A Resource-sharing Hypothesis for Coordinated sharing of System Resources

James Bradley
Department of Computer Science
University of Calgary,
Calgary, Alberta, Canada

Abstract A fundamental resource-sharing hypothesis that relates system throughput capacity to
resources and resource-sharing procedures, and which governs non-growth, agent-directed
systems, is proposed and justified. The hypothesis can be expressed as an equation called the
resource-sharing equatiorit shows how throughput capacity can be maintained by reducing
resources and increasing resource-sharing procedure complexity, or vice versa.

All quantities used in the equation are precisely defined and their units specified. The
equation reduces to a numerical expression, and can be subjected to experimental test. The
equation clarifies and quantifies a basic principle, enabling designers and operators of systems to
reason correctly about systems in complex situations. Spreng’s Triangle, relating energy, time
and information follows from the resource-sharing equation.

Key wordsComplexity, resources, sharing procedure, system, threads, throughput capacity.

Introduction

Much of the complexity in computer systems is due to attempts to increase system throughput
capacity by increasing the utilization of underutilized but expensive system resources, the case of
computer operating systems being one classic example [11], multiple-thread database
management systems being another [4, 5]. This increase in utilization is usually accomplished by
sharing the resources among system threads [1]. Other sources of increasing complexity are due
to efforts to apply procedures to reduce risk, particularly risk of deadlock or harmful interference
between processes, the best known examples being critical section algorithms in operating
systems [11]. This paper, however, does not deal with risk, and is restricted to considerations of
the complexity resulting from the complex sharing procedures required to increase throughput
capacity by sharing resources among system threads.

The systems to which these considerations apply are human-agent directed systems,
particularly computer systems. Agent-directed systems are systems designed, constructed and
operated by human agents. Unfortunately, the responsible agents may not always be able to
reason clearly about the relationship between system throughput capacity, resources, and
resource-sharing procedures and threads. As a result serious mistakes in system design and design
strategy can occur [8,10].

In this paper we present a fundamental resource-sharing hypothesis expressed as a
systems equation that relates system throughput capacity to resources and the resource-sharing
procedures needed to share the resources among threads. It is one of five equations relating
throughput and resources; the other four, involving system resources and risk, are not covered in
this paper [3].

The research leading to this equation was inspired by phenomena in complex computer
systems, and it is expected that it is on the computer systems arena that the equation will throw
the most light. The equation does cover systems phenomena outside of the computer arena as
well, particularly in industrial production systems [7], as will be exemplified near the end of the
paper. Thus the equation expresses a unity of principle in a great diversity of system phenomena.



Mindful of the fact that most discussions of systems are weakened by lack of precise
definitions and units of measurement, in this paper every attempt has been made to ensure that
concepts are clearly defined, and that symbols used to express the hypothesis denote quantities
that are measurable and expressible in clearly defined units.

1.0 Overview

A system is considered to be any entity that converts inputs to outputs, and which may be
composed of subsystems, connected either in series or in parallel, each of which is also a system.
We also consider a system to be an entity that functions under the direction of one or more human
agents, and which employs essential resources R, often portable, enabling it to convert a set of
inputs N, informational or material or both, to a set of outputs U per unit time, so that U is the
system throughput. If the maximum value for U is I, then | is said to be the throughput capacity
of the system, measured as the units of output per unit time when the system is operating at
maximum capacity. In general, if the system is operating at a fraction f of throughput capacity I,
then the throughput is U =fl.

In some cases there will be more than one type of throughput product. In that case we can
declare throughput capacity of one of them as being the main throughput product capacity |, in
units of product per time period. It can then be assumed that each other product throughput
capacity is a byproduct capacity that is a function of I, in most cases a linear function.
Accordingly, in this paper, we deal only with |, considered to be either the only or the main
throughput product capacity.

1.1 Overview of the throughput capacity hypothesis

A reference summary of the semantics for the resource-sharing hypothesis is given below
-- a fuller explanation and derivation argument is given later.

The resource sharing equation that expresses the resource-sharing hypothesis is as
follows:

1= KR(1 - TgT)[1+ sK(Tg)] @

Independent variables under the control of the agent are R ari€li$ a constant and R measures
resources available to the system, alterable only in valid units of the type comprising R. T is a
constant and measures the time for which |, the system throughput capacity, is comgutas. T
units of time per (basic harmonic) resource unit, and measures the execution time, and thus
resource-sharing complexity, of rormally complex, coordinated, resource-sharing procedure

for sharing resources within R among threads of throughp(t.dris a growth function that has

value 0 when § is zero; it increases at a decreasing rate, with increasintpTsaturate at 1.0.

