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Abstract

Cognitive radio is an emerging trend to solve the problem of scarce spectrum resources

in the prosperous area of wireless communication. By dynamically utilizing unoccupied

spectrums of primary (licensed) users, secondary (unlicensed) users can meet their own

communication requirements. While traditional security attacks on wireless networks still

exist, the cognitive radio technologies bring unique security challenges. Current literature

on solving these problems assume a central authority, which, for example, assumes the role

of a fusion centre. Dynamic wireless environments are composed of users from different

competing wireless operators, and assuming the existence of a central authority is a major

restriction. We propose approaches that do not rely on these centralized assumptions, and

are thus more applicable to practical cognitive radio networks.

Cooperative sensing is an effective solution to improve sensing accuracy and robustness

in the presence of fading and shadowing that make individual sensing less reliable. However,

when an adversary can corrupt some nodes in the network, the effectiveness of cooperative

sensing may degrade dramatically. We design the first fully distributed security scheme,

ReDiSen, to defend such attacks in cooperative sensing. We apply reputation generated

from exchanged sensing results as an aid to restrict the impact of malicious behaviours.

Both theoretical analysis and simulation results indicate that ReDiSen provides an effective

countermeasure against security attacks by enabling secondary users to obtain more accurate

cooperative sensing results in an adversarial environment. ReDiSen does not rely on a central

authority, and is therefore more applicable in dynamic cognitive radio networks.

In a cognitive radio network, selfish secondary users may not voluntarily contribute to

the desired cooperative sensing process. We design the first fully distributed scheme to

incentivize node participation in cooperative sensing, by connecting sensing and spectrum

allocation, and offering incentive from the latter to the former. Secondary users who are more
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active and report more accurate sensing values are given higher reputation values, which in

turn lead to lower prices in the spectrum allocation phase. Theoretical analysis and simula-

tion results indicate that the proposed method effectively incentivizes sensing participation,

and rewards truthful and accurate reporting. Our proposed system is fully distributed and

does not rely on a central authority, and so is more applicable in dynamic cognitive ra-

dio networks in practice. We also show how to improve the robustness of reputation when

malicious nodes report spurious reputation.

VCG (Vickrey-Clarke-Groves) spectrum auctions represent a classic type of truthful spec-

trum allocation method in cognitive radio networks. While security and privacy issues

recently start to draw attention in such spectrum auctions, there exists little work that

examines the scenario where the auctioneer is not fully trustworthy. We present the first

verifiable VCG spectrum auction that allows verification of the winner determination and

pricing phases of the VCG auction. We use maximal independent set enumeration and se-

cure multiparty computation to solve the verification problem, while protecting privacy of

wireless users. We propose different methods in different steps of the verification scheme, and

analyze the effectiveness, information leakage, and efficiency. Our scheme does not rely on a

third party, does not alter the auction process, and by using an offline verification process,

does not introduce extra delay to the auction process.



Acknowledgements

It is my great pleasure to thank all those who helped me in various ways during my graduate

studies in the University of Calgary.

I would like to thank my supervisors Dr. Rei Safavi-Naini and Dr. Zongpeng Li. They

have helped me in all means through my PhD years. Their invaluable insights and directions

enlightened my academic thinking. Their guidance through regular meetings ensures my

research was on the right trail. No result in this thesis would have come into light without

the strong support from them.

I would like to thank my other two supervisory committee members: Dr. CareyWilliamson

and Dr. Michael Locasto; my external examiners Dr. Ali Ghorbani and Dr. Abraham Fapo-

juwo; and the two examiners for my Candidacy Exam: Dr. Philip Fong and Dr. Majid

Ghaderi.

I would like to thank Ms. Deb Angus and Ms. Kay Koshin for their administrative

support during my research.

I would like to thank the Department of Computer Science, led by Dr. Ken Barker and

Dr. Carey Williamson. The staff in our Department offered me strong support through

their daily hard work on maintaining my research agenda. Thank you, Mary, Lorraine,

Craig, Britta, Katie, Camille, Susan, Maryam, Beverley, Erin, Tim, Darcy, Mark, Jennifer

and Coral.

I would like to thank Dr. Payman Mohassel, Dr. Mike Jacobson, Dr. John Aycock, Dr.

Marina Gavrilova, Dr. Jon Rokne, Dr. Jeffrey Boyd, Dr. Rob Kremer, Dr. Frank Maurer,

Dr. Faramaz Samavati for their help on research collaboration, teaching and graduate affairs

governance.

I would like to thank the Faculty of Graduate Studies and the Graduate Students’ As-

sociation, especially Dr. Lisa Young, Ms. Valerie McGillivray and Ms. Gillian Robinson for

iv



their great work on helping graduate students.

I would like to thank my colleagues in the ISPIA (Institute for Security, Privacy and

Information Assurance) and Networks Group: Ashraful, Ajay, Song, Mina, Tuan, Hadi,

Islam, Hoi, Mohammad, Masoud, Cheng, Fatemeh, Nashad, Raul, Pengwei, Setareh, Xi-

fan, Rashmi, Asadulla, Xiaowei, Ahmad, Zahra, Jayalakshmi, Arif, Zain, Arash, Ebrahim,

Mona, Mohsen, Saeed, Pooya, Hossein, James, Kris, Mod, Ida, Sumanta, Gaven, Mahavir,

Kassam, Mingwei, Hanan, Nissan, Xunrui, Fajun, Maxim, Emir, Ruiting, Ashwathi, Marian,

Ali, Faisal, Ibrahim, Aniket, Shambhavi, Tang, Linquan, Ming, Yang, Maryam, Yao, Haom-

ing, Shreya, Arsham, Brad, Michel, Narges, Tauhid, Saikar, Reza, Mostafa, Robin, Sarah,

Sutapa, Daniel, Negin, Ostap, Sebastian, Anton, Hasib and Benedict.



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Spectrum Sensing and Allocation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Why Cognitive Radio? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Cooperative Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 SSDF Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Selfish Behaviours and Consequences . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Reputation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 VCG Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Secure Multiparty Computation (SMC) . . . . . . . . . . . . . . . . . . . . . 25
3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Securing Distributed Cooperative Sensing . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Spatial-correlation-based Schemes . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Other Centralized Schemes . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Distributed Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Incentivizing Cooperative Sensing . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Verifying VCG Spectrum Auctions . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Other Unique Security Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Securing Distributed Cooperative Sensing . . . . . . . . . . . . . . . 38
4.2.2 Incentivizing Cooperative Sensing . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Verifying VCG Spectum Auctions . . . . . . . . . . . . . . . . . . . . 40

5 SECURING DISTRIBUTED COOPERATIVE SENSING . . . . . . . . . . 41
5.1 Reputation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Updating Values Based on Value Differences . . . . . . . . . . . . . . 42
5.1.2 Updating Values Based on Received Values . . . . . . . . . . . . . . . 45

5.2 Generating Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Generating Reputation Based on Value Differences . . . . . . . . . . 47

vi



5.2.2 Generating Reputation Based on Received Values . . . . . . . . . . . 49
5.3 Reputation Update Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Simulation Objective and Outline . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Value Update Process . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Percentage of Malicious Nodes . . . . . . . . . . . . . . . . . . . . . . 57
5.4.4 Density of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.5 Communication Range . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.6 Impact of θ on Convergence Speed . . . . . . . . . . . . . . . . . . . 62
5.4.7 Impact of CRN Sizes on Convergence Speed . . . . . . . . . . . . . . 62
5.4.8 Impact of Malicious Nodes on Convergence Speed . . . . . . . . . . . 63
5.4.9 Reputation Update Process . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6 INCENTIVIZING COOPERATIVE SENSING . . . . . . . . . . . . . . . . . 67
6.1 Incentive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Generating Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Sensing Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Sensing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.3 Reputation Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.4 Role of Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.5 Reputation Update Process . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Improving Robustness of Reputation . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.1 Simulation Objective and Outline . . . . . . . . . . . . . . . . . . . . 82
6.4.2 Pricing Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.3 Reputation Update Process . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.4 Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7 VERIFYING VCG SPECTRUM AUCTIONS . . . . . . . . . . . . . . . . . 89
7.1 Verifying Winner Determination . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 Verification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.1.2 Information Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.3 Reducing Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1.4 Privacy-Oriented Comparison . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Verifying Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2.1 Verification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2.2 Privacy-Oriented Comparison . . . . . . . . . . . . . . . . . . . . . . 103
7.2.3 Efficiency-Oriented Comparison . . . . . . . . . . . . . . . . . . . . . 105

7.3 Sufficiency of Only Using Maximal Independent Sets . . . . . . . . . . . . . 107
7.4 Incentive for the Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5.1 Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5.2 Reducing Number of Comparisons in Winner Determination Verification109
7.5.3 Reducing Number of Shares in Secret Sharing . . . . . . . . . . . . . 110
7.5.4 Reducing Number of Comparisons in Pricing Verification . . . . . . . 111

vii



7.5.5 Information Leakage Evaluation . . . . . . . . . . . . . . . . . . . . . 112
7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . 114
8.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 Limitations and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 115
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



List of Tables

4.1 Glossary of Notations in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Glossary of Notations in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Glossary of Notations in Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Glossary of Notations in Chapter 7.1 . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Different Scenarios During the Winner Determination Verification Process . 92
7.3 Different Scenarios During the Pricing Verification Process . . . . . . . . . . 104

ix



List of Figures and Illustrations

2.1 2014 Canadian Table of Frequency Allocations . . . . . . . . . . . . . . . . . 11
2.2 Measured Spectrum Occupancy . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 An Example of Emergency Environment . . . . . . . . . . . . . . . . . . . . 13
2.4 Illustration of A Cognitive Radio Network . . . . . . . . . . . . . . . . . . . 15
2.5 Fading and Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Illustration of an SSDF Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Illustration of A Spatial-Correlation-Based Scheme . . . . . . . . . . . . . . 28
3.2 Illustration of A Distributed Scheme . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Secondary Users Only Exchange Values with Their Neighbours . . . . . . . . 43
5.2 Value Update Process when Honest Nodes Assign Reputation to the Value

Differences. The Primary User is Transmitting and Located (a) 5 km, (b) 2.5
km Away from the Secondary User Network. . . . . . . . . . . . . . . . . . . 54

5.3 Value Update Process when Honest Nodes Assign Reputation to the Value
Differences. The Primary User is Not Transmitting. The Malicious Nodes
Implement the Always Attack Strategy. . . . . . . . . . . . . . . . . . . . . . 54

5.4 Value Update Process when the Honest Nodes Assign Reputation to the Re-
ceived Values. The Primary User is (a) Transmitting, (b) Not Transmitting. 55

5.5 Value Update Process when the Honest Nodes Assign Reputation to (a) Value
Differences, (b) Received Values. The Primary User is Not Transmitting.
Malicious Nodes Implement the Camouflaged Attack Strategy. . . . . . . . . 56

5.6 Average Updated Values in the Always Attack Strategy. . . . . . . . . . . . . 57
5.7 Average Updated Values in the Random Attack Strategy. . . . . . . . . . . . 58
5.8 Average Updated Values in the Intermittent Attack Strategy with 67% Intensity. 58
5.9 Average Updated Values in the Intermittent Attack Strategy with 50% Intensity. 59
5.10 Value Update Process when the Honest Nodes Assign Reputation to the Value

Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.11 Value Update Process when the Honest Nodes Assign Reputation to (a) Value

Differences, (b) Received Values. The Primary User is Transmitting. The Ma-
licious Nodes Implement the Random Attack Strategy. The Communication
Range of a Secondary User is 250 m. There is No Convergence in Either Case. 61

5.12 Value Update Process when the Honest Nodes Assign Reputation to (a) Value
Differences, (b) Received Values. The Primary User is Transmitting. The Ma-
licious Nodes Implement the Random Attack Strategy. The Communication
Range of a Secondary User is 500 m. Convergence Happens in (a) but Not in
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.13 Value Update Process with (a) θ = 0.997, (b) θ = 0.999. . . . . . . . . . . . 63
5.14 Relations between the Number of Nodes in a CRN and the Number of Rounds

towards Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.15 Relations between the Number of Malicious Nodes and the Number of Rounds

towards Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



5.16 Reputation Update Process. The Primary user is (a) Transmitting, (b) Not
Transmitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Observation on the Sensing Participations of Neighbours . . . . . . . . . . . 73
6.2 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node. Parameters: (a) {6, 1, 3, 0.5, 0.5}, (b) {5, 1, 4, 0.5, 0.5}. . . . . . . . 83
6.3 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node. Parameters: (a) {4, 3, 3, 0.5, 0.5}, (b) {2, 5, 3, 0.5, 0.5}. . . . . . . . 83
6.4 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node. Parameters: (a) {6, 1, 3, 0.9, 0.1}, (b) {6, 1, 3, 0.1, 0.9}. . . . . . . . 84
6.5 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node. Parameters: (a) {5, 1, 4, 0.9, 0.1}, (b) {5, 1, 4, 0.1, 0.9}. . . . . . . . 84
6.6 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node when the Reputation Values are Updated as (6.7): (a) δ = 0.1, (b) δ = 0.2. 86
6.7 Pricing Factors for an Always Active Node, a Selfish Node and a Malicious

Node when the Reputation Values are Updated as (6.7): (a) δ = 0.3, (b) δ = 0.4. 87
6.8 Reputation Fusion Process. The Reputation Fusion for the R(SA) of (a) An

Honest Node, (b) A Malicious Node. . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Relations between the Size of Circuits and the Number of Inputs. . . . . . . 109
7.2 Relations between the Number of bidders and the Number of Comparisons in

a Random Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Comparison of Two Secret Sharing Methods. . . . . . . . . . . . . . . . . . . 111
7.4 Number of Comparisons in Pricing Verification. . . . . . . . . . . . . . . . . 111
7.5 Number of Leaked Relations During Comparisons. . . . . . . . . . . . . . . . 112
7.6 Number of Leaked Bounds During Comparisons. . . . . . . . . . . . . . . . . 112

xi



List of Symbols, Abbreviations and Nomenclature

Symbol Definition

ACM Association for Computing Machinery

ATP Association of Tennis Professionals

BGW Ben-Or-Goldwasser-Wigderson

BMR Beaver-Micali-Rogaway

BS Base Station

CCC Common Control Channel

CPE Customer Premises Equipment

CPU Central Processing Unit

CR Cognitive Radio

CRN Cognitive Radio Networks

DARPA Defense Advanced Research Projects Agency

dBm Decibels of the measured power referenced to one milliwatt

DSA Dynamic Spectrum Access

DSP Digital Signal Processor

DST Dempster-Shafer Theory

EA Exploitation Attack

FCC Federal Communications Commission

FPGA Field-Programmable Gate Array

GVA Generalized Vickrey Auction

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IRIS robust cooperatIve sensing via iteRatIve State estimation

km Kilometre

xii



MAC Media Access Control

MANETs Mobile Ad-Hoc Networks

MIS Maximal Independent Set

MIT Massachusetts Institute of Technology

mW Milliwatt

NRT Neighbor-Reputation-Table

PDA Personal Digital Assistant

PHY Physical Layer

PS-TRUST Provably Secure solution for TRUST

PU Primary User

PUE Primary User Emulation

PU-NT Primary User Not Transmitting

PU-T Primary User Transmitting

QoS Quality of Service

RAN Regional Area Network

ReDiSen Reputation-based Distributed Sensing

RF Radio Frequency

RSS Received Signal Strength

SDR Software Defined Radio

SFDL Secure Function Definition Language

SNR Signal-to-Noise Ratio

SMC Secure Multiparty Computation

SPRT Sequential Probability Ratio Test

SSDF Spectrum Sensing Data Falsification

SU Secondary User

SVDD Support Vector Data Description

xiii



TRUST TRuthful doUble Spectrum aucTions

TTP Trusted Third Party

UE User Equipment

VA Vandalism Attack

VCG Vickrey-Clarke-Groves

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VoIP Voice over IP

WNaN Wireless Network after Next

WRAN Wireless Regional Area Network

WRC World Radiocommunication Conference

WSPRT Weighted Sequential Probability Ratio Test

XG neXt Generation radio

XT Crosstalk

xiv



Chapter 1

INTRODUCTION

1.1 Cognitive Radio Networks

To resolve the disparity between the escalating demand of wireless radio frequency and

spectrum under-utilization by license holders (primary users), the concept of an intelligent

wireless communications system, Cognitive Radio Network (CRN), has been proposed [4].

CRN represents an emerging trend for mitigating the spectrum scarcity problem faced in the

growing area of wireless communications. A cognitive radio is aware of its environment, and

adapts to new network scenarios based on its previous experiences. In CRNs, unlicensed users

(secondary users) can lease spectrum from the license holders (primary users) if no harmful

interference is incurred to the latter. Compared to the traditional fixed, static spectrum

allocation, CRNs bring more efficient usage of radio frequency for wireless communication [4].

1.2 Spectrum Sensing and Allocation

To minimize potential interference with the primary users, secondary users first sense whether

the spectrum of interest is occupied before attempting to access it. Spectrum sensing involves

the detection of the presence of a transmitted signal of interest, and is crucial for CRN

performance. In the sensing process, secondary users that operate cognitive radios should

not introduce harmful interference to the primary users [4]. It is sometimes challenging for

a cognitive radio to carry out reliable spectrum sensing. Signals suffer from shadow fading

and multi-path fading. A secondary user may also falsely detect a primary user because of

noise or interference. These problems can be addressed by coordinating multiple secondary

users to cooperate with each other in spectrum sensing [111]. Each secondary user acts
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as a sensing terminal that conducts local spectrum sensing. In the centralized cooperative

sensing process, individual nodes send their local sensing data to a central authority (fusion

centre), where data are processed about a final sensing decision.

Cooperative sensing can provide more accurate decision-making process, reduce amor-

tized resource consumption at individual nodes, improve the network throughput, and over-

come performance degradation [4]. Cooperative sensing is also helpful in accelerating the

sensing of many channels by assigning different secondary users to sense different channels.

After the cooperative sensing process, if the group decision on the spectrum state indicates

that the primary users are idle, then the secondary users execute spectrum allocation pro-

tocols to decide which of them may access the fallow spectrum.

The cooperative spectrum sensing and spectrum allocation processes introduced above

are implemented by the secondary users themselves without the involvement of the primary

users. Considering that no sensing result can reflect the primary user state perfectly, the

primary users can also actively play a role during the spectrum allocation process. Spectrum

opportunities can be announced by primary users rather than detected by secondary users,

if collaboration between primary users and secondary users is established [117].

Spectrum auction was proposed to efficiently share spectrum among secondary users in

interference-limited systems, while the primary users can generate additional profit in the

process [26]. In such a secondary spectrum market, an auctioneer periodically announces

the fallow spectrum to be auctioned. Then the interested secondary users act as bidders to

place their bids. The auctioneer implements the auction by collecting bids from the bidders

and computing the winners and their prices. The auctioneer publishes the list of winners to

all bidders and communicates the prices to the winners. A winner of the auction can lease

the spectrum from the primary user on a short-term basis with a price charged.

A spectrum auction can have multiple winners due to spatial reuse of a wireless chan-

nel. In contrast to commodity auctions, a spectrum auction allows multiple winning bidders
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as long as no interference is incurred among them. The presence/absence of interference

depends on the physical location and the transmission power of the secondary users. Two

secondary users are connected by an edge in the conflict graph if their transmissions interfere

with each other. VCG auctions are designed for multiple items where bidders can submit ar-

bitrary bids for every subset of items. Considering the spatial reusability of radio spectrums,

VCG auctions can be applied to implement spectrum auctions in cognitive radio networks.

1.3 Motivations

While traditional security attacks on wireless networks still exist, cognitive radio technologies

bring unique security challenges. In an adversarial network environment, an adversary may

compromise and control a subset of nodes to attack the cooperative sensing protocol, e.g.,

by reporting false sensing results that aim to affect the final group decision. Such attacks

are known as Spectrum Sensing Data Falsification (SSDF) attacks. Studies in the literature

suggest that the performance of cooperative sensing can degrade significantly due to the

falsified reports from malicious nodes [71].

Existing research on SSDF attacks typically assumes the existence of a fusion centre

that collects local measurements, and makes the final decision on primary users’ presence or

absence [1,17,20,26,27,37,42,48,56,69,70,84,90,109,117,125]. The requirement of a fusion

centre has its own problems:

1. The centralized schemes usually incur heavy communication overhead between

the fusion centre and the cognitive radios. The reporting channels between the

fusion centre and the secondary users are subject to fading, thus the results

become less reliable.

2. All spatial-correlation-based detection systems imply that the geo-locations of

all the cognitive radios are acquired by the fusion centre, prior to the sensing
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process. We observe that the cognitive radio networks are managed by differ-

ent wireless operators. The existence of a global location database amongst

competing operators may be unlikely, and cannot be assumed.

3. Malicious nodes can aim to compromise the fusion centre, and hence paralyze

the entire system. The fusion centre, carrying so much information, is an

attractive target of attack for privacy snoopers. The single point of failure

may incur a disaster of private information leakage.

4. All secondary users need to establish a connection with the fusion centre.

While nodes are moving, such constant connection requires extensive usage of

network protocols.

5. Another downside is the leak of private location information in some security

schemes [27, 48, 69], while it is often desirable to protect location privacy in

CRNs.

