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Abstract 

Simple data-passing modes are proposed for interprocess communication (IPC) 

in distributed systems. The modes are duplicate, move and dynamic-share. IPC in-

corporating these data-passing modes can be implemented efficiently on networks of 

shared memory multiprocessors by taking advantage of memory management hard-

ware. 

The motivation for conducting this research is a desire for a data-passing IPC 

model that is competitive in terms of performance with memory-sharing IPC models. 

However, the data-passing mode approach also enriches the semantics of data-passing 

IPC because the intended access to the memory containing the passed data can be 

specified. 

The primary problem addressed by this research is how to define data-passing 

IPC operation semantics for distributed systems so that they can be implemented 

efficiently. Efficient implementation includes minimising data copying. 

A new synchronous message-passing IPC model called Regions is presented. The 

purpose of Regions is to provide IPC operations that support the duplicate, move and 

dynamic-share data-passing modes: Regions supports data-passing between separate 

processes where memory is not shared by default but where memory sharing can be 

established dynamically. 

Regions has been implemented on Sun 3 workstations and a BBN Butterfly mul-

tiprocessor. These implementations are used to measure and analyse the elapsed 

time performance of the IPC operations. 

We conclude that. the semantics and efficiency of data-passing IPC operations 

can be significantly improved by supporting the data-passing modes. 
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Chapter 1 

Introduction 

Future computer systems are likely to be networks of shared memory multiproces-

sors and uniprocessors. A problem with designing interprocess communication (IPC) 

models for these systems is how to efficiently pass data between processes. A new so-

lution based on three data-passing modes is proposed. These modes are incorporated 

in a new data-passing IPC model for distributed systems. 

In distributed systems the coupling between two processors is either tight (the 

processors share access to physical memory) or loose (the processors do not share 

access to physical memory). Tightly-coupled processors can use memory to commu-

nicate while loosely-coupled processors can only use physical communication chan-

nels to communicate. IPC models for distributed systems can hide the coupling of 

processors allowing multiprocess application programs to be specified independent 

of the underlying hardware. Two types of IPC models are discussed. 

Data-passing IPC models allow processes in separate memory-access contexts to 

communicate. A memory-access context defines a set of memory-cells that a process 

can access. There are several advantages of using separate contexts. First, processes 

are protected from memory-access interference which occurs when incorrect results 

are produced because a process accesses memory at an improper time. Second, data-

passing IPC operations can be designed which are semantically transparent with 

respect to the coupling of processors. Finally, separate contexts support modular 

structure and failure isolation. 

Shared-variable (or memory-sharing) IPC models support processes executing 

in the same context. An advantage of this approach is that data can be passed 
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Chapter .1: Introduction 2 

by reference. Another advantage is data need not be explicitly passed from one 

process to another. A process can voluntarily coordinate its access to shared mem-

ory with interprocess synchronisation operations [Dijkstra 68, Hoare 74]. However, 

memory-sharing IPC models do not provide protection froth memory-access interfer-

ence. Semantically transparent access to memory shared between processes executing 

on tightly-coupled or loosely-coupled processors has been demonstrated [Li 86]. 

The motivation for conducting this research is a desire for a data-passing IPC 

model that is competitive in terms of performance with memory-sharing IPC models 

when the communicating processes are executing on tightly-coupled processors'. 

The primary problem addressed by this research is how to define data-passing 

IPC operation semantics for distributed systems so that they can be implemented 

efficiently. Efficient implementation includes minimising data copying. 

1.1 The Goals: Enriched Efficient Data-Passing 

The goals of this research are the following. 

• Demonstrate that data-passing between processes executing in separate con-

texts can be implemented efficiently when the processes are executing on tightly-

coupled processors. 

• Develop an IPC model for distributed systems that provides simple data-

passing operations which support semantics enriched with memory access in-

formation. 

Design considerations for the IPC model are as follows. 

• It must also be possible to implement the data-passing operations efficiently 

for processes executing on loosely-coupled processors. 

'This includes the trivial case where the communicating processes are executing on the same 
processor (via time multiplexing). 
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• The IPC model must support run-time enforced separate contexts so that 

memory-access interference can be controlled. 

1.2 The Approach: Data-Passing Modes 

Simple data-passing modes are proposed that allow the implementation to avoid 

unnecessary data copying by taking advantage of memory management unit (MMU) 

hardware. The modes are duplicate, move and dynamic-share. They specify the 

access that the passing process has to the memory containing the passed data. 

Data are passed from a source context to a destination context. If separate copies 

of the data are required in the source and destination contexts, then the data are 

passed using the duplicate mode. This is analogous to photocopying a sheet of paper 

and giving it to another person. If the same copy of the data is required in the source 

and destination contexts then the data are passed using the dynamic-share mode 

(memory sharing is established at the time the data are passed). This is analogous 

to one person allowing another person to simultaneously use the same sheet of paper. 

If the data are no longer required in the source context then the data are passed using 

the move mode. There are two possibilities: the memory-cells containing the moved 

data are or are not shared. If they are not shared then move is analogous to sending 

a sheet of paper by mail. If they are shared then move is analogous to one person 

(the source) being replaced by another person (the destination) in a group of people 

who are simultaneously using the same sheet of paper. 

Data-passing operations can be enriched with these data-passing modes. Existing 

data-passing IPC models support data-passing operations that pass data by value. 

A copy of the data becomes accessible to the process executing in the destination 

context. The memory containing the original data either remains accessible to the 

process executing in the source context (the duplicate mode) or it is no longer ac-
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cessible to that process (the move mode). Existing data-passing operations can be 

enriched with the dynamic-share data-passing mode which allows data to be passed 

by binding. The memory containing the original data becomes accessible to the pro-

cess executing in the destination context. This memory either remains accessible to 

the process executing in the source context (the dynamic-share mode) or it is no 

longer accessible to that process (the move mode). 

Dynamic memory sharing between separate contexts is not novel but the dynamic-

share data-passing mode is. This mode establishes memory sharing. This memory 

sharing differs from the memory sharing provided by shared-variable IPC models 

because the processes are executing in separate contexts. It is possible (see Sec-

tion 3.2.3.1) to configure separate contexts so that references can be passed between 

processes that share memory (the shared data can be passed by reference). Once 

data has been passed with the dynamic-share mode then explicit data-passing is no 

longer required because the processes share access to the memory containing the 

data. 

The dynamic-share mode is useful for allowing two or more (possibly unrelated) 

processes to concurrently access specific memory. For example, the dynamic-share 

mode can be used to pass processes access to the data structures that are used to 

update a display screen (rather than passing data with the duplicate or move mode to 

a process that updates the screen on their behalf). Each process is trusted to update 

its part of the screen without interfering with other parts of the screen. The screen 

can be updated concurrently without the overhead of data-passing IPC operations 

because memory sharing has been established. However, a process can modify part of 

the screen that is not allocated to that process. Applications programmers have the 

choice to prevent memory-access interference by not using the dynamic-share data-

passing mode or to avoid explicit data-passing operations (involving the duplicate or 
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move modes) by using the dynamic-share mode once to establish memory sharing2. 

Efficient implementation of the data-passing modes requires hardware with the 

following features. 

• Process addresses can be dynamically bound to physical memory. 

• Read and write operations on memory via specific addresses can be intercepted 

and restarted by the processor. 

The first feature allows processes executing in separate contexts to share memory. 

It also allows data to be passed between processes executing on tightly coupled 

processors without copying the data. The second feature supports the enforcement 

of access semantics to memory shared between processes executing on loosely coupled 

processors. It also allows copying of data (passed with the duplicate mode) to be 

deferred until an attempt is made to modify either of the duplicates. If the duplicates 

are never modified or one of the duplicates is deleted before an attempt is made to 

modify the other duplicate then copying is avoided. 

1.2.1 Regions: An IPC Model that Incorporates the Modes 

The data-passing modes can be supported by data-passing models used for IPC such 

as asynchronous message-passing, synchronous message-passing and remote proce-

dure call [Accetta 86, Birrell 84, Cheriton 88, Seitz 88]. 

A new IPC model called Regions is presented in this thesis. Regions is based 

on synchronous message passing. The design objectives of Regions are to show 

that the data-passing modes can be supported with simple IPC operations and can 

also be implemented efficiently. Regions supports the separate-context semantics of 

'Establishing memory sharing with the dynamic-share mode as opposed to passing data with the 
duplicate or move modes should reduce elapsed time overhead when the processes are executing on 
tightly-coupled processors. However it will increase elapsed time overhead when the processes are 
executing on loosely-coupled processors and they are contending for the data stored in the shared 
memory. 
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data-passing IPC models and it supports the shared-memory semantics of memory-

sharing IPC models because it supports the dynamic-share data-passing mode. These 

semantics can be implemented efficiently on networks of multiprocessors. 

Shared-memory semantics imply that more than one process can access com-

mon (shared) memory with read and write operations. It is possible to support the 

semantics of read and write operations to shared memory with data-passing IPC op-

erations [Cheriton 86]. However, an implementation of Regions can support read and 

write operations efficiently with memory referencing processor instructions. Support 

for read and write operations on shared memory "by processes executing on loosely 

coupled processors has been previously demonstrated [Spector 82, Li 86]. 

By default, memory accessible via one context is not accessible via another con-

text. However, the dynamic-share data-passing mode can cause memory to be ac-

cessible via separate contexts. Processes cannot share contexts. 

The Regions synchronous message-passing IPC model is defined in terms of mes-

sages and DRegions. A message is a 64 byte collection of data. A DRegion is a 

variable sized collection of memory. A client process sends a request message to a 

server process and waits for a response message. The server receives the request 

message, performs the request and returns a response message. The server can pass 

DRegions to and from the client before returning the response message. 

Messages are passed by copying the data from memory accessible via one context 

to memory accessible via another context. DRegions can be passed using the dupli-

cate, move or dynamic-share data-passing mode. The choice of data-passing mode 

depends on the expected access to the memory containing the passed data. 

The implementation of the DRegion passing operations takes advantage of shared 

physical memory when it is available and it takes advantage of MMU hardware. 
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1.3 Related Work 

The use of data-passing modes is a novel approach to minimise data copying and 

thereby make IPC efficient. However the concepts and implementation techniques 

are based on ideas used in several existing systems that take advantage of MMTJ 

hardware. Alternatively, some existing IPC models avoid data-passing by allowing 

processes to share access to memory. 

1.3.1 Message-Passing Distributed Operating Systems 

Related systems that provide data-passing IPC models are now discussed. 

1.3.1.1 V System 

"The V distributed system is an operating system designed for a cluster 

of computer workstations connected by a high-performance network." 

[Cheriton 88] 

The V System is a well known distributed system that supports synchronous 

message-passing. 

Separate-context semantics are supported. Memory accessible via one context is 

not accessible via any other context. Data copying is minimised by allowing multiple 

processes (called a team of processes) to share a context. However, memory sharing 

is static. 

Data is passed between processes executing in separate contexts by copying it 

from the memory accessible via one context to the memory accessible via another 

context. There is a copy of the passed data in the source and destination context 

even when both copies are not needed and the processes are executing on tightly 

coupled processors. 

The V System IPC was not designed to take advantage of MMU hardware. The 

emphasis appears to be on efficient data-passing between processes executing on 
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loosely coupled processors [Cheriton 83]. 

1.3.1.2 Mach 

"Mach is a multiprocessor operating system kernel ..." [Accetta 86] 

"Mach is designed to support computing environments consisting of net-

works of uniprocessors and multiprocessors." [Baron 88] 

Mach supports data-passing and dynamic memory sharing between separate con-

texts. In addition, the implementation takes advantage of MMU hardware. The 

subsequent description is intended to emphasise the complexity of the IPC model. 

A Mach task is an abstraction that includes a memory-access context. Multiple 

processes (called threads) can execute in a task. By default, memory accessible via 

one task is not accessible via another task. However, memory can be accessible. via 

separate tasks that ( 1) are created from common ancestor task using the inheritance 

feature or (2) are using a external memory management server to share memory. 

Several types of IPC are supported including asynchronous message-passing, syn-

chronous message-passing, and dynamic memory sharing. IPC is defined in terms of 

memory objects, messages and ports. A memory object is a collection of memory. A 

message is a variable sized collection of data consisting of a fixed sized header and 

optional references to memory objects. A port is an object consisting of a queue of 

messages. Send and receive operations can be invoked on a port. 

Dynamic sharing of memory objects between tasks is supported with the external 

memory management feature [Young 87]. An interface consisting of 11 operations is 

defined that allows a process to manage access to and consistency of memory objects. 

It is possible for processes executing on loosely coupled processors to use this feature 

to share memory. 

Although the model is based on only five abstractions, there are many operations 

and some of the operations have several options and exceptions. 
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Data are passed by copying or duplicating. Message headers are copied from the 

memory accessible via one task to the memory accessible via another task. Memory 

objects are duplicated in the destination task. 

The implementation of multiple threads per task, shared memory objects through 

inheritance, and shared memory objects through external memory management pro-

cesses takes advantage of shared physical memory and MMU hardware. The imple-

mentation of memory object duplication and process creation by forking is based 

on the deferred data copying technique called copy-on-write. This implementation 

technique also takes advantage of MMU hardware. 

1.3.1.3 UNIX System V 

"The UNIX System V IPC package consists of three mechanisms. Mes-

sages ..., shared memory allows processes to share parts of their virtual 

address space, ..." [Bach 86] 

UNIX System V provides a simple method of dynamic memory sharing between 

separate contexts. 

A process obtains a handle to a shared memory region through a form of IPC such 

as message-passing, pipes, or inheritance. The process can use the handle to make 

the shared memory region accessible in the process's context. The implementation 

takes advantage of MMU hardware. The current implementation is restricted to a 

single machine. 

1.3.1.4 Dash 

"The DASH ... system's major design goals are centered in three ar-

eas 1) IPC performance, 2) global architecture, and 3) local architec-

ture." [Anderson 88] 

In DASH data copying is minimised by taking advantage of MMU hardware 

and one of the design goals is efficient data-passing between processes executing on 
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tightly-coupled processors. 

Separate-context semantics are supported. Data copying is minimised by allowing 

multiple processes to execute in a context called a virtual address space (VAS). The 

memory accessible via one VAS is not accessible via another VAS. 

Asynchronous and synchronous message-passing IPC are supported. IPC is de-

fined in terms of an IPC region, IPC pages, messages and message-passing objects 

(MPOs). There is an IPC region in every VAS that is intended for efficient data-

passing. An IPC page is a sub-region (virtual page) of the IPC region. A message 

consists of a header and a collection of references to IPC pages. An MPO is an object 

consisting of a queue of messages. Send and receive operations can be invoked on 

MPOs. 

The IPC operation semantics are complicated with options and restrictions that 

are intended to improve the performance of data-passing between VASs where the 

communicating processes are executing on tightly-coupled processors. 

Data are passed by copying or moving. Message headers are copied from the 

memory accessible via one VAS to the memory accessible via another VAS. IPC 

pages are moved from the source VAS to the destination VAS. 

The implementation of multiple processes per VAS takes advantage of shared 

physical memory. It is not possible for processes executing in separate VASs to 

share access to memory. The implementation of passing IPC pages by moving takes 

advantage of MMTJ hardware. 

1.3.1:5 Reactive Kernel 

"The Reactive Kernel (RK), a new node operating system for medium-

grain multicomputers, ..." [Seitz 90] 

The RK implementation on the Ametek 2010 [Seitz 88] takes advantage of MMU 

hardware to minimise data copying. 
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Separate-context semantics are supported. Memory accessible via one context is 

not accessible via any other context. Processes do not share contexts. 

IPC is based on asynchronous message-passing. A message is a dynamically 

allocated collection of data. If a process sends a message then that message is 

deallocated from that process's context and the process continues executing. When 

a process receives a message then the message is allocated in that process's context. 

There are two receive operations: one causes the process to wait until a message 

arrives while the other returns immediately allowing the process to continue if there 

are no messages. Sending a message is lik6 deallocating a message and receiving a 

message is like allocating a. previously initialised message. 

Messages are passed by moving the message from the source context to the des-

tination context. If the source process needs a copy of the message it must copy the 

message before sending it. 

The implementation does not take advantage shared physical memory. However, 

messages are allocated on page boundaries so that they can be allocated in the 

destination context without copying. On the Ametek 2010, it is faster to send a 

message from one node to another over the communications channel than it is to 

have the processor copy the message from one location to another in memory. 

1.3.2 Shared-Variable Distributed Operating Systems 

Related systems that provide memory-sharing IPC models are now discussed. 

1.3.2.1 Cedar 

"Cedar is a large project concerned with developing a programming envi-

ronment that is powerful and convenient for the building of experimental 

programs and systems." [Birrell 84] 
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Cedar data-passing operations can be enriched with the data-passing modes and 

Cedar provides an alternative method of memory access control. 

Separate-context semantics are supported where memory accessible via one con-

text is not accessible via any other context. All processes executing on a ma-

chine normally share a context (although theoretically, multiple versions of portable 

Cedar [Atkinson 89] should be able to run on top of UNIX on a single machine). 

Memory access control between separate processes executing in the same context is 

supported by run time enforced data typing. All processes are written in a strongly 

typed language (that is also called Cedar). 

A remote procedure call (RPC) feature is provided that allows a process executing 

in one context to execute a procedure in another context. RPC is not a method of IPC 

but it can be used to allow processes executing in separate contexts to communicate. 

Data (RPC arguments and return values) are passed by copying the data from 

memory accessible via one context to memory accessible via another context. 