The constant s is thavailable sharing-enhancement potentialquantity > 1.0, where sR is the
effective increase in R due to execution of a coordinated resource-sharing procedure sufficiently
comprehensive to saturate(fFs) at 1.0. TJT is a measure of the resource capacity diverted from
normal operations to carrying out the resource sharing procedure, and is thus a measure of the
negative impact of the sharing procedure on throughput capacity I. When there is no coordinated
resource sharing,sland R(Tg) are zero, and the expression reduces to | = KR. There is a value
for Tg at which | is maximized, found by solving dl/dT= 0. When T approaches T and |
approaches 0, the system may be said to be thrashing [10, 11] -- most resources are devoted to
resource sharing among the threads, and little useful throughput results.



1.2 Measure of resources

The units of both R and P are units of anything of value to a human agent. Thus R could
be measured in dollars, marks, printers or printer equivalents, microprocessors or microprocessor
equivalents, or even, where the resources are mostly human, such persons as programmers. Also,
since a resource can be valued by the human effort or work, or work equivalent, required to
produce it, and since work is a measure of energy, then ultimately resources R can be measured in
units of energy [13, 14]].

2. Derivation argument for the resource-sharing hypothesis.

In this section we present an argument for the veracity of the hypothesis, and in particular, for the
veracity of the resource sharing expression:

| = KR(1 — TgT)[1+ SF(T9)] (1)
| = KR (la) if Ts=0

When no coordinated resource-sharing procedure is involved, coordinated resource-sharing time
Tgis zero, making HTg) zero, so that expression (1) simplifies to | = KR. This expression states
that, if we increase resources R (in a valid manner), then | will increase linearly with R. For
example, if we construct a system that is an m-fold replica of the original system, with resources
mR, then throughput capacity will be ml.

We begin the derivation, therefore, with an axiomatic proposition: We propose that where
there is no coordinated sharing of resources by a system among different threads, then for valid
changesto R

| = KR (1a)

must hold true. Note that we cannot prove this assertion from any more fundamental propositions.
It seems to be implicit in the nature of things and so we take it as axiomatic. The following
discussion examines the implications of this simple proposition more closely.

2.1 The basic linear relationship between throughput capacity and resources when there is
no coordinated sharing of resources

Suppose we construct the smallest possible miniaturization of the original system with
resources R/n and throughput I/n, such that, when this smallest miniaturization system is
replicated n-fold, we recover the original system with resources R and throughput I. We call this
smallest possible miniaturization of the system the basic harmonic (system) of the original
system. In addition, we call the original system the nth harmonic (replication) system. Hence, for
an nth harmonic system with resources R, the only valid increase or decreases in R in equation
(1a) must be in multiples of R/n of the same type as R, or, more loosely, in basic harmonic
resource units of the type already constituting R. We also call the resources Rbagiee
harmonic resource unitf the system.

For a simple system consisting of 10 processors producing 30 x-units per unit time,
increasing R by 5 similar processors will increase x-unit throughput capacity by 15 x-units; the
basic harmonic resource unit is 1 processor, so that R can be changed in units of processors.
However, changing R by adding resource units of a type different or not equivalent to those
already constituting R (e.g. by adding 5 processors each capable of generating 6 x-units per unit
time) is invalid as far as (1a) is concerned.



The importance of expression (1a) holding only for R, if and only if is alterable in terms
of basic harmonic resource units of the type already constituting R, can be can perhaps be more
forcefully illustrated by the following obvious example. Suppose a software house with 4
programming teams, each team being 2 cooperating programmers, so that R = 8, when measured
in programmers. Suppose also that each team functions independently to produce x average
application programs per year, for throughput capacity | of 4x programs for the house. Thus the
basic harmonic resource unit is a team of 2 programmers. If we add 2 independent programmer
pairs or teams to the original 4, so that R =8 + 4 = 12, | goes to 6x; the increase was valid, being
2 basic harmonic resource units. But suppose instead, we had added the 4 programmers by adding
one programmer to each of the former teams, so that we have 4 new teams, each of 3 cooperating
programmers; although R now also measures 12, this is not an allowable alteration of R, for we
do not have an increase in independent resource units of the type already in R, that is, an increase
in the number of basic harmonic resource units. Instead we have created a new system, and in all
likelihood, in this case, new capacity | will not be 6x, but less, or maybe even | < 4x!

Parallel and serial subsystems

The restriction on the valid variability of R, in | = KR, to changes in harmonic resource
units of the same type as R, has significant consequences with composite systems consisting of
either parallel or serial subsystems. We consider parallel subsystems first.

