been drawn.

The following L-system produces the apple blossom shown on the left side of
Figure 22 in two derivation steps, given an angle increment of 18°.

w: FFFFFB

pi: B = [8////8]/]/8//]/8///8]

p2: S = [~C[~PJ[AAF[-F[+F]]

The F’s in the axiom represent the blossom’s stem, while the B represents a bud.
In the first derivation step, production p; replaces the symbol B by five segments S
separated by / symbols. In the second derivation step, production p, creates the
three components of each segment, a calyx leaf [~C], a petal [~P], and a stamen [A A
F[—F|[+F]]. During turtle interpretation, the predefined surfaces C, representing the
leaf, and P, representing the petal, will be incorporated into the image. These surfaces
were designed using the interactive surface editor shown on the right in Figure 22.

4.2 Developmental surfaces

Predefined surfaces do not “grow”; if a developmental sequence is required, surfaces
representing individual stages of surface growth must be separately defined and in-
corporated into the model. An alternate approach is to allow the turtle to create
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Figure 22: Apple blossom and interactive surface editor

., o~ -.‘:» ‘;
\‘\ W N
R s

N\

\ -~ o,

N

\

N

Figure 23: A model of a fern frond with polygonal leaflets

polygons directly. The opening brace “{” and the closing brace “}” are introduced
as commands that delimit the substring which determines the boundary of a polygon
to be filled. When an opening brace is encountered during interpretation, an empty
list of vertices representing the current polygon is created. Subsequently, whenever
an F or f is interpreted, the resulting turtle position is appended as a vertex on the
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{[++++G1.][++GGé][+GGGé][GGGG‘i]
6 [-GGG.[--GG.][-—--G.]}
5 6 7

Starting point

1 7

Figure 24: Surface specification using a branching structure as a framework. The
numbers correspond to the order of vertex specification by the turtle.

list. Interpretation of the closing brace causes the current polygon to be filled. Using
this approach, L-system productions can be employed in a number of different ways
to change the size and shape of a polygon over time.

The first possibility is to trace surface boundaries using the turtle and fill the
resulting polygons, as in the L-system given below:

w: L
pr: L= {-FX+X—FX—|—-FX+X+FX}
p2: X—=FX

Production p; defines leaf L as a closed planar polygon. Production p; increases the
lengths of its edges linearly. This technique was used to model the leaflets on the fern
branch in Figure 23. Leaflets appear in order of age with the youngest at the top.

In practice, the tracing of polygon boundaries only produces acceptable effects for
small, flat surfaces. In other cases it is more convenient to use a tree structure as
a framework for a polygon. Vertices are specified by a sequence of turtle positions
marked by the dot symbol (.). An example is given in Figure 24. The letter G has been
used instead of F to indicate that the segments enclosed between the braces should
not be interpreted as the edges of the constructed polygon. The numbers correspond
to the order in which the turtle specifies the vertices.

In the techniques discussed so far, the turtle specifies the vertices of one polygon,
then moves on to the next. Further flexibility in surface definition can be achieved
by interleaving vertex specifications for different polygons. In order to accomplish
this, the interpretation of braces is redefined as follows. A string containing nested
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Figure 25: Surface specification using stacked polygons. The numbers correspond to
the order of vertex specification by the turtle.

braces is evaluated using two data structures, the list of vertices representing the
current polygon and a polygon stack. At the beginning of string interpretation, both
structures are empty. The interpretation of an opening brace “{” initializes a new
polygon list and pushes it onto the polygon stack. When the turtle encounters a
closing brace “}” it pops the current polygon from the top of the stack and draws the
polygon specified by its list of vertices. An example of string interpretation involving
nested braces is given in Figure 25. This surface cannot be described using a single
pair of braces, since methods for filling non-planar polygons are not well defined.
Therefore, the figure is decomposed into three polygons connecting the following sets
of vertices: {1,2,11}, {3,4,9,10}, and {5,6,7,8}. Note that it is necessary to have
separate stacks for polygons and branches, as they operate independently. In this
case, all three polygons start in one branch and are completed in another.

4.3 Developmental bicubic surfaces

As described in previous Section, L-systems can be used to model the development
of plant organs, such as leaves and petals, using polygons which are modified over
time. However, bicubic surfaces provide a more convenient method for modelling
smooth curved surfaces; a very complex L-system would be required to produce a
polygonal surface as smooth as a bicubic patch. Developmental bicubic surfaces can
be incorporated into a model using the following set of black-box routines, which allow
the specification of a Bezier-form bicubic surface [1, 6, 8].

e @PS(i) initializes the four rows and columns of control points for surface i to
(0,0,0).

e QPC(i,r,c) assigns the current position of the turtle to the control point of
surface ¢ in row r and column c.
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e @PD(z, s,t) draws the surface defined by the control points of surface 7 using s
lines along the rows and ¢ along the columns.