The RPC implementation does not take advantage of physically shared memory 

or MMU hardware. Birrell and Nelson discarded the possibility of emulating shared 

memory between loosely-coupled processors when they implemented RPC for Cedar 

because they were not willing to undertake the research. 

1.3.2.2 IVY and Similar Systems 

"IVY is a shared virtual memory system developed for experimental pur-

poses." [Li 86] 

IVY is the result of research into emulating shared memory between loosely-

coupled processors. 

A single context is supported across a network of workstations. Processes exe-

cuting on the same or separate workstations share access to common memory. 
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Data-passing IPC is not required because the all processes statically share mem-

ory. Eventcounts [Reed 79] are supported for interprocess synchronisation. A method 

of memory access control between separate processes is not provided. 

The implementation takes advantage of MMU hardware to ensure that a process 

reads the data most recently written to a virtual memory-cell. 

IVY demonstrated that shared memory semantics can be supported efficiently 

across a communication channel. Impressive improvements in the performance of 

parallel algorithms were demonstrated by increasing the number of workstations 

that processes execute on. However part of the improvement was due to a reduction 

in disk activity involving swapping pages of memory. 

The performance of parallel algorithms that do contend for shared data can be 

improved by dynamically changing the implementation technique used to share data. 

This was demonstrated on systems where the access time to separate memories is 

not uniform  [Bolosky 91]. 

"Munin is a system that allows programs written for shared memory 

multiprocessors to be executed efficiently on distributed memory ma-

chines." [Bennett 90] 

The Munin system attempts to further improve performance by statically assign-

ing a shared type to each shared variable. The sharing type is a hint that Munin 

uses when deciding how to share the variable across a communication channel. 

1.4 Contributions 

The elapsed time of a data-passing IPC operation is a measure of implementation 

efficiency. Low elapsed times are achieved for data-passing between processes exe-

cuting in separate contexts on tightly-coupled processors. The elapsed times for the 

3Such systems are commonly called NUMA (non-uniform memory access) architectures. 
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Regions IPC operations that take advantage of MMU hardware are lower than times 

reported for similar systems. The synchronous message-passing times are compara-

ble with the best times reported for similar data-passing operations [Bershad 89] and 

they are better than the times reported for other message-passing systems. 

A simple way of providing dynamic memory sharing and data-passing between 

separate contexts with a single operation is presented. This approach is simpler than 

hybrid approaches provided by other systems where separate operations are required 

for dynamic memory sharing and data-passing. 

Data-passing modes are proposed that enrich the semantks of data-passing op-

erations by allowing the intended use of the passed data to be specified. The data-

passing operations can be implemented efficiently because the enriched semantics 

specify when separate copies of the data are required. 

15 Overview 

The data-passing modes and related concepts are explained in Chapter 2. 

In Chapter 3 the Regions IPC model is explained. IPC operations that support 

the dynamic-share, move and duplicate data-passing modes are explained. 

In Chapter 4 an implementation of the Regions IPC primitives is described us-

ing an object-based paradigm. Implementations on Sun 3 workstations and BBN 

Butterfly multiprocessors are discussed. 

The elapsed time performance of the Regions IPC primitives on a Sun 3/75 and 

GP1000 Butterfly is presented and analysed in Chapter 5. 

Conclusions and further work are presented in Chapter 6. 
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Data-Passing Modes 

A data passing mode is a way of passing data from a source container to a destination 

container. 

Because the modes are not restricted to data-passing alone a more generalised 

definition is presented. This definition is used to define three data-passing modes: 

dynamic-share, move, and duplicate. The copy data passing mode is also defined 

and it is distinguished from the duplicate data passing mode. Practical issues of 

specifying the data to be passed and passing groups of data are discussed because 

they are relevant to IPC performance. 

2.1 Dynamic-Share, Move and Duplicate Passing Mode 

Definitions 

The following notation is used to define the dynamic-share, move and duplicate. 

passing modes. A and B are containers. A contains the entity E. 

Dynamic-share causes E to be in B. E is shared in A and B. 

Move causes E to be in B and not be in A. E is moved from A to B. 

Duplicate causes a newly created entity E' to be in B where the only difference 

between E and E' is that they are separate entities. E is duplicated in B. 

15 
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Figure 2.1: Passing modes: entity not shared. 

An example of each passing mode is shown in Figure 2.1 where the entity is in 

only one container before passing. Figure 2.2 shows passing mode examples where 

the entity is shared in containers A and C before passing it from A to B. 
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Figure 2.2: Passing modes: entity shared. 
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2.2 Passing Modes Involving Datum-Containers 

These passing modes can be used to pass data and containers of data. This is 

explained by defining objects that are containers for data and objects that are con-

tainers for containers of data. 

2.2.1 Object Notion 

To simplify the explanation the notion of an object is used. An object has an interface 

that specifies the operations that can be invoked on that object. The arguments and 

return values of each operation are also specified in the interface. Every interface 

provides operations called create and delete. The create operation allocates and 

initialises an instance of an object. The delete operation deallocates an instance of 

an object. 

2.2.2 Datum-Container Definition 

A datum-container is a container for a datum'. It has the following interface. 

INTERFACE datum-container { 
write(d) //Store datum d in the datum-container.// 

read() returns d //Return the datum d that is stored in the datum-container.// 

} 

2.2.3 The Datum-Container Passing Modes 

A datum-container-set is a container for datum-containers. It has the following 

interface. 

INTERFACE datum-container-set { 
insert(D) //Insert datum-container D in the datum-container-set.!! 

remove(D) //Remove datum-container D from the datum-container-set.// 

} 
'Data is the plural of datum - Webster's New Collegiate Dictionary. 
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The following notation is used to define datum-container passing modes. DS" and 

DSd are datum-container-sets. D is a datum-container that is in DS". 

Dynamic-share causes D to be in DSd (DSd—  insert (D)). D is in DS. and DSd. 

Move causes D to be in DSd and not be in DS, (DS,,—*remove(D) and 

DSd—insert(D)). D is moved from DS to DSd. 

Duplicate causes a newly created datum-container D0 to be in DSdand the datum 

in D to be copied to D0 (datum-container::create() returns D0, DSd— insert (Do), 

Do—write(D--readQ)). D is duplicated in DSd. 

The datum in a datum-container is passed along with the datum-container; there-

fore, a datum-container passing mode is also a datum-passing mode. 

2.2.4 The Copy Datum-Passing Mode 

The Copy datum-passing mode is a way of passing a datum from a source datum-

container D. to a destination datum-container Dd. The contents of D. are written 

to Dd (Dd—write(D--readQ)). This mode causes the same datum to be in two 

separate datum-containers. 

The copy datum passing mode and duplicate datum-container passing modes are 

similar. They are distinguished because of the way they can be implemented rather 

than the differences in their semantics. 

2.3 Specification of Datum-Containers With Addresses 

A datum-container must be specified when an operation is invoked on it. The tech-

nique of specifying a datum-container with an address via a context can be imple-

mented efficiently on conventional hardware. 

An address is a positive integer that is used to specify the location of a datum-

container. 
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A binding is an association between an address and a datum-container. 

The notation (A,D) is used to represent a binding that associates address A with 

datum-container D. 

2.3.1 Context Definition 

A context is a container for bindings. It has the interface: 

INTERFACE context { 
bind(A,D) //Insert binding (A,D) in the context where (A,D) is the only// 

//binding in the context that associates A with a datum-container.// 

unbind(A) //Remove every binding that associates address A with a// 

//datum-container from the context.// 

} 

Bindings can be added or removed from a context but they cannot be changed. 

There cannot be two bindings in a context where the same address is in both 

bindings. This property eliminates ambiguity about which datum-container is being 

specified. 

If the binding (A,D) is in context C then address A is bound in C and datum-

container D is bound in C. If there is no binding in context C that associates A with 

a datum-container (or D with an address) then A is unbound in C (and D is unbound 

in C). 

2.4 Passing Modes Involving Separate Contexts 

•A datum-container can be passed from a source context to a destination context 

because a context implicitly defines a datum-cbntainer-set. A context explicitly 

contains bindings; however, it implicitly defines a datum-container-set which contains 

the datum-containers that are bound in the context. 
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Contexts add a level of indirection to the data-container passing modes. 

Datum-container passing modes between separate contexts are defined using the 

following notation. C. and Cd are contexts. (A8,D) is a binding in C8. Ad is unbound 

in Cd-

Dynamic-share causes Ad to be bound to D in Cd (Cd—bind(Ad,D)). D is bound 

in C. and Cd. 

Move causes A. to be unbound in C3 and Ad to be bound to D in Cd 

(C8—unbind(A3) and Cs—*blnd(Ad,D)). D is moved from C8 to Cd by removing a 

binding from C3 and adding a binding to Cd. 

Duplicate causes Ad to be bound to a newly created datum-container D0 in 

Cd and the datum in D to be copied to D0 (datum-container:: create() returns D0, 

Cd—+bind(Ad,Do), Do—*write(D--*readQ)). D is duplicated in Cd. 

2.5 Passing Groups of Datum-Containers 

The datum-container passing concept is expanded to groups of datum-containers. 

One motivation for grouping datum-containers is that groups of datum-containers 

can be passed efficiently by modifying the MMU translation tables that implement 

contexts. 

An address-region is a continuous range of addresses. 

A data-region is an ordered set of datum-containers. 

A region-binding is a set of bindings from the addresses of an address-region to 

the datum-containers of a data-region. 

Passing a data-region DR is similar to passing a single datum-container. Before 

passing DR there is a region-binding between an address-region AR and DR in 

a source context C. and there is an unbound address-region AL1 in a destination 
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context. After passing DR, ARd is bound to DR (or a newly created data-region 

DRO if the mode is duplicate) in Cd. If the mode is move then AR is unbound in 

Cs. 

The copy datum-passing mode can also be expanded to data-regions. The con-

tents of a data-region DR are copied to another data.region DRd. DR is specified 

by the starting address of an address-region AR, that is bound to DlL in a context 

C8. DRj is specified by the starting address of an address-region AL1 that is bound 

to D1L1 in a context Cd. 

2.6 Interprocess Data-Passing 

The motivation for the data-passing modes is to help support simple efficient data-

passing between processes executing in separate contexts. 

2.6.1 Process Definition 

A process is a logical sequence of actions that can execute concurrently with other 

processes. 

Invocation of an operation on an object is an action. 

The lifetime of a process is the duration from the time the first action starts until 

the time the last action completes. 

2.6.2 Relationship Between Processes and Contexts 

A process  uses only one context during its lifetime. It uses the context to specify 

datum-containers with addresses. 

2Thread or thread of execution can be defined as a sequence of actions that is not restricted to 
a single context. 
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The interface of a context is extended with write and read so that a process can 

access a datum-container via a context. 

INTERFACE context { 
bind(A,D) 

unbind(A) 

write(A,d) //Store datum d in the datum-container bound to A in the context.!/ 

read(A) returns d //Return the datum d that is stored in the// 

//datum-container bound io kin the context.!! 

} 

A process can access (write and read) only the datum-containers that are bound 

in its context. The datum-container passing modes change the datum-containers a 

process can access. 

2.6.3 Datum-Containers Shared by Processes 

Passing a datum-container D from context C to context Cd using the dynamic-

share mode causes the processes that use C. and Cd to shareaccess to D. A datum 

written to D by a sharing process will be returned to any sharing process that invokes 

C—+read(A) (where address A is bound to D in context C). The sharing processes 

can concurrently invoke operations on the shared datum-container. 

If data in shared datum-containers have properties that must be violated while 

updating the data then a process can read data that are not consistent with the 

intended properties. Therefore, a method of ordering write and read operations on 

shared datum-containers containing such data is required. 

Ordering of operations is required when shared datum-containers contain data 

which can be in a state that is not consistent with the intended properties of the 

data. Synchronisation operations can be used to order accesses to shared datum-

containers. 
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More than one process can use a context. A context is shared while it is used 

concurrently by more than one process. The processes that share a context share 

access to the datum-containers bound in the shared context. 

2.7 Summary 

Concepts related to data passing are defined. 

The dynamic-share, move, duplicate and copy datum-passing modes are dis-

cussed. The first three modes pass a datum by passing the datum-container that 

contains the datum. 

The dynamic-share mode causes datum-containers to be shared between separate 

contexts. 

There are IPC models that provide data-passing operations which support the 

duplicate [Accetta 86] or move [Seitz 88] modes and non data-passing operations 

which establish dynamic memory sharing [Accetta 86, Bach 86]. In this chapter 

the duplicate, move and dynamic-share modes are presented as variations of datum-

container passing modes. 
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Regions IPC Model 

The Regions IPC model is motivated by the need for simple efficient data-passing. 

The purpose of the Regions IPC model is to demonstrate how IPC operations can pro-

vide the dynamic-share, move and duplicate data-passing modes. The data-passing 

operations can be implemented efficiently by taking advantage of shared physically 

memory. The operations can also be implemented efficiently across communications 

channels in a distributed system. 

Regions is based on the synchronous message-passing IPC model. Regions is a 

descendant of Thoth [Cheriton 79] via Port [Vasudevan 87] and the W. System [Va-

sudevan 88]. Other data-passing models used for IPC such as asynchronous message-

passing or remote procedure call could have been used to demonstrate operations 

that support the dynamic-share, move and duplicate data-passing modes. 

The syntax and semantics of the Regions IPC primitive operations are explained 

following a description of some basic notions. 

3.1 Basic Notions 

3.1.1 Process Identification 

A process is identified by a unique process identifier (PID) that distinguishes the 

process from all other processes in the system. 

24 
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3.1.2 Private Context 

A context is private if the context is used by only one process. In Regions every 

process has a private context. 

To recapitulate, a context is a set of bindings. A binding is an association between 

an address and a datum-container. 

Two types of bindings are now defined. 

3.1.2.1 Permanent Bindings to Private Datum-Containers 

A permanent binding has the following properties. 

1. It is inserted into a context when the context is created and it is never removed. 

2. It binds a datum-container D to an address where D is not bound to any other 

address in any other context. D is a private datum-container. 

3.1.2.2 Dynamic Bindings to Sharable DRegions 

In contrast a dynamic binding has the following properties. 

1. It can be inserted into and removed from a context. 

2. It binds a group of datum-containers DR to a range of addresses where DR 

can also be bound to other ranges of addresses. DR is a sharable group of 

datum-containers. 

The dynamic binding definition is based on DRegions and ARegions. 

A DRegion is a fixed sized ordered set of datum-containers where a datum-

container cannot be part of more than one DRegion. The size of a DRegion is 

fixed when it is created and the maximum size is set by the system. 

An A Region is a continuous range of addresses where an address cannot be part 

of more than one ARegion within a context. 

A dynamic binding 
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• is a set of bindings in a context that associate the addresses of an ARegion 

with the datum-containers of a DRegion, and 

• is inserted or removed from a context by primitive operations. 

A DRegion exists while there is a dynamic binding to it. 

A process can invoke write and read operations on datum-containers bound 

in its context. This includes the datum-containers in shared DRegions. Datum-

containers have strictly consistent semantics [Nitzberg 91]; read returns the most 

recently written datum. The moment in time that a datum is written to a datum-

container occurs during the interval between when write is invoked and when it 

completes. If an operation is invoked on a datum-container D before another oper-

ation -invoked on D completes, the results are the same as if one of the operations 

completed before the other was invoked. However, the order of the operations is 

undefined'. 

A process's context is created with all of its permanent bindings and without 

any dynamic bindings (without any shared datum-containers). The operation that 

creates a DRegion and the operations that pass a DRegion cause dynamic bindings 

to be in a context. 

3.2 IPC-Related Primitive Operations 

The synchronous message passing primitives are: 

send (receiver, request-message, response-message) returns success, 

receive (receive-message) returns sender, and 

reply(sender, reply-message). 

The DRegion passing primitives are: 

'The duration between invoking and completing an operation on a datum-container that is 
shared across a communication channel can vary by several orders of magnitude. 
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pass-region-to (sender, src-ARegion, mode) returns dst-ARegion and 

pass-region-from (sender, src-ARegion, mode) returns dst-ARegion. 

Other primitives that involve dynamic bindings to DRegions are: 

create-region(size) returns ARegion, 

delete-region(ARegion), 

rebind-region(src-ARegion, dst-ARegion) returns success, 

size-of-region(ARegion) returns size, and 

state-of-region(ARegion) returns state. 

3.2.1 Creating and Deleting Dynamic Bindings 

Because a process's context is created without any dynamic bindings, an operation 

is required to create a binding to a DRegion. A process can also delete a binding to 

a DRegion. 

3.2.1.1 The create-region Primitive 

create-region binds an ARegion to a newly created DRegion of a specified size in 

the caller's context. 

create-region(size) returns ARegion 

where 

size is the number of datum-containers(bytes) in the created DRegion, and 

ARegion is the ARegion bound to the created DRegion or an error value. 

create-region will fail if size is invalid (size<1 or MAXIMUM<size), or there is 

insufficient memory available to create a DRegion, or there are no unbound ARegions 

available in the caller's context to bind to the DRegion. If create-region fails an 

error value is returned. 
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3.2.1.2 The delete-region Primitive 

delete-region causes a specified ARegion to be unbound in the caller's context. 

delete-region(ARegion) 

where 

ARegion becomes unbound in the caller's context. 

delete-region cannot fail; if a bound ARegion is specified then it is unbound. 

3.2.2 Passing Messages and DRegions 

Processes use IPC primitives to synchronise their execution relative to each other 

and to pass messages and DRegions. 

