
THE UNIVERSITY OF CALGARY

Efficient Data Passing in Distributed Systems

by

Paul Robert Milligan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JANUARY, 1992

© Paul Robert Milligan 1992

1+1
National Library
of Canada

Canadian Theses Service

Ottawa. Canada
KIA 0N4

Bibliotheque nationate
du Canada

Service des thès canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

19*9 anaaa

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la Bibliothéque
naticinale du Canada de reproduire, prêter,
distribuer ou vendre des copies de sa these
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des persoanes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qul protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisatiori,'

ISBM' 0-315-75264--S

THE UNIVERSITY OF CALGARY

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled, "Efficient Data Passing in Distributed

Systems," submitted by Paul Robert Milligan in partial fulfillment of the require-

ments for the degree of Master of Science.

R. Vasudevan, Supervisor

Computer Science

Brian Unger

Computer Science

cDLLc

Paul Kwok

Computer Science

Laurence E. Turner

Electrical Engineering

Date January 29, 1992

11

Abstract

Simple data-passing modes are proposed for interprocess communication (IPC)

in distributed systems. The modes are duplicate, move and dynamic-share. IPC in-

corporating these data-passing modes can be implemented efficiently on networks of

shared memory multiprocessors by taking advantage of memory management hard-

ware.

The motivation for conducting this research is a desire for a data-passing IPC

model that is competitive in terms of performance with memory-sharing IPC models.

However, the data-passing mode approach also enriches the semantics of data-passing

IPC because the intended access to the memory containing the passed data can be

specified.

The primary problem addressed by this research is how to define data-passing

IPC operation semantics for distributed systems so that they can be implemented

efficiently. Efficient implementation includes minimising data copying.

A new synchronous message-passing IPC model called Regions is presented. The

purpose of Regions is to provide IPC operations that support the duplicate, move and

dynamic-share data-passing modes: Regions supports data-passing between separate

processes where memory is not shared by default but where memory sharing can be

established dynamically.

Regions has been implemented on Sun 3 workstations and a BBN Butterfly mul-

tiprocessor. These implementations are used to measure and analyse the elapsed

time performance of the IPC operations.

We conclude that. the semantics and efficiency of data-passing IPC operations

can be significantly improved by supporting the data-passing modes.

111

Acknowledgements

I thank my supervisor, Vasu, for his unconditional support. If there is 'any sig-

nificant contribution in this thesis it is due to his patience and his commitment to

clarity, simplicity and quality. It has been a pleasure and an honour to work with

him.

Graham Birtwistle also deserves my thanks for allowing Vasu to supervise me while

on leave by performing the local administrative tasks of interrim supervisor.

I thank my wife, Myreille, for her love, support and understanding. She has had

to share my attention with this thesis from the moment we met. Myreille and the

child within her provided the incentive I needed to complete this thesis.

I thank the people responsible for awarding me a NSERC scholarship because it

provided the incentive I needed to initiate this thesis.

I thank my many friends and relatives for encouraging me and believing in me.

They helped me overcome my feelings of inadequacy. I leaned heavily on the little

things they have said through the years. I especially want to acknowledge my parents,

my brother Patrick, my sister Sheila, and my friends Theo vanKalleveen, Hatem

Zaghloul, Valerio Franceschin, Hugo Graumann, Micheal Belenstien, Kevin Jewell,

Rick Farmer, Cliff Nelson, Rod Randall, Barry Thate, Roy Cohn, Linda Riddle, and

Martin Fromme.

I thank the members of the Computer Science Department for providing excellent

resources. I appreciate the assistance that John Lewis and Istvan Hernadi provided

with the implementation. I also appreciate the assistance of Jules Bloomenthal, Mike

Bonham, Alan Dewar, Camille Sinanan, Bev Frangos, Bruce MacDonald, Gerald

Vaselenak, Tim Bhiek, Brian Scowcroft, David Hankinson' and Robert Fridman.

iv

I thank BBN Advanced Computers Inc. and Jade Simulations International Corp.

for making the GP1000 Butterfly multiprocessor available. BBN donated a disk drive

to allow me to continue the implementation and analysis when the department was

not able to provide a replacement drive.

I thank Willowglen Systems Ltd and SRDG for jointly developing the W System.

Their implementation provided a base for my research. I appreciate the effort that

was required to develop the system. I also appreciate the timely loans of hardware

from Willowglen Systems.

Finally, I want to thank the people who participated in the Forum and other WEA

courses and seminars with me. That experience empowered me to bring possibility

to my work and to go beyond what normally stops me.

V

To my father, James Robert Milligan,

and

my wife, Myreille Milligan.

vi

Table of Contents

Approval ii

Abstract Hi

Acknowledgements iv

Dedication vi

Table of Contents vii

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 The Goals: Enriched Efficient Data-Passing 2

1.2 The Approach: Data-Passing Modes 3

1.2.1 Regions: An IPC Model that Incorporates the Modes 5

1.3 Related Work 7

1.3.1 Message-Passing Distributed Operating Systems 7

1.3.1.1 V System 7

1.3.1.2 Mach 8

1.3.1.3 UNIX System V 9

1.3.1.4 Dash 9

1.3.1.5 Reactive Kernel 10

1.3.2 Shared-Variable Distributed Operating Systems 11

1.3.2.1 Cedar 11

1.3.2.2 IVY and Similar Systems 12

1.4 Contributions 13

1.5 Overview 14
vii

2 Data-Passing Modes 15

2.1 Dynamic-Share, Move and Duplicate Passing Mode Definitions . 15

2.2 Passing Modes Involving Datum-Containers 17

2.2.1 Object Notion 17

2.2.2 Datum-Container Definition 17

2.2.3 The Datum-Container Passing Modes 17

2.2.4 The Copy Datum-Passing Mode 18

2.3 Specification of Datum-Containers With Addresses 18

2.3.1 Context Definition 19

2.4 Passing Modes Involving Separate Contexts 19

2.5 Passing Groups of Datum-Containers 20

2.6 Interprocess Data-Passing 21

2.6.1 Process Definition 21

2.6.2 Relationship Between Processes and Contexts 21

2.6.3 Datum-Containers Shared by Processes 22

2.7 Summary 23

3 Regions IPC Model 24

3.1 Basic Notions 24

3.1.1 Process Identification 24

3.1.2 Private Context 25

3.1.2.1 Permanent Bindings to Private Datum-Containers 25

3.1.2.2 Dynamic Bindings to Sharable DRegions 25

3.2 IPC-Related Primitive Operations 26

3.2.1 Creating and Deleting Dynamic Bindings 27

3.2.1.1 The create-region Primitive 27
viii

3.2.1.2 The delete-region Primitive 28

3.2.2 Passing Messages and DRegions 28

3.2.2.1 The send, receive and reply Primitives 28

3.2.2.2 The pass-region-to and pass-region-from Primi-

tives 31

3.2.2.3 Data-Passing Modes for DRegions 32

3.2.3 Other Useful DRegion Related Primitives 33

3.2.3.1 The rebind-region Primitive 33

3.2.3.2 The size-of-region Primitive 34

3.2.3.3 The state-of-region Primitive 34

3.2.3.4 ARegion State Changes 35

3.2.4 Failure Semantics of the Regions Primitives 36

3.2.4.1 Exactly-Once and At-Most-Once Semantics 37

3.2.4.2 Unreliable Delivery of Requests 38

3.2.4.3 Failures Causing Process Termination 39

3.3 Discussion 40

3.3.1 Efficiency and Equivalence of the Data Passing Modes 40

3.3.2 Explicit Data-Passing 42

3.3.3 Synchronisation 42

3.3.3.1 Semaphore Server Example 43

3.3.3.2 Synchronous Shared Memory Server Example . . 44

3.3.3.3 Region's Servers and Monitors 49

3.3.4 Asynchronous Binding to DRegion Example 49

3.4 Summary 52

4 Implementing Regions IPC 54
ix

4.1 Hardware Assumptions 54

4.2 Kernel Notion 55

4.3 Deferred Copying 55

4.4 Design Considerations 57

4.5 Object-Based Specification 58

4.5.1 Variable Types 59

4.5.2 The Kernel Object Interface 59

4.5.3 Regions Primitive Specification 60

4.5.4 Private Kernel Operations 63

4.5.5 Private Kernel Objects 67

4.5.5.1 Context Object 68

4.5.5.2 Binding Object . 69

4.5.5.3 DRegion Object 71

4.5.5.4 PageEntry Object 73

4.6 Sun 3 liniprocessor Implementation 75

4.7 BBN GP1000 NUMA Multiprocessor Implementation 76

4.8 Discussion 78

4.9 Summary 80

5 Performance of the Regions IPC Primitives 81

5.1 Hardware 81

5.2 Software 82

5.3 Measurement Techniques 83

5.4 Data Copying Primitives 84

5.5 Total Elapsed Times 84

5.5.1 Benefits and Costs of Avoiding Unnecessary Copying 87
x

5.5.2 Factors that Increase the Elapsed Time 91

5.6 Component Times 92

5.6.1 Passing DRegions 93

5.6.2 Creating and Deleting Regions 96

5.6.3 SRR Transactions 98

5.7 Lessons Learned 103

5.8 Comparisons With Related Systems 104

5.9 Summary 106

6 Conclusions 108

6.1 Further Work 110

References 111

xi

List of Tables

3.1 ARegion state changes caused by create-region and delete-region. 35

3.2 ARegion state changes caused by passing DRegi ons 36

3.3 ARegion state changes caused asynchronously by delete-region. * . 36

5.1 send-receive-reply total elapsed time. 85

5.2 pass-region-from and copy-data total elapsed time. 85

5.3 Local Sun 3/75 pass-region-from and copy-data component times 93

5.4 Local GP1000 pass-region-from and copy-data component times. 94

5.5 create-region and delete-region component times. 97

5.6 send-receive-reply component times grouped by function. 99

5.7 Local send-receive-reply component times in execution order. . . 101

5.8 Remote GP1000 send-receive-reply component times in execution

order. 102

xli

List of Figures

2.1 Passing modes: entity not shared. 16

2.2 Passing modes: entity shared. 16

3.1 Two examples of SRR transactions. 29

5.1 Local Sun 3/75 elapsed time versus number of bytes. 88

5.2 Local GP1000 elapsed time versus number of bytes. 89

5.3 Remote GP1000 elapsed time versus number of bytes. 90

Chapter 1

Introduction

Future computer systems are likely to be networks of shared memory multiproces-

sors and uniprocessors. A problem with designing interprocess communication (IPC)

models for these systems is how to efficiently pass data between processes. A new so-

lution based on three data-passing modes is proposed. These modes are incorporated

in a new data-passing IPC model for distributed systems.

In distributed systems the coupling between two processors is either tight (the

processors share access to physical memory) or loose (the processors do not share

access to physical memory). Tightly-coupled processors can use memory to commu-

nicate while loosely-coupled processors can only use physical communication chan-

nels to communicate. IPC models for distributed systems can hide the coupling of

processors allowing multiprocess application programs to be specified independent

of the underlying hardware. Two types of IPC models are discussed.

Data-passing IPC models allow processes in separate memory-access contexts to

communicate. A memory-access context defines a set of memory-cells that a process

can access. There are several advantages of using separate contexts. First, processes

are protected from memory-access interference which occurs when incorrect results

are produced because a process accesses memory at an improper time. Second, data-

passing IPC operations can be designed which are semantically transparent with

respect to the coupling of processors. Finally, separate contexts support modular

structure and failure isolation.

Shared-variable (or memory-sharing) IPC models support processes executing

in the same context. An advantage of this approach is that data can be passed

1

Chapter .1: Introduction 2

by reference. Another advantage is data need not be explicitly passed from one

process to another. A process can voluntarily coordinate its access to shared mem-

ory with interprocess synchronisation operations [Dijkstra 68, Hoare 74]. However,

memory-sharing IPC models do not provide protection froth memory-access interfer-

ence. Semantically transparent access to memory shared between processes executing

on tightly-coupled or loosely-coupled processors has been demonstrated [Li 86].

The motivation for conducting this research is a desire for a data-passing IPC

model that is competitive in terms of performance with memory-sharing IPC models

when the communicating processes are executing on tightly-coupled processors'.

The primary problem addressed by this research is how to define data-passing

IPC operation semantics for distributed systems so that they can be implemented

efficiently. Efficient implementation includes minimising data copying.

1.1 The Goals: Enriched Efficient Data-Passing

The goals of this research are the following.

• Demonstrate that data-passing between processes executing in separate con-

texts can be implemented efficiently when the processes are executing on tightly-

coupled processors.

• Develop an IPC model for distributed systems that provides simple data-

passing operations which support semantics enriched with memory access in-

formation.

Design considerations for the IPC model are as follows.

• It must also be possible to implement the data-passing operations efficiently

for processes executing on loosely-coupled processors.

'This includes the trivial case where the communicating processes are executing on the same
processor (via time multiplexing).

Chapter 1: Introduction 3

• The IPC model must support run-time enforced separate contexts so that

memory-access interference can be controlled.

1.2 The Approach: Data-Passing Modes

Simple data-passing modes are proposed that allow the implementation to avoid

unnecessary data copying by taking advantage of memory management unit (MMU)

hardware. The modes are duplicate, move and dynamic-share. They specify the

access that the passing process has to the memory containing the passed data.

Data are passed from a source context to a destination context. If separate copies

of the data are required in the source and destination contexts, then the data are

passed using the duplicate mode. This is analogous to photocopying a sheet of paper

and giving it to another person. If the same copy of the data is required in the source

and destination contexts then the data are passed using the dynamic-share mode

(memory sharing is established at the time the data are passed). This is analogous

to one person allowing another person to simultaneously use the same sheet of paper.

If the data are no longer required in the source context then the data are passed using

the move mode. There are two possibilities: the memory-cells containing the moved

data are or are not shared. If they are not shared then move is analogous to sending

a sheet of paper by mail. If they are shared then move is analogous to one person

(the source) being replaced by another person (the destination) in a group of people

who are simultaneously using the same sheet of paper.

Data-passing operations can be enriched with these data-passing modes. Existing

data-passing IPC models support data-passing operations that pass data by value.

A copy of the data becomes accessible to the process executing in the destination

context. The memory containing the original data either remains accessible to the

process executing in the source context (the duplicate mode) or it is no longer ac-

Chapter 1: Introduction 4

cessible to that process (the move mode). Existing data-passing operations can be

enriched with the dynamic-share data-passing mode which allows data to be passed

by binding. The memory containing the original data becomes accessible to the pro-

cess executing in the destination context. This memory either remains accessible to

the process executing in the source context (the dynamic-share mode) or it is no

longer accessible to that process (the move mode).

Dynamic memory sharing between separate contexts is not novel but the dynamic-

share data-passing mode is. This mode establishes memory sharing. This memory

sharing differs from the memory sharing provided by shared-variable IPC models

because the processes are executing in separate contexts. It is possible (see Sec-

tion 3.2.3.1) to configure separate contexts so that references can be passed between

processes that share memory (the shared data can be passed by reference). Once

data has been passed with the dynamic-share mode then explicit data-passing is no

longer required because the processes share access to the memory containing the

data.

The dynamic-share mode is useful for allowing two or more (possibly unrelated)

processes to concurrently access specific memory. For example, the dynamic-share

mode can be used to pass processes access to the data structures that are used to

update a display screen (rather than passing data with the duplicate or move mode to

a process that updates the screen on their behalf). Each process is trusted to update

its part of the screen without interfering with other parts of the screen. The screen

can be updated concurrently without the overhead of data-passing IPC operations

because memory sharing has been established. However, a process can modify part of

the screen that is not allocated to that process. Applications programmers have the

choice to prevent memory-access interference by not using the dynamic-share data-

passing mode or to avoid explicit data-passing operations (involving the duplicate or

Chapter .1: Introduction 5

move modes) by using the dynamic-share mode once to establish memory sharing2.

Efficient implementation of the data-passing modes requires hardware with the

following features.

• Process addresses can be dynamically bound to physical memory.

• Read and write operations on memory via specific addresses can be intercepted

and restarted by the processor.

The first feature allows processes executing in separate contexts to share memory.

It also allows data to be passed between processes executing on tightly coupled

processors without copying the data. The second feature supports the enforcement

of access semantics to memory shared between processes executing on loosely coupled

processors. It also allows copying of data (passed with the duplicate mode) to be

deferred until an attempt is made to modify either of the duplicates. If the duplicates

are never modified or one of the duplicates is deleted before an attempt is made to

modify the other duplicate then copying is avoided.

1.2.1 Regions: An IPC Model that Incorporates the Modes

The data-passing modes can be supported by data-passing models used for IPC such

as asynchronous message-passing, synchronous message-passing and remote proce-

dure call [Accetta 86, Birrell 84, Cheriton 88, Seitz 88].

A new IPC model called Regions is presented in this thesis. Regions is based

on synchronous message passing. The design objectives of Regions are to show

that the data-passing modes can be supported with simple IPC operations and can

also be implemented efficiently. Regions supports the separate-context semantics of

'Establishing memory sharing with the dynamic-share mode as opposed to passing data with the
duplicate or move modes should reduce elapsed time overhead when the processes are executing on
tightly-coupled processors. However it will increase elapsed time overhead when the processes are
executing on loosely-coupled processors and they are contending for the data stored in the shared
memory.

Chapter .1: Introduction 6

data-passing IPC models and it supports the shared-memory semantics of memory-

sharing IPC models because it supports the dynamic-share data-passing mode. These

semantics can be implemented efficiently on networks of multiprocessors.

Shared-memory semantics imply that more than one process can access com-

mon (shared) memory with read and write operations. It is possible to support the

semantics of read and write operations to shared memory with data-passing IPC op-

erations [Cheriton 86]. However, an implementation of Regions can support read and

write operations efficiently with memory referencing processor instructions. Support

for read and write operations on shared memory "by processes executing on loosely

coupled processors has been previously demonstrated [Spector 82, Li 86].

By default, memory accessible via one context is not accessible via another con-

text. However, the dynamic-share data-passing mode can cause memory to be ac-

cessible via separate contexts. Processes cannot share contexts.

The Regions synchronous message-passing IPC model is defined in terms of mes-

sages and DRegions. A message is a 64 byte collection of data. A DRegion is a

variable sized collection of memory. A client process sends a request message to a

server process and waits for a response message. The server receives the request

message, performs the request and returns a response message. The server can pass

DRegions to and from the client before returning the response message.

Messages are passed by copying the data from memory accessible via one context

to memory accessible via another context. DRegions can be passed using the dupli-

cate, move or dynamic-share data-passing mode. The choice of data-passing mode

depends on the expected access to the memory containing the passed data.

The implementation of the DRegion passing operations takes advantage of shared

physical memory when it is available and it takes advantage of MMU hardware.

Chapter 1: Introduction 7

1.3 Related Work

The use of data-passing modes is a novel approach to minimise data copying and

thereby make IPC efficient. However the concepts and implementation techniques

are based on ideas used in several existing systems that take advantage of MMTJ

hardware. Alternatively, some existing IPC models avoid data-passing by allowing

processes to share access to memory.

1.3.1 Message-Passing Distributed Operating Systems

Related systems that provide data-passing IPC models are now discussed.

1.3.1.1 V System

"The V distributed system is an operating system designed for a cluster

of computer workstations connected by a high-performance network."

[Cheriton 88]

The V System is a well known distributed system that supports synchronous

message-passing.

Separate-context semantics are supported. Memory accessible via one context is

not accessible via any other context. Data copying is minimised by allowing multiple

processes (called a team of processes) to share a context. However, memory sharing

is static.