A. Parallel operation

Suppose a system consists of two types of resources, say i low capacity processors
amounting to resources;Re.g. 15 slow processors that each generate 3 x-units per unit time per
processor) and j high-capacity processors amounting to resous¢eggR10 fast processors that
each generate 6 x-units per unit time per processor) with i > j. [We are not interested in
economics here, just in throughput capacity — the upkeep cost of the slow processors may be less
than half that of the fast processors, and so be more economic.] Suppesel R operate in
parallel, generating throughputx-units per time unit and,Ix-units per time unit respectively,
where the number of Runits can be increased or decreased independently of the number of R
units, and vice versa. In such a case the expression

I=K(R1+Ry) (2a)
will not hold for independent variability of Fand R. We have essentially two separate systems,
or parallel subsystems, so that, for the composite systemK|R; and b = K;R,, and
| = |1 + |2 = KlRl + K2R2 (Zb)
[= 3R;+ 6R, x-units per unit time, in the processor example]
Here R is alterable in one set of independent units (slow processors), aiiml &other (fast
processors).

The expression | = K(R+ Ry) will hold only if, when R is increased or decreased by
RJ/n units, R is increased or decreased by/mRunits where n is the largest common divisor gf R
and R. In other words, we must increase in sets @fdRd R units (that is, in basic harmonic
resource units), such as sets of 3 slow and 2 fast processors, for | = (21#5RR), giving an
nth harmonic system for n = 5.

[If nis very small, for example, n = 1 with 10 slow and 7 fast processors, we may prefer
to perform a simplifying adjustment to the system. In the interests of a tidier, or more finely-
grained, harmonic system, we could either add 4 slow processors (n = 7) or 3 fast processors (n =
10).]

B. Serial operation



If two subsystems each with resources ahd R are operating in series, everything
depends on whether of not both subsystems are operating at capacity, and to what extent the
subsystem resources can be shared.

If both subsystems are operating at capacity, then throughput capacity | =R holds.
If it is a nth harmonic system, a valid increase is an increase in units,af ®)/n. However, if
R, is operating below capacity, and, B at capacity, then Ris thelimiting (or “bottleneck”)
resource and R is thenon-limiting resourceAlthough | = K(R, + R, ) holds, it is also the case
that | = KgR; holds for increases inRip to the point where Rstarts to operate at full capacity,

at which point | = Ky(R; + Ry) holds for further resource increases in basic harmonic resource
units.

2.2 Coordinated and non-coordinated sharing of limiting resources

Suppose again that two subsystems each with resourcaésd=R are operating in series. If
one of the resources R1 is limiting then R1 may be capable of participating in either
uncoordinated exclusive-allocation sharingf resources among non-threads @sordinated
inclusive-allocation sharingf resources among threads. In both cases there is sharing, but in
each case the nature of the sharing is very different, and the difference is vital for understanding
both equation (1) and the operation of complex systems. Rather than define the two resource-
sharing concepts above at this stage an example is given below, to promote the reader’s
understanding of the differences between them.

Computer Operating System Example

Consider a computer system with a fast processor/memory ugitafiRl 2 slow input-output
device pairs (. Each I/O device pair is at different user locations, and is in use for 10 minutes
in each hour, and during the remaining 50 minutes of the hour new data is being prepared for
entry, although the user still retains control of the I/O device pair.

During use of an I/O pair, input data (i.e., a “jobload” of data) is interactively entered and
converted via processing to information output on the output device. During a 10-minute session,
the processor is exclusively allocated to a specific I/O pair. Clearly, system throughput capacity is
2 jobloads per hour.

It is clear that R is limiting. As we increase the number of I/O device pairs, capacity
increases, in accordance with | = KRo 4 jobloads per hour for 4 1/O device pairs, until finally
with 6 I/0 pairs capacity is 6 per hour. At this point the cpu/memory upisReing shared in an
uncoordinated manner among the jobloads, with exclusive allocation wf &ach jobload, that
is, a jobload must finish being processed before the processing of a new one can begin.
Furthermore there is no sharing of R1 among threads of production, that make up each jobload.

If we now double the number of I/O device pairs to 12, further throughput capacity
increase will not occur, but either 6 device I/O pairs will never be in use, or each I/O pair will be
operating at half capacity, once every second hour, assuming we retain exclusive allocation of R
to a jobload. Rwould now be limiting.