The existence of selfish secondary users is another problem in CRNs. Not all secondary

users are willing to participate in the cooperative sensing process, which requires individual

sensing and interaction with neighbouring nodes, and hence consumes energy and CPU

(Central Processing Unit) cycles. In distributed CRNs, the secondary users may belong

to different operators with different base stations, potentially pursuing selfish goals and

making independent decisions towards whether to cooperate with other secondary users,

to act alone, or even to become a free-rider. To implement fairness in the network and

help honest secondary users obtain better sensing results, effective control of such selfish

behaviour is important. How to incentivize the non-malicious but selfish secondary users

to participate in the cooperative sensing process is therefore an interesting and important

topic to investigate. The incentivizing method for cooperative sensing also needs to be fully

distributed without a central authority.
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In VCG auctions, the auctioneer first implements winner determination by comparing the

total valuations of the different independent sets in the conflict graph [38]. The auctioneer

then calculates the price for each winner in the winning independent set. In particular, the

price charged to a winning secondary user is set as the externality it exerts on the other

bidders. The auctioneer then publishes the winners as well as their individual prices to be

charged. Existing literature mostly assumes that the auctioneer is trustworthy throughout

the spectrum auction process. This is a rather strong assumption. In practice, the auctioneer

may be compromised in the winner determination and/or pricing phases of a VCG auction.

First, the auctioneer may announce a falsified set of winners, with whom it may have a

collusion. Second, the auctioneer can charge prices to the winners that are different than

what a VCG auction prescribes, for potentially gleaning a higher revenue.

For the first time in the literature, this thesis aims to detect such misbehaviours of the

auctioneer. The goals of our verification mechanism design include enabling both the winning

and losing secondary users in a VCG spectrum auction to discover whether the auction has

been truthfully implemented by the auctioneer, including both in winner selection and in

spectrum pricing. At the same time, the bidders’ privacy must be protected to the maximum

possible extent. For example, whenever possible, revealing direct or indirect information

about a user’s bid to other users should be avoided.

Another limitation in the literature is the breach of privacy of primary and secondary

users in some security schemes [27,47,48]. In wireless networks, privacy is usually required,

which is particularly important in the heterogeneous environments such as CRNs. Informa-

tion shall not be disclosed to a service or application without pre-approval. The location

privacy is important to be protected in CRNs. In addition, the privacy of the bidders shall

be protected during the verification process of VCG auctions.
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1.4 Contributions

The main contributions of this thesis are summarized below.

1. We design the first fully distributed secure spectrum sensing scheme - ReDiSen,

where nodes only exchange information with their neighbours, to secure co-

operative sensing. ReDiSen uses reputation to weight received values from

neighbours according to their trustworthiness. With the removal of the fusion

centre, the reputation system provides a mechanism to restrict the harm to

the network inflicted by malicious nodes, and to help secondary users correctly

identify the state of the primary user. ReDiSen can improve the robustness

against falsified reports from malicious neighbours. More specifically, if ma-

licious nodes report falsified values, reputation can improve the performance

by adjusting the cooperative sensing values closer to the real state of the pri-

mary user. Legitimate secondary users in a distributed CRN can identify the

presence/absence of primary users with high accuracy, despite the existence

of malicious users who may report bogus sensing results with significant er-

rors. ReDiSen also protects the location privacy of secondary users. Nodes

do not need to report their geographic location to either a central authority,

as required by schemes based on spatial correlation [27, 48, 69], or any other

neighbour. From examining messages transmitted in the system, one cannot

infer the precise location of a particular node.

2. We design the first fully distributed scheme to address the problem of incen-

tivizing cooperation in spectrum sensing. We design a reputation-based pricing

method to offer strong incentive for secondary users to pursue a lower price

in the spectrum allocation process. Such connection brings more effective in-

centives for secondary users to participate in the cooperative sensing process,
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compared to offering incentives from spectrum sensing only. With the help

of a fully distributed algorithm, the secondary users can compute the global

reputation value on sensing accuracy as public knowledge. To better reflect

the behaviours of secondary users, we model a reputation update process that

takes both previous behaviours and recent behaviour into account, while dis-

counting previous behaviours. To countermeasure attacks on the reputation

fusion process with spurious reputation from malicious nodes, we design the

first fully distributed algorithm to improve the robustness of reputation. The

accuracy of the public knowledge is improved, therefore, the incentives are

more robust for non-malicious but selfish secondary users.

3. We design the first verifiable VCG auction that protects against mis-behaviour

of the auctioneer. We show how an auctioneer can prove to the bidders that the

spectrum auction was conducted correctly. Our verification scheme protects

the privacy of bidders, without disclosing unnecessary information about the

actual bids placed by them. The verification scheme does not rely on a trusted

third party, and is hence more applicable to dynamic cognitive radio networks.

Our verification scheme does not modify or interfere with the VCG auction it-

self. The verification process is an optional and offline plug-in module. System

availability is guaranteed even with application of the verification.

1.5 Thesis Organization

This thesis is organized as follows.

In Chapter 2, we introduce the background about CRNs. Section 2.1 introduces the

reason why CRNs are proposed. Section 2.2 introduces the concept of CRNs. Section 2.3

and Section 2.4 introduce spectrum sensing and cooperative sensing. Section 2.5 discusses

the SSDF attacks to be counter-measured in Chapter 5. Section 2.6 discusses the selfish
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behaviours and consequences in CRNs to be counter-measured in Chapter 6. Section 2.7

overviews different kinds of reputation systems. Section 2.8 introduces VCG spectrum auc-

tions to be verified in Chapter 7 through secure multiparty computation (SMC) introduced

in Section 2.9.

In Chapter 3, we outline the related work of securing distributed cooperative sensing,

incentivizing spectrum sensing, as well as verifying VCG spectrum auctions to be discussed

in Chapters 5, 6, and 7. We also introduce some papers on other unique security attacks

in CRNs.

In Chapter 4, we introduce the network model and attack models for Chapters 5, 6,

and 7.

In Chapter 5, we present our contribution on securing distributed cooperative sensing

in CRNs. Section 5.1 introduces the ReDiSen scheme, which can improve the cooperative

sensing accuracy in adversarial environments. Section 5.3 extends Section 5.1 to multiple

sensing sessions through introducing the reputation update process. Section 5.4 discusses

the simulation objective, outline and results. Section 5.5 concludes Chapter 5 by discussing

the assumptions, simulation parameter selections, limitations and possible future directions.

In Chapter 6, we present our contribution on incentivizing cooperative sensing in CRNs

with reputation-based pricing. Section 6.1 presents the reputation-based pricing method.

Section 6.2 is on reputation generation through sensing participation, sensing accuracy, and

reputation update. Section 6.3 introduces the method for defending attacks in the reputation

generation process. Section 6.4 presents simulation results. Section 6.5 concludes Chapter

6 by discussing the assumptions, simulation parameter selections, limitations and possible

future directions.

Chapter 7 presents our contribution on verifying VCG spectrum auctions in CRNs.

Section 7.1 and Section 7.2 describe the verification methods in the winner determination

and pricing phases through SMC, and discuss information leakage in different methods.
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Section 7.3 and 7.4 analyze the sufficiency and incentives during the verification process.

Section 7.5 evaluates the efficiency and information leakage of the verification scheme. Sec-

tion 7.6 concludes Chapter 7 by discussing the assumptions, limitations and possible future

directions.

We conclude the thesis with the summary of contributions, limitations, and possible

future research directions in Chapter 8.
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Chapter 2

BACKGROUND

In this Chapter, we introduce the background related to this thesis, including the motivation

behind the proposal of CRNs, the concept of CRNs, spectrum sensing, cooperative sensing,

SSDF attacks, selfish behaviours and consequences, reputation systems, VCG spectrum auc-

tions, and Secure Multiparty Computation (SMC).

2.1 Why Cognitive Radio?

Wireless communication is carried by radio waves in the physical layer. Radio waves are

characterized according to their frequency. A radio spectrum is divided into a number

of frequency bands, each possessing particular characteristics, which determine the usage

appropriate to that band. Spectrum in a country can either be purchased or allocated via

government decree.

The number of wireless users and applications have grown rapidly in recent years. As

the usage of small portable devices such as smart phones increases, Web surfing and data

accessing from sites such as YouTube through wireless networks are becoming more common.

Consequently, the volume of wireless traffic rises. This requires more spectrum bandwidth to

provide satisfactory services. However, there is only a fixed amount of spectrum allocated to

license holders (primary users). Each license holder maintains exclusive rights to its allocated

spectrum, and unlicensed devices are not permitted to transmit in licensed bands. Spectrum

is becoming increasingly crowded.

The official regulatory provisions that pertain to frequency allocations in Canada are

given in the Canadian Table of Frequency Allocations and the related spectrum policies [43].

Figure 2.1 is based on the 2014 version of the table, which was developed from decisions of
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World Radiocommunication Conference (WRC). Figure 2.1 provides a graphic representation

of Canadian electromagnetic spectrum allocations between 9 Hz and 275 GHz. Most of the

spectrums are already occupied by primary users.

Figure 2.1: 2014 Canadian Table of Frequency Allocations

The traditional static spectrum allocation strategy is inefficient. There are a lot of oppor-

tunities in spectrum allocation strategy. Measurement studies have shown that spectrum is

under-utilized in both temporal and spatial domains. Many sections of the radio frequency

owned by federal agencies are unused, which leads to artificial spectrum scarcity [99]. Fig-

ure 2.2 shows the average spectrum occupancy by band in the Town of Vienna, Virginia,

USA measured by the Shared Spectrum Company [91]. We can see most of the spectrums

are utilized less than 20%. These unoccupied spectrums are normally referred to as White

Spaces.

Due to jurisdictional and organizational disparities, there are different wireless frequen-

cies, standards, and technologies for a wide range of applications. In some emergency situ-

11



Figure 2.2: Measured Spectrum Occupancy

ations, many public safety groups such as ambulance service, police service, and fire service

cannot easily communicate with each other. Figure 2.3 illustrates an emergency environ-

ment, where different public service vehicles cannot communicate with each other directly

because of different radio frequencies. Communication through the Base Stations (BSs) of

each service suffers from delay of synchronization, and security vulnerabilities in the com-

munication of multiple paths. The public safety community is in need of extra spectrum to

enable direct communication.

In this kind of heterogeneous network, reliable communication across platforms employing

different communication standards is necessary.
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Figure 2.3: An Example of Emergency Environment

2.2 Cognitive Radio Networks

Due to the above reasons, the concept of an intelligent wireless communications system,

Cognitive Radio (CR), was proposed. A cognitive radio is aware of its environment (ra-

dio frequency, spectrum occupancy, network traffic, transmission quality, and so forth), and

adapts to new scenarios based on its previous experiences. The two primary objectives

are highly reliable communication whenever needed, and efficient utilization of radio spec-

trum. Given the availability of non-contiguous spectrum holes, it is possible for unlicensed

users (secondary users) to lease spectrum from primary users while respecting their rights.

Cognitive radio is an emerging networking technology that enables wireless devices to use

spectrum much more efficiently than previous technologies. Another anticipated benefit of

cognitive radio technology is that it will enable lower cost Internet access by reducing the

substantial cost component associated with the purchase of spectrum. In the USA, the Fed-

eral Communications Commission (FCC) is planning to make wireless providers share the

under-utilized spectrum with TV broadcasters. They aim to provide wireless services to 98%

of Americans [28]. This is a tremendous market for cognitive radio technology.

The term cognitive radio was first used by Joseph Mitola III in his dissertation: The point

in which wireless personal digital assistants (PDAs) and the related networks are sufficiently
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computationally intelligent about radio resources and related computer-to-computer commu-

nications to detect user communication needs as a function of use context, and to provide

radio resources and wireless services most appropriate to those needs [73]. The FCC’s defi-

nition is: A Cognitive Radio is a radio that can change its transmitter parameters based on

the interaction with the environment in which it operates. The majority of cognitive radios

will probably be SDRs (Software Defined Radio) but neither having a software nor being field

programmable are requirements of a cognitive radio. SDR, sometimes abridged as software

radio, is generally a multi-band radio that supports multiple air interfaces and protocols,

and is reconfigurable through software running on a digital signal processor (DSP), field-

programmable gate array (FPGA), or general-purpose microprocessors [72]. CR, usually

built upon an SDR platform, is a context-aware intelligent radio capable of autonomous

reconfiguration by learning from and adapting to the surrounding communication environ-

ment [74]. CRs are capable of perceiving and sensing their radio frequency (RF) environment,

learning about their radio resources, user equipment (UE), and application environment, and

adapting their configuration and behaviour accordingly [66]. Although there exist different

definitions regarding the scope of cognitive radios, two features are considered essential:

re-configurability and intelligent adaptive behaviour [114]. In general, the cognitive radio

functionality requires sensing, learning, adapting, and being flexible and agile. A cogni-

tive radio normally consists of several major functional blocks: sensing and detection of

environment, parameter configuration, re-configurable Media Access Control (MAC) layer,

network-layer procedures, self-organized communication/networking coordinator and radio

frequency [18].

CRNs are networks where nodes are equipped with cognitive radios. A cognitive radio

network can sense the operating environment and adapt the implementation to achieve

the best performance. The operating environment of a CRN is broad, including the signal

propagation environment, node density, traffic load, mobility, and available spectrum. CRNs
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can be deployed in centralized, distributed, ad-hoc, or mesh network environments. Many

wireless device manufacturers, telecommunication operators and chip makers have started to

invest in the research and development of CRNs [114]. DARPA (Defense Advanced Research

Projects Agency) started the neXt Generation (XG) radio program and theWireless Network

after Next(WNaN) [2,68,85]. Figure 2.4 illustrates a cognitive radio network. The TV base

stations have a primary user network in one spectrum. The smart-phones can communicate

using the same spectrum frequency while it is unoccupied. These secondary users form a

cognitive radio network. The primary user spectrum is not always occupied by the primary

users. In the unoccupied time intervals, the secondary users can detect the absence of primary

users and use the spectrum for their own communication. An adversary may control some

of the secondary users as illustrated in the figure.

Figure 2.4: Illustration of A Cognitive Radio Network

Launched in November 2004, IEEE 802.22 (Cognitive Wireless RAN Medium Access

Control and Physical Layer specifications: Policies and procedures for operation in the TV

Bands) is the first communication standard for TV frequency spectrum using cognitive radio

technology. The development of the IEEE 802.22 Wireless Regional Area Network (WRAN)

standard is aimed at using cognitive radio techniques to allow sharing of geographically

unused spectrum allocated to the Television Broadcast Service, on a non-interfering basis,
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to bring broadband access to hard-to-reach areas with low population density. It has the

potential for wide usage worldwide [75]. IEEE 802.22 is the first international standard, so

it can become a touchstone for the potential of cognitive radio technology.

The IEEE 802.22 working group has representatives from commercial industry, broad-

casters, government, regulators, and academia. The core technology is the cognitive radio

technology based spectrum usage to be operated in the TV white spaces (unoccupied spec-

trums) from 54-862 MHz, on a non-interfering basis for the primary users. It provides three

mechanisms for the protection of primary users: sensing, database access, and specially de-

signed beacon [75]. IEEE 802.22 specifies that the system will be formed by base stations

and Customer Premises Equipment (CPE). The CPEs will be attached to a base station via

a wireless link. The base stations will control the medium access for all the CPEs attached

to it. A key feature of the WRAN Base Stations is that they will be capable of performing

distributed sensing. The CPEs will be sensing the spectrum and will be sending periodic re-

ports to the base station, informing it about what they sense. The physical layer is optimized

for long channel response times and highly frequency-selective fading channels [75].

2.3 Spectrum Sensing

Cognitive radio allows sharing wireless spectrum among many different types of devices and

services. It is designed to avoid interference between the devices and services sharing the

spectrum. Sharing the spectrum allows everyone to access more spectrum. Users benefit as

it increases wireless bandwidth availability. Wireless networks benefit as well, as it increases

the network capacity.

Spectrum sensing is crucial for CRN performance. In broad terms, spectrum sensing

involves the detection of the presence of a transmitted signal of interest [23]. In the sensing

process, the cognitive radio users shall not cause harmful interference to the primary users

[4]. Furthermore, cognitive radio users shall efficiently identify and exploit the unoccupied
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spectrum for required throughput. The sensing process can be implemented by an individual

secondary user or cooperatively by a group of secondary users.

A secondary user is able to decide whether a signal from a primary user is present or

not within a certain time and spectrum band. The sensing methods can be categorized into

different classes. Energy detection is the most widely adopted sensing scheme due to its

simplicity, low energy consumption, and short sensing time [4]. Other detection methods

include matched filter detection where stationary Gaussian noise is detected. This can maxi-

mize the received signal-to-noise ratio (SNR) [88]. This method requires a priori knowledge

of the primary user signal such as the modulation type, the pulse shape, and the packet for-

mat. Hence, if this information is not accurate, the matched filter performs poorly. Another

detection method is cyclostationary feature detection. Modulated signals are in general cou-

pled with sine wave carriers, pulse trains, repeating spreading, hopping sequences, or cyclic

prefixes, which result in built-in periodicity. These modulated signals are characterized as

cyclostationarity since their mean and autocorrelation exhibit periodicity [101]. However, it

is computationally complex and requires significantly longer observation times.

In individual energy sensing, a secondary user i decides whether a signal from a primary

user is present or not within a certain time window and a certain spectrum band. When the

primary user is transmitting, the sensed power Ei can be expressed by the signal propagation

model as

Ei = E0 − 10γ log10( di
d0

)− Si −MPi dBm, (2.1)

where E0 is the transmit power of the primary user, γ is the path-loss exponent, d0 is the

reference distance. di denotes the distance from the secondary user i to the primary user. Si

represents the power loss effect due to shadow fading. MPi represents the multi-path fading

effect [118]. We use dBm for decibels of the measured power referenced to one milliwatt.
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2.4 Cooperative Sensing

It is a challenge for a cognitive radio to carry out reliable spectrum sensing. In a wireless

channel, signal fading can cause a secondary user to fail to detect the existence of an operating

primary user. Signals suffer from different kinds of fading in cognitive radio networks. A

large obstruction such as a hill or a large building obscures the main signal path between the

transmitter and the receiver. This is called shadow fading. Another fading is calledmulti-path

fading. Multi-path is the propagation phenomenon that results in radio signals reaching the

receiving antenna by two or more paths. Causes of multi-path include atmospheric ducting,

ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects

such as mountains and buildings. It is also possible for a secondary user to falsely detect

a primary user because of noise or interference in the wireless environment. Figure 2.5

illustrates some examples of fading and interference. Secondary user 1 (SU1) is suffering both

multi-path fading and shadow fading. Secondary user 2 (SU2) cannot detect the existence

of any primary user because it is not within their transmission ranges. Secondary user 3

(SU3) also cannot detect the transmission of primary users, and so may incur interference

with the primary users. These problems can be addressed by requiring multiple secondary

users to cooperate with each other in the spectrum sensing.

Cooperative sensing is proposed to enhance the sensing performance by exploiting the

spatial diversity of the observations of spatially distant cognitive radio users. Each sec-

ondary user acts as a sensing terminal that conducts local spectrum sensing. Then data

fusion is conducted to determine the final result of spectrum sensing. Cooperative sensing

can make more accurate decisions, cost less resources of individual nodes, improve the sensi-

tivity, improve the throughput by reducing the sensing time, and overcome the performance

degradation due to fading and shadowing [4]. Cooperative detection among secondary users

is more accurate since the uncertainty in a single user can be reduced [31].

In distributed cooperative sensing without central authority, each secondary user obtains
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Figure 2.5: Fading and Interference

a local measurement in a time interval T . After a sensing session, a series of value update

sessions are executed by the secondary users. Let V t
i,j be the value that a transmitter i sends

to a receiver j during the update session t. We assume that T � t. If the node i is honest,

then V t
i,j = Ei. V t

j is the value of receiver j during the update session t. All secondary users

exchange their local measurements of the primary user energy with their neighbours, and

update their own values based on the received values. For the honest nodes, the initial values

are the sensed values of the primary user energy. The malicious nodes may report arbitrary

values aiming to achieve their malicious goals. When a consensus is achieved through the

cooperate sensing process, a secondary user can locally compare the consensus result with a

pre-determined threshold to decide whether the primary user signal is absent or present in

the monitored frequency band.

2.5 SSDF Attacks

In cognitive radio networks, attackers can generate signals that are observed by the cognitive

radio, with the purpose of confusing the latter. Attackers can raise the noise floor in the

vicinity of a cognitive radio, making it impossible to detect signals that shall normally
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be detected. Attackers can physically tamper with stored data such as policy databases.

Attackers can physically jam or congest communication channels. Attackers can spoof false

sensor information, resulting in non-optimal decision making. Attackers can manipulate the

parameters in the learning algorithms of cognitive radios. The security issues related to

cognitive radio technologies span software engineering and artificial intelligence, in addition

to security. We focus on the security issues that are unique to cognitive radio networks.