The first step in creating a developmental model of a plant organ is to define the
initial and final shapes in the sequence. When using an interactive surface editor,
the user works with 16 control points for each surface patch. The manipulation of
a three-dimensional control point using a two-dimensional input device, such as a
mouse, is not necessarily straightforward. In addition, the creation of the symmetric
shapes common in plant components often requires the concerted readjustment of
several control points, which can be a tedious task using a standard interactive editor.
Parametric L-systems can be used to implement a more intuitive set of parameters
defining a particular class of surface shapes. The following L-system allows the user to
manipulate parameters for petal width, length, and bending angles in order to model
members of a family of petals. It is a simple hierarchical model of one possible control
point layout.

L-system 1: Bicubic surface petals

#define CL 100 /* Central length */

#define BW 35 /* Base width x/

#define TW 35 /* Tip width */

#define BA 0 /* Base angle */

#define TA 0 /* Tip angle */

w: P

pii P o [SIKBLIRD)

p2: S —  @PS(0)£(30)

ps: B —  A(BA)E(CL) A (TA)

ps: D — ;(100)@PD(0,4,4)

ps: 1 —  +(90)f(BW)@PC(0,0,0) + (90 + atan(CL/BW))
[|£(CL/3)@PC(0,1,0) — (90) A (BA)£(BW % 2/3)@PC(0, 1, 1)]
[£(50)@PC(0,0,1)]

ps: r —  —(90)f(BW)@PC(0,0,3) — (90 + atan(CL/BW))

[|£(CL/3)@PC(0, 1, 3) + (90) A (BA)£(BW * 2/3)@PC(0, 1, 2)]
[£(50)@PC(0, 0, 2)]

pr: L —  +(90)£(TW)@QPC(0,3,0) + (90 — atan(50/TH))
[£(CL/3))@PC(0,2,0) + (90) A (TA)£(TW % 2/3)@PC(0, 2, 1)]
[|£(30)@PC(0, 3, 1)]

ps: R —  —(90)f(TW)@QPC(0,3,3) — (90 — atan(50/TW))
[£(CL/3)@PC(0,2,3) — (90) A (TA)£(TW * 2/3)@PC(0, 2, 2)]
[|£(30)@PC(0, 3, 2)]

According to production p; a petal is composed of the start segment S, left and right
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Figure 26: Petal control structure. Control points are labelled by row and column.

halves of the leaf base 1 and r, the body B, left and right halves of the leaf tip L and
R, and the drawing segment D. Production p, issues the patch initialization command
@PS(0). The £(30) module moves the turtle so that the edge of the surface will go
through the turtle’s initial position. The petal is modelled as two laterally symmetric
halves, each consisting of a base and tip portion. Productions ps and pg define the
leaf base by producing mirror-image responses in the turtle with respect to the central
axis. Productions p; and pg do the same for the leaf tip. Production ps defines the
central length and relative angles of the base and tip. Production p, specifies the
colour command ; (100) and the patch drawing command @PD(0, 4, 4). As illustrated
in Figure 26, the base of the leaf is defined by the first two rows of control points
in the bicubic patch, while the tip is defined by the last two rows. This L-system
allows the user to control a petal’s shape in terms of its central length CL, its tip and
base width, TW and BW, and the angles between base and center line, BA, and between
center line and tip, TA. The remainder of the angles and lengths are defined by the
family of surfaces to be modelled and the geometry of a Bezier patch. For instance,
in order to maintain first order continuity of the edge passing through a control point
at a corner of the patch, the control point and its neighbours in the outside row and
column must be collinear.
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Figure 27: Petal shapes

Interactive manipulation of the parameters in the #define statements produced
the petal shapes in Figure 27, which correspond to the values in the following table.

Figure

CL|BW|TW | BA| TA

a

a0 o

150 | 5| 5(25| 50
150115 5| 0] 50
120 | 20 | 25 | 12 | -40
100 (10| 15]25| O
5015|1012 | 40

Once the initial and final shapes have been chosen, an L-system must be designed
to interpolate between the two shapes. For example, the following L-system interpo-
lates between shapes e and ¢ in Figure 27.