Alternatively, suppose the processing of a jobload, as is usually the case, consists of short
cpu-processing bursts. Suppose that each burst lasts 60 milliseconds on average, and 100 bursts
are needed to process a jobload, so that 6,000 milliseconds or 6 seconds of actual processing time
are needed per jobload of data. In other words, when the sum of the operations needed to process
a jobload of data are laid out in time, we haveéhaead of activity consisting of bursts of cpu
processing of the jobload, all separated in time.

In that case, by interleaving the cpu processing of different jobloads [1], that is, by
coordinated sharing of Rnclusively among multiple jobloads, we could process up to 594 extra



jobloads per hour on top of the 6 that rendegdiRiting. This increase is spectacular (because of

the enormous cpu speed), compared to the increase in throughput capacity that can normally be
obtained by coordinated sharing with inclusive allocation with other types of systems. At any
instant the (limiting) processor/memory unit B being shared among the processing of more
than one jobload (actually among 100 jobloads).

This type of sharing may be looked upon as interleaving the processing of the processing
threads for each jobload, where the cpu processes a sequence of thread sections, with the
individual sections coming from a variety of different threads.

In practice, given the numbers above, somewhat less than an extra throughput of 594
jobloads per hour will be achieved by the coordinated sharing, since some of the processing time
available to R will be devoted to coordinated sharing activities (processor scheduling, context
switching, and dispatching etc.[6, 11]) during a timg We will show presently that Equation 1

applies to this situation.
Units of the rate constant K and throughput capacity |

In the expression | = KR, the rate constant K can be either intradenominational or
interdenominational. K is interdenominational if it is measured in x-units per y-unit, where x and
y are different [7]. If x and y are the same units K is intradenominational. Intradenominational
units occur mostly in financial systems. [For example, the return (I) at a rate K of 0.05 dollars per
annum per dollar of R invested, or 5%.]

With computer systems K is nearly always interdenominational, such as jobs per minute
per processor, or bytes per second per disk-drive controller. Such units are in common everyday
use in the practical business of data processing. Note however, that it is possible to have
intradenominational units for K if we measure R in dollars or joules, and | in dollars or joules per
time period, so that K is dollars per dollar per time period or joules per joule per time period
[13,14]. This will be relevant later, when Spreng'’s triangle [12] is considered.

In general, K is measured in units of output per time period per harmonic resources unit.
In the simpler cases a harmonic resource unit is atomic, such as 1 processor, or 1 controller.
However, in more complex cases a harmonic resource unit will be composite, made up of
combinations of units of different resources, so that we can have K expressed as jobs per hour per
(harmonic resources) set of 2 processor, 1 printer and 2 disk drives, or 1 operator and 3
computers. However, in cases where such an obviously awkward unit is nevertheless the correct
one, an improvement may be to use the aggregate of a common attribute type, such as dollar
value.

Throughput capacity | can be measured in throughput entity or throughput entity set
units, or in throughput entity attribute units. When we use throughput entity units we use the
number of entities throughput per time period, e.g. computer jobs per second, files per hour,
pages per second, and so on. With entity set units, we simply use named sets of entities
throughput per time period, e.g. diskloads of files per day, directories of files per hour, and so
on.

The concept of coordinated sharing of a resource

The entity (or entity set) per time period measure of throughput enables a concise
definition of coordinated sharing of a resource:

Resources R of a system or subsystem are being shared in a coordinated manner if, and
only if, at any instant, more than one entity or entity set unit of system throughput is under
processing by resources R, requiring that the R resources be engaged in (usually complex)
coordination procedures for measurable periods of time.



Alternatively in terms of threads:

Resources R of a system or subsystem are being shared in a coordinated manner if, and
only if, R processes the individual threads (corresponding to production entities) in thread
sections, where processing of sections from different threads is interleaved in time, requiring that
the R resources be engaged in (usually complex) procedures for coordinating the processing of
the interleaved thread sections for measurable periods of time.

Thus a computer processor or human is participating in coordinated sharing if it (he/she)
has the processing of more than one job or process under way at any instant.

2.3 Argument for deriving the relationship between I, R and coordinated sharing time (or
complexity) Tg

Consider any basic system of throughput capacity | and resources R, of arbitrary
complexity, where some subsystem resources are connected in series and others in parallel, and
some are shareable and some not. It follows from the discussion earlier that when the system is
operating at capacity, some subsystems will be at capacity and others below capacity.