Data is passed between processes executing in separate contexts by copying it

from the memory accessible via one context to the memory accessible via another

context. There is a copy of the passed data in the source and destination context

even when both copies are not needed and the processes are executing on tightly

coupled processors.

The V System IPC was not designed to take advantage of MMU hardware. The

emphasis appears to be on efficient data-passing between processes executing on

Chapter 1: Introduction 8

loosely coupled processors [Cheriton 83].

1.3.1.2 Mach

"Mach is a multiprocessor operating system kernel ..." [Accetta 86]

"Mach is designed to support computing environments consisting of net-

works of uniprocessors and multiprocessors." [Baron 88]

Mach supports data-passing and dynamic memory sharing between separate con-

texts. In addition, the implementation takes advantage of MMU hardware. The

subsequent description is intended to emphasise the complexity of the IPC model.

A Mach task is an abstraction that includes a memory-access context. Multiple

processes (called threads) can execute in a task. By default, memory accessible via

one task is not accessible via another task. However, memory can be accessible. via

separate tasks that (1) are created from common ancestor task using the inheritance

feature or (2) are using a external memory management server to share memory.

Several types of IPC are supported including asynchronous message-passing, syn-

chronous message-passing, and dynamic memory sharing. IPC is defined in terms of

memory objects, messages and ports. A memory object is a collection of memory. A

message is a variable sized collection of data consisting of a fixed sized header and

optional references to memory objects. A port is an object consisting of a queue of

messages. Send and receive operations can be invoked on a port.

Dynamic sharing of memory objects between tasks is supported with the external

memory management feature [Young 87]. An interface consisting of 11 operations is

defined that allows a process to manage access to and consistency of memory objects.

It is possible for processes executing on loosely coupled processors to use this feature

to share memory.

Although the model is based on only five abstractions, there are many operations

and some of the operations have several options and exceptions.

Chapter 1: Introduction 9

Data are passed by copying or duplicating. Message headers are copied from the

memory accessible via one task to the memory accessible via another task. Memory

objects are duplicated in the destination task.

The implementation of multiple threads per task, shared memory objects through

inheritance, and shared memory objects through external memory management pro-

cesses takes advantage of shared physical memory and MMU hardware. The imple-

mentation of memory object duplication and process creation by forking is based

on the deferred data copying technique called copy-on-write. This implementation

technique also takes advantage of MMU hardware.

1.3.1.3 UNIX System V

"The UNIX System V IPC package consists of three mechanisms. Mes-

sages ..., shared memory allows processes to share parts of their virtual

address space, ..." [Bach 86]

UNIX System V provides a simple method of dynamic memory sharing between

separate contexts.

A process obtains a handle to a shared memory region through a form of IPC such

as message-passing, pipes, or inheritance. The process can use the handle to make

the shared memory region accessible in the process's context. The implementation

takes advantage of MMU hardware. The current implementation is restricted to a

single machine.

1.3.1.4 Dash

"The DASH ... system's major design goals are centered in three ar-

eas 1) IPC performance, 2) global architecture, and 3) local architec-

ture." [Anderson 88]

In DASH data copying is minimised by taking advantage of MMU hardware

and one of the design goals is efficient data-passing between processes executing on

Chapter 1: Introduction 10

tightly-coupled processors.

Separate-context semantics are supported. Data copying is minimised by allowing

multiple processes to execute in a context called a virtual address space (VAS). The

memory accessible via one VAS is not accessible via another VAS.

Asynchronous and synchronous message-passing IPC are supported. IPC is de-

fined in terms of an IPC region, IPC pages, messages and message-passing objects

(MPOs). There is an IPC region in every VAS that is intended for efficient data-

passing. An IPC page is a sub-region (virtual page) of the IPC region. A message

consists of a header and a collection of references to IPC pages. An MPO is an object

consisting of a queue of messages. Send and receive operations can be invoked on

MPOs.

The IPC operation semantics are complicated with options and restrictions that

are intended to improve the performance of data-passing between VASs where the

communicating processes are executing on tightly-coupled processors.

Data are passed by copying or moving. Message headers are copied from the

memory accessible via one VAS to the memory accessible via another VAS. IPC

pages are moved from the source VAS to the destination VAS.

The implementation of multiple processes per VAS takes advantage of shared

physical memory. It is not possible for processes executing in separate VASs to

share access to memory. The implementation of passing IPC pages by moving takes

advantage of MMTJ hardware.

1.3.1:5 Reactive Kernel

"The Reactive Kernel (RK), a new node operating system for medium-

grain multicomputers, ..." [Seitz 90]

The RK implementation on the Ametek 2010 [Seitz 88] takes advantage of MMU

hardware to minimise data copying.

Chapter 1: Introduction 11

Separate-context semantics are supported. Memory accessible via one context is

not accessible via any other context. Processes do not share contexts.

IPC is based on asynchronous message-passing. A message is a dynamically

allocated collection of data. If a process sends a message then that message is

deallocated from that process's context and the process continues executing. When

a process receives a message then the message is allocated in that process's context.

There are two receive operations: one causes the process to wait until a message

arrives while the other returns immediately allowing the process to continue if there

are no messages. Sending a message is lik6 deallocating a message and receiving a

message is like allocating a. previously initialised message.

Messages are passed by moving the message from the source context to the des-

tination context. If the source process needs a copy of the message it must copy the

message before sending it.

The implementation does not take advantage shared physical memory. However,

messages are allocated on page boundaries so that they can be allocated in the

destination context without copying. On the Ametek 2010, it is faster to send a

message from one node to another over the communications channel than it is to

have the processor copy the message from one location to another in memory.

1.3.2 Shared-Variable Distributed Operating Systems

Related systems that provide memory-sharing IPC models are now discussed.

1.3.2.1 Cedar

"Cedar is a large project concerned with developing a programming envi-

ronment that is powerful and convenient for the building of experimental

programs and systems." [Birrell 84]

Chapter 1: Introduction 12

Cedar data-passing operations can be enriched with the data-passing modes and

Cedar provides an alternative method of memory access control.

Separate-context semantics are supported where memory accessible via one con-

text is not accessible via any other context. All processes executing on a ma-

chine normally share a context (although theoretically, multiple versions of portable

Cedar [Atkinson 89] should be able to run on top of UNIX on a single machine).

Memory access control between separate processes executing in the same context is

supported by run time enforced data typing. All processes are written in a strongly

typed language (that is also called Cedar).

A remote procedure call (RPC) feature is provided that allows a process executing

in one context to execute a procedure in another context. RPC is not a method of IPC

but it can be used to allow processes executing in separate contexts to communicate.

Data (RPC arguments and return values) are passed by copying the data from

memory accessible via one context to memory accessible via another context.

The RPC implementation does not take advantage of physically shared memory

or MMU hardware. Birrell and Nelson discarded the possibility of emulating shared

memory between loosely-coupled processors when they implemented RPC for Cedar

because they were not willing to undertake the research.

1.3.2.2 IVY and Similar Systems

"IVY is a shared virtual memory system developed for experimental pur-

poses." [Li 86]

IVY is the result of research into emulating shared memory between loosely-

coupled processors.

A single context is supported across a network of workstations. Processes exe-

cuting on the same or separate workstations share access to common memory.

Chapter 1: Introduction 13

Data-passing IPC is not required because the all processes statically share mem-

ory. Eventcounts [Reed 79] are supported for interprocess synchronisation. A method

of memory access control between separate processes is not provided.

The implementation takes advantage of MMU hardware to ensure that a process

reads the data most recently written to a virtual memory-cell.

IVY demonstrated that shared memory semantics can be supported efficiently

across a communication channel. Impressive improvements in the performance of

parallel algorithms were demonstrated by increasing the number of workstations

that processes execute on. However part of the improvement was due to a reduction

in disk activity involving swapping pages of memory.

The performance of parallel algorithms that do contend for shared data can be

improved by dynamically changing the implementation technique used to share data.

This was demonstrated on systems where the access time to separate memories is

not uniform [Bolosky 91].

"Munin is a system that allows programs written for shared memory

multiprocessors to be executed efficiently on distributed memory ma-

chines." [Bennett 90]

The Munin system attempts to further improve performance by statically assign-

ing a shared type to each shared variable. The sharing type is a hint that Munin

uses when deciding how to share the variable across a communication channel.

1.4 Contributions

The elapsed time of a data-passing IPC operation is a measure of implementation

efficiency. Low elapsed times are achieved for data-passing between processes exe-

cuting in separate contexts on tightly-coupled processors. The elapsed times for the

3Such systems are commonly called NUMA (non-uniform memory access) architectures.

Chapter 1: Introduction 14

Regions IPC operations that take advantage of MMU hardware are lower than times

reported for similar systems. The synchronous message-passing times are compara-

ble with the best times reported for similar data-passing operations [Bershad 89] and

they are better than the times reported for other message-passing systems.

A simple way of providing dynamic memory sharing and data-passing between

separate contexts with a single operation is presented. This approach is simpler than

hybrid approaches provided by other systems where separate operations are required

for dynamic memory sharing and data-passing.

Data-passing modes are proposed that enrich the semantks of data-passing op-

erations by allowing the intended use of the passed data to be specified. The data-

passing operations can be implemented efficiently because the enriched semantics

specify when separate copies of the data are required.

15 Overview

The data-passing modes and related concepts are explained in Chapter 2.

In Chapter 3 the Regions IPC model is explained. IPC operations that support

the dynamic-share, move and duplicate data-passing modes are explained.

In Chapter 4 an implementation of the Regions IPC primitives is described us-

ing an object-based paradigm. Implementations on Sun 3 workstations and BBN

Butterfly multiprocessors are discussed.

The elapsed time performance of the Regions IPC primitives on a Sun 3/75 and

GP1000 Butterfly is presented and analysed in Chapter 5.

Conclusions and further work are presented in Chapter 6.

Chapter 2

Data-Passing Modes

A data passing mode is a way of passing data from a source container to a destination

container.

Because the modes are not restricted to data-passing alone a more generalised

definition is presented. This definition is used to define three data-passing modes:

dynamic-share, move, and duplicate. The copy data passing mode is also defined

and it is distinguished from the duplicate data passing mode. Practical issues of

specifying the data to be passed and passing groups of data are discussed because

they are relevant to IPC performance.

2.1 Dynamic-Share, Move and Duplicate Passing Mode

Definitions

The following notation is used to define the dynamic-share, move and duplicate.

passing modes. A and B are containers. A contains the entity E.

Dynamic-share causes E to be in B. E is shared in A and B.

Move causes E to be in B and not be in A. E is moved from A to B.

Duplicate causes a newly created entity E' to be in B where the only difference

between E and E' is that they are separate entities. E is duplicated in B.

15

dynamic—share move

Chapter 2: Data-Passing Modes 16

O)G
A LB

0 E

duplicate

Figure 2.1: Passing modes: entity not shared.

An example of each passing mode is shown in Figure 2.1 where the entity is in

only one container before passing. Figure 2.2 shows passing mode examples where

the entity is shared in containers A and C before passing it from A to B.

to

V

C

dynamic—share move

o

duplicate

Figure 2.2: Passing modes: entity shared.

Chapter 2: Data-Passing Modes 17

2.2 Passing Modes Involving Datum-Containers

These passing modes can be used to pass data and containers of data. This is

explained by defining objects that are containers for data and objects that are con-

tainers for containers of data.

2.2.1 Object Notion

To simplify the explanation the notion of an object is used. An object has an interface

that specifies the operations that can be invoked on that object. The arguments and

return values of each operation are also specified in the interface. Every interface

provides operations called create and delete. The create operation allocates and

initialises an instance of an object. The delete operation deallocates an instance of

an object.

2.2.2 Datum-Container Definition

A datum-container is a container for a datum'. It has the following interface.

INTERFACE datum-container {
write(d) //Store datum d in the datum-container.//

read() returns d //Return the datum d that is stored in the datum-container.//

}

2.2.3 The Datum-Container Passing Modes

A datum-container-set is a container for datum-containers. It has the following

interface.

INTERFACE datum-container-set {
insert(D) //Insert datum-container D in the datum-container-set.!!

remove(D) //Remove datum-container D from the datum-container-set.//

}
'Data is the plural of datum - Webster's New Collegiate Dictionary.

Chapter 2: Data-Passing Modes 18

The following notation is used to define datum-container passing modes. DS" and

DSd are datum-container-sets. D is a datum-container that is in DS".

Dynamic-share causes D to be in DSd (DSd— insert (D)). D is in DS. and DSd.

Move causes D to be in DSd and not be in DS, (DS,,—*remove(D) and

DSd—insert(D)). D is moved from DS to DSd.

Duplicate causes a newly created datum-container D0 to be in DSdand the datum

in D to be copied to D0 (datum-container::create() returns D0, DSd— insert (Do),

Do—write(D--readQ)). D is duplicated in DSd.

The datum in a datum-container is passed along with the datum-container; there-

fore, a datum-container passing mode is also a datum-passing mode.

2.2.4 The Copy Datum-Passing Mode

The Copy datum-passing mode is a way of passing a datum from a source datum-

container D. to a destination datum-container Dd. The contents of D. are written

to Dd (Dd—write(D--readQ)). This mode causes the same datum to be in two

separate datum-containers.

The copy datum passing mode and duplicate datum-container passing modes are

similar. They are distinguished because of the way they can be implemented rather

than the differences in their semantics.

2.3 Specification of Datum-Containers With Addresses

A datum-container must be specified when an operation is invoked on it. The tech-

nique of specifying a datum-container with an address via a context can be imple-

mented efficiently on conventional hardware.

An address is a positive integer that is used to specify the location of a datum-

container.

Chapter 2: Data-Passing Modes 19

A binding is an association between an address and a datum-container.

The notation (A,D) is used to represent a binding that associates address A with

datum-container D.

2.3.1 Context Definition

A context is a container for bindings. It has the interface:

INTERFACE context {
bind(A,D) //Insert binding (A,D) in the context where (A,D) is the only//

//binding in the context that associates A with a datum-container.//

unbind(A) //Remove every binding that associates address A with a//

//datum-container from the context.//

}

Bindings can be added or removed from a context but they cannot be changed.

There cannot be two bindings in a context where the same address is in both

bindings. This property eliminates ambiguity about which datum-container is being

specified.

If the binding (A,D) is in context C then address A is bound in C and datum-

container D is bound in C. If there is no binding in context C that associates A with

a datum-container (or D with an address) then A is unbound in C (and D is unbound

in C).

2.4 Passing Modes Involving Separate Contexts

•A datum-container can be passed from a source context to a destination context

because a context implicitly defines a datum-cbntainer-set. A context explicitly

contains bindings; however, it implicitly defines a datum-container-set which contains

the datum-containers that are bound in the context.

Chapter 2: Data-Passing Modes 20

Contexts add a level of indirection to the data-container passing modes.

Datum-container passing modes between separate contexts are defined using the

following notation. C. and Cd are contexts. (A8,D) is a binding in C8. Ad is unbound

in Cd-

Dynamic-share causes Ad to be bound to D in Cd (Cd—bind(Ad,D)). D is bound

in C. and Cd.

Move causes A. to be unbound in C3 and Ad to be bound to D in Cd

(C8—unbind(A3) and Cs—*blnd(Ad,D)). D is moved from C8 to Cd by removing a

binding from C3 and adding a binding to Cd.

Duplicate causes Ad to be bound to a newly created datum-container D0 in

Cd and the datum in D to be copied to D0 (datum-container:: create() returns D0,

Cd—+bind(Ad,Do), Do—*write(D--*readQ)). D is duplicated in Cd.

2.5 Passing Groups of Datum-Containers

The datum-container passing concept is expanded to groups of datum-containers.

One motivation for grouping datum-containers is that groups of datum-containers

can be passed efficiently by modifying the MMU translation tables that implement

contexts.

An address-region is a continuous range of addresses.

A data-region is an ordered set of datum-containers.

A region-binding is a set of bindings from the addresses of an address-region to

the datum-containers of a data-region.

Passing a data-region DR is similar to passing a single datum-container. Before

passing DR there is a region-binding between an address-region AR and DR in

a source context C. and there is an unbound address-region AL1 in a destination

Chapter : Data-Passing Modes 21

context. After passing DR, ARd is bound to DR (or a newly created data-region

DRO if the mode is duplicate) in Cd. If the mode is move then AR is unbound in

Cs.

The copy datum-passing mode can also be expanded to data-regions. The con-

tents of a data-region DR are copied to another data.region DRd. DR is specified

by the starting address of an address-region AR, that is bound to DlL in a context

C8. DRj is specified by the starting address of an address-region AL1 that is bound

to D1L1 in a context Cd.

2.6 Interprocess Data-Passing

The motivation for the data-passing modes is to help support simple efficient data-

passing between processes executing in separate contexts.

2.6.1 Process Definition

A process is a logical sequence of actions that can execute concurrently with other

processes.

Invocation of an operation on an object is an action.

The lifetime of a process is the duration from the time the first action starts until

the time the last action completes.

2.6.2 Relationship Between Processes and Contexts

A process uses only one context during its lifetime. It uses the context to specify

datum-containers with addresses.

2Thread or thread of execution can be defined as a sequence of actions that is not restricted to
a single context.

Chapter 2: Data-Passing Modes 22

The interface of a context is extended with write and read so that a process can

access a datum-container via a context.

INTERFACE context {
bind(A,D)

unbind(A)

write(A,d) //Store datum d in the datum-container bound to A in the context.!/

read(A) returns d //Return the datum d that is stored in the//

//datum-container bound io kin the context.!!

}

A process can access (write and read) only the datum-containers that are bound

in its context. The datum-container passing modes change the datum-containers a

process can access.

2.6.3 Datum-Containers Shared by Processes

Passing a datum-container D from context C to context Cd using the dynamic-

share mode causes the processes that use C. and Cd to shareaccess to D. A datum

written to D by a sharing process will be returned to any sharing process that invokes

C—+read(A) (where address A is bound to D in context C). The sharing processes

can concurrently invoke operations on the shared datum-container.

If data in shared datum-containers have properties that must be violated while

updating the data then a process can read data that are not consistent with the

intended properties. Therefore, a method of ordering write and read operations on

shared datum-containers containing such data is required.

Ordering of operations is required when shared datum-containers contain data

which can be in a state that is not consistent with the intended properties of the

data. Synchronisation operations can be used to order accesses to shared datum-

containers.

Chapter 2: Data-Passing Modes 23

More than one process can use a context. A context is shared while it is used

concurrently by more than one process. The processes that share a context share

access to the datum-containers bound in the shared context.

2.7 Summary

Concepts related to data passing are defined.

The dynamic-share, move, duplicate and copy datum-passing modes are dis-

cussed. The first three modes pass a datum by passing the datum-container that

contains the datum.

The dynamic-share mode causes datum-containers to be shared between separate

contexts.

There are IPC models that provide data-passing operations which support the

duplicate [Accetta 86] or move [Seitz 88] modes and non data-passing operations

which establish dynamic memory sharing [Accetta 86, Bach 86]. In this chapter

the duplicate, move and dynamic-share modes are presented as variations of datum-

container passing modes.

Chapter 3

Regions IPC Model

The Regions IPC model is motivated by the need for simple efficient data-passing.

The purpose of the Regions IPC model is to demonstrate how IPC operations can pro-

vide the dynamic-share, move and duplicate data-passing modes. The data-passing

operations can be implemented efficiently by taking advantage of shared physically

memory. The operations can also be implemented efficiently across communications

channels in a distributed system.

Regions is based on the synchronous message-passing IPC model. Regions is a

descendant of Thoth [Cheriton 79] via Port [Vasudevan 87] and the W. System [Va-

sudevan 88]. Other data-passing models used for IPC such as asynchronous message-

passing or remote procedure call could have been used to demonstrate operations

that support the dynamic-share, move and duplicate data-passing modes.