Compared with individual spectrum sensing, cooperative sensing can enhance sensing

accuracy, while reducing the need for sensitive and expensive sensing technology. In the

cooperative sensing process, individual nodes send their local sensing data to a fusion centre

or other nodes, then the data is processed to make a final sensing decision. However, the

adversary may control some nodes to report false sensing results to the fusion centre or other

nodes, aiming to degrade the final group decision. This is called a SSDF attack. In SSDF

attacks, false spectrum sensing data are intentionally reported, with an aim of affecting the

accuracy of the sensing decision. Figure 2.6 illustrates a SSDF attack. Previous studies have

shown that the performance of cooperative sensing can degrade significantly due to such

falsified sensing reports from malicious nodes [71].

Figure 2.6: Illustration of an SSDF Attack
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2.6 Selfish Behaviours and Consequences

Secondary users in a distributed CRN are subject to restrictions in weight and form-factor

of the devices, which in turn limits their power supply. Since frequent battery replacement is

not always practical, energy efficiency is in general an important goal. The power consumed

by an active sensor is 24 mW compared to merely 0.4 mW by an inactive sensor [52]. As a

result, a secondary user has a natural incentive not to sense by itself, but to act as a free-

rider by passively receiving the cooperative sensing results from other honest nodes. That

is, it can join the network and listen to the communication channel, without implementing

the local sensing algorithm. Such selfish behaviour has no direct harm to other secondary

users. However, the lack of honest neighbours’ participation will compromise the level of

robustness and accuracy of the cooperative sensing results.

Another reason for selfish behaviour of honest secondary users is the energy consumption

and delay incurred by the iterative algorithms themselves [76]. Compared with individual

sensing, the iterative algorithms proposed in the existing literature delay the decision making

process. The cost of additional energy consumption in reporting sensed values to a neighbour

is also non-negligible. Weighting the cost and delay from the cooperative sensing process,

some honest nodes may choose not to participate in the entire process, but to perform local

sensing only. If these secondary users have better sensing technologies by themselves, it

is conceivable for them not to participate and share their data. Apparently, such selfish

behaviour also has a negative impact on the overall well-being of the distributed CRN.

A recent work showed that honest secondary users can obtain more accurate cooperative

sensing reports in an adversarial environment, as long as more than half of the neighbours

correctly report sensed values [123]. This was based on the assumption that all honest

secondary neighbours actively participate in the entire cooperative sensing process. However,

some honest neighbours may not actively participate in the process. More honest secondary

users can help the secondary user network to obtain a more accurate cooperative sensing
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result. The selfish behaviours of some of the honest nodes however may result in less accurate

cooperative sensing results at other secondary users, which will degrade the performance of

the distributed cooperative sensing. This loss of accuracy will adversely affect all nodes

and in particular the selfish secondary users who will use the cooperative sensing results

generated from the active secondary users. This can incentivize the honest secondary users to

participate in the cooperative sensing process. However, the incentive from the cooperative

sensing process itself does not apply to the cases where honest nodes choose to sense by

themselves but not to report.

2.7 Reputation Systems

Reputation systems are used to cope with liars holding false positive/negative opinions [14].

The concept of reputation has been widely used in economics, ecology, anthropology and

other social sciences. A rich body of literature has been devoted to the investigation of

different reputation systems for computer networks [77,119].

Reputation can be computed via different approaches. In a centralized scheme, a central

authority sets up and updates the reputation for other nodes. In a distributed environment,

nodes can only generate reputation of their neighbours through mutual communication.

There exist different models of reputation in distributed algorithms.

Evidential Model is widely adopted by online business systems, such as eBay and Amazon

[50,81,120,121]. The general scenario of this model can be described as follows: a node may

estimate the trustworthiness of a given party based on its own past interactions with it or

may consult other trusted nodes who have directly interacted with that party. These trusted

nodes are witnesses. There are two kinds of beliefs - local belief and total belief. A node’s

local belief about another node is from direct interactions with it, and can be propagated to

others upon request. A node’s total belief about another node combines the local belief (if

any) with testimonies received from all witnesses reached (if any). Total belief can be used
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for deciding whether the node being considered is trustworthy.

In the Broker Model, every node is associated with a broker who represents multiple

users [8, 62]. A broker collects for its users the distributed reputation ratings about any

service. In return, a node provides its broker the transaction rating after every transaction

with any service in order to build up the reputation database on all services. In addition,

brokers form a trust network where they collect and exchange reputation data about services.

A broker is a de facto Trusted Third Party (TTP).

In the Local Leader Model, a leader is elected through a secure leader selection process [86].

Then the leader updates the reputation of its own neighbours, and keeps a table of the

reputation values. No second-hand data is used. At each time step, each node receives

an instantaneous reputation rating from the leader. The instantaneous rating is combined

with its ratings from the previous time steps to form an overall reputation for the node.

Observations from a node are then weighted by this overall reputation when data fusion is

done by the leader.

In the One-hop Model, each node monitors its one-hop neighbourhood for misbehaving

nodes and accordingly updates the reputation of them in the Neighbor-Reputation-Table

(NRT) [96]. Then they publish their NRT to their 1-hop neighbourhood. Others use this

second-hand information published in NRT for updating the reputation of their neighbours

after it passes a deviation test.

The basic idea of the Neural Network Model is to aggregate a node’s multiple local

reputations through a neural network to approximate the node’s global reputation [95]. In

this setting, there is still a Master Agent. So this is not a truly distributed system.

In our work, we apply local belief in the Evidential Model for the reputation to be

calculated to secure the fully distributed cooperative sensing, as well as total belief for the

reputation calculation in the incentive methods for cooperative sensing.

23



2.8 VCG Auction

VCG Auction, also known as Generalized Vickrey Auction (GVA), is a classical auction

mechanism for selling a set of goods to a group of bidders [22, 33, 103]. In VCG auctions,

a bidder i can submit arbitrary bids bi for every subset of items. A VCG auction has

two phases: winner determination and pricing. In the winner determination phase, the

auctioneer computes the maximum total utility ∑n
i=1 vi over all feasible allocations, where

vi is the valuation of bidder i of the spectrum being auctioned. If i is truthful, then i’s bid

bi = vi. The maximum total utility feature is called economic efficiency or social welfare.

The maximum total utility for a VCG auction can be solved as a Maximum Independent

Set problem.

Given an undirected graph G = (V , E), a subset of nodes S ⊆ V is an independent

set if there is no edge in E between any two nodes in S. The Maximum Independent Set

problem is the following: given a graph G = (V , E), find an independent set in G of maximum

cardinality. The concept of a Maximum Independent Set is different from that of a Maximal

Independent Set, which is defined as an independent set for which no node can be further

included without violating independence. In the Weighted Maximum Independent Set case,

each node i ∈ V has an associated non-negative weight W (i) and the goal is to find a

maximum weight independent set. In VCG spectrum auctions, the weight is the bid of the

bidder i.

After winner determination, the auctioneer allocates the goods to bidders accordingly.

In the pricing phase, the price pi charged to a bidder i is the opportunity cost its presence

introduces to the other bidders. The price is calculated as the difference between the total

valuation of the winners, and the total valuation of the first rejected independent set who

would have been allocated if i were absent from the auction

pi = max
n∑
i=1

vi −maxj 6=i
n−1∑
j=1

vj, (2.2)

where maximum is taken over all feasible allocations to the n− 1 bidders other than i.
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The VCG price is equal to the ‘damage’ caused to other bidders by the winner’s presence.

VCG prices are non-negative. The utility of a truth-telling bidder in a VCG auction is always

non-negative (the auction is individual rational). VCG auctions are strategy-proof. For every

bidder, even if it knows the full bids of all other bidders, it maximizes its utility by bidding

truthfully.

2.9 Secure Multiparty Computation (SMC)

Secure multiparty computation enables different parties to compute a function of their pri-

vate inputs without revealing any information except for the output of the function. The

computation is performed by the parties jointly, without a trusted authority. The basic tech-

nique for performing secure computation is: any function can be represented as a Boolean

circuit and/or an algebraic circuit. Then each gate in the circuit can be securely evaluated.

FairplayMP [10] is the extension of Fairplay [67], the first implementation framework to

implement arbitrary secure computation in a high level language. Programs in FairplayMP

are specified in a high-level programming language, the Secure Function Definition Language

(SFDL), which shares some similarity to the VHDL (Very High Speed Integrated Circuit

Hardware Description Language). The FairplayMP compiler translates these programs into

a garbled circuit, which is executed in a special runtime environment written in Java.

Every player has a function file that needs to be evaluated and a configuration file about

the computation settings. All the participants compile the function file using the FairplayMP

compiler to obtain a low level representation of a Boolean circuit. The input players share

their input using the Ben-Or-Goldwasser-Wigderson (BGW) protocol [11]. The BGW proto-

col uses Shamir’s secret sharing scheme to implement secure multiparty computation over an

arithmetic circuit. Then the computation players use the input with the description of the

Boolean circuit to create a garbled circuit according to the Beaver-Micali-Rogaway (BMR)

protocol [9], and send the garbled circuit to the result players. Finally the result players
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evaluate the garbled circuit to receive their output. The FairplayMP protocol combines both

arithmetic and Boolean circuit representations, and use each one where it is most efficient.
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Chapter 3

RELATED WORK

In this Chapter, we overview the key papers related to the fields of securing distributed coop-

erative sensing, incentivizing spectrum sensing, as well as verifying VCG spectrum auctions.

We also introduce some related works on the security issues in CRNs that are not covered

by this thesis. Some survey papers have explored this field more comprehensively [7,29,83].

3.1 Securing Distributed Cooperative Sensing

3.1.1 Spatial-correlation-based Schemes

Some schemes use location as an additional factor to identify malicious nodes. The intuition

is that cognitive radios that are spatially close to each other shall have similar local sensing

reports. Malicious nodes have to be aggressive in raising or lowering the reported signals or

decisions to influence the outcome of the final cooperative sensing decision. However, any

secondary user that reports significantly different sensing results from their neighbouring

nodes is deemed as malicious or malfunctioning, and those sensing results will be discarded

[27, 47, 48, 69]. Figure 3.1 illustrates a scenario of this kind of scheme, where malicious

nodes report very different sensing values compared to that of their neighbours; they shall

be detected as attackers.

Fatemieh et al. identified outlier measurements inside each equally divided square space

cell, as well as corroboration among neighbouring cells in a hierarchical structure to identify

cells with a significant number of malicious nodes [27]. The reports of individual nodes in

a cell are pairwise compared. Once the outlier threshold is met or surpassed, the node is

flagged as an outlier and excluded from future calculation. A weighted approach is also

presented for those that are flagged as outliers by the central authority. They are assigned a
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Figure 3.1: Illustration of A Spatial-Correlation-Based Scheme

low or high label. If the average value at an outlier cell is considered too low compared to its

peers, it is flagged as a low-outlier, otherwise a high-outlier. After the outlier detection and

averaging is performed, the weights of nodes are updated. This work provides a framework

for taking inherent uncertainties into consideration. However, it assumes that both the

legitimate and malicious nodes are deployed uniformly. When malicious nodes collude to

change the distribution, the system will be compromised.

Min et al. proposed to group sensors in close proximity into clusters, and use correlation-

based filters to exclude or minimize the effect of abnormal reports [69]. Their work elegantly

considers shadow-fading correlation among nearby sensors. A sensor report that significantly

deviates from the neighbouring sensing reports is deemed suspicious, and will be discarded

or penalized by the fusion centre. However, the system works only when attackers constitute

less than 1
3 of the nodes in a cluster, and is not able to detect regions that are dominated by

attackers.

Kaligineedi et al. proposed a simple outlier detection scheme to pre-filter the extreme

values in sensing data [48]. It uses an average combination scheme to simplify the decision
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process at the fusion centre. However, it has limited detection capability, and only extreme

malicious reports can be filtered, with Always Yes users and Always No users identified.

The extension of this method re-examines the outlier factors and proposes different kinds

of strategies to improve the detection of malicious users. They also proposed using the

observations from closest neighbours in a neighbourhood to further improve the detection.

If the spatial information of the users is available at the fusion centre, the outlier factor can be

assigned to each node based on the energy-detector outputs of its closest spatial neighbours.

However, it cannot detect malicious users who can manipulate their distribution and density

in the cognitive radio networks, either.

As discussed before, the geo-locations of all sensing nodes are not likely to be gathered

by the fusion centre. The previous schemes assume that all cognitive radios are stationary.

A development trend of cognitive radio networks is to cover mobile devices to improve the

dynamic and flexible spectrum access for mobile communication [69]. While most users in a

cognitive radio network tend to be mobile in both infrastructure-based or ad-hoc networks, it

is hard to maintain a large database of all node locations. Spatial-correlation-based schemes

where location information is not used in the detection process are more desirable. The

privacy of nodes also needs to be protected. The movement of nodes shall not impact the

final decision in the whole process, either.

3.1.2 Other Centralized Schemes

There are other centralized schemes for defending SSDF attacks. Wang et al. analyzed

the impact of the malicious node population in a system, and transferred the problem to an

optimization problem deciding the number of sensing reports collected under the requirement

of QoS [106]. This is a passive solution without any countermeasure against the attacks. In

addition, it assumes that all users have independent and identically distributed fading. This

is often not realistic since signal fading of neighbouring nodes is correlated.

Chen et.al. proposed a weighted, reputation-based data fusion technique based on a
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sequential probability ratio test [19]. The test is composed of two steps: reputation main-

tenance and hypothesis test. Reputation is determined by the consistency of the local sens-

ing report with the final sensing decision. The hypothesis testing is an improved version

of Sequential Probability Ratio Test (SPRT) - Weighted Sequential Probability Ratio Test

(WSPRT). The idea of WSPRT is to modify the likelihood of SPRT so that the reputations

of individual nodes are also taken into account. This scheme depends on a priori knowl-

edge of the reported radio values. It also does not count for spatial variability of spectrum

availability. It only focuses on detection in a small region. In addition, malicious users are

not removed from the sensing process even if their reputation weights are low. The speed to

arrive at a stable state is also unsatisfactory. Another limitation is that it can only be used

for hard fusion, where secondary users only report binary results of whether the primary user

is transmitting or not, but not soft fusion, where secondary users report the sensed value of

the primary user energy. This limitation decreases the accuracy of the final decision.

Wang et al. proposed a malicious user detection algorithm that calculates the suspicion

level of secondary users based on their past reports [109]. However, the assumption on

Vandalism Attack (VA), where malicious users report primary users absent while they are

in fact present, cannot correctly reflect the effect of the attack. They only define a false

alarm attack and a false alarm and miss detection attack. The false alarm attack is the same

as Exploitation Attack (EA), where malicious users report the presence of a primary user

when there is none. However, false alarm and miss detection attack is a combination of EA

and VA. If the sensed energy is higher than the detection threshold, the attacker reports a

lower energy level; otherwise, it reports a higher energy level. While the primary user exists,

malicious users cannot make false alarms by increasing the level of sensing reports. The

scenarios of false alarm and miss detection need to be analyzed in two different cases.

Li et al. proposed an abnormality detection approach to detect malicious secondary

users [56]. They proposed a double-sided neighbour distance algorithm to identify outlier
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users who are far away from most secondary users in the history space. However, their

approach assumes M � N , i.e., most nodes are honest. In addition, it assumes that if the

history of a secondary user is too close to that of others, its behaviour is also abnormal. This

assumption will identify the normal spatial correlation as attacks, thus cannot be applied

in cognitive radio networks. This checking cannot be used in dynamic networks where the

detection history of different nodes are not close to each other.

Min et al. proposed a robust cooperative sensing via iteRatIve State estimation (IRIS)

attack detection framework [70]. This approach takes the network topology into considera-

tion. However, the network topology is prone to change in most cognitive radio networks,

and so the proposed approach is not always practically promising.

3.1.3 Distributed Schemes

All the above solutions assume the existence of fusion centres, and cannot operate in a fully

distributed cognitive radio network. Li et al. proposed to remove the fusion centre by having

all cognitive radios update their local measurements with neighbouring nodes iteratively

to arrive at consensus [59]. A secondary user needs to communicate only with its direct

neighbours. Each secondary user conducts energy detection to obtain a local measurement

of the primary user’s signal. These measurements are then exchanged with neighbours.

A secondary user updates its value based on its own value and those received from all

its neighbours. The updated values are then exchanged. This iterative process continues

until a consensus is reached asymptotically among all secondary users [80]. The scheme

focuses primarily on how to arrive at a consensus without considering possibly falsified

local measurements. Figure 3.2 illustrates this distributed scheme. There is no centralized

authority playing the role of the fusion centre. Nodes establish connections by themselves

to exchange their sensing results.

Yan et al. discuss a number of attacks in the distributed cooperative sensing process [118].

They propose a security scheme that is still not fully distributed, as it contains a hash-based
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Figure 3.2: Illustration of A Distributed Scheme

verification implemented by a centralized root node.

3.2 Incentivizing Cooperative Sensing

Selfishness in collaborative sensing has recently attracted much attention. Song et al. first

studied this problem and proposed incentive strategies [93]. Mukherjee further discussed this

problem in a partially-connected network with imperfect information [76]. However, both

works consider only the utility (payoff) function for secondary users as improved sensing

accuracy compared to individual sensing, which is only from the spectrum sensing process.

Wang et al. studied how secondary users can collaborate through an evolutionary game [104].

A recent work considers another selfish behaviour where secondary users report arbitrary

information as their sensing results or simply copy other secondary users’ reports, to save

sensing energy [58]. However, both works only consider hard fusion with binary results of the

primary user state, which is less fine-grained compared to soft fusion where real values from

the sensed information of the primary users are exchanged. El-Sherif et al. discussed the

joint design of spectrum sensing and spectrum allocation [24], but only considered individual

spectrum sensing without cooperation.
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There are a number of models for spectrum allocation. Some assume the existence

of a central authority who controls and coordinates the spectrum allocation [45, 97, 100,

108, 115, 116]. The problem of allocating spectrum based on the Quality of Service (QoS)

requirements of secondary users has been recently studied [45, 115, 116]. Some secondary

users require minimum-rate guaranteed services such as Voice over IP (VoIP), while some

only require best effort service such as WiFi data services. These works all assume a single

base station as the central authority to allocate spectrum resources to secondary users.

A number of solutions propose distributed spectrum allocation methods [16,92,105,122],

where each secondary user makes its own decision about the spectrum access strategy, mainly

based on local observation of the spectrum dynamics. A hybrid method, called distributed-

centralized spectrum allocation, enables the secondary users to elect a leader randomly from

either the secondary users or the primary users to act as the central authority [116].

3.3 Verifying VCG Spectrum Auctions

A plethora of mechanisms for spectrum auctions in cognitive radio networks have been

proposed, with different targets [34–36, 39, 44, 112, 126–130]. We briefly introduce some

milestone papers in this field. VERITAs is the first single-sided truthful spectrum auction

[126]. TRUST is the first truthful double spectrum auction that enables spectrum reuse [127].

Huang et al. proposed two spectrum auction schemes to deal with wireless interference

constraints. Jia et al. proposed a spectrum auction scheme that computes approximately

maximum revenue as an alternative goal to maximize social welfare. Wu et al. proposed a

semi-definite programming based solution that is resistant to collusion. Zhu et al. proposed

spectrum auction for networked secondary users [128]. Gopinathan et al. focused on the

guarantee of truthfulness through bid independent prices [36]. However, most of them do

not provide security guarantee for the spectrum auctions.

Some recent works explore security issues in the spectrum auction [21, 41, 82]. Huang et
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al. proposed an auction agent between the auctioneer and the bidders to protect privacy [41].

Chen et. al. extended TRUST into PS-TRUST, to protect the privacy of bidders [21]. PS-

TRUST also introduced a third party as the auction agent. Their focus is protecting the

privacy of the bidders, and is thus orthogonal to the focus of this thesis.

A verification scheme for Vickrey or second price auction has been recently proposed [5].

The Vickrey auction rule is: the bidder with the highest bid wins the item, and pays an

amount equal to the second highest bid. Vickrey auction is designed for one-item-one-winner

auctions. No previous work has investigated the verification for VCG spectrum auctions in

cognitive radio networks.

3.4 Other Unique Security Attacks

There are other attacks that are unique to CRNs. The adversary may emulate the charac-

teristics of a primary user in attempting to gain priority over other secondary users. This

is known as a primary user emulation (PUE) attack. Li et al. modelled the game between

attackers and defenders in a multichannel cognitive radio system as a dogfight game [57].

Liu et al. used a helper node close to a primary user to enable a secondary user to verify

cryptographic signatures carried by signals of the helper node, and then obtain the authentic

link signatures of the helper node to verify primary user signals [63].

Bian et al. first analyzed security vulnerabilities in the spectrum allocation of IEEE

802.22. The security sub-layer protects network control information by attaching message

authentication codes to the management messages. However, the security sub-layer only

protects intra-cell management messages and does not protect inter-cell beacons [12].