We can define amvailable coordinated sharing-enhancement potergigler harmonic
resource unit of the system, where s > 0, such that resources R are effectively increased by sR,
and thus throughput capacity | is increased by sKR, by means of coordinated resource-sharing up
to the physical limit possible, so that after such resource sharing, | = KR(1 + s). The value for s
for a given system can only be obtained by analysis of the system. For example, in the case of the
computer system earlier with the processor/memory unit limiting, R can be taken as 1, and K as 6,
so that | = KR = 6*1 with no coordinated sharing. In theory, with coordinated sharing up to the
limit possible, we have | = 6R(1 + 594/6) = 100 jobloads per hour, so that s = 594/6 = 99.

If only a fraction F of the available sharing-enhancement potential s is made available,
through limited coordinated sharing, | will be less than its potential KR(1 + s) and must be given
by I = KR(1 + sF). F might be called threvailable sharing-enhancement potential fraction

With any system, coordinated resource sharing among throughput entities requires that
system resources R participate in a usually complex and time-conswmimdinated resource-
sharing procedureto enable concurrent handling of multiple throughput entities without
collisions. An important property of the sharing procedure is that is it requires allocation of
resources R being shared for total timg @f operation of the sharing procedure (per basic
harmonic resource unit), thus temporarily diverting the resources from normal throughput
generation. System agents, while seeking the increased throughput capacity benefits of resource
sharing, will be inclined to seek to minimize system timgper harmonic resources unit lost to

operation of the sharing procedure.

We now assert, as axiomatic, that, generally, system agents will undertake coordinated
resource-sharing in steps, where the most effective, in terms of most throughput capacity increase
for least sharing time 4 is undertaken first, followed by the next most effective, and so on.
Hence, as the fraction F of the available sharing-enhancement potential s, due to operation of a
coordinated sharing procedure, increases towards 100%, each increased 1% gain in F requires a
greater increase in coordinated resource-sharing procedure activity ghar for the previous
1%. This means that the available sharing-enhancement potential fraction F must be a function of
Tg that is F = R(Tg). Empirically, R(Ts) must have value 0 whengTis zero and must increase

at a decreasing rate with increasing T saturate at value 1.0.



Hence, if we neglect the costs of resource sharing, due to resource diversion fotime T

during operation of the sharing procedure, the relationship between coordinated resource-sharing
procedure time & per harmonic resource unit and throughput capacity | must be given by an

expression
I =KR(1 + sk(Tyg))
where R(Xx) is a growth function of the general form:
G(x) = (1-e(X/0))
The constant g can be very small, so that G(x) quickly becomes 1.0 when x is only slightly
greater than 0, corresponding to the case where very little resource sharinggtimma€keded to

achieve 100% of available sharing-enhancement potential s. Note, however, that §ingasF
essentially an empirical expression that will represent some average of a large number of similar
functions for different situations, some departure from the ideal G(x) shape can be expected in
any practical situation, although in all cases it will increase on average from 0 with increaging T

to saturate near 1.0. (Note that, singgreasures the time for which the sharing procedure is in
operation, per basic harmonic resources unit, it may also be regarded as a measure of the
complexity of the coordinated sharing operatiogisithus a measure of the order created [31] by

the sharing operation, and hence the decrease in entropy of the system.)

In the above expression, so far we have neglected the negative impact on | of operating
the coordinated resource-sharing procedure during tiRelfTT is the period during which
throughput capacity is measured, for example T = 1 hour, where | is in jobloads per hour,or T =1
day, where | is diskloads per day, then the fraction of the time during which R is diverted from
normal throughput is JT. Hence operation of the sharing procedure effectively reduces R to:

R(1-TdT).
Hence the correct expression for the relationship between I, R gndi3t be

I =KR(1-TdT)[1+ sK(Tg)] (1)

This is the resource sharing equation, which expresses the resource-sharing hypothesis.

Equation (1) is stating that following introduction of a coordinated resource sharing
procedure taking time gper basic harmonic unit of resources, wit{Fs) anywhere between 0
and 1.0, so that increase in | is as given in (1), it is then possible to increase (decrease) R in basic
harmonic units subjected to the same level of sharing, and obtain a further increase (decrease) in
I. However, R has to be increased in valid units, which means in units of resources equal to the
smallest functional miniaturization of the system resources, or basic harmonic resources units.
Also the increases in R must be shared in the same way as existing units of R. It is important to
understand that J'is the time taken for sharing the resources in such a minimum unit of
resources, and is thus independent of the magnitude of R. The correct unisaod Therefore
units of sharing time per unit of basic harmonic resources. Of course, after some time, if the
system is operated with a fixed or standard level of sharing, then (§ A)J1+ sk(Tg)] is
constant, and can be absorbed into the rate constant Ksas K= KR, the resources of any

increase in R being assumed to be shared in the standard manner.
3. Implications of the Resource-sharing hypothesis