The syntax and semantics of the Regions IPC primitive operations are explained

following a description of some basic notions.

3.1 Basic Notions

3.1.1 Process Identification

A process is identified by a unique process identifier (PID) that distinguishes the

process from all other processes in the system.

24

Chapter 3: Regions IPC Model 25

3.1.2 Private Context

A context is private if the context is used by only one process. In Regions every

process has a private context.

To recapitulate, a context is a set of bindings. A binding is an association between

an address and a datum-container.

Two types of bindings are now defined.

3.1.2.1 Permanent Bindings to Private Datum-Containers

A permanent binding has the following properties.

1. It is inserted into a context when the context is created and it is never removed.

2. It binds a datum-container D to an address where D is not bound to any other

address in any other context. D is a private datum-container.

3.1.2.2 Dynamic Bindings to Sharable DRegions

In contrast a dynamic binding has the following properties.

1. It can be inserted into and removed from a context.

2. It binds a group of datum-containers DR to a range of addresses where DR

can also be bound to other ranges of addresses. DR is a sharable group of

datum-containers.

The dynamic binding definition is based on DRegions and ARegions.

A DRegion is a fixed sized ordered set of datum-containers where a datum-

container cannot be part of more than one DRegion. The size of a DRegion is

fixed when it is created and the maximum size is set by the system.

An A Region is a continuous range of addresses where an address cannot be part

of more than one ARegion within a context.

A dynamic binding

Chapter g: Regions IPC Model 26

• is a set of bindings in a context that associate the addresses of an ARegion

with the datum-containers of a DRegion, and

• is inserted or removed from a context by primitive operations.

A DRegion exists while there is a dynamic binding to it.

A process can invoke write and read operations on datum-containers bound

in its context. This includes the datum-containers in shared DRegions. Datum-

containers have strictly consistent semantics [Nitzberg 91]; read returns the most

recently written datum. The moment in time that a datum is written to a datum-

container occurs during the interval between when write is invoked and when it

completes. If an operation is invoked on a datum-container D before another oper-

ation -invoked on D completes, the results are the same as if one of the operations

completed before the other was invoked. However, the order of the operations is

undefined'.

A process's context is created with all of its permanent bindings and without

any dynamic bindings (without any shared datum-containers). The operation that

creates a DRegion and the operations that pass a DRegion cause dynamic bindings

to be in a context.

3.2 IPC-Related Primitive Operations

The synchronous message passing primitives are:

send (receiver, request-message, response-message) returns success,

receive (receive-message) returns sender, and

reply(sender, reply-message).

The DRegion passing primitives are:

'The duration between invoking and completing an operation on a datum-container that is
shared across a communication channel can vary by several orders of magnitude.

Chapter 3: Regions IPC Model 27

pass-region-to (sender, src-ARegion, mode) returns dst-ARegion and

pass-region-from (sender, src-ARegion, mode) returns dst-ARegion.

Other primitives that involve dynamic bindings to DRegions are:

create-region(size) returns ARegion,

delete-region(ARegion),

rebind-region(src-ARegion, dst-ARegion) returns success,

size-of-region(ARegion) returns size, and

state-of-region(ARegion) returns state.

3.2.1 Creating and Deleting Dynamic Bindings

Because a process's context is created without any dynamic bindings, an operation

is required to create a binding to a DRegion. A process can also delete a binding to

a DRegion.

3.2.1.1 The create-region Primitive

create-region binds an ARegion to a newly created DRegion of a specified size in

the caller's context.

create-region(size) returns ARegion

where

size is the number of datum-containers(bytes) in the created DRegion, and

ARegion is the ARegion bound to the created DRegion or an error value.

create-region will fail if size is invalid (size<1 or MAXIMUM<size), or there is

insufficient memory available to create a DRegion, or there are no unbound ARegions

available in the caller's context to bind to the DRegion. If create-region fails an

error value is returned.

Chapter 3: Regions IPC Model 28

3.2.1.2 The delete-region Primitive

delete-region causes a specified ARegion to be unbound in the caller's context.

delete-region(ARegion)

where

ARegion becomes unbound in the caller's context.

delete-region cannot fail; if a bound ARegion is specified then it is unbound.

3.2.2 Passing Messages and DRegions

Processes use IPC primitives to synchronise their execution relative to each other

and to pass messages and DRegions.

A message is a short fixed sized data-region (64 bytes). Messages are intended

for passing control information.

Messages are passed using the COPY data passing mode. The data is written to

datum-containers that the destination process already has access to.

3.2.2.1 The send, receive and reply Primitives

Processes communicate using send-receive-reply (SRR) transactions. Two exam-

ples of SRR transactions are shown in Figure 3.1. The process that invokes send

is called the sender. The process that invokes receive is called the receiver. The

receiver can invoke receive before a request message arrives from send (example

(a)) or after request messages arrives (example (b)).

send initiates delivery of a request message and causes the sender to wait until

the response message arrives or a failure occurs. send returns the response message

or an error value.

Chapter 3: Regions IPC Model 29

send
ev

Ice

'1
(a)

receive

reply

(b)

Figure 3.1: Two examples of SRR transactions.

Chapter 3: Regions IPC Model 30

receive returns the request message and the PID of the process that sent the

message. If request messages arrive before receive is invoked then they are queued

in the order they arrive. If no request messages have arrived when receive is invoked

the receiver waits until a request message arrives.

reply initiates delivery of the response message.

The message passing primitives are:

send (receiver, request-message, response-message) returns success

receive (receive-message) returns sender

reply(sender, reply-message)

where

receiver is the PID of the process being sent to,

sender is the PID of the process that sent the received message,

request-message is the message that send passes,

receive-message is the message that receive returns,

reply-message is the message that reply passes,

response-message is the message that send returns, and

success is the constant SUCCESSFUL or an error value.

The contents of the sender's request-message are copied into the receiver's

receive-message. The contents of the receiver's reply-message are copied into

the sender's response-message.

Multiple sends to the same receiver are queued and returned in first-come-first-

served (FIFO) order. A process can invoke multiple receives before invoking replys

in response to those receives. There is no restriction on the order that a process

invokes replys in response to receives.

Chapter 3: Regions IPC Model 31

send will fail if one of the messages is not bound to datum-containers or com-

munication with receiver is not possible'. If send fails because request-message

or response-message is not bound to datum-containers then the caller terminates.

If send fails because communication is not possible then an error value is returned.

The failure semantics of send are discussed further in Section 3.2.4

receive will fail if receive-message is not bound to datum-containers. If re-

ceive fails then the caller terminates.

reply will fail if reply-message is not bound to datum-containers. If reply fails

then the caller terminates.

3.2.2.2 The pass-region-to and pass-region-from Primitives

A process can pass DRegions to and from another process that has invoked send

and is awaiting a response.

pass-region-to passes a DRegion to a sender using a specified data passing

mode. The DRegion is specified by an ARegion that is bound to it in the caller's

context. The ARegion that is bound to the passed DRegion in the sender's context

is returned.

pass-region-from is similar to pass-region-to except that it passes a DRegion

from a sender. The DRegion is specified by an ARegion that is bound to it in the

sender's context. The ARegion that is bound to the passed DRegion in the caller's

context is returned.

2lnability to communicate can be due to the specified process not existing, or a machine failure,
or a communication channel failure.

Chapter 8: Regions IPC Model 32

The primitives for passing DRegions are:

pass-region-to (sender, src-ARegion, mode) returns dst-ARegion

pass-region-from (sender, src-ARegion, mode) returns dst-ARegion

where

sender is the PID of a process awaiting a response to send,

mode is the data passing mode used to pass the DRegion,

src-ARegion is the source ARegion bound to a DRegion, and

dst-ARegion is the destination ARegion that is bound to the passed DRegion.

pass-region-to will fail if (1) an invalid argument is specified, (2) there are

insufficient resources to pass the DRegion or (3) communication with sender is

not possible. An invalid argument is a sender that is not awaiting a response, a

src-ARegion that is not bound to a DRegion in the caller's context, or an invalid

mode. There are insufficient resources when an unbound ARegion is not available

in sender's context to be bound to the passed DRegion or when memory is not

available to create a DRegion (if one must be created). If pass-region-to fails then

an error value is returned.

pass-region-from will fail for similar reasons.

The failure semantics of pass-region-to and pass-region-from are discussed

further in Section 3.2.4.

If sender is specified as ME then the caller's context is the source and destination

context. This is useful for creating a duplicate DRegion within a context.

3.2.2.3 Data-Passing Modes for DRegions

A process P8 passes a DRegion DR to a process Pd using one of the data passing

modes: DYNAMIC-SHARE, MOVE, or DUPLICATE. DR is bound to AR in P.'s context

Chapter 3: Regions IPC Model 33

C. AR is an unbound ARegion in Pd's context Cd that can be bound to DR.

If DR is passed using the DYNAMIC-SHARE mode then ARd becomes bound to

DR in Cd. P5 and Pd share access to DR.

If DR is passed using the MOVE mode then AR becomes unbound in C8 and

AR,1 becomes bound to DR in Cd. Pd has access to DR via Alt1 and P8 does not

have access to DR via AR.

If DR is passed using the DUPLICATE mode then ARd is bound to a newly created

DRegion DR0 in Cd where DR and DR0 are separate DRegions. The contents of DR

are copied to DR0. Pd has access to DR0 via ARd and no other process has access

to DR0. P5 retains access to DR via AR.

3.2.3 Other Useful DRegion Related Primitives

3.2.3.1 The rebind-region Primitive

If a DRegion contains complex data types where pointers are implemented as absolute

addresses then that DRegion must be bound to a specific ARegion in every context.

create-region, pass-region-to and pass-region-from select the ARegion to bind

to a DRegion. Therefore, an operation for changing the ARegion that is, bound to a

DRegion is provided.

rebind-region binds a specified destination ARegion' to the DRegion bound to

a specified source ARegion and unbinds the source ARegion.

3The ARegion that a DRegion must be bound to can be stored within the DRegion; When a
DRegion is created with create-region the returned ARegion AR can be written into the DRegion.
Then AR can be read from the DRegion and used as the destination argument to rebind.

Chapter 3: Regions IPC Model 34

rebind-region (src-ARegion, dst-ARegion) returns success

where

src-ARegion is the source ARegion bound to a DRegion in the caller's context,

dst-ARegion is an unbound destination ARegion in the caller's context, and

success is the constant SUCCESSFUL or an error value.

rebind-region will fail and return an error value if src-ARegion is not bound

or dst-ARegion is bound in the caller's context.

3.2.3.2 The size-of-region Primitive

A process can determine the size of a DRegion that is bound in its context.

size-of-region returns the size of a DRegion bound to a specified ARegion in

the caller's context.

size-of-region(ARegion) returns size

where

ARegion is bound to a DRegion in the caller's context, and

size is the number of datum-containers (bytes) in the DRegion.

size-of-region will fail and return an error value if ARegion is not bound to a

DRegion in the caller's context.

3.2.3.3 The state-of-region Primitive

state-of-region returns one of the four constants INVALID, UNBOUND, PRIVATE, or

SHARED depending on the specified address. If the specified address is not the start-

ing address of a valid ARegion then INVALID is returned. If the address does specify

an ARegion but it is unbound in the caller's context then UNBOUND is returned. If

Chapter 8: Regions IPC Model 35

the ARegion is bound to a DRegion in the caller's context and it is the only ARegion

bound to that DRegion then PRIVATE is returned. If there are other ARegions bound

to that DRegion then SHARED is returned.

state-of-region(ARegion) returns state

where

ARegion is any address (but is usually an ARegion), and

state is the state of the ARegion: INVALID, UNBOUND, PRIVATE, or SHARED,

state-of-region cannot fail.

If state-of-region returns SHARED then there was (and still might be) more than

one binding to the DRegion. A communication failure can prevent the system from

detecting that the number of bindings to a DRegion has been increased from one or

reduced to one.

3.2.3.4 ARegion State Changes

The ARegion state changes caused by create-region and delete-region are pre-

sented in Table 3.1.

Primitive State Change

create-region
delete-region

UNBOUND - PRIVATE

PRIVATE0rSHARED - UNBOUND

Table 3.1: ARegion state changes caused by create-region and delete-region.

The ARegion state changes caused by pass-region-to or pass-region-from are

presented in Table 3.2.

Invoking delete-region on a ARegion that is bound to a shared DRegion can

cause the state of another ARegion bound to that DRegion to change. These asyn-

chronous state changes is presented are Table 3.3.

Chapter 3: Regions IPC Model 36

Data Passing Mode Source State Destination
Change State Change

DYNAMIC-SHARE PRIVATE -+ SHARED

SHARED - SHARED

UNBOUND - p SHARED

UNBOUND - SHARED

MOVE PRIVATE - UNBOUND

SHARED - UNBOUND

UNBOUND - p PRIVATE

UNBOUND -+ SHARED

DUPLICATE PRIVATE -* PRIVATE

SHARED - SHARED

UNBOUND -+ PRIVATE

UNBOUND -+ PRIVATE

Table 3.2: ARegion state changes caused by passing DRegions.

Primitive
State of Other ARegions
Bound to the DRegion Note

delete-region SHARED - p SHARED

SHARED - PRIVATE

(1)
(2)

Table 3.3: ARegion state changes caused asynchronously by delete-region.

Note (1): If delete-region is invoked on an ARegion that is bound to a DRegion

DR where there are two or more other bindings to DR then that ARegion's state

changes from SHARED to UNBOUND and the state of the other ARegions bound to

DR do not change.

Note (2): If delete-region is invoked on an ARegion bound to a DRegion that

has only one other ARegion bound to it then the state of the other ARegion asyn-

chronously changes from SHARED to PRIVATE.

When a process terminates, all of the bindings are deleted. Therefore, process

termination can cause ARegion state changes asynchronously.

3.2.4 Failure Semantics of the Regions Primitives

The failure semantics of the primitive operations defined in the previous section are

now discussed in greater detail.

The operations are intended to be implemented on distributed systems where

communication failures can prevent an operation from determining whether or not a

Chapter 3: Regions IPC Model 37

result occurred. The ability to recover from communication failures is an important

characteristic of an IPC model for distributed systems'. Justification is presented for

operations that initiate a request without waiting for confirmation and operations

that cause a process to terminate rather than returning an error value.

3.2.4.1 Exactly-Once and At-Most-Once Semantics

The Regions primitives have one of the following two types of semantics.

An operation with exactly-once semantics has the following properties. If the

operation completes successfully then all the results were 'produced exactly once. If

the operation does not complete successfully then an error value can be returned

indicating which results were produced exactly once and which results were not

produced.

An operation with at-most-once semantics has the following properties. If the

operation completes successfully then all the results were produced exactly once.

If the operation does not complete successfully then an error value can be returned

indicating which results were produced exactly once, which results were not produced

and which results were either produced once or not produced.

Operations that use a communication channel have at-most-once semantics if a

communication failure can prevent delivery of a confirmation indicating whether a

requested result was produced or not.

The primitives send, pass-region-to and pass-region-from have at-most-once

semantics. All other primitives discussed in this chapter have exactly-once semantics.

It is not possible to determine whether or not a send's request message was

delivered unless a response arrives. The possibilities are that the request was not

'The importance of fault recovery depends in part on the probability of failure and in part on
the consequences of failure.

'Control packets can be pa-c-sed periodically by the implementation to distinguish an inability
to communicate from a delayed response.

Chapter 3: Regions IPC Model 38

received, the request was received but the receiver did not reply, or the receiver

replied but the response did not arrive.

It is not possible to determine whether or not a pass-region-to request caused

an ARegion to be bound to the passed DRegion in the sender's context unless a

response arrives. The passed DRegion is either bound or not bound in the sender's

context.

It is not possible to determine whether of not a pass-region-from request, where

mode is MOVE, caused or did not cause the source ARegion to be unbound from

the passed DRegion unless a response arrives. If mode is DUPLICATE or DYNAMIC-

SHARE then pass-region-from has exactly-once semantics because the caller can

determine whether or not the passed DRegion is bound in the caller's context.

An advantage of primitives that use the DYNAMIC-SHARE, MOVE and DUPLICATE

passing modes over primitives that use COPY is that the destination process receives

all of the data or none of the data. If data is copied it must be buffered until all the

data has arrived and then copied to the final destination to avoid the possibility of

partially overwriting the destination datum-containers.

3.2.4.2 Unreliable Delivery of Requests

There are several primitives that initiate delivery of a request and do not wait for

confirmation that the request was completed successfully. The end-to-end argu-

ment [Saltzer 84] is used to justify these semantics.

reply initiates delivery of a response message but does not wait for a confirma-

tion. A confirmation indicates that the response was delivered but does not indicate

whether or not the response was acted on. Providing reliable delivery can only im-

prove efficiency. End-to-end confirmation is required to ensure that the message was

acted on. Waiting for a confirmation would increase the elapsed time of reply.

If MOVE is specified as the data passing mode to a pass-region primitive then the

Chapter 3: Regions IPC Model 39

source ARegion is unbound in the source context without waiting for confirmation

that the DRegion was successfully moved. Retaining a binding to the DRegion is

only important for fault recovery. A binding to a DRegion with the original data

must be retained until confirmation is received that the data is no longer' needed.

This is true regardless of the data passing mode.

If a DRegion is shared across disjoint memories on separate machines then the

number and source of bindings to the DRegion must be maintained, delete-region

reduces the number of bindings to a DRegion. The pass-region primitives increase

the number of bindings if mode is DYNAMIC-SHARE and they change the source

of bindings if mode is MOVE. DRegion state (number and source of bindings) is

updated by initiating delivery of requests. The primitives do not wait for a confir-

mation; therefore, if communication fails then bindings to a DRegion can be removed,

added or moved without updating the DRegion state.

3.2.4.3 Failures Causing Process Termination

If a write or read operation is invoked on an address that is not bound to a datum-

container then the process that invoked the operation is terminated. Returning an

error value is not useful because there is no reason for a process to attempt to specify

an address that might not be bound to a datum-container. In addition, it is inefficient

and complex for a process to check for an error after each datum-container access.

This is also the justification for terminating a process that invokes a send, receive

or reply with an specified message that is not bound to datum-containers.

If a write or read operation is invoked on an address that is bound to a DRegion

which is shared across disjoint memories then a communication failure can cause the

operation to fail. The process is terminated if write or read fails because of a

611 a DRegion is not successfully passed then MOVE unbinding the DRegion is analogous to a
process modifying data that was passed with the DUPLICATE or copy data passing mode.

Chapter 3: Regions IPC Model 40

communication failure.

The model would be improved if, exception handling allowed a process to recover

from a write or read failure caused by a communication failure.

read has exactly-once semantics. Implementations that provide either exactly-

once or at-most-once semantics for write are discussed in Section 4.8

3.3 Discussion

3.3.1 Efficiency and Equivalence of the Data Passing Modes

Under certain circumstances the results produced by one data passing mode can be

produced by another data passing mode in combination with other operations. The

equivalences between data passing modes are, explained. The three modes are sup-

ported because unnecessary data copying can be avoided when the mode appropriate

to the intended use of the passed data is used.

The DUPLICATE and MOVE modes can be used with DRegions that are not shared

without introducing sharing. A server process that efficiently provides client pro-

cesses with synchronised access to a DRegion with DUPLICATE and MOVE without

introducing sharing is explained in Section 3.3.3.2.