CRN users usually coordinate with each other by using a common medium for con-

trol message exchange. This common medium is known as a common control channel

(CCC) [2, 3, 64, 65]. For jamming into the common control channel, Tague et al. proposed

to use random assignment of cryptographic keys to hide the location of common control
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channels [102]. Lazos et al. proposed a randomized distributed scheme that allows nodes to

establish a new control channel using frequency hopping [54]. Safdar et al. proposed a new

framework for providing common control channel security by authenticating secondary users

and exchanging secure key in the transactions [87].
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Chapter 4

SYSTEM MODEL

We introduce the network model and attack models in this chapter. The glossary of notations

in this Chapter is listed as Table 4.1

Symbol Description
N Number of Secondary Users
K Number of Orthogonal Frequency Channels
ΩN Set of Secondary Users
ΩK Set of Channels
G Graph
V Set of Vertices
E Set of Edges
mi Number of i’s Neighbours who Report Falsified Values
ni Number of i’s Neighbours who Report Correct Values
Pi Transmission Power Vector of i over all Channels
P k
i Transmission Power of i on Channel k

Table 4.1: Glossary of Notations in Chapter 4

4.1 Network Model

We consider a hybrid network consisting of several primary user networks and a secondary

user network. There are N secondary users. The total radio spectrum consists of K orthog-

onal frequency channels where crosstalk (XT) between the channels is eliminated. XT is a

phenomenon where a signal transmitted on one channel creates an undesired effect in another

channel. The primary users are located relatively far away from the secondary users. Each

primary user network operates over a predetermined channel with high transmission power,

and are abstracted as a single virtual node. Let ΩN = {1, 2, . . . , N} and ΩK = {1, 2, . . . , K}

denote the sets of secondary users and channels, respectively.

Each secondary user is equipped with a cognitive radio. They utilize omnidirectional
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antennas to communicate with each other. The network formed by the secondary users is

modelled as an undirected graph G = (V , E). The set of secondary users are the nodes

V , and the set of edges is E ⊂ V × V . A node j is a neighbour of a node i if (i, j) ∈ E ,

indicating that i and j can directly communicate. The neighbours of a node i are denoted

by {j|(i, j) ∈ E} ⊂ V . Secondary users are located within the transmission range of the

primary users, and can individually sense the environment to detect the existence of the

primary users.

We use the energy sensing method in the cooperative sensing process for a secondary

user to detect primary users’ presence. An active secondary user measures the primary user

energy in a sensing session. Each sensing session is followed by a series of value update

sessions, where active secondary users exchange local measurements with neighbours, and

update their own values based on received values. For honest nodes, the initial values are the

sensed values of the primary user energy. The malicious nodes may report arbitrary values

aiming to achieve their malicious goals.

In a given sensing round, a secondary user i has mi neighbours who report falsified

values (including attacking malicious neighbours and honest nodes that sense falsely due

to severe fading or system failure), and ni neighbours who report correct values (including

honest nodes that sense correctly and non-attacking malicious nodes), each equipped with a

cognitive radio. They are located within the transmission range of primary users, and can

individually sense the environment to detect the existence of primary users. The secondary

users share a single identity system, where the identities of neighbours are resistant to Sybil

attacks, where a node illegitimately claims multiple identities [79].

If the cooperative sensing results indicate that the primary users are not transmitting

on certain channels, the secondary users can transmit on these unoccupied channels. The

secondary users are able to transmit or receive over multiple channels simultaneously. They

can also share a particular channel with different transmission power, which leads to a
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corresponding level of interference. The transmission power vector of a secondary user i over

all channels is denoted by Pi = (P 1
i , P

2
i , . . . , P

K
i ), where P k

i is the transmission power of i

on channel k. There is an upper-bound for the total transmission power of a secondary user

over all the channels.

In VCG spectrum auctions, we assume that the primary user acts as the auctioneer, and

sells its wireless spectrum. The secondary users are the bidders. A conflict graph G = (V , E)

models interference among the set of bidders. Two bidders i, j ∈ V interfere if (i, j) ∈ E .

The topology of G is public knowledge. The auctioneer implements a VCG auction that

allocates the wireless spectrum in an interference-free manner, and charges prices based on

the VCG pricing rule.

4.2 Adversary Model

We now present the adversary models that will be studied in Chapters 5, 6, and 7.

4.2.1 Securing Distributed Cooperative Sensing

A malicious node can identify, and communicate with, other malicious nodes in each attack.

We assume malicious nodes will follow one of the following attack strategies based on their

attacking frequency and output values:

1. Always Attack: The malicious nodes attack in all sensing sessions. They always

report falsified values: the lowest possible value (thermal noise) while the

primary user is transmitting, and the highest possible value (primary user

transmission power) while the primary user is not transmitting.

2. Intermittent Attack: The malicious nodes attack in some selected sessions.

They report falsified sensed values to the honest neighbours in attacking ses-

sions, and truthful sensed values in non-attacking sessions. We define the

attack intensity as the percentage of sessions when falsified values are reported.
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3. Random Attack: The malicious nodes may not participate in the sensing pro-

cess in Random Attack, compared to Always Attack and Intermittent Attack

where they sense the primary user state. They just report random values

within a rational range to other honest neighbours, no matter whether the

primary user is transmitting or not.

4. Camouflaged Attack: Other than the falsified values or random values, the

malicious nodes report the attenuated signal strength on its location when the

primary user is not transmitting. They report values that appear reasonable

and are similar to the local measurements of honest nodes from previous sens-

ing sessions when the primary user was transmitting. This attack strategy

is especially preferred by the adversary in a light fading environment, where

honest nodes have better knowledge of the distance to the primary user.

In Always Attack, Intermittent Attack, and Camouflaged Attack, the malicious nodes first

sense the primary user energy, and then decide what values to report to their neighbours

based on the primary user state. In Random Attack, the malicious nodes report random

values without sensing first. The adversary can be either selfish, aiming to have exclusive

access to the primary user spectrum, or vandalic, aiming to incur severe interferences among

the primary users and other secondary users.

4.2.2 Incentivizing Cooperative Sensing

There are three kinds of nodes in the network:

1. Always active honest nodes, who participate in all the cooperative sensing

processes, and report their sensed results and reputation vectors;

2. Honest but selfish nodes, who may choose not to participate in the cooperative

sensing process at all the channels. When they decide to participate, they

report their sensed value to neighbours;

39



3. Malicious nodes, who may or may not participate in the cooperative sensing

process, and report falsified values when participating.

We assume malicious nodes participate in the pricing game with fraudulent information.

During the reputation fusion process, malicious nodes may report low reputation values

for honest nodes and high reputation values for themselves, aiming at lower prices in the

spectrum allocation process.

4.2.3 Verifying VCG Spectum Auctions

The following adversarial behaviours of the spectrum auctioneer are considered.

1. Winner falsification: The auctioneer chooses a set of bidders that is not social

welfare maximizing.

2. Price falsification: The auctioneer charges a winning bidder a price that is

different from its VCG price.

The bidders (spectrum buyers) are assumed to be semi-honest but curious. They fol-

low the prescribed protocol, but are interested in learning private information about other

bidders. There is no collusion among bidders.

40



Chapter 5

SECURING DISTRIBUTED COOPERATIVE

SENSING

It is desirable to design a secure, scalable, and distributed cooperative sensing scheme without

fusion centre, which can still secure distributed cooperative sensing in CRNs with malicious

attackers. The fusion centre is an essential component to implement the existing secure

cooperative sensing solutions, which do not allow a straightforward extension to a distributed

solution. While there exists work in the literature that discusses security issues in distributed

cooperative sensing, some centralized mechanisms, e.g., root nodes, are still required [118].

A distributed scheme where secondary users exchange with their neighbours and update

their value iteratively without a central authority does not consider the security attacks

in the cooperative sensing process [59]. In this thesis, we propose ReDiSen, a Reputation-

based Distributed Sensing scheme that is the first fully distributed cooperative spectrum

sensing scheme with security assurance against malicious behaviour of a subset of nodes.

This thesis introduces the distributed method to help secondary users obtain more accurate

cooperative sensing results through an iterative update algorithm [123]. A secondary user

reliably exchanges information with neighbours within its communication range. The set of

neighbours of a node may evolve as nodes move around in the network. ReDiSen is applicable

to dynamic yet adversarial CRN environments.

The glossary of notations in this Chapter is listed as Table 5.1
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Symbol Description
T Sensing Session
t Value Update Session
V t
i,j Value i Sends to j during Update Session t
V t
j Value of Receiver j during Update Session t
R

(V D)
j,i Reputation Value of i generated by j based on Value Differences

mi Number of i’s Neighbours who Report Falsified Values
ni Number of i’s Neighbours who Report Correct Values
θ Discount Factor
V̄ t+1
j Value from the System without Reputation
R

(RV )
j,i Reputation Value of i generated by j based on Received Values

Aj Average Difference from the Average Value of j’s Neighbours
δ Discount Factor
σ Standard Deviation for Fading
E0 Primary User Transmission Power
d0 Reference Distance

Table 5.1: Glossary of Notations in Chapter 5

5.1 Reputation Requirements

We use a reputation system to weight the information received by a node from its neighbour,

with higher weights for honest neighbours that are trusted, and lower weights for neighbours

that are less trusted. Reputation systems have been previously used to cope with malicious

behaviours [14]. In ReDiSen, nodes monitor behaviours of their neighbours and use such

information to assign reputation values to them.

5.1.1 Updating Values Based on Value Differences

After the first round of exchanging the sensed energy values of the primary user, an honest

node calculates the reputation of its neighbours based on their reported values and its own

value. The calculation of reputation can be based on different methods. We use R(V D)
j,i to

denote the reputation value of the transmitter i generated by the receiver j based on value

differences. Then, all secondary users update their values and exchange their updated values

with their neighbours as described in Algorithm 1. θ is a discount factor that is smaller than

but close to 1 [59].
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Algorithm 1 ReDiSen: Value Update Algorithm Based on Value Differences (Input: The
sensed value of a node j and received values from j’s neighbours. Output: The converged
value)

1: A node j individually senses the primary user energy at sensing session T
2: while i is a neighbour of j do
3: Receive local measurements V t

i,j

4: Send local measurement V t
j,i

5: Calculate reputation R(V D)
j,i

6: while The converged value is not obtained do
7: Update value:

V t+1
j = V t

j +
mj+nj+1∑

i=1
(1− θ)R(V D)

j,i (V t
i,j − V t

j ) (5.1)

8: end while
9: end while

In this algorithm, nodes only interact with their neighbouring nodes as Figure 5.1 illus-

trates.

Figure 5.1: Secondary Users Only Exchange Values with Their Neighbours

When the updated value has no distinguishable difference from the previous update

session, a converged value is obtained. To form a neighbourhood, nodes have to be situated

within each others’ communication range. However, the location privacy is protected since

no exact location is reported to either a central authority or another node.

We explore general reputation requirements that are required for ReDiSen to produce

better results than that of a reputation-less scheme. The reputation system for ReDiSen is
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sound if it outputs a higher value than the reputation-less scheme while the primary user is

transmitting, and a lower value otherwise, assuming a subset of nodes report falsified values.

The requirement can be formalized as Proposition 1.

Proposition 1. Suppose an honest node j can assign reputation R(V D)
iM

< 1 to a neighbour

that reports falsified values, and R(V D)
iN

> 1 to a neighbour that reports correct values. Then

in ReDiSen j can update its value to the value V t+1
j which, when compared to V̄ t+1

j , the value

from the system without reputation, is higher when the primary user is transmitting, and

lower when the primary user is not transmitting.

Proof. The value update scheme in the reputation-less scheme from the literature [59] has

the same value update algorithm, except that in each value update session, the values are

updated as:

V̄ t+1
j = V̄ t

j +
mj+nj+1∑

i=1
(1− θ)(V̄ t

i,j − V̄ t
j ), (5.2)

with initial value V̄ 0
j = V̄j [3].

Note that since V t
j,j = V t

j , in the superscripts of this subsection, mj + nj + 1 is logically

equal to mj +nj in this scenario. For an honest node j, we denote with R(V D)
iN

the reputation

of a neighbour i that reports a correct value, and with R(V D)
iM

the reputation of a node i that

reports a falsified value. Hereby, the two value update schemes can be formulated as

V t+1
j = V t

j + (1− θ)[
mj∑
i=1

R
(V D)
iM

(V t
i,j − V t

j ) +
mj+nj∑
i=mj+1

R
(V D)
iN

(V t
i,j − V t

j )], (5.3)

and

V̄ t+1
j = V̄ t

j + (1− θ)[
mj∑
i=1

(V t
i,j − V t

j ) +
mj+nj∑
i=mj+1

(V t
i,j − V t

j )]. (5.4)

Therefore, the comparison between these methods is

V t+1
j − V̄ t+1

j = (1− θ)[
mj∑
i=1

(R(V D)
iM
− 1)(V t

i,j − V t
j ) +

mj+nj∑
i=mj+1

(R(V D)
iN
− 1)(V t

i,j − V t
j )] (5.5)

An honest node j may sense correctly or falsely in a sensing session. However, it does

not know whether its sensed value is correct or not.
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If j senses correctly, V t
i,j ≈ V t

j for a neighbour i that also reports a correct value, V t+1
j −

V̄ t+1
j ≈ ∑mj

i=1(R(V D)
iM
−1)(V t

i,j−V t
j ). While the primary user is transmitting, we have V t

i,j < V t
j

for a neighbour i that reports a falsified value. So, as long as ∑mj
i=1(R(V D)

iM
− 1) < 0 for an

SSDF attack, we have V t+1
j > V̄ t+1

j , which indicates ReDiSen can help j obtain a higher

value. While the primary user is not transmitting, V t
i,j > V t

j for a neighbour i that reports a

falsified value and so as long as ∑mj
i=1(R(V D)

iM
− 1) < 0, we have V t+1

j < V̄ t+1
j , which indicates

ReDiSen can help j obtain a lower value. Thus the first requirement, for the case when j

senses correctly, is that ∑mj
i=1(R(V D)

iM
− 1) < 0 for a neighbour i reporting a falsified value.

If j senses falsely, V t
i,j ≈ V t

j for a neighbour i that also reports a falsified value, V t+1
j −

V̄ t+1
j ≈ ∑mj+nj

i=mj+1(R(V D)
iN
−1)(V t

i,j−V t
j ). While the primary user is transmitting, for a neighbour

i that reports a correct value, we have V t
i,j > V t

j . So, as long as ∑mj+nj
i=mj+1(R(V D)

iN
− 1) > 0,

we have V t+1
j > V̄ t+1

j . This indicates that ReDiSen can help j obtain a higher value. While

the primary user is not transmitting, for a neighbour i that reports a correct value, we have

V t
i,j < V t

j and so as long as ∑mj+nj
i=mj+1(R(V D)

iN
− 1) > 0, we have V t+1

j < V̄ t+1
j . This indicates

ReDiSen can help j obtain a lower value. Thus the second requirement, for the case when j

senses falsely, is that ∑mj+nj
i=mj+1(R(V D)

iN
− 1) > 0 for a neighbour i that reports a correct value.

Note V t+1
j > V̄ t+1

j indicates that the honest nodes obtain cooperative sensing results that

are closer to the transmitting state of the primary user, and V t+1
j < V̄ t+1

j indicates that the

honest nodes obtain results that are closer to the non-transmitting state of the primary user.

This means that under the above conditions, the requirements for reputation in ReDiSen are

R
(V D)
iM

< 1 and R(V D)
iN

> 1.

A method for generating the desired reputation is introduced in Section 5.2.1.

5.1.2 Updating Values Based on Received Values

Instead of assigning reputation to the value differences, we can alternatively assign reputa-

tion to received values from neighbours directly. In this method, all nodes first implement
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individual sensing to obtain local measurements. Then they exchange values in the sub-

sequent value update sessions. A straightforward method with no security assurance is to

assign uniform weights as reputation to all neighbours. This method essentially calculates

the average value of all nodes in the neighbourhood V̄ t+1
j = ∑mj+nj+1

i=1
1

mj+nj+1V
t
i,j as the

cooperative sensing result. V t
j,j = V t

j indicates the local measurement of node j itself. R(RV )
j,i

denotes the reputation node j assigns to i based on received values. R(RV )
j,j denotes the weight

node j assigns to itself.

We propose to use reputation in this process, too. After receiving the exchanged values

from neighbours, an honest node can calculate the weighted combination of values from all

neighbours as well as its own value, as described in Algorithm 2. Again, location privacy is

protected in the algorithm.

Algorithm 2 ReDiSen: Value Update Algorithm based on Received Values (Input: The
sensed value of a node j and received values from j’s neighbours. Output: The converged
value)

1: A node j individually senses the primary user energy at sensing session T
2: while i is a neighbour of j do
3: Receive local measurements V t

i,j

4: Send local measurement V t
j,i

5: Calculate weight R(RV )
j,i

6: while The converged value is not obtained do
7: Update value as

V t+1
j =

mj+nj+1∑
i=1

R
(RV )
j,i V t

i,j (5.6)

8: end while
9: end while

The requirement for the reputation can be formalized as Proposition 2.

Proposition 2. Higher weights to correctly reported values and lower weights to falsely

reported values can help an honest node j obtain a cooperative sensing result that is closer

to the real state of the primary user.

Proof. After receiving the exchanged values from neighbours, an honest node can assign

46



different weights as reputation values based on the received values to improve the cooperative

sensing performance, rather than simply averaging them. Compared with the uniform weight

method

V̄ t+1
j =

mj+nj+1∑
i=1

R
(RV )
j,i V t

i,j =
mj+nj+1∑

i=1

1
mj + nj + 1V

t
i,j, (5.7)

we require a lower weight R(RV )
j,k < 1

mj+nj+1 to be assigned to a node k if V t
k,j is a falsified

value; and a higher weight R(RV )
j,l > 1

mj+nj+1 to be assigned to a node l if V t
l,j is a correct value.

Then, the updated value V t+1
j based on the differentiated weights V t+1

j > V̄ t+1
j when the

primary user is transmitting, V t+1
j < V̄ t+1

j when the primary user is not transmitting.

We will compare these two methods of assigning reputation on value differences and re-

ceived values in the simulation. A method for generating the desired reputation is introduced

in Section 5.2.2.

5.2 Generating Reputation

5.2.1 Generating Reputation Based on Value Differences

Reputation values in ReDiSen are generated once for each sensing session as follows:

R
(V D)
j,i = 2− |Vi,j − Ṽj|∑mj+nj+1

l=1 |Vl,j−Ṽj |
mj+nj+1

= 2− (mj + nj + 1)|Vi,j − Ṽj|∑mj+nj+1
l=1 |Vl,j − Ṽj|

, (5.8)

where Ṽj =
∑mj+nj+1

l=1 Vl,j
mj+nj+1 is the average value of all the nodes in the neighbourhood. We can

observe that 0 ≤ R
(V D)
j,i ≤ 2.

If the majority of the neighbourhood reports correctly sensed values, we can use the

average value of all the nodes in the neighbourhood Ṽ t
j to improve the uniform method. In

this case, the correct reported values are closer to the average value than the falsified values

are. Hereby, we can define the average difference of all nodes in the neighbourhood

Aj =
∑mj+nj+1
l=1 |V t

l,j − Ṽ t
j |

mj + nj + 1 . (5.9)
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As long as there are more neighbours that report correct values, the distance from the

value of a node that senses correctly to the average value will be smaller than the average

distance to the average value, and vice versa. This intuition leads to Theorem 1:

Theorem 1. Equation (5.8) assigns reputation 0 < RiM < 1 for a neighbour that reports

falsified values, and RiN > 1 for a neighbour that reports correct values, which will help honest

nodes obtain better cooperative sensing results than the reputation-less scheme, assuming

that the majority of neighbours are either correctly sensing honest nodes or non-attacking

malicious nodes.

Proof. For a neighbour that reports falsified values, the distance to the average value is larger

than the average distance from the average value: |Vi,j − Ṽj| >
∑mj+nj+1

l=1 |Vl,j−Ṽj |
mj+nj+1 . Since both

mj + nj + 1 > 0 and ∑mj+nj+1
l=1 |Vl,j − Ṽj| > 0, we can derive (mj+nj+1)|Vi,j−Ṽj |∑mj+nj+1

l=1 |Vl,j−Ṽj |
> 1, which is

equivalent to 2− (mj+nj+1)|Vi,j−Ṽj |∑mj+nj+1
l=1 |Vl,j−Ṽj |

< 1. According to (5.8), we have 0 < R
(V D)
iM

< 1.

For a neighbour that reports correct values, the distance to the average value is smaller

than the average distance from the average value. |Vi,j − Ṽj| <
∑mj+nj+1

l=1 |Vl,j−Ṽj |
mj+nj+1 . Since both

mj + nj + 1 > 0 and ∑mj+nj+1
l=1 |Vl,j − Ṽj| > 0, we can derive (mj+nj+1)|Vi,j−Ṽj |∑mj+nj+1

l=1 |Vl,j−Ṽj |
< 1, which is

equivalent to 2− (mj+nj+1)|Vi,j−Ṽj |∑mj+nj+1
l=1 |Vl,j−Ṽj |

> 1. According to (5.8), we have R(V D)
iN

> 1.

These two cases can justify that the proposed reputation-generating method in (5.8)

enables honest nodes assign 0 < R
(V D)
iM

< 1 for neighbours that report falsified values,

R
(V D)
iN

> 1 for neighbours that report correct values. According to Proposition 1, (5.8)

can help honest nodes obtain better cooperative sensing results than the reputation-less

scheme.

If an honest node suffers from severe fading, then the value it transmits always indicates

that the primary user is not transmitting. Thus, its reputation value is lower since its

behaviour is similar to that of the malicious nodes when the primary user is transmitting.