3.1 Productive use of a sharing procedure



It can happen that too much of the extra throughput benefits from sharing resources may be offset
by the cost of the sharing, so that the criterion for productive use of a sharing procedure is
obviously:

A-TgM[1+sk(Tg] >1
Where this inequality does not hold, coordinated sharing cannot pay.
3.2 Maximization of throughput capacity and thrashing

If Equation 1 is analyzed carefully, and examples pondered, it will be seen that there is a
level of sharing for which | will be a maximum. If Jis small relative to T when N(J

approaches 1.0, then this maximum will be
| =KR(1-TgT)[1+ S]

This reduces to | = KR[1+ s] if is really small compared to T as N§lapproaches saturation.

At the opposite extreme,glcould approach T before N§J reaches saturation, at which
point | will approach zero. Thus in the general case | will increase with increasing &
maximum value, and then decline, possibly to zero, @asohtinues to increase. A declining | for
increasing §is the phenomenon of thrashing, where increasing the level of coordinated sharing

results in less throughput capacity because the incremental cost of operating the sharing
procedure exceeds the incremental benefit. Thrashing is a well-known phenomenon in computer
operating systems [29], but is possible in any system with coordinated sharing. If we sgf x =T

the peak value for | is obtainable from a solution of
diidx = - KR/T[1+ s(1 - (-X/9))] + KR(1 - x/T)(1/g)sel-¥/9) = 0

which, since it involves standard calculus, is left to the reader.

It should now be clear that the increased throughput capacity caused by coordinated
sharing of resources within a system always has to be “paid for" by means of resource-
consuming complex coordinated resource-sharing procedure activity, in which the complexity
may be measured bysTand this axiomatic rule cannot be evaded. Readers who merely look
around, will see it in operation in almost every agent-directed system, whether simple or
complex, whether technological or social

3.3 Spreng’s Triangle
D. T. Spreng, a physicist, hypothesized that for any given task, for example to produce output g,
f1(t)f2(E)fs(i) = a constant

where t is the time, E is the energy, and i is the information required to perform the task, and
where 1(X), fa(x), f3(x) are functions whose value generally increases with increasing positive X.
This is one statement of what has come to be known as Spreng’s Triangle [2, 12, 13, 14]. In other
words, to carry out a given task, you can save energy by taking more time or using more
information, or you can save time by using more energy, and so on.

Spreng’s triangle can be deduced from the resource sharing equation:
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| = KR(1 — TgT)[1+ SF(T9)] (1)

Suppose we need to generate a quantity of output g. If this is done in time t with the system
operating at capacity then g/t =1 and:

g = KtR(1 - TdT)[1+ sK(Tg)]
In this expression, we can let g represent the fixed task, so that
tR(1 - T4T)[1+ sk(Tg)] = a constant

But R is a measure of the energy required in joules, so that J&&, fand T is a measure of the

order in the sharing procedure, hence a measure of negative entropy, hence a measure of
information. Hence (1 —JT)[1+ sK(Tg)] can be written as f(3), which can be written assfi)

where i is information. Hence:
tfo(E)fs(i) = a constant

It follows that the sharing equation is stating some fundamental limits [2] about the nature of
physical reality. It is for this reason that a mathematical proof of the resource-sharing hypothesis
is not possible in general, but must, like Spreng's triangle, remain as a good working hypothesis,
until measurements on a large number of systems confirm its validity in practice.

4. The resource-sharing equation in practice
4.1 Resource R adjustments

As we have seen, the increase in throughput capacity due to coordinated sharing is caused by the
resources of at least one limiting subsystem being shared among the throughput entities feeding to
or from underutilized subsystems. However, as a result of the sharing, sometimes adjustments to
R, not covered by equation (1), are desirable. [Note that this subsection on adjustments is
included for purposes of completeness, and may be skipped on initial reading.]

Take a system consisting of a computer processor/memory unit with many input and
output device pairs with no coordinated sharing of the processor. A jobload of data coming from
an input device (in continual disparate input bursts) and going to the output device of the I/O
device pair (also in continual disparate bursts) has the processor exclusively allocated until the
jobload of data has been completely output. The processor/memory unit is the limiting resource
and so many I/O device pairs are underutilized. But if the processor can have multiple jobloads
under processing at once, with the processing of the bursts of one jobload being interleaved
among the bursts from another job, we can have sharing of the limiting resource. Because of
higher throughput capacity, consistent with (1), this will have the effect of converting the 1/0
devices from underutilized resources to better or fully utilized resources. Following sharing of
limiting resources to the limit possible, there are essentially two distinct possibilities for adjusting
R by adding further subsystem resources to allow for better subsystem matching.