L-system 2:
#define N

#define ICL
#define FCL
#define IBW
#define FBW
#define ITW
#define FTW
#define IBA
#define FBA
#define ITA
#define FTA

Developmental bicubic surface petal

10

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Number of steps */
Initial central length */
Final central length */
Initial base width */
Final base width */
Initial tip width */
Final tip width */
Initial base angle */
Final base angle */
Initial tip angle */
Final tip angle */
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L-system 2: Developmental bicubic surface petal - continued

w : P
pr: P = [S[1][r]B[L][R]D]
p2: S — @PS(0)£(30)
ps: B — A(IBA,FBA, (FBA — IBA)/N)f(ICL,FCL, (FCL — ICL)/N)
A(ITA,FTA, (FTA — ITA)/N)
ps: D — ;(100)@PD(0,4,4)
ps: 1 — +(90)f(IBW,FBW, (FBW — IBW)/N)@PC(0,0,0) + (90 + atan(ICL/IBW),

90 + atan(FCL/FBW), (atan(FCL/FBW) — atan(ICL/IBW))/N)
[|£(1CL/3,FCL/3, (FCL — ICL)/3/N)@PC(0,1,0) — (90)
A(IBA, FBA, (FBA — IBA)/N)f(IBW * 2/3, FBW % 2/3,2/3 % (FBW — IBW)/N)
@PC(0, 1, 1)][£(50)@PC(0, 0, 1)]

ps: r — —(90)f(IBW,FBW, (FBW — IBW)/N)@PC(0,0,3) — (90 + atan(ICL/IBW),
90 + atan(FCL/FBW), (atan(FCL/FBW) — atan(ICL/IBW))/N)
[|£(ICL/3,FCL/3, (FCL — ICL)/3/N)@PC(0, 1,3) + (90)
A(IBA,FBA, (FBA — IBA)/N)f(IBW  2/3, FBW % 2/3,2/3 % (FBW — IBW)/N)
@PC(0, 1, 2)][£(50)@PC(0, 0, 2)]

pr: L — +(90)f(TW)@PC(0,3,0) + (90 — atan(50/TH))
[f(ICL/3),FCL/3, (FCL — ICL)/3/N)@QPC(0,2,0) + (90)
A(ITA,FTA, (FTA — ITA)/N)f(ITW % 2/3, FTW % 2/3,
2/3 % (FTW — ITW)/N)@PC(0, 2, 1)][|£(30)@PC(0, 3, 1)]

ps: R — —(90)£(TW)@PC(0,3,3) — (90 — atan(50/TW))
[£(ICL/3,FCL/3, (FCL — ICL)/3/N)@PC(0, 2, 3) — (90)
A(ITA,FTA, (FTA — ITA)/N)£(ITW * 2/3, FTW % 2/3,
2/3 * (FTW — ITW)/N)@PC(0, 2, 2)][|£(30)@PC(0, 3, 2)]

py ¢ E(v,V,i):v<V — f(v+1i,V,i)

po: +(V,V,i):v<V = +(v+1i,V,i)

pi: —(v,V,i):v<V —» —(v+1,V,i)

piz: AWV, V,i):v<V = A(v+1i,V,i)

The turtle interpretation commands with values to be interpolated have three
parameters: v representing the current value, V representing the limit or final value,
and i representing the increment to be applied in each step. Productions p; to ps
are the same as before, except that modules representing commands with parameters
to be interpolated have the appropriate initial values included. Productions pg to
p12 control the linear interpolation of lengths and angles. This L-system produces
the sequence of images presented in Figure 28. The sequence of flower heads shown
in Figure 29 comes from an animation of rose campion development produced by
Prusinkiewicz and Hammel [13] using a similar technique.

The presence of parameters allows the specification of control points by row and
column number in the black-box routines. A less intuitive symbolic identification of
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Figure 28: Development of a petal

Figure 29: Development of a rose campion flower (©)1991 P. Prusinkiewicz and M.
Hammel

the black-box routines would have been required for standard L-systems.
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5 Textures

An important aspect of graphical modeling is the use of textures. In the existing
implementation of cpfg, textures can be defined as two-dimensional images which are
mapped on a given surface. One possibility is to use the image color directly on the
surface. In that case, though, the surface cannot be shaded. The other option is to
multiply the surface diffuse color by the intensity at a given pixel of the texture image.
The intensity, ranging from 0 to 1, is either computed from the red, blue and green
components of the image color using the following formula [7]:

I=R-0.299+G-0.587+ B -0.114

or obtained directly from a single-channel image. Appendix B.2 explains how to switch
between these two modes.

5.1 Textured bicubic surfaces

The texture of a predefined bicubic surface can be specified either as a viewing at-
tribute, in which case all instances of the surface have the same texture, or can be
set during the string interpretation by module @Tx(index) where parameter index
specifies the texture index. The value of index can be equal to 0 (texturing is switched
off) or to a number 1,2,3,... corresponding to the first, second, third, etc., texture as
specified in the view file (see Appendix B.2). The first option can be useful in case
when a given surface, for example a leaf, has one fixed texture associated with it. The
second option is used when a surface can have more than one texture. For example,
there is a set of textures defined for a leaf surface and for each instance of the surface,
the texture is randomly selected from the set.