However, the honest node can move to other locations to rebuild its reputation.
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5.2.2 Generating Reputation Based on Received Values

If the difference between the reported value of a neighbour i and the average value is lower

than the average difference (|V t
i,j − Ṽ t

j | < Aj), then i is recognized as reporting a correct

value, and is thus assigned a higher weight than 1
mj+nj+1 . If the difference between the

reported value of a neighbour i and the average value is higher than the average difference

(|V t
i,j − Ṽ t

j | > Aj), then i is perceived as reporting a falsified value, and is thus assigned a

lower weight than 1
mj+nj+1 . We can normalize 1− |V ti,j−Ṽ

t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

to calculate the weights

that can meet the requirements in Proposition 2.

The improved method for a node to assign different weights as reputation can be described

as:

R
(RV )
j,i =

1− |V ti,j−Ṽ
t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |∑mj+nj+1

k=1 (1− |V ti,j−Ṽ
t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

)
=

1− |V ti,j−Ṽ
t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

(mj + nj + 1)−∑mj+nj+1
k=1 ( |V ti,j−Ṽ

t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

)

=
1− |V ti,j−Ṽ

t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

(mj + nj + 1)−
∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

=
1− |V ti,j−Ṽ

t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

mj + nj

(5.10)

These two cases indicate that as long as a node reports a value that has a smaller difference

from the average value than the average difference Aj, it is assigned a higher weight. If a

node reports a value that has a larger difference from the average value than the average

difference Aj, it is assigned a lower weight. This result leads to Theorem 2:

Theorem 2. Using weights generated in equation (5.10) as reputation can help honest nodes

obtain better cooperative sensing results than the reputation-less scheme, given the condition

that the majority of neighbours are either correctly sensing honest nodes or non-attacking

malicious nodes.

Proof. To evaluate the improved weight assigning method (5.10) with the uniform weight
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method, we calculate the difference between the weights calculated from two methods:

¯R(RV )
j,i −R(RV )

j,i = 1
mj + nj + 1 −

1− |V ti,j−Ṽ
t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

mj + nj

=
(mj + nj)− (mj + nj + 1) + (mj+nj+1)|V ti,j−Ṽ

t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |

(mj + nj + 1)(mj + nj)
=

(mj + nj + 1) |V ti,j−Ṽ
t
j |∑mj+nj+1

l=1 |V t
l,j
−Ṽ tj |
− 1

(mj + nj + 1)(mj + nj)
(5.11)

Since (mj + nj + 1)(mj + nj) > 0, we can derive:

¯R(RV )
j,i < R

(RV )
j,i ⇔ ¯R(RV )

j,i −R(RV )
j,i < 0⇔ (mj + nj + 1)

|V t
i,j − Ṽ t

j |∑mj+nj+1
l=1 |V t

l,j − Ṽ t
j |
< 1

⇔ (mj + nj + 1)|V t
i,j − Ṽ t

j | <
mj+nj+1∑

i=1
|V t
i,j − Ṽ t

j | ⇔ |V t
i,j − Ṽ t

j | <
∑mj+nj+1
l=1 |V t

l,j − Ṽ t
j |

mj + nj + 1
(5.12)

which is |V t
i,j − Ṽ t

j | < Aj according to the definition of Aj in (5.9), and

¯R(RV )
j,i > R

(RV )
j,i ⇔ ¯R(RV )

j,i −R(RV )
j,i > 0⇔ (mj + nj + 1)

|V t
i,j − Ṽ t

j |∑mj+nj+1
l=1 |V t

l,j − Ṽ t
j |
> 1

⇔ (mj + nj + 1)|V t
i,j − Ṽ t

j | >
mj+nj+1∑

i=1
|V t
i,j − Ṽ t

j | ⇔ |V t
i,j − Ṽ t

j | >
∑mj+nj+1
l=1 |V t

l,j − Ṽ t
j |

mj + nj + 1
(5.13)

which is |V t
i,j − Ṽ t

j | > Aj according to the definition of Aj in (5.9).

According to Proposition 2, (5.10) can help honest nodes obtain better cooperative sens-

ing results than the reputation-less scheme does.

In the above discussions on the improved weight assigning method based with the repu-

tation generated as (5.10), we take an honest node j itself into consideration. If the values

of j itself is removed from the process when generating reputation, the majority rule needs

to be elevated by adding one extra honest node into the system.

5.3 Reputation Update Process

Our discussion so far has been focused on comparison within a single sensing session. The

calculations and comparisons all happen in one sensing session and restart in the next sensing
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session. However, a realistic cognitive radio network is dynamic. The nodes, both honest and

malicious, may move to different locations in different sensing sessions. Their neighbourhood

can be different in different sensing sessions. In some sensing sessions, the majority of the

neighbourhood may not be dominated by nodes that report correct values.

We can extend the previous method based on value differences to a reputation update

process, which can reflect the behaviour changes of the neighbours. The reputation update

process can be designed as:

R
(V D)T
j,i = δR

(V D)T−1
j,i + (1− δ)(2−

|V T−1
i,j − Ṽ T−1

j |
ATj

)

= δR
(V D)T−1
j,i + (1− δ)(2−

(mj + nj + 1)|V T−1
i,j − Ṽ T−1

j |∑mj+nj+1
i=1 |V T−1

i,j − Ṽ T−1
j |

),
(5.14)

with initial value R(V D)0
j,i = 2− |V 0

i,j−Ṽ
0
j |∑mj+nj+1

i=1 |V 0
i,j
−Ṽ 0

j
|

mj+nj+1

= 2− (mj+nj+1)|V 0
i,j−Ṽ

0
j |∑mj+nj+1

i=1 |V 0
i,j−Ṽ

0
j |
, where δ is a discount

factor of previous reputation values in (0, 1). We can observe that 0 ≤ R
(V D)
j,i ≤ 2.

We can derive the value of R(V D)T
j,i as

R
(V D)T
j,i = (δ)T (2−

(mj + nj + 1)|V 0
i,j − Ṽ 0

j |∑mj+nj+1
i=1 |V 0

i,j − Ṽ 0
j |

) + (δ)T−1(1− δ)(2−
(mj + nj + 1)|V 1

i,j − Ṽ 1
j |∑mj+nj+1

i=1 |V 1
i,j − Ṽ 1

j |
)

+ · · ·+ δ(1− δ)(2−
(mj + nj + 1)|V T−2

i,j − Ṽ T−2
j |∑mj+nj+1

i=1 |V T−2
i,j − Ṽ T−2

j |
)

+(1− δ)(2−
(mj + nj + 1)|V T−1

i,j − Ṽ T−1
j |∑mj+nj+1

i=1 |V T−1
i,j − Ṽ T−1

j |
)

= 2− (δ)T
(mj + nj + 1)|V 0

i,j − Ṽ 0
j |∑mj+nj+1

i=1 |V 0
i,j − Ṽ 0

j |
− (δ)T−1(1− δ)

(mj + nj + 1)|V 1
i,j − Ṽ 1

j |∑mj+nj+1
i=1 |V 1

i,j − Ṽ 1
j |

− · · · − δ(1− δ)
(mj + nj + 1)|V T−2

i,j − Ṽ T−2
j |∑mj+nj+1

i=1 |V T−2
i,j − Ṽ T−2

j |
− (1− δ)

(mj + nj + 1)|V T−1
i,j − Ṽ T−1

j |∑mj+nj+1
i=1 |V T−1

i,j − Ṽ T−1
j |

= 2− (δ)T
|V 0
i,j − Ṽ 0

j |
A0
j

− (δ)T−1(1− δ)
|V 1
i,j − Ṽ 1

j |
A1
j

− · · · − δ(1− δ)
|V T−2
i,j − Ṽ T−2

j |
AT−2
j

− (1− δ)
|V T−1
i,j − Ṽ T−1

j |
AT−1
j

(5.15)

Recall that the reputation requirement is 0 < R
(V D)
iM

< 1 for neighbours that report

falsified values, and R(V D)
iN

> 1 for neighbours that report correct values. For the updated

reputation R(V D)T
j,i in sensing session T , this requirement turns to be (δ)T |V

0
i,j−Ṽ

0
j |

A0
j
−(δ)T−1(1−
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δ) |V
1
i,j−Ṽ

1
j |

A1
j
−· · ·−δ(1−δ) |V

T−2
i,j −Ṽ T−2

j |
AT−2
j

−(1−δ) |V
T−1
i,j −Ṽ T−1

j |
AT−1
j

> 1 for neighbours that report falsified

values, and (δ)T |V
0
i,j−Ṽ

0
j |

A0
j
−(δ)T−1(1−δ) |V

1
i,j−Ṽ

1
j |

A1
j
−· · ·−δ(1−δ) |V

T−2
i,j −Ṽ T−2

j |
AT−2
j

−(1−δ) |V
T−1
i,j −Ṽ T−1

j |
AT−1
j

<

1 for neighbours that report correct values. This requirement can be met probabilistically

based on |V
T
i,j−Ṽ

T
j |

ATj
and the value of δ.

For the neighbours of node j, |V
T
i,j−Ṽ

T
j |

ATj
< 1 when there are more neighbours that report

correct values; |V
T
i,j−Ṽ

T
j |

ATj
> 1 when there are more neighbours that report falsified values.

For neighbours that report falsified values, |V
T
i,j−Ṽ

1
j |

ATj
> 1 when there are more neighbours

that report correct values; |V
T
i,j−Ṽ

T
j |

ATj
< 1 when there are more neighbours that report falsified

values. To improve the cooperative sensing performance, by assigning higher reputation to

nodes that report correct values and lower reputation to nodes that report falsified values,

a good node j wishes to be in a neighbourhood that has a larger fraction of neighbours

reporting correct values.

To discuss the impact of δ, let us first examine the relations between different factors in

different sensing sessions. It is easy to observe that (δ)T−1(1 − δ) < (δ)T−2(1 − δ) < · · · <

δ(1 − δ) < (1 − δ). So the most recent observation is more important than the previous

ones, starting from the second sensing session. To compare the discount factor (δ)T for the

first sensing session with the factors of other sensing sessions, we can solve the inequalities

(δ)T > (δ)T−T (1− δ)⇔ T < logδ(1− δ), and (δ)T < (δ)T−T (1− δ)⇔ T > logδ(1− δ). The

results indicate: the higher logδ(1− δ) is, the more important the first sensing session is for

a node j to assign reputation to the neighbours in the future sensing sessions.

For the method of assigning reputation to received values, the results and discussions

about the reputation update process are similar, and are omitted.
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5.4 Performance Evaluation

5.4.1 Simulation Objective and Outline

We perform simulation studies in Matlab to examine whether ReDiSen converges to better

sensed values at secondary users, compared to reputation-less schemes, i.e., the honest nodes

should update to higher values while the primary user is transmitting, and vice versa.

In our simulations, E0 is 80dBm, which is the typical transmission power of a FM radio

station. The transmission power is attenuated while arriving at secondary users. We consider

the reference distance d0 as 1m. If the primary user is not transmitting, the secondary users

can only sense the thermal noise floor −111dBm. Each secondary user has the same capacity

to communicate with other secondary users in the proximity. We simulate a network of

secondary users in the area of 1km× 1km.

In the following figures, solid lines indicate the updated value or average updated value

of honest secondary users in ReDiSen. Dashed lines indicate the updated values or average

updated value in the reputation-less scheme. When the results from these two schemes are

the same, we use dotted line to illustrate the indistinguishable values.

5.4.2 Value Update Process

We first simulate the value update process for the method of assigning reputation to the

value differences. We simulate the scenarios where a primary user is located at (a) 5km

away; (b) 2.5km away from the centre of the secondary user network. The communication

range of a secondary user is 750m. In Figures 5.2 and 5.3, the malicious nodes implement the

Always Attack strategy. Honest nodes implement ReDiSen with reputation values generated

from the average value of neighbours. The final outputs are the updated values in the two

equations (5.1) and (5.2) with the reputation generated as the equation (5.8) after 150 value

update rounds. There are 7 honest secondary users in a CRN of 10 secondary users. We

assume that all honest nodes report correct values in the simulation process. The standard
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deviation for shadow fading σ is 3dB. θ is 0.995.
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Figure 5.2: Value Update Process when Honest Nodes Assign Reputation to the Value
Differences. The Primary User is Transmitting and Located (a) 5 km, (b) 2.5 km Away from
the Secondary User Network.
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Figure 5.3: Value Update Process when Honest Nodes Assign Reputation to the Value
Differences. The Primary User is Not Transmitting. The Malicious Nodes Implement the
Always Attack Strategy.

While the primary user is transmitting, the honest nodes obtain higher updated values

(approximately 30dBm) than in the reputation-less scheme. While the primary user is not

transmitting, the honest nodes obtain lower updated values (approximately 37dBm) than in

the reputation-less scheme. Since honest nodes all start from the same noise floor, their value

update processes are close to each other, which makes the lines almost overlapping. Both
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scenarios indicate that ReDiSen can achieve better cooperative sensing results compared to

the reputation-less scheme. The updated values of honest nodes converge to a value that is

closer to the truthful state of the primary user than the converged value in the reputation-less

scheme.

We next simulate the value update process for assigning reputation to the received values

with the same parameters. The primary user is located 5km away. Figure 5.4 illustrates

the value update process. The final outputs are the updated values in equation (5.6) with

reputation generated with uniform weight and equation (5.10). While the primary user is

transmitting, honest nodes obtain higher updated values (approximately 4dBm) than the

reputation-less scheme. While the primary user is not transmitting, the honest nodes obtain

lower updated values (approximately 4dBm) than the reputation-less scheme. Figure 5.4

justifies that applying differentiated weights to the received values can help the honest nodes

arrive at better cooperative sensing results. The effects are not as significant as the method

of assigning reputation to the value differences.
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Figure 5.4: Value Update Process when the Honest Nodes Assign Reputation to the Received
Values. The Primary User is (a) Transmitting, (b) Not Transmitting.

We also simulate Camouflaged Attack scenario where there is light shadow fading σ =

1dB. Since honest nodes are aware of the light fading environment, they can easily identify

irrational values received from neighbours. Consequently, the malicious nodes are more likely
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to adopt the Camouflaged Attack strategy. The malicious nodes instead report attenuated

primary user signal strength while the primary user is not transmitting.
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Figure 5.5: Value Update Process when the Honest Nodes Assign Reputation to (a) Value
Differences, (b) Received Values. The Primary User is Not Transmitting. Malicious Nodes
Implement the Camouflaged Attack Strategy.

Figure 5.5 illustrates the value update process. Honest nodes output lower updated values

(approximately 35dBm when the honest nodes assign reputation to value differences, 2dBm

when the honest nodes assign reputation to received values) than the reputation-less scheme.

Figure 5.5 justifies that applying differentiated weights as reputation to the received values

can help honest nodes obtain better cooperative sensing results. The camouflaged attacks

are less effective for the adversary since honest nodes can achieve lower values when the

primary user is not transmitting.

Figures 5.2 - 5.5 together suggest that using reputation can help honest nodes obtain

higher cooperative sensing results when the primary user is transmitting, lower cooperative

sensing results when the primary user is not transmitting, in both methods of assigning rep-

utation on value differences and received values, with different distances from the primary

user, as long as the majority of neighbours report correctly sensed values. Assigning reputa-

tion to received values is less effective compared to assigning reputation to value differences,

since the improvements are less significant. However, assigning reputation to received values
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can help honest nodes converge to a decision much faster.

We next discuss the impact of the percentage of malicious nodes, density of nodes and

communication range in Section 5.4.3, 5.4.4, and 5.4.5.

5.4.3 Percentage of Malicious Nodes
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Figure 5.6: Average Updated Values in the Always Attack Strategy.

Figure 5.6 uses the average value of all honest nodes as the indicator of performance in

Aways Attack. We average the values of all honest nodes to compare with the convergence

values in the reputation-less scheme. We simulate the impact of the malicious node per-

centage in a network of 100 nodes. The standard deviation for fading and shadowing σ is

3dB. If the secondary users are deployed uniformly in a grid model, each secondary user

occupies a cell of 100m×100m. The primary user is located 5km away. The communication

range of a secondary user is 750m. Figure 5.6(a) illustrates the comparisons of ReDiSen and

the reputation-less scheme while the primary user is transmitting. As long as the adver-

sary corrupts less than 49% of the whole CRN, ReDiSen can obtain better (higher) average

values than the reputation-less scheme. Figure 5.6(b) illustrates the comparisons while the

primary user is not transmitting. ReDiSen can obtain better (lower) average values than the

reputation-less scheme with less than 49% malicious nodes. Note that when the percentage
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of malicious nodes is low, the system generates higher reputation values (closer to 2) for

the honest neighbours who report correct sensed value −111 dBm, which makes the average

updated value even lower than −111 dBm.

Malicious nodes can attack in all sensing sessions by reporting falsified values. They

can also implement the Random Attack strategy or the Intermittent Attack strategy. For

the Intermittent Attack strategy, we simulate the scenario where the malicious nodes attack

with 67% intensity. Figure 5.7 and Figure 5.8 illustrate the simulation results in the Random

Attack and Intermittent Attacks strategies. The primary user is also located 5km away.
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Figure 5.7: Average Updated Values in the Random Attack Strategy.
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Figure 5.8: Average Updated Values in the Intermittent Attack Strategy with 67% Intensity.
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Figure 5.9: Average Updated Values in the Intermittent Attack Strategy with 50% Intensity.

We simulate the differences between ReDiSen and the reputation-less scheme in the

Random Attack strategy and Intermittent Attack strategy, as illustrated in Figure 5.7, 5.8,

and 5.9. A malicious node randomly chooses a number between −111dBm to 80dBm

to report. The simulation results indicate that: no matter whether the primary user is

transmitting or not, ReDiSen is better than the reputation-less scheme by updating the

values of the honest nodes closer to the truthful state of the primary user even when there are

68% malicious nodes. Figure 5.8 illustrates the effect in the Intermittent Attack strategy with

67% attack intensity, which can tolerate up to 75% malicious nodes. Figure 5.9 illustrates

the effect in the Intermittent Attack strategy with 50% attack intensity, which can tolerate

up to 95% malicious nodes.

Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 together verify that ReDiSen can

obtain better cooperative sensing results under different attack strategies. We observe that

the Always Attack strategy is the most effective strategy for the malicious nodes. This is

because the malicious nodes may behave as the honest nodes in some sessions in the Random

Attack strategy or the Intermittent Attack strategy.
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5.4.4 Density of Nodes

We examine the effect of network density in Figure 5.10. Compared to Section 5.4.2, we

simulate 70 honest secondary users in a CRN of 100 secondary users. The primary user is

located 5km away. With the other parameters remaining intact, we can observe that the

honest nodes have similar cooperative sensing results in different densities of networks under

attacks from the same percentage of malicious nodes of Figure 5.2(a). The honest nodes can

still obtain higher updated values (approximately 30dBm) than the reputation-less scheme.
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Figure 5.10: Value Update Process when the Honest Nodes Assign Reputation to the Value
Differences.

5.4.5 Communication Range

We then study the impact of the communication range of a secondary user. The commu-

nication range plays an important role regarding the connections between secondary users.

A higher communication range incurs a higher connectivity for the secondary user network,

which will eventually help secondary users receive more assistances from other honest users.

In a network where connectivity is low, convergence may not even happen, since some hon-

est nodes may be isolated from other honest nodes because they are surrounded by many

malicious neighbours. In this situation, there are multiple networks rather than only one

network in the whole system. Compared to Section 5.4.2, we simulate a network with the
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communication range of a secondary user as 250m and 500m. The primary user is transmit-

ting.
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Figure 5.11: Value Update Process when the Honest Nodes Assign Reputation to (a) Value
Differences, (b) Received Values. The Primary User is Transmitting. The Malicious Nodes
Implement the Random Attack Strategy. The Communication Range of a Secondary User is
250 m. There is No Convergence in Either Case.

Figure 5.11 illustrates the value update process when the the communication range of a

secondary user is 250m, which reduces the chances for the secondary users to communicate.

There is no converged value for honest nodes in either case of assigning reputation on re-

ceived values or value differences. Figure 5.12 illustrates the value update process when the

communication range is 500m. There is no converged value for honest nodes when assigning

reputation to received values. Convergence does happen when assigning reputation to value

differences. No matter whether convergence is achieved, ReDiSen can help honest nodes

obtain higher cooperative sensing results than the reputation-less scheme.

From the simulation results in Figure 5.11 and Figure 5.12, we can observe that assigning

reputation to the received values can help honest nodes arrive at convergence faster than

assigning reputation to the value differences, if convergence is possible at all. When sec-

ondary users have a smaller communication range, convergence may not happen. There is

a higher probability that assigning reputation to value differences can help honest nodes
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Figure 5.12: Value Update Process when the Honest Nodes Assign Reputation to (a) Value
Differences, (b) Received Values. The Primary User is Transmitting. The Malicious Nodes
Implement the Random Attack Strategy. The Communication Range of a Secondary User is
500 m. Convergence Happens in (a) but Not in (b).

obtain convergence than assigning reputation to received values. These two methods each

have their own benefits and disadvantages.

5.4.6 Impact of θ on Convergence Speed

We then study the different factors that can have impact on the convergence speed. We first

simulate the impact of θ on the convergence speed of the system. Figure 5.13 illustrates the

value update processes with θ = 0.997 and θ = 0.999, and other parameters the same as

Figure 5.2 (a). The simulation results indicate that the higher value θ is, the more rounds

it takes for the updated values to converge.