Case 1. Adjustment with unsharable resourceg, FBuppose that the computer system with

resources R has 1 processor (with sufficient memory) and 10 I/O device pairs, each pair being
used for a single job or jobload of data. Now suppose that the processor is shared, in an inclusive
coordinated manner, among the jobloads from all of the 1/O device sets, so tRpt=F{10, but

the situation is such that the processor could be shared among the jobloads from 12 1/O device
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pairs as a maximum. In that case an even greater sharing-enhancement of R is possible, that is, a
larger s is possible. An adjustment of 2 sets of I/O-device unsharable resoyjcesul be

added to R, for a total of 12, such that if the sharing procedure and thissektended to cope
with them, additional throughput will result, with a new version of (1) being applicable:

I= Ky (R+ Ry + TT)[1+ sFry(Ts)]
Addition of Ry to R is not a valid increase in R in (1), and causes the original system to be

fundamentally changed with respect to resources, so that modified constants K and s, and
function F(Tg) are now required.

Prior to undertaking additional sharing to cope with the addition @ffR,(Ts) will be
less than 1.0. Adding appropriately te Will bring Fr,(Tg) to saturation at 1.0, thus completing

sharing to the maximum possible allowed for by the nature of the processor. At this point
resources R + R may be said to constitute not only a basic harmonic resources unit, but a
sharing-potential maximized basic harmonic resource unit, and from this point resources can be
increased in units of R + [Rwith maximum efficiency resulting, that is, maximum increase in |

per resources unit.

Case 2. Adjustments with sharable resources Ruppose that the computer system with
resources R has 24 1/0 device pairs, each pair being used for a single job or jobload of data. Now
suppose that, because of the nature of the processor it can be shared among the jobloads from 12
I/O device sets at a maximum, so that E(F 1.0. This means there are 12 extra I/O device pairs
than cannot be used efficiently and which are contributing nothing to capacity. But this does not
mean that they can be removed from the system without effect, for they can still be in use! Every
pair is likely to have users, and which pairs are regarded as superfluous as far as throughput
capacity is concerned is arbitrary, for we can simply regard all the I/O device sets as being one
half underutilized.

To deal with this situation by improving throughput capacity, we could adjust R by
adding 1 processor (sharable resourcgst®give 2 processors and 24 sets of I/O devices, so that
a new version of (1) is applicable:

=Ky (R+Rg)(1+ TT)[1+ sF(T9)]

Addition of Rgto R is not a valid increase in R in (1), and causes the original system to be

fundamentally changed with respect to resources, so that modified constants K and s, but this
time no modified function {Tg), are now required.

Prior to the adjustment, the sharing time Was for 1 processor being shared among the

equivalent of jobloads from 12 sets of I/O devices. Following the adjustment, the basic harmonic
resources unit is 1 processor and 12 sets of I/O devices, so that exactly the same sharirg time T

per basic harmonic resource unit is required, and thus the same funct@nr). FAt this point
resources (R + §/2, or 1 processor and 12 I/O device sets, are the basic harmonic resources unit,

and also the sharing-potential maximized basic harmonic resource unit. From this point resources
can be increased in units of R +gRvith maximum efficiency resulting, that is, maximum
increase in | per resources unit.

Note however, with R being 2 processors and 24 sets of I/O devices, if we continue to
adjust R by adding processors, which are sharable resources, only minor and possibly no
increased throughput capacity results. The level of coordinated sharing, however, as measured by
the value F(Ts), must fall, since we are increasing the number of processors per I/O device set,
until when there are 24 processors there is no sharing at#lgHs zero, and each set of I/O
devices has its own processor.
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4.2 Risk of capacity loss due to deadlocks and collisions

A second-order effect due to the use of a coordinated sharing procedure is that sometimes
risk of throughput capacity loss appears as a side effect, for example, due to deadlocks and
critical-section (interference or collisions) problems as in computer operating systems [6, 11]. In
general, such risks are the consequence of mismatches between system resources for a given
sharing procedure and input stream, and will be considered elsewhere [3] in terms of equations
dealing with the relationship between throughput capacity, resources and risk.

4.3 Resource sharing in complex manufacturing systems

As is well known, many complex software products, besides operating systems, manage
throughput by means sharing resources among threads. A common example is a database
management system, where there is a thread associated with each request for service, either for
data retrieval, data insertion or data update [4, 5]. Equation 1 applies to all such systems.