A message is a short fixed sized data-region (64 bytes). Messages are intended 

for passing control information. 

Messages are passed using the COPY data passing mode. The data is written to 

datum-containers that the destination process already has access to. 

3.2.2.1 The send, receive and reply Primitives 

Processes communicate using send-receive-reply (SRR) transactions. Two exam-

ples of SRR transactions are shown in Figure 3.1. The process that invokes send 

is called the sender. The process that invokes receive is called the receiver. The 

receiver can invoke receive before a request message arrives from send (example 

(a)) or after request messages arrives (example (b)). 

send initiates delivery of a request message and causes the sender to wait until 

the response message arrives or a failure occurs. send returns the response message 

or an error value. 
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Figure 3.1: Two examples of SRR transactions. 



Chapter 3: Regions IPC Model 30 

receive returns the request message and the PID of the process that sent the 

message. If request messages arrive before receive is invoked then they are queued 

in the order they arrive. If no request messages have arrived when receive is invoked 

the receiver waits until a request message arrives. 

reply initiates delivery of the response message. 

The message passing primitives are: 

send (receiver, request-message, response-message) returns success 

receive (receive-message) returns sender 

reply(sender, reply-message) 

where 

receiver is the PID of the process being sent to, 

sender is the PID of the process that sent the received message, 

request-message is the message that send passes, 

receive-message is the message that receive returns, 

reply-message is the message that reply passes, 

response-message is the message that send returns, and 

success is the constant SUCCESSFUL or an error value. 

The contents of the sender's request-message are copied into the receiver's 

receive-message. The contents of the receiver's reply-message are copied into 

the sender's response-message. 

Multiple sends to the same receiver are queued and returned in first-come-first-

served (FIFO) order. A process can invoke multiple receives before invoking replys 

in response to those receives. There is no restriction on the order that a process 

invokes replys in response to receives. 
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send will fail if one of the messages is not bound to datum-containers or com-

munication with receiver is not possible'. If send fails because request-message 

or response-message is not bound to datum-containers then the caller terminates. 

If send fails because communication is not possible then an error value is returned. 

The failure semantics of send are discussed further in Section 3.2.4 

receive will fail if receive-message is not bound to datum-containers. If re-

ceive fails then the caller terminates. 

reply will fail if reply-message is not bound to datum-containers. If reply fails 

then the caller terminates. 

3.2.2.2 The pass-region-to and pass-region-from Primitives 

A process can pass DRegions to and from another process that has invoked send 

and is awaiting a response. 

pass-region-to passes a DRegion to a sender using a specified data passing 

mode. The DRegion is specified by an ARegion that is bound to it in the caller's 

context. The ARegion that is bound to the passed DRegion in the sender's context 

is returned. 

pass-region-from is similar to pass-region-to except that it passes a DRegion 

from a sender. The DRegion is specified by an ARegion that is bound to it in the 

sender's context. The ARegion that is bound to the passed DRegion in the caller's 

context is returned. 

2lnability to communicate can be due to the specified process not existing, or a machine failure, 
or a communication channel failure. 
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The primitives for passing DRegions are: 

pass-region-to (sender, src-ARegion, mode) returns dst-ARegion 

pass-region-from (sender, src-ARegion, mode) returns dst-ARegion 

where 

sender is the PID of a process awaiting a response to send, 

mode is the data passing mode used to pass the DRegion, 

src-ARegion is the source ARegion bound to a DRegion, and 

dst-ARegion is the destination ARegion that is bound to the passed DRegion. 

pass-region-to will fail if ( 1) an invalid argument is specified, (2) there are 

insufficient resources to pass the DRegion or (3) communication with sender is 

not possible. An invalid argument is a sender that is not awaiting a response, a 

src-ARegion that is not bound to a DRegion in the caller's context, or an invalid 

mode. There are insufficient resources when an unbound ARegion is not available 

in sender's context to be bound to the passed DRegion or when memory is not 

available to create a DRegion (if one must be created). If pass-region-to fails then 

an error value is returned. 

pass-region-from will fail for similar reasons. 

The failure semantics of pass-region-to and pass-region-from are discussed 

further in Section 3.2.4. 

If sender is specified as ME then the caller's context is the source and destination 

context. This is useful for creating a duplicate DRegion within a context. 

3.2.2.3 Data-Passing Modes for DRegions 

A process P8 passes a DRegion DR to a process Pd using one of the data passing 

modes: DYNAMIC-SHARE, MOVE, or DUPLICATE. DR is bound to AR in P.'s context 
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C. AR is an unbound ARegion in Pd's context Cd that can be bound to DR. 

If DR is passed using the DYNAMIC-SHARE mode then ARd becomes bound to 

DR in Cd. P5 and Pd share access to DR. 

If DR is passed using the MOVE mode then AR becomes unbound in C8 and 

AR,1 becomes bound to DR in Cd. Pd has access to DR via Alt1 and P8 does not 

have access to DR via AR. 

If DR is passed using the DUPLICATE mode then ARd is bound to a newly created 

DRegion DR0 in Cd where DR and DR0 are separate DRegions. The contents of DR 

are copied to DR0. Pd has access to DR0 via ARd and no other process has access 

to DR0. P5 retains access to DR via AR. 

3.2.3 Other Useful DRegion Related Primitives 

3.2.3.1 The rebind-region Primitive 

If a DRegion contains complex data types where pointers are implemented as absolute 

addresses then that DRegion must be bound to a specific ARegion in every context. 

create-region, pass-region-to and pass-region-from select the ARegion to bind 

to a DRegion. Therefore, an operation for changing the ARegion that is, bound to a 

DRegion is provided. 

rebind-region binds a specified destination ARegion' to the DRegion bound to 

a specified source ARegion and unbinds the source ARegion. 

3The ARegion that a DRegion must be bound to can be stored within the DRegion; When a 
DRegion is created with create-region the returned ARegion AR can be written into the DRegion. 
Then AR can be read from the DRegion and used as the destination argument to rebind. 
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rebind-region (src-ARegion, dst-ARegion) returns success 

where 

src-ARegion is the source ARegion bound to a DRegion in the caller's context, 

dst-ARegion is an unbound destination ARegion in the caller's context, and 

success is the constant SUCCESSFUL or an error value. 

rebind-region will fail and return an error value if src-ARegion is not bound 

or dst-ARegion is bound in the caller's context. 

3.2.3.2 The size-of-region Primitive 

A process can determine the size of a DRegion that is bound in its context. 

size-of-region returns the size of a DRegion bound to a specified ARegion in 

the caller's context. 

size-of-region(ARegion) returns size 

where 

ARegion is bound to a DRegion in the caller's context, and 

size is the number of datum-containers (bytes) in the DRegion. 

size-of-region will fail and return an error value if ARegion is not bound to a 

DRegion in the caller's context. 

3.2.3.3 The state-of-region Primitive 

state-of-region returns one of the four constants INVALID, UNBOUND, PRIVATE, or 

SHARED depending on the specified address. If the specified address is not the start-

ing address of a valid ARegion then INVALID is returned. If the address does specify 

an ARegion but it is unbound in the caller's context then UNBOUND is returned. If 
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the ARegion is bound to a DRegion in the caller's context and it is the only ARegion 

bound to that DRegion then PRIVATE is returned. If there are other ARegions bound 

to that DRegion then SHARED is returned. 

state-of-region(ARegion) returns state 

where 

ARegion is any address (but is usually an ARegion), and 

state is the state of the ARegion: INVALID, UNBOUND, PRIVATE, or SHARED, 

state-of-region cannot fail. 

If state-of-region returns SHARED then there was (and still might be) more than 

one binding to the DRegion. A communication failure can prevent the system from 

detecting that the number of bindings to a DRegion has been increased from one or 

reduced to one. 

3.2.3.4 ARegion State Changes 

The ARegion state changes caused by create-region and delete-region are pre-

sented in Table 3.1. 

Primitive State Change 

create-region 
delete-region 

UNBOUND - PRIVATE 

PRIVATE0rSHARED - UNBOUND 

Table 3.1: ARegion state changes caused by create-region and delete-region. 

The ARegion state changes caused by pass-region-to or pass-region-from are 

presented in Table 3.2. 

Invoking delete-region on a ARegion that is bound to a shared DRegion can 

cause the state of another ARegion bound to that DRegion to change. These asyn-

chronous state changes is presented are Table 3.3. 
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Data Passing Mode Source State Destination 
Change State Change 

DYNAMIC-SHARE PRIVATE -+ SHARED 

SHARED - SHARED 

UNBOUND - p SHARED 

UNBOUND - SHARED 

MOVE PRIVATE - UNBOUND 

SHARED - UNBOUND 

UNBOUND - p PRIVATE 

UNBOUND -+ SHARED 

DUPLICATE PRIVATE -* PRIVATE 

SHARED - SHARED 

UNBOUND -+ PRIVATE 

UNBOUND -+ PRIVATE 

Table 3.2: ARegion state changes caused by passing DRegions. 

Primitive 
State of Other ARegions 
Bound to the DRegion Note 

delete-region SHARED - p SHARED 

SHARED - PRIVATE 

(1) 
(2) 

Table 3.3: ARegion state changes caused asynchronously by delete-region. 

Note ( 1): If delete-region is invoked on an ARegion that is bound to a DRegion 

DR where there are two or more other bindings to DR then that ARegion's state 

changes from SHARED to UNBOUND and the state of the other ARegions bound to 

DR do not change. 

Note (2): If delete-region is invoked on an ARegion bound to a DRegion that 

has only one other ARegion bound to it then the state of the other ARegion asyn-

chronously changes from SHARED to PRIVATE. 

When a process terminates, all of the bindings are deleted. Therefore, process 

termination can cause ARegion state changes asynchronously. 

3.2.4 Failure Semantics of the Regions Primitives 

The failure semantics of the primitive operations defined in the previous section are 

now discussed in greater detail. 

The operations are intended to be implemented on distributed systems where 

communication failures can prevent an operation from determining whether or not a 
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result occurred. The ability to recover from communication failures is an important 

characteristic of an IPC model for distributed systems'. Justification is presented for 

operations that initiate a request without waiting for confirmation and operations 

that cause a process to terminate rather than returning an error value. 

3.2.4.1 Exactly-Once and At-Most-Once Semantics 

The Regions primitives have one of the following two types of semantics. 

An operation with exactly-once semantics has the following properties. If the 

operation completes successfully then all the results were 'produced exactly once. If 

the operation does not complete successfully then an error value can be returned 

indicating which results were produced exactly once and which results were not 

produced. 

An operation with at-most-once semantics has the following properties. If the 

operation completes successfully then all the results were produced exactly once. 

If the operation does not complete successfully then an error value can be returned 

indicating which results were produced exactly once, which results were not produced 

and which results were either produced once or not produced. 

Operations that use a communication channel have at-most-once semantics if a 

communication failure  can prevent delivery of a confirmation indicating whether a 

requested result was produced or not. 

The primitives send, pass-region-to and pass-region-from have at-most-once 

semantics. All other primitives discussed in this chapter have exactly-once semantics. 

It is not possible to determine whether or not a send's request message was 

delivered unless a response arrives. The possibilities are that the request was not 

'The importance of fault recovery depends in part on the probability of failure and in part on 
the consequences of failure. 

'Control packets can be pa-c-sed periodically by the implementation to distinguish an inability 
to communicate from a delayed response. 
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received, the request was received but the receiver did not reply, or the receiver 

replied but the response did not arrive. 

It is not possible to determine whether or not a pass-region-to request caused 

an ARegion to be bound to the passed DRegion in the sender's context unless a 

response arrives. The passed DRegion is either bound or not bound in the sender's 

context. 

It is not possible to determine whether of not a pass-region-from request, where 

mode is MOVE, caused or did not cause the source ARegion to be unbound from 

the passed DRegion unless a response arrives. If mode is DUPLICATE or DYNAMIC-

SHARE then pass-region-from has exactly-once semantics because the caller can 

determine whether or not the passed DRegion is bound in the caller's context. 

An advantage of primitives that use the DYNAMIC-SHARE, MOVE and DUPLICATE 

passing modes over primitives that use COPY is that the destination process receives 

all of the data or none of the data. If data is copied it must be buffered until all the 

data has arrived and then copied to the final destination to avoid the possibility of 

partially overwriting the destination datum-containers. 

3.2.4.2 Unreliable Delivery of Requests 

There are several primitives that initiate delivery of a request and do not wait for 

confirmation that the request was completed successfully. The end-to-end argu-

ment [Saltzer 84] is used to justify these semantics. 

reply initiates delivery of a response message but does not wait for a confirma-

tion. A confirmation indicates that the response was delivered but does not indicate 

whether or not the response was acted on. Providing reliable delivery can only im-

prove efficiency. End-to-end confirmation is required to ensure that the message was 

acted on. Waiting for a confirmation would increase the elapsed time of reply. 

If MOVE is specified as the data passing mode to a pass-region primitive then the 
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source ARegion is unbound in the source context without waiting for confirmation 

that the DRegion was successfully moved. Retaining a binding to the DRegion is 

only important for fault recovery. A binding to a DRegion with the original data 

must be retained until confirmation is received that the data is no longer' needed. 

This is true regardless of the data passing mode. 

If a DRegion is shared across disjoint memories on separate machines then the 

number and source of bindings to the DRegion must be maintained, delete-region 

reduces the number of bindings to a DRegion. The pass-region primitives increase 

the number of bindings if mode is DYNAMIC-SHARE and they change the source 

of bindings if mode is MOVE. DRegion state (number and source of bindings) is 

updated by initiating delivery of requests. The primitives do not wait for a confir-

mation; therefore, if communication fails then bindings to a DRegion can be removed, 

added or moved without updating the DRegion state. 

3.2.4.3 Failures Causing Process Termination 

If a write or read operation is invoked on an address that is not bound to a datum-

container then the process that invoked the operation is terminated. Returning an 

error value is not useful because there is no reason for a process to attempt to specify 

an address that might not be bound to a datum-container. In addition, it is inefficient 

and complex for a process to check for an error after each datum-container access. 

This is also the justification for terminating a process that invokes a send, receive 

or reply with an specified message that is not bound to datum-containers. 

If a write or read operation is invoked on an address that is bound to a DRegion 

which is shared across disjoint memories then a communication failure can cause the 

operation to fail. The process is terminated if write or read fails because of a 

611 a DRegion is not successfully passed then MOVE unbinding the DRegion is analogous to a 
process modifying data that was passed with the DUPLICATE or copy data passing mode. 
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communication failure. 

The model would be improved if, exception handling allowed a process to recover 

from a write or read failure caused by a communication failure. 

read has exactly-once semantics. Implementations that provide either exactly-

once or at-most-once semantics for write are discussed in Section 4.8 

3.3 Discussion 

3.3.1 Efficiency and Equivalence of the Data Passing Modes 

Under certain circumstances the results produced by one data passing mode can be 

produced by another data passing mode in combination with other operations. The 

equivalences between data passing modes are, explained. The three modes are sup-

ported because unnecessary data copying can be avoided when the mode appropriate 

to the intended use of the passed data is used. 

The DUPLICATE and MOVE modes can be used with DRegions that are not shared 

without introducing sharing. A server process that efficiently provides client pro-

cesses with synchronised access to a DRegion with DUPLICATE and MOVE without 

introducing sharing is explained in Section 3.3.3.2. 

If the state of src-ARegion is PRIVATE then 

pass-region-to (sender, src-ARegion, DUPLICATE) returns dst.-ARegion 

is equivalent to 

size-of-region(src-ARegion) returns size 

create-region(size) returns AR 

(Cop/ contents of src-ARegion to AR.) 

pass-region-to (sender, AR, MOVE) returns dst-ARegión. 

However, using DUPLICATE can allow the implementation to avoid unnecessary 
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data copying. 

If the caller and sender are executing on machines that share physical memory 

then DUPLICATE can be deferred until a write operation is invoked on the original 

or deferred duplicate (see Chapter 4). Therefore, if a write is not invoked before the 

binding from the original or deferred duplicate is removed then unnecessary copying 

is avoided. 

If the caller and sender are executing on machines that do not share physical 

memory then the implementation of DUPLICATE or MOVE will copy the data to the 

destination machine. Therefore, DUPLICATE avoids the extra copy before the move. 

Inversely, if the state of src-ARegion is PRIVATE then 

pass-region-to (sender, src-ARegion, MOVE) returns dst-ARegion 

is equivalent to 

pass-region-to (sender, src-ARegion, DUPLICATE) returns dst-ARegion 

delete-region(src-ARegion). 

However, MOVE is preferable to DUPLICATE even when duplicating is deferred 

because of the overhead of the delete and the deferring7. 

The DYNAMIC-SHARE mode introduces sharing. 

pass-region-to (sender, src-ARegion, MOVE) returns dst-ARegion 

is equivalent to 

pass-region-to (sender, src-ARegion, DYNAMIC-SHARE) returns dst-ARegion 

delete-region(src-ARegion). 

However, MOVE is preferable to DYNAMIC-SHARE especially when the DRegion 

is passed across a communication channel. If the passed DRegion is not shared then 

DYNAMIC-SHARE requires that sharing be established and delete causes the sharing 

7If the Regions model supported passing a DRegion with a message using send or reply then 

the destination process could write to the DRegion before the source process deleted its binding 
causing the data to be unnecessarily copied. 
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to be eliminated whereas MOVE only requires that the data be copied. If the passed 

DRegion is shared then DYNAMIC-SHARE increases the sharing and delete decreases 

the sharing whereas MOVE just changes the source of the binding. 