If the state of src-ARegion is PRIVATE then

pass-region-to (sender, src-ARegion, DUPLICATE) returns dst.-ARegion

is equivalent to

size-of-region(src-ARegion) returns size

create-region(size) returns AR

(Cop/ contents of src-ARegion to AR.)

pass-region-to (sender, AR, MOVE) returns dst-ARegión.

However, using DUPLICATE can allow the implementation to avoid unnecessary

Chapter 8: Regions IPC Model 41

data copying.

If the caller and sender are executing on machines that share physical memory

then DUPLICATE can be deferred until a write operation is invoked on the original

or deferred duplicate (see Chapter 4). Therefore, if a write is not invoked before the

binding from the original or deferred duplicate is removed then unnecessary copying

is avoided.

If the caller and sender are executing on machines that do not share physical

memory then the implementation of DUPLICATE or MOVE will copy the data to the

destination machine. Therefore, DUPLICATE avoids the extra copy before the move.

Inversely, if the state of src-ARegion is PRIVATE then

pass-region-to (sender, src-ARegion, MOVE) returns dst-ARegion

is equivalent to

pass-region-to (sender, src-ARegion, DUPLICATE) returns dst-ARegion

delete-region(src-ARegion).

However, MOVE is preferable to DUPLICATE even when duplicating is deferred

because of the overhead of the delete and the deferring7.

The DYNAMIC-SHARE mode introduces sharing.

pass-region-to (sender, src-ARegion, MOVE) returns dst-ARegion

is equivalent to

pass-region-to (sender, src-ARegion, DYNAMIC-SHARE) returns dst-ARegion

delete-region(src-ARegion).

However, MOVE is preferable to DYNAMIC-SHARE especially when the DRegion

is passed across a communication channel. If the passed DRegion is not shared then

DYNAMIC-SHARE requires that sharing be established and delete causes the sharing

7If the Regions model supported passing a DRegion with a message using send or reply then

the destination process could write to the DRegion before the source process deleted its binding
causing the data to be unnecessarily copied.

Chapter g: Regions IPC Model 42

to be eliminated whereas MOVE only requires that the data be copied. If the passed

DRegion is shared then DYNAMIC-SHARE increases the sharing and delete decreases

the sharing whereas MOVE just changes the source of the binding.

3.3.2 Explicit Data-Passing

IPC models that do not allow data sharing force cooperating processes to explicitly

pass data. This complicates the specification of parallel algorithms. In addition,

the time required to pass the data can be a significant part of the time required to

execute the parallel algorithm.

Initially, processes must explicitly pass data in the Regions model. However,

once sharing of data is established with DYNAMIC-SHARE the processes only need to

ensure that they do not cause incorrect results by interfering with each other. This

can simplify the specification of parallel algorithms.

3.3.3 Synchronisation

A method of ordering operations on shared datum-containers is required because

the DYNAMIC-SHARE mode establishes sharing between processes. Two methods

of ordering are explained. Both methods provide synchronisation between processes

accessing shared DRegions. The processes can be executing anywhere in a distributed

system.

If data in a shared DRegion is intended to have properties that are violated when

the data are updated then a process can read data that is not consistent with the

intended properties. Therefore, an efficient method of ordering write and read

operations on shared DRegions containing such data is required. Ordering is also

required when that DRegion is duplicated or copied.

Sketches of algorithms for two server processes are presented that illustrate how

Chapter 3: Regions IPC Model 43

processes can order their operations to ensure that inconsistent data is not read.

3.3.3.1 Semaphore Server Example

An algorithm that provides a semaphore [Dijkstra 68] service is presented. The

algorithm does not use operations involving DRegions; it assumes that client pro-

cesses use the service to synchronise access to a DRegion that was passed with the

DYNAMIC-SHARE mode.

Clients invoke the P and V operations on semaphores as follows.

P(SEMAPHORE-INDEX)

Insert operation P and SEMAPHORE-INDEX into message

send (semaphore-server, message, response-message)

V(SEMAPHORE-INDEX)

Insert operation v and SEMAPHORE-INDEX into message

send (semaphore-server, message, response-message)

Semaphore Server - Algorithm 3.1

Initialise array of semaphores S to AVAILABLE

Initialise array of queues for waiting processes W to EMPTY

while(TRUE)

receive(message) returns client

Extract the operation op and the index i from message

if(op is p) then

if (semaphore S[i] is BUSY) then
Put client in queue W[i]

else

reply(dlient, <message indicating P successful>)

Set semaphore S[i] to BUSY

else if (op is V) then
reply(client, <message indicating v successful>)

if (semaphore S[i] is BUSY) then
if (queue W[i] is EMPTY) then

Set semaphore S[i] to AVAILABLE

Chapter 3: Regions IPC Model 44

else

Remove next waiting-client from queue W[i]

reply (waiting-client, <message indicating P successful>)

Processes executing on separate machines can use this server to synchronise.

A server can provide multiple semaphores so there does not have to be one server

per semaphore; however, the server might serialise P and V operations to independent

semaphores.

P and V operations on semaphores can be implemented with hardware test-and-

set instructions in memory-sharing IPC models. Therefore, this operation would be

more efficient in a Shared Variable model especially when processes do not have to

wait for a busy semaphore. However, this difference in performance is only significant

when frequent synchronisation is required.

3.3.3.2 Synchronous Shared Memory Server Example

The next algorithm enforces synchronised access to the contents of a private DRegion

with the MOVE and DUPLICATE data passing modes (DYNAMIC-SHARE is not used).

The algorithm solves the readers and writers problem and it has some interesting

features.

The reader and writer client processes can be executing on the same machine

or different machines in a distributed system. If the client is executing on another

machine then the contents of the DRegion must be copied. If the client is executing

on the same machine then the implementation can pass the DRegion by modifying

the MMU translation tables of the relevant contexts.

A reader can modify its copy of the DRegion with no adverse consequences be-

cause the reader's copy is passed with the DUPLICATE data passing mode. If the

reader is executing on another machine then it already has a separate copy of the

DRegion. If the reader is executing on the same machine then DUPLICATE is deferred

Chapter 3: Regions IPC Model 45

and a write operation causes the DRegion to be duplicated. This is an advantage

over systems that provide readers with read-only access to the data for two reasons.

First, a reader does not have to explicitly copy the data if it needs to modify a private

copy of the data. Second, writers do not have to wait for readers.

A writer does not have to wait if readers have acquired access to the DRegion.

The original copy of the DRegion is immediately passed to the writer that requests it

with the MOVE data passing mode. If the writer is executing on the same machine as

the server and a reader then the first write operation by the writer causes the data

to be copied. Otherwise the data does not have to be copied. The algorithm can be

modified to cause a writer to wait for readers if waiting is preferable to copying.

Requests by readers and writers that occur while a writer has access to the data

are queued in the order they arrive. When the writer releases the shared data then

the server grants reader requests until the queue is empty or a writer request is

encountered. It grants one writer request (if there was one) and waits for the writer

to release its access.

When a writer releases its copy of the data the server uses MOVE to obtain the

DRegion. Therefore, a writer can release a different DRegion then it acquired.

Readers do not have to release their access but if they do (by deleting their

binding to the DRegion) then unnecessary copying will be avoided.

Clients can invoke the following six operations on the server.

create-shared-DRegion(n)

Insert operation CREATE and size n in message.

send (sync-memory-server, message, response)

Extract index i of created DRegion from response.

destroy-shared-DRegion(i)

Insert operation DESTROY and index I in message.

send (sync-memory-server, message, response)

Chapter 3: Regions IPC Model 46

acquire-write-DRegion(i)

Insert operation ACQUIRE-WRITE and index i in message.

send (sync-memory-server, message, response)

Extract ARegion destination from response.

release-write-DRegion(i, source)

Insert operation RELEASE-WRITE, index i and ARegion source in message.

send (sync-memory-server, message, response)

acquire-read-DRegion(i)

Insert operation ACQUIRE-READ and index i in message.

send (sync-memory-server, message, response)

Extract ARegion destination from response.

release-read-DRegion (i, source)

delete-region (source)

Synchronous Memory Server - Algorithm 3.2

There is an array S for shared DRegions where an entry i of S consists of

S[i]:state - Shared state: UNDEFINED, NOT-READ-WRITE, or READ-WRITE.

S[i]:queue - Processes waiting for access to the shared DRegion.

S[i]:ARegion - ARegion bound to shared DRegion in the server's context.

S[i]:writer - Process with read-write access to the shared DRegion.

Initialise S[i]:state to UNDEFINED and S[i]:queue to EMPTY for all i

while(TRUE)

receive (message) returns client

Extract the operation op from message

if (op is CREATE) then create(client, message)
else if (op is DESTROY) then destroy(client, message)
else if (op is ACQUIRE-WRITE) then acquire-write (client, message)
else if (op is RELEASE-WRITE) then release-write (client, message)
else if (op is ACQUIRE-READ) then acquire-read (client, message)

The following routine creates a sharable DRegion.

Chapter 3: Regions IPC Model 47

create(client, message)

Extract the size n from message

Select index i where S[i]:state is UNDEFINED and S[i]:queue is EMPTY

create-region(n) returns S[i]:ARegion

Set S[i]:state to NOT-READ-WRITE

Insert i in message

reply(client, message)

The following routine destroys a sharable DRegion.

destroy(client, message)

Extract index i from message

if (S[i]:state is UNDEFINED) then
reply(client, <message indicating error>)

else

if (S[i]:state is NOT-READ-WRITE) then
Set S[i]:queue to EMPTY

delete-region(S[i] :ARegion)

else

Insert (client,DESTROY) in S[i]:queue

Set S[i]:state to UNDEFINED

reply(client, <message indicating destroy successful>)

The following routine handles write requests.

acquire-write (client, message)

Extract index i from message

if (S[i]:state is UNDEFINED) then
reply(client,<message indicating error>)

else if (S[i]:state is READ-WRITE) then
Insert (client ,READ-WRITE) in S[i]:queue

else

pass-region-to-writer (client, S [i])

The following routine handles a release by a writer.

Chapter 3: Regions IPC Model 48

release-write (client, message)

Extract index i and source address source from message

if (S[i]:state is not READ-WRITE) or (S[i]:writer is not client) then
reply (client, <message indicating error>)

else

pass-region-from (client, source, MOVE) returns S [i] :ARegion

state-of-region (S [i] :ARegion) returns state

if (state is SHARED) then eliminate-sharing(S[i])
reply (client, <message indicating released>)

Set readers? to TRUE

while (readers? and S[i]:queue is not EMPTY)

Remove next (waiting-client, request) from S[i]:queue

if (request is READ-ONLY) then
pass- region-to-reader (waiting-client, S [i])

else

Set readers? to FALSE

if (request is READ-WRITE) then
pass-region-to-writer (waiting-client, S [i])

else <request is DESTROY>

Set S[i]:queue to EMPTY

delete-region(S[i]:ARegion)

if (S[i]:queue is EMPTY) then
Set S[i]:state to NOT-READ-WRITE

The following routine handles read requests.

acquire-read (client, message)

Extract index i from message

if (S[i]:state is UNDEFINED) then
reply (client, <message indicating error>)

else if (S[i]:state is READ-WRITE) then
Insert (client,READ-ONLY) in S [1] :queue

else

pass-region-to-reader (client, S[i])

The following three routines are used by the preceding routines.

Chapter 3: Regions IPC Model 49

The first routine passes a shared DRegion to a writer.

pass-region-to-writer (client, S)

pass-region-to (client, S :ARegion, MOVE) returns destination

Insert destination in message

reply(client, message)

Set S:state to READ-WRITE

Set S:writer to client

The second routine passes a shared DRegion to a reader.

pass-region-to-reader (client, S)

pass-region-to (client, S :ARegion, DUPLICATE) returns destination

Insert destination in message

reply(client, message)

If a writer releases a DRegion that is shared then the third routine eliminates the

sharing by duplicating the DRegion.

eliminate-sharing(S)

pass-region-to(ME, S:Aflegion, DUPLICATE) returns destination

delete-region(S:ARegion)

Set S:ARegion to destination

3.3.3.3 Region's Servers and Monitors

Server processes in the Regions model are more similar to monitors [Hoare 74] than

servers in other models like the V System [Cheriton 88]. A client can use the MOVE

or DYNAMIC-SHARE modes to efficiently share state information with a server.

3.3.4 Asynchronous Binding to DRegion Example

Other IPC models [Accetta 86, Bach 86] provide dynamic sharing with asynchronous

operations. A process must obtain an identifier for a shared memory region. Then

it can create a binding to that shared memory without interacting with another

process. The shared memory continues to exist even if there are no bindings to it.

Chapter 8: Regions IPC Model 50

An algorithm is sketched for a server that provides similar semantics to the UNIX

System V shared memory feature. However, this server also provides the service to

processes executing on any machine in a distributed system.

A client can invoke the following operations on the server.

register(key, size)

Insert operation REGISTER, key and size in message

send (DRegion-binding-server, message, response)

Extract index i from response

destroy(i)

Insert operation DESTROY and index i in message

send (DRegion-binding-server, message, response)

bind(i, ARegion)

Insert operation BIND, index i and address ARegion in message

send (DRegion-binding-server, message, response)

unbind (ARegion)

delete-region(ARegion)

The UNIX System V shared memory operations are similar to and correlate with

the preceding four operations as follows:

register is similar shmget(key, size, flags),

destroy is similar shmctl(i, cmd, &buf),

bind is similar shmat(i, address, flags), and

unbind is similar shmdt(address).

DRegion Binding Server - Algorithm 3.3

There is an array S of shared DRegions where an entry i of S consists of

S[i]:státe - Shared DRegion state: UNDEFINED or DEFINED.

S[i]:key - the key that processes use when interacting with the server.

S[i]:registered - List of processes registered to the shared DRegion.

Chapter 3: Regions IPC Model 51

S[i]:size - Size of the shared DRegion.

S[i]:ARegion - ARegion bound to the DRegion in the server's context.

S[i]:must-create - TRUE if the DRegion has not been created.

Initialise S[i]:state to UNDEFINED for all i

while(TRUE)

receive (message) returns client

Extract operation op from message

if (op is REGISTER) then register (client, message)
else if (op is DESTROY) then destroy(client, message)
else if (op is BIND) then bind(client, message)

The current version of the Regions model cannot provide read-only access to a

DRegion that can be modified by another process 8.

The following routine registers a process so it can bind to a shared DRegion.

register(client, message)

Extract key from message

Find index i where S[i]:key is key

if (key is not found in S) then
Select index i where S[i]:state is UNDEFINED

Set S[i]:state to DEFINED, S[i]:key to key, S[i]:create to TRUE

Extract size from message and set S[i]:size to size

Register client by adding it to S[i]:registered

reply(client, <message containing i>)

The following routine destroys a shared DRegion so that no other process can

attach to it; however, processes with bindings to the DRegion can continue to access

it.

destroy(client, message)

8A DYNAMIC-SHARE-NONWRITABLE data passing mode was included in the original design of the
model; however, this feature complicated the model. An alternative approach based on capabilities
could provide this feature and also solve other access permission problems with the current version
of the model (see Chapter 6).

Chapter 3: Regions IPC Model 52

Extract i from message

if (client not in list S[i]:registered) then
reply(client, <message indicating error>)

else

delete-region(S [i] :ARegion)

Set S[i]:state to UNDEFINED

reply(client, <message indicating success>)

The following routine binds an ARegion in the client's context to a shared DRe-

gion.

bind(client, message)

Extract I and ARegion from message

if (client not in S[i]:registered) then
reply(client, <message indicating error>)

else

if (S[i]:must-create) then
create-region (S [I] :size) returns S [i] :ARegion

pass-region-to (client, ARegion, DYNAMIC-SHARE)

returns S [1] :ARegion

reply(client, <message indicating success>)

3.4 Summary

A simple IPC model is explained where data can be passed with the dynamic-share,

move and duplicate data-passing modes. Processes do not share memory initially

and sharing is not required for communication. However, the same operations that

pass data can also dynamically establish memory sharing by changing an argument

value. The model provides a simple abstraction that hides machine boundaries and

it can be implemented efficiently on distributed systems.

Chapter 3: Regions IPC Model 53

The Regions IPC model is an improvement over existing data-passing IPC models'.

Explicit data-passing can be avoided once sharing is established. Passing complex

data types is simple and can be implemented efficiently. Unnecessary data copying

can be avoided by the implementation.

The Regions IPC model is an improvement over memory-sharing IPC models.

Processes executing in separate contexts can share memory. Processes can establish

sharing of the memory that needs to be shared. Processes do not have to be relocated

so that they can exist within the same context. The context implementation does

not have to be distributed across machines in a distributed system.

The Regions IPC model is an improvement over IPC models that provide data-

passing and dynamic memory sharing. Data passing and dynamic memory sharing

are integrated in simple IPC operations. Dynamic memory sharing is provided across

machines in a distributed system.

'Explicit data-passing, unnecessary data copying and difficulty passing complex data types have
been cited as problems with data-passing IPC models [Li 86]

Chapter 4

Implementing Regions IPC

The motivation for an implementation is to demonstrate that the Regions IPC model

can be implemented efficiently. A general object-based specification is presented.

Implementation details for Sun 3 workstations [SUN3 86] and BBN Butterfly multi-

processors [BBN 88] are discussed.

4.1 Hardware Assumptions

It is assumed that a processor accesses (reads and writes) physical memory via MMU

hardware. MMU hardware is used to implement the bindings that allow processes

to access datum-containers. A binding is an association between an address and

a datum-container. A datum-container is implemented with one or more memory-

cells. The memory hardware permanently binds a physical address to a memory-cell.

MMU hardware dynamically binds a region of processor addreses (a processor page)

to a region of memory-cells (a physical page).

An MMU with the following features is assumed.

• Memory is organised into fixed sized pages.

• Translation tables map processor pages to physical pages.

• There is no limit to the number of processor pages that can be mapped to a

single physical page.

• A processor page is either mapped to a physical page or not mapped. If the

processor attempts to access memory with an address from a processor page

that is not mapped then an exception' occurs.

'An exception is caused by the processor bg it is like a hardware interrupt. An exception

Chapter 4: Implementing Regions IPC 55

• A mapping (from a processor page to physical page) provides either READ-

WRITE or READ-ONLY access. If the processor attempts to write to memory

with an address in a processor page that is mapped with READ-ONLY access

then an exception occurs.

• A mapping provides either NON-PRIVILEGED or PRIVILEGED access. If the.

processor is not in PRIVILEGED mode and it attempts to access an address in

a processor page that is mapped with PRIVILEGED access then an exception

occurs.

In addition, on multiple processor systems, it is assumed that each processor

has its own translation table. Separate processes cannot execute concurrently on

separate processors that share a translation table because processes do not share

contexts.

4.2 Kernel Notion

A kernel is a program that implements the process abstraction and primitive opera-

tions of a model.

Kernels executing on separate machines cooperate to implement the abstractions

across machine boundaries.

4.3 Deferred Copying

Unnecessary data copying can be avoided under specific circumstances by using the

deferred copying implementation technique called copy-on-write2. If a DRegion is

passed using DUPLICATE and shared physical memory is available then copying data

handler routine is asynchronously invoked when an exception occurs.

'The Accent [Fitzgerald 86], Mach [Accetta 86] and Chorus [Abrossimov 89] implementations
use the copy-on-write technique.

Chapter : Implementing Regions IPC 56

from the original DRegion to the new duplicate DRegion can be deferred until any,

attempt is made to modify one of the duplicates. If the contents of these duplicate

DRegions are not modified before one of them is deleted then unnecessary data

copying is avoided.

The copy-on-write technique can be implemented with DRegions as follows 3.

