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Abstract

Streaming video content is the largest contributor to inbound network traffic at the University

of Calgary. Over five months, from December 2014 – April 2015, over 2.7 petabytes of traffic

on 49 billion connections was observed.

This thesis presents traffic characterizations for two large video streaming services, namely

NetFlix and Twitch. These two services contribute a significant portion of inbound bytes.

NetFlix provides TV series and movies on demand. Twitch offers live streaming of video

game play. These services share many characteristics, including asymmetric connections,

content delivery mechanisms, and content popularity patterns.

This thesis sheds light on the usage of modern video streaming services on an edge

network. It’s one of only a few studies to utilize long-term network-level data. To the best

of our knowledge, it’s one of the first studies that uses network-level data for Twitch traffic

characterization, and content characterization for NetFlix and Twitch.
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Chapter 1

Introduction

Usage of the World Wide Web has changed greatly since its introduction to the public. From

serving static documents and running servers from your home to dynamic content, content

distribution networks (CDN), and uploading information to the cloud, patterns have grown

more varied and asymmetrical; end users typically download far more data than they upload.

Video streaming content from the Web highlights the effects of these changes. As more users

are viewing streaming video content online, the volume of this type of traffic is expected to

grow. Characterizing this type of traffic allows us to gain a deeper understanding of how

network resources are utilized and how users are choosing to consume the content.

1.1 Motivation

Network traffic measurement is a mature area of research that is well understood. It’s used in

academia and in industry, for research and operational purposes. Measurement allows us to

gain a general understanding of how resources are being utilized, i.e., what’s the throughput

for a link? It may also allow us to improve the way we are utilizing the network, via better

policies, resource placement, or resource allocation. In order to plan for future improvements,

it is important to continuously characterize the traffic, to adapt the network infrastructure

to the evolving uses of the network.

Workload characterization in the context of a computer network explains network usage

by describing the traffic on the network. Different types of workloads have different prop-

erties. For example, with Web traffic, the amount of data downloaded from the Internet is

much larger than the amount of data uploaded to the Internet. Properties of traffic may be

determined by meta-data provided in the traffic, or by observing the traffic itself.
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Large changes in Web usage patterns are occurring as the workloads evolve. Instead of

static images and text documents, users now are interested in viewing a diversity of media

types online. Previously, when a user wished to view different media content they would

have to acquire the file somehow. This was generally done via direct download or through

some peer-to-peer application. Currently, the most popular way to consume different media

is to stream it from the Web. In fact, media streaming, specifically for video, is the largest

category (by byte volume) of incoming content from the Internet at the University of Calgary,

as we will detail in Chapter 3.

The popularity of streaming media content has risen greatly; end users are now much

more interested in streaming content than downloading it as a result of the service model.

Online streaming media has grown in both the number of providers and the amount of

content available. Furthermore, the growth is expected to continue [14]. It seems that music

and video streaming will continue to be dominant contributers to network traffic in the

future.

Music or audio content streaming services were the first to demonstrate that media

streaming is viable. Popular music streaming sites today include Spotify, Rdio, and Google

Play Music. Spotify and Rdio both offer free services, while Google Play provides a subscription-

based music service as well as an on-demand store catalogue. These music streaming sites

all offer professionally produced content and are expected to grow in popularity [9, 20].

Video streaming sites have experienced tremendous growth within the past few years.

Many streaming video sites have a mix of user-generated, professionally-produced, and

live-streamed content. Popular video streaming sites include YouTube [83], NetFlix [49],

Twitch [75], Vimeo [79], DailyMotion [17], Hulu [31], and Yahoo Screen [82]. Online video

streaming is currently displacing the more traditional TV-Broadcast system [30]. For exam-

ple, the larger multi-channel networks of YouTube “are already delivering enough minutes to

US audiences to challenge major TV networks...” [30]. NetFlix and Twitch both also serve
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enough content to viewers that they compete with some of the larger networks. NetFlix

already serves more traffic than two of the four major US television networks, while Twitch

serves enough content to rank in the top 75 networks, and is expected to rank in the top 25

networks next year based on its projected growth [30].

1.1.1 Video Content Providers

One of the most popular video content providers is NetFlix [35]. For this study we collected

information about (unencrypted) NetFlix traffic from December 2014 to the end of April

2015. NetFlix plans to encrypt all of their service later in 2015, starting with the Web in-

terface [50]. NetFlix charges a monthly subscription fee for unlimited access to its content.

Since NetFlix deals with licensing issues around the world, they sometimes impose a geo-

graphical restriction on its content; i.e., when accessing NetFlix in the United States, a lot

more content is available than if accessing from Canada. The selection of content in Canada

has improved greatly over recent years, but people still use various methods to bypass the

regional restrictions. We will discuss the methods to bypass such restrictions further in

Chapter 2.

Twitch is a video content site that primarily focuses on the live-streaming of video games

being played by other people. Twitch provides video-on-demand archives of streams for

later viewing. The content that Twitch serves is related to video games or non-sports games

of some sort. The games may be played and viewed at a professional level, with teams

of professional gamers facing off against each other and casters1 commentating about the

game as it happens, or it can be someone trying a game for the first time and explaining

what they are trying in the game and what they think of it. Twitch is the leading Web site

for eSports2 broadcasting [59]. All gaming tournaments have a stream on Twitch for their

1A caster is a professional commentator for these events.
2eSports is the shorthand term for electronic sports, which are competitive multi-player video game

competitions. In this thesis, the term eSports generally refers to such games being played at a professional
level.
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matches. There are some other Web sites that provide live-streaming for eSports events or

for games generally, but they do not have nearly as much traffic as Twitch does, or in the

case of covering an eSports event, they provide a stream on Twitch as well. Twitch accounts

for a significant portion of Internet traffic in the United States, trailing sites like YouTube,

NetFlix, and Apple, but ahead of others such as Facebook and Hulu [22].

We did not characterize the traffic from other providers as deeply as we did for NetFlix

and Twitch. YouTube is the largest video sharing site in the world [3], and generates the

largest volume of video traffic on the University of Calgary’s network. Since December 2012,

however, they have essentially encrypted all of their traffic. The traffic generated from other

video sharing sites is low in volume and is less interesting than Twitch (since Twitch is

mostly live-streamed). Sites such as Vimeo and DailyMotion both offer similar services to

YouTube, however they have a smaller and less active user community, and do not generate as

much traffic. Vimeo and DailyMotion transport their content over unencrypted connections

and may be assisted by a third party, i.e., a content distribution network. Hulu and Yahoo

Screen both offer professionally-made content (such as TV shows), but are either not officially

provided in Canada, as is the case with Hulu, or have almost no content in Canada, as is the

case with Yahoo Screen. Hulu delivers its content over unencrypted connections, and may

be assisted by a third party. Yahoo Screen uses encrypted connections, and seems to serve

content from its own servers. Vimeo may provide all content in high definition (HD), uses

encrypted connections on its site, and uses services from third parties to deliver content.

DailyMotion uses unencrypted connections and serves content from its own servers. All of

these sites account for very little traffic overall at the University of Calgary.

1.2 Objectives

The objectives of this thesis are as follows:

• Develop a methodology to measure all campus traffic for an extended period
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of time.

• Characterize the current usage trends for the University of Calgary’s network.

• Understand and characterize popular video streaming services accessed from

the University of Calgary’s network.

• Identify approaches to improve the delivery of popular streaming services.

In order to accomplish the latter two objectives, we need to accomplish the initial two

objectives.

1.3 Contributions

The four main contributions of this thesis are as follows. First, we construct the measurement

infrastructure needed to monitor all campus traffic for an extended period of time. Second,

we use the collected data to better understand network utilization at the University of

Calgary. Third, we focus on characterizing two popular unencrypted video services used on

campus, namely NetFlix and Twitch. Finally, we identify several approaches to improve the

delivery of popular streaming services.

Measuring all campus traffic identified a few issues that we describe in Chapter 3. When

characterizing the University of Calgary’s network utilization, we observed many phenom-

ena, including some recent changes to Web usage. While measuring traffic for an extended

period of time, we observed instances of abnormal behaviour on the network. A change

that has occurred in recent years with regards to Web usage is the increased usage of en-

crypted (HTTPS) connections. The usage of encrypted connections greatly limits our ability

to perform a detailed characterization of Web traffic. We focus on characterizing NetFlix

and Twitch traffic since they are relatively new services that are popular (both locally and

globally), and are expected to grow. Measuring the two providers is interesting since they do

not have overlap in content; NetFlix provides a catalogue of on-demand content for the user
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to view, and Twitch focuses on live-streamed content. Furthermore, both of these services

were unencrypted during our collection period.

1.4 Organization

This thesis is organized as follows. Chapter 2 provides a brief overview of the Internet’s

TCP/IP architecture, approaches to streaming media, and an introduction to NetFlix and

Twitch. It also covers previous work done in network traffic measurement and video traffic

characterization. Chapter 3 describes the tools and methodology used to collect the data and

discusses some information about general traffic levels at the University of Calgary. Chapter 4

explains general information about the levels of video traffic that we have observed at the

University of Calgary. Chapter 5 contains an analysis and characterization of NetFlix, and

Chapter 6 provides the same for Twitch. Finally, Chapter 7 presents conclusions and future

work.
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Chapter 2

Background and Related Work

This chapter provides an overview of the protocols involved in computer networking, as

well as approaches to media streaming, network measurement, and video traffic analysis.

Section 2.1 describes the TCP/IP stack used to transfer data over the Internet. Approaches

to media streaming are summarized in Section 2.2. Other studies in network and Web traffic

measurement are introduced in Section 2.3, and related work on video traffic characterization

is discussed in Section 2.4. Background information on NetFlix and Twitch is covered in

Sections 2.5 and 2.6, respectively.

2.1 TCP/IP Architecture

The Internet’s structure and usefulness have arisen from the organization of its protocols.

These protocols are layered, and are referred to as the Internet protocol suite or TCP/IP

(after two of the most important protocols in the suite). We will describe the standard

five-layer model of the TCP/IP stack. As shown in Figure 2.1, the layers are physical,

data link, network (or Internet), transport, and application [37]. Some of our later work on

application-level traffic classification relies on assumptions drawn from the TCP/IP stack.

Figure 2.1: The TCP/IP Layered Protocol Stack
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When two devices wish to communicate across the Internet, they do so with the assistance

of intermediate nodes called routers or switches. These nodes may not necessarily implement

all layers of the TCP/IP stack to assist the endpoints. Layers from the TCP/IP stack may

be implemented with either hardware or software.

2.1.1 Physical and Link Layers

The lowest two layers of the stack, data link and physical, deal with preparing the data

packets for transmission in frames, and transmitting the bits across a physical medium,

respectively. These two layers are normally implemented in the hardware on all nodes across

the network, from clients and servers on the ends to routers and switches in the middle.

The physical layer moves individual bits across a physical medium (such as copper, fibre-

optic lines, or wireless transmission). The link layer moves frames from one component of

the network to another. Some of the most commonly used data-link layer protocols are

Ethernet and Wi-Fi. Messages sent from the upper layers may be transported with a variety

of different data-link and physical protocols [37]. Our work in this thesis does not utilize

information from these lower layers.

2.1.2 Network Layer

The network layer sends individual data units (referred to as datagrams or packets) between

the end hosts involved in a connection. Currently, the main protocol used in this layer is

the Internet Protocol version 4 (IPv4) [61]. Each end host using the Internet Protocol has

an address called an IP address. An IPv4 address is a four-byte value written as a.b.c.d,

where each octet (byte) is a number from 0 to 255. The responsibilities of the network layer

are to route and forward packets. Routing packets means that the router will choose the

‘best’ path to send the packet so that it reaches its destination [37]. Forwarding packets

means that the receiving device moves packets from the input to the output port of a router.

Switches in the middle of a network do not implement the network layer, but routers do.
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The Internet Protocol is a “best effort” protocol. This means that it does not guarantee

delivery of packets within time constraints (or delivery at all), or that the packets it sends

arrive in the same order that they were sent [61]. The “best effort” nature of the Internet

greatly influences application-level protocols, as we will see later in Section 2.4.

To more easily manage the IP addresses in various networks, Classless Inter-Domain

Routing (CIDR) [24] is used. With CIDR, an organization is given a ‘block’ of addresses,

referred to as a subnet. Blocks use the following notation in an IPv4 network: a.b.c.d/x,

where the first x bits are a common prefix across all addresses in the subnet. We use subnets

in this thesis when identifying traffic from NetFlix.

2.1.3 Transport Layer

The transport layer sits on top of the network layer, and is responsible for providing transpar-

ent end-to-end communications between processes on the individual end devices. Different

transport-layer protocols may provide additional services, such as ordered delivery. The two

most-used protocols at the transport layer are UDP [60] and TCP [62]. In the following sub-

sections, we will examine the UDP and TCP protocols, as well as explain the functionality

and purpose of port numbers.

UDP

The User Datagram Protocol (UDP) [60] is a connection-less protocol used to provide “best

effort” delivery. When using UDP to communicate, messages may arrive out-of-order, and

there is no effort made to ensure a message that has been sent is received. UDP also does

not have any sort of flow or congestion control mechanism. When compared to TCP, UDP

does not provide much. An illustration of the UDP header is visible in Figure 2.2a.

The applications that use UDP are those that are able to tolerate loss. Streaming media

applications benefit from the use of UDP since they are tolerant of loss and prefer the low

overhead of UDP. However, modern streaming media is typically done over HTTP via a

9



(a) UDP Header Fields (b) TCP Header Fields

Figure 2.2: Packet Headers

TCP connection. TCP-based connections are used since many firewalls block UDP traffic,

and video streaming protocols over HTTP are more robust, as discussed in Section 2.4.

Furthermore, usage of UDP may negatively impact TCP flows that traverse the same links.

TCP

The most commonly used transport protocol on the Internet is the Transmission Control

Protocol (TCP) [62]. TCP is a connection-oriented protocol. TCP connections provide a lot

of features when compared to UDP flows. TCP provides reliable delivery; packets that are

sent through TCP are delivered in order, but no guarantee is made on the amount of time

it takes to deliver a packet. Many services that use TCP cannot tolerate loss. Examples

include email, file transfer, and Web browsing (video streaming potentially can tolerate loss,

but still uses TCP).

All packets sent through TCP have some overhead associated with them in the form of the

TCP header. The TCP header is longer than a UDP header since it contains information

about the packet being sent as well as information about the connection itself. Header

information includes fields such as the sequence number of the packet, the acknowledgement

number, window size, as well as other options and various flags. See Figure 2.2b for an

illustration of a TCP header. The sequence and acknowledgement numbers in the packet

header are used to ensure that data is sent and delivered in the correct order. The window

size is used to indicate the receive window size for flow control; flow control in TCP ensures
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that the sender will not overwhelm the receiver with data. The congestion control mechanism

of TCP may limit the sending rate to ensure that the network itself is capable of handling the

communication. The flags in the header are used for congestion control as well as connection

control information (establishment and termination).

In order to establish a connection, the originator first sends a packet that has the SYN

flag of the header set. Upon receiving the packet, the destination responds with a packet

that has the SYN and ACK flags of the header set, if it is indeed willing to establish a

connection. After the originator receives this packet, it will send a second packet that has

the ACK flag of the header set, and it may then start transmitting data. See Figure 2.3

for an illustration of the TCP SYN handshake packet exchange sequence. Established TCP

connections are typically terminated with another handshake similar to the one used for

connection establishment, except with the FIN flag set (instead of SYN).

Figure 2.3: TCP Connection Establishment Handshake Procedure

When data is transmitted in the connection, the sequence and acknowledgement numbers

are used to keep track of sent data. Each transmitted packet is assigned a cumulative

sequence number indicating the byte(s) contained in the packet. If the sequence number

overflows it wraps back to zero. When a packet is received, the receiver responds with a

packet of its own that has the ACK flag set and the acknowledgement number set to indicate
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the bytes received. This ACK packet tells the sender that the destination has received that

packet. If no ACK packet is received in time, the sender will assume that the packet has been

lost and try to retransmit it. When a group of three ACK packets for the same sequence

number is received, that indicates that the destination is informing the sender that a packet

has been lost and needs retransmission.

Port Numbers

Table 2.1: Well Known Port Numbers

Transport Protocol Port Number Service

TCP 22 SSH
TCP 80 HTTP
TCP 443 HTTPS
UDP 53 DNS
UDP 123 NTP

Port numbers are used by the transport layer to enable concurrent communication be-

tween multiple different processes on the end devices. When a process on a server starts,

it may bind itself to a port and listen for incoming connections. A client process will also

open a port on its machine and send data to the server; the client and server port numbers

do not have to be the same. Port numbers are 16-bit numbers ranging from 0 to 65,535.

Numbers less than 1,024 are considered to be reserved for a specific service or application. In

many cases, a port number and the transport protocol may be used to indicate well-known

services. Table 2.1 contains a few examples. For instance, a server listening to TCP port 22

is usually running secure shell (SSH). The port numbers and services that are of interest to

us for this thesis are TCP ports 80 and 443, which handle HTTP and HTTPS, respectively.

Port numbers in the 1,024-65,535 range are ephemeral. That is, they are used if the client

does not require the port to be a specific number. For example, if a client opens a Web

browser and connects to a Web site (using HTTP), the client’s Web browser will have TCP

connections with ports in the ephemeral range, and the server will listen on TCP port 80.
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2.1.4 Application Layer

The Application layer is the uppermost layer of the protocol stack. Popular applications

include email, file transfer, voice over IP (VOIP), and Web browsing. The protocols used in

the TCP/IP stack should be transparent to the application. Encryption of communications

can be done at the application level, for example with the TLS [18] or SSL [23] protocols.

The World Wide Web was primarily created by Tim Berners-Lee in 1989 [6]. The Web

provides a platform to access content and services. Usage of the Web is how most people

interact with the Internet. This is primarily done over HTTP or HTTPS.

Hypertext Transfer Protocol

The HyperText Transfer Protocol, HTTP, is one of the protocols used when browsing the

World Wide Web [21]. HTTP specifies how a client requests documents from a server.

The client’s implementation of the protocol is typically done in a Web browser (such as

Google Chrome, Mozilla Firefox, or Microsoft’s Internet Explorer) to provide a user-friendly

interface. As Section 2.1.2 stated, devices on the Internet are assigned an IP address; IP

addresses are not intended to be human-friendly. To give users a better experience when

browsing the Web, we instead address machines with a host (or domain) name; these names

are translated to IP addresses by a service called the Domain Name Service (DNS) [47].

In order to differentiate between distinct objects on the Web, we use a Uniform Resource

Locator (URL) or a Uniform Resource Identifier (URI). The terms URI and URL may be used

interchangeably [77]. The difference between them is that a URI needs to uniquely identify a

resource [7], while a URL identifies the resource as well as an access mechanism [8]. A URL

is composed of two parts. The first part is the host name – which server to contact. The

second part is the request path – where the item is located on the server. For example, a

URL may look like “http://google.com/”. In this case, the HTTP protocol is being used

(‘http://’), the host name is ‘google.com’, and we are requesting the ‘root’ item (‘/’).

An HTTP request starts with a request line, which is the request method followed by

13

http://google.com/


the URI, followed by the HTTP version. On the subsequent lines of the request, there may

be optional headers and then an optional body. An HTTP request may look like:

GET /index.html HTTP/1.1

Host: www.server.com

User-Agent: my-browser/1.0

In this example, ‘GET’ is the request method being used; ‘index.html’ is the file being

retrieved, and HTTP/1.1 is the version of the Hypertext Transfer Protocol being used for

the request. The response may indicate a different HTTP version that the server has decided

to use for the connection. The headers in our example include the Host as well as the User-

Agent used to request the element, and there is no body for this request. The most popular

request methods are GET, POST, and HEAD. GET requests are used to retrieve an item

from a server. POST requests are used to send information to a server (in the request body).

HEAD requests are used to retrieve just the meta-data about an object from the server (no

body in the response).

When a Web server receives an HTTP request, it will issue a response. Responses start

with a status line, then a set of optional headers, followed by the (optional) body. The status

line starts with the HTTP version, followed by the response status code, then the response

reason-phrase. An example of a response may look like:

HTTP/1.1 200 OK

Server: my-server/1.0

Content-Type: text/html

Content-Length: 1024

<html>

...

</html>

In this example, the server is responding with the HTTP/1.1 protocol, the status is 200

(OK), and it lists some headers followed by the content. In this case, an HTML document

of size 1,024 bytes is returned. The headers in this case include the server, content type,

and content length. The server is the name of the process that responded to the request.
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The content type and length are meta-data about the response and may be used by the

client to better handle the response. There are numerous different response status codes,

but they fall into a few general categories such as: 1XX – Informational (i.e., 100 continue,

or 101 Switching Protocols), 2XX – Success (i.e., 200 OK, or 206 Partial Content), 3XX –

Redirection (i.e., 301 Moved Permanently, 302 Found, or 304 Not Modified), 4XX – Client

Error (i.e., 404 Not Found, or 418 I’m a Teapot [42]), and 5XX – Server Error (i.e., 500

Internal Server Error, or 503 Service Unavailable). Client error responses occur when the

client makes an error, i.e., requesting a page that does not exist, or for which they do not

have authorization to access. A server error exists when the server fails to fulfill a valid

request.

HTTPS

The secure version of the Hypertext Transfer Protocol is referred to as HTTPS [67]. A client

connecting to a server via HTTPS must first establish a connection with the Transport

Layer Security (TLS) protocol. After a TLS connection is established, it may send requests

through that connection. HTTPS identifiers are slightly different from HTTP URIs, since

they begin with ‘https://’ instead of ‘http://’. With regards to our monitoring capability,

we assume that a connection is providing HTTPS service if we see a TLS or SSL handshake

on port 443. That means if HTTPS transactions occur on a nonstandard port, we do not

count them.

2.2 Media Streaming

Media streaming over the Web has evolved with respect to how the content is provided

and presented. Audio and video streaming services have recently undergone many changes

with regards to the technologies driving them and the content itself. In this section, we will

present a higher-level overview of media streaming and highlight several of the relevant tech-

nologies. We do not, however, go into detail about lower-level approaches such as encoding
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algorithms. The technologies in use can improve user experience, assist with copyright law

responsibilities, and assist service providers with content distribution.