3.3.2 Explicit Data-Passing 

IPC models that do not allow data sharing force cooperating processes to explicitly 

pass data. This complicates the specification of parallel algorithms. In addition, 

the time required to pass the data can be a significant part of the time required to 

execute the parallel algorithm. 

Initially, processes must explicitly pass data in the Regions model. However, 

once sharing of data is established with DYNAMIC-SHARE the processes only need to 

ensure that they do not cause incorrect results by interfering with each other. This 

can simplify the specification of parallel algorithms. 

3.3.3 Synchronisation 

A method of ordering operations on shared datum-containers is required because 

the DYNAMIC-SHARE mode establishes sharing between processes. Two methods 

of ordering are explained. Both methods provide synchronisation between processes 

accessing shared DRegions. The processes can be executing anywhere in a distributed 

system. 

If data in a shared DRegion is intended to have properties that are violated when 

the data are updated then a process can read data that is not consistent with the 

intended properties. Therefore, an efficient method of ordering write and read 

operations on shared DRegions containing such data is required. Ordering is also 

required when that DRegion is duplicated or copied. 

Sketches of algorithms for two server processes are presented that illustrate how 
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processes can order their operations to ensure that inconsistent data is not read. 

3.3.3.1 Semaphore Server Example 

An algorithm that provides a semaphore [Dijkstra 68] service is presented. The 

algorithm does not use operations involving DRegions; it assumes that client pro-

cesses use the service to synchronise access to a DRegion that was passed with the 

DYNAMIC-SHARE mode. 

Clients invoke the P and V operations on semaphores as follows. 

P(SEMAPHORE-INDEX) 

Insert operation P and SEMAPHORE-INDEX into message 

send (semaphore-server, message, response-message) 

V(SEMAPHORE-INDEX) 

Insert operation v and SEMAPHORE-INDEX into message 

send (semaphore-server, message, response-message) 

Semaphore Server - Algorithm 3.1 

Initialise array of semaphores S to AVAILABLE 

Initialise array of queues for waiting processes W to EMPTY 

while(TRUE) 

receive( message) returns client 

Extract the operation op and the index i from message 

if( op is p) then 

if ( semaphore S[i] is BUSY) then 
Put client in queue W[i] 

else 

reply(dlient, <message indicating P successful>) 

Set semaphore S[i] to BUSY 

else if ( op is V ) then 
reply(client, <message indicating v successful>) 

if ( semaphore S[i] is BUSY) then 
if ( queue W[i] is EMPTY) then 

Set semaphore S[i] to AVAILABLE 
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else 

Remove next waiting-client from queue W[i] 

reply (waiting-client, <message indicating P successful>) 

Processes executing on separate machines can use this server to synchronise. 

A server can provide multiple semaphores so there does not have to be one server 

per semaphore; however, the server might serialise P and V operations to independent 

semaphores. 

P and V operations on semaphores can be implemented with hardware test-and-

set instructions in memory-sharing IPC models. Therefore, this operation would be 

more efficient in a Shared Variable model especially when processes do not have to 

wait for a busy semaphore. However, this difference in performance is only significant 

when frequent synchronisation is required. 

3.3.3.2 Synchronous Shared Memory Server Example 

The next algorithm enforces synchronised access to the contents of a private DRegion 

with the MOVE and DUPLICATE data passing modes (DYNAMIC-SHARE is not used). 

The algorithm solves the readers and writers problem and it has some interesting 

features. 

The reader and writer client processes can be executing on the same machine 

or different machines in a distributed system. If the client is executing on another 

machine then the contents of the DRegion must be copied. If the client is executing 

on the same machine then the implementation can pass the DRegion by modifying 

the MMU translation tables of the relevant contexts. 

A reader can modify its copy of the DRegion with no adverse consequences be-

cause the reader's copy is passed with the DUPLICATE data passing mode. If the 

reader is executing on another machine then it already has a separate copy of the 

DRegion. If the reader is executing on the same machine then DUPLICATE is deferred 
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and a write operation causes the DRegion to be duplicated. This is an advantage 

over systems that provide readers with read-only access to the data for two reasons. 

First, a reader does not have to explicitly copy the data if it needs to modify a private 

copy of the data. Second, writers do not have to wait for readers. 

A writer does not have to wait if readers have acquired access to the DRegion. 

The original copy of the DRegion is immediately passed to the writer that requests it 

with the MOVE data passing mode. If the writer is executing on the same machine as 

the server and a reader then the first write operation by the writer causes the data 

to be copied. Otherwise the data does not have to be copied. The algorithm can be 

modified to cause a writer to wait for readers if waiting is preferable to copying. 

Requests by readers and writers that occur while a writer has access to the data 

are queued in the order they arrive. When the writer releases the shared data then 

the server grants reader requests until the queue is empty or a writer request is 

encountered. It grants one writer request (if there was one) and waits for the writer 

to release its access. 

When a writer releases its copy of the data the server uses MOVE to obtain the 

DRegion. Therefore, a writer can release a different DRegion then it acquired. 

Readers do not have to release their access but if they do (by deleting their 

binding to the DRegion) then unnecessary copying will be avoided. 

Clients can invoke the following six operations on the server. 

create-shared-DRegion(n) 

Insert operation CREATE and size n in message. 

send (sync-memory-server, message, response) 

Extract index i of created DRegion from response. 

destroy-shared-DRegion(i) 

Insert operation DESTROY and index I in message. 

send (sync-memory-server, message, response) 
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acquire-write-DRegion(i) 

Insert operation ACQUIRE-WRITE and index i in message. 

send (sync-memory-server, message, response) 

Extract ARegion destination from response. 

release-write-DRegion(i, source) 

Insert operation RELEASE-WRITE, index i and ARegion source in message. 

send (sync-memory-server, message, response) 

acquire-read-DRegion(i) 

Insert operation ACQUIRE-READ and index i in message. 

send (sync-memory-server, message, response) 

Extract ARegion destination from response. 

release-read-DRegion (i, source) 

delete-region (source) 

Synchronous Memory Server - Algorithm 3.2 

There is an array S for shared DRegions where an entry i of S consists of 

S[i]:state - Shared state: UNDEFINED, NOT-READ-WRITE, or READ-WRITE. 

S[i]:queue - Processes waiting for access to the shared DRegion. 

S[i]:ARegion - ARegion bound to shared DRegion in the server's context. 

S[i]:writer - Process with read-write access to the shared DRegion. 

Initialise S[i]:state to UNDEFINED and S[i]:queue to EMPTY for all i 

while(TRUE) 

receive (message) returns client 

Extract the operation op from message 

if ( op is CREATE ) then create(client, message) 
else if ( op is DESTROY) then destroy(client, message) 
else if ( op is ACQUIRE-WRITE) then acquire-write (client, message) 
else if ( op is RELEASE-WRITE) then release-write (client, message) 
else if ( op is ACQUIRE-READ) then acquire-read (client, message) 

The following routine creates a sharable DRegion. 
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create(client, message) 

Extract the size n from message 

Select index i where S[i]:state is UNDEFINED and S[i]:queue is EMPTY 

create-region(n) returns S[i]:ARegion 

Set S[i]:state to NOT-READ-WRITE 

Insert i in message 

reply(client, message) 

The following routine destroys a sharable DRegion. 

destroy(client, message) 

Extract index i from message 

if ( S[i]:state is UNDEFINED) then 
reply(client, <message indicating error>) 

else 

if ( S[i]:state is NOT-READ-WRITE) then 
Set S[i]:queue to EMPTY 

delete-region(S[i] :ARegion) 

else 

Insert (client,DESTROY) in S[i]:queue 

Set S[i]:state to UNDEFINED 

reply(client, <message indicating destroy successful>) 

The following routine handles write requests. 

acquire-write (client, message) 

Extract index i from message 

if ( S[i]:state is UNDEFINED) then 
reply(client,<message indicating error>) 

else if ( S[i]:state is READ-WRITE ) then 
Insert (client ,READ-WRITE) in S[i]:queue 

else 

pass-region-to-writer (client, S [i]) 

The following routine handles a release by a writer. 
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release-write (client, message) 

Extract index i and source address source from message 

if ( S[i]:state is not READ-WRITE) or (S[i]:writer is not client ) then 
reply (client, <message indicating error>) 

else 

pass-region-from (client, source, MOVE) returns S [i] :ARegion 

state-of-region (S [i] :ARegion) returns state 

if ( state is SHARED) then eliminate-sharing(S[i]) 
reply (client, <message indicating released>) 

Set readers? to TRUE 

while ( readers? and S[i]:queue is not EMPTY) 

Remove next (waiting-client, request) from S[i]:queue 

if ( request is READ-ONLY) then 
pass- region-to-reader (waiting-client, S [i]) 

else 

Set readers? to FALSE 

if ( request is READ-WRITE) then 
pass-region-to-writer (waiting-client, S [i]) 

else <request is DESTROY> 

Set S[i]:queue to EMPTY 

delete-region(S[i]:ARegion) 

if ( S[i]:queue is EMPTY) then 
Set S[i]:state  to NOT-READ-WRITE 

The following routine handles read requests. 

acquire-read (client, message) 

Extract index i from message 

if ( S[i]:state is UNDEFINED) then 
reply (client, <message indicating error>) 

else if ( S[i]:state is READ-WRITE) then 
Insert (client,READ-ONLY) in S [1] :queue 

else 

pass-region-to-reader (client, S[i]) 

The following three routines are used by the preceding routines. 
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The first routine passes a shared DRegion to a writer. 

pass-region-to-writer (client, S) 

pass-region-to (client, S :ARegion, MOVE) returns destination 

Insert destination in message 

reply(client, message) 

Set S:state to READ-WRITE 

Set S:writer to client 

The second routine passes a shared DRegion to a reader. 

pass-region-to-reader (client, S) 

pass-region-to (client, S :ARegion, DUPLICATE) returns destination 

Insert destination in message 

reply(client, message) 

If a writer releases a DRegion that is shared then the third routine eliminates the 

sharing by duplicating the DRegion. 

eliminate-sharing(S) 

pass-region-to(ME, S:Aflegion, DUPLICATE) returns destination 

delete-region(S:ARegion) 

Set S:ARegion to destination 

3.3.3.3 Region's Servers and Monitors 

Server processes in the Regions model are more similar to monitors [Hoare 74] than 

servers in other models like the V System [Cheriton 88]. A client can use the MOVE 

or DYNAMIC-SHARE modes to efficiently share state information with a server. 

3.3.4 Asynchronous Binding to DRegion Example 

Other IPC models [Accetta 86, Bach 86] provide dynamic sharing with asynchronous 

operations. A process must obtain an identifier for a shared memory region. Then 

it can create a binding to that shared memory without interacting with another 

process. The shared memory continues to exist even if there are no bindings to it. 
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An algorithm is sketched for a server that provides similar semantics to the UNIX 

System V shared memory feature. However, this server also provides the service to 

processes executing on any machine in a distributed system. 

A client can invoke the following operations on the server. 

register(key, size) 

Insert operation REGISTER, key and size in message 

send (DRegion-binding-server, message, response) 

Extract index i from response 

destroy(i) 

Insert operation DESTROY and index i in message 

send (DRegion-binding-server, message, response) 

bind(i, ARegion) 

Insert operation BIND, index i and address ARegion in message 

send (DRegion-binding-server, message, response) 

unbind (ARegion) 

delete-region(ARegion) 

The UNIX System V shared memory operations are similar to and correlate with 

the preceding four operations as follows: 

register is similar shmget(key, size, flags), 

destroy is similar shmctl(i, cmd, &buf), 

bind is similar shmat(i, address, flags), and 

unbind is similar shmdt(address). 

DRegion Binding Server - Algorithm 3.3 

There is an array S of shared DRegions where an entry i of S consists of 

S[i]:státe - Shared DRegion state: UNDEFINED or DEFINED. 

S[i]:key - the key that processes use when interacting with the server. 

S[i]:registered - List of processes registered to the shared DRegion. 
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S[i]:size - Size of the shared DRegion. 

S[i]:ARegion - ARegion bound to the DRegion in the server's context. 

S[i]:must-create - TRUE if the DRegion has not been created. 

Initialise S[i]:state to UNDEFINED for all i 

while(TRUE) 

receive (message) returns client 

Extract operation op from message 

if ( op is REGISTER) then register (client, message) 
else if ( op is DESTROY) then destroy(client, message) 
else if ( op is BIND ) then bind(client, message) 

The current version of the Regions model cannot provide read-only access to a 

DRegion that can be modified by another process 8. 

The following routine registers a process so it can bind to a shared DRegion. 

register(client, message) 

Extract key from message 

Find index i where S[i]:key is key 

if ( key is not found in S ) then 
Select index i where S[i]:state is UNDEFINED 

Set S[i]:state to DEFINED, S[i]:key to key, S[i]:create to TRUE 

Extract size from message and set S[i]:size to size 

Register client by adding it to S[i]:registered 

reply(client, <message containing i>) 

The following routine destroys a shared DRegion so that no other process can 

attach to it; however, processes with bindings to the DRegion can continue to access 

it. 

destroy(client, message) 

8A DYNAMIC-SHARE-NONWRITABLE data passing mode was included in the original design of the 
model; however, this feature complicated the model. An alternative approach based on capabilities 
could provide this feature and also solve other access permission problems with the current version 
of the model (see Chapter 6). 
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Extract i from message 

if ( client not in list S[i]:registered) then 
reply(client, <message indicating error>) 

else 

delete-region(S [i] :ARegion) 

Set S[i]:state to UNDEFINED 

reply(client, <message indicating success>) 

The following routine binds an ARegion in the client's context to a shared DRe-

gion. 

bind(client, message) 

Extract I and ARegion from message 

if ( client not in S[i]:registered) then 
reply(client, <message indicating error>) 

else 

if ( S[i]:must-create) then 
create-region (S [I] :size) returns S [i] :ARegion 

pass-region-to (client, ARegion, DYNAMIC-SHARE) 

returns S [1] :ARegion 

reply(client, <message indicating success>) 

3.4 Summary 

A simple IPC model is explained where data can be passed with the dynamic-share, 

move and duplicate data-passing modes. Processes do not share memory initially 

and sharing is not required for communication. However, the same operations that 

pass data can also dynamically establish memory sharing by changing an argument 

value. The model provides a simple abstraction that hides machine boundaries and 

it can be implemented efficiently on distributed systems. 
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The Regions IPC model is an improvement over existing data-passing IPC models'. 

Explicit data-passing can be avoided once sharing is established. Passing complex 

data types is simple and can be implemented efficiently. Unnecessary data copying 

can be avoided by the implementation. 

The Regions IPC model is an improvement over memory-sharing IPC models. 

Processes executing in separate contexts can share memory. Processes can establish 

sharing of the memory that needs to be shared. Processes do not have to be relocated 

so that they can exist within the same context. The context implementation does 

not have to be distributed across machines in a distributed system. 

The Regions IPC model is an improvement over IPC models that provide data-

passing and dynamic memory sharing. Data passing and dynamic memory sharing 

are integrated in simple IPC operations. Dynamic memory sharing is provided across 

machines in a distributed system. 

'Explicit data-passing, unnecessary data copying and difficulty passing complex data types have 
been cited as problems with data-passing IPC models [Li 86] 



Chapter 4 

Implementing Regions IPC 

The motivation for an implementation is to demonstrate that the Regions IPC model 

can be implemented efficiently. A general object-based specification is presented. 

Implementation details for Sun 3 workstations [SUN3 86] and BBN Butterfly multi-

processors [BBN 88] are discussed. 

4.1 Hardware Assumptions 

It is assumed that a processor accesses (reads and writes) physical memory via MMU 

hardware. MMU hardware is used to implement the bindings that allow processes 

to access datum-containers. A binding is an association between an address and 

a datum-container. A datum-container is implemented with one or more memory-

cells. The memory hardware permanently binds a physical address to a memory-cell. 

MMU hardware dynamically binds a region of processor addreses (a processor page) 

to a region of memory-cells (a physical page). 

An MMU with the following features is assumed. 

• Memory is organised into fixed sized pages. 

• Translation tables map processor pages to physical pages. 

• There is no limit to the number of processor pages that can be mapped to a 

single physical page. 

• A processor page is either mapped to a physical page or not mapped. If the 

processor attempts to access memory with an address from a processor page 

that is not mapped then an exception' occurs. 

'An exception is caused by the processor bg it is like a hardware interrupt. An exception 
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• A mapping (from a processor page to physical page) provides either READ-

WRITE or READ-ONLY access. If the processor attempts to write to memory 

with an address in a processor page that is mapped with READ-ONLY access 

then an exception occurs. 

• A mapping provides either NON-PRIVILEGED or PRIVILEGED access. If the. 

processor is not in PRIVILEGED mode and it attempts to access an address in 

a processor page that is mapped with PRIVILEGED access then an exception 

occurs. 

In addition, on multiple processor systems, it is assumed that each processor 

has its own translation table. Separate processes cannot execute concurrently on 

separate processors that share a translation table because processes do not share 

contexts. 

4.2 Kernel Notion 

A kernel is a program that implements the process abstraction and primitive opera-

tions of a model. 

Kernels executing on separate machines cooperate to implement the abstractions 

across machine boundaries. 

4.3 Deferred Copying 

Unnecessary data copying can be avoided under specific circumstances by using the 

deferred copying implementation technique called copy-on-write2. If a DRegion is 

passed using DUPLICATE and shared physical memory is available then copying data 

handler routine is asynchronously invoked when an exception occurs. 