Before a DUPLICATE data passing operation the source ARegion's processor page

is mapped to the DRegion's physical page P. During the DUPLICATE operation the

kernel maps a destination ARegion processor page to P with READ-ONLY access and

marks the binding as COPY-ON-WRITE. If the source ARegion's page (or any other

page) is mapped with READ-WRITE access then its access is also changed to READ-

ONLY and the binding is marked COPY-ON-WRITE. The processes with bindings

to these duplicate DRegions can read the contents of the page. If one of those

processes attempts to write to the page then an exception occurs causing the kernel

to invoke the exception handler routine. The exception handler detects that copying

is deferred, copies the data to a free page, maps this page with READ-WRITE access

in the exception causing process's context and restarts the write instruction.

It is also possible to defer the allocation of the physical page and data structures

required for the new duplicate DRegion. However, care must be taken to ensure

that the failure semantics of the IPC operation are supported. The IPC operations

return an error value if there are insufficient resources to duplicate a DRegion. If the

allocation of resources is deferred then an error value cannot be return. Therefore,

the process must wait until sufficient resources become available4.

'This explanation assumes that ARegions and DRegions consist of a single page (see Section 4.4)

'The current implementation incorrectly defers the allocation of resources and terminates the
process if there are insufficient resources when a copy-on-write exception occurs.

Chapter 4: Implementing Regions IPC 57

4.4 Design Considerations

The following design considerations and decisions are motivated by the goal of

demonstrating efficient implementation of the data passing IPC operations when

shared physical memory is available.

The maximum size of a DRegion is restricted to the page size. If a DRegion's

size is less than a full page then memory is wasted; however, if the contents of the

DRegion must be copied then time is saved by copying only the relevant data.

Limiting DRegions to a single page also simplifies ARegion allocation. Each

process has a fixed number of one page ARegions. If an ARegion is unbound then it

can be allocated.

DRegions are implemented without information about the ARegions that are

bound to the DRegion because maintaining a list of the bindings would be space and

time inefficient. The amount of space required for each DRegion to keep a list of the

ARegions bound to it is not known in advance. Therefore, memory would have to

be dynamically allocated.

Data copying is not deferred if the DRegion being duplicated is shared to avoid

implementation complexity and save time. Deferred copying of shared DRegions

requires data structures that provide indirection' to ensure the bindings to a shared

DRegion are properly updated when a write attempt causes the deferred copy to be

performed. This indirection adds complexity and takes time. In addition, a likely

reason for sharing a DRegion is to provide access to data that is expected to be

modified.. If copying is deferred but a write operation causes the exception handler

5MMUs, like the MC68851[Motorola 89b], have a feature to restrict access to a specific range
of bytes in a page. The size of DRegions can be enforced with this feature. If the MMU does not
have this feature then processes can access the entire page regardless of the DRegion size; however,
the kernel only ensures that size bytes are shared, moved or duplicated.

'Mach [Rashid 88] provides indirection with shadow objects and shared objects to implement
deferred copying of shared memory objects.

Chapter : Implementing Regions IPC 58

to perform the copy then a significant amount of time is wasted (see Chapter 5).

A process's context is separated into permanent and dynamic bindings for two

reasons. First, existing programming language compilers are not designed to deal

with pages of the execution stack being moved or shared; therefore permanent bind-

ings'are required for the stack. Second, the purpose of the implementation is to -

evaluate the performance of the model; therefore, effort was not put into integrating

heap allocation with ARegion allocation.

4.5 Object-Based Specification

A general object-based specification is presented for the following Regions primitives:

create-region, delete-region, rebind-region, size-of-region, state-of-region,

pass-region-to, and pass-region-from. Partial algorithms for send, receive and

reply are provided in Chapter 5.

The purpose of this specification is to provide a machine independent description

of how the model can be implemented.

A notation similar to C++ [Stroustrup 86] is used for the specification. An

object has an interface that specifies the (public) operations that can be invoked on

the object. An object can also have private variables and private operations that are

used to implement the public operations. Every interface provides operations called

create and delete. The create operation allocates and initialises an instance of an

object. The delete operation deallocates an instance of an object.

The following syntactic conventions are used. Names of variable and object in-

stances are lower case. Names of variable types and object interfaces are capitalised.

Constants are upper case. Prose describing implementation steps are in italics and

parentheses. Comments are delimited by double slashes (//)

The object-based specification is presented as follows. The variable types are

Chapter : Implementing Regions IPC 59

defined. Then the Regions primitives are presented as public operations of an object

type called Kernel. A specification of each public operation follows. These specifi-

cations are based on variables, operations and objects that are private to the Kernel

interface. A specification of each private operation is presented. Then the private

objects are specified.

4.5.1 Variable Types

The following variable types are used in the Kernel specification.

Public Variable Types

Boolean (TRUE or FALSE)

Integer //Standard integer.//

Address //A nonnegative integer.//

ARegion //Starting address of a processor page.//

State (INVALID, UNBOUND, PRIVATE, or SHARED) //ARegion state.//

Mode (DUPLICATE, MOVE, or DYNAMIC-SHARE) //Data passing mode.//

PID //Process identifier.//

Private Variable Types

Paddress //Starting address of a physical page of memory.!!

Access (READ-ONLY, or READ-WRITE) //MMU page mapping attribute.//

4.5.2 The Kernel Object Interface

The Regions primitives are public operations of the Kereni object interface.

INTERFACE Kernel {
create() returns Kernel::k //Initialise the kernel.//

delete() //Clean up before terminating the kernel.//

create-region (Integer size) returns (ARegion) ar

delete-region(ARegion ar)

rebind-region(ARegion ar., ARegion ard) returns (Boolean) success

size-of-region(ARegion ar) returns (Integer) size

state-of-region (Address addr) returns (State) s

pass-region-to(PID sender, ARegion are, Mode m) returns (ARegion) ard

pass-region-from(PID sender, ARegion ar,,, Mode m) returns (ARegion) ard

Chapter 4: Implementing Regions IPC 60

• . .//The remaining public Kernel operations are not relevant.//

Private Variables

PID current-pid //The PID of the currently executing process.//

Private Object Instances

Context:: current-context //The context currently installed in the MMU.//

Kernel::this-kernel //This Kernel object (the local kernel).//

}

4.5.3 Regions Primitive Specification

The Kernel public operations are specified in terms of variables, operations and

objects that are private to a Kernel object.

A Kernel object is created to start the system.

Kernel:: create() {
(Allocate an object with interface Kernel.) returns k

(Create a stack of free physical pages.)

(Create a stack of free DRegion objects.)

.//Nonrelevant initialisation actions.//

this-kernel +—k

return k

}

When the system is shutdown the Kernel object is deleted.

Kernel:: delete() {
(Initiate delivery of delete requests for DRegion shared with other kernels.)

.//Nonrelevant shutdown actions.//

(Deallocate self.)

}

Kernel:: create-region (Integer size) {
current-context---'get-unbound-binding() returns Binding: :b

create(size) returns DRegion::dr

b—bind(dr, FALSE) //Not a deferred copy binding.//

b—get-ARegion() returns (ARegion) ar

return ar

}

Chapter : Implementing Regions IPC 61

Kernel:: delete-region (ARegion ar) {
current-context—*get-binding(ar) returns Binding::b

b—*unbind()

}

Kernel::rebind-region(ARegion ar,,, ARegion ard) {
current-context---get-binding(ar) returns Binding::b,,

current-context--extract-binding(ard) returns Binding: :bd

do-rebind(b8, bd)

return TRUE

}

Kernel:: size-of-region (ARegion ar) {
current-context--get-binding(ar) returns Binding::b

b—get-DRegion() returns DRegion: :dr

dr—get-size() returns (Integer) size

return size

}

Kernel:: stat e-of-region (Address addr) {
if (addr is an ARegion) then

current-context--+get-binding(addr) returns Binding::b

b—*get-bound() returns (Boolean) bound

if (bound) then
b--+get-DRegion() returns DRegion::dr

dr—get-shared() returns (Boolean) shared

if (shared) return SHARED
return PRIVATE

return UNBOUND

return INVALID

}

Kernel::pass-region-to(PID sender, ARegion ar., Mode m) {
• get-kernel(sender) returns Kernel: :kd

if (kd is this-kernel) then
get-context(sender) returns Context::cd

local-pass(current-context, c, ar., m) returns (ARegion) ard

Chapter 4: Implementing Regions IPC 62

else

current-context----*get-binding(ar8) returns Binding: :b5

if (m is DYNAMIC-SHARE) then
do-deferred-copy(b8) returns DRegion: :dr

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).//

deliver(kd, " to-bind", sender, dr)

if (m is MOVE) then
b5—*get-DRegion() returns DRegion: :dr

dr—get-shared() returns (Boolean) shared

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).//

if (shared) then deliver(kd, " to-bind", sender, dr)
else deliver(kd, " to-copy", sender, dr)

b54unbind()

if (m is DUPLICATE) then
b5—+get-DRegion() returns DRegion: :dr

dr—get-shared() returns (Boolean) shared

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).//

deliver(kd, " to-copy", sender, dr)

block(current-pid) returns (ARegion) ard

return ard

}

Kernel::pass-region-from(PID sender, ARegion ar8, Mode m) {
get-kernel(sender) returns Kernel: :kd

if (kd is this-kernel) then
get-context(sender) returns Context: :cd

local-pass(cd, current-context, ar8, m) returns (ARegion) ard

else

deliver(kd, "from-req", sender, ar8, m)

current-context—.get-unbound-binding() returns Binding: :bd

bd—+get-ARegion() returns (ARegion) ard

block(current-pid) returns DRegion::dr

dr—get-shared() returns (Boolean) shared

if (m is MOVE) then
if (shared) then (Set m to DYNAMIC-SHARE.)
else (Set m to DUPLICATE.)

if (m is DYNAMIC-SHARE) then

Chapter : Implementing Regions IPC 63

bd— bind(dr, FALSE)

if (m is DUPLICATE) then
dr-3-get-size() returns (Integer) size

create(size) returns DRegion::dro

copy(dr, dro)

dr—dec-copiers() //dr can now be deallocated (see Section 4.7).//

bd—+bind(dro, FALSE)

return ard

}

4.5.4 Private Kernel Operations

The following private operations are used to implement the Kernel public operations.

Private Operations

get-process (Context::c) returns (PID) p

get-context(PID p) returns Context::c

get-kernel(PID p) returns Kernel::k

block(PID p) //Suspend a process.//

schedule(PID p) //Unsuspend a process.//

do-rebind(Binding: :b8, Binding: :bd)

local-pass (Context::c5, Context::cd, ARegion ar8, Mode m) returns (ARegion) ard

do-deferred-copy(DRegion: :dr, Binding: :b)

read-only-exception-handler(PID p, Address addr)

copy(DRegion: :dr, DRegion: :drd)

//Deliver a request to another Kernel. The other Kernel invokes//

1/ name(argi, arg2, ...). The sending Kernel (this-kernel) and//
calling process (current-pid) variables are passed implicitly.//

deliver(Kernel::k, "name", arg1, arg2, ...)

//The following routines can be remotely invoked with deliverQ.//

to-bind(PID p, DRegion::dr)

to-copy(PID p, DRegion::dr)

Chapter :. Implementing Regions IPC 64

to-done(PID p, ARegion ard)

from-req(PID p, ARegion are, Mode m)

from-done(PID p, DRegion::dr)

The following are sketches of algorithms that implement the private operations.

Kernel::get-process (Context::c) {
(Find process executing in c) returns (PID) p

return p

}

Kernel::get- context (P ID p) {
(Find context that p is using.) returns Context::c

return c

}

Kernel: :get-kernel(PID p) {
(Find kernel where p is executing.) returns Kernel::k

return k

}

Kernel::block(PID p) {
suspend(p) //Remove from ready queue.//

if (p is current-pid) then
(Switch to next ready process.)

}

Kernel::schedule(PID p) {
unsuspend(p) //Put into ready queue.//

}

Kernel:: do-rebind(Binding: :b8, Binding::bd) {
b-3.get-DRegion() returns DRegion: :dr

b8—+get-deferred() returns (Boolean) deferred

bd—+bind(dr, deferred)

b8—unbind()

}

Chapter : Implementing Regions IPC 65

Kernel:: local-copy (Context::c3, Context::cd, ARegion ar8, Mode m) {
c8—get-binding(ar8) returns Binding: :b8

cd-3get-unbound-binding() returns Binding: :bd

if (m is DYNAMIC-SHARE) then
do-deferred-copy(b8) returns DRegion: :dr

ba—.bind(dr, FALSE)

if (m is MOVE) then
do-rebind(b8, bd)

if (m is DUPLICATE) then
b3—*get-DRegion() returns DRegion: :dr

dr—+get-shared() returns (Boolean) shared

if (shared) then //Shared DRegions copied immediately.//
dr—+get-size() returns (Integer) size

create(size) returns DRegion::dro

copy(dr, dro)

bd—bind(dro, FALSE)

else //Copying of non-shared DRegions deferred.//

b8—+defer()

bd—*bind(dr, TRUE)

bd—*get-ARegion() returns (ARegion) ard

return ard

}

Kernel:: do-deferred-copy(Binding: :b) {
b —+get-D Region() returns DRegion: :dr

b—+get-deferred() returns (Boolean) deferred

if (deferred) then
dr—*get-copiers() returns (Integer) copiers

if (copiers is 1) then
b—+undefer()

else

dr—get-size() returns (Integer) size

create(size) returns DRegion::dro

copy(dr, dro)

B—bind(dro, FALSE)

return dro

return dr

Chapter : Implementing Regions IPC 66

}

Kernel: :read-only-exception-handler(PID p, Address addr) {
if (addr is an ARegion) then

(Find ARegion that addr is in) returns (ARegion) ar

current-context--get-binding(addr) returns Binding::b

do-deferred-copy(b)

(Restart instruction that caused exception.)

else

(Delete the current process and reclaim its resources.)

}

Kernel:: deliver (Kernel:: k, " name", arg1, arg2, ...) {
(Initiate delivery to k of request "name")

(k is interrupted and invokes name(argi, arg2, ...))
}

The following five routines are invoked as a consequence of deliverQ. The first

three are associated with pass-region-to and the last two are associated with pass-

region-from.

Kernel::to-bind(PID Pd, DRegion::dr) {
get-context(pd) returns Context::cd

cd—get-unbound-binding() returns Binding: :b

b—*bind(dr, FALSE)

dr—.dec-copiers() //dr can now be deallocated (see Section 4.7).//

b—+get-ARegion() returns (ARegion) ard

deliver(k5, " to-done", Ps, ard)

//Respond to the kernel k5 that requested "to-bind" on behalf of process

}

Kernel:: to-copy (PID Pd, DRegion::dr) {
get-context(pd) returns Context::cd

cd—get-unbound-bindmg() returns Binding: :b

dr—get-size() returns (Integer) size

create(size) returns DRegion::dro

Chapter : Implementing Regions IPC 67

copy(DR, dro)

dr—+dec-copiers() //dr can now be deallocated (see Section 4.7).//

b—bind(dro, FALSE)

b—+get-ARegion() returns (ARegion) ard

deliver(k8, " to-done", p, ard)

//Respond to the kernel k5 that requested " to-copy" on behalf of process

}

Kernel::to-done(PID Ps, (ARegion) ard) {
(Pass ard to Ps via a kernel data structure.)

schedule(p5)

}

Kernel::from-req(PID Pd, ARegion ar5, Mode m) {
get-context(pd) returns Context::;

c3—*get-binding() returns Binding: :b5

if (M is DYNAMIC-SHARE) then
do-deferred-copy(b9) returns DRegion: :dr

else

b5—*get-DRegion() returns DRegion: :dr

dr—inc-copiers() //Avoid deallocating dr (see Section 4.7).//

deliver(k8, "from-done", p,,, dr)

//Respond to the kernel k8 that requested "from-req" on behalf of process Ps/I

}

Kernel: :from-done(PID p, DRegion: :dr) {
(Pass dr to p via a kernel data structure.)

schedule(p5)

}

4.5.5 Private Kernel Objects

The interface and implementation of private objects are defined for a context, bind-

ing, DRegion and MMU translation table page entry.

Chapter : Implementing Regions IPC 68

4.5.5.1 Context Object

A context object is created or deleted whenever a process is created or deleted,

respectively.

INTERFACE Context {
create() returns Context::c

delete()

get-binding(ARegion ar) returns Binding::b

extract-binding(ARegion ar) returns Binding::b

get-unbound-binding() returns Binding::b

put-unbound-binding(Binding: :b)

Private Variables

Array-of-Bindings db //System defined number of dynamic bindings.//

Stack-of-Bindings unbound-db //Stack of unbound dynamic bindings.//

}

The following are sketches of algorithms that implement the Context operations.

Context:: create() {
(Allocate an object with interface Context.) returns Context::c

(Allocate db and unbound-db)

for i from 1 to n

create(c) returns Binding::b

c--.db[i] —b

push(b, c—+unbound-db)

(Allocate permanent bindings.)

return c

}

Context:: deleteo {
for i from 1 to n //Delete all bound ARegions.//

self—.db[i]--*get-bound() returns (Boolean) bound

if (bound) then
self—+db[i] —*unbind()

(Deallocate permanent bindings.)

}

Chapter : Implementing Regions IPC 69

Context::get-binding(ARegion ar) { //Assume ar is not in unbound-db.//
(Convert ar to i.)

return self-+db[i]

}

Context::extract-binding(ARegion ar) { //Assume ar is in unbound-db.//
(Convert ar to i.)

remove(self-4db[i], self-+unbound-db)

return self-db[i]

}

The remove() operation can be implemented without traversing the stack unbound-

db if the elements of db are used to implement the stack as a doubly linked list.

Context: :get-unbound-binding() {
pop(self-+unbound-db) returns Binding: :b

return b

}

Context: :put-unbound-binding(Binding: :b) {
push(b, self-unbound-db)

}

4.5.5.2 Binding Object

Dynamic bindings are implemented as Binding objects with the following interface.

INTERFACE Binding {
create(Context::c, ARegion ar) returns Binding::b

delete()

get-ARegion() returns (ARegion) ar

get-bound() returns (Boolean) bound

get-deferred() returns (Boolean) deferred

get-DRegion() returns DRegion: :dr

bind(DRegion::dr, Boolean deferred)

unbind()

defer()

undefer()

Chapter 4: Implementing Regions IPC 70

Private Variables

ARegion ar

Boolean bound

Boolean deferred

Private Object Instances

DRegion::dr

PageEntry::pe

Context:: context

The following are sketches of algorithms that implement the Binding operations.

Binding::create(Context::c, ARegion ar) {
(Allocate an object with interface Binding.) returns Binding::b

b-- bound 4-FALSE

b- context 4-c

b-3ARegion 4-ar

return b

}

Binding:: deleteo {
(Deallocate self)

}

Binding:: bind (D Region: :dr, Boolean deferred) {
self-*bound +-TRUE

self-4dr 4-dr

self-+deferred 4-deferred

create(self-*ar, self-.context) returns PageEntry: :pe

self-+pe 4-pe

dr-.get-paddr() returns (Paddress) paddr

if (deferred) then
dr-+inc-copiers()

pe-.bind(paddr, READ-ONLY)

else

dr-*inc-writers()

pe-+bind(paddr, READ-WRITE)

}

Chapter : Implementing Regions IPC 71

Binding: :unbind() {
self- bound 4-FALSE

self-context-*put-unbound-binding(self)

if (self.-4deferred) then
self-4dr--+ dec-copiers ()

else

self-+dr-dec-writers()

self-.pe---3'unbind()

}

Binding:: defer() {
if (not self- deferred) then

self-*deferred -TRUE

self-*pe-+read-only()

self-+dr---*inc-copiers()

self-dr--dec-writers()

}

Binding::undefer() {
if (self-4deferred) then

self-*deferred 4-FALSE

self-3.pe-•read-write()

self-+dr--+inc-writers()

self-+dr---+dec-copiers()

}

The routines defer() and undefer() increment then decrement the DRegion counters

so that another kernel can read' the counter values without requiring mutual exclusion

(see section 4.7).