2.2.1 Audio Streaming

Audio was the first type of media content to be streamed over the Internet. Audio streaming

includes things such as: audio clips, music (both professionally made and amateur record-

ings), podcasts, and live-streaming radio-like services (such as a sportscast). Audio clips

and podcasts are generally delivered as a static file (.mp3) from a Web site. Previously,

various plugins may have been used to enable audio playback from the Web in an attempt

to discourage piracy. For user-generated audio content, sites like SoundCloud are used, or a

more popular (video) site such as YouTube is used. In this case, the music being uploaded

would have a static image in the player on YouTube, and the content would arrive via mp3.

Streaming music content is the most popular application of audio streaming.

The two most popular service models for music streaming are to provide some catalogue

of content or a radio-like service. The difference between music streaming sites and radio-

like services over the Internet is how the end user interacts with the content. On a music

streaming site, the user may select songs and play lists from a list of content. A radio-like

service, on the other hand, behaves like a radio broadcast. The content is chosen for you

and is delivered ‘live’; this includes things such as live sports commentating, news, and talk

shows. Radio-like services are provided by users who set up an Internet radio station (with a

service such as ShoutCast), and radio stations rebroadcasting over the Internet. The popular

music streaming services (Spotify, Rdio, Google Play), offer both a catalogue of on-demand

content as well as play lists. The play lists offered do not count as a radio-like service, since

a user is able to skip or repeat songs.
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2.2.2 Video Streaming

Video streaming has constantly evolved with regards to both the underlying technology used

to deliver it, and the types of video available. Previously, video streaming was done with

the use of third-party plugins such as RealPlayer, (Shockwave/Adobe) Flash, or Microsoft

Silverlight, but there has been a shift away from using these types of plugins and towards

using new features provided with HTML5. These features, in the form of a native ‘VIDEO’

tag, were designed with serving video content in mind. Sites like NetFlix and YouTube have

already abandoned third-party plugins in favour of an HTML-only approach.

There are various video streaming services observed on campus that provide the users with

different types of content. YouTube, Vimeo, and DailyMotion all allow for user-generated

content to be uploaded. Hulu, Yahoo Screen, and NetFlix provide professionally-produced

content. Twitch focuses mainly on live-streaming content – mainly of video games (YouTube

has been expanding its live-streaming capabilities too). In this thesis, we will discuss NetFlix

and Twitch in depth in Sections 2.5 and 2.6, respectively. We do not, however, characterize

YouTube traffic in great detail, since YouTube has switched to using HTTPS by default.

2.2.3 Geo-Gating

Geographical gating (geo-gating) is when a service provider restricts access to content based

on the user’s location. When a client connects to a server that is geo-gating content, the

server will determine where in the world the client’s IP address is by querying a database or

remote server. In this thesis, we observe this technology being used to restrict content due

to licensing issues.

Users may try to bypass these restrictions. There are two main approaches used to

bypass geo-gating. The first is to use a virtual private network (VPN), and the second is

to use a third-party plugin. If a VPN is used, then traffic to and from the destination is

sent through an encrypted tunnel. The other end of the tunnel in this case is in an area
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where the content is not blocked, so the server sees all requests from the client (who is in

a blocked area) coming from the unblocked end-point of the tunnel. In this case, since the

tunnel is encrypted, we are unable to extract detailed application-level observations from the

connection, such as what content is being requested and what request method is being used.

When a third-party plugin such as Hola (a Web browser plugin) is used to access content, we

are able to see the requests and responses that are sent over the Internet; no encryption is

added. A third-party plugin generally works by re-routing (or proxying) some of the requests

made by the browser (such as DNS requests) to get around the regional content restrictions.

2.2.4 Content Distribution Networks

A content distribution network (CDN) is a collection of servers distributed across the In-

ternet. Content on a server is mirrored onto the others. The goals are to provide higher

availability of content, since having a server fail will not make the content unreachable, higher

performance, since the content may be closer to the end user, and improved scalability, since

there are more servers to respond to requests. A CDN is useful since it may provide better

service to the end user and requires less investment from the content provider (if using a

third-party network).

We see various CDNs in use when inspecting traffic. These CDNs can be operated

by the host organization, i.e., cdn-vimeo.net and cdn-0.nflximg.com (CDNs for Vimeo

and NetFlix). A CDN may also be operated by a third-party provider, such as Akamai or

Limelight.

2.3 Related Work in Traffic Measurement

There have been numerous studies focusing on the measurement and characterization of

network traffic. We will group these studies into two broad categories: studies focusing on

characterizing network traffic [10, 12, 13, 15, 16, 26, 41, 72, 81], and studies examining HTTP
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traffic [40, 52, 63, 70, 71, 78].

Residential Internet usage was measured by Maier et al. [41] with a dataset from 2009

provided by a European Internet service provider (ISP). The study revealed that there was a

shift away from peer-to-peer file-sharing applications and back towards HTTP traffic. Since

the ISP provided DSL connections to its subscribers, the analysis focused on the consequences

of this, such as IP reassignment, and short session length.

Chatzis et al. [12] measured traffic in 2012 from a major European ISP for 17 weeks.

They found that many of the “critical Internet players” were trending towards homogeneous

networks. That is, they host servers with the assistance of third parties or deploy massive

numbers of their own servers.

Home networks were characterized in recent studies by Grover et al. [26] in 2013, and

Xu et al. [81] in 2014. These studies found that there are strong diurnal patterns on home

networks. They also provided empirical evidence of the popularity of YouTube and NetFlix.

Czyz et al. [16] studied denial of service attacks using the network time protocol (NTP)

in 2014. They characterized many aspects of this type of attack, including the volume of

traffic, number of devices, community response, etc. While this type of traffic is not the focus

of the thesis, we have observed NTP exploitation on the University of Calgary’s network.

See Chapter 3 for our observations.

IPv6 adoption rates were also studied in 2014 by Czyz et al. [15]. They observed that

adoption of the new addressing scheme is accelerating and that adoption is not geographically

uniform. At the University of Calgary, we have observed very limited use of IPv6. In fact,

all IPv6 traffic observed is currently tunnelled via IPv4.

Bustos-Jimenez and Fuenzalida [10] focused on measuring an ISP from the user’s end

to ensure that net-neutrality1 rights are met. Their probes collected data between October

2011 and April 2012. They found that most ISP’s provided less bandwidth to the consumer

1A basic description of net-neutrality is that an Internet service provider must treat all packets that it
routes equally. No content is to be given priority over others.
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than stated (i.e., a 10 Mbps plan would only give 8 Mbps). They also found that available

speed varied depending on the time of day. During the night, the download speed would

be much less than what the user’s contract specified, indicating a policy-driven decision as

opposed to an infrastructure failure. The system they developed was used by consumers to

help defend their rights and enact positive service changes.

A study of machine-to-machine traffic by Shafiq et al. [72] focused on characterizing

traffic from cellular devices. They used a week-long traffic trace from August 2011, and

found that a majority of smartphone traffic was sent through TCP, and belonged to well-

known applications (such as HTTP or email).

Chung et al. [13] studied mobile devices in enterprise networks using data from April

12-22, 2011. The found that across the three main smartphone OS’s (Android, iOS, and

Windows), there was significant use of mobile devices to transfer files, sometimes using peer-

to-peer protocols such as BitTorrent. They also observed diurnal patterns with smartphone

usage. Activities such as checking the news and weather would occur in the morning, and

file transfers would occur overnight.

Newton et al. [52] conducted a long-term study of Web traffic from the University of

North Carolina at Chapel Hill. This study used outgoing Web logs from a 13-year time

period, from 1999-2012. They only counted traffic on TCP ports 80 and 443 (HTTP and

HTTPS). Their analysis focused on packet headers. They were able to identify and charac-

terize activity sessions. Their HTTPS analysis can count the number of connections in their

traces and estimate how many requests and responses were exchanged (as well as their sizes)

by comparing the sequence and acknowledgement numbers of the packet headers.

Mah developed an early model for HTTP network traffic [40] with data taken from late

1995. His model is based on the properties of request and response exchanges. The specific

characteristics in his model are: request-length, response-length, document-size, think-time,

consecutive document retrievals, and server selection. The model that Mah developed is
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commonly used when studying static pages, or Web traffic in bulk. This type of model is

not commonly used when characterizing video traffic. In the paper, Mah removes anomalous

connections that poll a server every five minutes for new images. Video streaming (especially

live-streaming) makes many connections at regular intervals, thus making video streaming

connections unsuitable for this type of model.

Pries et al. [63] developed another model for HTTP traffic using statistics from many

popular Web pages around the world. Their model used data from 2012 and shows that

the number of embedded objects has increased, with images and scripts being the most

prominent. They also found that the number of inline objects has greatly increased (when

compared to past studies), and that much of the content is now being drawn from multiple

originating servers. They expect that both of these counts (inline objects and embedded

objects) will increase as HTML5 matures.

Schneider et al. [71] used data from residential networks in Europe, from 2008-2010,

to examine some common pitfalls in the measurement of HTTP requests themselves. They

found that there were three main classes of problems that arise when analyzing HTTP traffic:

ignoring persistent/pipelined HTTP requests; content-type mismatches; and content-length

mismatches. These issues are common across observed connections. We are able to observe

some of these issues with our investigation of video traffic as well. See Chapter 4 for an

explanation.

In 2009, Veres and Ionescu [78] proposed and demonstrated a measurement-based clas-

sification system for Web 2.0 applications. Web 2.0 applications include things like social

media and video streaming. They were able to characterize instances of devices accessing

these sites without using information above the transport layer. They found that video traf-

fic volume dominates other traffic, and video traffic is transported by relatively few flows,

compared to other applications such as photo album sharing.

HTTPS traffic flows were studied by Schatzmann et al. [70]. They looked specifically into
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the classification of encrypted Web email traffic with an 11-day trace from March 2011. The

approach taken by the authors was a passive one. They looked for email-related protocols

across hosts that have similar client pools, identified known email servers, and then used

the proximity to those servers to identify Web mail servers. After identifying the relevant

servers, they characterized connections for their study.

2.4 Related Work in Video Traffic Characterization

Kuschnig et al. [38] examined request-response based HTTP streaming in 2011. By emulating

a network, the authors found that the use of HTTP request-response streams is more robust

than simple TCP streams for video transmission. In this case, a simple TCP stream is the

transmission of the video file over a single TCP connection, where smooth playback can

be achieved high over-provisioning. HTTP streams are better able to adapt to network

conditions. Swaminathan [74] arrives at the same conclusion, namely that other protocols

associated with streaming do not provide a good user experience. He states that HTTP-based

streaming can be developed further to address these issues.

Dynamic adaptive streaming over HTTP (DASH) has been the subject of multiple stud-

ies [4, 36, 54, 64]. DASH is a popular approach to video streaming, which makes efforts to

overcome the best-effort nature of the Internet. DASH is the basis of Apple’s HTTP live-

streaming (HLS), which is the service deployed by Twitch for their live-streaming solution.

It also seems that DASH is used by NetFlix [66]. DASH works by breaking a single large

video file into a sequence of many small video segment files that can be easily transmitted

individually over the Internet. For example, if a DASH server wanted to serve a large file

named video.mp4 it would split the file into smaller files named video-1.mp4, video-2.mp4,

..., video-N.mp4 ; a client wanting to view video.mp4 would request and play video-1.mp4,

then video-2.mp4, and so on. A DASH server also provides the files in different levels of qual-
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ity. Clients interacting with the server will automatically choose the best quality possible2

(based on network conditions) and ask for the latest file in the sequence. With live-streaming

content, if a file cannot be transmitted in time, it is skipped and the next one is requested.

Li et al. [39] examined techniques used from 1993-2013 to provide a retrospective view

of the approaches and technologies used in video streaming. The overview described the

previous approaches to streaming videos, both over HTTP and through other mechanisms

such as peer-to-peer networks.

Plissanneau and Biersack investigated HTTP streaming for YouTube and DailyMotion

from an ISP’s perspective [58]. The dataset they use is composed of a set of ten one-hour

traces captured between 2008-2011. They found that most video downloads fall into two basic

groups: videos that are fully downloaded, and those that are not. The groups corresponded

strongly to video quality (both delivery quality and content quality); i.e., bad video quality

leads to early video cancellation. Another study by Din et al. [19] observed the same effect:

poor connection quality as indicated by dropped packets may lead to shorter connection

durations. An interesting observation was that even when the video quality was good, only

half of the videos are fully downloaded, likely due to a lack of user interest.

Wei and Swaminathan considered the future of live-streaming video over HTTP 2.0 [80].

The authors primarily investigate the technologies that could be used in HTTP 2.0 (since

HTTP 2.0 was not yet finalized [5]). One of the new features in HTTP 2.0 that may help

with video streaming is the server push feature, which allows the server to proactively send

data that has not yet been requested by the client. They found that this feature could reduce

latency significantly.

In 2013, Tyson et al. [76] used a Web crawler to study a video site that specializes in

pornographic content. With repeated use of the crawler, they were able to determine the

popularity of videos within a certain time-frame. They also observed some characteristics

that are present with other services, such as a small subset of the content being the most

2The user may request a specific quality level as well.
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active. Unlike other video sharing sites, they found that popularity of a video rapidly

decreases with time.

A study of student interaction with video streaming content was conducted by He [29].

He analyzed the messages that were sent (both online and offline) in an education service

using data from the Fall 2009 semester. The chat analysis found that the primary use of the

utility was to chat with other students, not to interact with the instructor.

Gill et al. [25] studied YouTube requests from the University of Calgary’s network in 2007.

This study was on video traffic sent from YouTube and the CDNs assisting it. There have

been many changes since the study. First, YouTube’s architecture has changed drastically,

including a move to HTTPS. Second, the University’s network has been upgraded since then.

Finally, there are now many competing services available to choose from.

Metzger et al. [45] conducted an analysis of Web-based video delivery with YouTube in

2011. This study is more recent than the one by Gill [25], so it takes the infrastructure

changes at YouTube into account. They did not measure at a network-level. Instead, they

were more interested in video-playback characteristics, such as stalling time. Since these

studies [25, 45], YouTube has switched to using HTTPS, making it impossible to exactly

repeat this type of analysis, since the application-level details, such as content identifiers,

are encrypted.

2.5 NetFlix

NetFlix provides TV shows and movies on-demand. The content provided by NetFlix is

different from other video streaming sites, such as YouTube or Twitch, in several major

ways. Specifically, NetFlix does not have user-generated content, content is often geo-gated,

and NetFlix is a subscription-based service. NetFlix also does not have any support for

live-streaming events.

NetFlix’s model, i.e., providing only TV shows and movies, is important in differentiating
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NetFlix from other services. Specifically, NetFlix does not offer other professionally-made

content such as music videos, product overviews, or professional commentary for large events.

YouTube and Yahoo Screen both offer these types of content. NetFlix has a mandatory

subscription plan starting at $7.99/month3. This differentiates NetFlix from other services

that offer movies and TV shows, like Yahoo Screen (no subscription) and Hulu (optional

subscription).

Hulu also provides similar content (movies and TV shows) with both a free and premium

service, but is not available in Canada. NetFlix’s geo-gating is an important characteristic.

Not all content on NetFlix is globally visible. That is, some content provided in the United

States may not be available in Canada or the rest of the world, and vice versa. Unlike Yahoo

Screen, NetFlix does not list the unavailable content4.

2.5.1 History

When NetFlix was founded in 1997, it provided an online interface to a DVD rental ser-

vice [51]. This service is still available in the United States. Starting in 2007, NetFlix

started to provide online streaming of content in the United States, and expanded this ser-

vice into Canada in 2010. When NetFlix started to offer streaming services over the Web,

they first used Microsoft’s Silverlight plugin for digital rights management (DRM) related

purposes, but more recently (in 2013) they have switched to using HTML5. In 2011, NetFlix

expanded into South America and Latin America, and in 2012 they began to expand into

Europe. NetFlix also started to provide original content to subscribers in 2013 with their

release of House of Cards5, and a new season of Arrested Development.

3The $7.99/month plan allows for up to two devices to be used at once with HD (1080p) streaming.
There is also a $11.99/month plan that allows four devices and Ultra HD (4k) streams.

4Yahoo Screen produces and is the only distributor of season 6 of Community, but the content does not
play in Canada.

5The NetFlix original series House of Cards is based on a previous BBC series of the same name.
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2.5.2 Related Work

Many of the previous studies [1, 2, 65, 43] involving NetFlix traffic do not reflect some of

the recent technical changes.

Studies done by Adhikari et al. [1, 2] studied how NetFlix connects to various clients across

the United States with data traces from 2011. The technical details, including hostnames,

usage of CDNs, and usage of SilverLight, have all changed since the study was published.

NetFlix traffic volumes were studied by Martin et al. [43] in 2013. This study was done in

2013, when NetFlix was using third-party CDNs to deliver video traffic. They observed that

NetFlix’s implementation of DASH defaults to TCP congestion control mechanisms when

the network is under heavy traffic.

Streaming behaviour of NetFlix and YouTube on the client’s end was also studied by Ito

et al. [33] in 2014. This study determined some network-level characteristics of the traffic

in many scenarios. They found that the NetFlix player consumes an average of 3.4 Mbps –

YouTube consumed around 1.2 Mbps. The behaviour of a NetFlix connection differed from

YouTube: NetFlix uses a period of high bandwidth at first to fill a buffer, then reduces to a

much lower level of bandwidth. This study was done in June 2014, after NetFlix switched

to HTML5, but another study by Rao et al. [65], in 2011, showed similar behaviour with the

Silverlight plugin.

2.6 Twitch

Twitch is a site that is focused on live-streaming of video game content. The content on

Twitch is focused on video games or other types of non-sports games, such as board games or

card games. Twitch provides live-streaming capabilities as well as video on demand (VOD)

capabilities for past broadcasts. Twitch does not have a mandatory subscription fee, nor does

it geo-gate content. However, Twitch allows users to pay an optional monthly subscription

fee (to Twitch or streamer(s)) for some benefits; this is described in Appendix F. Unlike
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YouTube, a Twitch streamer may not upload pre-recorded videos. Twitch currently uses

Flash on the user’s end to stream videos.

Twitch, due to its content, is very different from other services like NetFlix or YouTube.

Twitch focuses on live-streaming video games and provides some utilities to help the streamer

interact with the viewers. Every live-stream on Twitch also has a ‘chat’ associated with it

(a Web embedded Internet Relay Chat (IRC)). The chat allows users to converse with the

streamer and amongst themselves about the content. Twitch primarily organizes live-streams

by game title. On the homepage, there are also listings for the top channels being broadcast

from gaming consoles (XBox One, PlayStation 4), but the console streams are much less

popular than the other ones (much fewer viewers).

2.6.1 History

Twitch started in 2011 as a self-sufficient spinoff from the more general streaming site

JustinTV.com6. Twitch was acquired by Amazon in September 2014. One of Twitch’s

earliest competitors, Own3d.tv, failed in early 2013 after controversy surrounding its busi-

ness practices [44]. The own3d.tv domain is still active today, but completely unaffiliated

with the original service. Twitch currently has a virtual monopoly on all video game stream-

ing events [59]. YouTube and DailyMotion are both trying to gain traction in video game

live-streaming, but have had limited success so far.

2.6.2 Related Work

Shea et al. [73] conducted a study of Twitch’s streaming service focused on streaming soft-

ware. They were specifically investigating Open Broadcast Software (OBS) – a popular

program used to send streams to Twitch. Their experiments with this software occurred in

2015. This study did not investigate network events, but instead profiled the workload of a

streaming computer.

6JustinTV was active from 2007-August 2014.
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Hamilton et al. [28] characterized the Twitch community itself in 2014. The authors

of this study focused on the social aspects of the community as well as what environment

Twitch presents (in a social context). This study was able to get some information from

a variety of streamers (on both big and small channels) about the social interactions they

have.

The community that surrounds Twitch was studied by Nascimento et al. [48]. They

specifically targeted streamers involved in eSports for the game Star Craft 2 (SC2) from

October 2014 to February 2015. Their observations were based on interactions in Twitch

chat. They found that viewers displayed certain behaviours, such as channel surfing and

early exit (leaving a stream a few minutes before it was ending).

Twitch traffic was studied recently by Zhang and Liu [84], using data from the Twitch

API. They crawled Twitch in the fall of 2014 and found most viewers watch from a desktop as

opposed to a console device such as an XBox or Playstation. When examining the streamers

themselves, they observed that less than 1% of them triggered 70% of the views. Strong

diurnal patterns from these streamers was also observed.

A comparison of Twitch and YouTube’s live-streaming capabilities was conducted by

Pires and Simon [57] from January to April 2014. In this study, they found that Twitch is a

more mature system, with many more concurrent channels and sessions than YouTube. The

authors also conducted another study on Twitch’s use of DASH [56].

Another study with data obtained from crawling Twitch was done by Kaytoue et al. [34]

taking place from the end of September 2011 to the start of January 2012. This study

focused on the community around Twitch, with a special interest in the eSports community.

They found that many streams (41%) originate on the west coast of North America, 19% on

the East coast, and the rest were mostly from Europe or south-east Asia and Korea. They

also observed fluctuations in game popularity. These fluctuations occurred when a new game

was released; that is, new games receive a surge of popularity.
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2.7 Summary

In this chapter, we described the TCP/IP protocol stack, and approaches to media streaming

for both audio and video content. We surveyed related work in the areas of network traffic

measurement and video traffic. Finally, we described the two main services we will study,

NetFlix and Twitch, and summarized previous studies done with these services. Our study

with these two services is novel since we are using a large network-level dataset.

In the next chapter, we will describe the tools and methodology used to collect our

dataset, as well as the characteristics of traffic on the University of Calgary’s network.
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Chapter 3

Measurement Methodology

Our data is collected from a mirrored stream of all traffic that passes through the University

of Calgary’s edge routers. This means that we can observe all traffic that has one endpoint

in the Campus network and the other endpoint in the Internet.

We use a Dell server to monitor the mirrored traffic stream. This server is equipped with

two Intel Xeon E5-2690 CPUs (32 logical cores @2.9 GHz) with 64 GB of RAM and 5.5 TB

of local storage for logs. The operating system on the server is CentOS 6.6 x64. We backup

the logs nightly to a file server with more storage. Our monitoring server uses an Endace

DAG 8.1SX capture card with the firmware updated to the latest release (March 2013) to

capture the mirrored traffic. The features of this card will be detailed in Section 3.1.