'The Accent [Fitzgerald 86], Mach [Accetta 86] and Chorus [Abrossimov 89] implementations 
use the copy-on-write technique. 
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from the original DRegion to the new duplicate DRegion can be deferred until any, 

attempt is made to modify one of the duplicates. If the contents of these duplicate 

DRegions are not modified before one of them is deleted then unnecessary data 

copying is avoided. 

The copy-on-write technique can be implemented with DRegions as follows 3. 

Before a DUPLICATE data passing operation the source ARegion's processor page 

is mapped to the DRegion's physical page P. During the DUPLICATE operation the 

kernel maps a destination ARegion processor page to P with READ-ONLY access and 

marks the binding as COPY-ON-WRITE. If the source ARegion's page (or any other 

page) is mapped with READ-WRITE access then its access is also changed to READ-

ONLY and the binding is marked COPY-ON-WRITE. The processes with bindings 

to these duplicate DRegions can read the contents of the page. If one of those 

processes attempts to write to the page then an exception occurs causing the kernel 

to invoke the exception handler routine. The exception handler detects that copying 

is deferred, copies the data to a free page, maps this page with READ-WRITE access 

in the exception causing process's context and restarts the write instruction. 

It is also possible to defer the allocation of the physical page and data structures 

required for the new duplicate DRegion. However, care must be taken to ensure 

that the failure semantics of the IPC operation are supported. The IPC operations 

return an error value if there are insufficient resources to duplicate a DRegion. If the 

allocation of resources is deferred then an error value cannot be return. Therefore, 

the process must wait until sufficient resources become available4. 

'This explanation assumes that ARegions and DRegions consist of a single page (see Section 4.4) 

'The current implementation incorrectly defers the allocation of resources and terminates the 
process if there are insufficient resources when a copy-on-write exception occurs. 
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4.4 Design Considerations 

The following design considerations and decisions are motivated by the goal of 

demonstrating efficient implementation of the data passing IPC operations when 

shared physical memory is available. 

The maximum size of a DRegion is restricted to the page size. If a DRegion's 

size is less than a full page then memory is wasted; however, if the contents of the 

DRegion must be copied then time is saved by copying only the relevant data. 

Limiting DRegions to a single page also simplifies ARegion allocation. Each 

process has a fixed number of one page ARegions. If an ARegion is unbound then it 

can be allocated. 

DRegions are implemented without information about the ARegions that are 

bound to the DRegion because maintaining a list of the bindings would be space and 

time inefficient. The amount of space required for each DRegion to keep a list of the 

ARegions bound to it is not known in advance. Therefore, memory would have to 

be dynamically allocated. 

Data copying is not deferred if the DRegion being duplicated is shared to avoid 

implementation complexity and save time. Deferred copying of shared DRegions 

requires data structures that provide indirection' to ensure the bindings to a shared 

DRegion are properly updated when a write attempt causes the deferred copy to be 

performed. This indirection adds complexity and takes time. In addition, a likely 

reason for sharing a DRegion is to provide access to data that is expected to be 

modified.. If copying is deferred but a write operation causes the exception handler 

5MMUs, like the MC68851[Motorola 89b], have a feature to restrict access to a specific range 
of bytes in a page. The size of DRegions can be enforced with this feature. If the MMU does not 
have this feature then processes can access the entire page regardless of the DRegion size; however, 
the kernel only ensures that size bytes are shared, moved or duplicated. 

'Mach [Rashid 88] provides indirection with shadow objects and shared objects to implement 
deferred copying of shared memory objects. 
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to perform the copy then a significant amount of time is wasted (see Chapter 5). 

A process's context is separated into permanent and dynamic bindings for two 

reasons. First, existing programming language compilers are not designed to deal 

with pages of the execution stack being moved or shared; therefore permanent bind-

ings'are required for the stack. Second, the purpose of the implementation is to - 

evaluate the performance of the model; therefore, effort was not put into integrating 

heap allocation with ARegion allocation. 

4.5 Object-Based Specification 

A general object-based specification is presented for the following Regions primitives: 

create-region, delete-region, rebind-region, size-of-region, state-of-region, 

pass-region-to, and pass-region-from. Partial algorithms for send, receive and 

reply are provided in Chapter 5. 

The purpose of this specification is to provide a machine independent description 

of how the model can be implemented. 

A notation similar to C++ [Stroustrup 86] is used for the specification. An 

object has an interface that specifies the (public) operations that can be invoked on 

the object. An object can also have private variables and private operations that are 

used to implement the public operations. Every interface provides operations called 

create and delete. The create operation allocates and initialises an instance of an 

object. The delete operation deallocates an instance of an object. 

The following syntactic conventions are used. Names of variable and object in-

stances are lower case. Names of variable types and object interfaces are capitalised. 

Constants are upper case. Prose describing implementation steps are in italics and 

parentheses. Comments are delimited by double slashes (//) 

The object-based specification is presented as follows. The variable types are 
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defined. Then the Regions primitives are presented as public operations of an object 

type called Kernel. A specification of each public operation follows. These specifi-

cations are based on variables, operations and objects that are private to the Kernel 

interface. A specification of each private operation is presented. Then the private 

objects are specified. 

4.5.1 Variable Types 

The following variable types are used in the Kernel specification. 

Public Variable Types 

Boolean (TRUE or FALSE) 

Integer //Standard integer.// 

Address //A nonnegative integer.// 

ARegion //Starting address of a processor page.// 

State (INVALID, UNBOUND, PRIVATE, or SHARED) //ARegion state.// 

Mode (DUPLICATE, MOVE, or DYNAMIC-SHARE) //Data passing mode.// 

PID //Process identifier.// 

Private Variable Types 

Paddress //Starting address of a physical page of memory.!! 

Access (READ-ONLY, or READ-WRITE) //MMU page mapping attribute.// 

4.5.2 The Kernel Object Interface 

The Regions primitives are public operations of the Kereni object interface. 

INTERFACE Kernel { 
create() returns Kernel::k //Initialise the kernel.// 

delete() //Clean up before terminating the kernel.// 

create-region (Integer size) returns (ARegion) ar 

delete-region(ARegion ar) 

rebind-region(ARegion ar., ARegion ard) returns (Boolean) success 

size-of-region(ARegion ar) returns (Integer) size 

state-of-region (Address addr) returns (State) s 

pass-region-to(PID sender, ARegion are, Mode m) returns (ARegion) ard 

pass-region-from(PID sender, ARegion ar,,, Mode m) returns (ARegion) ard 
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• . .//The remaining public Kernel operations are not relevant.// 

Private Variables 

PID current-pid //The PID of the currently executing process.// 

Private Object Instances 

Context:: current-context //The context currently installed in the MMU.// 

Kernel::this-kernel //This Kernel object (the local kernel).// 

} 

4.5.3 Regions Primitive Specification 

The Kernel public operations are specified in terms of variables, operations and 

objects that are private to a Kernel object. 

A Kernel object is created to start the system. 

Kernel:: create() { 
(Allocate an object with interface Kernel.) returns k 

(Create a stack of free physical pages.) 

(Create a stack of free DRegion objects.) 

.//Nonrelevant initialisation actions.// 

this-kernel +—k 

return k 

} 

When the system is shutdown the Kernel object is deleted. 

Kernel:: delete() { 
(Initiate delivery of delete requests for DRegion shared with other kernels.) 

.//Nonrelevant shutdown actions.// 

(Deallocate self.) 

} 

Kernel:: create-region (Integer size) { 
current-context---'get-unbound-binding() returns Binding: :b 

create(size) returns DRegion::dr 

b—bind(dr, FALSE) //Not a deferred copy binding.// 

b—get-ARegion() returns (ARegion) ar 

return ar 

} 
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Kernel:: delete-region (ARegion ar) { 
current-context—*get-binding(ar) returns Binding::b 

b—*unbind() 

} 

Kernel::rebind-region(ARegion ar,,, ARegion ard) { 
current-context---get-binding(ar) returns Binding::b,, 

current-context--extract-binding(ard) returns Binding: :bd 

do-rebind(b8, bd) 

return TRUE 

} 

Kernel:: size-of-region (ARegion ar) { 
current-context--get-binding(ar) returns Binding::b 

b—get-DRegion() returns DRegion: :dr 

dr—get-size() returns (Integer) size 

return size 

} 

Kernel:: stat e-of-region (Address addr) { 
if ( addr is an ARegion) then 

current-context--+get-binding(addr) returns Binding::b 

b—*get-bound() returns (Boolean) bound 

if ( bound) then 
b--+get-DRegion() returns DRegion::dr 

dr—get-shared() returns (Boolean) shared 

if ( shared ) return SHARED 
return PRIVATE 

return UNBOUND 

return INVALID 

} 

Kernel::pass-region-to(PID sender, ARegion ar., Mode m) { 
• get-kernel(sender) returns Kernel: :kd 

if ( kd is this-kernel) then 
get-context(sender) returns Context::cd 

local-pass(current-context, c, ar., m) returns (ARegion) ard 



Chapter 4: Implementing Regions IPC 62 

else 

current-context----*get-binding(ar8) returns Binding: :b5 

if ( m is DYNAMIC-SHARE) then 
do-deferred-copy(b8) returns DRegion: :dr 

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).// 

deliver(kd, " to-bind", sender, dr) 

if ( m is MOVE) then 
b5—*get-DRegion() returns DRegion: :dr 

dr—get-shared() returns (Boolean) shared 

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).// 

if ( shared) then deliver(kd, " to-bind", sender, dr) 
else deliver(kd, " to-copy", sender, dr) 

b54unbind() 

if ( m is DUPLICATE) then 
b5—+get-DRegion() returns DRegion: :dr 

dr—get-shared() returns (Boolean) shared 

dr—.inc-copiers() //Avoid deallocating dr (see Section 4.7).// 

deliver(kd, " to-copy", sender, dr) 

block(current-pid) returns (ARegion) ard 

return ard 

} 

Kernel::pass-region-from(PID sender, ARegion ar8, Mode m) { 
get-kernel(sender) returns Kernel: :kd 

if ( kd is this-kernel) then 
get-context(sender) returns Context: :cd 

local-pass(cd, current-context, ar8, m) returns (ARegion) ard 

else 

deliver(kd, "from-req", sender, ar8, m) 

current-context—.get-unbound-binding() returns Binding: :bd 

bd—+get-ARegion() returns (ARegion) ard 

block(current-pid) returns DRegion::dr 

dr—get-shared() returns (Boolean) shared 

if ( m is MOVE) then 
if ( shared) then (Set m to DYNAMIC-SHARE.) 
else (Set m to DUPLICATE.) 

if ( m is DYNAMIC-SHARE) then 
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bd— bind(dr, FALSE) 

if ( m is DUPLICATE) then 
dr-3-get-size() returns (Integer) size 

create(size) returns DRegion::dro 

copy(dr, dro) 

dr—dec-copiers() //dr can now be deallocated (see Section 4.7).// 

bd—+bind(dro, FALSE) 

return ard 

} 

4.5.4 Private Kernel Operations 

The following private operations are used to implement the Kernel public operations. 

Private Operations 

get-process (Context::c) returns (PID) p 

get-context(PID p) returns Context::c 

get-kernel(PID p) returns Kernel::k 

block(PID p) //Suspend a process.// 

schedule(PID p) //Unsuspend a process.// 

do-rebind(Binding: :b8, Binding: :bd) 

local-pass (Context::c5, Context::cd, ARegion ar8, Mode m) returns (ARegion) ard 

do-deferred-copy(DRegion: :dr, Binding: :b) 

read-only-exception-handler(PID p, Address addr) 

copy(DRegion: :dr, DRegion: :drd) 

//Deliver a request to another Kernel. The other Kernel invokes// 

1/ name(argi, arg2, ...). The sending Kernel (this-kernel) and// 
calling process (current-pid) variables are passed implicitly.// 

deliver(Kernel::k, "name", arg1, arg2, ...) 

//The following routines can be remotely invoked with deliverQ.// 

to-bind(PID p, DRegion::dr) 

to-copy(PID p, DRegion::dr) 
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to-done(PID p, ARegion ard) 

from-req(PID p, ARegion are, Mode m) 

from-done(PID p, DRegion::dr) 

The following are sketches of algorithms that implement the private operations. 

Kernel::get-process (Context::c) { 
(Find process executing in c) returns (PID) p 

return p 

} 

Kernel::get- context (P ID p) { 
(Find context that p is using.) returns Context::c 

return c 

} 

Kernel: :get-kernel(PID p) { 
(Find kernel where p is executing.) returns Kernel::k 

return k 

} 

Kernel::block(PID p) { 
suspend(p) //Remove from ready queue.// 

if ( p is current-pid) then 
(Switch to next ready process.) 

} 

Kernel::schedule(PID p) { 
unsuspend(p) //Put into ready queue.// 

} 

Kernel:: do-rebind(Binding: :b8, Binding::bd) { 
b-3.get-DRegion() returns DRegion: :dr 

b8—+get-deferred() returns (Boolean) deferred 

bd—+bind(dr, deferred) 

b8—unbind() 

} 
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Kernel:: local-copy (Context::c3, Context::cd, ARegion ar8, Mode m) { 
c8—get-binding(ar8) returns Binding: :b8 

cd-3get-unbound-binding() returns Binding: :bd 

if ( m is DYNAMIC-SHARE) then 
do-deferred-copy(b8) returns DRegion: :dr 

ba—.bind(dr, FALSE) 

if ( m is MOVE) then 
do-rebind(b8, bd) 

if ( m is DUPLICATE) then 
b3—*get-DRegion() returns DRegion: :dr 

dr—+get-shared() returns (Boolean) shared 

if ( shared) then //Shared DRegions copied immediately.// 
dr—+get-size() returns (Integer) size 

create(size) returns DRegion::dro 

copy(dr, dro) 

bd—bind(dro, FALSE) 

else //Copying of non-shared DRegions deferred.// 

b8—+defer() 

bd—*bind(dr, TRUE) 

bd—*get-ARegion() returns (ARegion) ard 

return ard 

} 

Kernel:: do-deferred-copy(Binding: :b) { 
b —+get-D Region() returns DRegion: :dr 

b—+get-deferred() returns (Boolean) deferred 

if ( deferred) then 
dr—*get-copiers() returns (Integer) copiers 

if ( copiers is 1) then 
b—+undefer() 

else 

dr—get-size() returns (Integer) size 

create(size) returns DRegion::dro 

copy(dr, dro) 

B—bind(dro, FALSE) 

return dro 

return dr 
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} 

Kernel: :read-only-exception-handler(PID p, Address addr) { 
if ( addr is an ARegion ) then 

(Find ARegion that addr is in) returns (ARegion) ar 

current-context--get-binding(addr) returns Binding::b 

do-deferred-copy(b) 

(Restart instruction that caused exception.) 

else 

(Delete the current process and reclaim its resources.) 

} 

Kernel:: deliver (Kernel:: k, " name", arg1, arg2, ...) { 
(Initiate delivery to k of request "name") 

(k is interrupted and invokes name(argi, arg2, ...)) 
} 

The following five routines are invoked as a consequence of deliverQ. The first 

three are associated with pass-region-to and the last two are associated with pass-

region-from. 

Kernel::to-bind(PID Pd, DRegion::dr) { 
get-context(pd) returns Context::cd 

cd—get-unbound-binding() returns Binding: :b 

b—*bind(dr, FALSE) 

dr—.dec-copiers() //dr can now be deallocated (see Section 4.7).// 

b—+get-ARegion() returns (ARegion) ard 

deliver(k5, " to-done", Ps, ard) 

//Respond to the kernel k5 that requested "to-bind" on behalf of process 

} 

Kernel:: to-copy (PID Pd, DRegion::dr) { 
get-context(pd) returns Context::cd 

cd—get-unbound-bindmg() returns Binding: :b 

dr—get-size() returns (Integer) size 

create(size) returns DRegion::dro 
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copy(DR, dro) 

dr—+dec-copiers() //dr can now be deallocated (see Section 4.7).// 

b—bind(dro, FALSE) 

b—+get-ARegion() returns (ARegion) ard 

deliver(k8, " to-done", p, ard) 

//Respond to the kernel k5 that requested " to-copy" on behalf of process 

} 

Kernel::to-done(PID Ps, (ARegion) ard) { 
(Pass ard to Ps via a kernel data structure.) 

schedule(p5) 

} 

Kernel::from-req(PID Pd, ARegion ar5, Mode m) { 
get-context(pd) returns Context::; 

c3—*get-binding() returns Binding: :b5 

if ( M is DYNAMIC-SHARE) then 
do-deferred-copy(b9) returns DRegion: :dr 

else 

b5—*get-DRegion() returns DRegion: :dr 

dr—inc-copiers() //Avoid deallocating dr (see Section 4.7).// 

deliver(k8, "from-done", p,,, dr) 

//Respond to the kernel k8 that requested "from-req" on behalf of process Ps/I 

} 

Kernel: :from-done(PID p, DRegion: :dr) { 
(Pass dr to p via a kernel data structure.) 

schedule(p5) 

} 

4.5.5 Private Kernel Objects 

The interface and implementation of private objects are defined for a context, bind-

ing, DRegion and MMU translation table page entry. 
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4.5.5.1 Context Object 

A context object is created or deleted whenever a process is created or deleted, 

respectively. 

INTERFACE Context { 
create() returns Context::c 

delete() 

get-binding(ARegion ar) returns Binding::b 

extract-binding(ARegion ar) returns Binding::b 

get-unbound-binding() returns Binding::b 

put-unbound-binding(Binding: :b) 

Private Variables 

Array-of-Bindings db //System defined number of dynamic bindings.// 

Stack-of-Bindings unbound-db //Stack of unbound dynamic bindings.// 

} 

The following are sketches of algorithms that implement the Context operations. 