4.5.5.3 DRegion Object

DRegions are implemented as DRegion objects with the following interface.

INTERFACE DRegion {
create(Integer size) returns DRegion::dr

delete()

Chapter : Implementing Regions IPC 72

get-size() returns (Integer) size

get-paddrQ returns (Paddress) paddr

get-copiers() returns (Integer) copiers

get-shared() returns (Boolean) shared

inc-copiers()

inc-writers()

dec-copiers()

dec-writers()

Private Variables

Paddress paddr

Integer size

Integer writers

Integer copiers

}

Ditegions can be shared between Kernels therefore the implementation of shared

DRegions might be distributed (see Section 4.8).

The following are sketches of algorithms that implement the DRegion operations.

DRegion::create(Integer size) {
(Allocate an object with interface DRegion.) returns DRegion::dr

(Allocate page.) returns (Paddress) paddr

dr—+paddr 4—paddr

dr—+size +—size

dr—*writers —O

dr-.4copiers +—O

return dr

}

DRegion::delete() {
(Deallocate self)

}

DRegion::get-sharedQ {
return (Boolean) (self-3.writers > 1)

}

Chapter 4: Implementing Regions IFC 73

DRegion::inc-copiers() {
(self—.copiers)++ //Must detect and prevent overflow.//

}

DRegion: :inc-writers() {
(self—*writers.) ++ //Must detect and prevent overflow.//

}

DRegion::dec-copiers() {
(self--+ copiers)—

if ((self—•copiers + self—*writers) < 1) then
delete() //DRegion is deallocated if it is not bound.//

}

DRegion::dec-writers() {
(self—+writers)—

if ((self—+copiers + self—+writers) < 1) then
delete() //DRegion is deallocated if it is not bound.//

}

4.5.5.4 PageEntry Object

The translation table entries that bind a processor page to a physical page are im-

plemented as PageEntry objects with the following interface.

INTERFACE PageEntry {
create(ARegion ar, Context::c) returns PageEntry::pe

delete()

bind(Paddress paddr, Access a)

unbind()

read-only()

read-write()

Private Variables

Paddress paddr

Access access

Boolean valid

ARegion ar

Private Object Instances

Chapter 4: Implementing Regions IPC 74

Context:: context

}

The PageEntry operations can be implemented as follows.

PageEntry: :create(ARegion ar, Context: :c) {
if (Translation table for c does not have an entry for ar.) then

(Allocate an entry for ar.) returns PageEntry::pe

pe—+ar 4—ar

pe—*valid 4-FALSE

pe—context 4—c

if (c is installed in MMU.) then (Load entry into MMU.)
else

(Find the entry for ar.) return's PageEntry::pe

return pe

}

PageEntry: :delete() {
if (Translation table does not need an entry for self—+ar) then

(Deallocate entry for self4—ar.)

if (self—*context is installed in MMU) then (Invalidate entry in MMU.)
}

PageEntry::bind(Paddress paddr, Access a) {
self—paddr 4—paddr

self— access 4—a

self—*valid 4-TRUE

if (self—*context is installed in MMU) then (Load entry into MMU.)
}

PageEntry: :unbind() {
self— valid 4-FALSE

delete() //Check to see if the entry should be deallocated.//

}

PageEntry: :read-only() {
self—+access READ-ONLY

}

Chapter 4: Implementing Regions IPC 75

PageEntry: :read-write() {
self—.access 4--READ-WRITE

}

4.6 Sun 3 Uniprocessor Implementation

The Regions IPC model is implemented on Sun 3 workstations'.

The kernel implementation is similar to the object-based specification in the

previous section. The kernel is written in C [Kernighan 78]. The Kernel private

objects are global variables. The private operations and private object operations

are implemented in line (not as procedures).

PageEntry objects are implemented directly with the Sun 3 MMU translation

tables.

The Sun 3 MMU groups pages into segments where a segment contains 16 pages.

The translation tables consist of a table of segment entries and groups of 16 page

entries called pmegs8. A segment entry can point at any one of 255 pmegs.

The page-entry objects are implemented directly with pmegs. If a page-entry

is required for a logical page starting at address Addr then the segment containing

Addr must be mapped to a pmeg. If Addr's segment is not mapped, a pmeg is

popped off a stack of free pmegs, the 16 page entries are marked invalid and Addr's

segment is mapped to it. Addr's page-entry is allocated by marking it valid. A

page-entry is deallocated by marking it invalid. If a segment is mapped to a pmeg

with no valid page-entries then the pmeg is pushed onto a stack of free pmegs and

the segment is unmapped.

7The Sun 3 implementation has not yet been extended across the Ethernet. Therefore, DRegions
can only be passed between processes executing on the same workstation.

'The Sun 3 MMU also provides 8 contexts where each context has a segment table and 255
pmegs; however this feature was not used.

Chapter : Implementing Regions IPC 76

Pmegs are a limited resource on Sun 3 workstations. Therefore the performance

of this implementation will be degraded when all pmegs are being used.

If a non-shared DRegion is passed with the DUPLICATE mode between processes

executing on a workstation then copying is deferred.

4.7 BBN GP1000 NUMA Multiprocessor Implementation

The Regions IPC model is also implemented on BBN GP1000 multiprocessors.

Each node of the GP1000 has a processor, an MMU and a local memory. The

MMU can map processor pages to the node's local physical memory or to the local

physical memory of other nodes (remote memory). However, the ratio between the

time to access (read or write) remote memory as opposed to local memory is between

8 and 11 in the absence of contention'. Therefore, the a separate kernel is executed on

each node because an efficient implementation must avoid remote memory accesses.

The kernel implementation for each node of the GP1000 is similar to the kernel

implementation for a Sun 3 workstation. The GP1000 MMU is configured to behave

similar to the Sun 3 MMU but the variable types and instructions sequences dif-

fer. The GP1000 implementation also supports passing DRegions between separate

nodes.

A kernel causes another kernel to invoke an operation by delivering a request spec-

ify the operation and parameters. Each node has a multi-producer single-consumer

queue that any processor can access. The requests are inserted into the destination

kernel's queue by first ensuring that no other kernel is delivering a request. Then

the source kernel interrupts the destination kernel. The destination kernel inter-

rupt handler routine removes the requests from the queue and invokes the requested

'Contention occurs when multiple processors contend for the same hardware to access remote
memory.

Chapter : Implementing Regions IPC 77

operation.

Operations that involve more than one node are implemented so that the kernels

on each node can execute in parallel. Delivery of a request is initiated before all the

arguments are specified. Each process has a data structure associated with it that

is used to send remote requests to other n5des10. Therefore, every kernel has access

to the remote request buffers of every node. When a remote request is delivered

the type of request is inserted in the buffer B, B is marked BUSY, a pointer to B is

inserted in the destination node's queue, and the destination processor is interrupted.

The source kernel inserts the remaining parameters in B then marks B COMPLETE.

The destination kernel interrupt handler removes the request from its queue, invokes

the requested routine, performs as many operations as it can and then waits until B

is marked COMPLETE.

If a DRegion is passed to a process executing on the same node then the kernel

executes the same operations as the Sun 3 implementation. Therefore, copying is

deferred if the passing mode is DUPLICATE and the DRegion is not shared.

If a DRegion is passed to a process executing on another node then the DRegion

is copied if possible. If the mode is DUPLICATE then the DRegion is copied. If the

mode is MOVE and the DRegion is not shared then the DRegion is copied. Otherwise

the DRegion is shared and the destination ARegion is bound to the DRegion.

The implementation must delay the deallocation of a page that is being copied un-

til copying is completed because a deallocated page can be reallocated and modified".

If the source process is asynchronously terminated then the process's resources are

reclaimed. The deferred copy feature is used to avoid this problem. The DRegion

copiers counter is incremented before page copying starts. When the copy is complete

'°Process descriptors are used in the current implementation. The alternative is to dynamically
allocate request buffers.
"The stack of free pages is currently implemented by storing a pointer in the page. Therefore,

a page is modified when it is deallocated.

Chapter 4: Implementing Regions IPC 78

a request to decrement copiers is delivered. This also allows the kernel to unbind the

source when the mode is MOVE without waiting for a confirmation.

If a DRegion is shared between processes executing on different nodes then the

DRegion object is only implemented on the node where the DRegion was created.

If a kernel invokes an operation on a remote DRegion object then there are two

possibilities: the operation does or does not modify the DRegion object's variables.

If the operation only reads the DRegion object's variables then the operation can be

implemented by remotely reading12 the contents of the variables'3. If the operation

modifies the DRegion variables then a request is delivered to the remote kernel to

perform the operation.

4.8 Discussion

A DRegion can be shared between processes executing on processors that do not

share physical memory. Two techniques for implementing this sharing are remote

access and distributed sharing.

The current GP1000 implementation uses the remote access technique. The data

exists on the node where the DRegion was created. If the DRegion is shared with a

process P executing on a separate node then an ARegiôn in P's context is mapped

to the remote physical page. Read and write operations by P on the shared DRegion

are remote memory accesses. The remote access sharing technique has also been

demonstrated across a communications network [Spector 82]. write operations have

at-most-once semantics because a communication failure can prevent confirmation

that the write was completed from being delivered.

12 Remote access to DRegion variables requires providing every kernel with access to every nodes
DRegion variables.

13 The DRegion operations defer() and undefer() increment then decrement the DRegion counters
to ensure that incorrect transient values cannot be read.

Chapter : Implementing Regions IPC 79

Distributed sharing is an alternative technique involving migrating and replicating

the data. A DRegion is shared between processes executing on the same machine and

separate machines. Initially the data is in a physical page that is local to a machine

where one of the sharing processes is executing. The physical page can be mapped'

to a processor page in the context of any sharing process executing on that machine.

Those processes can read or write the contents of the page. The processor pages of

sharing processes executing on other machines are unmapped and the bindings are

marked NON-RESIDENT.

If a process attempts to read data from a processor page that is not mapped but

where the binding is marked NON-RESIDENT then an exception occurs. The kernel X

on that machine delivers a replicate request to the kernel Y on the machine where the

data exists. Y changes its mappings to the page containing the data to READ-ONLY

access and delivers a copy of the data to X. X maps the page containing the copied

data with READ-ONLY access and restarts the read instruction. Subsequent attempts

to read a page marked NON-RESIDENT result in additional READ-ONLY mappings to

copies of the data. The data is cached on the machines that require read access.

If a process attempts to write data to a page that is mapped READ-ONLY or

a binding that is marked NON-RESIDENT then an exception occurs. The kernel X

on that machine delivers a migrate request to the other kernels where the page is

• mapped. Those kernels unmap the page that contains their copy of the data and

mark their bindings NON-RESIDENT. If X does not have a copy of the data then it

also requests a copy from on of the other kernels. X maps the page containing the

data with READ-WRITE access and restarts the write instruction.

The distributed sharing technique has been demonstrated across a communica-

tions network [Li 86]. write operations have exactly-once semantics because the

datum is not written until the page of data arrives.

Chapter 4: Implementing Regions IPC 80

The remote access technique is less efficient than the distributed sharing technique

if processes on one node must perform many remote accesses while no other processes

are performing accesses. However, remote access is more efficient if processes on

different nodes alternately access the data. Methods of dynamically selecting the

remote access or distributed share techniques have been demonstrated and analysed

for NUMA systems [Bolosky 91].

4.9 Summary

Issues related to a correct efficient implementation of the Regions IPC model are dis-

cussed. Several design choices were made with emphasis on simplicity and efficiency.

The implementation takes advantage of MMU hardware and assumes the MMIJ

hardware has specific features.

Data copying is deferred when a non-shared DRegion is passed with the DUPLI-

CATE mode between processes executing on processors that share physical memory.

Data copying is not deferred when the source DRegion is shared.

A system independent object-based specification is presented. Then the details of

implementations on Sun 3 workstations and BBN GP1000 Butterfly multiprocessors

are discussed.

Two techniques of implementing shared DRegions across communications chan-

nels are discussed.

Chapter 5

Performance of the Regions IPC Primitives

The elapsed time performance of the Regions IPC primitives implemented on a Sun 3

workstation and a BBN Butterfly multiprocessor are analysed. The elapsed time of

data-passing primitives using the dynamic-share, move, and duplicate data-passing

modes are compared with the elapsed time of a primitive that uses the copy data-

passing mode. Total elapsed times and component elapsed times are presented. The

component times identify where the time is being spent.

5.1 Hardware

Implementations of the Regions IPC model on a Sun Microsystems Sun 3/75 work-

station and a 12 node BBN Butterfly GP1000 multiprocessor were used to obtain

the elapsed time measurements.

The Sun 3/75 processor is a MC68020 [Motorola 89a] running at 16.7 MHz. The

memory cycle time is 270 ns. The MIPS rating is 1.5

The processor of each GP1000 node is also a MC68020 running at 16.7 MHz.

Timing measurements of identical instruction sequences confirm that the Sun 3/75

and GP1000 execute at the same rate when memory is not referenced and show that

the GP1000 is about 1.15 times slower when local' memory is referenced.

The Sun 3/75 and GP1000 do not provide a data cache. The MC68020 provides

'Each node of the GP1000 has a processor and memory. A processor can directly access the
memory of other nodes via a communications network called the Butterfly switch. Timing measure-
ments of identical memory reference instruction sequences on the GP1000 show that instructions
that reference memory are about 8 to 11 times slower when the memory is on a remote node as
opposed to a local node.

81

Chapter 5: Performance of the Regions IPC Primitives 82

an instruction cache.

The Sun 3 MMU is described in Section 4.6. The MMU uses private memory to

store the translation table2.

Each node of the GP1000 uses a MC68851 MMU [Motorola 89b]. The translation

table is stored in the node's main memory. The MMU caches page translations

in an on-chip address translation cache (ATC). One or more cache entries might

have to be invalidated when a translation table entry is modified. The MC68851 is

configured to behave similar to the Sun 3 MMU (128K byte segments and 8K byte

pages) therefore, an ATC cache miss requires at least two memory accesses. Cache

entries of a context are invalidated when a context switch occurs'. An efficient way of

invalidating context cache entries is to invalidate the entire ATC. A feature that locks

a page translation in the ATC is used to avoid invalidating kernel page translations

with every context switch.

5.2 Software

The Regions IPC model has been implemented by modifying the W System [Vasude-

van 88] distributed operating system. The kernel program and process programs are

written primarily in the C programming language [Kernighan 78] and compiled with

the Sun Microsystems SunOS 4.1 C compiler. Assembly language is used for:

• interrupt control,

• switches between PRIVILEGED and NON-PRIVILEGED mode (invoking a primi-

tive; responding to an interrupt or exception),

• process context switches (including switching the 68020 state),

• accessing the Sun 3 MMU translation tables, and

2A translation table is also called a translation look-a-side buffer (TLB).
3The 68851 feature that distinguishes between page translations from separate contexts was not

used because of implementation effort and anticipated insignificant time reductions.

Chapter 5: Performance of the Regions IPC Primitives 83

• copying more than about 64 bytes of data (the C compiler does not use the

processor's instruction cache to minimise copying time).

5.3 Measurement Techniques

The total elapsed time of a primitive is obtained by measuring the elapsed time to

execute the primitive a large number of times (10000). and dividing that elapsed time

by the number of iterations. Real time clocks in the Sun 3/75 (10 ms resolution)

and GP1000 (62.5 ps resolution) were used for the measurements.

The elapsed times of individual components of a primitive are obtained by in-

serting instructions into the kernel to toggle an external signal'.

An 11P5402A digital oscilloscope was used to measure the average, minimum and

maximum width of the resulting pulses. Pulse generation overhead time T0 was

measured by executing instructions to turn on and turn off the signal without inter-

vening code. T.v was subtracted from the average pulse width measurements.

T0 had a variance of about 1 js depending on the position of the instructions in

memory and possibly other factors. Therefore, these measurements are approximate5

indications of the time spent on each component of a primitive.

The purpose of measuring component times is to determine where the time is

being spent. Effort was not placed on error analysis or improvement of accuracy

and precision because approximate measurements are sufficient for identifying which

components take the most time. As a consequence the sum of the component times

can differ from the corresponding total times.

'The Sun 3/75 serial port RTS line and a control line attached to a GP1000 LED were used.
'This technique was used to measure individual non-memory referencing instructions on the

GP1000, Sun 3/75, Sun 3/50 and Sun 3/60. Those measurements correlated with the 68020 spec-
ifications [Motorola 89a]. However, the pulse widths were on the order of milliseconds; therefore,
the variance of T.v was not significant.

Chapter 5: Performance of the Regions IPC Primitives 84

Effort spent collecting the component measurements was reduced by instrument-

ing the entire kernel with signal control instructions. Those instructions could be

included in or excluded from the compiled kernel. If they are included a user interface

is used to successively select the component to measure.

5.4 Data Copying Primitives

copy-data-to and copy-data-from [Cheriton 88, Vasudevan 87] are IPC primitives

that use the copy data passing mode. These primitives are not part of the Regions

IPC model but they are part of the W System. The performance of copy-data-

to and copy-data-from can' be compared directly with the performance of pass-

region-to and pass-region-from.

copy-data is used to refer to both copy-data-to and copy-data-from.

pass-region is used to refer to both pass-region-to and pass-region-from.

5.5 Total Elapsed Times

The total elapsed times of the Regions IPC primitives executing on a Sun 3/756 and

GP1000 are presented in Tables 5.1 and 5.2.

If communicating processes are executing on the same node (or workstation) then

communication is local, otherwise communication is remote.

If communication is local the kernel passes a DRegion by modifying the MMU

translation table entries and only copies the DRegion contents when necessary. If

communication is remote and the DRegion is not shared then th kernel passes a

6The current implementation does not support pass-region between Sun 3/75 workstations
but it does support send-receive-reply and copy-data. Unoptimised total elapsed times for IPC
between processes executing on separate 3/75s connected by a 10 Mbit Ethernet are: 1.6 ms for an
SRR transaction, 1.3 ms for a 1 byte copy-data, 2.7 ms for a 1474 byte copy-data-to and 3.0 ms
for a 1474 byte copy-data-from. An Ethernet packet has room for 1474 bytes of process data.

Chapter 5: Performance of the Regions IPC Primitives 85

SRR Transaction Total Elapsed Time (/Ls)

Sun 3/75 GP1000
local remote

send-receive-reply 288 398 851

Table 5.1: send-receive-reply total elapsed time.

Data Passing Total Elapsed Time (us)

Sun 3/75 GP1000
local remote

(1 byte) (8 KB) (1 byte) (8 KB) (1 byte) (8 KB)
pass-region-from

DYNAMIC-SHARE 171 171 271 271 719 719
MOVE 210 210 358 358
non-shared 928 3084
shared (not measured)

DUPLICATE 695 2860
deferred 171 171 270 270
non-deferred 210 1505 302 1797 .

deferred-write 317 1616 568 2060 .

copy-data
COPY 95 1392 128 1627 503 2693

Table 5.2: pass-region-from and copy-data total elapsed time.