Another issue is how to map the texture on the surface, or how the object co-
ordinates (z,y, z) are transformed into the (u,v) coordinates of texels, pixels of the
texture image. For predefined bicubic surfaces, there are two ways texel coordinates
are computed:

1. from s and ¢ coordinates of each Bézier patch representing the surface (both s,
and ¢ varies from 0 to 1) (Figures 30b and 31a);

2. from z and y coordinates of the entire surface scaled to the interval (0,1) (Fig-
ure 30c and 31b).

The texture pattern is often distorted as in Figure 31a or does not match with the
surface shape (Figure 32b) and the texture image has to be warped. An example of
an image with a venation pattern warped to fit a leaf surface is shown in Figure 32.
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a)

Figure 30: Transformation from object coordinates to texture coordinates (a): b)
using parameters s and ¢ of the Bézier formula, c) using point coordinates z and y.

a) b)

Figure 31: Chessboard texture on a surface: a) texture per patch, b) texture per
surface.

The middle vein is moved to the left and the first two branched veins are adjusted to
start from the leaf base.

Textures on developmental surfaces (defined within the L-system) can be set only
during the string interpretation.

5.2 Textured cylinders and generalized cylinders

Textures on line segments rendered as cylinders and generalized cylinders are set
during the string interpretation by symbol @Tx(index). Parameter index specifies
the texture index.

Texel coordinate u ranges from 0 to 1 going around the segment circumference.
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a) = b) . v

Figure 32: Original texture (a) on a leaf (b). Warped texture (b) on the same leaf

().

The v coordinate increases along the segment in such a way that the aspect ratio of
image pixels mapped on the surface is always 1. If the circumference of the base disk
of a cylindrical segment is ¢ and the segment length is I, the texel v coordinate is

computed as:
v = |vg+IR;/cR,],

where R; and R, are sizes of the texture image, and v is the final texel coordinate
from the previous line segments (Figure 33a). The very first line segments starts with
vg = 0 and the last value of texel v coordinate for a segment is used as the starting
value for the subsequent segment to keep the continuity of the texture mapping.

The left and right side of the texture image are aligned to each other and the
image is repeated over and over along the stem. If the texture image is dark on the
bottom and light on the top, for example, this will cause a visible discontinuity in the
color of the surface along the segment. Similarly, if the image is much darker on the
left border than on the right one, a visible stripe along the segment can be created.
It is often necessary to modify the texture image in such a way that the left border
of the image matches the right border and the top matches the bottom.

An example of a texture mapped to a branching generalized cylinder is shown in
Figure 33b. The discontinuity of the texture in the branching point is caused by the
fact that branching generalized cylinders are created by overlapping two generalized
cylinders following each daughter branch.
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Figure 33: Mapping of a texture on a cylinder (a); textured branching generalized
cylinder (b).
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Figure 34: Mapping of a texture on a polygon (a); a textured polygon (b).

5.3 Textured polygons

Textures on polygons are set in the string by the symbol @Tx(index) the same way
as for surfaces, cylinders, or generalized cylinders.

Texture coordinates u, v are determined from coordinates h and r of polygon
vertices. The axes h and r are defined by the turtle heading vector H and the right
vector R (equal to the negative left vector I_:) of the first polygon vertex V;. Similarly
as in the case of bicubic surfaces (Figure 30c), h and r coordinates are scaled to the
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interval (0,1) to obtain texture coordinates u, v (see Figure 34a). An example of a
textured polygon is shown in Figure 34b.

6 Response to directional stimuli

There are two categories of response to a directional stimulus. First, it is a mechanical
response to a force pulling the plant organs, e.g. wind or the gravity force. Second, the
plant can react actively by bending its organs away or towards the stimulus direction
as in case of tropisms.

A tropism is a plant movement during which the differential growth on the op-
posite sides of a plant organ causes the organ to bend [18]. A tropism response is
usually triggered by a directional influence of gravity (gravitropism) or light (called
heliotropism or phytotropism). Imagine, for example, a root that tries to grow down-
wards from the horizontal position. The desired direction is achieved by faster growth
of the upper side of the root.