Context:: create() { 
(Allocate an object with interface Context.) returns Context::c 

(Allocate db and unbound-db) 

for i from 1 to n 

create(c) returns Binding::b 

c--.db[i] —b 

push(b, c—+unbound-db) 

(Allocate permanent bindings.) 

return c 

} 

Context:: deleteo { 
for i from 1 to n //Delete all bound ARegions.// 

self—.db[i]--*get-bound() returns (Boolean) bound 

if ( bound) then 
self—+db[i] —*unbind() 

(Deallocate permanent bindings.) 

} 
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Context::get-binding(ARegion ar) { //Assume ar is not in unbound-db.// 
(Convert ar to i.) 

return self-+db[i] 

} 

Context::extract-binding(ARegion ar) { //Assume ar is in unbound-db.// 
(Convert ar to i.) 

remove(self-4db[i], self-+unbound-db) 

return self-db[i] 

} 

The remove() operation can be implemented without traversing the stack unbound-

db if the elements of db are used to implement the stack as a doubly linked list. 

Context: :get-unbound-binding() { 
pop(self-+unbound-db) returns Binding: :b 

return b 

} 

Context: :put-unbound-binding(Binding: :b) { 
push(b, self-unbound-db) 

} 

4.5.5.2 Binding Object 

Dynamic bindings are implemented as Binding objects with the following interface. 

INTERFACE Binding { 
create(Context::c, ARegion ar) returns Binding::b 

delete() 

get-ARegion() returns (ARegion) ar 

get-bound() returns (Boolean) bound 

get-deferred() returns (Boolean) deferred 

get-DRegion() returns DRegion: :dr 

bind(DRegion::dr, Boolean deferred) 

unbind() 

defer() 

undefer() 
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Private Variables 

ARegion ar 

Boolean bound 

Boolean deferred 

Private Object Instances 

DRegion::dr 

PageEntry::pe 

Context:: context 

The following are sketches of algorithms that implement the Binding operations. 

Binding::create(Context::c, ARegion ar) { 
(Allocate an object with interface Binding.) returns Binding::b 

b-- bound 4-FALSE 

b- context 4-c 

b-3ARegion 4-ar 

return b 

} 

Binding:: deleteo { 
(Deallocate self) 

} 

Binding:: bind (D Region: :dr, Boolean deferred) { 
self-*bound +-TRUE 

self-4dr 4-dr 

self-+deferred 4-deferred 

create(self-*ar, self-.context) returns PageEntry: :pe 

self-+pe 4-pe 

dr-.get-paddr() returns (Paddress) paddr 

if ( deferred) then 
dr-+inc-copiers() 

pe-.bind(paddr, READ-ONLY) 

else 

dr-*inc-writers() 

pe-+bind(paddr, READ-WRITE) 

} 
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Binding: :unbind() { 
self- bound 4-FALSE 

self-context-*put-unbound-binding(self) 

if ( self.-4deferred) then 
self-4dr--+ dec-copiers () 

else 

self-+dr-dec-writers() 

self-.pe---3'unbind() 

} 

Binding:: defer() { 
if ( not self- deferred) then 

self-*deferred -TRUE 

self-*pe-+read-only() 

self-+dr---*inc-copiers() 

self-dr--dec-writers() 

} 

Binding::undefer() { 
if ( self-4deferred) then 

self-*deferred 4-FALSE 

self-3.pe-•read-write() 

self-+dr--+inc-writers() 

self-+dr---+dec-copiers() 

} 

The routines defer() and undefer() increment then decrement the DRegion counters 

so that another kernel can read' the counter values without requiring mutual exclusion 

(see section 4.7). 

4.5.5.3 DRegion Object 

DRegions are implemented as DRegion objects with the following interface. 

INTERFACE DRegion { 
create(Integer size) returns DRegion::dr 

delete() 
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get-size() returns (Integer) size 

get-paddrQ returns (Paddress) paddr 

get-copiers() returns (Integer) copiers 

get-shared() returns (Boolean) shared 

inc-copiers() 

inc-writers() 

dec-copiers() 

dec-writers() 

Private Variables 

Paddress paddr 

Integer size 

Integer writers 

Integer copiers 

} 

Ditegions can be shared between Kernels therefore the implementation of shared 

DRegions might be distributed (see Section 4.8). 

The following are sketches of algorithms that implement the DRegion operations. 

DRegion::create(Integer size) { 
(Allocate an object with interface DRegion.) returns DRegion::dr 

(Allocate page.) returns (Paddress) paddr 

dr—+paddr 4—paddr 

dr—+size +—size 

dr—*writers —O 

dr-.4copiers +—O 

return dr 

} 

DRegion::delete() { 
(Deallocate self) 

} 

DRegion::get-sharedQ { 
return (Boolean) (self-3.writers > 1) 

} 
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DRegion::inc-copiers() { 
(self—.copiers)++ //Must detect and prevent overflow.// 

} 

DRegion: :inc-writers() { 
(self—*writers.) ++ //Must detect and prevent overflow.// 

} 

DRegion::dec-copiers() { 
(self--+ copiers)— 

if ( (self—•copiers + self—*writers) < 1) then 
delete() //DRegion is deallocated if it is not bound.// 

} 

DRegion::dec-writers() { 
(self—+writers)— 

if ( (self—+copiers + self—+writers) < 1 ) then 
delete() //DRegion is deallocated if it is not bound.// 

} 

4.5.5.4 PageEntry Object 

The translation table entries that bind a processor page to a physical page are im-

plemented as PageEntry objects with the following interface. 

INTERFACE PageEntry { 
create(ARegion ar, Context::c) returns PageEntry::pe 

delete() 

bind(Paddress paddr, Access a) 

unbind() 

read-only() 

read-write() 

Private Variables 

Paddress paddr 

Access access 

Boolean valid 

ARegion ar 

Private Object Instances 
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Context:: context 

} 

The PageEntry operations can be implemented as follows. 

PageEntry: :create(ARegion ar, Context: :c) { 
if ( Translation table for c does not have an entry for ar. ) then 

(Allocate an entry for ar.) returns PageEntry::pe 

pe—+ar 4—ar 

pe—*valid 4-FALSE 

pe—context 4—c 

if ( c is installed in MMU.) then (Load entry into MMU.) 
else 

(Find the entry for ar.) return's PageEntry::pe 

return pe 

} 

PageEntry: :delete() { 
if ( Translation table does not need an entry for self—+ar ) then 

(Deallocate entry for self4—ar.) 

if ( self—*context is installed in MMU) then (Invalidate entry in MMU.) 
} 

PageEntry::bind(Paddress paddr, Access a) { 
self—paddr 4—paddr 

self— access 4—a 

self—*valid 4-TRUE 

if ( self—*context is installed in MMU) then (Load entry into MMU.) 
} 

PageEntry: :unbind() { 
self— valid 4-FALSE 

delete() //Check to see if the entry should be deallocated.// 

} 

PageEntry: :read-only() { 
self—+access READ-ONLY 

} 
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PageEntry: :read-write() { 
self—.access 4--READ-WRITE 

} 

4.6 Sun 3 Uniprocessor Implementation 

The Regions IPC model is implemented on Sun 3 workstations'. 

The kernel implementation is similar to the object-based specification in the 

previous section. The kernel is written in C [Kernighan 78]. The Kernel private 

objects are global variables. The private operations and private object operations 

are implemented in line (not as procedures). 

PageEntry objects are implemented directly with the Sun 3 MMU translation 

tables. 

The Sun 3 MMU groups pages into segments where a segment contains 16 pages. 

The translation tables consist of a table of segment entries and groups of 16 page 

entries called pmegs8. A segment entry can point at any one of 255 pmegs. 

The page-entry objects are implemented directly with pmegs. If a page-entry 

is required for a logical page starting at address Addr then the segment containing 

Addr must be mapped to a pmeg. If Addr's segment is not mapped, a pmeg is 

popped off a stack of free pmegs, the 16 page entries are marked invalid and Addr's 

segment is mapped to it. Addr's page-entry is allocated by marking it valid. A 

page-entry is deallocated by marking it invalid. If a segment is mapped to a pmeg 

with no valid page-entries then the pmeg is pushed onto a stack of free pmegs and 

the segment is unmapped. 

7The Sun 3 implementation has not yet been extended across the Ethernet. Therefore, DRegions 
can only be passed between processes executing on the same workstation. 

'The Sun 3 MMU also provides 8 contexts where each context has a segment table and 255 
pmegs; however this feature was not used. 
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Pmegs are a limited resource on Sun 3 workstations. Therefore the performance 

of this implementation will be degraded when all pmegs are being used. 

If a non-shared DRegion is passed with the DUPLICATE mode between processes 

executing on a workstation then copying is deferred. 

4.7 BBN GP1000 NUMA Multiprocessor Implementation 

The Regions IPC model is also implemented on BBN GP1000 multiprocessors. 

Each node of the GP1000 has a processor, an MMU and a local memory. The 

MMU can map processor pages to the node's local physical memory or to the local 

physical memory of other nodes (remote memory). However, the ratio between the 

time to access (read or write) remote memory as opposed to local memory is between 

8 and 11 in the absence of contention'. Therefore, the a separate kernel is executed on 

each node because an efficient implementation must avoid remote memory accesses. 

The kernel implementation for each node of the GP1000 is similar to the kernel 

implementation for a Sun 3 workstation. The GP1000 MMU is configured to behave 

similar to the Sun 3 MMU but the variable types and instructions sequences dif-

fer. The GP1000 implementation also supports passing DRegions between separate 

nodes. 

A kernel causes another kernel to invoke an operation by delivering a request spec-

ify the operation and parameters. Each node has a multi-producer single-consumer 

queue that any processor can access. The requests are inserted into the destination 

kernel's queue by first ensuring that no other kernel is delivering a request. Then 

the source kernel interrupts the destination kernel. The destination kernel inter-

rupt handler routine removes the requests from the queue and invokes the requested 

'Contention occurs when multiple processors contend for the same hardware to access remote 
memory. 



Chapter : Implementing Regions IPC 77 

operation. 

Operations that involve more than one node are implemented so that the kernels 

on each node can execute in parallel. Delivery of a request is initiated before all the 

arguments are specified. Each process has a data structure associated with it that 

is used to send remote requests to other n5des10. Therefore, every kernel has access 

to the remote request buffers of every node. When a remote request is delivered 

the type of request is inserted in the buffer B, B is marked BUSY, a pointer to B is 

inserted in the destination node's queue, and the destination processor is interrupted. 

The source kernel inserts the remaining parameters in B then marks B COMPLETE. 

The destination kernel interrupt handler removes the request from its queue, invokes 

the requested routine, performs as many operations as it can and then waits until B 

is marked COMPLETE. 

If a DRegion is passed to a process executing on the same node then the kernel 

executes the same operations as the Sun 3 implementation. Therefore, copying is 

deferred if the passing mode is DUPLICATE and the DRegion is not shared. 

If a DRegion is passed to a process executing on another node then the DRegion 

is copied if possible. If the mode is DUPLICATE then the DRegion is copied. If the 

mode is MOVE and the DRegion is not shared then the DRegion is copied. Otherwise 

the DRegion is shared and the destination ARegion is bound to the DRegion. 

The implementation must delay the deallocation of a page that is being copied un-

til copying is completed because a deallocated page can be reallocated and modified". 

If the source process is asynchronously terminated then the process's resources are 

reclaimed. The deferred copy feature is used to avoid this problem. The DRegion 

copiers counter is incremented before page copying starts. When the copy is complete 

'°Process descriptors are used in the current implementation. The alternative is to dynamically 
allocate request buffers. 
"The stack of free pages is currently implemented by storing a pointer in the page. Therefore, 

a page is modified when it is deallocated. 
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a request to decrement copiers is delivered. This also allows the kernel to unbind the 

source when the mode is MOVE without waiting for a confirmation. 

If a DRegion is shared between processes executing on different nodes then the 

DRegion object is only implemented on the node where the DRegion was created. 

If a kernel invokes an operation on a remote DRegion object then there are two 

possibilities: the operation does or does not modify the DRegion object's variables. 

If the operation only reads the DRegion object's variables then the operation can be 

implemented by remotely reading12 the contents of the variables'3. If the operation 

modifies the DRegion variables then a request is delivered to the remote kernel to 

perform the operation. 

4.8 Discussion 

A DRegion can be shared between processes executing on processors that do not 

share physical memory. Two techniques for implementing this sharing are remote 

access and distributed sharing. 

The current GP1000 implementation uses the remote access technique. The data 

exists on the node where the DRegion was created. If the DRegion is shared with a 

process P executing on a separate node then an ARegiôn in P's context is mapped 

to the remote physical page. Read and write operations by P on the shared DRegion 

are remote memory accesses. The remote access sharing technique has also been 

demonstrated across a communications network [Spector 82]. write operations have 

at-most-once semantics because a communication failure can prevent confirmation 

that the write was completed from being delivered. 

12 Remote access to DRegion variables requires providing every kernel with access to every nodes 
DRegion variables. 

13 The DRegion operations defer() and undefer() increment then decrement the DRegion counters 
to ensure that incorrect transient values cannot be read. 
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Distributed sharing is an alternative technique involving migrating and replicating 

the data. A DRegion is shared between processes executing on the same machine and 

separate machines. Initially the data is in a physical page that is local to a machine 

where one of the sharing processes is executing. The physical page can be mapped' 

to a processor page in the context of any sharing process executing on that machine. 

Those processes can read or write the contents of the page. The processor pages of 

sharing processes executing on other machines are unmapped and the bindings are 

marked NON-RESIDENT. 

If a process attempts to read data from a processor page that is not mapped but 

where the binding is marked NON-RESIDENT then an exception occurs. The kernel X 

on that machine delivers a replicate request to the kernel Y on the machine where the 

data exists. Y changes its mappings to the page containing the data to READ-ONLY 

access and delivers a copy of the data to X. X maps the page containing the copied 

data with READ-ONLY access and restarts the read instruction. Subsequent attempts 

to read a page marked NON-RESIDENT result in additional READ-ONLY mappings to 

copies of the data. The data is cached on the machines that require read access. 

If a process attempts to write data to a page that is mapped READ-ONLY or 

a binding that is marked NON-RESIDENT then an exception occurs. The kernel X 

on that machine delivers a migrate request to the other kernels where the page is 

• mapped. Those kernels unmap the page that contains their copy of the data and 

mark their bindings NON-RESIDENT. If X does not have a copy of the data then it 

also requests a copy from on of the other kernels. X maps the page containing the 

data with READ-WRITE access and restarts the write instruction. 

The distributed sharing technique has been demonstrated across a communica-

tions network [Li 86]. write operations have exactly-once semantics because the 

datum is not written until the page of data arrives. 
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The remote access technique is less efficient than the distributed sharing technique 

if processes on one node must perform many remote accesses while no other processes 

are performing accesses. However, remote access is more efficient if processes on 

different nodes alternately access the data. Methods of dynamically selecting the 

remote access or distributed share techniques have been demonstrated and analysed 

for NUMA systems [Bolosky 91]. 

4.9 Summary 

Issues related to a correct efficient implementation of the Regions IPC model are dis-

cussed. Several design choices were made with emphasis on simplicity and efficiency. 

The implementation takes advantage of MMU hardware and assumes the MMIJ 

hardware has specific features. 

Data copying is deferred when a non-shared DRegion is passed with the DUPLI-

CATE mode between processes executing on processors that share physical memory. 

Data copying is not deferred when the source DRegion is shared. 

A system independent object-based specification is presented. Then the details of 

implementations on Sun 3 workstations and BBN GP1000 Butterfly multiprocessors 

are discussed. 

Two techniques of implementing shared DRegions across communications chan-

nels are discussed. 



Chapter 5 

Performance of the Regions IPC Primitives 

The elapsed time performance of the Regions IPC primitives implemented on a Sun 3 

workstation and a BBN Butterfly multiprocessor are analysed. The elapsed time of 

data-passing primitives using the dynamic-share, move, and duplicate data-passing 

modes are compared with the elapsed time of a primitive that uses the copy data-

passing mode. Total elapsed times and component elapsed times are presented. The 

component times identify where the time is being spent. 

5.1 Hardware 

Implementations of the Regions IPC model on a Sun Microsystems Sun 3/75 work-

station and a 12 node BBN Butterfly GP1000 multiprocessor were used to obtain 

the elapsed time measurements. 

The Sun 3/75 processor is a MC68020 [Motorola 89a] running at 16.7 MHz. The 

memory cycle time is 270 ns. The MIPS rating is 1.5 

The processor of each GP1000 node is also a MC68020 running at 16.7 MHz. 

Timing measurements of identical instruction sequences confirm that the Sun 3/75 

and GP1000 execute at the same rate when memory is not referenced and show that 

the GP1000 is about 1.15 times slower when local' memory is referenced. 

The Sun 3/75 and GP1000 do not provide a data cache. The MC68020 provides 

'Each node of the GP1000 has a processor and memory. A processor can directly access the 
memory of other nodes via a communications network called the Butterfly switch. Timing measure-
ments of identical memory reference instruction sequences on the GP1000 show that instructions 
that reference memory are about 8 to 11 times slower when the memory is on a remote node as 
opposed to a local node. 

81 
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an instruction cache. 

The Sun 3 MMU is described in Section 4.6. The MMU uses private memory to 

store the translation table2. 