We run a custom tool to collect aggregate throughput information about the traffic, such

as TCP or UDP bytes in and out. Section 3.1 has more information about this tool. In

addition, we run the Bro Network Monitor [55] to collect connection-level logs about all

traffic that we see. Section 3.2 has more information on our specific usage of Bro. We have

the capability to use other tools to analyze the traffic stream, as described in Section 3.3.

3.1 Network Throughput

The Endace card in the server is capable of filtering, steering, and splitting traffic across

many different streams. The tool that we use to log network throughput information is

written in C and uses the Endace DAG API. Using the API, we are able to look at incoming

packets and read header information, i.e., IP version, IP addresses, protocol number, and

packet length. This information is aggregated and logged at one-minute intervals to give us

network usage information.
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We chose to use our own tool to collect this information for several reasons. First,

other throughput tools available were not written for the DAG API. Second, the program is

simple, robust and lightweight. Third, it is an independent way to validate summary results

in Bro. We can partially reconstruct this throughput information using Bro’s connection

logs, but we may miss information for a couple of reasons. First, connection log entries do

not have any way to determine how packets in a connection were delivered over time, so

when reconstructing throughput information, we assume all connections send/receive bytes

uniformly over their duration. For example, we assume that if a connection lasts two minutes

and sends two megabytes, then it sent one megabyte per minute. A second issue is that Bro

only logs connections when they terminate, so if we wanted to get throughput information

for a specific day, we may miss connections that extend beyond the end of the day1.

3.2 Bro

Bro is an open-source network security monitor [55]. By default, Bro records connection

events observed on an interface or from a pre-recorded packet capture file. The logs that

Bro produces that are of primary interest to us are the connection, HTTP, and SSL logs.

The connection logs list general information about each observed connection, i.e., start time,

endpoints, bytes/packets transferred by each endpoint, duration, termination-state. The

HTTP logs contain information about each HTTP request/response pair, with information

such as start time, endpoints, request/response body length, domain, path, referrer, etc. We

have extended Bro’s default behaviour to collect extra information about HTTP request-

response transactions. This extra information includes request and response start and end

times, as well as some select headers from the messages, such as cache policy and response

type. The SSL logs contain information about encrypted connections. We use the SSL logs to

identify connections that communicated with servers of interest, i.e., NetFlix authentication

1We found that some connections lasting multiple days were the result of network misuse.
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servers, or GoogleVideo servers.

Using the information available in all the logs, as well as some other sources, we can gain

a general understanding of the usage of the University of Calgary’s network. See Section 3.4

for details.

The traffic splitting feature of the Endace card is used for load balancing in our deploy-

ment.

3.3 Other Collection Tools

With our configuration of the server, we can use other tools to process the traffic stream as

well. We have occasionally used tcpdump to look for specific traffic in the live-stream (i.e.,

NTP traffic). We also have occasionally used the Endace tool dagsnap to collect full-packet

traces, which are used for debugging purposes. dagsnap is capable of capturing all traffic on

the interface with no packet losses. Other tools that can be used on the server include any

that use the DAG API or libpcap, since we have compiled libpcap on the server with DAG

support.

3.4 Traffic Overview

Over the five months that we collected data from the Campus network, we have measured

over 2.7 PB of traffic. We observed numerous general trends in usage as well as some anoma-

lies in this traffic. We have produced throughput graphs with the information produced by

the tool described in Section 3.1. These graphs show inbound and outbound throughput

levels (in gigabits per second) split across the X-axis for various protocols. The most visible

protocols are TCP (in blue), and UDP (in yellow). When comparing traffic from December

2014, in Figure 3.1, with traffic from the end of April 2015 in Figure 3.2, we notice that there

was a significantly higher level of outbound UDP traffic in December. This UDP traffic was

due to a Network Time Protocol (NTP) exploitation attack. We examine UDP traffic in
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Appendix A.

Our traffic follows a diurnal pattern that corresponds to when the majority of people are

on campus. The busy period starts in the late morning with usage peaking mid-day and

continuing until the late evening. The idle period starts late in the night and lasts until the

morning. The peak inbound rates approach 2.5 Gbps, consisting mostly of TCP traffic. Our

outbound traffic (excluding UDP-based NTP exploit traffic) is under 1 Gbps. The levels of

traffic dip slightly over the weekends and are much lower when there is an academic break

in the University’s calendar.

3.4.1 Outages

Our collection period for Bro logs starts on December 1, 2014 and runs until April 29,

2015. We missed collection with the throughput tool for the first week of December. Several

outages were due to power or network outages on Campus, or they were caused by issues

with our server configuration. The following are lists of interruptions:

Network/Power Interruptions

• January 30, 2015, 11:19-12:12 – power failure

• April 29, 2015 – full traffic mirror disconnected

The mirror disconnect corresponds to the end of our collection period.

Bro Interruptions

• December 22, 2014

• December 23, 2014, 00:00-11:15

• February 15, 2015, 18:00-19:00

• April 10, 2015, 10:00-24:00

• April 11, 2015
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• April 30, 2015, 02:00-24:00

Throughput tool failures

• January 30, 2015, 11:19-February 2, 2015, 10:17

• April 30-May 1, 2015

The throughput tool failure from January 30 – February 2 was caused by a misconfigured

startup script that was triggered by the power outage. On April 29, 2015, a misconfiguration

in the network resulted in our traffic mirror being disconnected. The cause of the throughput

tool’s failure after our mirror was disconnected on April 29th is unknown.

Figure 3.1: Campus Network Traffic, December 7-13, 2014

34



Figure 3.2: Campus Network Traffic, April 19-25, 2015

3.4.2 TCP

Out of the 2.7 PB traffic, 1.75 PB was TCP, and the remaining 0.95 PB was UDP (UDP is

discussed in Appendix A). There is much more inbound TCP traffic than outbound traffic;

1.40 PB in and 0.35 PB out over the five-month period. This is expected, since it corresponds

to users on campus retrieving information from servers like Google (including YouTube),

and Facebook. Inbound traffic is primarily composed of HTTP traffic (TCP port 80), or

HTTPS traffic (TCP port 443). Not all traffic flows on TCP ports 80 and 443 are necessarily

HTTP(s) connections, since they may include things such as scans or upgraded (WebSockets)

connections. Monthly breakdowns of traffic volumes are shown in Figure 3.3.

The inbound TCP traffic that we see is mostly HTTP(S) traffic. The inbound traffic in
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Figure 3.3: Monthly Traffic Breakdown

these counts includes both responses to requests originating from campus and requests to

campus Web servers from the Internet. In fact, over 80% of inbound TCP traffic is HTTP(S);

see Table 3.1 for monthly breakdowns.

Table 3.1: Inbound TCP Traffic Breakdown

HTTP HTTPS Total
Volume Percent Volume Percent Volume

December 111.4 TB 50.1% 73.59 TB 33.1% 222.4 TB
January 147.2 TB 54.1% 83.73 TB 30.8% 272.2 TB
February 145.2 TB 51.7% 101.8 TB 36.2% 281.0 TB
March 178.0 TB 53.5% 124.8 TB 37.4% 333.8 TB
April 151.7 TB 52.9% 107.3 TB 37.4% 286.6 TB

HTTP

As stated previously, not all connections on ports 80 or 443 are HTTP(s) connections.

Some of these connections are caused by scanning activity or they may be used by other

applications, such as BitTorrent, in order to bypass firewalls (i.e., masquerading). No HTTP

requests or responses are transmitted (correct behaviour) with these connections. However,
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we have observed that some connections that immediately upgrade to a (secure) WebSockets2

connection do not receive the HTTP label from Bro, since they do not send a visible HTTP

request. Due to this behaviour, we are unable to track certain connections of interest,

including Twitch Chat connections (Twitch Chat is described in Appendix G).

Over the collection period, we observed over 10.5 billion HTTP requests with a total

response body length of 726.68 TB (from both servers on campus and on the Internet).

Table 3.2 shows a percentage breakdown of the most popular request methods and status

codes seen for the entire collection period. There were many HTTP transactions that had

no associated method. It’s possible that some transactions were not properly logged as

their attributes for requests and responses were empty in the HTTP logs. Some transactions

received a 400 Bad Request response (semantically correct behaviour), but it seems like many

of these transactions are parts of web applications. For example, many of these transactions

were sent to NetFlix’s streaming services and received a 206 Partial content response, we

believe these transactions were caused mainly by mobile devices. There were also some

transactions that sent a few kilobytes in their request (with no method) and received no

response.

Table 3.2: HTTP Summary Information

Request Method Status Code
Method Percent Code Percent

GET 90.6% 200 (OK) 76.6%
POST 6.4% 302 (Found) 7.0%
HEAD 1.2% 304 (Not Modified) 4.8%
Other 0.2% 206 (Partial Content) 2.2%
None 1.6% 204 (No Content) 1.7%

404 (Not Found) 1.1%
Other 3.5%
None 3.1%

Inbound HTTP traffic from servers on the Internet measured 642.1 TB with 9.4 billion

request-response pairs. Table 3.3 shows the top content type headers used throughout our

2The WebSockets protocol allows bi-directional communication between a server and client.
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observation period for inbound traffic. A total of 81,876 unique content-type headers were

seen. With this table, we can see that a low number of requests does not imply a low number

of bytes transferred. When checking the entries in the Bro HTTP logs, we can see that in

many cases the content-header type does not match the response MIME type; we get many

occurrences where the mismatch is minor, i.e., the content type is Text/html but the MIME

type is Text/plain or vice versa.

Table 3.3: HTTP Inbound response content type headers

Type Volume Percentage of Requests

Application/octet-stream 310.14 TB 5.15%
Video/mp4 63.81 TB 0.55%
Image/jpeg 33.02 TB 11.82%
Video/mp2t 30.83 TB 0.35%
Text/plain 23.00 TB 5.93%
Video/x-flv 17.27 TB 0.07%
Text/html 14.54 TB 17.53%
Image/gif 14.02 TB 12.91%
Video/f4f 13.89 TB 0.29%
Application/x-steam-chunk 13.82 TB 0.32%
Video/* 9.98 TB 0.41%
Other 95.53 TB 33.43%
None 2.52 TB 11.06%

Video/* excludes explicitly stated types

The responses with Application/octet-stream set as their type are either software

updates from companies like Apple3 or Microsoft4, content from Amazon’s cloud, or more

commonly, video being transported from NetFlix.

Video content is most often served via CDNs. The popular CDNs that we have ob-

served include: Twitch (twitch.com or ttvnw.net), third-party CDNs (such as Akamai or

Cloudfront), Google (googlevideo.com and 2mdn.net), and various different CDNs directly

associated with pornographic content. Another type that we commonly see, Flash5, is not

3From the domains: swcdn.apple.com, phobos.apple.com, or appldnld.apple.com.
4From the download.windowsupdate.com domain.
5The common content types for Flash are: Application/x-fcs, Application/flv, Application/x-flv,

or they start with Flash/.
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as common as it was in the past. We mostly see Flash videos being used to show ads on the

Internet. These ads are either requested from a CDN or from companies or domains directly

associated with advertisements.

The Application/x-steam-chunk type is used by Steam, a digital storefront for video

games. Steam, by default, automatically updates any games a user has downloaded.

The most popular external domains (by traffic volume) that we see over our observation

period are listed in Table 3.4. Note that this table measures only the HTTP traffic.

Table 3.4: Top 20 HTTP Server Domains by Traffic Volume

Host Volume Percent Description

netflix.com 217.10 TB 33.81% Video streaming, see Chapter 5.
apple.com 53.75 TB 8.37% Operating system and software updates, iTunes

store and associated services.
googlevideo.com 15.59 TB 2.43% Video streaming, unencrypted YouTube traffic.
steampowered.com 13.73 TB 2.14% Software downloads.
twitch.tv 13.12 TB 2.04% Live-streaming videos, see Chapter 6.
akamaihd.net 11.93 TB 1.86% Third party CDN.
instagram.com 10.44 TB 1.63% Social network operated by Facebook that special-

izes in sharing photos (on mobile).
imugr.com 7.71 TB 1.20% Photo sharing site
tumblr.com 7.71 TB 1.20% Blogs.
ttvnw.net 6.37 TB 0.99% Domain operated by Twitch to stream videos.
windowsupdate.com 5.66 TB 0.88% Operating system updates.
google.com 4.58 TB 0.71% Google it.
9c9media.com 3.80 TB 0.59% Registered to Bell Media Inc.
rndcn3.com 3.56 TB 0.55% Associated with pornography.
amazonaws.com 3.39 TB 0.53% Amazon Web Services.
dailymotion.com 3.23 TB 0.50% Video Streaming service.
llnwd.net 3.22 TB 0.50% Limelight networks.
spotify.com 3.20 TB 0.50% Music streaming service.
edgesuit.net 3.08 TB 0.48% Associated with Akamai.
musicnet.com 3.08 TB 0.48% Third Party CDN.
Subtotal 394.25 TB 61.50%

Percent of Inbound HTTP volume (642.1 TB)

As Table 3.4 shows, no single domain (excluding NetFlix6), accounts for a significant

portion of HTTP traffic. This indicates that there are many different domains serving

HTTP content to campus. In fact, over our observation period, we observed over 1.90 million

6Traffic levels for NetFlix include traffic from IP addresses owned by NetFlix. See Appendix D for a list.
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unique domains. In this domain count, we group domains to the highest level we can, i.e.,

image.google.com and plus.google.com are grouped into google.com, while google.ca

is excluded in this case.

HTTPS

Similar to the issue with tracking HTTP traffic, not all connections to port 443 are HTTPS,

since there may be scanning connections or other applications using the ports to bypass

firewalls. We may, however, use the SSL logs that Bro produces to identify HTTPS servers,

since the SSL log lists the server name associated with certificates that it sees. The downside

to this approach is that it becomes much harder to find out how much traffic was exchanged,

since there are many server names used and the SSL log does not list bytes exchanged in

connections.

By using the same grouping strategy as we did for HTTP domains, we can once again

aggregate sub-domains for popular services on the Web. When doing this, we can easily find

how often a server is contacted. We have counted 3.97 billion connections from over 5.59

million different domains in the SSL logs. The most popular external SSL servers are listed

in Table 3.5. Note that we chose to order by connections instead of volume since Bro’s SSL

logs, which list server names, do not list bytes transferred.

A strange entry in our SSL logs was majuwe.com, a domain associated with ad-ware.

We found that a single local machine was responsible for almost all the connections to the

domain. This domain is being hosted on a third-party CDN, so looking for more information,

such as the owner, based on an IP address does not result in more information. It also means

that attempting to block the domain at a network level does not work, since the CDN will

use another IP address for connections.

There was also a significant number of servers, with over 626 million connections (15.8%),

that had an empty name in the SSL log. We are able to uniquely identify these servers with

their IP addresses. We counted over 208,000 external devices that do not have a name in the
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Table 3.5: Top 10 HTTPS Server Domains by Connections

Host Connection Count Percent Volume Description

google.com 314 million 7.91% 27.3 TB Popular non-YouTube
Google services.

apple.com 179 million 4.51% 2.8 TB Apple services.
majuwe.com 168 million 4.23% 106.7 GB Domain associated

with ad-ware.
akamaihd.com 151 million 3.80% 32.7 TB Third party CDN.
googlevideo.com 131 million 3.30% 230.1 TB Video streaming on

YouTube.
facebook.com 130 million 3.27% 18.6 TB Social network.
icloud.com 88.0 million 2.22% 546.4 GB Apple could storage.
gstatic.com 88.0 million 2.22% 7.8 TB Static elements from

Google - Javascript,
CSS, etc..

live.com 74.0 million 1.86% 5.9 TB Microsoft personal
email service.

microsoft.com 72.3 million 1.82% 3.0 TB Microsoft services.
Subtotal 1.40 billion 35.25% 328.8 TB 66.94% of HTTPS

Traffic.

SSL log. Using a bulk whois resolver7, we were able to resolve all but 398 addresses. 78% of

these requests belong to five organizations:

1. Apple - 115 million connections (24%)

2. Google - 95 million connections (19%)

3. Microsoft - 77 million connections (16%)

4. Facebook - 47 million connections (10%)

5. Amazon - 45 million connections (9%)

HTTPS traffic should mirror normal HTTP traffic characteristics. That is, the content-

type being transported has a much greater influence on bytes transferred than the number

of connections. This characteristic allows us to assume that the domains associated with

googlevideo transmit more traffic than the others, as we will see in Chapter 4.

7www.team-cymru.org
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3.5 Summary

In this chapter, we described our monitoring capabilities and the tools used to gather data.

We summarized our collection period and interruptions encountered during this period. Fi-

nally, we provided a basic overview of traffic characteristics observed during this period.

In the next chapter, we will go into greater detail about video traffic levels and charac-

teristics seen during our five-month collection period.
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Chapter 4

Video Traffic Analysis

In this chapter, we investigate inbound video traffic. As stated previously in Chapter 3, the

three most common content-type headers used to transport video are Video, Flash, and

Application/octet-stream. Together, these three types accounted for 432.9 TB (67.42%)

of inbound HTTP traffic. In Section 4.1, we characterize the different content types and

external domains observed serving video over HTTP. Section 4.2 shows the characteristics

of Flash content. Octet-stream content is summarized in Section 4.3. Finally, in Section 4.4,

we show how the traffic volumes from two popular HTTP providers, NetFlix and Twitch, as

well as YouTube (including HTTPS), compare to the overall inbound HTTP and HTTPS

traffic.

We occasionally see some other content types used to transport video content, such as

Application/x-silverlight-app, or Application/vnd.apple.mpegurl. The Silverlight

plugin from Microsoft was used before HTML5 to stream media that needed DRM protection.

Over the collection period, we have observed that only 29 GB (< 0.01% of inbound HTTP)

of data had the silverlight-app content-type. The apple.mpegurl content type is used in

Apple’s HLS service (that we see in use by Twitch); we have seen 191 GB (0.03% of inbound

HTTP) of this type of content sent over our collection period. Since the volumes for these

other types of content are low, we will not focus on analyzing this type of traffic.

4.1 Video Content

In this section, we investigate the inbound HTTP traffic that had a ‘Video’ type content

header. We counted over 123 million request-response pairs for HTTP video content respon-

sible for 104.0 TB (16.20%) of inbound HTTP traffic (6.85% of total inbound traffic). This
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does not include traffic over HTTPS that is likely transporting video, which we will review

in subsection 4.4.1. There were 111 different types of video tags seen. A majority of bytes

were transported with only a few different video tags, as shown in Table 4.1.

Table 4.1: HTTP Video Types

Type Volume Volume Percent Percent of Video Requests

Video/mp4 63.81 TB 61.36% 41.80%
Video/mp2t 30.83 TB 29.64% 26.68%
Video/x-m4v 5.65 TB 5.43% 0.14%
Video/webm 1.52 TB 1.46% 1.36%
Video/quicktime 0.41 TB 0.39% 0.08%
Others 1.75 TB 1.68% 29.91%

Requests with the content-type of Video/webm are gaining in popularity; this is because

Video/webm content is replacing Image/gif content on popular sites. We have also seen

entries in the Bro HTTP logs that have the content type set to ‘Video’ and have an empty

response MIME type. We investigate the external servers that provide video content in the

following sub-section.

4.1.1 External Video Domains

This section investigates the domains that serve video content to users on campus. Our

count for external video servers includes responses with the content types Video/f4f and

Video/flv; that is, any content type beginning with ‘Video’ is counted for the following

analysis. These responses had a total response-length of 124.9 TB.

Named Hosts

Over our collection period, we observed 16,700 domains serving video content, with over 148

million requests.

Table 4.2 shows the popular HTTP video services. In this table, Twitch includes all of its

associated domains: twitch.tv (13.07 TB, 13.7 million connections), ttvnw.net (6.33 TB,

7.4 million connections), and justin.tv (0.31 TB, < 10, 000 connections). Twitch’s charac-
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Table 4.2: Popular HTTP Video Services

Service Volume Percent Connections

twitch.tv 19.72 TB 15.8% 21.1 million
akamaihd.net 11.49 TB 9.20% 56.6 million
youtube.com 9.19 TB 7.36% 6.87 million
apple.com 5.21 TB 4.17% 259,000
neulion.com 4.96 TB 3.97% 6.12 million
instagram.com 4.96 TB 3.97% 10.0 million
9c9media.com 3.76 TB 3.01% 3.38 million
rncdn3.com 3.56 TB 2.85% 1.29 million
dailymotion.com 3.22 TB 2.58% 2.84 million
xvideos.com 2.29 TB 1.83% 1.20 million

teristics are described in Chapter 6. The Akamai CDN is the most popular CDN observed,

and has an edge-node located in the data-center on the University campus. The numbers for

YouTube include googlevideo.com, which sent 8.39 TB over 5.91 million connections, and

youtube, which sent 0.80 TB over 0.96 million connections. These counts exclude HTTPS

traffic.

The rest of the entries in Table 4.2 are described as follows. The video traffic from Apple

was likely promotional materials for products and streams of Apple events. Neulion provides

live and on-demand video broadcasting over the Internet, for major sports leagues such as

the NHL. Instagram is a photo and video sharing social network. 9c9media is registered to

Bell Media Inc. We believe that rncdn3.com is associated with pornography, since Bro logs

commonly list the referrer to these video requests as a porn streaming site. DailyMotion is

another video streaming service. Finally, xvideos.com is a pornographic video streaming

service.

IP Hosts

When inspecting our HTTP logs generated by Bro, we observed over 11,200 external hosts

serving video content without a Host-name. They transferred 10.84 TB of data in over 5.00

million requests.

Table 4.3 shows the popular subnets observed for unnamed HTTP video content servers.
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Table 4.3: Unnamed HTTP Video Host subnets

Subnet Volume Percent Connections Operator

50.7.164.0/24 1.055 TB 9.73% 28,400 connections FDC Servers (Amsterdam)
63.243.196.0/24 1.041 TB 9.60% 250,000 connections Tata Communications (America) Inc.
23.236.121.0/24 0.516 TB 4.76% 115,000 connections C3 Networks Inc.
65.255.35.0/24 0.482 TB 4.45% 123,000 connections C3 Networks Inc.
70.39.188.0/24 0.394 TB 3.64% 361,000 connections Packet Exchange Inc.