5.4.7 Impact of CRN Sizes on Convergence Speed

We then simulate the impact of CRN sizes on the convergence speed of the system. Fig-

ure 5.14 illustrates the relations between the number of nodes in a CRN and the number

of rounds towards convergence. The percentage of malicious nodes remains the same in all

sizes of CRNs (30%). The simulations results indicate that the higher the network density
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Figure 5.13: Value Update Process with (a) θ = 0.997, (b) θ = 0.999.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Number of Nodes in a CRNN
um

be
r o

f R
ou

nd
s t

ow
ar

ds
 C

on
ve

rg
en

ce

Figure 5.14: Relations between the Number of Nodes in a CRN and the Number of Rounds
towards Convergence

is, the faster a converged value can be obtained for honest nodes.

5.4.8 Impact of Malicious Nodes on Convergence Speed

We then simulate the impact of malicious nodes on the convergence speed of the system.

Figure 5.15 illustrates the relations between the number of malicious nodes and the number

of rounds towards convergence. We simulate a network of 21 secondary users. The number

of malicious nodes increases from 1 to 10. The simulations results indicate that the number

of malicious nodes does not have a definite impact on the convergence speed. Figures 5.2,

5.14, and 5.15 together verify that the convergence speed depends on the parameters of θ
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and the density of nodes, but not the number of malicious nodes.

5.4.9 Reputation Update Process
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Figure 5.16: Reputation Update Process. The Primary user is (a) Transmitting, (b) Not
Transmitting.

Section 5.4.2, 5.4.3, 5.4.4, and 5.4.5 all illustrate the memory-less reputation values

discussed in Section 5.1. We next simulate the reputation update process described in

Section 5.3. We simulate 30 sensing sessions with other parameters the same as Section 5.4.3.

In the first sensing session, honest nodes generate reputation using method (5.1). In the next

29 sensing sessions, they update reputation using method (5.14). The neighbourhoods of
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the honest nodes change in every sensing session. Such neighbourhood change leads to the

change of the percentage of malicious nodes. In the 30 sensing sessions, 16 of them are

sessions with more honest neighbours while 14 of them are with more malicious neighbours.

In the first sensing session, there are 30% malicious nodes on average in a neighbourhood.

Figure 5.16 illustrates that, using the reputation update method (5.14), ReDisen can still

help honest nodes obtain better cooperative sensing results in 90% of sensing sessions, even

though there are more malicious nodes in the neighbourhood in 47% sensing sessions. This

simulation demonstrates that the proposed reputation update method can help honest nodes

countermeasure SSDF attacks in a dynamic CRN environment.

5.5 Concluding Remarks

In this Chapter, we proposed the first fully distributed security scheme ReDiSen to secure

cooperative sensing results in adversarial CRNs. In ReDiSen, we assume that a single identity

system exists among all the secondary users. We also assume that all the secondary users

use an out-of-band communication system to exchange control messages. In our adversary

model, we assume that the malicious users attack in the same manner during a sensing

session without collusion.

In our simulation process, we only implemented ReDiSen in a small scale. A future

direction to extend this work can be a thorough experimental study in a real CRN, with

different kinds of devices as primary and secondary users. During the experimental study,

the parameters about the primary user power depends on the nature of primary users; the

distances between the primary users and the secondary users, as well as the density of

secondary users, depends on how the network elements are deployed; the noise floor and the

stand deviation for shadow fading depend on the communication media; the selection of θ

depends on how fast the secondary users want to converge their values to a consensus.

Another future direction to extend this work can be a study on more sophisticated ma-
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licious behaviours, such as

1. The malicious users may not attack in the same manner during an attack.

For example, some of the malicious users may adopt Random Attack strategy,

while the others adopt Intermittent Attack strategy.

2. The malicious users may adopt different attack intensities with some pre-

calculated distribution, aiming to maximize their attack goals when reducing

the probabilities of being detected.

3. The malicious users can collude to coordinate how to attack the system rota-

tionally, so that their reputation values are kept above a certain level to avoid

the detection from the honest secondary users.

4. The malicious users can attack the whole distributed spectrum sensing and

allocation process together, including the work presented in Chapter 6 and

Chapter 7.

5. The malicious users can implement other security attacks to a CRN, such as

primary user emulation attacks and jamming attacks into the control channels,

as described in Section 3.4.
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Chapter 6

INCENTIVIZING COOPERATIVE SENSING

We model the spectrum sensing and spectrum allocation processes as a non-cooperative

game to incentivize cooperative sensing. A previous distributed spectrum allocation scheme

considers this non-cooperative game model for secondary users to arrive at a consensus

spectrum allocation result iteratively without a central authority [105]. However, they did

not discuss how the weight of each secondary user is calculated and utilized. We propose

to use reputation values as weights in the distributed spectrum allocation process. In our

system, reputation values that reflect sensing participation and sensing accuracy are used to

offer incentive in the pricing function used in the spectrum allocation process. To obtain a

lower price for utilizing fallow spectrum, a secondary user needs to participate more actively

in the spectrum sensing process, and report accurate sensing reports. We propose a method

to calculate global reputation values for the secondary users, that can incentivize them to

participate in the cooperative sensing processes with more accurate results on more channels.

In the reputation fusion process, the adversary may also compromise some secondary users

to report spurious reputation values, aiming to improve their pricing factors in the spectrum

allocation process. We design a distributed algorithm to countermeasure this kind of attacks.

The glossary of notations in this Chapter is listed as Table 6.1

6.1 Incentive Method

To offer stronger incentives for honest nodes to participate in the cooperative sensing pro-

cess, we connect sensing participation to the reputation in a distributed spectrum allocation

process through a user-dependent pricing function in a spectrum allocation game. In the

distributed spectrum allocation process, some secondary users behave selfishly to maximize
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Symbol Description
G Non-Cooperative Game
Ω Set of Players
P Action Space
Pi Action Set for i
Ui Utility Function of i
λki Pricing Factor of i on Channel k
cki Cost Incurred by Cooperative Sensing for i on Channel k
P k
i Transmission Power of i on Channel k
Ki Number of Channels i Senses in a Sensing Session
Ti Number of Sensing Sessions i Participates
Ci Total Sensing Cost of i
PU-NT Primary User is not Transmitting
PU-T Primary User is Transmitting
Gk
ii Channel Gain on Channel k of the Source to an Intended Destination

Gk
ji Channel Gain on Channel k between i and an Unintended User j

Mk
i Noise at i

β SNR gap
α Probability of Primary User not Transmitting
R

(SP )
i Reputation of i about Sensing Participation

R
(SA)
i Reputation of i about Sensing Accuracy

µ Discount Factor
ε Linear Combination Parameter
η Linear Combination Parameter
δ Discount Factor
ω

(SA)k
j,i Credibility of i generated by j on Channel k
si Number of i’s Neighbours who Transmit Spurious Reputation
ci Number of i’s Neighbours who Transmit Truthful Reputation

Table 6.1: Glossary of Notations in Chapter 6

their own performance. A well designed pricing mechanism can elicit socially efficient be-

haviour from them.

We adopt the non-cooperative game among secondary users proposed in recent literature

[105]. The game G is expressed as G = {Ω,P , {Ui}}, where Ω = {1, 2, . . . , N} is a finite set

of players; P = P1×P2×· · ·×PN is the action space with Pi being the action set for player

i; and Ui is the utility function of player i, which depends on the strategies of all players,

which are the secondary users. They can select different transmission powers on different

channels. Higher transmission powers may bring higher achievable data rate. At the same

68



time, higher prices are also incurred. Secondary users select their transmission powers to

maximize their respective utility functions, and under certain conditions, they eventually

reach a Nash Equilibrium after a number of iterations [105].

The utility function of a secondary user i when the primary user is not transmitting in a

sensing session can be considered as the achievable data rate received by i from the network,

log2(1 + βGkiiP
k
i∑

j∈ΩN,j 6=i
GkjiP

k
j +Mk

i
), subtracting the cost associated with the pricing function and

the cooperative sensing process. Only when the primary user is not transmitting, the cost

brought by the pricing function is incurred for a secondary user who is interested to transmit

on this channel. We use a linear pricing mechanism [105] to describe the cost incurred by the

pricing function, where the price λkiP k
i increases monotonically with transmission power P k

i .

On each channel k, we denote the cost incurred by cooperative sensing for each secondary

user as cki . The total cost Ci from cooperative sensing for a node i depends on the number of

channels Ki it senses in a sensing session, and the number of sensing sessions it participates

in Ti, Ci = ∑Ti
T=1

∑Ki
k=1 c

k
i . We denote the state where the primary user is not transmitting as

PU-NT, and the state where the primary user is transmitting as PU-T. The utility function

when the primary user is not transmitting is defined as:

Ũ
(PU−NT )
i (Pi,P−i)

=
∑
k∈ΩK

ũi(P k
i )

=
∑
k∈ΩK

ui(P k
i )−

∑
k∈ΩK

αλkiP
k
i −

Ki∑
k=1

cki

=
∑
k∈ΩK

[log2(1 + βGk
iiP

k
i∑

j∈ΩN ,j 6=iG
k
jiP

k
j +Mk

i

)− λkiP k
i ]−

Ti∑
T=1

Ki∑
k=1

cki

(6.1)

where λiP k
i is the user-dependent linear pricing function that can drive the Nash Equilibrium

close to a Pareto optimal solution. Gk
ii is the channel gain on channel k of the source to an

intended destination, Gk
ji is the channel gain on channel k between the secondary user i and

an unintended user j,Mk
i is the noise at i, β is the SNR gap that is needed to reach a certain

channel capacity between practical implementation and information theoretical results [78].
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The utility function when the primary user is transmitting is negative, defined as the

cost from the cooperative sensing process:

Ũ
(PU−T )
i (Pi,P−i) = −

Ti∑
T=1

Ki∑
k=1

cki (6.2)

We assume that for T sensing sessions, the primary user does not transmit in αT of them,

and transmits in (1− α)T of them. Hereby, the average utility function per sensing session

can be defined as:

Ũi(Pi,P−i)

= 1
T

(αT (Ũ (PU−NT )
i (Pi,P−i)) + (1− α)T Ũ (PU−T )

i (Pi,P−i))

=
∑
k∈ΩK

α[log2(1 + βGk
iiP

k
i∑

j∈ΩN ,j 6=iG
k
jiP

k
j +Mk

i

)− λkiP k
i ]−

∑Ti
T=1

∑Ki
k=1 c

k
i

T

(6.3)

The social optimization problem is to maximize a weighted sum of the achievable data

rates of all secondary users in a sensing session:

maxP
∑
i∈ΩN

Ri

∑
k∈ΩK

α log2(1 + βGk
iiP

k
i∑

j∈ΩN ,j 6=iG
k
jiP

k
j +Mk

i

) (6.4)

where Ri is the reputation of secondary user i, assigned to i to reward active participation

and to punish idle behaviour in the cooperative sensing process. When a secondary user has

a better reputation, it shall gain a higher utility in the social optimization problem, and vice

versa.

We adopt the methodology as in [105] to derive the optimal pricing factor for the sec-

ondary users, described in (6.5). The pricing factor depends on the reputation values of all

the secondary users in the network. We can observe that the higher reputation value a node

i has, the lower reputation values its neighbours have (including both malicious and selfish

secondary users), and the lower price i has to pay in the spectrum allocation process. This

effect can offer a strong incentive for a secondary user i to improve its reputation.
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λki = −
∑
j∈ΩN ,j 6=iRj

∂uj(Pkj )
∂Pki

Ri

= −
∑
j∈ΩN ,j 6=iRj

∂[α log 2(1+
βGk

jj
Pk
j∑

i∈ΩN,i 6=j
Gk
ij
Pk
i

+Mk
j

)]

∂Pki

Ri

= −
∑
j∈ΩN ,j 6=iRj

∂[α log 2(1+
βGk

jj
Pk
j

Gk
ij
Pk
i

+
∑

l∈ΩN,l 6=j,i 6=j
Gk
ij
Pk
i

+Mk
j

)]

∂Pki

Ri

= −

∑
j∈ΩN ,j 6=iRj

α
ln 2

∂(
βGk

jj
Pk
j

Gk
ij
Pk
i

+
∑

l∈ΩN,l 6=j,i 6=j
Gk
ij
Pk
i

+Mk
j

)

∂Pk
i

1+
βGk

jj
Pk
j

Gk
ij
Pk
i

+
∑

l∈ΩN,l 6=j,i 6=j
Gk
ij
Pk
i

+Mk
j

Ri

=

∑
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ij
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Ri ln 2
∑

j∈ΩN ,j 6=i

RjG
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ijP
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k
jj
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i∈Ωj ,i 6=j G

k
ijP
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i +Mk
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ijP
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i +Mk

j + βGjjP k
j G

k
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(6.5)

After receiving transmission power P k
i , the noise Mk

i from the neighbours, measuring Gk
ii

and Gk
ij from the received signal power, and obtaining the reputation values (Section 6.2),

each secondary user first adjusts its linear pricing factor over all channels according to (6.5),

and then determines its best action, including the optimal channel selection and the trans-

mission rate on each channel. The goal of user i is to maximize its individual utility function

(6.1). The same procedure happens at all secondary users in the network. The Pareto op-

timal Nash Equilibrium is reached when all secondary users converge to the best response.

The secondary users can update their best responses according to the best responses of their

neighbours iteratively, using Jacobi (parallel), Gauss-Seidel (sequential) schemes [105], or

asynchronous schemes [6, 89].
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6.2 Generating Reputation

When discussing the spectrum allocation game, we established a reputation-based pricing

scheme for secondary users to reach Nash Equilibrium. A user with higher reputation is

assigned a lower price in the game. The next step is to design an appropriate mechanism for

generating reputation.

6.2.1 Sensing Participation

A natural way of generating Ri is to make public knowledge secondary user i’s sensing

participation R
(SP )
i . R(SP )

i is a parameter relevant to the number of channels a secondary

user actively senses in a cooperative sensing session. Ki is observable by the neighbours of i.

We use the percentage of sensed channels of i for the optimization: R(SP )
i = Ki

K
. The

higher R(SP )
i is, the better price i will obtain in the spectrum allocation process, which can

be used as an incentive for i to increase Ki by participating in more channels. To calculate

Ki, each node in the network monitors its neighbours’ activity on channel k. We describe

this process in Algorithm 3.

Algorithm 3 Calculating Sensing Participation. (Input: The channels a secondary user j
participates in. Output: Reputation about sensing participation R(SP ) for all the secondary
users.)

1: j participates in a subset of all channels
2: j observes the other participants in every channel
3: while There is a secondary user i participating on the same channel do
4: j broadcasts its observed channel participation information Kj,i for another node i
5: j receives the observed channel participation information K1,i, K2,i, K3,i, . . . for an-

other node i from its neighbours
6: j calculates Ki = |K1,i ∪K2,i ∪ · · · ∪Kj,i ∪ . . . |
7: i calculates R(SP )

i = Ki
K

8: end while

Consider the sensing participation in Figure 6.1. Player 1 participates in channels

{1, 3, 5, 7}. Player 2 participates in channels {1, 2, 3, 6, 7}. Player 3 participates in chan-

nels {2, 3, 4, 5, 6}. Since channel 4 is only sensed by Player 3, Player 3 has to do individual
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Figure 6.1: Observation on the Sensing Participations of Neighbours

sensing on channel 4. The activity of Player 3 on channel 4 is not counted towards its par-

ticipation in cooperative sensing. To obtain Ki, Players 2 and 3 each observe the channels

where they are active. They each record the other players on a channel: K1,2 = {1, 3, 7},

K1,3 = {3, 5}, K2,1 = {1, 3, 7}, K2,3 = {2, 3, 6}, K3,1 = {3, 5}, K3,2 = {2, 3, 6}. They broad-

cast the observations to neighbours. Each player then calculates the cardinality of the union

set for each individual neighbour. K1 = |K2,1 ∪K3,1| = 4, K2 = |K1,2 ∪K3,2| = 5. In this

case, K3 = |K1,3 ∪K2,3| = 4 rather than K3 = 5. Hereby, R(SP )
1 = R

(SP )
3 = 4

7 , R
(SP )
2 = 5

7 .

6.2.2 Sensing Accuracy

The above method incentivizes users with reputation to participate in channel sensing. Con-

sidering that malicious nodes can be active in the cooperative sensing process to achieve

their malicious goals, the reputation shall be further improved to reflect the sensing accu-

racy, besides level of participation.

We improve the sensing accuracy and participation by both identifying falsified sensing

reports and incentivizing the participation of honest secondary users. This idea is similar to

the Elo rating system for chess and ATP (Association of Tennis Professionals) Rankings for

tennis, where the more an athlete plays, and the better an athlete performs, the higher her

or his rating is. When connecting spectrum sensing with the spectrum allocation process,

reputation can reflect both sensing accuracy and sensing participation of the secondary
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users. If a user participates more actively, or senses and reports the primary user state more

accurately, it is rewarded with a lower price in the spectrum allocation process.

In a given sensing interval, a secondary user i has mi neighbours who report falsified

values (including attacking malicious neighbours and honest nodes sensing incorrectly due

to severe fading or system failure), and ni neighbours who report correct values (includ-

ing honest nodes sensing correctly and non-attacking malicious nodes). We use R(SA)k
j,i to

denote the reputation of transmitter i generated by receiver j to reflect the sensing accu-

racy of i. Each user j maintains a reputation vector of its neighbours, on a channel k:

{R(SA)k
j,1 , R

(SA)k
j,2 , . . . , R

(SA)k
j,mj+nj}. All secondary users update their values and exchange their

updated values with their neighbours. Vi,j is the value that a transmitter i sends to a receiver

j. After the first round of sensing value exchange, an honest node calculates the reputation

of its neighbours based on their reported values and its own value. The reputation values

reflecting sensing accuracy R(SA)k
j,i are generated on channel k as follows:

R
(SA)k
j,i = 2−

(mj + nj + 1)|V k
i,j − Ṽ k

j |∑mj+nj+1
l=1 |V k

l,j − Ṽ k
j |

(6.4)

where Ṽ k
j =

∑mj+nj+1
l=1 V kl,j
mj+nj+1 is the average value of all the nodes in the neighbourhood on

channel k [123]. The value of R(SA)k
j,i falls into [0, 2].

This reputation generating method can assign reputation R(SA)k
j,i < 1 for a neighbour that

reports falsified values, and R
(SA)k
j,i > 1 for a neighbour that reports correct values, which

will help honest nodes obtain better cooperative sensing results than the reputation-less

scheme, assuming that the majority of neighbours are either correctly sensing honest nodes

or non-attacking malicious nodes [123].

6.2.3 Reputation Fusion

Reputation values reflecting sensing accuracy of a secondary user are generated individually

by its peers, and are fused into a global reputation value for use in the pricing factor of the
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spectrum allocation process. The reputation fusion process is a distributed scheme without

a central authority. Upon detection of an idling primary user, the secondary users exchange

their reputation vectors with each other iteratively towards a converged global reputation.

Such agreed-upon reputation values become public knowledge in spectrum allocation.

Inspired by the distributed algorithm for cooperative sensing [59], we design a distributed

algorithm for secondary users to achieve consensus on global reputation, as described in

Algorithm 4. µ ∈ (0, 1) is a discount factor. t indicates the reputation update session.

Algorithm 4 Distributed Reputation Fusion Algorithm on Channel k. (Input: Reputation
vector of a node j: R(SA)k

j,1 , R
(SA)k
j,2 , . . . , R

(SA)k
j,i , . . . , R

(SA)k
j,mj+nj and received reputation vectors

from j’s neighbours. Output: The converged reputation vector.)
1: while i is a neighbour of j do
2: j receives reputation vectors from a neighbour i: R(SA)k

i,1 , R
(SA)k
i,2 , . . . , R

(SA)k
i,mi+ni

3: j sends its own reputation vector to a neighbour i:
R

(SA)k
j,1 , R

(SA)k
j,2 , . . . , R

(SA)k
j,i , . . . , R

(SA)k
j,mj+nj

4: while The converged reputation vector is not obtained do
5: j updates its reputation vector as

R
(SA)k(t+1)
j,i = R

(SA)kt
j,i +

mj+nj∑
l=1

µ(R(SA)kt
l,i −R(SA)kt

j,i ) (6.5)

6: end while
7: end while

In the distributed reputation fusion algorithm, the consensus reputation value R(SA)k
i

for i on channel k is the average reputation value from all secondary users in the network

R
(SA)k
i =

∑
j∈ΩN,j 6=i

R
(SA)k
j,i

Ni
[80]. Since a node can sense on multiple channels, the reputation

value R(SA)
i about a node i can be described as 1

Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i . The higher R(SA)k

i

it obtains, the lower price i faces in the spectrum allocation process, which can be used

as another incentive for i to contribute more accurate sensing results. This statement also

implies that a malicious node is less incentivized to attack with falsified sensing results.