Each node of the GP1000 uses a MC68851 MMU [Motorola 89b]. The translation 

table is stored in the node's main memory. The MMU caches page translations 

in an on-chip address translation cache (ATC). One or more cache entries might 

have to be invalidated when a translation table entry is modified. The MC68851 is 

configured to behave similar to the Sun 3 MMU (128K byte segments and 8K byte 

pages) therefore, an ATC cache miss requires at least two memory accesses. Cache 

entries of a context are invalidated when a context switch occurs'. An efficient way of 

invalidating context cache entries is to invalidate the entire ATC. A feature that locks 

a page translation in the ATC is used to avoid invalidating kernel page translations 

with every context switch. 

5.2 Software 

The Regions IPC model has been implemented by modifying the W System [Vasude-

van 88] distributed operating system. The kernel program and process programs are 

written primarily in the C programming language [Kernighan 78] and compiled with 

the Sun Microsystems SunOS 4.1 C compiler. Assembly language is used for: 

• interrupt control, 

• switches between PRIVILEGED and NON-PRIVILEGED mode (invoking a primi-

tive; responding to an interrupt or exception), 

• process context switches (including switching the 68020 state), 

• accessing the Sun 3 MMU translation tables, and 

2A translation table is also called a translation look-a-side buffer (TLB). 
3The 68851 feature that distinguishes between page translations from separate contexts was not 

used because of implementation effort and anticipated insignificant time reductions. 
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• copying more than about 64 bytes of data (the C compiler does not use the 

processor's instruction cache to minimise copying time). 

5.3 Measurement Techniques 

The total elapsed time of a primitive is obtained by measuring the elapsed time to 

execute the primitive a large number of times (10000). and dividing that elapsed time 

by the number of iterations. Real time clocks in the Sun 3/75 (10 ms resolution) 

and GP1000 (62.5 ps resolution) were used for the measurements. 

The elapsed times of individual components of a primitive are obtained by in-

serting instructions into the kernel to toggle an external signal'. 

An 11P5402A digital oscilloscope was used to measure the average, minimum and 

maximum width of the resulting pulses. Pulse generation overhead time T0 was 

measured by executing instructions to turn on and turn off the signal without inter-

vening code. T.v was subtracted from the average pulse width measurements. 

T0 had a variance of about 1 js depending on the position of the instructions in 

memory and possibly other factors. Therefore, these measurements are approximate5 

indications of the time spent on each component of a primitive. 

The purpose of measuring component times is to determine where the time is 

being spent. Effort was not placed on error analysis or improvement of accuracy 

and precision because approximate measurements are sufficient for identifying which 

components take the most time. As a consequence the sum of the component times 

can differ from the corresponding total times. 

'The Sun 3/75 serial port RTS line and a control line attached to a GP1000 LED were used. 
'This technique was used to measure individual non-memory referencing instructions on the 

GP1000, Sun 3/75, Sun 3/50 and Sun 3/60. Those measurements correlated with the 68020 spec-
ifications [Motorola 89a]. However, the pulse widths were on the order of milliseconds; therefore, 
the variance of T.v was not significant. 
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Effort spent collecting the component measurements was reduced by instrument-

ing the entire kernel with signal control instructions. Those instructions could be 

included in or excluded from the compiled kernel. If they are included a user interface 

is used to successively select the component to measure. 

5.4 Data Copying Primitives 

copy-data-to and copy-data-from [Cheriton 88, Vasudevan 87] are IPC primitives 

that use the copy data passing mode. These primitives are not part of the Regions 

IPC model but they are part of the W System. The performance of copy-data-

to and copy-data-from can' be compared directly with the performance of pass-

region-to and pass-region-from. 

copy-data is used to refer to both copy-data-to and copy-data-from. 

pass-region is used to refer to both pass-region-to and pass-region-from. 

5.5 Total Elapsed Times 

The total elapsed times of the Regions IPC primitives executing on a Sun 3/756 and 

GP1000 are presented in Tables 5.1 and 5.2. 

If communicating processes are executing on the same node (or workstation) then 

communication is local, otherwise communication is remote. 

If communication is local the kernel passes a DRegion by modifying the MMU 

translation table entries and only copies the DRegion contents when necessary. If 

communication is remote and the DRegion is not shared then th kernel passes a 

6The current implementation does not support pass-region between Sun 3/75 workstations 
but it does support send-receive-reply and copy-data. Unoptimised total elapsed times for IPC 
between processes executing on separate 3/75s connected by a 10 Mbit Ethernet are: 1.6 ms for an 
SRR transaction, 1.3 ms for a 1 byte copy-data, 2.7 ms for a 1474 byte copy-data-to and 3.0 ms 
for a 1474 byte copy-data-from. An Ethernet packet has room for 1474 bytes of process data. 
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SRR Transaction Total Elapsed Time (/Ls) 

Sun 3/75 GP1000 
local remote 

send-receive-reply 288 398 851 

Table 5.1: send-receive-reply total elapsed time. 

Data Passing Total Elapsed Time (us) 

Sun 3/75 GP1000 
local remote 

(1 byte) (8 KB) (1 byte) (8 KB) (1 byte) (8 KB) 
pass-region-from 

DYNAMIC-SHARE 171 171 271 271 719 719 
MOVE 210 210 358 358 
non-shared . . . . 928 3084 
shared . . . . (not measured) 

DUPLICATE . . . . 695 2860 
deferred 171 171 270 270 
non-deferred 210 1505 302 1797 . 

deferred-write 317 1616 568 2060 . 

copy-data 
COPY 95 1392 128 1627 503 2693 

Table 5.2: pass-region-from and copy-data total elapsed time. 
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DRegion by creating a duplicate and copying its contents. Therefore, if the MOVE 

mode is used to pass a nonshared DRegion between GP1000 nodes then a duplicate 

is created on the destination node and the source is deallocated. Otherwise, the data 

is passed by modifying MMU translation table entries. The elapsed time to pass a 

shared DRegion with the MOVE data passing mode between GP1000 nodes was not 

measured (this time is expected to be approximately the same as the time for passing 

a DRegion with the DYNAMIC-SHARE mode between GP1000 nodes). 

The DUPLICATE data passing mode was implemented with and without deferred 

copying for local communication so that the times could be compared. Therefore, 

there are three times for passing DRegions with the DUPLICATE mode. 

• non-deferred: The DRegion is duplicated before the primitive returns. 

• deferred: Duplication of the DRegion is deferred and a write is not invoked 

on the DRegion before the binding is deleted therefore it is never duplicated. 

• deferred-write: Duplication of the DRegion is deferred and a write causes the 

exception handler to duplicate the DRegion. 

Every measurement involved two processes: a sender and a receiver. For the 

send-receive-reply measurements the receiver continuously invoked receive and 

reply in an infinite loop while the sender invoked send to the receiver a fixed number 

of times. For the other measurements the sender invoked send to the receiver passing 

an address in the message and the receiver invoked the primitive a fixed number of 

times. 

copy-data can copy data continuously between the same source and destination. 

pass-region always allocates an ARegion and there are a limited number of ARe-

gions so pass-region cannot be invoked continuously without intervening delete-

region operations. 

If the data passing mode is MOVE then the receiver passes the DRegion to and 
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from the sender during each iteration. The times for MOVE presented in Table 5.2 are 

half of the total measured time. The current implementation of pass-region-to and 

pass-region-from invoke a common procedure for local communication and perform 

the same components in a different order for remote communication. Therefore, the 

times of pass-region-to and pass-region-from are expected to be similar. 

If the mode is DUPLICATE or DYNAMIC-SHARE then the receiver passes the DRe-

gion from the sender and deletes the new binding during each iteration'. The times 

shown in the table are the total time minus the time to delete the new binding (see 

Section 5.6.2 for the delete times)-

pass-region-from of a nonshared DRegion between processes executing on sep-

arate nodes of the GP1000 is over 200 ps faster if the DUPLICATE mode is used rather 

than the MOVE mode. This is because the implementation of DUPLICATE allocates 

a page so that the destination node can copy the data directly into it. Whereas the 

implementation of MOVE does not allocate a page because a page is not required if 

the source DRegion is shared. 

5.5.1 Benefits and Costs of Avoiding Unnecessary Copying 

The elapsed times of the IPC primitives with respect to the number of bytes passed 

is presented in Figure 5.1 for local communication on a Sun 3/75, Figure 5.2 for 

local communication on a GP1000 node, and Figure 5.3 for remote communication 

between nodes of a GP1000. 

These three figures demonstrate that for the current implementation the data 

passing modes that are implemented as MMU translation table manipulations are 

more efficient than copy-data if more than about 1024 bytes are passed. However, 

copy-data is more efficient if less than about 256 bytes are passed. 

7Elapsed times of pass-region-to are not presented but they are expected to be within a few 
its for local communication and a few 10's of Its (because of parallelism) for remote communication. 
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Figure 5.1: Local Sun 3/75 elapsed time versus number of bytes. 
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Figure 5.2: Local GP1000 elapsed time versus number of bytes. 
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The DYNAMIC-SHARE mode is efficient if the processes are executing on processors 

that share physical memory because the data only has to be passed once. The 

performance of sharing data between processes executing on separate nodes of the 

GP1000 or separate Sun 3 workstations has not be measured. 

pass-region with the MOVE mode is only more efficient than copy-data if com-

munication is local and there is more than 1024 bytes of data. 

pass-region with the DUPLICATE mode is more efficient than copy-data if com-

munication is local, duplication is deferred and a write is not invoked on either 

duplicate of the DRegion. It is also more efficient if the source and destination of 

copy-data are not word aligned and there are more than about 4096 bytes of data 

because of the 68020 memory access characteristics (see Figure 5.1). 

5.5.2 Factors that Increase the Elapsed Time 

These total elapsed times are the lowest possible times for the current implementa-

tion. There are factors that increase the total elapsed time. 

When an ARegion is allocated a page entry is required. Page entries are imple-

mented in pmegs as described in Section 4.6. The measurements do not include the 

allocation or deallocation of pmegs. For the current implementation, pmeg allocation 

increases the total elapsed time by 64 ps and 54 ps on the Sun 3/75 and GP1000, 

respectively. Pmeg deallocation increases the total elapsed time by 63 ps and 44 ps 

on the Sun 3/75 and GP1000, respectively. 

No other processes were executing during the measurements. Therefore, when a 

process is rescheduled, it is the highest priority process. If there are higher priority 

processes in the ready queue when a process is rescheduled then the processing time 

will increase by about 10 ,as + 2 as/process on a Sun 3/75. 

The receiver does not receive messages from any other senders during the SRR 
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transaction measurements. If other messages are received and not replied to then 

the total elapsed time of send-receive-reply increases by about 3 ps/process. 

The processes had minimum sized contexts: 1 segment (128K byte) for process-

code, 1 segment for process-static-data and 4 segments for process-dynamic-data. 

Context switch elapsed time increases by about 2 ps/segment on a Sun 3/75. 

The data copied by copy-data do not cross segment boundaries and they are 

word and page aligned. Tithe data cross a segment boundary then the elapsed time 

increases by about 2 ps for each additional segment. If the source and destination 

data-regions are not word aligned then the total elapsed time increases by about 

O.226ps/byte on a Sun 3/75 (as shown in Figure 5.1). If the source and destination 

are not page aligned then the remote GP1000 elapsed time increases because the most 

efficient internode data transfer method (btransQ) requires physical addresses. 

The total elapsed time of remote communication on the GP1000 also increase if 

there is contention on the GP1000 Butterfly switch or contention for the queue of 

incoming kernel requests. 

5.6 Component Times 

The total elapsed times of the primitives are now analysed. The differences between 

the data passing thode elapsed times are identified. 
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5.6.1 Passing DRegions 

The component times for copy-data and pass-region-from between processes ex-

ecuting on the same node (or workstation) are presented in Table 5.3 and Table 5.4 

for the Sun 3/75 and GP1000, respectively. Component times were not measured 

for communication between remote nodes of GP1000 because of time constraints. 

Local Sun 3/75 Data Passing Component Times (its) 

Component 
Category. 

copy-data pass-region-from 
DUPLICATE MOVE 

non 
-deferred 

deferred deferred 
-write 

System Call 52 52 52 52 52 
Confirm Arguments 21 28 28 28 28 
Interrupt Control 3 .3 3 3 3 
Map Other Context 12 12 12 12 12 

Allocate ARegion . 26 26 26 26 
Remap Page . . 12 12 12 
Update DRegion . . 7 7 

Incur Exception . . . 55 
Deferred Duplicate? . . . 24 
Allocate DRegion . 20 . 17 
Allocate Page . 27 . 27 
Copy Data (1 byte) 8 8 . 8 
Map New Page . . . 11 

Deallocate ARegion . . . . 18 
PMEG Empty? . . . . 20 

Overhead . 31 31 31 35 
Component Total 96 207 171 313 206 

Measured Total 95 210 171 317 210 

Table 5.3: Local Sun 3/75 pass-region-from and copy-data component times. 

The component times for the DYNAMIC-SHARE mode are not presented because 
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Local GP1000 Data Passing Component Times (ps) 

Component 
Category 

• 

copy-data pass-region-from 
DUPLICATE MOVE 

non 
-deferred 

deferred deferred 
-write 

System Call 62 56 56 56 62 
Confirm Arguments 21 32 32 32 32 
Interrupt Control 3 4 4 4 • 4 
Map Other Context 22 20 20 20 20 

Allocate ARegion . 34 34 34 34 
Remap Page . . 69 69 96 
Update DRegion . . 7 7 

Incur Exception . . . 66 
Deferred Duplicate? . . . 35 
Allocate DRegion . 20 . 19 
Allocate Page . 60 . 60 
Copy Data (1 byte) 16 16 . 16 
Map New Page . . . 91 

Deallocate ARegion . . . . 18 
PMEG Empty? . . . . 35 

Overhead • 48 48 48 53 
Component Total 124 290 270 557 354 

Measured Total 128 301 270 568 358 

Table 5.4: Local GP1000 pass-region-from and copy-data component times. 
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they are very similar to the component times for the DUPLICATE mode when dupli-

cation is deferred and write is not invoked on the DRegion. 

The component times are grouped into the following categories. 

System Call: Time to execute system calls. 

Confirm Arguments: Time to confirm that argument values are valid. 

Interrupt Control: Time to disable and enable interrupts. 

Map Other Context: Time to map page entries that are modified or that are 

required for directly copying the data. 

Allocate ARegion: Time to allocate an ARegion. 

Remap Page: Time to modify page entries. 

Update DRegion: Time to update DRegion counters. 

Incur Exception: Time to detect a write to a page with READ-ONLY access, 

invoke the exception handler, and restart the write. 

Deferred Duplicate?: Time to confirm that the exception is due to a deferred 

duplicate. 

Allocate DRegion: Time to allocate and initialise a DRegion (not including the 

time to allocate a physical. page of memory). 

Allocate Page: Time to allocate a physical page of memory. 

Copy Data (1 byte): Time to copy 1 byte of data. 

Map New Page: Time to map the duplicated page into the context. 

Deallocate ARegion: Time to unbind the source ARegion (MOVE). 

PMEG Empty?: Time to check if the pmeg is empty and should be deallocated. 

Overhead: Time to call the procedure that passes DRegions and to cache values 

in processor registers. . 

Component Total: Total of the component times. 

Measured Total: Total elapsed times from Table 5.2. 
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The system call time for copy-data and pass-region-from with the MOVE mode 

is greater than the other system call times on the GP1000 because of a measurement 

artifact. The technique used to measure the component times involved passing a 

value from the kernel level to the process level- indicating whether or not the next 

primitive was to be measured. This value was passed in the data for these two 

primitives and the GP1000 incurred an ATC miss when the value was accessed at 

the process level. 

The elapsed times of copy-data and pass-region can be improved significantly. 

The system call time for copy-data and pass-region can be reduced by about 25 ,as 

if the technique described in Section 5.7 is used. The allocation and deallocation of 

ARegions and DRegions can be improved. The time required to check if a pmeg 

is empty and to allocate or deallocate a pmeg can be reduced to a few /is. The 

GP1000 implementation for allocating and mapping pages is very inefficient and 

should be implemented in assembly language. The overhead time required to invoke 

the procedure that passes DRegions and cache values in processor registers can be 

reduced. These improvements were not implemented because of time constraints. 

5.6.2 Creating and Deleting Regions 

The component times for create-region and delete-region are presented in Ta-

ble 5.5. 

The following component time categories have not been explained previously. 

Update Region Variables: Time to update the variables used to implement 

ARegions and DRegions. 

ARegion Allocation: Time for create-region or delete-region to allocate or 

deallocate an ARegion, respectively. 

Page-entry Allocation: Time for create-region or delete-region to allocate 
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Create and Delete Component Times (ps) 1 
Components create-region delete-region 

Sun 3/75 GP1000 Sun 3/75 GP1000 
System Call 48 50 45 47 
Confirm Arguments 7 7 6 •6 
Interrupt Control 4 3 4 4 
Update Region Variables . . 7 8 
ARegion Allocation 25 30 20 21 
Page-entry Allocation 6(70) 7(61) 19(83) 35(78) 
Invalidate ATC Entry . . . 11 
DRegion Allocation 13 16 16 17 
Page Allocation 26 55 24 45 
Circumstances 5 7 
Miscellaneous 1 1 5 7 
Component Total 130 169 151 208 

Total If DRegion Shared 111 146 

Table 5.5: create-region and delete-region component times. 

or deallocate a page entry, respectively. The time to allocate or deallocate a 

pmeg is included in parentheses. 