These subnets are associated with enterprise data-centers or ISPs.

4.2 Flash Content

Over the collection period, we observed 36.81 TB (5.73% of inbound HTTP) of Flash content,

with over 298 million requests. There were 44 different types of Flash content tags; the most

popular of these are shown in Table 4.4.

Table 4.4: HTTP Flash Types

Type Volume Volume Percent Percent of Flash Requests

Video/x-flv 17.27 TB 46.92% 2.31%
Video/f4f 13.89 TB 37.73% 9.21%
Application/x-shockwave-flash 3.67 TB 9.97% 20.70%
Application/flv 0.81 TB 2.20% 0.01%
Video/flv 0.63 TB 1.71% 0.16%
Application/x-fcs 0.24 TB 0.65% 67.58%
Others 0.05 TB 0.14% 0.30%

Unlike responses with a Video content-type, Flash responses are skewed. Responses with

Application/x-fcs account for a majority of Flash requests (202 million), but account for

less than 1% of bytes. This type of content is actually associated with audio streaming; we

commonly see it used for radio over the Internet. Flash flv and x-flv content are commonly

used for displaying embedded clips (such as sports highlights), or are served from smaller

services such as dailymotion or from pornographic video sites. Flash f4f content is most

commonly served from a CDN such as Akamai or one operated by the organization (i.e.,

videocdn.vice.com). Shockwave-flash content is mostly served from domains associated
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with advertisements, such as adap.tv or quantserve.com, thus we can safely assume that

they are ads.

IP addresses in the 68.142.64.0/18 subnet were responsible for serving over 90% of all

Flash requests; this subnet is operated by the Limelight CDN.

4.3 Octet-stream content

Octet-stream content accounts for 311.4 TB (48.5%) of inbound HTTP traffic, with over 486

million requests. As previously stated, not all content with “octet-stream” in the content-

type header is video traffic. There were 62 different types of responses that were some form

of (non-text) octet-streams. The most prevalent types are listed in Table 4.5.

Table 4.5: HTTP Octet-Stream Types

Type Volume Percent of Requests

Application/octet-stream 310.14 TB 99.57%
Binary/octet-stream 0.98 TB 0.38%
Others 0.28 TB 0.06%

As stated in Chapter 3, a significant portion of Application/octet-stream content is

actually software updates from companies such as Apple and Microsoft. The traffic that

we can identify as video traffic using this content type comes from NetFlix, Google (via

googlevideo.com), Baidu (a Chinese search engine), wimp (curated video content), and

uStream (streaming service). NetFlix was the source of 217.1 TB (69.72%) of octet-stream

content; we will discuss NetFlix traffic in Chapter 5. We also see content from CDNs

such as Akamai and Cloudfront that may be video. Additionally, we have seen some ads

delivered with Application/octet-stream through domains such as tubemogel.com. The

Binary/octet-stream content seems to be software updates or connections to an online

multi-player game (e.g., EVE Online).
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4.4 Video Traffic

Table 4.6 shows HTTP traffic volumes to various video services by month. The level of

unencrypted traffic generated by these video services is low. Yahoo Screen, a service that

we previously mentioned, serves no unencrypted video traffic. Vimeo delivers video by its

own CDN (vimeocdn.com), or using a third-party CDN, such as Akamai (vimeo.<node>

.akamaihd.net). The volumes for Vimeo in Table 4.6 contain traffic from Vimeo’s CDN as

well as the nodes operated by Akamai. The unencrypted traffic levels for YouTube are low,

but as we have previously mentioned, YouTube serves a majority of its traffic with HTTPS;

the following sub-sections 4.4.1 and 4.4.2 provide further details.

Table 4.6: HTTP Inbound Video Traffic by Month

YouTube DailyMotion Vimeo Hulu

December 1.93 TB 535.7 GB 69.3 GB 3.3 GB
January 1.89 TB 685.2 GB 108.4 GB 1.3 GB
February 1.74 TB 662.2 GB 119.4 GB 4.0 GB
March 2.08 TB 717.5 GB 79.9 GB 2.7 GB
April 1.51 TB 662.5 GB 62.9 GB 2.3 GB

We are not able to measure the viewers or sessions on campus for any video service

(including NetFlix and Twitch). We encounter a couple of issues when trying to estimate

the number of local viewers. The first issue is the use of Network Address Translation

(NAT), which allows many machines to use a single IP address when accessing the Internet.

NATs on campus mean that we are unable to assume that each local IP address is a single

viewer or session. The second issue is that video connections may use parallel connections

to access content, as we will describe in Section 4.4.3. The use of parallel connections by

video services means that we are unable to simply count connections to a service as a single

session or viewer.
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4.4.1 HTTPS Traffic

When investigating HTTPS connections, we can observe very few application-level details.

That is, for HTTPS connections, we cannot identify any request-response pairs, URIs, or

headers. We could gain more insight if we used the same methods as Newton et al. [52]. The

lack of headers (and therefore content-types) makes it difficult to measure all video traffic

occurring over HTTPS. Thus we choose to investigate connections to known video services,

and assume that they are transporting video. When measuring HTTPS traffic, we look in

the Bro SSL logs for the connections to servers of interest, and then find those connections

in the connection logs to obtain the number of bytes transferred.

Table 4.7: HTTPS Inbound Video Services by Month

YouTube Akamai Vimeo Yahoo Screen Hulu DailyMotion Total HTTPS

December 36.2 TB 5.8 TB 32.1 GB 390.7 MB 152.2 MB 58.7 MB 73.6 TB
January 36.3 TB 6.0 TB 47.3 GB 341.7 MB 169.8 MB 93.7 MB 83.7 TB
February 45.5 TB 7.0 TB 67.6 GB 293.2 MB 392.4 MB 98.3 MB 101.8 TB
March 59.6 TB 8.5 TB 103.0 GB 294.4 MB 252.1 MB 96.3 MB 124.8 TB
April 52.4 TB 5.4 TB 69.9 GB 221.6 MB 203.3 MB 77.9 MB 107.3 TB

As Table 4.7 illustrates, YouTube sends much more traffic through HTTPS than through

HTTP. The services listed in the table are expected to be sending video traffic YouTube and

Akamai dominate monthly HTTPS volume, since they send multiple terabytes of traffic to

campus. Vimeo’s traffic is measured in gigabytes and the others are in megabytes – there

are very few viewers for these services on campus. We will discuss YouTube traffic levels in

more detail in sub-section 4.4.2. The other services send a small amount of video traffic over

HTTPS. Since their levels are low, we will ignore them for later graphs.

4.4.2 YouTube Traffic Volume and Throughput

YouTube sends and receives a majority of its traffic through HTTPS. The unencrypted

(HTTP) traffic to YouTube (or GoogleVideo) servers are embedded video links. We observed

some HTTPS traffic being sent to YouTube. This corresponds to a user uploading a video;
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see Table 4.8 for a monthly breakdown.

Table 4.8: YouTube Traffic by Month

HTTP HTTPS
Inbound Outbound Inbound Outbound

December 1.93 TB 0.14 TB 36.22 TB 0.89 TB
January 1.89 TB 0.12 TB 36.31 TB 1.06 TB
February 1.79 TB 0.05 TB 45.47 TB 1.14 TB
March 2.08 TB 0.05 TB 59.63 TB 1.36 TB
April 1.51 TB 0.05 TB 52.43 TB 1.08 TB

Figure 4.1 shows total traffic via HTTP (yellow) and HTTPS (red) to and from YouTube

and GoogleVideo servers for January 2015, with the inbound and outbound traffic split

across the X-axis. We choose to plot the outbound traffic to YouTube since YouTube allows

for the upload of user-generated content.

Figure 4.1 is used as an example of a typical month in terms of YouTube traffic. The

combined (HTTP+HTTPS) outbound traffic to YouTube has an average peak daily rate of

around 0.5 Gbps. Once in a while, we see bursts of outbound traffic (less than 0.1 Gbps);

these are videos being uploaded.

4.4.3 Video Traffic

In Figures 4.2 through 4.6, we see the inbound network traffic from YouTube (red), NetFlix

(green), and Twitch (blue), as well as the total HTTP+HTTPS traffic as a black line. The

volumes of video traffic on campus follow the same diurnal patterns as the total traffic, since

inbound video traffic is mostly human-driven. The sudden brief outages correspond to the

times when Bro was reset on the server (to load new scripts). Twitch’s traffic levels are hard

to distinguish in these graphs as they are very low.

From Figures 4.2 through 4.6, we can see that the amount of traffic from the three largest

video services is around half of the total HTTP+HTTPS traffic. Using these graphs, we can

see a few different events, such as the network outages, winter and spring break, and a few

sudden increases in incoming Web traffic. These sharp increases in inbound Web traffic (as
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seen on February 11, 2015 in Figure 4.4) correspond to traffic from windowsupdate.com;

i.e., security patches downloaded to Windows machines on campus.

Over our collection period, we observed 40.3 million connections that were involved with

the transport of video content. That is, a response to a request in the connection had

the content type set to “Video/*”; this excludes connections that transported “Flash/*”

and “Application/octet-stream” content. When inspecting these video connections, we

find that the average connection duration is 51.3 seconds, and the median value was 7

seconds. Figure 4.7a shows the cumulative distribution function (CDF) for durations for

these connections. The Y-axis of a CDF graph shows probability and the X-axis shows

what is being measured; in this case duration. There are two sharp increases in connection

duration, one occurring at 1 second and the other at 30 seconds. We do not know the cause

of the first increase; the connections each contact different hosts and request different video-

types. The second increase may be associated with connections transporting ads, since 30

seconds is a common duration for ads (the same as TV).

Figure 4.7b shows the CDF for video connection sizes (in bytes) during the five-month ob-

servation period. In this case, we measure both inbound and outbound bytes per connection.

The median inbound byte value is 484.25 KB, while outbound is 9.49 KB.

The characteristics of video connections appear strange at first glance, since they transmit

little data and are very short. We believe that this behaviour is caused by DASH. The client

may open a connection, or parallel connections, to request segments of the video, and then

close the connection(s) when the client’s buffer is full. This behavior would lead to a client

using many small connections to stream a video, and this seems to be the behaviour we

consistently observe in modern video streaming services.
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Figure 4.1: YouTube Traffic for January 2015
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Figure 4.2: Video Traffic Comparison for December 2014
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Figure 4.3: Video Traffic Comparison for January 2015
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Figure 4.4: Video Traffic Comparison for February 2015
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Figure 4.5: Video Traffic Comparison for March 2015
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Figure 4.6: Video Traffic Comparison for April 2015
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(a) Duration CDF

(b) Size CDF

Figure 4.7: December 2014 - April 2015 Video Connection Characteristics
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4.5 Summary

In this chapter, we examined the visible video traffic levels on the University of Calgary’s

network. We determined the most popular types of video content, as well as the domains

from which they originate. We investigated the levels of other content-types, such as Flash

and Octet-streams. We find that most modern video services use a combination of their

own servers as well as content distribution networks to provide content. We also gave a

brief overview of YouTube traffic levels. Finally, we discuss general video traffic levels for

the observation period, as well as characteristics for video connections. However, we are not

able to measure the number of local viewers or sessions to video services.

In the next chapter, we examine the characteristics of NetFlix traffic during our obser-

vation period.
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Chapter 5

NetFlix Analysis

NetFlix is a subscription-based video streaming service that is heavily used on campus1.

Originally, NetFlix required the use of Microsoft’s Silverlight plugin to stream content, but

in October 2014 they switched to streaming HTML5 video over HTTP connections.

5.1 Desktop and Mobile Requests

Requests sent from a desktop Web interface to NetFlix differ from requests sent from mobile

devices2. Mobile devices include Android phones and tablets as well as the Apple iPhones

and iPads.

The requests from the different devices result in different request URLs. For instance,

requests for (video) content from the NetFlix Web interface from a desktop look like:

http://<IP>/range/?o=<o>...

while requests from a mobile device’s NetFlix App look like:

http://<IP>/?o=<o>

The ‘range’ section of a desktop request indicates a byte-range [68], as a workaround

from the Silverlight implementation. These requests are made with the GET method and

the response has a content type header of Application/octet-stream.

We observed 306 million requests to NetFlix. About 40% of all requests for NetFlix

content over HTTP are made by mobile devices.

1Additional details about NetFlix can be found in the appendices. We describe the interface in Ap-
pendix C, associated IPs in Appendix D, and changes made to the request paths in Appendix E.

2We also assume that gaming console devices such as Playstation or Xbox make mobile requests.
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The final important difference between mobile device usage and desktop usage of NetFlix

is the collection of the referrer URI. In the case of a request for content by a desktop, the

referrer URI is the request to http://www.netflix.com/WiPlayer?.... When a mobile de-

vice makes a request for content, the referrer is empty. Having the requests to the /WiPlayer

path provides additional information. For example, these requests contain a parameter called

the movieid, which we examine next.

5.2 Movie IDs

NetFlix uses a query string parameter named movieid to deliver content to the user. The

movieid is a number that is sent with the requests to /WiPlayer (as part of a GET request).

Each piece of content, movie, TV-show, or trailer has a unique movieid number. When

sending a request to /WiPlayer, other parameters that are sent include trkid and tctx;

these are probably used for user tracking. The response for this request has a content-type

of Text/html. The movie content is requested by the player that loads from this page as

described in the previous section.

When a TV series is chosen from the NetFlix menu, a general-purpose movieid is used.

We will refer to this as IDm (ID-main). This ID differs from episode-specific content, which

we refer to as IDe (ID-episode). A movie or trailer’s movieid is IDm, that is to say movies

and trailers do not have any IDe.

For a TV show, there seems to be no relationship between its IDm and any of its IDe

values. For example, for the TV show Breaking Bad, the following IDs were observed:

• IDm : 70143836

• IDe Season 1 Episode 1 : 70196252

• IDe Season 1 Episode 2 : 70196253

In the case of Breaking Bad, IDm << IDe, and IDe numbers were allocated in sequential
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blocks. For the case of Breaking Bad, when many seasons were uploaded at once, all the

IDe numbers are sequential, so episode 7 of season 1 (the last episode of season 1) has an

IDe of 70196258 and episode 1 of season 2 has an IDe of 70192659. However, sequential

numbers between seasons of a TV series are not guaranteed. In cases where NetFlix releases

one season of a show at a time, the numbers between episodes can have gaps. For example,

in House of Cards, season 1 episode 13 has an IDe of 70248301, and season 2 episode 1 has

an IDe of 70293579. We have also seen cases where numbers in a single season do not behave

sequentially.

If NetFlix auto-plays the next episode of a TV show, or if the user selects an episode to

play from the episode list in the Web interface’s player, the IDe is added in the fragment

section of the URI, i.e.,

http://www.netflix.com/WiPlayer?movieid=<id1>...#episodeid=<id2>

URI fragments are not transmitted over the network [7]. Instead, the video player reads

the fragment and makes a request for that ID. IDe numbers are not as common as IDm

numbers at a network level. We also are able to see movieid numbers for content that is not

available in Canada; this is an indication that a user is using a third-party plugin (like Hola

unblocker) to get around the geo-restrictions imposed by NetFlix.

5.3 Monthly Breakdown

5.3.1 Response Breakdown

We observed over 305 million request-response pairs for NetFlix on 14.3 million connections

during our five-month collection period. Over 62.9% of responses had a code of 200 (OK),

29.9% had 206 (Partial Content), 0.87% had 202 (Accepted), 6.09% had no code, and all

other response codes have < 0.1% of responses each. Out of the 305 million request-response

pairs, 195 million pairs (63.9%) were for desktop video content (including notebooks), and
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102 million (33.4%) were for mobile video content, and the remaining 8 million were for other

non-video content, such as HTML, Javascript, images, etc.

Over the collection period, we observed 217.1 TB of traffic from NetFlix, 30% of inbound

HTTP traffic or 8% of total traffic. The total volume of mobile (video) content was 54.01

TB, while desktop (video) content used 162.6 TB. Unsurprisingly, on desktop or mobile,

no data was uploaded to NetFlix as part of requests for content. We observed over 15.1

million connections to NetFlix over HTTPS. These connections are mainly responsible for

user authentication, payment, and access to the help-center. User ratings and reviews for

content are sent over HTTP, through GET and POST requests, respectively. Over 357.4 GB

of traffic was sent and 256.0 GB of traffic was received from HTTPS NetFlix servers over

the collection period.

During the five-month collection period, we observed 35 different content-type headers

on responses from NetFlix servers. The most transmitted content-type for responses by

volume were: Application/octet-stream 216.7 TB (91% of responses), Text/html 328.3

GB (0.35%), Video/mp4 28.03 GB (0.01%), Application/x-silverlight-app 24.15 GB

(0.01%), and Application/javascript 21.76 GB (0.04%). 6.46% of responses (with no

volume transferred) had no content type.

5.3.2 Breakdown of NetFlix video connections

Table 5.1 summarizes connections transporting video content from NetFlix. The average

number of bytes NetFlix sends per connection is 26 MB, and the client sends around 370

KB. An important note about this count is that it includes the packet headers, thus we may

assume that most client activity is TCP data acknowledgements. We can see that the average

connection duration is just over two and a half minutes. This leads us to the conclusion that

a client uses multiple connections to view content, since the content durations are greater

than 2 minutes.

Figure 5.1a and 5.1b show the cumulative distribution function (CDF) plots for all Net-
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Table 5.1: Monthly Connection Statistics

Avg. Inbound Vol. Avg. Outbound Vol. Avg. Duration Connections

December 27.72 MB 386.2 KB 166 sec 1,424,653
January 28.44 MB 384.6 KB 169 sec 2,067,609
February 26.47 MB 368.4 KB 169 sec 2,084,539
March 24.66 MB 367.2 KB 166 sec 2,794,287
April 24.30 MB 370.8 KB 165 sec 2,130,138

(a) Duration CDF (b) Size CDF

Figure 5.1: NetFlix Connections from December 2014 - April 2015

Flix connections. The connection durations for NetFlix in Figure 5.1a show different be-

haviour than general video connections shown in Figure 4.7a. We find that the durations

for most NetFlix connections last longer than general video connections. However, as Net-

Flix uses DASH [66] these connections are still small when compared to expected content

duration. The outbound bytes in Figure 5.1b reflect the average bytes sent in a connection

viewing content, as outlined in Table 5.1. The connections that send significantly more bytes

are likely those involved with different user interactions, such as reviewing or rating movies.

NetFlix utilizes parallel persistent connections to transport video. Requests on these sepa-

rate connections may be interleaved; on mobile requests we typically see responses with a

status of 206, while for desktop requests we see type 200 responses.

Response characteristics are summarized by month in Table 5.2. All requests made for
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Table 5.2: NetFlix Responses - Monthly Summary

Total Desktop
Volume Count Avg. Size Avg. Dur Count

December 30.77 TB 44.4 million 851.3 KB 1.01 sec 24.4 million
January 44.41 TB 62.4 million 899.7 KB 1.21 sec 39.4 million
February 43.83 TB 61.6 million 895.2 KB 1.44 sec 38.4 million
March 54.29 TB 75.1 million 882.3 KB 1.80 sec 47.9 million
April 43.85 TB 61.9 million 845.7 KB 1.62 sec 39.6 million

Mobile
Avg. Size Avg. Dur Count

December 603.5 KB 1.83 sec 13.6 million
January 578.4 KB 1.64 sec 21.2 million
February 550.7 KB 1.65 sec 21.4 million
March 574.8 KB 1.86 sec 25.0 million
April 525.0 KB 1.66 sec 20.6 million

video content (summarized in the table) used the GET method, with a body length and

duration of zero. This table shows that there was a 10 TB increase in NetFlix traffic in

March; this may be due to March containing no breaks or exams when students were away

from campus for an extended period.

Figures 5.2a and 5.2b show the response size and duration CDFs for desktop and mobile

requests. Figure 5.2a shows that the responses going to mobile devices are slightly smaller

than those for desktop devices. This may be due to mobile devices using only wireless con-

nections to connect to the local network. Wireless connections tend to have lower throughput

levels (when compared to physical options available to desktop devices). Figure 5.2b shows

the response duration for desktop and mobile requests for December-April. We see that

responses going to mobile device are slightly longer, once again due to mobile’s wireless

nature.

5.3.3 NetFlix Usage Patterns

Figures 5.3 - 5.7 shows the NetFlix traffic over our collection period. There are strong diurnal

patterns in the NetFlix traffic. The low period occurs from 2:00-10:00, and the heavy period
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(a) Response Size CDF (b) Response Duration CDF

Figure 5.2: NetFlix Response Characteristics December 2014 - April 2015

is from 12:00-24:00. We can see a slight difference when examining weekday traffic versus

weekend traffic, although the University calendar has a greater influence on the volumes.

Weekday traffic often has two peak activity periods during the day. These peaks occur in

the afternoon around 12:00-14:00, and late in the evening around 22:00-24:00. Weekend

activity only shows the second period as a distinct peak. Behavior in residential networks

may differ from what we observed as the first peak (in mid-afternoon) occurs during work

hours; we do not believe any other characteristics we present would exhibit difference on a

residential ISP.

Figure 5.3 shows the NetFlix traffic levels for December 2014. The traffic levels decrease

during the second week since it was the final exam period for the University of Calgary.

Traffic levels remained low for the last two weeks of the month for the holiday break, when

many students left campus. In December, 23.35 TB of video content was sent to desktop

devices and 7.36 TB was sent to mobile devices from NetFlix. The total connections to all

NetFlix HTTP servers was 2,018,915. 70.6% of these connections were used to transport

content.

NetFlix traffic levels for January 2015 are shown in Figure 5.4. The first week of January

was “block week” for the University. Normal classes were not yet in session so the traffic
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was lower than the rest of the month. On the morning of January 30th, the University had

a network outage that interrupted our observational capabilities for about an hour. For the

month of January, 33.16 TB of video content went to desktop devices and 11.76 TB went to

mobile devices. 72.6% of 2,847,620 connections were used to transport content.