The method of generating and fusing R(SP )
i has been discussed before as R(SP )

i = Ki
K
,

which falls into the range of [0, 1]. The two reputation vectors can be linearly combined

together with parameters ε and η, to form the final global reputation Ri to be used in the
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pricing factor in the spectrum allocation process. Considering the different value ranges of

R
(SA)
i and R(SP )

i , the global reputation value of node i is:

Ri = εR
(SA)
i + 2ηR(SP )

i

= ε
1
Ki

∑
k∈ΩK ,Pki >0

R
(SA)k
i + 2ηKi

K

= ε

KiNi

∑
k∈ΩK ,Pki >0

∑
j∈ΩN ,j 6=i

(2−
(mj + nj + 1)|V k

i,j − Ṽ k
j |∑mj+nj+1

l=1 |V k
l,j − Ṽ k

j |
)

+2ηKi

K

(6.6)

where 0 < ε < 1, 0 < η < 1, ε+ η = 1.

6.2.4 Role of Reputation

For the linear combination of R(SA)
i and R(SP )

i , we now analyze the effect of the parameters

towards incentivizing secondary user participation. In the reputation value Ri, 2ηKi
K

offers

incentive for both malicious and honest neighbours, while ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i offers incen-

tive to honest neighbours only. To differentiate secondary users in the spectrum allocation

process, we propose the requirement that is consistent with the requirement for sensing ac-

curacy. We require that Ri < 1 for a malicious neighbour i, and Ri > 1 for an honest

neighbour i.

For an honest neighbour i, the requirement is ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i > K−2ηKi

K
. Since

ε+ η = 1, the requirement translates to ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i > K−2ηKi

K(1−η) .

Since ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i > 1, an honest node has to meet the requirement of K−2ηKi

K(1−η) <

1 to obtain a reputation value Ri > 1. This requirement can be transformed to Ki >
K
2 .

Hereby, as long as it participates in more than half of the channels and reports correctly

sensed values, the requirement is satisfied. In this case, the system can incentivize the honest

nodes to participate in at least half of the channels. Again, the more channels it participates

in, the lower price it can gain in the spectrum allocation process.

For a malicious neighbour i, the requirement is ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i < K−2ηKi

K
. Since
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ε+ η = 1, the requirement translates to ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i < K−2ηKi

K(1−η) .

Since ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i < 1, as long as the malicious node i is active on less than

half of the channels, Ki <
K
2 ⇔

K−2ηKi
K(1−η) > 1, the requirement is satisfied. In this case,

the malicious node is guaranteed to receive Ri < 1, which indicates a higher price in the

spectrum allocation process.

For an active malicious neighbour i that attacks in more than half of the channelsKi >
K
2 ,

we need to analyze the effect of parameter η. We can observe that the more channels i actively

attacks, the lower ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i is. At the same time, the lower K−2ηKi

K(1−η) also turns

out to be. In the extreme situation where the malicious nodes attack all channels, Ki = K.

The requirement for 0 < Ri < 1 turns to be ε
Ki

∑
k∈ΩK ,Pki >0R

(SA)k
i < 1−2η

1−η , where
1−2η
1−η is the

lower bound for the system to meet the requirement.

Once the allocation decision is made, there could be many new ways of attacking the

system by abusing the allocated resources. The enforcement on the spectrum usage has

a wide plethora of research problems and solutions, and thus is out of the scope of this

thesis. Such enforcing methods in the spectrum sharing process can be found in independent

literature, such as [25,55].

6.2.5 Reputation Update Process

Our hitherto discussion has been focusing on the comparison within a single sensing session.

The calculations and comparisons all happen in one sensing session and restart in the next

sensing session. If a selfish or malicious node changes its behaviour across sessions, reputa-

tion calculation in previous sensing sessions are independent. However, a realistic cognitive

radio network is dynamic. The nodes, both honest and malicious, may move to different

locations in different sensing sessions. Their neighbourhood can be different in different

sensing sessions. In some sensing sessions, the majority of the neighbourhood may not be

dominated by nodes that report correct values.

To better reflect the dynamic behaviour changes of the secondary users, we wish to design
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a reputation update process to consider both previous behaviour as well as the current

behaviour, including both sensing participation and sensing accuracy. The more recent

behaviour shall be given higher weights than the more distant behaviour. If a secondary

user stops participation in some sensing sessions, its reputation shall also be reduced. This

method can tolerate some misbehaviour of honest nodes upon system failures. In this case,

an honest node can still gain a better price based on previous good behaviour.

We propose a reputation update process, which can reflect the behaviour changes of the

secondary users:

RT
i = δRT−1

i +


(1− δ)ΨT if i participates in the sensing session T

0 if i does not participate in the sensing session T
(6.7)

where ΨT = ( ε
KiNi

∑
k∈ΩK ,Pki >0

∑
j∈ΩN ,j 6=i(2−

(mj+nj+1)|V ki,j−Ṽ
k
j |∑mj+nj+1

l=1 |V k
l,j
−Ṽ kj |

) + 2ηKi
K

)T , and δ is a discount

factor of previous reputation values in (0, 1). We can observe that 0 ≤ RT
i ≤ 2.

We can derive the value of RT
j,i as

RT
i = δT−1Ψ1 + δT−2(1− δ)Ψ2 + δT−3(1− δ)Ψ3 + δ(1− δ)ΨT−1 + (1− δ)ΨT , (6.8)

where any ΨT can be replaced by 0 if i does not participate in sensing session T .

Let us discuss the impact of the discount factor δ. It is easy to observe that (δ)T−2(1−δ) <

(δ)T−3(1 − δ) < · · · < δ(1 − δ) < (1 − δ). So the most recent behaviour is more important

than the previous ones for the sensing sessions where a secondary user is active, starting

from the second sensing session. To extend this requirement to the first sensing session, we

require that δT−1 < δT−2(1 − δ) ⇔ δ < 0.5. As long as 0 < δ < 0.5, the reputation update

method in (6.7) can assign higher weights to the recent behaviour when taking the previous

behaviour into account.
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6.3 Improving Robustness of Reputation

Malicious nodes are interested in manipulating the reputation values to give themselves

lower prices, while giving higher prices to honest nodes. Once fused with correct data, such

spurious data can lead to detrimental, unfair prices. We further assign differentiated weights

to the reputation values about sensing accuracy. Such reputation-of-reputation serves as

credibility to help honest nodes obtain more accurate reputation values for their neighbours.

An honest node calculates the credibility of its neighbours based on their reported repu-

tation vectors and its own reputation vector after the first round of reputation exchange in

Algorithm 4. We use differentiated weight ω(SA)k
j,i to denote the credibility of the transmitter

i generated by the receiver j. Then, we can modify (6.5) to

R
(SA)k(t+1)
j,i = R

(SA)kt
j,i +

mj+nj∑
l=1

µω
(SA)k
j,i (R(SA)kt

l,i −R(SA)kt
j,i ). (6.9)

For requirements on ω(SA)k
j,i to guarantee that the reputation fusion in (6.9) is better than

that in (6.5), we have:

Proposition 3. Assume a node j can assign credibility 0 < ω
(SA)k
j,i < 1 to a neighbour

that reports spurious reputation values, and ω(SA)k
j,i > 1 to a neighbour that reports correct

reputation values. Then j can update the fused reputation value of a neighbour i to a higher

reputation value when i reports correct sensing results, and a lower reputation value when i

reports falsified sensing results, compared to the reputation fusion process without credibility

ω
(SA)k
j,i .

Proof. Let si be the number of i’s neighbours who transmit spurious reputation, and ci

be number of other neighbours. For an honest node j, we denote the credibility of a

neighbour i that reports a correct reputation with ω
(SA)k
j,iC

, and the credibility of a node

i that reports a spurious reputation with ω
(SA)k
j,iS

. Comparing the two reputation update

methods (6.5) and (6.9), we have R(SA)k(t+1)
j,i = R

(SA)kt
j,i + µ[∑sj

i=1 ω
(SA)k
j,iS

(R(SA)kt
l,i −R(SA)kt

j,i ) +
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∑sj+cj
i=sj+1 ω

(SA)k
j,iC

(R(SA)kt
l,i − R

(SA)kt
j,i )] and R

(SA)k(t+1)
j,i = R

(SA)kt
j,i + µ[∑sj

i=1(R(SA)kt
l,i − R

(SA)kt
j,i ) +∑sj+cj

i=sj+1(R(SA)kt
l,i −R(SA)kt

j,i )]. Therefore, the difference between these two methods is:

µ[
sj∑
i=1

(ω(SA)k
j,iS

− 1)(R(SA)kt
l,i −R(SA)kt

j,i ) +
sj+cj∑
i=sj+1

(ω(SA)k
j,iC

− 1)(R(SA)kt
l,i −R(SA)kt

j,i )]. (6.10)

We now examine the two scenarios, when an honest node j generates the reputation

of a neighbour (i) correctly, or (ii) incorrectly. In case (ii), the effect is the same as a

spurious reputation value. In case (i), R(SA)kt
j,i ≈ R

(SA)kt
l,i for a neighbour l that also gen-

erate a correct reputation value, then the difference between the two methods is approxi-

mately µ∑sj
i=1(ω(SA)k

j,iS
−1)(R(SA)kt

l,i −R(SA)kt
j,i ). While i reports a correct sensed value, we have

R
(SA)kt
l,i < R

(SA)kt
j,i for a neighbour l that reports a spurious reputation value. As long as∑sj

i=1(ω(SA)k
j,iS

− 1) < 0, (6.9) can help j obtain a higher converged reputation for i than (6.5).

While node i reports a falsified sensed value, R(SA)kt
l,i > R

(SA)kt
j,i for a neighbour l that reports

a spurious reputation value and so as long as ∑sj
i=1(ω(SA)k

j,iS
− 1) < 0, (6.9) can help j obtain

a lower converged reputation for i than (6.5). Thus the first requirement for credibility is

that ∑sj
i=1(ω(SA)k

j,iS
− 1) < 0 for a neighbour l reporting incorrectly.

In case (ii), R(SA)kt
j,i ≈ R

(SA)kt
l,i for a neighbour l that also generates a spurious reputa-

tion value, then the difference between the two methods is approximately µ∑sj
i=1(ω(SA)k

j,iC
−

1)(R(SA)kt
l,i −R(SA)kt

j,i ). While i reports incorrectly, we have R(SA)kt
l,i < R

(SA)kt
j,i for a neighbour

l that reports a correct reputation value. As long as ∑sj
i=1(ω(SA)k

j,iC
− 1) > 0, (6.9) can help j

obtain a higher converged reputation for i than (6.5). While i reports a correct sensed value,

R
(SA)kt
l,i < R

(SA)kt
j,i for a neighbour i that reports a correct reputation value and so as long as∑sj

i=1(ω(SA)k
j,iC

− 1) < 0, (6.9) can help j obtain a lower converged reputation for i than (6.5).

Thus the second requirement for credibility is that ∑sj
i=1(ω(SA)k

j,iC
− 1) > 0 for a neighbour l

reporting a correct reputation value.

To generate the credibility ω(SA)k
j,i that can meet the two requirements, we propose the

method of:
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ω
(SA)k
j,i = 2−

|R(SA)kt
j,i − R̃(SA)kt

j,i |∑sj+cj
l=1 |R(SA)kt

l,i
−R̃(SA)kt

j,i |
sj+cj

= 2−
(sj + cj)|R(SA)kt

j,i − R̃(SA)t
j,i |∑sj+cj

l=1 |R
(SA)t
l,i − R̃(SA)t

j,i | (6.11)

where R̃(SA)kt
j,k =

∑sj+cj
l=1 R

(SA)kt
j,i

sj+cj is the average reputation value of i from neighbours of j. We

have 0 ≤ ω
(SA)k
j,i ≤ 2.

The rationale of this method lies in the observation on the distances to the average

reputation value. As long as there are more neighbours that report correct reputation values

for i, the distance from the reputation value of a node that reports correctly to the average

reputation value will be smaller than the average distance to the average reputation value,

and vice versa. That leads to the following theorem:

Theorem 3. The credibility-generating method in (6.11) enables honest nodes to assign

0 < ω
(SA)k
j,i < 1 for neighbours reporting spurious reputation, ω(SA)k

j,i > 1 for neighbours

reporting correct reputation, for the reputation fusion method in (6.9). Therefore, (6.9)

and (6.11) can help honest nodes obtain higher reputation values for other honest nodes,

lower reputation values for malicious nodes, given the condition that more neighbours report

correct reputation values. This improvement of reputation robustness can assign higher

prices to the malicious nodes, and lower prices to honest nodes in the spectrum allocation

process.

Proof. For a neighbour that reports spurious reputation values, the distance to the average

reputation value is above average: |R(SA)kt
j,i − R̃(SA)kt

j,i | >
∑sj+cj

l=1 |R(SA)kt
l,i

−R̃(SA)kt
j,i |

sj+cj . Since both

sj + cj > 0 and ∑sj+cj
l=1 |R

(SA)kt
l,i − R̃(SA)kt

j,i | > 0, we can have (sj+cj)|R(SA)kt
j,i −R̃(SA)t

j,i |∑sj+cj
l=1 |R(SA)t

l,i
−R̃(SA)t

j,i |
> 1, which is

equivalent to 2− (sj+cj)|R(SA)kt
j,i −R̃(SA)t

j,i |∑sj+cj
l=1 |R(SA)t

l,i
−R̃(SA)t

j,i |
< 1. According to (6.11), we have 0 < ω

(SA)k
j,iS

< 1.

For a neighbour that reports correct reputation values, the distance to the average reputa-

tion value is smaller than the average distance from the average reputation value: |R(SA)kt
j,i −

R̃
(SA)kt
j,i | <

∑sj+cj
l=1 |R(SA)kt

l,i
−R̃(SA)kt

j,i |
sj+cj . Since both sj + cj > 0 and ∑sj+cj

l=1 |R
(SA)kt
l,i − R̃(SA)kt

j,i | > 0,

we can have (sj+cj)|R(SA)kt
j,i −R̃(SA)t

j,i |∑sj+cj
l=1 |R(SA)t

l,i
−R̃(SA)t

j,i |
< 1, which is equivalent to 2 − (sj+cj)|R(SA)kt

j,i −R̃(SA)t
j,i |∑sj+cj

l=1 |R(SA)t
l,i

−R̃(SA)t
j,i |

> 1.

81



According to (6.11), we can have ω(SA)k
j,iC

> 1.

Combining these two cases with the requirements on credibility, we can verify the validity

of the theorem.

6.4 Performance Evaluation

6.4.1 Simulation Objective and Outline

We simulate the system performance inMatlab, studying: (1) assigning lower prices to honest

but selfish nodes, when they are incentivized to participate in more channels; (2) assigning

higher prices to malicious nodes when it reports falsified sensing results; (3) improving the

robustness of reputation by reducing the effect of spurious reputation values.

In our simulations, the SNR gap β is 0.3. Each secondary user has the same capacity

to communicate with other secondary users in its proximity. The noise is set as Mk
i =

−80dBm, ∀i ∈ ΩN ,∀k ∈ ΩK . The primary users transmit with the probability α = 0.5 on

all channels.

We simulate a network of 10 secondary users, to observe: (1), the pricing factor values

generated from both sensing accuracy and sensing participation; (2), the reputation fusion

process under attacks from malicious nodes reporting spurious reputation values.

We examine the extreme situation where malicious nodes attack on all channels, reporting

falsified sensed values in the cooperative sensing process and spurious reputation values in

the reputation update process. The honest but selfish secondary users participate in a subset

of 10 different channels, reporting correctly sensed values in the cooperative sensing process

and correct reputation values in the reputation update process.

We now present simulation results for verifying the efficacy of the proposed incentive

mechanisms.
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6.4.2 Pricing Factor

We first simulate the pricing factor for different kinds of secondary users in different situ-

ations. In Figure 6.2, 6.3, 6.4, and 6.5, the x-axis indicates the number of channels a

selfish node participates in, the y-axis is the pricing factor for an honest node, a malicious

node, or a selfish node. We use the tuple {# of always active nodes, # of selfish nodes, #

of malicious nodes, ε, η} to denote the different parameters.
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Figure 6.2: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious
Node. Parameters: (a) {6, 1, 3, 0.5, 0.5}, (b) {5, 1, 4, 0.5, 0.5}.
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Figure 6.3: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious
Node. Parameters: (a) {4, 3, 3, 0.5, 0.5}, (b) {2, 5, 3, 0.5, 0.5}.
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Figure 6.4: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious
Node. Parameters: (a) {6, 1, 3, 0.9, 0.1}, (b) {6, 1, 3, 0.1, 0.9}.
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Figure 6.5: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious
Node. Parameters: (a) {5, 1, 4, 0.9, 0.1}, (b) {5, 1, 4, 0.1, 0.9}.

We can observe that the always active nodes have lower pricing factors compared to the

malicious nodes. As the number of active channels increases, the pricing factors of the selfish

nodes are eventually lowered to the same level of an always active honest node. The more

active channels the selfish nodes participate in, the lower prices they can obtain. Figure 6.2

depicts scenarios with different numbers of malicious nodes. Since malicious nodes are all

actively spreading falsified sensing results on all the channels, the selfish node needs to

participate in at least five channels when there are three malicious nodes, and eight channels

when there are four malicious nodes, to obtain a lower price than the malicious nodes.
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As the number of malicious nodes increases, the differences between the pricing factors of

an always active honest node and a malicious node shrink. Figures 6.2 and 6.3 depict the

scenarios with different numbers of selfish nodes. As the number increases, the pricing factor

for a selfish node decreases. This is because the pricing factor depends on the comparable

reputation values of all the nodes in the network. If other nodes have lower reputation

values, the pricing factor for the selfish nodes can increase. Figures 6.2, 6.4 and 6.5 depict

the scenarios with different selection of parameters ε and η. We can observe that the higher

are the value η is, the higher differences between the selfish node and an always active honest

node. The reason is that the higher η amplifies the role of sensing participation in the pricing

factor. In this case, the secondary users can be incentivized to participate on more channels.

However, the importance of sensing accuracy is downplayed. This is the tradeoff between

the two parameters ε and η. These observations indicate that the system can offer the selfish

but honest secondary users strong incentives to participate more actively into the distributed

cooperative sensing process to obtain lower prices in the spectrum allocation process. The

system can also assign higher prices to malicious nodes who attack by reporting falsified

sensed results.

6.4.3 Reputation Update Process

Figures 6.6 and 6.7 depict the pricing factors when the secondary users update their

reputation values as (6.7). The other parameters are the same as Figure 6.3 (b): {4, 3, 3,

0.5, 0.5}. We can observe that the higher δ is, the lower are the prices a selfish node or a

malicious node has. This is due to the tolerance of their previous misbehaviour. Compared

to Figure 6.3(b), we can also observe that the selfish nodes can obtain better prices than the

malicious nodes faster.
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Figure 6.6: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious Node
when the Reputation Values are Updated as (6.7): (a) δ = 0.1, (b) δ = 0.2.

6.4.4 Credibility

Figure 6.8 depicts the differences credibility ω brings to the system performance for an

honest node and a malicious node. For an honest node, the malicious nodes report the lowest

reputation 0. With the help of credibility ω, the converged reputation value R(SA) of another

honest node for the victim honest node is approximately 0.3 higher than the scenario without

credibility. For a malicious node, the other malicious nodes report extremely high reputation

values. With the help of credibility ω, the converged reputation value R(SA) of an honest

node for the malicious node is approximately 0.4 lower than the scenario without credibility.

These observations indicate that the system can improve the robustness of reputation by

reducing the effect of spurious reputation values.

6.5 Concluding Remarks

In this Chapter, we proposed the first fully distributed scheme to incentivize cooperative

sensing in CRNs. In our system, we assume that a single identity system exists among

all the secondary users. We also assume that all the secondary users use an out-of-band

communication system to exchange control messages. In our adversary model, we assume
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Figure 6.7: Pricing Factors for an Always Active Node, a Selfish Node and a Malicious Node
when the Reputation Values are Updated as (6.7): (a) δ = 0.3, (b) δ = 0.4.

0 50 100 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 1500.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

No Credibility
Use Credibility ω

No Credibility
Use Credibility ω

Reputation Fusion Update Sessions Reputation Fusion Update Sessions

U
pd

at
ed

 R
ep

ut
at

io
n

U
pd

at
ed

 R
ep

ut
at

io
n

(a) (b)

Figure 6.8: Reputation Fusion Process. The Reputation Fusion for the R(SA) of (a) An
Honest Node, (b) A Malicious Node.

that the malicious users attack in the same manner during a sensing session without collusion.

In our simulation process, we only implemented the system in a small scale. A future

direction to extend this work can be a thorough experimental study in a real CRN, with

different kinds of devices as primary and secondary users. During the experimental study,

the parameters about SRN gap, the channel gains, and the noise floor depend on the com-

munication media; the probability of primary user transmitting depends on the nature of

the primary users; the selection of ε and η depends on whether the secondary users want to

give more incentives to sensing participation, or sensing accuracy.
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Another future direction to extend this work can be a study on more sophisticated ma-

licious behaviours, such as

1. The malicious users may not attack in the same manner during an attack.

For example, some of the malicious users may attack the cooperative sensing

process by reporting falsified sensing reports, while the other malicious users

attack the reputation system by reporting spurious reputation values.

2. The malicious users can collude to coordinate how to attack the system rota-

tionally, so that their reputation values are kept above a certain level to avoid

the detection from the honest secondary users.

3. The malicious users can attack the whole distributed spectrum sensing and

allocation process together, including the work presented in Chapter 5 and

Chapter 7.