Invalidate ATC Entry: Time to invalidate an entry of the GP1000 68851 MMU 

translation cache. 

DRegion Allocation: Time for create-region or delete-region to allocate or 

deallocate a DRegion, respectively. This does not include the time to allocate 

or deallocate a physical page of memory. 

Page Allocation: Time for create-region or delete-region to allocate or deal-

locate a physical page of memory, respectively. 

Circumstances: Time to determine the circumstances of the operation (are there 

other bindings to the DRegion?) 

Miscellaneous: Time to cache values in processor registers. 

Total If DRegion Shared: Time to delete a binding to a shared DRegion as 
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opposed to a non-shared DRegion. This time does not include the time to 

deallocate a DRegion (and physical page). 

The measured total elapsed time for create-region followed immediately by 

delete-region are 280 ps and 384 js on the Sun 3/75 and GP1000, respectively 

(the sum of the component times from Table 5.5 are 281 ts and 377Its). 

5.6.3 SRR Transactions 

Because an SRR transaction is the only way  processes can synchronise their execu-

tion its performance is important for applications where IPC is used frequently. 

The component times for an SRR transaction grouped by function are presented 

in Table 5.6. The Sun 3/75 and local GP1000 measurements provide information 

about elapsed time and processor utilisation. The remote GP1000 measurements 

provide information about processor utilisation but not about elapsed time because 

parallelism is not taken into account. This explains the 55 is difference between the 

total of the component times and the measured total elapsed time from Table 5.1. 

The following component time categories have not been explained previously. 

Context Switches: Time to perform context switches. 

Data Transfer: Time to copy messages including mapping process segments into 

kernel-data area. 

Priority Scheduling: Time to block and schedule processes. 

Circumstances: Time to determine the circumstances of the operations (Is re-

ceiver local or remote? Is receiver blocked waiting for messages? etc.). 

House Keeping: Time to record information needed to handle potential process 

termination and communication failures. 

Miscellaneous: Time to cache values in registers and set return values. 

8Processes could perform a busy wait on a shared variable value; however, this technique is 
inefficient and an atomic test-and-set instruction is not provided for distributed shared memory. 
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SRR Transaction Functional Component Times (as) 

Category Sun 3/75 GP1000 
local remote 

A Context Switches 76 26.4% 112 28.6% 228 25.1% 
B System Calls 75 26.0% 104 26.6% 104 11.5% 
C Data Transfer 58 20.1% 83 21.2% 110 12.1% 
D Confirm Arguments 26 9.0% 28 7.2% 115 12.7% 
E Priority Scheduling 15 5.2% 18 4.6% 13 1.4% 
F Interrupt Control 10 3.5% 10 2.6% 11 1.2% 
G Circumstances 10 3.5% 10 2.6% 12 1.3% 
H House Keeping 10 3.5% 10 2.6% 35 3.9% 
I Miscellaneous 6 2.1% 8 2.0% 40 4.4% 
J DRegion Checks 2 0.7% 8 2.0% 19 2.1% 
K Packet Delivery . . 208 23.0% 
L Page Alignment . . 11 1.2% 

Component Total 288 100% 391 100% 906 99.9% 

Measured Total 288 398 851 

Table 5.6: send-receive-reply component times grouped by function. 

DRegion Checks: Time to check whether a DRegion is being passed with the 

message (a feature to pass a DRegion with a message was included in the 

implementation but not in the Regions model). 

Packet Delivery: Time to deliver a packet to a kernel executing on another node 

(parallelism is ignored). 

Page Alignment: Time to check if messages cross page boundaries. 

The remote GP1000 Context Switèh time includes the time to return from the 

internode interrupt. 

The remote GP1000 Confirm Arguments time includes MMU operations to con-

vert process addresses to physical addresses. 

The components of local and remote SRR transactions are presented in the or-

der they are executed in Tables 5.7 and 5.8. The elapsed time and category from 
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Table 5.6 is specified for each component. Components from the Miscellaneous, 

DRegion Checks, and Page Alignment categories are not included to simplify the 

presentation. The concurrency of the remote SRR transaction is illustrated. 

Local communication is faster than remote communication on the GP1000 be-

cause: 

• data must be copied across the Butterfly switch, 

• remote processors must be interrupted, 

• the atomic test-and-set operations used to synchronise access to kernel request 

queues are slow, and 

• process addresses must be converted to physical addresses. 
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Local SRR Transaction Sequential Component Times (as) 

Category 
Component 

and Time 

Sender Receiver 

3/75 GP1000 

B 28 

C
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C
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t.
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i
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i
 
t
 
w
 
C
 

C
)
 

send system call (blocked waiting for 
D 12 confirm arguments send) 

F 2. disable interrupts 

II 6 save arguments 

G 3 if (receiver local) 

G 3 if (receiver waiting) 

H 2 attach to receiver 

C 29 transfer message 
E 1 block sender 
E 3 if (receiver top pri) 

A 38 switch to receiver 

F 2 enable interrupts 

B 27 reply system call 

D 3 confirm arguments 

F 2 disable interrupts 

G 3 if (sender local) 

D 7 find & detach sender 

C 29 transfer message 

7 schedule sender 

F 1 enable interrupts 

B 20 receive system call 

D 4 confirm argument 
F 2 disable interrupts 

G 1 if (no messages) 

H 2 save argument 

E 1 block receiver 
E 3 if (sender top pri) 

A 38 switch to sender 
F 1 enable interrupts 

B 28 36 send system call 

Table 5.7: Local send-receive-reply component times in execution order. 
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Remote GP1000 SRR Transaction Sequential Component Times ( is) 

Component 
Category 
and Time 

Sender Component 
Category 
and Time 

Receiver 

B 36 send system call . (blocked waiting for 
D 39 confirm arguments . send) 
F 1 disable interrupts . (another process 
H 8 save arguments . executes) 
G 3 if (receiver remote) 
K 2 initialise packet 
K 73 deliver packet receive packet 
K 39 complete packet D 20 confirm arguments 
E 1 block sender G 3 if (receiver waiting) 

• (another process H 8 attach to receiver 
• executes) K 5 wait for packet 
• C 46 transfer message 
• E 5 schedule receiver 
• A 114 switch to receiver 
• F 2 enable interrupts 
• B 37 reply system call 
• D 39 confirm arguments 
• F 2 disable interrupts 
• a 4 if (sender remote) 
• D 7 find & detach sender 
• K 13 reinitialise packet 
• receive packet K 71 deliver packet 

D 7 confirm arguments C 64 transfer message 
H 17 detach receiver K 3 complete packet 
K 2 wait for packet F 2 enable interrupts 
E 6 schedule sender B 31 receive system call 
A 114 switch to sender D 3 confirm argument 
F 2 enable interrupts F 2 disable interrupts 

• G 2 if (no messages) 
• H 2 save argument 
• E 1 block receiver 

B 36 send system call 

Table 5.8: Remote GP1000 send-receive-reply component times in execution order. 
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5.7 Lessons Learned 

Several lessons were learned while achieving an efficient implementation. 

Keep it simple.  

The performance of an earlier version of the implementation was significantly 

improved by rewriting the implementation to use simple special purpose procedures 

and macros rather than more complex general purpose procedures and macros. 

Actually measure elapsed time of components.  

Attempts to improve performance based on hypothetical explanations can actu-

ally degrade performance. 

For example, it was assumed that copying 64 byte messages was expensive. There-

fore, the kernel design allows messages to be copied directly from one context to 

another by mapping a context into the kernel-data area. However, measurements 

showed that mapping an entire context was significantly more expensive than copying 

64 bytes. Fortunately, only a single segment is required under most circumstances. 

Careful coding (using the macro and in-line features described below) resulted in 

elapsed times less than the alternative method of copying the data twice. However, 

if messages cross segment boundaries (or if messages were shorter) then copying twice 

might be more efficient. 

In addition, an optimised data copying routine was used to copy messages. How-

ever, the C compiler generates faster code for copying 64 bytes. 

Real time measurements also revealed that significant time was spent performing 

system calls. The arguments were copied from the process stack to the kernel stack 

to conform with C argument passing semantics. This time was significantly reduced' 

for the send, receive, and reply primitives10 by passing a pointer to the process 

'This technique can reduce the elapsed time of a system call by about 10-30 ps. 
'°The technique was not applied to the other primitives due to time constraints. 
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stack in a register. 

The elapsed time of a procedure call and argument passing on the MC68020 is 

significant". Procedures are useful for modularising code, reducing coding effort and 

reducing object code size; however, implementing very simple operations significantly 

increases the total elapsed time. 

Use the features of the compiler to achieve efficiency.  

The C language allows requests to bind variables to registers but does not specify 

how the compiler should do this. Inspection of assembler instructions produced by 

the C compiler (-S option) revealed that the order of declaration is used for register 

allocation. Reducing the number of variables and carefully allocating registers to 

variables resulted in significant performance improvements. 

The C compiler provides macro and in-line expansion features to avoid proce-

dure call overhead. Macro calls were used to make the code more readable without 

incurring procedure call overhead. Assembly instructions are required for interrupt 

control and Sun 3 MMU operations. The in-line feature was used to invoke those 

operations without incurring procedure call overhead". 

5.8 Comparisons With Related Systems 

It may not be appropriate to compare the elapsed time performance of primitives 

from different models because the objectives of the design and implementation of the 

models are not necessarily the same. In addition, the models are often implemented 

on different hardware with different characteristics. 

However, some related work is mentioned to emphasise the efficiency of this 

implementation. 

"Newer processors, like the SPARC, reduce this time with the register window feature. 
12The asm() feature for specifying assembly code directly in the C source code disabled compiler 

optimisation. 
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Bershad, et. al. demonstrated efficient remote procedure call between contexts on 

the same machine (LRPC) [Bershad 89]. They measured elapsed times for null-RPC 

between contexts on a DEC SRC Firefly multiprocessor [Thacker 88]. The elapsed 

time for a single processor to perform a null-RPC was 157 ps. The elapsed time 

to perform a null-RPC to another processor waiting for the call was 125 Its. They 

compared these times with the elapsed times of operations from other well known 

systems that claim to provide efficient implementations. Their times are significantly 

lower than times for similar systems13. 

An SRR transaction is similar to a null-RPC but there is an additional system 

call and two messages are copied. The elapsed time of a local SRR transaction 

on a Sun 3/75 for the current implementation is 288 its. This time is reduced to 

288 - (20 + 58) = 210 ps14 if the additional system call and data transfers 

are removed. The Firefly's C-Vax processor is faster than the Sun 3/75's 16.7 MHz 

68020; therefore, this implementation of send-receive-reply provides elapsed times 

that are very close to the lowest times reported in the literature. 

Abrossimov, et. al. analysed the elapsed time of deferred copying for large mem-

ory objects (DRegions) in the Chorus distributed system [Abrossimov 89]. The 

elapsed time for passing a one page memory object with deferred copying between 

processes executing on a Sun 3/6015 was 400 ps and 2700 ps for Chorus and Mach, 

respectively. If a write operation is invoked on the memory object then the total 

time is 2100 ps and 4820 ps for Chorus and Mach, respectively. These times are 

for passing large memory objects. Abrossimov, et. al. mentioned that they will be 

improving the efficiency of deferred copying for shorter (maximum 8 pages?) mes-

'3The implementors of the other systems probably did not concentrate on the elapsed time of 
local operations. 

14 These costs can be reduced in special cases by combining reply and receive into a single 
primitive and by passing data in processor registers [Cheriton 84]. 
'5A Sun 3/75 is about 1.2 to 1.3 times slower than a Sun 3/60 because of the 60's higher clock 

frequency (20 MHz) and lower'memory cycle time (250 ns). 
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sages. This work should be directly comparable with the current implementation of 

the Regions IPC model. 

It is interesting to note that the Chorus implementors emphasised efficiency; 

however, they failed to eliminate a significant cost. Their implementation takes 

1400 ps to copy an 8K byte page. However, measurements on a Sun 3/60 using a 

copy routine that takes advantage of the 68020 instruction cache indicate that an 

8K byte page can be copied in 985 ps. Therefore their times could be reduced by 

20-30%. 

Tzou and Anderson took advantage of MMU hardware to reduce the elapsed time 

of passing data between separate contexts in the DASH distributed system [Tzou 88]. 

The elapsed time for passing an 8K byte page on a Sun 3/5016 was 1194 p5. 

Experiments were not performed to demonstrate the usefulness of the DYNAMIC-

SHARE mode or the deferred copying implementation technique because of time con-

straints. Deferred copying has been evaluated for UNIX fork operations [Smith 88]. 

5.9 Summary 

An analysis of the elapsed time performance of implementations of the Regions IPC 

primitives on a Sun 3/75 workstation and a Butterfly multiprocessor has been pre-

sented. The elapsed time measurements demonstrate that the Regions primitives 

save significant time by avoiding unnecessary copying if more than 1024 bytes of 

data are passed. If data must be copied then the Regions primitives are less efficient 

than a primitive that copies the data by a fixed overhead. This overhead can be 

significantly reduced by improvements to the implementation. 

The elapsed time of a local SRR Transaction is comparable with the lowest times 

'6A Sun 3/50 is about 1.3 to 1.4 times slower than a Sun 3/75 bcause of the 50's lower clock 
frequency ( 15 MHz) and slower memory cycle time (320 ns). 
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reported in the literature. The elapsed times of the primitives that take advantage 

of the MMU are the best among the times reported for similar systems. 



Chapter 6 

Conclusions 

We conclude that the semantics and efficiency of data-passing IPC operations can 

be significantly improved by supporting the data-passing modes. The Regions IPC 

model is thus an improvement over other IPC models used in contemporary dis-

tributed systems. 

Data-passing semantics are enriched by the duplicate, move and dynamic-share 

modes. The mode expresses the intended access to the memory containing the passed 

data. This enables efficient implementation of data-passing by avoiding unnecessary 

data copying. 

Regions supports separate-context and shared-memory semantics. Memory-access 

interference is controlled with run-time enforced contexts. Memory can be shared 

between contexts when the benefits of sharing outweigh the risk of interference. 

Interference is restricted to processes that have access to the shared memory. Pro-

grammers not only have control over which processes share which memory but also 

the duration that each process shares the memory. 

Regions demonstrates how the data-passing modes can be supported in a syn-

chronous message-passing IPC model. Other models such as asynchronous message-

passing and remote procedure call can also be enriched with these data-passing 

modes. 

Efficient implementation of the data-passing modes makes a data-passing IPC 

model more competitive with memory-sharing IPC. models. This is because the 

enriched model does not prevent processes from sharing memory. Therefore it is 

possible to take advantage of shared physical memory. 

108 
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Regions IPC is an improvement over the IPC of other distributed operating sys-

tems because it is simple, it supports enriched data-passing semantics, and it can be 

implemented efficiently on networks of shared memory multiprocessors. The simple 

semantics and good performance of the Regions IPC operations provide a reference 

to compare other IPC operations with. The possibility of implementing IPC opera-

tions (with different or more complex semantics) as library routines based on Regions 

IPC operations can be considered. 

Use of the Regions IPC operations requires an understanding of the client/server 

concept. A server process is an object that provides an interface to client processes. 

A server can provide operations which support IPC semantics that are not pro-

vided directly by the Regions IPC operations. This is demonstrated in Chapter 3 

with sketches of three algorithms. The synchronous shared memory server (see Sec-

tion 3.3.3.2) demonstrates how memory sharing and synchronisation operations can 

be combined. 

The implementation of Regions IPC demonstrates low elapsed times for data-

passing operations that avoid unnecessary data copying. It also demonstrates that 

message-passing between processes executing in separate contexts on the same ma-

chine can be significantly more efficient then previously reported'. The implementa-

tion of the Reactive Kernel on the Ametek 2010 [Seitz 88] implies that Regions can be 

implemented efficiently on systems that integrate communication channel hardware 

with memory management hardware. 

The performance analysis identifies the real costs of an implementation of the 

model. Speculation about which factors contribute to the elapsed time can lead to 

misconceptions. A complete empirical performance analysis is not difficult to do and 

eliminates potential misconceptions about elapsed time performance. 

iRegions message-passing performance is comparable with lightweight remote procedure 
call [Bershad 89]. 
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6.1 Further Work 

The Regions IPC model with the data-passing modes can be an efficient basis for 

supporting a variety of parallel programming approaches. The semantics required 

for simple specification and efficient execution of parallel algorithms using each pro-

gramming approach must be determined. 

Several other models support a shared context for a set of processes. It would 

be useful to resolve whether or not Regions would benefit from supporting shared 

contexts. This would involve evaluating ( 1) the complexity of specifying parallel 

algorithms and (2) the performance of those algorithms on shared memOry multi-

processors. 

Hardware support for efficient data-passing across communication channels can 

be proposed based on the duplicate, move and dynamic-share data-passing mode 

semantics. Integration of MMU hardware, communication channel hardware and 

DMA hardware could significantly reduce the elapsed time of passing data from one 

context to another across a communication channel. MMD hardware that supports 

efficient context switch, translation table manipulations, and deferred copying could 

significantly reduce the elapsed time of passing data from one context to another 

when shared physical memory is available. 

The Regions model design and implementation can be improved is several ways. 

Capability based protection [Dennis 66] can be introduced to restrict which DRegions 

a server process can pass to or from a client's context. The performance of the model 

on uniform memory access multiprocessors and across communication channels could 

be demonstrated. ARegion allocation could be integrated with data heap allocation. 

Multiple page DRegion could be implemented. 
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