Figure 5.5 shows the NetFlix traffic levels for February 2015. On February 2nd, NetFlix

had a service outage3 and Bro did not log properly. During the third week of February,

the University had “Reading Week”, thus traffic levels are lower. We are unable to find the

cause for the higher traffic levels for February 23. The total traffic from NetFlix on both

the 22nd and 23rd was 1.62 TB, while the 24th was 1.74 TB. We expect that this spike is

due to an error with the script that creates the time-series data for plotting. There were

2,849,154 HTTP connections to NetFlix servers in February. 32.60 TB of video content was

sent to desktop devices and 11.15 TB was sent to mobile devices from NetFlix. 73.2% of

these connections were used to transport content.

Figure 5.6 shows the NetFlix traffic levels for March. March had no major interruptions.

We are unable to find the cause for the higher traffic levels for March 1st; it appears to be

similiar to the issue on February 23. In March, desktop devices received 40.48 TB of content

and mobile devices received 13.63 TB. The total connections to all NetFlix HTTP servers

was 3,774,044. 74.0% of these connections were used to transport content. March’s increase

in traffic can be attributed to the fact that there was no break for students during the month.

Figure 5.7 shows the monthly traffic levels for April. On April 10-11, we see a failure with

Bro, logs were not written from 10:00 on April 10 to 23:00 on the 11th. At approximately

15:00 on April 29th, our observational capabilities for the complete network ended. The

traffic shown on the following days is not a complete view of network traffic. April had

33.07 TB of video content directed to desktop devices and 10.69 TB to mobile devices from

NetFlix. The total number of connections to all NetFlix HTTP servers was 2,789,906. 76.4%

of these connections were used to transport content.

3https://gigaom.com/2015/02/03/netflix-not-working-outage/
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Figure 5.3: December 2014 NetFlix Traffic
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Figure 5.4: January 2015 NetFlix Traffic
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Figure 5.5: February 2015 NetFlix Traffic
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Figure 5.6: March 2015 NetFlix Traffic
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Figure 5.7: April 2015 NetFlix Traffic
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5.3.4 Popular movieids

We can measure incoming octet-stream bytes from the desktop Web interface and map these

to a movieid; mobile content is excluded since the movieid information is not available in

the Bro logs. During the observation period, we observed 16,501 unique movieids sent to

NetFlix, totalling 130.4 TB of transferred content, 60.06% of the total NetFlix traffic. We see

less traffic with movieids (130.4 TB) than total desktop content (162.6 TB), since not every

desktop request has a referrer field. Thus, we are unable to associate 82.2 TB of content

(39.05% of total NetFlix traffic) with movieids.

We map movieids to titles by scraping a third-party Web site4 with the main id, IDm,

of a movie or series. However, in the case of episode IDs, we were unable to find a way to

automate a mapping between the ID and content title. We instead manually associated the

episode IDs to titles using NetFlix’s catalogue5.

Over 50% of requested volume was associated with 25 different titles (2,801 movieids).

The 25 most popular titles are shown with overall rank and volume, as well as monthly ranks

in Table 5.3. Dashes in a column of the table indicate that the particular content had not

yet been added to NetFlix’s catalogue. When a TV show is listed, we include all bytes sent

with the main ID, IDm, as well as any bytes sent with an episode ID, IDe, for that series.

From this list, 24 of the titles are TV shows, and the lone movie, Pitch Perfect, sent just over

500 GB during our observation period. An explanation for the prevalence of TV shows is

that a full season for a TV show is much longer than a single movie6, and thus will transfer

more bytes. It is also important to note that two titles on the list, The Office and Parks and

Recreation, are not available in Canada. Users viewing this content were using some method

to bypass NetFlix’s geo-gating.

The popularity of transmitted movieids is shown in Figure 5.8. Both axis of this figure

4www.allflicks.net
5NetFlix does not provide an API to automate this.
6A show running 12 episodes at 21 minutes each has 252 minutes of content, while an average movie

length is around 120 minutes.
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are plotted with log scale. This figure shows that there is a long tail distribution for movieids.

A long tail distribution is one where a few items account for a majority of occurrences. We

can also see that there are many movieids that have transmitted very little volume, i.e., were

relatively unpopular.

Figure 5.8: NetFlix ID Popularity

Using Table 5.3, we can see that popular content on NetFlix falls into one of two groups.

The first group is content with long-term popularity. Examples of these are Friends and

Grey’s Anatomy ; these series have a lot of content a viewer can watch and are very popular

month to month. The second group is short-term content; this content is extremely popular

for a month or two following its addition to the NetFlix catalogue. Examples of this type of
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Table 5.3: NetFlix movieids by Rank on Campus

Title Total Vol. Dec Jan Feb Mar Apr

1. Friends 21.00 TB - 1 1 1 1
2. Grey’s Anatomy 8.20 TB 1 2 2 3 2
3. House of Cards 4.25 TB 20 16 3 2 9
4. Gilmore Girls 3.28 TB 2 4 9 10 5
5. Gossip Girl 3.05 TB 3 3 7 7 7
6. That 70’s Show 2.90 TB 42 49 4 4 6
7. Suits 2.63 TB 6 5 10 5 10
8. The Mindy Project 2.61 TB 8 7 16 9 4
9. Supernatural 2.12 TB 5 10 6 12 11
10. House M.D. 1.99 TB 7 9 5 13 14
11. How I Met Your Mother 1.90 TB 4 12 13 11 13
12. The 100 1.79 TB 12 14 8 8 28
13. White Collar 1.41 TB 13 6 12 16 18
14. 90210 1.29 TB 17 41 15 18 8
15. The Vampire Diaries 1.29 TB 16 11 11 14 39
16. The Office 1.15 TB 11 20 19 15 15
17. Archer 1.15 TB 18 8 14 17 36
18. Daredevil 1.11 TB - - - - 3
19. Family Guy 1.06 TB 9 22 21 19 17
20. Dexter 1.01 TB 14 19 24 23 12
21. Unbreakable Kimmy Shmidt 1.00 TB - - - 6 21
22. Parks and Recreation 980.44 GB 15 15 20 21 23
23. Orange is the new Black 870.31 GB 25 18 17 22 20
24. Friday Night Lights 815.43 GB 19 21 22 24 19
25. Pitch Perfect 500.56 GB 10 43 33 58 66

content include movies, such as Pitch Perfect, or TV shows that have a new season added

on NetFlix, such as House of Cards or Archer.

When a single season for a popular show is added, viewers will consume the new content

quickly. We can see this behaviour in the table with House of Cards ; the series surged when

the third season was added at the end of February (27th), and the surge lasted at least two

months in this case, then started to wane. For Unbreakable Kimmy Shmidt, the show surged

when it was added in March, but lost its popularity by April. We believe that viewers on

NetFlix will “binge watch” newly added series or movies (short-term content), then return

to watching older (long-term) shows.
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One explanation for this is that a long-term show has a lot more content to watch. For

example, Friends has 10 seasons of content available. The amount of content makes it more

difficult for a viewer to fully consume in a short period of time. We present an example of

this in greater detail in Section 5.4.

That 70’s Show is another example of content exhibiting long-term popularity. Table 5.3

shows a jump from rank 49 to 4 between January and February – this surge-like behaviour

is easily explained. Viewers watching the series in December and January were doing so by

watching from the American catalogue, since it was only added to the Canadian catalogue on

February 12th. Once added to the Canadian catalogue a great number of users on campus

were able to access it.

We investigate the top ten IDs by volume per month in Tables 5.4 through 5.8. The

volumes listed in the table once again include volume transferred with the main IDs, IDm,

and all episode IDs, IDe, associated with the series. Items appearing in bold in a table

indicate either new content to NetFlix, or additional content added in the given month.

Table 5.4: Top 10 NetFlix movieids for December 2014

Volume Percent Title

1 1.3 TB 7.51% Grey’s Anatomy (TV)
2 813.4 GB 4.70% Gilmore Girls (TV)
3 548.2 GB 3.17% Gossip Girl (TV)
4 528.4 GB 3.05% How I Met Your Mother (TV)
5 407.1 GB 2.35% Supernatural (TV)
6 385.2 GB 2.23% Suits (TV)
7 358.2 GB 2.07% House M.D. (TV)
8 296.5 GB 1.71% The Mindy Project (TV)
9 284.9 GB 1.65% Family Guy (TV)
10 275.4 GB 1.59% Pitch Perfect (movie)

Total: 17.3 TB

Table 5.4 shows the top shows for December. One characteristic of note is that the data

volumes are relatively low compared to other months. This is due to the extended holiday

break. Referring back to Figure 5.3, we can see that the traffic levels decrease through the
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examination period and return to normal by the second week of January. The only movie

listed in the table, Pitch Perfect, was added to NetFlix’s catalogue on December 1.

Table 5.5: Top 10 NetFlix movieids for January 2015

Volume Percent Title

1 7.6 TB 28.46% Friends (TV)
2 1.7 TB 6.37% Grey’s Anatomy (TV)
3 707.4 GB 2.65% Gossip Girl (TV)
4 701.0 GB 2.63% Gilmore Girls (TV)
5 524.0 GB 1.96% Suits (TV)
6 391.9 GB 1.47% White Collar (TV)
7 358.7 GB 1.34% The Mindy Project (TV)
8 334.7 GB 1.25% Archer (TV)
9 321.2 GB 1.20% House M.D. (TV)
10 294.3 GB 1.10% Supernatural (TV)

Total: 26.7 TB

The largest change in Table 5.5 for January 2015 is the Friends TV series, which is

the most viewed content. This trend persisted for the rest of the observation period. The

complete series was added to NetFlix on January 2nd, 2015. Archer had a new season (6)

added on January 7. The other new item on the list, White Collar, was added on December

4th, and was the 13th most viewed show in December with 233.4 GB transferred.

Two additional items, Law & Order: Special Victims Unit and The Interview, which are

not in Table 5.3, were in the top 20 viewed for January, at positions 13 and 17, respectively.

Law & Order: Special Victims Unit is a TV series that had a new season added in January.

The Interview is a movie that was added in January.

Table 5.6 for February 2015 shows once again that several items on the list have recently

been added to the NetFlix catalogue: House of Cards had the release of the third season

on February 27, while That 70’s Show was added to the Canadian catalogue of NetFlix on

February 12th. The 100 was ranked 12th in December with 272.0 GB and 14th in January

with 233.9 GB.

The only other item to reach the top 20 that was not in Table 5.3 was Spartacus, at rank
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Table 5.6: Top 10 NetFlix movieids for February 2015

Volume Percent Title

1 5.5 TB 20.99% Friends (TV)
2 1.8 TB 6.87% Grey’s Anatomy (TV)
3 810.2 GB 3.09% House of Cards (TV)
4 630.6 GB 2.41% That 70’s Show (TV)
5 565.4 GB 2.16% House M.D. (TV)
6 547.6 GB 2.09% Supernatural (TV)
7 448.2 GB 1.71% Gossip Girl (TV)
8 437.7 GB 1.67% The 100 (TV)
9 428.7 GB 1.61% Gilmore Girls (TV)
10 415.4 GB 1.59% Suits (TV)

Total: 26.2 TB

18 with 201.8 GB. Spartacus was added to the catalogue on February 3rd.

Table 5.7: Top 10 NetFlix movieids for March 2015

Volume Percent Title

1 5.1 TB 15.45% Friends (TV)
2 2.5 TB 7.58% House of Cards (TV)
3 1.8 TB 5.45% Grey’s Anatomy (TV)
4 1.4 TB 4.24% That 70’s Show (TV)
5 853.7 GB 2.59% Suits (TV)
6 800.7 GB 2.43% Unbreakable Kimmy Schmidt (TV)
7 732.3 GB 2.22% Gossip Girl (TV)
8 677.0 GB 2.02% The 100 (TV)
9 598.7 GB 1.81% The Mindy Project (TV)
10 567.9 GB 1.72% Gilmore Girls (TV)

Total: 33.0 TB

Table 5.7 shows the top titles for March 2015. There was one new item, Unbreakable

Kimmy Schmidt, which was added on March 6th.

The only item not listed in Table 5.3 to make it in the top 20 viewed for March was This

Is 40 ; this is a movie that was ranked 20th in March with 219.8 GB of volume.

Finally, Table 5.8 has the top IDs for April 2015. On this list, we see two new items:

Daredevil is a NetFlix original show that premiered on April 10th. The other show, 90210

was added in September. It was ranked 17th in December (173.1 GB), 41st in January (49.6
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Table 5.8: Top 10 NetFlix movieids for April 2015

Volume Percent Title

1 2.8 TB 10.26% Friends (TV)
2 1.6 TB 5.86% Grey’s Anatomy (TV)
3 1.1 TB 4.03% Daredevil (TV)
4 1.1 TB 4.03% The Mindy Project (TV)
6 766.5 GB 2.81% Gilmore Girls (TV)
5 755.9 GB 2.77% That 70’s Show (TV)
7 617.1 GB 2.26% Gossip Girl (TV)
8 588.8 GB 2.16% 90210 (TV)
9 558.8 GB 2.05% House of Cards (TV)
10 455.5 GB 1.67% Suits (TV)

Total: 27.3 TB

GB), 15th in February (253.6 GB), and 18th in March (225.8 GB).

The only item not listed in Table 5.3 to reach the monthly top 20 list was Mad Men,

which was 16th with 288.2 GB; the 6th season was added on April 7th.

5.3.5 Caching

One insight from the non-uniform access patterns to content, as well as the short and long-

term popularity, is that caching would work quite effectively for reducing NetFlix traffic

on edge networks. The easiest way to do so is to cache content on the local network.

Unfortunately, due to NetFlix’s measures for licencing and DRM, we would not be able to

operate our own cache. Instead, one option that a network operator could pursue is hosting

a NetFlix CDN node on the network.

NetFlix does not provide us with any information on how much space is needed to store

each file. In order to figure this out, we ran a packet capture tool on a local machine and

watched various types of content on NetFlix. We found that older shows, such as Friends

and Grey’s Anatomy, use less space than new shows such as Daredevil and How I Met

Your Mother. This is because older shows were not filmed at high resolution. These shows

were chosen for capture since they are selections that contain 20 and 40+ minute episodes.

Furthermore, we found that an animated show such as Archer transmitted a similar volume

79



as live-action shows.

Table 5.9: NetFlix File Sizes

Title Episode Length Volume Transferred MB/minute
Friends 22 minutes 293.99 MB 13.36

Grey’s Anatomy 42 minutes 549.79 MB 13.09
Average MB/minute: 13.23

How I Met Your Mother 21 minutes 476.13 MB 22.67
Archer 21 minutes 477.14 MB 22.72

Daredevil 53 minutes 1.84 GB 22.34
Average MB/minute: 22.58

The estimated value of 22.58 MB/minute works out to be 3.01 megabits/second, close to

the ‘high’ buffering levels seen by Ito et al. [33]. We estimate that the top 25 items would

take a total of 1,870 GB to cache, which would be quite cost effective to do. We plot the

transmitted volume and caching space required in Figure 5.9.

The International Movies Database (IMDB)7 lists the entire runtime of Friends at 5,280

minutes; using Table 5.9 we estimate that it would take 70 GB of storage for the entire

series. The total traffic from this series was at least 21.0 TB8, roughly 10% of the total

NetFlix traffic (217.1 TB). Caching this series would save at least 20.93 TB or 9.64% of total

NetFlix traffic traversing the campus backbone. Using the rate for high-resolution video, we

estimate that Grey’s Anatomy would take 120 GB to cache. Caching this series would have

reduced the WAN volume by approximately 8.1 TB over our observation period. House of

Cards would take 40 GB to cache and could have reduced transmitted volume by over 4 TB

throughout our observation period. We can see this diminishing returns effect in Figure 5.9.

For the other IDs we have seen from NetFlix, we can provide a very rough estimation

of caching space needed. To estimate the amount of space each ID would take, we use the

average from the top 25 (2,801 IDs). This works out to 0.667 GB/ID; 1870/2801 = 0.667.

Here we plot transmission per ID (in a solid black line), and our estimation of space needed

7www.imdb.com
8We could only map 60% of content requests to movieids.
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Figure 5.9: NetFlix Traffic and Caching Space for top 25 Shows/Movies

per ID (as a dashed blue line). We do not group by title as we did for Figure 5.9. The result

of this estimation is visible in Figure 5.10.

We estimate that the total amount of space needed to cache all 16,501 ids is just over

11 TB. As we have stated previously, the top 25 pieces of content are associated with 2,801

IDs and account for over 50% of all NetFlix traffic. If we wanted to cache more content,

the diminishing returns effect would have greater influence; that is, it would be less cost

effective to cache more content. Caching content locally would greatly reduce traffic volume

and provide better user experience.
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Figure 5.10: NetFlix Caching Space Estimation

5.4 Weekly Traffic

Figure 5.11 shows the traffic levels from NetFlix for the week of Sunday, April 12th – Sat-

urday, April 18th. This week shows the difference between weekday peaks and the single

weekend peak well. Outbound traffic is visible at this scale as well, for the request bytes,

i.e., HTTP and network-level headers.

Table 5.10 shows the content summary statistics for the week in question. The table

shows that about 75% of content from NetFlix is requested from desktop devices; this does

not significantly differ from the overall desktop versus mobile content levels for the month.

The daily numbers shown through the week are typical of a normal week from NetFlix.
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Figure 5.11: NetFlix Weekly Traffic April 12-18, 2015

Figure 5.12 shows the top titles through the week. The week of the 12th-18th is just

after Daredevil was released. This explains its high popularity. The steady decline of bytes

transferred for Daredevil throughout the week is also attributed to this fact. By the end

of the week, Daredevil is transferring only half the content that it did at the start. This

can be due to the fact that once the content was released, some viewers have either finished

watching the entire season through the week, or that viewers watched an episode or two and

lost interest.
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Table 5.10: NetFlix Weekly Content Summary April 12-18, 2015

Desktop Bytes Desktop Responses Mobile Volume Mobile Responses

Sunday, April 12 1.244 TB 1,430,122 400.3 GB 756,499
Monday, April 13 1.371 TB 1,603,980 384.0 GB 762,610
Tuesday, April 14 1.407 TB 1,655,802 419.1 GB 858,386
Wednesday, April 15 1.110 TB 1,253,082 419.6 GB 824,446
Thursday, April 16 1.517 TB 1,866,650 435.4 GB 922,323
Friday, April 17 1.272 TB 1,504,304 404.4 GB 874,833
Saturday, April 18 1.432 TB 1,662,101 432.7 GB 820,183

5.5 Daily Traffic

In this section, we examine the NetFlix traffic for a day. We chose Tuesday, April 14th since

it is a typical day in regards to NetFlix traffic.

On the 14th, the total number of connections to HTTP NetFlix servers was 120,399. The

average bytes from NetFlix in a connection was 25.68 MB, with 400.9 KB sent to NetFlix.

The average connection duration was 173.4 seconds.

We tracked a few individual NetFlix sessions (at a later date) on an end device and

found that when watching a 22-minute episode, around 7-9 TCP connections are used, and

an average of 430 HTTP requests are sent. When watching a 42-minute episode, 12-14 TCP

connections are made, and 820 HTTP requests are sent.

We observed 94,212 connections (78.2% of total) making 1,655,802 requests for content

from NetFlix. The average size of content responses was 890.8 KB for desktops and 512.0

KB for mobile devices. The average duration for these responses was 1.99 seconds (desktop),

and 1.75 seconds (mobile).

The total bytes from NetFlix during the day was 1.830 TB, with 1.826 TB having a

content-type of Application/octet-stream. 91.7% of the day’s responses had the content-

type header set to Application/octet-stream.

Figure 5.13 shows the traffic levels for NetFlix on Tuesday, April 14. The low area

is between 2:00-11:00. In fact, between 1:00-4:00, we see a decline in volume that likely

corresponds to viewers going to sleep. We can also see two individual peaks of activities
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Figure 5.12: NetFlix: April 12-18, 2015, Top Content Trends

during the day: one in the afternoon, and one at night.

5.6 Summary

In this chapter, we investigated NetFlix traffic patterns at the University of Calgary. We

expect that residential networks may show different daily access patterns than what we saw

on campus as our peaks occurred during work hours. We described the basic requests used to

retrieve content from the service. We found that requests from desktop and mobile devices

differed, and measured both of them. We were able to measure and characterize what content

(desktop) viewers watched. Furthermore, we presented our estimation of the space needed

and benefits of caching content or hosing a NetFlix CDN node locally.

We presented a monthly breakdown of traffic for all five months of our observation period

where we measured the amount of traffic, characteristics of the connections, as well as the

HTML request-response pairs. We finished by summarizing the NetFlix traffic for a specific
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Figure 5.13: NetFlix Traffic Tuesday, April 14, 2015

week and day in the observation period.

In the next chapter, we present our characterization of Twitch traffic.
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Chapter 6

Twitch Analysis

Twitch is a Web-based service that focuses on the live-streaming of non-sports games1. It

primarily hosts video-game streams, although there are occasional card or board games

featured as well. Twitch allows the streamer of a game to interact with viewers in (near)

real-time with the use of a chat room associated with the stream. There is a small delay

between the stream and real-time events, i.e., the stream shows events a few seconds after

the streamer has encountered them.

There is no mandatory login when visiting www.twitch.tv, unlike the case with NetFlix.

We will refer to Twitch users with two different terms for the rest of the chapter: a ‘streamer’

is a user who is creating content on Twitch, and a ‘viewer’ is a user who is viewing content

on Twitch.

6.1 Live-streaming

As previously stated, we see video content served from HLS Twitch servers. For simplicity,

we use the twitch.tv hosts instead of any other hosts for our examples (host names used

by Twitch are described in Appendix G), since there does not seem to be any difference in

requests made to them. Live-streamed content arrives from an HLS server that conforms to

the following naming scheme2:

video<i>.<Location><j>.hls.twitch.tv

1Additional details about Twitch can be found in the appendices. Twitch partnership and subscrip-
tions are summarized in Appendix F, the interface is described in Appedix G, and VOD measurements are
presented in Appendix H.

2We have observed connections to Twitch servers after our observation period with the host names similar
to video-edge-83612c.sfo01.hls.ttvnw.net, which does not conform to the previous schema.
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In this scheme, i and j are each two-digit numbers (e.g., 01 or 12), and the location is a

three letter code that corresponds to the server’s geographical location (e.g., ‘jfk’ indicates

the server is in the New York region).