To simulate tropisms and the plant’s response to an external force, Prusinkiewicz
in [15] introduced a simple mechanism, which modifies the orientation of each line
segment towards or away from the stimulus direction. The angle between the original
and the new orientation is based on the angle between the line segment and the
stimulus direction and a parameter controlling the susceptibility of the segment to
bending. Based on the computation of torque acceleration, the angle ﬁ by which the
segment with orientation H is rotated towards the stimulus direction T is:

ﬁ:elﬁXT'L (1)

where e is the parameter of segment’s susceptibility to the stimulus. If the parameter
e is equal to 0, no adjustment is made. On the other hand, if it is too high (usually
above 1, the adjusted segment may “overshoot” and bend too much). Negative values
cause stems to be bent away from the stimulus direction. The response is bigger when
the angle of the stem and the vector T is close to 90° and lower when the stem is
almost aligned with the stimulus vector T.

In case of tropisms, formula (1) can be extended to include more complex tropisms,
such as a plagiotropism when branches try to be perpendicular to the vector of gravity
or the general case, diatropism, when stems try to achieve an angle y (not necessarily
90 degrees) with the tropism vector. If a segment with orientation H tries to reach
angle y with the tropism vector T the bending angle is (the full derivation is given
in [10]):

a=e (cos('y) —sin(7y) -7 ) (H x T) (2)
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Figure 35: Orthotropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

Wele S pa =

Figure 36: Plagiotropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

A

Figure 37: Diatropism effect for elasticity values 0, 0.1, 0.25, and 0.5.

The adjustment of the segment’s orientation takes place during the interpretation,
when the L-system generated string is visualized, and the position and orientation of
each interpreted module is known. During the simulation, the L-system model can
only modify the elasticity parameter.

Each tropism is defined in the view file (see Appendix B) by its vector, an angle
a shoot is trying to achieve with respect to the tropism vector, and two parameters:
initial elasticity and elasticity increment. Initial elasticity specifies the sus-
ceptibility of a segment to the tropism. Its initial value can be modified in productions
using special control symbols mentioned bellow:

@Ts (index, value) sets the elasticity of tropism with index index to value. The pa-
rameter index specifies the tropism according to the order of its specification in
the view file.

QTi (tndex, value) increments the elasticity of tropism with index indez by value.
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Figure 39: Twisting of leaf stalks using elasticity values 0, 0.1, 0.3, and 0.6.

The mechanism of directional response allows the model to simulate basic plant
responses to directional influences, such as stems growing towards or away from the
light, or the main stem growing upwards and main root growing downwards. The
next section introduces another new built-in mechanism twisting a plant segment as
the response to a directional stimulus. This mechanism combined with tropism can
simulate the proper orientation of leaves.

6.1 Response by twist

During the twist movement, the turtle up vector is rotated around the stem direction
(turtle heading H). The up vector is rotated towards a vector V specified as the
projection of the tropism vector 7' onto the rotation plane (with normal H):

V=(HxT)xH.
To obtain the rotation angle o the same formula as in the case of tropisms is applied

with T =V L
a=¢elH x V|

After substituting for V, it can be simplified to:
a=e¢|T x H|.

A twist is defined similarly as a tropism with only one difference: the angle parameters
is not used (see Appendix B).

Twists and tropisms belong to the same group of environmental effects. Thus the
value of the elasticity parameter can be changed using the same symbols @T's, QT
and @Td as for a tropism. The index specifying a tropism or twist is then the order
of the tropism or twist specification in the view file.

Figure 39 illustrates the use of twist response on a twig with few leaves. A leaf
stalk consists of three short line segments which are twisted so the turtle up vector
at the end of the stalk points upwards making the leaf blade more exposed to the
incoming light.
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6.2 Combination of directional responses

The leaf twig from the previous example still does not look realistic, because the
response is more complex than just the twist of the stalk. Generally, a leaf is trying
to orient its blade perpendicularly to the direction of the incoming light. This can
be achieved by combining the twist from the previous example and a plagiotropism
trying to orient the stalk perpendicularly to the direction of light. In addition, the
gravity force is pulling the leaf down.

Following L-system incorporates all three directional responses to obtain a a better

orientation of leaves.
#define PE 0.0 /* perpendicular elasticity */

#define TE 0.6 /* twist elasticity */
#define GE 0.0 /* gravity elasticity */
#define LA 35 /* leaf angle */
#define Leaf [QTi(1,GE)QTi(2, PE)QTi(3,TE)\

1(0.02)F(.12)F(.12)F(.12) ]
w: —(25)/(90)FLA
pr: A—/(90)— (20)FLA
homomorphism
hi: L —[,(8)[&(LA)Leaf]/(180)&(LA)Leaf]
The L-system creates three branch internodes with a pair of leaves at the end of each
internode (using production p;). The pair of leaves is visualized in homomorphism
production h;. Each leaf consists of a three-segment stalk and a bicubic surface
defining the leaf blade. The stalk orientation is adjusted using three mechanism of
directional response:

1. a plagiotropism with direction (0,1,0) and angle 90°;
2. a twist with direction (0, 1,0);
3. a gravitropism with direction (0, —1,0);

simulating effects of the light coming from the top and effects of the gravity force.