Chapter 5: Performance of the Regions IPC Primitives 86

DRegion by creating a duplicate and copying its contents. Therefore, if the MOVE

mode is used to pass a nonshared DRegion between GP1000 nodes then a duplicate

is created on the destination node and the source is deallocated. Otherwise, the data

is passed by modifying MMU translation table entries. The elapsed time to pass a

shared DRegion with the MOVE data passing mode between GP1000 nodes was not

measured (this time is expected to be approximately the same as the time for passing

a DRegion with the DYNAMIC-SHARE mode between GP1000 nodes).

The DUPLICATE data passing mode was implemented with and without deferred

copying for local communication so that the times could be compared. Therefore,

there are three times for passing DRegions with the DUPLICATE mode.

• non-deferred: The DRegion is duplicated before the primitive returns.

• deferred: Duplication of the DRegion is deferred and a write is not invoked

on the DRegion before the binding is deleted therefore it is never duplicated.

• deferred-write: Duplication of the DRegion is deferred and a write causes the

exception handler to duplicate the DRegion.

Every measurement involved two processes: a sender and a receiver. For the

send-receive-reply measurements the receiver continuously invoked receive and

reply in an infinite loop while the sender invoked send to the receiver a fixed number

of times. For the other measurements the sender invoked send to the receiver passing

an address in the message and the receiver invoked the primitive a fixed number of

times.

copy-data can copy data continuously between the same source and destination.

pass-region always allocates an ARegion and there are a limited number of ARe-

gions so pass-region cannot be invoked continuously without intervening delete-

region operations.

If the data passing mode is MOVE then the receiver passes the DRegion to and

Chapter 5: Performance of the Regions IPC Primitives 87

from the sender during each iteration. The times for MOVE presented in Table 5.2 are

half of the total measured time. The current implementation of pass-region-to and

pass-region-from invoke a common procedure for local communication and perform

the same components in a different order for remote communication. Therefore, the

times of pass-region-to and pass-region-from are expected to be similar.

If the mode is DUPLICATE or DYNAMIC-SHARE then the receiver passes the DRe-

gion from the sender and deletes the new binding during each iteration'. The times

shown in the table are the total time minus the time to delete the new binding (see

Section 5.6.2 for the delete times)-

pass-region-from of a nonshared DRegion between processes executing on sep-

arate nodes of the GP1000 is over 200 ps faster if the DUPLICATE mode is used rather

than the MOVE mode. This is because the implementation of DUPLICATE allocates

a page so that the destination node can copy the data directly into it. Whereas the

implementation of MOVE does not allocate a page because a page is not required if

the source DRegion is shared.

5.5.1 Benefits and Costs of Avoiding Unnecessary Copying

The elapsed times of the IPC primitives with respect to the number of bytes passed

is presented in Figure 5.1 for local communication on a Sun 3/75, Figure 5.2 for

local communication on a GP1000 node, and Figure 5.3 for remote communication

between nodes of a GP1000.

These three figures demonstrate that for the current implementation the data

passing modes that are implemented as MMU translation table manipulations are

more efficient than copy-data if more than about 1024 bytes are passed. However,

copy-data is more efficient if less than about 256 bytes are passed.

7Elapsed times of pass-region-to are not presented but they are expected to be within a few
its for local communication and a few 10's of Its (because of parallelism) for remote communication.

Chapter 5: Performance of the Regions IPC Primitives 88

• DYNAMIC-SHARE
1800 X MOVE

O DUPLICATE deferred
o non-deferred

1600 o deferred-write
* COPY word aligned

not word aligned

1400 -

1200 -

Elapsed
Time 1000 -

(its)

0 H

1K 2K 4K

Number of Bytes (K=1024)

8K

Figure 5.1: Local Sun 3/75 elapsed time versus number of bytes.

Chapter 5: Performance of the Regions IPC Primitives 89

3000

2500

2000

Elapsed
Time 1500
(ps)

1000

500

0

I I

• DYNAMIC-SHARE
>< MOVE
o DUPLICATE deferred
o non-deferred
o deferred-write
* COPY word aligned

I I I

1K 2K 4K

Number of Bytes (K=1024)

8K

Figure 5.2: Local GP1000 elapsed time versus number of bytes.

Chapter 5: Performance of the Regions IPC Primitives 90

4500

4000

3500

3000

2500
Elapsed
Time
(his)

2000

1500

1000

500

1K 2K 4K 8K

• DYNAMIC-SHARE
X MOVE
o DUPLICATE
* COPY page aligned

btrans() page aligned

Number of Bytes (K=1024)

Figure 5.3: Remote GP1000 elapsed time versus number of bytes.

Chapter 5: Performance of the Regions IPC Primitives 91

The DYNAMIC-SHARE mode is efficient if the processes are executing on processors

that share physical memory because the data only has to be passed once. The

performance of sharing data between processes executing on separate nodes of the

GP1000 or separate Sun 3 workstations has not be measured.

pass-region with the MOVE mode is only more efficient than copy-data if com-

munication is local and there is more than 1024 bytes of data.

pass-region with the DUPLICATE mode is more efficient than copy-data if com-

munication is local, duplication is deferred and a write is not invoked on either

duplicate of the DRegion. It is also more efficient if the source and destination of

copy-data are not word aligned and there are more than about 4096 bytes of data

because of the 68020 memory access characteristics (see Figure 5.1).

5.5.2 Factors that Increase the Elapsed Time

These total elapsed times are the lowest possible times for the current implementa-

tion. There are factors that increase the total elapsed time.

When an ARegion is allocated a page entry is required. Page entries are imple-

mented in pmegs as described in Section 4.6. The measurements do not include the

allocation or deallocation of pmegs. For the current implementation, pmeg allocation

increases the total elapsed time by 64 ps and 54 ps on the Sun 3/75 and GP1000,

respectively. Pmeg deallocation increases the total elapsed time by 63 ps and 44 ps

on the Sun 3/75 and GP1000, respectively.

No other processes were executing during the measurements. Therefore, when a

process is rescheduled, it is the highest priority process. If there are higher priority

processes in the ready queue when a process is rescheduled then the processing time

will increase by about 10 ,as + 2 as/process on a Sun 3/75.

The receiver does not receive messages from any other senders during the SRR

Chapter 5: Performance of the Regions IPC Primitives 92

transaction measurements. If other messages are received and not replied to then

the total elapsed time of send-receive-reply increases by about 3 ps/process.

The processes had minimum sized contexts: 1 segment (128K byte) for process-

code, 1 segment for process-static-data and 4 segments for process-dynamic-data.

Context switch elapsed time increases by about 2 ps/segment on a Sun 3/75.

The data copied by copy-data do not cross segment boundaries and they are

word and page aligned. Tithe data cross a segment boundary then the elapsed time

increases by about 2 ps for each additional segment. If the source and destination

data-regions are not word aligned then the total elapsed time increases by about

O.226ps/byte on a Sun 3/75 (as shown in Figure 5.1). If the source and destination

are not page aligned then the remote GP1000 elapsed time increases because the most

efficient internode data transfer method (btransQ) requires physical addresses.

The total elapsed time of remote communication on the GP1000 also increase if

there is contention on the GP1000 Butterfly switch or contention for the queue of

incoming kernel requests.

5.6 Component Times

The total elapsed times of the primitives are now analysed. The differences between

the data passing thode elapsed times are identified.

Chapter 5: Performance of the Regions IPC Primitives 93

5.6.1 Passing DRegions

The component times for copy-data and pass-region-from between processes ex-

ecuting on the same node (or workstation) are presented in Table 5.3 and Table 5.4

for the Sun 3/75 and GP1000, respectively. Component times were not measured

for communication between remote nodes of GP1000 because of time constraints.

Local Sun 3/75 Data Passing Component Times (its)

Component
Category.

copy-data pass-region-from
DUPLICATE MOVE

non
-deferred

deferred deferred
-write

System Call 52 52 52 52 52
Confirm Arguments 21 28 28 28 28
Interrupt Control 3 .3 3 3 3
Map Other Context 12 12 12 12 12

Allocate ARegion . 26 26 26 26
Remap Page . . 12 12 12
Update DRegion . . 7 7

Incur Exception . . . 55
Deferred Duplicate? . . . 24
Allocate DRegion . 20 . 17
Allocate Page . 27 . 27
Copy Data (1 byte) 8 8 . 8
Map New Page . . . 11

Deallocate ARegion 18
PMEG Empty? 20

Overhead . 31 31 31 35
Component Total 96 207 171 313 206

Measured Total 95 210 171 317 210

Table 5.3: Local Sun 3/75 pass-region-from and copy-data component times.

The component times for the DYNAMIC-SHARE mode are not presented because

Chapter 5: Performance of, the Regions IPC Primitives 94

Local GP1000 Data Passing Component Times (ps)

Component
Category

•

copy-data pass-region-from
DUPLICATE MOVE

non
-deferred

deferred deferred
-write

System Call 62 56 56 56 62
Confirm Arguments 21 32 32 32 32
Interrupt Control 3 4 4 4 • 4
Map Other Context 22 20 20 20 20

Allocate ARegion . 34 34 34 34
Remap Page . . 69 69 96
Update DRegion . . 7 7

Incur Exception . . . 66
Deferred Duplicate? . . . 35
Allocate DRegion . 20 . 19
Allocate Page . 60 . 60
Copy Data (1 byte) 16 16 . 16
Map New Page . . . 91

Deallocate ARegion 18
PMEG Empty? 35

Overhead • 48 48 48 53
Component Total 124 290 270 557 354

Measured Total 128 301 270 568 358

Table 5.4: Local GP1000 pass-region-from and copy-data component times.

Chapter 5: Performance of the Regions IPC Primitives 95

they are very similar to the component times for the DUPLICATE mode when dupli-

cation is deferred and write is not invoked on the DRegion.

The component times are grouped into the following categories.

System Call: Time to execute system calls.

Confirm Arguments: Time to confirm that argument values are valid.

Interrupt Control: Time to disable and enable interrupts.

Map Other Context: Time to map page entries that are modified or that are

required for directly copying the data.

Allocate ARegion: Time to allocate an ARegion.

Remap Page: Time to modify page entries.

Update DRegion: Time to update DRegion counters.

Incur Exception: Time to detect a write to a page with READ-ONLY access,

invoke the exception handler, and restart the write.

Deferred Duplicate?: Time to confirm that the exception is due to a deferred

duplicate.

Allocate DRegion: Time to allocate and initialise a DRegion (not including the

time to allocate a physical. page of memory).

Allocate Page: Time to allocate a physical page of memory.

Copy Data (1 byte): Time to copy 1 byte of data.

Map New Page: Time to map the duplicated page into the context.

Deallocate ARegion: Time to unbind the source ARegion (MOVE).

PMEG Empty?: Time to check if the pmeg is empty and should be deallocated.

Overhead: Time to call the procedure that passes DRegions and to cache values

in processor registers. .

Component Total: Total of the component times.

Measured Total: Total elapsed times from Table 5.2.

Chapter 5: Performance of the Regions IPC Primitives 96

The system call time for copy-data and pass-region-from with the MOVE mode

is greater than the other system call times on the GP1000 because of a measurement

artifact. The technique used to measure the component times involved passing a

value from the kernel level to the process level- indicating whether or not the next

primitive was to be measured. This value was passed in the data for these two

primitives and the GP1000 incurred an ATC miss when the value was accessed at

the process level.

The elapsed times of copy-data and pass-region can be improved significantly.

The system call time for copy-data and pass-region can be reduced by about 25 ,as

if the technique described in Section 5.7 is used. The allocation and deallocation of

ARegions and DRegions can be improved. The time required to check if a pmeg

is empty and to allocate or deallocate a pmeg can be reduced to a few /is. The

GP1000 implementation for allocating and mapping pages is very inefficient and

should be implemented in assembly language. The overhead time required to invoke

the procedure that passes DRegions and cache values in processor registers can be

reduced. These improvements were not implemented because of time constraints.

5.6.2 Creating and Deleting Regions

The component times for create-region and delete-region are presented in Ta-

ble 5.5.

The following component time categories have not been explained previously.

Update Region Variables: Time to update the variables used to implement

ARegions and DRegions.

ARegion Allocation: Time for create-region or delete-region to allocate or

deallocate an ARegion, respectively.

Page-entry Allocation: Time for create-region or delete-region to allocate

Chapter 5: Performance of the Regions IPC Primitives 97

Create and Delete Component Times (ps) 1
Components create-region delete-region

Sun 3/75 GP1000 Sun 3/75 GP1000
System Call 48 50 45 47
Confirm Arguments 7 7 6 •6
Interrupt Control 4 3 4 4
Update Region Variables . . 7 8
ARegion Allocation 25 30 20 21
Page-entry Allocation 6(70) 7(61) 19(83) 35(78)
Invalidate ATC Entry . . . 11
DRegion Allocation 13 16 16 17
Page Allocation 26 55 24 45
Circumstances 5 7
Miscellaneous 1 1 5 7
Component Total 130 169 151 208

Total If DRegion Shared 111 146

Table 5.5: create-region and delete-region component times.

or deallocate a page entry, respectively. The time to allocate or deallocate a

pmeg is included in parentheses.

Invalidate ATC Entry: Time to invalidate an entry of the GP1000 68851 MMU

translation cache.

DRegion Allocation: Time for create-region or delete-region to allocate or

deallocate a DRegion, respectively. This does not include the time to allocate

or deallocate a physical page of memory.

Page Allocation: Time for create-region or delete-region to allocate or deal-

locate a physical page of memory, respectively.

Circumstances: Time to determine the circumstances of the operation (are there

other bindings to the DRegion?)

Miscellaneous: Time to cache values in processor registers.

Total If DRegion Shared: Time to delete a binding to a shared DRegion as

Chapter 5: Performance of the Regions IPC Primitives 98

opposed to a non-shared DRegion. This time does not include the time to

deallocate a DRegion (and physical page).

The measured total elapsed time for create-region followed immediately by

delete-region are 280 ps and 384 js on the Sun 3/75 and GP1000, respectively

(the sum of the component times from Table 5.5 are 281 ts and 377Its).

5.6.3 SRR Transactions

Because an SRR transaction is the only way processes can synchronise their execu-

tion its performance is important for applications where IPC is used frequently.

The component times for an SRR transaction grouped by function are presented

in Table 5.6. The Sun 3/75 and local GP1000 measurements provide information

about elapsed time and processor utilisation. The remote GP1000 measurements

provide information about processor utilisation but not about elapsed time because

parallelism is not taken into account. This explains the 55 is difference between the

total of the component times and the measured total elapsed time from Table 5.1.

The following component time categories have not been explained previously.

Context Switches: Time to perform context switches.

Data Transfer: Time to copy messages including mapping process segments into

kernel-data area.

Priority Scheduling: Time to block and schedule processes.

Circumstances: Time to determine the circumstances of the operations (Is re-

ceiver local or remote? Is receiver blocked waiting for messages? etc.).

House Keeping: Time to record information needed to handle potential process

termination and communication failures.

Miscellaneous: Time to cache values in registers and set return values.

8Processes could perform a busy wait on a shared variable value; however, this technique is
inefficient and an atomic test-and-set instruction is not provided for distributed shared memory.

Chapter 5: Performance of the Regions IPC Primitives 99

SRR Transaction Functional Component Times (as)

Category Sun 3/75 GP1000
local remote

A Context Switches 76 26.4% 112 28.6% 228 25.1%
B System Calls 75 26.0% 104 26.6% 104 11.5%
C Data Transfer 58 20.1% 83 21.2% 110 12.1%
D Confirm Arguments 26 9.0% 28 7.2% 115 12.7%
E Priority Scheduling 15 5.2% 18 4.6% 13 1.4%
F Interrupt Control 10 3.5% 10 2.6% 11 1.2%
G Circumstances 10 3.5% 10 2.6% 12 1.3%
H House Keeping 10 3.5% 10 2.6% 35 3.9%
I Miscellaneous 6 2.1% 8 2.0% 40 4.4%
J DRegion Checks 2 0.7% 8 2.0% 19 2.1%
K Packet Delivery . . 208 23.0%
L Page Alignment . . 11 1.2%

Component Total 288 100% 391 100% 906 99.9%

Measured Total 288 398 851

Table 5.6: send-receive-reply component times grouped by function.

DRegion Checks: Time to check whether a DRegion is being passed with the

message (a feature to pass a DRegion with a message was included in the

implementation but not in the Regions model).

Packet Delivery: Time to deliver a packet to a kernel executing on another node

(parallelism is ignored).

Page Alignment: Time to check if messages cross page boundaries.

The remote GP1000 Context Switèh time includes the time to return from the

internode interrupt.

The remote GP1000 Confirm Arguments time includes MMU operations to con-

vert process addresses to physical addresses.

The components of local and remote SRR transactions are presented in the or-

der they are executed in Tables 5.7 and 5.8. The elapsed time and category from

Chapter 5: Performance of the Regions IPC Primitives 100

Table 5.6 is specified for each component. Components from the Miscellaneous,

DRegion Checks, and Page Alignment categories are not included to simplify the

presentation. The concurrency of the remote SRR transaction is illustrated.

Local communication is faster than remote communication on the GP1000 be-

cause:

• data must be copied across the Butterfly switch,

• remote processors must be interrupted,

• the atomic test-and-set operations used to synchronise access to kernel request

queues are slow, and

• process addresses must be converted to physical addresses.

Chapter 5: Performance of the Regions IPC Primitives 101

Local SRR Transaction Sequential Component Times (as)

Category
Component

and Time

Sender Receiver

3/75 GP1000

B 28

C
3

C

-

t.

C
)

i
-
i

t

w

C

C
)

send system call (blocked waiting for
D 12 confirm arguments send)

F 2. disable interrupts

II 6 save arguments

G 3 if (receiver local)

G 3 if (receiver waiting)

H 2 attach to receiver

C 29 transfer message
E 1 block sender
E 3 if (receiver top pri)

A 38 switch to receiver

F 2 enable interrupts

B 27 reply system call

D 3 confirm arguments

F 2 disable interrupts

G 3 if (sender local)

D 7 find & detach sender

C 29 transfer message

7 schedule sender

F 1 enable interrupts

B 20 receive system call

D 4 confirm argument
F 2 disable interrupts

G 1 if (no messages)

H 2 save argument

E 1 block receiver
E 3 if (sender top pri)

A 38 switch to sender
F 1 enable interrupts

B 28 36 send system call

Table 5.7: Local send-receive-reply component times in execution order.

Chapter 5: Performance of the Regions IPC Primitives 102

Remote GP1000 SRR Transaction Sequential Component Times (is)

Component
Category
and Time

Sender Component
Category
and Time

Receiver

B 36 send system call . (blocked waiting for
D 39 confirm arguments . send)
F 1 disable interrupts . (another process
H 8 save arguments . executes)
G 3 if (receiver remote)
K 2 initialise packet
K 73 deliver packet receive packet
K 39 complete packet D 20 confirm arguments
E 1 block sender G 3 if (receiver waiting)

• (another process H 8 attach to receiver
• executes) K 5 wait for packet
• C 46 transfer message
• E 5 schedule receiver
• A 114 switch to receiver
• F 2 enable interrupts
• B 37 reply system call
• D 39 confirm arguments
• F 2 disable interrupts
• a 4 if (sender remote)
• D 7 find & detach sender
• K 13 reinitialise packet
• receive packet K 71 deliver packet

D 7 confirm arguments C 64 transfer message
H 17 detach receiver K 3 complete packet
K 2 wait for packet F 2 enable interrupts
E 6 schedule sender B 31 receive system call
A 114 switch to sender D 3 confirm argument
F 2 enable interrupts F 2 disable interrupts

• G 2 if (no messages)
• H 2 save argument
• E 1 block receiver

B 36 send system call

Table 5.8: Remote GP1000 send-receive-reply component times in execution order.