Client requests made for live video content are HTTP GET requests for content following

a specific path. The general request path scheme is as follows:

/hls<k>/<streamer>_<l>_<m>/<quality>/index-<n>-<h>.ts

where k is a number with no relation to the previous i and j values, and may be a single

digit. The streamer part is the streamer’s username, and it indicates what stream is being

requested. The quality value lists what the requested quality for the stream is, i.e., high,

medium, low, mobile, or chunked if the default (‘source’) option is being used. The l and

m values are numbers that do not change for the streamer’s current broadcast; they do

change if the streamer stops broadcasting and then restarts at a later date. The n value is

a sequential number that specifies the latest part of the requested stream, and the h value

seems to be a hash value for the file. The Bro HTTP logs capture all of these requests, and

lists the referrer as the URL for the streamer’s page.

Table 6.1: Twitch Live-stream Content Volumes

Total twitch.tv Percent ttvnw.net Percent

December 2.82 TB 2.81 TB 99% 2.44 GB 1%
January 3.14 TB 3.13 TB 99% 3.96 GB 1%
February 3.74 TB 3.74 TB 99% 1.71 GB 1%
March 4.79 TB 2.67 TB 56% 2.13 TB 44%
April 3.74 TB 0.00 MB 0.0% 3.74 TB 100%

The total live-streamed volume from Twitch3 is 18.23 TB, much lower than the volumes

observed from services such as YouTube or NetFlix. There are two explanations for this.

First, Twitch is not as popular as the other services. Second, viewers can only view live-

streamed content when the streamer is streaming, thus the catalogue of content is more

3Twitch switched to serving video through the ttvnw.net domain on March 16th.
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limited. A monthly breakdown of Twich live-stream volume (by host) is provided in Ta-

ble 6.1.

Over the five-month period, we observed 6,677 different streamers broadcasting live on

Twitch; another 92 streamers were accessed with a live-stream URI, but did not transmit

any bytes. The top 41 streamers are responsible for transmitting over 50% of the bytes, while

the top 229 transmitted 80% of the bytes. Figure 6.1 shows the cumulative volume (for the

entire observation period) over the number of streams. Once more, we can see a long-tail

distribution for streams; a small number of streams provide a majority of the volume.

Figure 6.1: Twitch Live-Stream Popularity

Table 6.2 shows the overall top 20 live-streamed channels by volume for the observation

period. The total traffic these channels sent was 6.83 TB (37.45% of total live-stream).
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Table 6.2: Twitch Top 20 Live-Streamers; rank by month

Stream Volume December January February March April

1. riotgames 1.68 TB 338 1 1 1 1
2. beyondthesummit 649.08 GB 2 2 2 14 5
3. imaqtpie 449.93 GB 13 5 3 4 4
4. lirik 350.81 GB 7 3 13 13 8
5. nl kripp 349.57 GB 5 8 5 22 2
6. esltv lol 319.15 GB 1 27 - - -
7. trumpsc 311.13 GB 6 7 8 10 9
8. summit1g 286.35 GB 8 44 28 6 3
9. tsm theoddone 286.00 GB 4 11 12 7 22
10. destiny 254.55 GB 3 9 21 20 17
11. esl lol 234.22 GB - - - 2 1618
12. faceittv 215.58 GB 53 6 9 25 19
13. dotastarladder en 203.83 GB 35 24 - 5 6
14. amazhs 201.68 GB 9 10 17 38 20
15. clgdoublelift 188.13 GB 20 31 18 21 10
16. forsenlol 184.53 GB 17 18 16 16 31
17. mushisgosu 175.95 GB 42 15 15 9 104
18. flosd 175.62 GB 22 12 6 33 65
19. esl csgo 156.12 GB - - - 3 61
20. riotgames2 154.01 GB - 37 19 15 16

Not every stream is active (viewed from campus) each month. Furthermore, we can see

that esltv lol changed their name in February 2015 to esl tv. There are only 4 streams

in this table (out of 19) that appeared in the top 20 for all five months. If we look for

streams that appear in the top 20 list for 4 months, we get a list of 10 channels. This

shows that there is a set of streams on Twitch that have long-term popularity. For example,

riotgames, beyondthesummit, and imaqtpie have been popular throughout our observation

period. The low rankings for riotgames and imaqtpie in December could be due to fewer

students on campus for that month. The lower position for beyondthesummit in March is

easily explained: beyondthesummit focuses on a specific game that had a major tournament

(on another channel) in March.

We also see that some channels, such as esltv lol, show short-term popularity surges.

Specifically, attention towards channels playing certain games surges when an eSports com-
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petition approaches; we investigate eSports in Section 6.6.

The average amount of traffic per stream for the observation period was 2.73 GB. If

we wish to use a localized stream, i.e., transport the stream from Twitch onto the campus

network and then re-transmit to viewers, we can use this number to estimate the possible

traffic savings. Figure 6.2 shows an estimation of the traffic needed for this. The black line

shows the actual volume per stream for the observation period, and the blue dashed line

shows our estimated WAN bandwidth consumption for retransmitting popular streams.

Figure 6.2: Twitch Localized Streaming Traffic Estimation

Using Figure 6.2, if we locally retransmitted the top twenty streams (from Table 6.2) our

estimate is that they would only have used 54.6 GB of internet traffic for our entire observa-

tion period; this would nearly have eliminated this external traffic (reduce by approximately
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6 TB). However, these channels transmit significantly more than the average amount, so

their impact on bandwidth would be greater than this estimation. It is unlikely that we

could implement this form of service easily as it would require multicast functionality in

TCP/IP, which is not widely supported in enterprise networks.

Twitch content is served as three-second video clips. The resolution of the clips depends

on what is being transmitted. The quality levels range from mobile to ‘source’. ‘Source’ can

allow for up to 1920x1080, depending on the resolution of the streamer. High quality is for

clips with 1280x720 resolution, medium is 852x480, low is 640x380, and mobile is 400x226.

Over the entire observation period, most requests are made for the ‘source’ resolution.

In fact, 43.0% of requests were made for source, 33.7% were made for high, 19.9% were for

medium, 2.63% were for low, 0.57% were for mobile, and 0.18% were audio only. Regardless

of quality, response durations last less than one second to keep up with the live-stream.

Detailed analysis of live-streamed traffic is provided in Sections 6.2 through 6.5. The

general volumes for this type of traffic are shown in Table 6.1. Twitch also offers VOD

content, which we examine in Appendix H since it is much lower in volume than live streamed

content.

(a) Size CDF (b) Duration CDF

Figure 6.3: December 2014 - April 2015 Twitch HLS Response Characteristics
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Requests for live-stream content from Twitch all have a body length and duration of zero.

Responses, on the other hand, are more varied. The size of the response depends on the re-

quested quality; high resolution videos can be very large. Figure 6.3a shows the response size

CDF for Twitch. There is a definite step behaviour in this graph. This is due to browsers in-

teracting with Apple HLS making two requests: one returns the video content, and the other

does not. The second request results in a much smaller Application/vnd.apple.mpegurl

response.

Figure 6.3b shows the response duration CDF for HLS content. Most of the responses

finish in less than one second. In this case, having very quick responses is important to the

quality of the content. If the response takes too long, then the user experience is greatly

diminished.

6.1.1 Hosting

A streamer may ‘host’ another streamer. We refer to the user whose content is being streamed

as the streamer, and the user who is hosting the streamer as the host. When this takes place,

the host will broadcast the streamer’s content. We can detect when a streamer is being hosted

in the Bro logs, since the referrer fields of the HTTP request-response pairs indicates the

host and not the streamer.

We see some traffic where one streamer is hosting another. The overall volume of this is

pretty low. In December 2014, this amounted to 20.84 GB. In January 2015, it was 47.36

GB, February was 61.18 GB, March was 64.33 GB, and finally, in April it was 58.87 GB.

The most bytes viewed from a single host-streamer pair in a month was in January when

7.12 GB was transferred.
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6.2 Monthly Traffic

Table 6.3 shows a monthly connection summary. Around 300 KB are uploaded in each con-

nection; this is similar to NetFlix’s behaviour of sending mostly (HTTP and TCP) headers.

Once more, around 20 MB per connection is used to transport content from Twitch. The

connection duration averages around two minutes. Like with NetFlix traffic, a viewer will

use multiple connections when viewing a stream for an extended duration.

Table 6.3: Twitch Connection Summary

Connections Avg. Outbound Vol Avg. Inbound Vol Avg. Duration

December 204,499 307.6 KB 22.67 MB 118 s.
January 288,198 312.8 KB 22.22 MB 114 s.
February 321,664 275.7 KB 20.46 MB 100 s.
March 429,370 284.2 KB 21.63 MB 116 s.
April 308,894 277.2 KB 23.38 MB 132 s.

Figure 6.4a shows the connection duration CDF for the complete observation period. All

connections to Twitch are included in this diagram; live-streams, VOD content, as well as

requests for static elements (the only thing not included is Chat). Compared to the average

connection duration for video content (in Chapter 4), we can see that Twitch connections

have a slightly shorter duration. When compared to NetFlix connections, the effect is more

visible; this may be due to Twitch using a connection to load a small image, i.e., an emoticon

used in the chat panel.

Figure 6.4b shows the CDF for connection size. Here, we can see that the inbound traffic

from Twitch exhibits a behaviour that is much more step-like. This may be due to users

checking a specific stream that is offline – thus not a lot of data is transferred.

Over the entire observation period, we have observed 25 different content type headers

used by Twitch domains. The five most popular by bytes transferred are shown in Table 6.4.

There is a large difference between the volumes used to transport content from the Ap-

ple HLS servers, and the other content types. There is also a large difference between
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(a) Duration CDF (b) Size CDF

Figure 6.4: Twitch Connection Characteristics December 2014 - April 2015

Table 6.4: Twitch Content Types by Volume

Type Percent Volume

1 Video/mp2t 39.1% 18.68 TB
2 Video/x-flv 0.02% 719.00 GB
3 Application/javascript 0.05% 35.80 GB
4 Text/html 1.09% 27.74 GB
5 Application/json 9.20% 12.66 GB

Percent is of Twitch Requests

Flash content (old VOD type or used for ads) and the other types. Content from Ap-

ple HLS servers dominate the responses, both in number and volume. In fact, the sixth

ranked response by volume is also associated with the HLS servers. The content type

Application/vnd.apple.mpegurl was present in 37.8% of the responses, and accounted

for 8.95 GB of volume.

6.3 Twitch Usage Patterns

Unlike other video traffic, the nightly drop-off in Twitch traffic occurs earlier. In fact, by

23:00 there is a sharp decrease. This is due to the live-streamed nature of the content. The

fact that there is an earlier drop-off and very little traffic in the idle period, from 23:00-10:00,
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suggests that the most viewed streamers are somewhere in North America. We can see that

the peak traffic period for Twitch occurs from 12:00-18:00. We also can see that virtually

no traffic is sent to the common Twitch domains from the University of Calgary’s network.

Figure 6.5 shows the Twitch traffic levels for December 2014. The bytes being counted

in these graphs are all HTTP connections to Twitch domains (excluding chat). The last two

weeks of December are the holiday break, so traffic levels are very low.

In December, we observed 191,348 connections for Twitch live-stream content and 9,277

for VOD. We did not see a lot of bytes going to Twitch HTTP servers. This may indicate

that no one on campus is streaming content, or that uploading a stream uses another server

(or does not use HTTP).

Table 6.5: Twitch Top Streamers - December 2014

Stream Req. Count Percent of requests Volume

esltv lol 607,903 9.00% 295.8 GB
beyondthesummit 422,771 6.26% 200.2 GB
destiny 124,263 1.84% 84.1 GB
tsm theoddone 148,538 2.20% 67.2 GB
nl kripp 171,706 2.54% 61.9 GB
trumpsc 174,365 2.58% 58.3 GB
lirik 94,590 1.40% 50.0 GB
summit1g 67,333 1.00% 48.6 GB
amazhs 137,388 2.01% 45.4 GB
twitchplayspokemon 172916 2.56% 38.7 GB

Table 6.5 shows the top ten streamers (by volume) for December. esltv lol is the stream

for an eSports league for League of Legends. The esltv lol is the first example of an eSports

event stream on Twitch (since it broadcasted a tournament). eSports games are discussed

in Section 6.6. The beyondthesummit stream focuses on a game called Dota 2. The streams

destiny, tsm theoddone, nl kripp, trumpsc, lirik, summit1g, and amazhs are streams for

players. The twitchplayspokemon channel was a channel Twitch set up where viewers could

play Pokemon by providing input through chat.

Figure 6.6 shows Twitch traffic in January 2015. The first week of January is “block
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week” for the university, so traffic is lower. On January 30th, there was an interruption on

the Campus network.

In January, there were 268,748 connections for Twitch live-stream content and 16,574 for

VOD content.

Table 6.6: Twitch Top Streamers - January 2015

Stream Req. Count Percent of requests Volume

riotgames 807,969 10.84% 301.4 GB
beyondthesummit 324,023 4.35% 181.7 GB
lirik 232,547 3.12% 134.2 GB
gamesdonequick 188,816 2.53% 122.0 GB
imaqtpie 229,622 3.08% 102.3 GB
faceittv 181,526 2.44% 71.6 GB
trumpsc 181,788 2.44% 71.4 GB
nl kripp 186,513 2.50% 70.1 GB
destiny 72,051 0.97% 50.7 GB
amazhs 139,443 1.87% 45.7 GB

Table 6.6 has the top streams for January. The bold entries correspond to streams

that have not been seen in previous months. The riotgames stream, owned by Riot (the

developers for League of Legends), focuses on covering eSports events for their game. The

gamesdonequick stream is a stream to raise money for charity, representing another event

stream. This stream focuses on speed-running games (beating a game quickly) for charity;

they held a marathon drive in January. imaqtpie is another stream for a single player and

faceittv has competitions for many games.

Figure 6.7 shows Twitch traffic for February 2015. There was a failure with Bro on the

2nd. High activity levels, such as the 21st, are normally due to eSports events. In this case,

League of Legends was having a tournament.

In February, we saw 287,746 connections for Twitch live-stream content, and 17,912 for

VOD content.

Table 6.7 shows the top streams for February. Most of the streams have been seen in

previous months. This streamhouse channel is operated by a group of people who have
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Table 6.7: Twitch Top Streamers - February 2015

Stream Req. Count Percent of requests Volume

riotgames 1,329,438 14.99% 572.0 GB
beyondthesummit 272,965 3.08% 151.2 GB
imaqtpie 251,305 2.83% 119.2 GB
streamerhouse 236,292 2.66% 89.0 GB
nl kripp 222,546 2.51% 75.3 GB
flosd 91,960 1.04% 65.6 GB
nightblue3 221,058 2.49% 59.9 GB
trumpsc 144,338 1.63% 59.8 GB
faceittv 140,096 1.58% 59.0 GB
filtersc 79,350 0.89% 56.8 GB

installed IP-webcams in their house. Viewers can watch them play games and watch them

go about their daily activities. The other new streams, flosd, nightblue2, and filtersc, are

player channels.

Figure 6.8 shows Twitch traffic for March 2015. From March 12-14, a major eSports

tournament was held; we investigate this in depth in Section 6.6.

In March, we observed 400,825 connections for Twitch live-stream content, and 26,935

for VOD content.

Table 6.8: Twitch Top Streamers - March 2015

Stream Req. Count Percent of requests Volume

riotgames 1,115,189 9.62% 438.5 GB
esl lol 475,003 4.10% 234.2 GB
esl csgo 308,322 2.66% 144.1 GB
imaqtpie 277,808 2.40% 127.4 GB
dotastarladder en 192,266 1.66% 98.6 GB
summit1g 193,088 1.66% 96.5 GB
tsm theoddone 181,026 1.56% 80.9 GB
ultra 168,499 1.45% 76.4 GB
mushisgoru 123,259 1.06% 69.9 GB
trumpsc 170,077 1.47% 63.8 GB

The top streams for March are listed in Table 6.8. March is interesting since it includes

many new channels focused on eSports. The channels esl lol and esl csgo are provided by the

eSports league to cover League of Legends and Counter Strike: Global Offensive, respectively.
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The viewing of esl csgo is covered in depth in Section 6.6. Note that we are not counting

else lol as a new channel since it was renamed from esltv lol. The dotastarladder en channel

focuses on covering their own Dota 2 competitive league. The other two new channels are

ultra and mushisgoru, a stream for a music festival and a player’s stream, respectively.

Figure 6.9 shows Twitch traffic for April 2015. On the 10th-11th, there was a failure with

Bro. On the 29th, our observation period ended. In April, there were 263,045 connections

to Twitch for live-stream content and 27,112 for VOD content.

Table 6.9: Twitch Top Streamers - April 2015

Stream Req. Count Percent of requests Volume

riotgames 846,519 8.90% 366.6 GB
nl kripp 304,308 3.20% 105.0 GB
summit1g 184,793 1.94% 100.7 GB
imaqtpie 167,242 1.76% 66.3 GB
beyondthesummit 127,427 1.34% 63.4 GB
dotastarladder en 120,950 1.27% 62.4 GB
hegemonytv 92,014 0.97% 60.1 GB
lirik 176,677 1.86% 59.9 GB
trumpsc 161,990 1.70% 57.8 GB
clgdoublelift 198.048 2.08% 57.2 GB

The top streams for April are in Table 6.9. Here, we can see that most coverage of eSports

from March has decreased. The new streams for the month, hegemonytv and clgdoublelift,

are both player streams.
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Figure 6.5: Twitch Traffic for December 2014
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Figure 6.6: Twitch Traffic for January 2015
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Figure 6.7: Twitch Traffic for February 2015
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Figure 6.8: Twitch Traffic for March 2015
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Figure 6.9: Twitch Traffic for April 2015
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6.4 Weekly Traffic

Figure 6.10: Twitch Weekly Traffic April 12-18, 2015

Figure 6.10 shows the weekly traffic for Twitch from April 12 to April 18. This week was

chosen since it represents a normal week for traffic, and for consistency - we used the same

week for studying NetFlix traffic in Chapter 5. Once again, we find that traffic exhibits a

diurnal pattern.

Table 6.10 shows the weekly stats for live-stream and VOD content. April 18th had a

spike of traffic. This was mostly driven by increased traffic to the riotgames stream, and the

esea stream that covers Counter Strike: Global Offensive. Unlike other traffic, there does

not seem to be a difference between weekday and weekend traffic for Twitch.

The top five channels for the week are outlined in Table 6.11. When looking at individual
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Table 6.10: Twitch Weekly Traffic Summary April 12-18, 2015

Live-stream Connections Live-stream Volume VOD Connections VOD Volume

April 12 8,602 149.6 GB 0 0
April 13 6,529 104.7 GB 690 3.284 GB
April 14 12,093 127.8 GB 433 2.176 GB
April 15 13,664 97.54 GB 301 982.3 MB
April 16 5,257 109.9 GB 698 3.693 GB
April 17 9,072 130.7 GB 1,764 8.406 GB
April 18 8,957 252.0 GB 196 1.225 GB

Table 6.11: Twitch Top Streams April 12-18, 2015

1 2 3

April 12 riotgames 46.59 GB showdownsmash 17.13 GB hegemonytv 7.257 GB
April 13 qwertycopter 6.722 GB lirik 6.177 GB aftonbladetesport 5.233 GB
April 14 faceittv 10.03 GB hegemonytv 7.224 GB admiralbulldog 5.331 GB
April 15 nl kripp 7.286 GB faceittv 6.885 GB beyondthesummit 4.758 GB
April 16 darklordsen 11.62 GB trumpsc 6.829 GB riotgames2 6.386
April 17 esea 18.37 GB redbullesports 17.41 GB summit1g 6.671 GB
April 18 riotgames 72.46 GB esea 22.68 GB hegemonytv 14.17 GB

4 5
April 12 esl hearthstone 6.857 GB esl csgo 4.946 GB
April 13 imaqtpie 3.114 GB trick2g 2.981 GB
April 14 trick2g 4.509 GB clgdoublelift 4.014 GB
April 15 eg jwong 3.945 GB blizzheroes 3.635 GB
April 16 redbullesports 3.807 GB poiisondn 3.659 GB
April 17 saintvicious 4.080 GB sjow 4.024 GB
April 18 gfinitytv 11.45 GB poiisondn 6.956 GB

streams, there is an increase in traffic levels on the weekend. That is, top streams transmit

more on weekends than weekdays. We can also see that there are 28 channels that reach the

top five in a week. This high flux for popular channels in a given day makes it difficult to

predict what streams will be popular, since only 13 of these channels appear in Table 6.2.

6.5 Daily Traffic

Once again, we investigate the traffic on April 14th. On the 14th, the total number of

connections to Twitch was 21,471. The average inbound bytes per connection was 9.999 MB,

outbound was 118.6 KB, with an average duration of 75.2 seconds. Out of these connections,
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12,093 were used to transport live-stream content, 433 transported VOD content, and 36

transported Flash (VOD) content. 127.8 GB of live-stream content was transported in

374,572 responses, 2.176 GB of VOD content took 2,106 responses, and the Flash (VOD)

content used 39 responses to transport 1.019 GB.

Figure 6.11: Twitch Daily Traffic Tuesday, April 14, 2015

The daily traffic is illustrated in Figure 6.11.

107



6.6 eSports

Twitch often hosts streams from eSports tournaments. The most popular games for eSports

are the following: League of Legends (LoL)4, Dota 2, Starcraft 2 (SC2), Hearthstone, and

Counter Strike: Global Offensive (CS:GO). Dota 2 and LoL are team-based multi-player

online battle arena (MOBA) games. Hearthstone is an online card game. CS:GO is a team-

based first person shooter (FPS) and SC2 is a real-time strategy (RTS) game.

Dota 2 was released to the public on July 9, 2013, following an ongoing beta period that

started in 2011. League of Legends was released on October 27, 2009; its beta stage started

on April 10 of the same year. Counter Strike: Global Offensive was released on August 21,

2012. Starcraft 2 was released on July 27, 2010, and the first expansion to the game titled

Heart of the Swarm, was released on March 12, 2013. A second expansion titled Legacy of

the Void is currently being developed. When eSports matches for SC2 are played, they are

played with the latest expansions and updates to the game.