Figure 40 shows an increasing sensitivity of leaf stalks to the plagiotropism trying
to make the blade axis perpendicular to the light direction (0,1,0). Similarly, twigs
in Figure 41 experience the effect of gravity pulling leaves down.

As can be seen in Figure 39 from the previous section and Figures 40 and 41,
each of the three effects simulated separately does not result in a proper orientation
of leaves. If all three mechanism are combined, as in Figure 42, the leaf orientation
looks more realistic.
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Figure 40: Adjusting leaf stalks using plagiotropism with elasticity values 0, 0.1, 0.3,

and 0.6.

Figure 41: Adjusting leaf stalks using gravitropism with elasticity values 0, 0.1, 0.3,
and 0.6.

Figure 42: Adjusting leaf stalks using all three mechanisms with the same elasticity
values 0, 0.1, 0.3, and 0.6.
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A Interpreted symbols

During the visualization, the string of symbols is parsed from left to right and every
time a special symbol controlling the turtle is encountered the function associated with
the symbol is performed. Symbols with predefined interpretations are listed below.

Symbols with no parameters use default values specified at the beginning of the
simulation. If a symbol has more parameters than those specified bellow, the addi-
tional parameters are ignored.

Turtle rotations
The turtle can be rotated only around its heading, left, or, up vector (Figure 43):

+(0) Turn left by angle #° around the U axis.
-(8) Turn right by angle §° around the U axis.
&(#) Pitch down by angle 6° around the L axis.
A(8) Pitch up by angle §° around the L axis.

\ (@) Roll left by angle §° around the H axis.
/(8) Roll right by angle §° around the H axis.

| Turn around 180° around the U axis. This is equivalent to +(180) or -(180).
It does not roll or pitch the turtle.

Qv roll the turtle around the H axis so that H and U lie in a common vertical
plane with U closest to up.

If no parameter is given for the symbols +, -, &, A, \, and /, the value of the global
parameter angle increment is used.

Changing turtle parameters
The following symbols change turtle parameters:

; (n,n2) Increase the value of the current color index or material index by the color
increment, or set to n if a parameter is given. If two-sided materials are used
— the initial color index in the view file has two parameters (only in material
mode) — both indexes of the front and back material are increased or set to n.
If an optional second parameter is present, the index of the back material is
set to n2.

45



Figure 43: Controlling the turtle in three dimensions

,(n,n2) Decrease the value of the current color index or material by the color

#(n)

t(n)

increment, or set to n if a parameter is given. In case of two-sided materials,
the function is the same as for module ;.

Increase the value of the current line width by the global parameter line
width increment, or set to n if a parameter is given.

Decrease the value of the current line width by the global parameter line
width increment, or set to n if a parameter is given.

@Tx(index) Sets texture with index index (the order of the texture specification

in the view file). The texture is not applied to surfaces; a surface must be
associated with a texture when it is defined. Index 0 switches off texturing.

Changing position and drawing

F(d)

f(d)

G(d)

g(d)

Move forward a step of length d and draw a line segment from the original
position to the new position of the turtle. If the polygon flag is on (see the
symbols { and }), the final position is recorded as a vertex of the current
polygon. If no parameter is given, the default step size 1 is used.

Move forward a step of length d without drawing a line. If the polygon flag
is on, the final position is recorded as a vertex of the current polygon. If no
parameter is given, the default step size 1 is used.

Move forward a step of length d and draw a line. If no parameter is given, the
default step size 1 is used.

Move forward a step of length d without drawing a line. If no parameter is
given, the default step size 1 is used.
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Q@o(d) draw a circle of diameter d in the plane of the screen. If no parameter is
given, the current line width will be used.

@c(d) draw a circle of diameter d in the HL plane. If no parameter is given, the
current line width will be used.

@0(d) draw a sphere of diameter d. If no parameter is given, the current line width
will be used. The spheres produced can be shaded even in the colormap mode,
since a set of polygons approximating a sphere is generated using code from
the widely available sphere.c file by Jon Leech (1eech@cs.unc.edu).

The global parameter 1ine style specifies whether the line is drawn as a line, poly-
gon, or a cylinder.

Modeling of structures with branches

[ Push the current state of the turtle (all its parameters) onto a pushdown stack.
] Pop a state from the stack and make it the current state of the turtle.
yA The symbol % cuts the remainder of a branch. Whenever it is detected in the

string during the generation process, it and all following symbols up to the
closest unmatched right bracket ] are ignored for derivation purposes, and will
therefore disappear from the generated string. If an unmatched right bracket
is not found, symbols are ignored until the end of the string.