The resource sharing equation also applies to physical systems, where the inputs and
outputs are material, for example production lines in a manufacturing plant [7]. Throughput
capacity can often be increased in such systems by coordinated sharing of resources, among many
production threads, but only at the expense of a complex coordinated resource-sharing procedure.
There is no escaping the consequences of the sharing equation. Most of the examples here
involved specialized knowledge though, beyond the scope of this paper [9]

However, there is an obvious example that is instructive. Consider an automotive
production system, and the paint facility in particular. Suppose each automobile needs three coats
of paint. Suppose it takes 1 minute for a computer-controlled paint-sprayer to spray on a coat, and
9 minutes for it to dry, before the next coat can be applied. In that case the facility can produce 1
fully painted vehicle per half-hour, or 48 per day. If the facility is considered as R = 1, then | =
48R =48.

But the facility is inactive 9 minutes out of ten, so that it is possible to share the facility
among up to 10 production threads, or 10 vehicles. While the paint of one is drying for 9 minutes,
coats can be applied to 9 other vehicles, each vehicle being considered as a thread of work with
three separate thread sections, one for each coat. The resource sharing equation (1) will therefore
apply.

If, ideally, Ts= 0 and H(&) = 1, we will now have | = 48R(1 + 9), so that s =9, and
throughput capacity will jump from 48 per day to 480 per day. In practigayill be greater than
0 and H(Tg) will be less than one at maximum throughput capacity, since the facility will

consume some time in a coordinated procedure needed to share itself among the threads of
production. Furthermore if the facility is small, so that it can only hold a few vehicles at a time,
requiring that vehicles be ‘swapped’ in and out for the various coats, theg) M{IT likely be a

lot less than 1 where | is at a maximum.

The coordinated sharing algorithm will become even more complex, if only parts of the
vehicle need to be brought in for a coat, such as doors, hoods, trunk lids, or roof sections, in a
kind of operating-system equivalent of paging or segmentation. Further complexity will arise if
we have different kinds of vehicle, some needing 2 coats, some 3 and some 4, and some for 1
minute some for 2 and some for 3, and some taking 8 minutes to dry, some 9 and some 10.
Where there are different kinds of vehicle, it usually means that the line is being used to
manufacture custom items.

This demonstrates what is well known in production engineering [7]. When production
lines are used to manufacture custom items, throughput capacity can often be improved by clever
sharing of production resources among the various threads of production. Often the coordinated
resource-sharing procedure for the operation is extraordinarily complex, and must be managed by
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a computer system. As well, finding the resource-sharing algorithms can be a difficult task, often
tackled by computer scientists.

It is an unfortunate fact that the sharing equation does not tell us what the resource-
sharing algorithm will be. It tells us merely that we should look not only for such a procedure, but
for a range of such procedures, in order of their ability to wring more and more throughput
capacity out of the resource base asificreases. However, the equation does tell us how to go

about selecting the optimum from among these procedures, and does warn us about the conditions
that will cause the system to thrash, thrashing being a much more general phenomenon than
might be expected. It will also tell us when it might be better to advise those responsible for the
system throughput to find a way to increase R instead, and thus forego using a complex,
coordinated, resource-sharing procedure.

It will always be the case that the simplest, although not necessarily the easiest, way to
improve throughput capacity will be to increase R. The more complex way will always be to look
for and use a coordinated resource-sharing procedure. However, since resources are always
scarce, as each new type of system appears, it can be expected that research to find a way to
increase the system throughput capacity by resource-sharing procedures will not be far behind.

5. Concluding Remarks

A basic system hypothesis -- the resource-sharing hypothesis, expressible as a basic
resource-sharing equation, relating throughput capacity, resources and a coordinated sharing
procedure for system threads, and valid for all non-growth, non-feedback agent-directed systems,
but especially for computer and information systems, have been presented and justified.

The resource sharing equation states (a) that throughput capacity increases linearly with
valid increases in resources, and (b) that for a given throughput capacity, as system resources are
decreased, system operating complexity must increase and vice versa. The equation can be used
to infer Spreng'’s triangle.

In the equation the constants and variable parameters can be reduced to numbers and
measurable quantities, so that the equation is subject to experimental verification. Nevertheless,
the reader who has taken care to fully grasp the hypothesis will no doubt see that it fits with his or
her own experience of practical functioning systems. However, the major benefit of the
hypothesis to system designers is that it promotes and simplifies clear thinking and accurate
reasoning about complex system situations and possibilities.
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