MOBA games started as custom maps for RTS games, the most famous being the Defense

Of The Ancients (DOTA) map for WarCraft 3. Unlike a typical RTS game, in a MOBA

game a player controls a single character. In a MOBA game, two teams of five players each

compete against each other. A team wins by destroying the other team’s base. Dota 2 is

regarded as having a higher skill ceiling than LoL.

A majority of eSports events are based on PC games. LoL, Dota 2, and CS:GO are all

team-based games where two teams of 5 players each compete against each other. SC2 has

support for team-based games, but is played 1 on 1 at eSports events. In eSports events, it

is common for each round to be played as a series (i.e., best of 7).

4These terms are listed in the List of Symbols.
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6.6.1 Case Study: ESL-One Katowice

In this subsection, we present a case study for a major eSports tournament. We investigate

the eSports league (ESL) CS:GO tournament that was held in Katowice, Poland on March 12-

15, 2015. This tournament had 16 teams that competed in a group stage, then a playoff series.

This specific tournament was part of the greater Intel Extreme Masters (IEM) Tournament

held in Katowice [32]. The group stage was a double-elimination, best of one format, i.e.,

two out of four teams from each group advance; to advance they must win two matches.

Each round of the playoffs was a single-elimination best-of-three series. The first place prize

pool for the winning team in this tournament was $100,000 (USD).

When studying this event, we use network-level measurements from our monitor, as well

as statistics provided by third-party sources.

Third-Party Measurements

Using measurements obtained by third-party sources, we may construct a view of global

traffic on Twitch. ESL provided a basic info-graphic [53] with information about viewers

to the event. The information from this info-graphic that we are interested in is as follows:

36.95 million total Twitch sessions, 8.79 million unique Twitch viewers, 16 million hours of

content broadcast via Twitch, and a peak of 1.012 million concurrent viewers (in Twitch and

in game).

Using data from another third-party site5, we can determine how popular this event was

on Twitch. This second dataset uses data taken from Twitch’s public API at ten-minute

intervals. Figures 6.12 through 6.14 are provided by this dataset.

Figures 6.12 and 6.13 show the number of viewers on Twitch over time in blue. Fig-

ure 6.12a shows that the most concurrent viewers on Twitch occurred on March 13, 2015

with just over 1.5 million viewers. Figures 6.12b and 6.12c show concurrent viewers for

Twitch and CS:GO, respectively, for our observation period. They clearly show a spike in

5stats.twitchapps.com
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CS:GO activity for the ESL-One tournament. Figure 6.14 shows activity for the week of

March 10-17, 2015; at this scale one can easily see the diurnal patterns of Twitch. The

activity of the tournament is clearly visible as well. There is a spike (of multiple orders of

magnitude) in viewership for CS:GO when the tournament takes place. During the tour-

nament, Twitch has more concurrent viewers than during the preceding days, and the days

following it. We can safely assume that the new viewers visited Twitch to view the event.

Finally, Figure 6.13 shows Twitch viewership for the event duration. While looking at the

days for the event, we can easily see diurnal activity for Twitch as a whole. When looking

at CS:GO viewers and the official ESL channel viewers, we also see multiple local peaks per

day. This corresponds to matches in the tournament, not network or service failures.

Using the information from Figure 6.13, we find that CS:GO had over 840,000 concurrent

viewers, and the esl csgo channel had nearly 600,000 viewers on March 15, 2015. The fact that

the concurrent number of CS:GO viewers is less than what ESL reported could be attributed

to a few causes. First, there may have been some channels showing the event that were not

labelled as CS:GO. Second, the info-graph also counts in-game (and at-event) spectators.

Finally, the peak number may be missed due to the ten-minute granularity of the second

dataset. The difference in viewers between the official channel and the overall CS:GO viewers

is easily explained, since multiple channels showed CS:GO being played. These channels may

be broadcasting localized streams of the matches, other casters providing commentary, or

unrelated matches.

Network-Level Measurements

Figure 6.15 shows the University of Calgary’s Twitch traffic for the week of the event. It

clearly shows a sharp increase in volume for March 12th and 13th.

March 12th had the group elimination phase of the tournament. The first round was on

the 13th, and the second round (semi-final) was on the 14th. The finals for the tournament

were held on the 15th.

110



Traffic levels for Twitch and the official eSports League channel are shown in Table 6.12.

On March 12th, esl csgo was the most-viewed channel. The second most-viewed channel was

tsm theoddone, who was a coach for a League of Legends tournament occurring at the same

time. The third most-viewed channel on the 12th was esl csgob. Since they were playing

concurrent matches in the early phase of the tournament, 12.70 GB of traffic came from

that channel. On the 13th, the most viewed channel was esl lol with 129.9 GB, and esl csgo

was the second-most viewed. The 14th once again had esl lol as the most-viewed channel

with 57.14 GB transferred, and esl csgo as the second. Finally, on March 15th, esl csgo was

the 15th most-viewed channel, being beaten by the other games of the tournament. League

of Legends (esl lol - 47.12 GB), Hearthstone (esl hearthstone - 17.02 GB), and StarCraft 2

(esl sc2 - 7.771 GB), were the top three most viewed streams.

Table 6.12: Twitch Live-stream Traffic Summary March 12-15

Connections Volume esl csgo Volume

March 12 18,435 225.8 GB 53.81 GB
March 13 40,774 322.2 GB 62.32 GB
March 14 6,370 227.5 GB 25.43 GB
March 15 6,120 167.6 GB 2.536 GB

Unlike global Twitch activity, the campus network showed less interest in the Counter

Strike: Global Offensive tournament. While viewers on campus watched much of the group

stage of the tournament, interest lowered as the tournament progressed. Instead, viewers

preferred to watch the IEM League of Legends matches. This behaviour does not mirror the

viewing patterns for popular sports events.

The lowered interest in CS:GO matches over the tournament is easily explained. The

important matches, like the finals, for CS:GO were held at 13:00 CEST, which is 05:00 local

time. The matches for the other games at IEM were held later, at times more convenient

for campus viewers. Another minor contributor to the lower amount of traffic (as a whole

on Twitch), is that as the tournaments progressed, fewer matches were played per day.
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6.7 Summary

In this chapter, we studied Twitch traffic on campus. We explained the volume and char-

acteristics of live-streamed videos. Popular streams on Twitch were characterized and we

found that they fell into the same two behaviours that content on NetFlix follows. We esti-

mated the effects of local stream replication on WAN bandwidth. We presented a monthly

breakdown of traffic from Twitch, and described weekly and daily traffic specifically. Finally,

we investigated viewership of Twitch during one of the largest eSports events Twitch has

held to date, and compared our observations to Twitch’s global information.

In the next chapter, we present conclusions from our measurement study.
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(a) Twitch Viewers by Lifetime (July 2013 – July 2015)

(b) Twitch Viewers Dec 2014 – Apr 2015 (c) CS:GO Viewers Dec 2014 – Apr 2015

Figure 6.12: Twitch Viewers
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(a) Twitch Viewers March 12-15, 2015 (b) CS:GO Viewers March 12-15, 2015

(c) Twitch esl csgo Channel Viewers March 12-15, 2015

Figure 6.13: Twitch Viewers: ESL-One Katowice (March 12-15)
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(a) Twitch Viewers March 10-17, 2015

(b) Twitch CS:GO Viewers March 10-17, 2015

Figure 6.14: Twitch Viewers March 10-17, 2015
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Figure 6.15: Twitch Traffic: March 9-15, 2015
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Chapter 7

Conclusions

This chapter summarizes the observations made in the thesis. The thesis itself is summarized

in Section 7.1. Overall NetFlix and Twitch measurements are presented in Sections 7.2

and 7.3, respectively. Conclusions are discussed in Section 7.4. Finally, future work in the

area is summarized in Section 7.5.

7.1 Thesis Summary

This thesis presents an analysis of video traffic at the University of Calgary, focusing on

NetFlix and Twitch. Our observation period ran from December 1, 2014 to April 29, 2015.

In this study, we investigated how popular video services were used on campus. Our analysis

was done with data taken from the edge of the University of Calgary’s network. The results

of this thesis show that video traffic is a dominant contributor to overall network traffic.

Chapter 1 introduced the thesis and presented our goals.

Chapter 2 presented background information on the TCP/IP stack and technologies

used in media streaming. Modern video streaming is done over HTTP by a protocol called

DASH (Dynamic Adaptive Streaming over HTTP). We described related work in the areas

of network measurement and video traffic characterization. Finally, we introduced NetFlix

and Twitch and summarized recent studies involving these services.

Chapter 3 described our collection capabilities and methodology. We listed the interrup-

tions in our collection of data. We also presented a high level overview of campus traffic.

In Chapter 4, we presented aggregate video traffic measurements. We described the

content types that are typically associated with video and their origins. We gave a brief

overview of traffic levels associated with another popular video streaming service, YouTube,
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and presented the high level trends of video streaming over our observation period.

Finally, in Chapters 5 and 6, we presented our analysis of NetFlix and Twitch, respec-

tively. We summarize these chapters in greater details in the following sections.

7.2 NetFlix Characterization

In Chapter 5, we overviewed the traffic NetFlix sends to campus. We described the URIs

NetFlix uses to transport content.

When viewing NetFlix, users have strong diurnal patterns, with peaks occurring in the

afternoon and late in the night. The diurnal patterns that NetFlix (and other video services)

display on campus may be different than what is observed in residential networks as the peak

rates occur during work hours. We found that TCP connections used to transport content

tend to be highly asymmetric, with an average of 370 KB sent to NetFlix, and 26 MB received

over 160 seconds. This leads to multiple connections being used to transport content from

NetFlix; we found 7-9 were used for a 22-minute episode and 12-14 for a 42-minute episode.

We expect that NetFlix’s use of DASH to serve video results in multiple connections. The

request-response pairs that were sent showed different characteristics, depending on whether

they were sent from desktop or mobile devices.

Finally, we were able to track what content was popular on NetFlix. Viewers had a

strong preference to watch TV series such as Friends. However, some newly added content

experienced short-term popularity on NetFlix. This characteristic was visible for both movies

and TV-shows. When a new season of a TV show was added to NetFlix, such as House of

Cards or Daredevil, the show had a brief surge in popularity as viewers consumed the new

content and then returned to previous viewing habits. We estimate that caching popular

shows on the local network will greatly reduce the amount of incoming traffic; i.e., it would

only take around 70 GB of space to store Friends, and that show transmitted more than

20 TB to the campus network during the collection period. Due to licencing and DRM issues
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however, operating our own cache is impossible. If network operators wanted to reduce this

type of traffic they could offer to host a NetFlix CDN node on their network.

7.3 Twitch Characterization

In Chapter 6, we described Twitch’s live-streaming.

Twitch uses Apple’s HLS service as a base for their live-stream implementation. We

found that HLS response sizes showed step-like behaviour due to the underlying (Apple

HLS) technology. Response durations for HLS content tended to remain under one second;

fast responses greatly contribute to a positive user experience.

When viewing connections, we found that they mirrored the characteristics of general

video streaming, and were highly asymmetric. Since we did not see significant upload traffic

to Twitch servers, we can assume that either no one on campus has attempted to stream

video games during our collection period, or that the servers receiving a stream are different

from the ones providing the stream to viewers. We have observed once again, that multiple

connections are used to transport video and attribute this behaviour to DASH.

Twitch provides less content (in bytes) than NetFlix to viewers at the University of Cal-

gary. Viewers consuming content from Twitch showed strong diurnal activity that stopped

earlier in the night than other video services; we attribute this to the streamers going offline.

This suggests that the more popular streamers viewed on Twitch are somewhere in North

America.

The popularity of streamers and the volume they transmit was also examined, and we

found that very few streamers have long-term popularity. Many of the popular streams in a

given month are highly seasonal; they are popular because the stream is hosting an event and

the stream is no longer viewed when the event is over. We were able to give a rough estimate

of how much traffic volume could be saved if we were able to locally replicate Twitch streams.

Since local replication would need TCP/IP multicasting, which is not widely supported, this
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solution cannot currently be implemented.

Finally, we also presented a case study of an eSports tournament. We used data both from

the campus network and from a third party that provided global information about Twitch.

We found that users on campus do watch these types of events – when it is convenient for

them; very few will adjust their schedules to watch the stream early in the morning.

7.4 Conclusions

Over our five-month observation period, we saw significant volumes of traffic to NetFlix and

Twitch. Since NetFlix does not have a public API to gather and compare data, we could

only state what is popular locally. Twitch, on the other hand, has an API that we can use to

gather and compare data; we used information from the API when investigating an eSports

tournament in March. Using the locally collected data, we found that these two services and

YouTube provide a majority of the video traffic on campus, and thus a majority of the Web

traffic that we see on campus.

Popular content from NetFlix tended to either be newly added content or TV shows

with long-term popularity. We do not believe that this differs from global trends. Caching

this content locally would greatly improve network utilization and user experience as well

as resilience in face of flash crowds. NetFlix traffic levels were not greatly affected by user-

generated activity (ratings and reviews). This is expected, as another study [11] (on other

services) revealed that relatively few users provide feedback and that ratings were slightly

more common than comments or reviews. On NetFlix, content ratings are sent via GET

requests and reviews are done via POST requests.

While our measurements showed that Twitch generated less traffic than other services

such as NetFlix and YouTube, Twitch generated significant levels of traffic over the ob-

servation period. A majority of Twitch’s traffic was for live content. The availability of

live content limits user consumption. The popular streams in each month are influenced
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by events; i.e., streams associated with eSports gain a substantial amount of viewers when

a tournament takes place. There is also a small set of streams on Twitch with long-term

popularity, but the amount of traffic they contribute to total Twitch traffic does not have

the same impact as the top NetFlix titles have on NetFlix’s total traffic.

When measuring the connections and request-response pairs used to transport content

from these services, we find that they do not greatly differ from the general characteristics

of video traffic observed in other studies.

The findings of this thesis, issues we encountered, and the evolution of these services all

provide the basis for future studies of video traffic.

7.5 Future Work

The work done in this thesis can be extended in multiple dimensions. More work understand-

ing local user interaction with video services may be done. Identifying and characterizing

sessions on these services will provide more insight on user-level interactions. We were not

able to identify the number of sessions or viewers on campus for this thesis. Additionally, for

NetFlix, we did not take into account user ratings or reviews. While ratings and reviews do

not add a lot of traffic, we may find that users rating content “poor” may stop viewing part

way through, as in other studies [58]. When studying Twitch, we did not measure chat levels

or content. Measuring the contents of chat is a social study that was beyond the scope of

this thesis. Another difficulty in measuring the content of chat is that it must be done on a

room by room basis using the API (for authentication), to allow access to the IRC channels

themselves.

General content level measurements can be improved for both of these services. Net-

Flix content measurements may be further improved by aggregating more of the individual

episode IDs with the main content IDs. Work can be done with NetFlix in order to map

request URIs to content (without the referrer URI). Our brief investigation of the request
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URIs did not reveal a link between the requests and the content being transported. This has

limited our understanding of mobile trends on NetFlix. More work can also be done mea-

suring other eSports tournaments on Twitch. We chose to measure the largest tournament

held during our collection period. We found that the tournament we chose to study was not

very popular locally, yet it was extremely popular on Twitch.

Other researchers conducting similar studies in the future will face two challenges. First,

both NetFlix and Twitch have recently changed aspects of their Web interfaces (briefly

overviewed in the appendices). Changes to the interface are accompanied by different re-

quests, which may also change response characteristics. Second, NetFlix has announced

its intention to switch to HTTPS (video content is already transported over HTTPS). We

expect that in the future Twitch will do the same. This will end the abilities of network

researchers to study the application-level interactions of these services.
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Appendix A

UDP Traffic

Over our collection period, we observed over 990.2 TB of UDP traffic, with 866.4 TB (87.5%

of UDP) outbound and the remaining 123.8 TB inbound. Non-standard ports were used to

transmit 198.7 TB (20.1%) of all bytes. i.e., n > 1, 023 where n was a port number involved

with the connection. This traffic is likely BitTorrent traffic (explained below).

The two greatest contributors to outbound UDP traffic were NTP exploitation attacks

(detailed later), and BitTorrent traffic. The volume of UDP traffic being used for legitimate

purposes is negligible, since outbound NTP and BitTorrent1 contributes 95% of all outbound

bytes; NTP accounts for 73.7% of outbound UDP traffic, and those transmitted from non-

standard ports account for over 22.9% of outgoing bytes.

Excluding connections that had non-standard values for both source and destination

ports, and NTP connections (destination port number 123) [46], the largest contributors

to outbound UDP traffic over our collection period were: 443 (HTTPS via QUIC2 – 19.24

TB), 53 (DNS – 2.629 TB), 80 (HTTP via QUIC – 1.835 TB), and 19 (Character Generator

Protocol (CHARGEN) – 1.386 TB). The other well-known services each sent less than 1

TB of UDP traffic over the collection period. These services include Simple Mail Transfer

Protocol (SMTP) and Simple Network Management Protocol (SNMP), these services provide

and manage Internet infrastructure.

Inbound UDP traffic, excluding NTP and non-standard ports, was primarily composed

of the following protocols: 80 (HTTP via QUIC – 15.11 TB), 22 (SSH – 5.182 TB), 443

(HTTPS via QUIC – 2.808 TB), and 53 (DNS – 0.804 TB). All other well-known services

accounted for less than 0.1 TB of inbound UDP traffic.

1A majority of BitTorrent volume is not attributed to legitimate filesharing.
2Quick UDP Internet Connections (QUIC)[69], is a protocol designed by Google for the Chromium project

to improve the performance of Web applications.
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A.1 NTP

For most of our collection period, we observed an on-going NTPv2 attack involving ex-

ploitable servers on campus. The attack is a well-known amplification attack3,4 that has

been discussed in a previous study by Czyz et al. [16]. Attackers utilizing this exploit send a

small packet with the victim’s IP address in the source IP field to a vulnerable server. The

server will respond by sending the victim a larger response (a list with up to 600 responses

to previous queries). By enticing enough responses of this type at once, the attacker is able

to overwhelm the victim with massive amounts of data that clog up the victim’s network.

On April 12, 2015, the outbound UDP traffic dropped significantly, almost ending the

attacks; note the outbound UDP level in Figure 3.1 compared to 3.2. The NTP attacks gen-

erated over 638.8 TB of traffic during our observation period. See Table A.1 for a breakdown

of the volumes involved in the attack.

Table A.1: Outbound NTP Traffic Volumes

NTP Volume Percent of Outbound UDP

December 143.2 TB 62.8%
January 215.7 TB 85.1%
February 89.14 TB 72.8%
March 112.2 TB 74.9%
April 78.60 TB 69.9%

Total volume: 638.8 TB

We shared this information with UCIT to assist in stopping the exploitation.

A.2 BitTorrent

BitTorrent is a popular peer-to-peer file sharing protocol. It may be implemented in either

TCP or UDP (referred to as uTP). We only started to identify BitTorrent connections in mid-

March. We tag a connection as a BitTorrent connection if both ports are ephemeral and the

3http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/
4http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-

attack/
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connection contains the string “BitTorrent protocol” in the payload. A consequence of this is

that we are unable to detect encrypted BitTorrent connections, and we may unintentionally

tag non-BitTorrent connections.

In April 2015, we observed 51.9 TB of UDP traffic on non-standard ports, constituting

36.8% of UDP traffic (141 TB). We tagged over 64 million UDP connections as BitTorrent,

with a total volume of 23.2 TB (44.7% of non-standard UDP). Within this, 7.7 TB was

inbound and 15.5 TB was outbound.
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Appendix B

HTTP User Agents

We are able to use the user-agent attribute in Bro’s HTTP logs to find what device/OS/browsers

are preferred by users.

B.1 Total HTTP

Over our collection period, we observed 2.11 million variations of user-agent strings making

over 10.5 billion requests. There are a total of 8.69 billion requests that we were able to parse

into (OS, Browser) tuples. The remaining 1.81 billion that we could not parse are discussed

in the Operating System subsection below. Tables B.1 and B.2 contain some summary

statistics for user-agents (inbound and outbound).

B.1.1 Operating System

Table B.1 lists information for most Web browser options. The percentage listed with each

item is out of total requests, not the 80% that were parsable. It shows that a majority of

requests (50.5%) come from a browser that states it is running a Windows variant, with the

most popular being Windows 7. Mac OS is the second most popular with 18.9% of requests.

Mobile devices (iOS and Android) account for 11.35% of requests that we see.

There are over 1.81 billion requests (17.2%) from over 1.14 million user-agents that have

not been listed in Table B.1 due to errors when parsing them. Out of these: 614 million

requests (5.85% of total) have empty user-agent strings, 164 million (1.57% of total) give

the user-agent string “Shockwave Flash”, 111 million (1.05% of total) are from Red Hat’s

implementation of the wget program, and the rest of the requests are from other terminal

user agents or, more commonly, bots.
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Table B.1: HTTP User-Agent OS

OS Version Request Count Percent

Windows Total 5.3 billion 50.5%
Windows 7 3.2 billion 31.8%
Windows 8(.1) 1.3 billion 12.0%
Windows XP 421 million 4.0%
Windows NT 10.5 million < 0.01%
Phone 4.7 million < 0.01%
Other 285 million 2.7%

Macintosh Total 2.0 billion 18.9%
OS X 10.10.* 907 million 8.5%
OS X 10.9.* 566 million 5.3%
OS X 10.8.* 168 million 1.5%
OS X 10.7.* 178 million 1.6%
Other 217 million 2.0%

iOS Total 792 million 7.5%
iPhone 618 million 5.9%
iPad 169 million 1.6%

Android Total 400 million 3.8%
Linux Total 198 million 1.9%
Other Total 19.5 million 0.2%

There are also many user agents in the logs that are incorrect or malicious. We have

detected 2,445 different “user-agents” that fall under this category. Out of these requests,

2,390 agent strings are associated with the ShellShock exploit; over 634,000 malicious requests

were made over the observation period. The other 55 user-agent strings in this category were

either completely mangled (“(X11;”) or were part of an SQL injection attempt.