Symbols used to create polygons along with F and f

{ start a new polygon by pushing the current turtle position onto the polygon
stack and set the polygon flag on.

} Pop a polygon from the stack and render it. If no more polygons are on the
stack, turn the polygon flag off.

Place the current state of the turtle on the polygon stack if the polygon flag is
on.

Drawing parametric bicubic surfaces

~ Draw the predefined surface identified by the symbol immediately following the
~ at the turtle’s current location and orientation. The control points, geometry
and neighborhood information for surfaces are read from surface specification
files at the beginning of the simulation.
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@PS (i,basis) initializes the four rows and columns of control points for an L-system
defined surface i to (0,0, 0). The optional parameter basis specifies the type of
patch as:

1. Bézier,
2. B-spline,
3. Cardinal spline.

If no basis is given, the default, Bézier, is used.

@PC(1,r,¢) assigns the current position of the turtle to the control point of the L-
system defined surface ¢ in row r and column c.

@PD(1,s,t) draws the surface defined by the control points of surface 7 using s lines
along the rows and ¢ lines along the columns.

Drawing generalized cylinders

@Gs  Start a generalized cylinder in the current turtle position.

QGc (strips) specifies a control point on the central line of the generalized cylinder.
The value of strips specifies how many mesh strips are drawn between the
control point and the previous one. The more strips are drawn the smoother
the generalized cylinder looks. If no parameter is given, one strip is drawn.

QGe(rings) End a generalized cylinder. The parameter strips controls the number
of strips as for symbol @Gc.

@Gr(anglel,lengthl,anglel,length2) specifies the slope and length of two tan-
gents of a Hermite curve defining the radius change as a longitudinal section
between two consecutive control points of a generalized cylinder axis (see Sec-
tion 3.2.2). As a default, the radii at the two control points are linearly inter-
polated along the segment.

QGr(flag) switches on (flag=1) or off (flag=0) an automatic adjustment of tan-
gents of a longitudinal section for segments of non-unit length. The longitudinal
section is always defined for a segment of a unit length and then stretched onto
the segment of a non-unit length. As a default, tangents are not adjusted after
the stretching (see Section 3.2.2 for more details).

Q# (contour_id) sets a different contour for the generalized cylinder. Contours are
specified in the view file. A contour with id 0 is the default circle.
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Changing tropisms parameters

@Ts (index ,value) Set elasticity parameter of tropism with index indez to value.
Index is given by the order of the tropism specification in the view file (starting
with 1).

@Td (index [,value]l) Decrease the elasticity parameter by the default elasticity in-
crement specified in the view file or by the given value value.

QTi(index[,valuel) Increase the elasticity parameter by the default elasticity in-
crement specified in the view file or by the given value value.

@Tp  Prevent twist. This command adjusts the turtle’s up and left vector to minimize
the twist (see Section 3.3).

Q@Tf  Force the twist. Since tropisms automatically force twist prevention, the effect
of symbols / or \ can be nullified. It is necessary then to add the symbol @Tf
to force the twist.

Symbols for Sub-L-systems

7(id,scale) Causes the generator to save a reference to the current L-system on a
stack and to use the list of productions from the sub-L-system identified by
id during subsequent production matching and application. During interpre-
tation, the current scale is saved on a stack and the structure resulting from
interpretation of the generated substring is scaled by scale.

$ End the sub-L-system and return to the previous set of productions and scale.

Miscelaneous commands

QL("Label") prints the "label” in the drawing window at the current turtle location
using the font specified in the view file.

@S("any system call") will make the system call when interpreted.
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B View file commands

The graphical extensions described in the text include not only new modules with a
specific interpretation but also several view file commands setting initial parameters
of the graphical interpretation:

contour: allows the user to specify the cross-section of a generalized cylinder as a
open or closed Bézier spline (see below for more details);

contour sides: defines the number of polygons drawn around a contour;

twist of cylinders: switches on or off the twist minimizing method applied during
the visualization of generalized cylinders;

texture: specifies the texture and the way it is mapped on a surface.

The details of specification of contours and textures are given in the following sections.

B.1 Specification of contours
Contours are specified in the view file by the command:
contour: id contour_file

where id is a unique positive number identifying the contour and contour_file is
the name of a text file containing a list of coordinates of control points.

The number of polygons around a contour can be also set in the view file by
command:

contour sides: n

where n specifies the number of polygons. Currently, this number is constant during
the interpretation.

The contour file has the following syntax: the first line contains a number of control
points, the dimension of the contour (2 or 3), and an identifier of an open or closed
contour (the word open or closed). Subsequent lines contain two or three coordinates
of control points, one point per line.