Chapter 5: Performance of the Regions IPC Primitives 103

5.7 Lessons Learned

Several lessons were learned while achieving an efficient implementation.

Keep it simple.

The performance of an earlier version of the implementation was significantly

improved by rewriting the implementation to use simple special purpose procedures

and macros rather than more complex general purpose procedures and macros.

Actually measure elapsed time of components.

Attempts to improve performance based on hypothetical explanations can actu-

ally degrade performance.

For example, it was assumed that copying 64 byte messages was expensive. There-

fore, the kernel design allows messages to be copied directly from one context to

another by mapping a context into the kernel-data area. However, measurements

showed that mapping an entire context was significantly more expensive than copying

64 bytes. Fortunately, only a single segment is required under most circumstances.

Careful coding (using the macro and in-line features described below) resulted in

elapsed times less than the alternative method of copying the data twice. However,

if messages cross segment boundaries (or if messages were shorter) then copying twice

might be more efficient.

In addition, an optimised data copying routine was used to copy messages. How-

ever, the C compiler generates faster code for copying 64 bytes.

Real time measurements also revealed that significant time was spent performing

system calls. The arguments were copied from the process stack to the kernel stack

to conform with C argument passing semantics. This time was significantly reduced'

for the send, receive, and reply primitives10 by passing a pointer to the process

'This technique can reduce the elapsed time of a system call by about 10-30 ps.
'°The technique was not applied to the other primitives due to time constraints.

Chapter 5: Performance of the Regions IPC Primitives 104

stack in a register.

The elapsed time of a procedure call and argument passing on the MC68020 is

significant". Procedures are useful for modularising code, reducing coding effort and

reducing object code size; however, implementing very simple operations significantly

increases the total elapsed time.

Use the features of the compiler to achieve efficiency.

The C language allows requests to bind variables to registers but does not specify

how the compiler should do this. Inspection of assembler instructions produced by

the C compiler (-S option) revealed that the order of declaration is used for register

allocation. Reducing the number of variables and carefully allocating registers to

variables resulted in significant performance improvements.

The C compiler provides macro and in-line expansion features to avoid proce-

dure call overhead. Macro calls were used to make the code more readable without

incurring procedure call overhead. Assembly instructions are required for interrupt

control and Sun 3 MMU operations. The in-line feature was used to invoke those

operations without incurring procedure call overhead".

5.8 Comparisons With Related Systems

It may not be appropriate to compare the elapsed time performance of primitives

from different models because the objectives of the design and implementation of the

models are not necessarily the same. In addition, the models are often implemented

on different hardware with different characteristics.

However, some related work is mentioned to emphasise the efficiency of this

implementation.

"Newer processors, like the SPARC, reduce this time with the register window feature.
12The asm() feature for specifying assembly code directly in the C source code disabled compiler

optimisation.

Chapter 5: Performance of the Regions IPC Primitives 105

Bershad, et. al. demonstrated efficient remote procedure call between contexts on

the same machine (LRPC) [Bershad 89]. They measured elapsed times for null-RPC

between contexts on a DEC SRC Firefly multiprocessor [Thacker 88]. The elapsed

time for a single processor to perform a null-RPC was 157 ps. The elapsed time

to perform a null-RPC to another processor waiting for the call was 125 Its. They

compared these times with the elapsed times of operations from other well known

systems that claim to provide efficient implementations. Their times are significantly

lower than times for similar systems13.

An SRR transaction is similar to a null-RPC but there is an additional system

call and two messages are copied. The elapsed time of a local SRR transaction

on a Sun 3/75 for the current implementation is 288 its. This time is reduced to

288 - (20 + 58) = 210 ps14 if the additional system call and data transfers

are removed. The Firefly's C-Vax processor is faster than the Sun 3/75's 16.7 MHz

68020; therefore, this implementation of send-receive-reply provides elapsed times

that are very close to the lowest times reported in the literature.

Abrossimov, et. al. analysed the elapsed time of deferred copying for large mem-

ory objects (DRegions) in the Chorus distributed system [Abrossimov 89]. The

elapsed time for passing a one page memory object with deferred copying between

processes executing on a Sun 3/6015 was 400 ps and 2700 ps for Chorus and Mach,

respectively. If a write operation is invoked on the memory object then the total

time is 2100 ps and 4820 ps for Chorus and Mach, respectively. These times are

for passing large memory objects. Abrossimov, et. al. mentioned that they will be

improving the efficiency of deferred copying for shorter (maximum 8 pages?) mes-

'3The implementors of the other systems probably did not concentrate on the elapsed time of
local operations.

14 These costs can be reduced in special cases by combining reply and receive into a single
primitive and by passing data in processor registers [Cheriton 84].
'5A Sun 3/75 is about 1.2 to 1.3 times slower than a Sun 3/60 because of the 60's higher clock

frequency (20 MHz) and lower'memory cycle time (250 ns).

Chapter 5: Performance of the Regions IPC Primitives 106

sages. This work should be directly comparable with the current implementation of

the Regions IPC model.

It is interesting to note that the Chorus implementors emphasised efficiency;

however, they failed to eliminate a significant cost. Their implementation takes

1400 ps to copy an 8K byte page. However, measurements on a Sun 3/60 using a

copy routine that takes advantage of the 68020 instruction cache indicate that an

8K byte page can be copied in 985 ps. Therefore their times could be reduced by

20-30%.

Tzou and Anderson took advantage of MMU hardware to reduce the elapsed time

of passing data between separate contexts in the DASH distributed system [Tzou 88].

The elapsed time for passing an 8K byte page on a Sun 3/5016 was 1194 p5.

Experiments were not performed to demonstrate the usefulness of the DYNAMIC-

SHARE mode or the deferred copying implementation technique because of time con-

straints. Deferred copying has been evaluated for UNIX fork operations [Smith 88].

5.9 Summary

An analysis of the elapsed time performance of implementations of the Regions IPC

primitives on a Sun 3/75 workstation and a Butterfly multiprocessor has been pre-

sented. The elapsed time measurements demonstrate that the Regions primitives

save significant time by avoiding unnecessary copying if more than 1024 bytes of

data are passed. If data must be copied then the Regions primitives are less efficient

than a primitive that copies the data by a fixed overhead. This overhead can be

significantly reduced by improvements to the implementation.

The elapsed time of a local SRR Transaction is comparable with the lowest times

'6A Sun 3/50 is about 1.3 to 1.4 times slower than a Sun 3/75 bcause of the 50's lower clock
frequency (15 MHz) and slower memory cycle time (320 ns).

Chapter 5: Performance of the Regions IPC Primitives 107

reported in the literature. The elapsed times of the primitives that take advantage

of the MMU are the best among the times reported for similar systems.

Chapter 6

Conclusions

We conclude that the semantics and efficiency of data-passing IPC operations can

be significantly improved by supporting the data-passing modes. The Regions IPC

model is thus an improvement over other IPC models used in contemporary dis-

tributed systems.

Data-passing semantics are enriched by the duplicate, move and dynamic-share

modes. The mode expresses the intended access to the memory containing the passed

data. This enables efficient implementation of data-passing by avoiding unnecessary

data copying.

Regions supports separate-context and shared-memory semantics. Memory-access

interference is controlled with run-time enforced contexts. Memory can be shared

between contexts when the benefits of sharing outweigh the risk of interference.

Interference is restricted to processes that have access to the shared memory. Pro-

grammers not only have control over which processes share which memory but also

the duration that each process shares the memory.

Regions demonstrates how the data-passing modes can be supported in a syn-

chronous message-passing IPC model. Other models such as asynchronous message-

passing and remote procedure call can also be enriched with these data-passing

modes.

Efficient implementation of the data-passing modes makes a data-passing IPC

model more competitive with memory-sharing IPC. models. This is because the

enriched model does not prevent processes from sharing memory. Therefore it is

possible to take advantage of shared physical memory.

108

Chapter 6: Conclusions 109

Regions IPC is an improvement over the IPC of other distributed operating sys-

tems because it is simple, it supports enriched data-passing semantics, and it can be

implemented efficiently on networks of shared memory multiprocessors. The simple

semantics and good performance of the Regions IPC operations provide a reference

to compare other IPC operations with. The possibility of implementing IPC opera-

tions (with different or more complex semantics) as library routines based on Regions

IPC operations can be considered.

Use of the Regions IPC operations requires an understanding of the client/server

concept. A server process is an object that provides an interface to client processes.

A server can provide operations which support IPC semantics that are not pro-

vided directly by the Regions IPC operations. This is demonstrated in Chapter 3

with sketches of three algorithms. The synchronous shared memory server (see Sec-

tion 3.3.3.2) demonstrates how memory sharing and synchronisation operations can

be combined.

The implementation of Regions IPC demonstrates low elapsed times for data-

passing operations that avoid unnecessary data copying. It also demonstrates that

message-passing between processes executing in separate contexts on the same ma-

chine can be significantly more efficient then previously reported'. The implementa-

tion of the Reactive Kernel on the Ametek 2010 [Seitz 88] implies that Regions can be

implemented efficiently on systems that integrate communication channel hardware

with memory management hardware.

The performance analysis identifies the real costs of an implementation of the

model. Speculation about which factors contribute to the elapsed time can lead to

misconceptions. A complete empirical performance analysis is not difficult to do and

eliminates potential misconceptions about elapsed time performance.

iRegions message-passing performance is comparable with lightweight remote procedure
call [Bershad 89].

Chapter 6: Conclusions 110

6.1 Further Work

The Regions IPC model with the data-passing modes can be an efficient basis for

supporting a variety of parallel programming approaches. The semantics required

for simple specification and efficient execution of parallel algorithms using each pro-

gramming approach must be determined.

Several other models support a shared context for a set of processes. It would

be useful to resolve whether or not Regions would benefit from supporting shared

contexts. This would involve evaluating (1) the complexity of specifying parallel

algorithms and (2) the performance of those algorithms on shared memOry multi-

processors.

Hardware support for efficient data-passing across communication channels can

be proposed based on the duplicate, move and dynamic-share data-passing mode

semantics. Integration of MMU hardware, communication channel hardware and

DMA hardware could significantly reduce the elapsed time of passing data from one

context to another across a communication channel. MMD hardware that supports

efficient context switch, translation table manipulations, and deferred copying could

significantly reduce the elapsed time of passing data from one context to another

when shared physical memory is available.

The Regions model design and implementation can be improved is several ways.

Capability based protection [Dennis 66] can be introduced to restrict which DRegions

a server process can pass to or from a client's context. The performance of the model

on uniform memory access multiprocessors and across communication channels could

be demonstrated. ARegion allocation could be integrated with data heap allocation.

Multiple page DRegion could be implemented.

References

[Abrossimov 89] Abrossimov, V., Rozier, M., Shapiro, M.,

Generic Virtual Memory Management for Operating System Kernels,

Proceedings of the Twelfth Symposium on Operating Systems Principles,

ACM, pp 123-136, December 1989.

[Accetta 86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,

Tevanian, A., Young, M.,

Mach: A New Kernel Foundation for UNIX Development,

Proceedings of the USENIX 1986 Summer Technical Conference, pp 93-112,

July 1986.

[Anderson 88] Anderson, D.P., Ferrari, D.,

The Dash Project: An Overview,

Tech. Report UCB/CSD 88/405, Computer Sc. Div., Univ. of California at

Berkeley, pp 1-21, February 1988.

[Atkinson 89] Atkinson, R., Demers, A., Hauser, C., Jacobi, C., Kessler, P.,

Weiser, M.,

Experiences Creating a Portable Cedar,

Xerox PARC Report CSL-89-8, pp 1-12, June 1989

[Bach 86] Bach, M.,

The Design of the UNIX Operating System,

Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Baron 88] Baron, R.V., Black, D., Bolosky, W., Chew, J., Draves, R.P.,

Golub, D.B., Rashid, R.F., Tevanian, A. Jr., Young, M.W.,

MACH Kernel Interface Manual,

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA,

September 1988.

[BBN 88] Inside the GP1000,

Part No. A370007G10, BBN Advanced Computers Inc., 10 Fawcett St., Cam-

bridge, MA, 02238, October 1988.

111

References 112

[Bennett 90] Bennett, J., Carter, J.B., Zwaenepoel, W.,

Munin: Distributed Shared Memory Based on Type-Specific Memory Coher-

ence,

Rice COMP TR9O-108, Rice University, pp 1-9, March 1990.

(also in Proceedings of the Second Annual SIGPLAN Symposium on the Prin-

ciples and Practice of Parallel Programming(PPOPP), SIGPLAN NOTICES,

25(3), March 1990)

[Bershad 89] Bershad, B.N., Anderson, T.E., Lazowska, E.D., Levy, H.M.,

Lightweight Remote Procedure Call,

Proceedings of the Twelfth Symposium on Operating Systems Principles, ACM,

pp 102-113, December 1989.

[Birrell 84] Birrell, A.D., Nelson, B.J.

Implementing Remote Procedure Calls,

ACM Transactions on Computer Systems, 2(1), pp 39-59, February 1984.

[Bolosky 91] Bolosky, W.J., Scott, M.L., Fitzgerald, R.P., Fowler, R.J., Cox, A.L.,

NUMA Policies and Their Relations to Memory Architecture,

ACM Operating Systems Review, Special Issue, 25, pp 212-221, April 1991.

[Cheriton 79] Cheriton, D.R., Malcolm M.A., Melen, L.S., Sager, G.R.,

Thoth, a Portable Real- Time Operating System,

Communications of the ACM, 22(2), pp. 105-115, February 1979.

[Cheriton 83] Cheriton, D.R., Zwaenepoel, W.,

The Distributed V Kernel and its Performance for Diskiess Workstations,

Proceedings of the Ninth Symposium on Operating Systems Principles, ACM,

pp 129-140, October 1983.

[Cheriton 84] Cheriton, D.R.,

An Experiment Using Registers for Fast Message-Based Interprocess Commu-

nication,

ACM Operating System Review, 18(4), pp 12-19, October 1984.

References 113

[Cheriton 86] Cheriton, D.R.,

Problem-Oriented Shared Memory: A Decentralized Approach to Distributed

System Design,

Proceedings of the 6th International Conference on Distributed Computer Sys-

tems, IEEE Computer Society, pp 190-197, May 1986.

(also ACM Operating Systems Review, 19(4), pp 26-33, October 1985.)

[Cheriton 88] Cheriton, D.R.,

The V Distributed System,

Communications of the ACM, 31(3), pp 314-333, March 1988.

[Dennis 66] Dennis, J.B., Van Horn, E.C.,

Programming Semantics for Multiprogrammed Computations,

Communications of the ACM, 9(3), pp 143-155, March 1966.

[Dijkstra 68] Dijkstra, E.W.,

The Structure of the 'THE' Multiprogramming System,

Communications of the ACM, 11(5), pp 341-346, May 1968.

[Fitzgerald 86] Fitzgerald, R., Rashid, R.F.,

The Integration of Virtual Memory Management and Interprocess Communi-

cation in Accent,

ACM Transactions on Computer Systems, 4(2), pp 147-177, May 1986.

[Hoare 74] Hoare, C.A.R.,

Monitors: An Operating System Structuring Concept,

Communications of the ACM 17(10), pp 549-557, October 1974.

[Kernighan 78] Kernighan, B.W., Ritchie, D.M.,

The C Programming Language,

Prentice-Hall, Englewood Cliffs, NJ, 1978.

[Li 86] Li, K.,

Shared Virtual Memory on Loosely Coupled Multiprocessors,

PhD Thesis, Yale, 1986.

(also Yale technical report Yale/DCS/RR-492, September 1986).

References 114

[Motorola 89a] MC68020: 32-Bit Microprocessor User's Manual Third Edition,

Motorola Inc., Prentice Hall, Englewood Cliffs, N.J., 1989.

[Motorola 89b] MC68851: Paged Memory Management Unit User's Manual Sec-

ond Edition,

Motorola Inc., Prentice Hall, Englewood Cliffs, N.J., 1989.

[Nitzberg 91] Nitzberg, B., Lo, V.,

Distributed Shared Memory: A Survey of Issues and Algorithms,

Computer, 24(8), pp 52-60, August 1991.

[Rashid 88] Rashid, Ft., Tevanian, A. Jr., Young, M., Golub, D., Baron, R.,

Black, D., Bolosky, W.J., Chew, J.,

Machine-Independent Virtual Memory Management for Paged Uniprocessor

and Multiprocessor Architectures,

IEEE Transactions on Computers, 37(8), pp 896-908, August 1988.

[Reed 79] Reed, D.P.,

Synchronization With Eventcounts and Sequencers,

Communications of the ACM, 22(2), pp 115-123, February 1979.

[Saltzer 84] Saltzer, J.H., Reed, D.P., Clark, D.D.,

End-to-end Arguments in System Design,

ACM Transactions on Computer Systems, 2(4), pp 277-288, November 1984

[Schroeder 89] Schroeder, M., Burrows, M.,

Performance of Firefly RPC,

Proceedings of the Twelfth Symposium on Operating Systems Principles, ACM,

pp 83-90, December 1989.

(also ACM Operating Systems Review, Special Issue, 23(5), pp 83-90, Decem-

ber 1989.)

References 115

[Seitz 88] Seitz, C.L., Athas, W.C., Flaig, C.M., Martin, A.J., Seizovic, J.,

Steele, C.S., Su, W.-K.,

The Architecture and Programming of the Ametek Series 2010 Multicomputer,

Proc. Third Conf. on Hypercube Concurrent Computers and Applications, 1,

pp 33-36, 1988.

[Seitz 90] Seitz, C.L., Multicomputers, pg 131-200 in Hoare, C.A.R.,

Developments in Concurrency and Communication,

Addison-Wesley, Reading, Mass, 1990.

[Smith 88] Smith, J.M., Maguire, G.Q. Jr.,

Effects of Copy-On- Write Memory Management on the Response Time of UNIX

Fork Operations,

Computing Systems (The Journal of the USENIX Association), 1(3), pp 255-

278, Summer 1988.

[Spector 82] Spector, A.Z.,

Performing Remote Operations Efficiently on a Local Computer Network,

Communications of the ACM 25(4), pp 246-260, April 1982.

[Stroustrup 86] Stroustrup, B.,

The C++ Programming Language,

Reading, Mass., Addison-Wesley, 1986.

[SUN3 86] Sun 9 Architecture: A Sun Technical Report,

Sun Microsystems Inc, 2550 Garcia Ave, Mountain View, CA, 94043, Revised

August 1986.

[Thacker 88] Thacker, C.P., Stewart, L.C., Satterthwaite, Jr., E.H.,

Firefly: A Multiprocessor Workstation,

IEEE Transactions on Computers, 37(8), pp 909-920, August 1988.

[Tzou 88] Tzou, S.-Y., Anderson, D.P.,

A Performance Evaluation of the DASH Message-Passing System,

Tech. Report UCB/CSD 88/452, Computer Sc Div., Univ. of California at

Berkeley, pp 1-16, October 1988.

References 116

[Vasudevan 87] Vasudevan, R.,

Network Transparency in Multiprocess Structuring,

PhD Thesis, Computer Science, University of Waterloo, Waterloo, Ontario,

Canada, 1987.

[Vasudevan 88] Vasudevan, It.,

A High-Performance Distributed Software Base,

Multi'88, Conference on Distributed Simulation, San Diego, February 88.

[Young 87] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J.,

Bolosky, W., Black, D., Baron, R.,

The Duality of Memory and Communications .in the Implementation of a Mul-

tiprocessor Operating System,

ACM Operating Systems Review, 21(5), pp 63-76, 1987.

• (also Proceedings of the Eleventh Symposium on Operating System Principles,

ACM, November 1987.)