B.1.2 Browser

The most popular browsers (see Table B.2) were Chrome, Firefox, Internet Explorer, and

Safari. This ordering is interesting since there are only 1.38 billion requests with Internet

Explorer compared to 5.30 billion from a Windows machine. Chrome is the overall most-

used browser (with 40.4% percent of requests). Firefox also has a significant presence with

a similar number of requests as Internet Explorer. This shows that third-party browsers –

at least on Windows machines – are used more than the default choice.
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Table B.2: HTTP User-Agent Browser

Browser Version Count Percent

Chrome Total 3.5 billion 40.4%
v40+ 1.9 billion 21.9%
v35-39 1.3 billion 15.4%
Other 254 million 2.9%
iOS 20.2 million 0.2%

Firefox Total 1.4 billion 16.2%
v35+ 780 million 9.0%
v30-34 472 million 5.3%
v25-29 42.6 million 0.5%
Other 117 million 1.4%

Internet Explorer Total 1.4 billion 15.9%
v10+ 849 million 9.8%
v7-9 498 million 5.7%
v6 26.1 million 0.4%
Other 8.4 million < 0.01%

Safari Total 1.3 billion 15.0%
v8 651 million 7.5%
v7 393 million 4.5%
v6 162 million 1.9%
Other 95.2 million 1.1%

Other Total 1.1 billion 12.5%
Unknown 826 million 9.5%
Opera 46.2 million 0.5%
Other 213 million 2.5%

Percent is out of 8.69 billion

B.2 Video User-Agents

Out of the 160 million request-response pairs for video content, over 148 million requests

(92.8%) had parseable user agent strings. Among the 11.5 million requests (7.20%) that

could not be parsed, 5.66 million requests (3.54% of total) had empty user-agent strings. A

breakdown of parseable strings is shown in Table B.3.

The user-agent string patterns for desktop OSs (Windows and Macintosh) mirror general

usage described previously.

For mobile devices, however, we find different usage patterns. When viewing video on

mobile devices, users often use an App to do so; this leads to “Unknown Browser” strings
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Table B.3: Video User-Agents

OS Browser Requests Percent Volume

Windows Total 86.3 million 54.0% 70.03 TB
Chrome 47.2 million 29.5% 45.91 TB
Firefox 18.0 million 11.3% 12.25 TB
IE 19.4 million 12.1% 7.94 TB
Other 1.7 million 1.1% 3.93 TB

Macintosh Total 30.6 million 19.2% 34.46 TB
Chrome 9.3 million 5.8% 13.43 TB
Safari 17.5 million 11.0% 12.24 TB
Firefox 3.0 million 1.9% 2.85 TB
Other 0.8 million 0.5% 5.94 TB

iOS Total 24.3 million 15.2% 23.90 TB
Safari 3.5 million 2.2% 5.67 TB
Unknown 20.8 million 13.0% 18.23 TB

Android Total 4.5 million 2.8% 6.94 TB
AndroidBrowser 3.8 million 2.4% 5.78 TB
Chrome 0.7 million 0.4% 1.23 TB
Other 12,000 > 0.01% 52.71 GB

Other Total 2.7 million 1.7% 4.17 TB
Unknown Total 7.1%

when trying to parse iOS browsers, and ‘AndroidBrowser’ appearing when trying to parse

browsers from Android devices.

B.2.1 Flash User Agents

Flash content was most frequently retrieved by user-agents of type “Shockwave Flash”, with

164 million requests (62.0% of Flash requests). No user-agent was given for 19.3 million

(7.30%) of Flash requests.

B.3 NetFlix User Agents

Table B.4 shows the user agents observed for NetFlix traffic. There are some major differences

from the previous user-agent trends. First, we find that Macintosh is the most-used OS. We

also see that in Windows systems, the ordering of Firefox and Internet Explorer has also
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Table B.4: NetFlix User Agents

OS Browser Count Percent

Macintosh Total 108 million 35.5%
Safari 53.8 million 17.6%
Chrome 46.2 million 15.1%
Firefox 6.1 million 2.0%
other 2.3 million 0.8%

Windows Total 75.4 million 24.6%
Chrome 56.1 million 18.3%
IE 8.3 million 2.8%
Firefox 10.9 million 3.5%
other 4,607 < 0.01%

iOS Total 37.2 million 12.2%
netflix-ios-app 1.4 million 0.4%
IPad 21.8 million 7.2%
iPhone 14.1 million 4.6%

Android Total 4,486 > 0.01%
Other Total 84.4 million 27.7%

Empty 81.9 million 26.9%
unparseable 1.1 million 0.3%
Linux 0.9 million 0.3%
ChromeOS 0.5 million 0.2%
other 100 < 0.01%

changed, but Chrome still remains the most-used Windows browser. Finally, we see that the

number of requests made from Android devices is extremely low.

There are multiple explanations for these observations. First, since the University does

not provide as many MacOS workstations as Windows workstations, and since NetFlix is

used for entertainment, we can assume that users are viewing NetFlix on their own devices

instead of from University machines. The lower usage of Internet Explorer may also follow a

similar explanation; when watching NetFlix on campus, a viewer will prefer to watch on their

own device with their browser of choice. Finally, the low number of requests from Android

devices is easily explained: we tested the NetFlix app on an Android device and found that

no user-agent is attached to content requests so the user-agent field in the Bro log is empty.
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B.4 Twitch User Agents

The user-agent strings used to view live-stream content are shown in Table B.5. Out of all

user agent strings, 27 could not be parsed; they accounted for 0.17% of requests.

Table B.5: Twitch User Agents

OS Browser Count Percent

Windows Total 33.7 million 76.4%
Chrome 29.3 million 66.7%
Firefox 3.4 million 7.7%
IE 0.7 million 1.5%
Other 0.3 million 0.5%

Macintosh Total 3.9 million 8.8%
Chrome 2.2 million 5.1%
Safari 0.9 million 2.1%
Firefox 0.6 million 1.3%
Other 0.1 million 0.3%

iOS Total 2.5 million 5.6%
iPhone 1.7 million 3.8%
IPad 0.8 million 1.8%

Other Total 4.0 million 9.2%
Android 2.2 million 5.0%
Linux 1.7 million 3.8%
Other 0.1 million 0.4%

As Table B.5 shows, most users use Chrome on Windows when accessing Twitch from

campus. Windows is once again the most used OS, as with viewing video content in general.

Chrome is the most-used browser across all desktops when accessing Twitch. The table

shows that mobile devices account for only 10% of requests.
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Appendix C

NetFlix User Interface

The structure of a typical NetFlix session (on a desktop device) is as follows1. Upon visiting

http://www.netflix.com for the first time, NetFlix responds with a HTTP redirect (301)

towards https://www.netflix.com. It uses another redirect that handles geo-restrictions.

In Canada, users receive a 302 redirect pointing them to https://www.netflix.com/ca.

Next, NetFlix handles login authentication over HTTPS. After logging in through HTTPS,

NetFlix reverts back to unencrypted HTTP for communication.

After logging in, the client requests NetFlix over HTTP and is redirected to http://

www.netflix.com/WiHome to select the user’s profile. Once the profile is selected, a second

request to /WiHome is made and is successfully returned. The request path WiHome is

short for Web Interface home. On the homepage for the Web interface, there is a menu

with content that NetFlix suggests for the user, including a list of new (to NetFlix) content,

content the user has not finished watching, and content similar to previously watched content

(Figure C.1 provides a screenshot).

On selection of an item, the browser sends a request to www.netflix.com/WiPlayer?

movieid=<id>... that results in a JavaScript player being loaded. Content is then trans-

ported with a different set of requests as outlined in Section 5.1. Figure C.4 provides an

illustration of the session. Other domains involved when visiting NetFlix include CDNs op-

erated by NetFlix and by third parties to load thumbnail images (i.e., movie/series covers

as well as still frames from playing content).

A screenshot of the Web Interface player is visible in Figure C.2. Here we see the options

for playing the content (pausing, tracking to a point of the video, skipping episodes, etc.)

1The sessions and request paths detailed in this thesis were valid during our collection period. In June
2015, NetFlix switched the desktop Web interface to use different paths.
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Figure C.1: Screenshot of NetFlix Web Interface Homepage

on the bottom. On the right side of this bar (from left to right) there are options to skip to

the next episode, list episodes (discussed in Section 5.2), captioning and language options,

and finally a full screen mode option. If the user does not move their mouse cursor, this

navigation bar disappears after a few seconds.

In Figure C.1, the cursor is hovering over an item Sense8. If the title for this item is

selected, the user will be taken to a page similar to Figure C.3. The series page is the only

way to transmit an episode’s ID at the network level; autoplaying episodes or selecting from

within the player adds the ID to the URI as a fragment.
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Figure C.2: Screenshot of NetFlix Web Player

Figure C.3: Screenshot of NetFlix Sense8 series page
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User NetFlix

GET http://www.netflix.com/

301 https://www.netflix.com

GET https://www.netflix.com/

302 https://www.netflix.com/ca/

GET https://www.netflix.com/ca/

200 https://www.netflix.com/ca/

GET (login page)

200 (login page)

POST (login page)

302 http://www.netflix.com

HTTPSHTTPS

GET http://www.netflix.com

302 http://www.netflix.com/WiHome

GET http://www.netflix.com/WiHome

302 http://www.netflix.com/ProfilesGate...

GET http://www.netflix.com/Default

302 http://www.netflix.com/WiHome

Profile SelectionProfile Selection

GET http://www.netflix.com/WiHome

200 http://www.netflix.com/WiHome

Figure C.4: A typical NetFlix session for a Canadian user, from login to browsing.
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Appendix D

NetFlix IP range

During the collection period, the CIDR subnets that we found NetFlix traffic being trans-

mitted from are as follows:

• 108.175.32.0/20

• 198.45.48.0/20

• 198.38.96.0/19

• 23.246.0.0/18

• 192.173.64.0/18

The following IP ranges are listed as associated with NetFlix, but we have not found that

they transmitted any traffic of interest:

• 45.57.0.0/17

• 64.120.128.0/17

• 66.197.128.0/17

These IP addresses may be involved in serving other regions of the world, i.e., Europe or

South America.
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Appendix E

New NetFlix Paths

E.1 Login

In June 2015, NetFlix updated their desktop Web Interface. The new interface uses a

different request structure that is outlined in Figure E.1.

In the new interface, a GET request is sent with profile information as parameters.

E.2 Content Viewing

When viewing content from NetFlix, the initial GET request from a desktop device is now

directed towards a URI with the schema:

http://www.netflix.com/watch/<ID>?trackId=...&tctx=...

The ID in this case is the IDe value when viewing a show. It seems that the previous

IDm values are used when viewing details about a show from the catalogue.

Additionally, some requests for content from the desktop are now transmitted over

HTTPS. They seem to come from hosts that conform to the following naming scheme:

https://ipv4_<X>.<Y>.ix.nflxvideo.net/range/<#>-<#>?o=...

The IP addresses for these servers are the same as the ones described in Appendix D. As

of July 27, 2015, mobile requests from Android devices remain unchanged.
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User NetFlix

GET http://www.netflix.com/

302 https://www.netflix.com

GET https://www.netflix.com/

302 https://www.netflix.com/ca/

GET https://www.netflix.com/ca/

200 https://www.netflix.com/ca/

GET (login page)

200 (login page)

POST (login page)

302 http://www.netflix.com

HTTPSHTTPS

GET http://www.netflix.com

302 http://www.netflix.com/browse

GET http://www.netflix.com/browse

200 http://www.netflix.com/browse

GET (select profile)

200 (select profile)

Profile SelectionProfile Selection

GET http://www.netflix.com/browse

200 http://www.netflix.com/browse

Figure E.1: New NetFlix paths, from login to browsing
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Appendix F

Twitch Subscriptions and Partnership

A user on Twitch may subscribe for $8.99 a month to Twitch Turbo. This service gives

multiple benefits to the user: no ads on streams, a customizable emoticon set for use in

chat, a badge that appears beside your name in chat, extra colours for chat, and longer-term

broadcast storage for VOD content of 60 days as opposed to the non-turbo limit of 14 days

(for full broadcasts only, since highlights may be stored indefinitely).

Streamers who are popular on Twitch, or who have a large following for video game

content (or may otherwise be considered a professional gamer), may apply for partnership

with the site. Partnership offers several benefits to the streamer. The primary benefit is

that it allows the streamer monetization options. The primary mode of monetization is

allowing viewers to pay for subscriptions to a streamer ($4.99/month split between Twitch

and the streamer). This subscription does not always offer the same benefits as the Turbo

subscription. Another option is that Twitch allows the streamer to take donations (or

tips) from the users on their channel. The minimum donation amount is $1.001. Partnered

streamers may be able to play ads (i.e., mid-roll commercial ads), for additional monetization.

Streamers may promote other channels for monetization, such as selling merchandise on their

channels. Top streamers on Twitch (and YouTube) can make millions of dollars a year [27].

Other features that a partnered streamer gains include 60-day VOD storage limit, better

video transcoding options for viewers, delaying their stream by up to 15 minutes2, and

access to beta-test new features.

In return for subscribing to a channel, a user is often granted some privileges by Twitch

and the streamer. Some examples of these privileges include usage of custom emoticons for

1In local currency.
2This delay is useful for multi-player games since it prevents viewers from influencing the outcome.
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chat uploaded by the streamer, invitations to multi-player games with the streamer (the

streamer can access their subscriber list to disseminate needed information), chat badges,

and unthrottled chat usage (if a stream has a lot of viewers, chat may be set to a slow-

mode or a subscriber-only mode). Subscription benefits are listed per streamer (multi-player

invitations don’t count as a benefit in this case, since Twitch cannot enforce it).
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Appendix G

Twitch User Interface

Figure G.1 shows a screenshot of the Twitch homepage. There is an embedded stream in

the centre of the page showcasing one of the featured streams, with a brief description of the

stream to the right. Directly below the stream, there is a short icon list of featured streams,

with the selected one highlighted (in this case, it is the one in the centre). Below the featured

streams is a list of featured games. This list shows the box-art of the game, the title, and

lists how many people are currently viewing the game. If the user were to scroll down on the

homepage, they would see more featured games than top channel lists. Across the top of the

page, from left to right, there is a link back to the homepage (the text ‘Twitch’), a search

bar, a link to browse Twitch’s directory, a link to subscribe to Twitch Turbo, followed by

the user’s account setting and following list (or options to log in or register if you are not

logged in).

Figure G.2 shows the page when a specific stream is being viewed. The request path

when accessing the page is just the username. For the example, the URL is www.twitch.

tv/ddrjake. On the left side are options to browse Twitch and access user settings. The

top of the page has information about the stream itself. The streamer’s avatar picture is on

the right, followed by the title, streamer, and game being played. In this case, the title of

the stream is “African Power as Loango” being broadcast by the streamer “DDRJake”. The

game being played is Europa Universais IV. Directly below the stream, from left to right,

are options to follow the streamer, subscribe to the streamer (if they are a Twitch partner),

a link to share the stream, a link to bookmark the stream, a theatre-mode option, followed

by options to message the streamer or report the stream. Below these options, there is a full

description of the streamer (that they upload themselves). On the right side of the page is
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Twitch Chat, described in Section G.2.

The Twitch Player itself uses Flash1 to handle user interaction.

If a user chooses to subscribe to a streamer, they are taken to a page similar to Figure G.3.

This page lists the streamer that you are subscribing to on the left, as well as any benefits

granted. To the right side of this are the payment options; the subscribe page, and any

payment pages, are transmitted via HTTPS.

If a user is logged in and selects their following page, they see a page similar to Figure G.4.

This page has the same options as there were in Figure G.2 on the left side of the page. In

the centre of the page, there is a list of all live-streams that have been followed. The top

row shows live-streams, and below is a list of all streamers hosting a stream (described in

sub-section 6.1.1). Along the bottom of the page is a list of recent broadcasts (VOD content).

G.1 Twitch Domains

We have observed Twitch video content originating from two different domains owned by

Twitch: twitch.tv and ttvnw.net. From December 1st, 2014 through March 16th, 2015,

video traffic was mostly delivered by twitch.tv, but from March 16th until the end of our

collection period in April 2015, ttvnw.net was used. Other domains owned by Twitch, such

as jtvnw.net and justin.tv, are used by Twitch to deliver other elements, such as static

documents. Additionally, jtvnw.net has a CDN domain for serving images for Twitch.

Almost all video content from Twitch (from twitch.tv or ttvnw.net) comes from servers

running Apple’s HTTP Live-Streaming (HLS) service. HLS is an implementation of the

DASH protocol.

1As of July 22, 2015, Twitch has started to use an HTML5-based video player with underlying Flash
content. They are planning on upgrading to a full HTML5-based solution soon.
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G.2 Twitch Chat

Twitch provides a chat functionality so that viewers may converse with the streamer or with

each other. The chat is actually a Web interface to an Internet Relay Chat (IRC) channel.

Twitch previously used Flash on the end-user’s device to handle the chat functionality, but

as of July 1, 2015, they have switched to using a native HTML5 solution.

On the right side of Figure G.2 is the chat panel of Twitch. Only viewers who have

logged into an account with Twitch may participate in the chat. Additionally, the chat

may be restricted to a mode, such as subscriber only. In this mode, only viewers who have

subscribed to the streamer may contribute to the chat, but everyone may see the chat. On

the left side of the user name, there may be a small icon, referred to as a ‘badge’. A badge

can indicate whether someone in chat is a subscriber to the streamer (stream specific icon)

or Twitch Turbo (a battery icon), a chat moderator (a sword icon), or the streamer.

At a network level, we are unable to monitor application-level data from the chat sessions

since secure WebSocket connections are used. Bro does not tag WebSockets connections

by default, adding to the difficulties in identifying connections. The information that we

get is basic since it only includes network-level details, such as connection duration, bytes

transferred, and packets transferred. We chose not to present a breakdown of Twitch chat

connections since they are more social in nature, and are out of the scope of this thesis.

Other studies [28, 48] have previously detailed the social aspects of Twitch.
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Figure G.1: Screenshot of the Twitch Homepage
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Figure G.2: Screenshot of a Twitch stream

Figure G.3: Screenshot of a Twitch Subscribe page
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Figure G.4: Screenshot of a Twitch Following Page
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Appendix H

Twitch Video on Demand

Twitch’s Video on Demand (VOD) content comes in two forms. The more common one is

pre-recorded HLS (Video/mp2t) content, that we describe here, and the other less common

type is previous Flash content, which we discuss in Section H.1. The page for viewing VOD

content on Twitch looks similar to the page in Figure G.2. The differences are the chat panel

is replaced by a list of chronologically ordered VOD content by the streamer, and there is

an option to skip to any position of the stream.

The host that serves HLS content for Twitch is named “vod.ak.hls.ttvnw.tv”. A total

of 465 GB of VOD traffic was observed coming from this host during our collection period.

We have also observed just over 3 GB of video content from vod.edgecast.hls.twitch.tv;

EdgeCast is Verizon’s CDN service. The ‘ak’ part of the hostname seems to be static, and

may indicate a link to the Akamai CDN (due to another CDN being identified in the same

position). The request paths for VOD content conform to the following schema:

/v1/AUTH_system/vods_<i>/<streamer>_<l>_<m>/<quality>/index_<N>_<H>.ts?...

At the start of the request path is what appears to be a version indicator. The i value looks

like a hexadecimal number that does not change for the individual VOD requested. The

values l and m are the same values as for live-stream requests. That is, these values are

determined on the original broadcast and reused for VOD access. The N and H values are

the same for each request made to the VOD content. N is one of the n values from the live

broadcast, and determines the start of the VOD section (a live broadcast may be broken into

multiple VOD files). H is the hash value for the n value of the original broadcast. The query

string following the URL specifies two numbers: start offset and end offset. These numbers

request a specific part of the file from the server. For example, if request I has a start offset
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of 1 and an end offset of 9, then request I + 1 has a start offset of 10 and an end offset of

18.

Additionally, when making a request to HLS VOD content on desktop devices, the request

contains the following referrer:

http://www.twitch.tv/<streamer>/v/<p>

The value p is a number that is not related to any of the previous values. The value does,

however, appear to be unique to the broadcast being requested.

Table H.1: Video On Demand (HLS) Content Volumes

Volume Connection Count

December 40.7 GB 30,349
January 82.3 GB 59,758
February 93.2 GB 72,109
March 124.0 GB 107,109
April 125.0 GB 114,109

The volumes for HLS VOD content appear in Table H.1. The overall levels for VOD

content are pretty low. This implies that most users on Twitch view live content. It is also

important to remember that a streamer on Twitch may upload VOD content to another

service. Twitch allows for easy upload to YouTube, for example.

Figures H.1a and H.1b show the CDFs for VOD response size and duration, respectively.

These figures show the same behaviour as HLS (Figures 6.3b and 6.3a). The results are

unsurprising since the same underlying technology, Apple HLS, is used for both.

H.1 Flash Videos

Some of the older VOD content from Twitch is served as Flash content. The host that serves

this content is media-cdn.twitch.tv. The paths requesting Flash VOD content follow the

format:

/store<i>.media<j>/archives/<Date>/live_user_<streamer>_<k>.flv
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(a) Size CDF (b) Duration CDF

Figure H.1: Twitch VOD Response Characteristics

The i, j, and k values are numbers that do not appear to be related. Date is the date of the

broadcast stream. The referrer for Flash VOD content is almost the same as the one used

for HLS VOD content:

http://www.twitch.tv/<streamer>/c/<p>

Once more, the p number does not appear to be related to any of the previous values.

Table H.2: Twitch FLV Content Summary

Total Connections Total Volume Total Requests Avg. Duration

December 2,932 185.2 GB 3,059 67.7
January 2,611 214.0 GB 2,712 165.0
February 1,815 135.1 GB 1,892 155.0
March 1,908 100.3 GB 2,021 125.0
April 1,607 84.4 GB 1,668 97.3

Table H.2 shows the summary statistics for Flash VOD content over the observation

period. It clearly shows that VOD content delivered with Flash decreased over time.

Figure H.2a shows the response size CDF for Flash responses. There is a sharp increase

of responses that have a length less than 512 bytes (between 460-470 bytes). Figure H.2b is

the response duration CDF; it shows that most Flash responses take less than a second.
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(a) Size CDF

(b) Duration CDF

Figure H.2: Twitch Flash Response Characteristics

160