The contour in Figure 12a is specified by file:

12 2 closed

0.166482 -1.123751
0.416204 -1.040511
0.582686 -0.332963
1.082131 -0.041620
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1.082131 0.499445
0.499445 0.541065
0.332963 0.915649
-0.374584 1.040511
-0.707547 0.624306
-1.123751 0.166482
-0.874029 -0.749168
-0.416204 -0.665927

The contour in Figure 13a is a three-dimensional extension of the previous contour:

12 3 closed

0.166482 -1.123751 1.0
0.416204 -1.040511 0.0
0.582686 -0.332963 0.0
1.082131 -0.041620 0.0
1.082131 0.499445 0.0
0.499445 0.541065 0.0
0.332963 0.915649 0.0
-0.374584 1.040511 0.0
-0.707547 0.624306 0.0
-1.123751 0.166482 0.0
-0.874029 -0.749168 0.0
-0.416204 -0.665927 0.0

The open contour in Figure 16a is defined by file:

15 2 open

-0.914286 -0.400000
-0.914286 -0.400000
-0.914286 -0.400000
-0.871429 -0.342857
-0.742857 -0.171429
-0.457143 -0.085714
-0.285714 0.142857
0.000000 0.271429
0.228571 0.114286
0.514286 0.142857
0.657143 -0.028571
0.892857 -0.114286
0.971429 -0.142857
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0.971429 -0.142857
0.971429 -0.142857

Note that the first and the last control point is repeated three times to make sure the
contour starts and finishes in the given points.

It is possible to create a two-dimensional contour in a drawing program xfig and
convert it to the contour text file using a conversion utility fig2con. It is necessary
to use either open or closed Bézier spline for the contour and to define a reference
circle specifying the origin and scale of the contour coordinates. The created zfig file
can be converted using the command:

fig2con <contour.xfig >contour.spec

Currently, no utility for designing three-dimensional contours is provided. One pos-
sibility is to create a two-dimensional contour in xfig and add the third coordinates
by editing the contour specification file.

B.2 Definition of textures

Textures are specified in the view file using a command texture:
texture: F: image name H: mag filter L: min filter E: env_mode S:
where

e the parameter image name specifies the texture image. Currently, it is possible
to specify iris rgb, Utah raster toolkit rle, and targa tga images (distinguished
by the extension). The image resolution can be arbitrary.

e commands H, L, S, and E are optional.

e command H: mag filter is used in case texture pixels viewed on the screen are
bigger than one window pixel. The flag mag_filter is equal to:

— linear (or [ only) — the texture image is smoothened when mapped onto
the surface;

— near (or nonly) — the texture image is not smoothened, thus texture pixels
can appear as big squares.

The default is near.

e command L: min_filter is used in case texture pixels viewed on the screen are
smaller than one window pixel. The flag min_filter is equal to:
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— linear (or [ only) — more texture pixels are used to compute the color of a
given pixel on the screen;

— near (or n only) — just one texture pixel is used to compute the color of
a given pixel on the screen. This mode is faster but can produce some
aliasing effects.

The default is near.

command E: env_mode controls the way the texture is combined with the surface
color (see The OpenGL Programming Guide, chapter 9, section Modulating and
Blending). The flag env_modes is equal to:

— modulate (or monly) — the diffuse color of the surface material is multiplied
by the color of the texture pixel;

— decal (or d only) — the color of the texture pixel is used as the color of the
surface;

The default is modulate.

the command S: is recognized only if the texture is used on bicubic surfaces
predefined in the view file. If the command is present in the texture specification,
the texture image is mapped onto the whole surface. Otherwise, the texture
image is mapped onto each surface patch separately.

As a default, the texture is mapped onto each patch. In this case, texture
coordinates are derived from s and ¢ coordinates of the parametric equation of
the Bézier patch representing the surface (both s, and ¢ goes from 0 to 1). In the
case of mapping onto the whole surface, the surface boundaries along x and y
axes are found and the texture is mapped into z-plane so that it fits the surface
bounding box in z and y coordinates (see Section 5.1).

B.3 Definition of tropisms and twists

Tropisms and twists are specified in the view file using commands tropism or torque:

tropism: T: vector A: angle E: initial_elasticity S: elasticity_increment
torque: T: vector E: initial_elasticity S: elasticity_increment

where

e parameter vector specifies z, y, and z coordinates of the tropism vector. This
parameter has to be present.

e parameter angle specifies the diatropism angle. The default value is 0.
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e parameter initial elasticity defines the initial value of the elasticity param-
eter (if not present, the initial value is 0).

e parameter elasticity increment defines the value of elasticity increment used
by modules @Ti and @Td.
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