4. The malicious users can implement other security attacks to a CRN, such as

primary user emulation attacks and jamming attacks into the control channels,

as described in Section 3.4.
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Chapter 7

VERIFYING VCG SPECTRUM AUCTIONS

When primary users are also included into the spectrum allocation process, spectrum auc-

tions are a natural solution. To secure the VCG spectrum auctions, this thesis introduces

a method to detect the misbehaviour of the auctioneer during the spectrum auction pro-

cess. Our design goal is to enable the bidders to verify the correctness of the auction, when

the auctioneer is potentially malicious. For the winner determination phase, the proposed

method shall be able to verify whether the winning independent set has the highest total

valuation among all independent sets of bidders, in the interference graph. For the pricing

phase, the proposed method can verify whether the price for a winner equals the opportunity

cost its presence introduces to other bidders. The verification scheme shall be distributed

among the secondary users without the need of a central authority. The verification process

shall also have the privacy-preserving property. When protecting the integrity of the VCG

auctions, we shall not make bidder privacy significantly worse than the case of no verification.

In particular, individual bids shall not be revealed to other bidders whenever possible.

The glossary of notations in this Chapter is listed as Table 7.1

Symbol Description
NMIS Number of Maximal Independent Sets
bi Bid of Bidder i
vi Valuation of Bidder i
pi Price Charged to Bidder i
sW Winning Independent Set
Nw Number of Winners in a Winning Independent Set
Ns Number of Bidders in an Independent Set
x1, x2, . . . Winners and Their Bids
y1, y2, . . . Verifiers and Their Bids
NM
B Number of Random Number Groups

r(i) Random Number Generated by i

Table 7.1: Glossary of Notations in Chapter 7.1
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7.1 Verifying Winner Determination

In order to discover all possible misbehaviour of the auctioneer, the set of bidders, including

both winning and losing ones, need to collaborate in the auction verification process. In the

proposed verification mechanism, they jointly conduct maximal independent set enumeration

and a series of secure multi-party computation tasks.

7.1.1 Verification Algorithm

A maximal independent set of a graph G = (V , E) is a subset V ′ ⊆ V of the vertices such

that no two vertices in V ′ are connected by an edge in E , and such that each vertex in V −V ′

is connected by an edge to some vertex in V ′ [46]. In the auction process, since the conflict

graph is public, the bidders and the auctioneer then check the conflict graph and enumerate

the maximal independent sets [46]. Let NMIS be the number of maximal independent sets

in the conflict graph. Considering only maximal independent sets instead of all possible

independent sets greatly reduces the computational complexity of the verification process,

as later illustrated in Section 7.3.

ForNb bidders, the number of maximal independent setsNMIS falls into [Nb, 2Nb−1]. One

of them is declared as the winning set in the winner determination phase. The other NMIS−1

are potentially the verifiers. We use Secure Multiparty Computation as a black-box to verify

the winner determination of a VCG auction. SMC enables different parties to compute a

function of their private inputs without revealing information beyond just the output of the

function. The computation is performed by the parties jointly, without a trusted authority.

The input of the verification is the individual bids of the bidders. The output is a binary

value indicating whether the winner determination is truthful. A bidder is convinced that

the outcome is truthful if it discovers that the declared set does dominate other independent

sets in total bids: ∀s\sW ,
∑Nw
i=1 vi −

∑NMIS
j=1 vj > 0. The bidders will not know the addition

result of their SMC. They only know whether the summation is larger than, equal to, or
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smaller than 0. The bidders cannot learn more than the binary output, in particular they

cannot learn other bidders’ valuations through multiple verification additions.

We denote the algorithm of the winner determination verification as Algorithm 5.

Algorithm 5 Verify Winner Determination (Input: Bids of the Bidders. Output: Whether
the Winner Determination is Correct or Not

1: while A bidder i is a winner of a VCG auction do
2: i supplies its bid vi into the SMC
3: end while
4: while A bidder j is not a winner of a VCG auction do
5: j supplies its bid vj into the SMC
6: end while
7: The SMC outputs 1, if ∑Nw

i=1 vi −
∑Ns
j=1 vj ≥ 0, outputs 0 if ∑Nw

i=1 vi −
∑Ns
j=1 vj < 0

Each losing maximal independent set can verify the winner determination individually. If

one of them detects that the verification result is 0, indicating identified misbehaviour of the

auctioneer, bidders in this maximal independent set broadcast the result to other bidders,

marking the auction fraudulent and the auctioneer misbehaving. The further steps after

detection are orthogonal to the detection mechanism, and are not within the scope of this

paper.

7.1.2 Information Leakage

During the verification process, a curious bidder may belong to the winner group, a verifier

group, or both. We characterize the different scenarios based on the roles of a curious bidder

and the number of bidders in either the winner set or the verifier set, as illustrated in Table

7.2. Note that if a curious bidder belongs to both the winners and the verifiers, then both

groups must have two or more bidders. During the verification process, inequality may arise

due to comparisons between the winner set and verification sets. A verifier participating in

a number of such comparisons may attempt to learn information about other verifiers. We

analyze what information may be leaked in the worst case scenario.

In the seven scenarios, we denote the winners and their bids as x1, x2, . . . , the verifiers
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Role of A Curious Bidder Scanario
One Winner (a)

Winner Only Two Winners (b)
Three or More Winners (c)

Verifier Only One Verifier (d)
Two or More Verifiers (e)

Winner and Verifier Two Winners (f)
Three or More Winners (g)

Table 7.2: Different Scenarios During the Winner Determination Verification Process

and their bids as y1, y2, . . . :

a: As the only winner, x1 is curious to learn more about the verifiers. If there is only

one winner and one verifier, then x1 learns that x1 > y1. If x1 = 2, x1 learns y1 = 1. For the

case of two verifiers, if x1 learns that x1 > y1 + y2, and x1 = 3, then x1 learns that y1 = 1

and y2 = 1 because the bids are positive integers. In general, if the number of verifiers

Ns = x1 − 1, x1 learns that all the verifiers have bid 1.

b: x1 and x2 are the two winners. If there is only one verifier in a maximal independent

set, then x1 can learn x1 + x2 < y1 ⇒ x2 < y1. x2 can also learn x1 < y1. However,

x1 + x2 < y1 can only happen once as this inequality will stop the comparisons by detecting

the misbehaviour of the auctioneer. If another bidder x2 exists in both winners and verifiers,

such as x1 + x2 > x2 + y1, then x1 can learn x1 > y1. x1 learns an upper bound of y1. If

x1 = 2, then x1 learns y1 = 1 because the bids are positive integers. If x1 + x2 < x2 + y1,

x1 can also learn y1’s lower bound x1 < y1. After many comparisons, x1 may learn x1 >

y1, x1 > y2, x1 > y3 . . . . However, x1 cannot learn the sorted order of y1, y2, y3, . . . .

c: if x1 + x2 + x3 + · · · < y1, x1 learns that x2 < y1, x3 < y1, . . . . If other bidders

coexist in both winners and verifiers, such as x1 + x2 + x3 > x2 + x3 + y1, then x1 can learn

x1 > y1. x1 learns an upper bound of y1. Again, after many comparisons, x1 may learn

x1 > y1, x1 > y2, x1 > y3 . . . , but not the sorted order of y1, y2, y3, . . . .

d: As the only verifier, y1 is curious to learn about the winners. If there is only one

winner and one verifier, then y1 learns that x1 > y1. In the case of two winners, if y1 learns
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that x1 + x2 < y1, and y1 = 3, then y1 learns that x1 = 1 and x2 = 1. In general, if the

number of winners Nw = y1 − 1, y1 learns that all the winners have bid 1.

e: y1 and y2 are the two verifiers. If there is only one winner in the winning independent

set, then y1 can learn x1 > y1 + y2 ⇒ x1 > y2. y2 can also learn x1 > y1. After many

comparisons, a curious bidder can learn the relations of other bids, but not the sorted

order of y1, y2, y3, . . . . If other bidders y2, y3 exists in both winners and verifiers, such as

x1 + x2 + y2 + y3 < y1 + y2 + y3, then y1 can learn x1 + x2 < y1. If y1 = 3, then y1 learns

x1 = 1 and x2 = 1 because the bids are positive integers. In general, if the other bidders are

exactly the same except for the verifier and the number of other winners N ′w = y1 − 1 , the

verifier can learn the bids of the winners.

f: In this scenario, x1 +x2 > x1 +y1 can lead to the case that x1 learns x2 > y1. Similarly,

x1 can learn the relation among other bids, but not the complete order. If x1 +x2 < x1 + y2,

x1 can further learn that x2 < y2. Then x1 learns y1 < x2 < y2. The auction is detected as

incorrect, so the smaller-than relation between the winner and a verifier happens only once.

g: x1 + x2 + x3 > x1 + y1 + x3 can lead to the case that x1 learns x2 > y1. Again, x1 can

learn the relations of other bids, but not the entire order. If x1 + x2 + x3 < x1 + y2 + x3, x1

can further learn that x2 < y2. Then x1 learns that y1 < x2 < y2. The auction is detected as

incorrect, so the less-than relation of the winner compared to a verifier only exists once. In

another case, x1 +x2 +x3 < x1 +y1 can result that x1 learns x2 +x3 < y1 ⇒ x2 < y1, x3 < y1.

In cases b and c, a bidder may learn an upper bound or a lower bound of some bids.

We now discuss whether it is possible for a bidder to learn both. Assume x1 and x2 are the

two verifiers coexisting in many maximal independent sets. We want to know whether it is

possible for x1 to restrict the range of x2, such as F2(x1) < x2 < F1(x1), where F1 and F2

are two functions known to x1.

Proposition 4. A curious bidder can learn an upper bound or a lower bound of some bids,

but never both, through the inequalities revealed through different comparisons.
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Proof. If x1 and x2 both belong to the sets of verifiers during many comparisons, x1 can

learn that x1 +x2 +V1 > V2 and x1 +x2 +V3 < V2 where V1, V2 and V3 are the other verifiers’

inputs. If x1 can learn V2 − V1 − x1 < x2 < V2 − V3 − x1, x1 must have the knowledge of

V1, V2 and V3. To learn V1, V2 and V3, x1 must collude with other verifiers to learn the inputs

from other verifiers. So unless x1 has collusion with both the winners and other verifiers, x1

cannot learn x2 by restricting both the upper bound and lower bound of x2.

If x1 belongs to both winners and verifiers during many comparisons, x1 can also learn

that x2 + V1 > V2 and x2 + V3 < V2. In this case, b can learn V2− V1 < x2 < V2− V3. Unless

x1 learns V1, V2 and V3 through collusion, x1 cannot learn both the upper bound and lower

bound of x2.

The above discussion on the verification correctness and information leakage leads to

Theorem 4.

Theorem 4. Algorithm 5 to verify winner determination is

1. Correct: It can verify whether the winner determination is correctly imple-

mented by the auctioneer.

2. Privacy-Preserving: It protects the privacy of the bidders by concealing individ-

ual bids, unless in extreme cases where the bids are very small or the number of

winners or verifiers is very specific (as Section 7.1.2 a and d). After learning

the relations of the total valuations between the winner and the other maxi-

mal independent sets, a bidder may partially learn: (a) the relations between

a winner and a verifier (as Section 7.1.2 b, c, f and g); (b) the upper or lower

bounds of another bidder (as Section 7.1.2 b and c), but not both.

Proof. For verification correctness, if ∑Nw
i=1 vi −

∑Ns
j=1 vj ≥ 0 and the auctioneer publishes

the winning independent set as sW , then the auction is verified as correct. Otherwise, the

misbehaviour of the auctioneer is detected.
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For privacy, the only system outputs in Algorithm 5 are the relations between the two

groups of inputs. Learning the relations of the total valuations between the winner and

all other maximal independent sets is necessary to convince all verifiers that the auction is

correct. As Section 7.1.2 b, c, f and g, a curious bidder may learn relations of a winner (or

verifier) compared to some verifiers (or winners), but not the sorted order. As Proposition

4, a curious bidder may learn the upper bound or lower bound of some bids, but not both.

Partially learning the relations of other bids, as well as the upper or lower bounds of

other bids does not necessarily lead to information leaking on the individual bids. Bid

leakage happens only when Ns = x1−1, Nw = y1−1. Those scenarios represent a limitation

of the verification scheme.

7.1.3 Reducing Comparisons

If the winners all participate in the verification process individually, each winner will have to

supply its valuation as the input to a secure multiparty comparison NMIS times. We propose

another method for them to reveal some information that is related to their total valuation

only once to save the computation resources. Intuitively, we can design a method to collect

the inputs from the winners as their total valuation. If the winners collectively publish their

total valuation through another secure multiparty computation f(TW ) = ∑Nw
i=1 vi, then the

other bidders can accept the total valuation of the winners as a single input to the verification.

This method is denoted as Algorithm 6.

In this case, the winners only participate in the secure comparison once. Since we assume

that the bidders are curious, they can still learn extra information as in Section 7.1.2. We

use Table 7.2 to analyze the extra information leakage other than those of Section 7.1.2:

a: Since x1 is the only winner, if it publishes its valuation, then all other verifiers can

learn its bid.

b: In this scenario, x1 and x2 are the two winners. If they publish their total valuation,

then they will learn each other’s bid. If there is only one verifier y1, then y1 can learn x1 +x2.

95



Algorithm 6 Verify Winner Determination with Reduced Comparisons of Winners (Input:
Bids of the Bidders. Output: Whether the Winner Determination is Correct or Not

1: while A bidder i is a winner of a VCG auction do
2: i supplies its bid vi into a secure multiparty addition
3: end while
4: The winners publish the secure addition result f(TW ) = ∑Nw

i=1 vi
5: while A bidder j is not a winner of a VCG auction do
6: j supplies its bid vj into the secure multiparty computation
7: end while
8: The secure multiparty computation outputs 1, if f(TW ) − ∑Ns

j=1 vj ≥ 0, outputs 0 if
f(TW )−∑Ns

j=1 vj < 0

c: In this scenario, x1, x2 and x3 are the three winners. If they publish their total

valuation, then they will learn the total valuation of the other two.

d: Since y1 is the only verifier, it can learn the total valuation of the winners. Note that

this verifier cannot belong to any other maximal independent set based on the definition of

maximal independent sets.

e: If there are only two verifiers y1 and y2, one of them can learn the upper bound or the

lower bound by learning y1 + y2 <
∑
xi or y1 + y2 >

∑
xi. Since the winners publish their

total valuation ∑
xi, y1 can learn that y2 <

∑
xi − y1 or y2 >

∑
xi − y1.

f: In this scenario, x1 can learn the bid of x2 if x1 learns the total valuation x1 + x2. If

x1 + x2 > x1 + y1, x1 learns the upper bound of y1. If x2 = 2, x1 learns y1 = 1. x1 can also

learn the upper bound of y1.

g: In this scenario, x1 can learn the total valuation of other winners, such as x2 + x3 if

x1 learns the total valuation x1 + x2 + x3. x1 + x2 + x3 > x1 + y1 can result that x1 learns

upper bound of y1: x2 + x3 > y1. If x2 = 2, x1 learns y1 = 1. x1 can also learn the upper

bound of y1.

To summarize, when the winners publish their total valuation, the extra information that

may be leaked other than those discussed in Section 7.1.2 include:

1. The bid of the single winner.
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2. The total valuation of other winners. If there are only two winners, the bid of

the other winner.

3. Extra information leakage about the upper or the lower bounds of another

bidder.

Knowing the total valuation of other winners for a group of three or more winners does

not reveal the individual bids of other winners. However, learning the total valuation of other

winners can result in the leakage of the bid of the other verifier if a winner happens to be

one of the two verifiers. So our goal is to design a verification scheme where the winners still

publish some information only once to save the computation cost, and the total valuation of

the winners, including the case of only one or two winners, is protected.

7.1.4 Privacy-Oriented Comparison

While publishing total valuation of the winners can reduce their computation cost, this

method will incur extra information leakage, especially when there is only one or two winners

in the winning independent set. We propose a privacy-oriented comparison scheme where the

winners, no matter how many of them, can publish some information to the other maximal

independent sets once without revealing their individual valuations.

After the enumeration of the maximal independent sets, the number of bidders in differ-

ent maximal independent sets is public. We denote the maximum number of bidders in a

maximal independent set at NM
B . Then each winner will generate NM

B different combinations

of random numbers, the sum of each combination is equal to a random number it holds. An

intuitive way to generate the shares is to generate one share per verifier per maximal inde-

pendent set. However, this method requires a winner to generate a large number of shares.

To reduce the computation overhead, a winner i can generate a random number r(i) and

generate NM
B groups of random numbers:
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r(i) =



r(i)1
1

r(i)1
2 + r(i)2

2

r(i)1
3 + r(i)2

3 + r(i)3
3

. . .

r(i)1
NM
B

+ r(i)2
NM
B

+ · · ·+ r(i)N
M
B

NM
B

(7.1)

Each group responds to a subset of all the losing maximal independent sets with the

same number of bidders. For two different losing maximal independent sets with the same

number of bidders, the generated random numbers can be reused to save computation and

communication cost. Each winner only calculates one group of shares for all the maximal

independent sets with the same size. Each verifier only receives one share for all the maximal

independent sets of the same size. The maximum number of shares a verifier holds is MB

rather than 2MB . To make sure a verifier only receives one version of a share in the groups

of bidders with the same size (number of bidders), each winner i first checks whether it has

shared r(i) with a verifier j for r(j)1
2, r(j)1

3, r(j)2
4, . . . . If some of the verifiers in a maximal

independent set already received their share from the other maximal independent sets with

the same number of bidders, the other bidders’ share will be generated from the leftover of

r(i).

We now study whether it is always possible for the groups of bidders with the same size

to share the same group of random shares. We present the result in Theorem 5.

Theorem 5. It is always possible to assign only one group of shares to the groups of bidders

with the same size.

Proof. We assume any two maximal independent sets have the same number of bidders:

x1, x2, . . . , xn−1, xn and y1, y2, . . . , yn−1, yn. We sort the two sets, so the elements in the two

sets that share the same bidders are xi = yi, ∀i ∈ [1, l). None of the other elements in

xl, . . . , xn and yl, . . . , yn can be connected to the duplicate elements. For the other elements
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in the two sets, any element in xl, . . . , xn has to be connected to at least one of yl, . . . , yn,

otherwise this element can be added to y1, y2, . . . , yn as a maximal independent set, contra-

dicting the fact that y1, y2, . . . , yn is a maximal independent set. For the same reason, any

element in yl, . . . , yn has to be connected to at least one of xl, . . . , xn.

The connections between elements of the two groups xl, . . . , xn and yl, . . . , yn are at

least n − l pairwise connections that connect all the elements in the two groups, or these

n− l pairwise connections plus some other connections between the two groups. Otherwise,

if there exists an element in a group that does not connect to any element in the other

group, this element can be added to the other group to invalidate its definition of maximal

independent set. So we can at least find n−l pairwise connections that cover all the elements

of xl, . . . , xn and yl, . . . , yn, and assign the same share for the two connected elements. Since

the two connected elements cannot coexist in the same maximal independent sets, the same

share cannot coexist in the same secret sharing r(i)1
n, r(i)2

n, . . . , r(i)nn.

Since l can be any value that is 0 ≤ l ≤ n, the above analysis applies to all possibil-

ities of the number of duplicate elements. For more than two maximal independent sets,

x1, x2, . . . , xn; y1, y2, . . . , yn; . . . ; z1, z2, . . . , zn, and each of them share the same l duplicates,

all the other elements can be connected by at least n − l connections that connect one ele-

ment per maximal independent set. As long as we assign the same share for a connection

that connects one element per maximal independent set, it is always possible to assign the

same group of shares to the maximal independent sets.

After sharing the random number combinations, a winner i publishes the sum of its

valuation vi and its random number r(i) to other winners. Then they each calculate the sum

of all the vi + r(i) as the input to the SMC as Algorithm 7.

We also use Table 7.2 to analyze the extra information leakage other than those of

Section 7.1.2:

a: If there is only one winner and one verifier, the bid of the winner is leaked to the verifier.
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Algorithm 7 Verify Winner Determination with Privacy-Oriented Comparison (Input: Bids
of the Bidders. Output: Whether the Winner Determination is Correct or Not

1: while A bidder i is a winner of a VCG auction do
2: i generates a random value r(i)
3: i supplies vi + r(i) into a secure multiparty addition
4: i calculates r(i)1

1, r(i)1
2, r(i)2

2, . . . , r(i)1
NM
B

+ r(i)2
NM
B

+ · · ·+ r(i)N
M
B

NM
B

as random shares for
r(i)

5: end while
6: The winners publish the secure addition result f(TW ′) = ∑Nw

i=1(vi + r(i))
7: while A bidder j is not a winner of a VCG auction do
8: while A bidder i is a winner of a VCG auction do
9: i supplies r(i)jn, part of r(i) to j according to the size of the maximal independent

set n and (7.1)
10: end while
11: j supplies its bid vj plus its share into a SMC
12: end while
13: The SMC outputs 1, if f(TW ′)−∑Ns

j=1(vj + r(i)jn) ≥ 0, outputs 0 if f(TW ′)−∑Ns
j=1(vj +

r(i)jn) < 0

If there is only one winner x1 and two verifiers y1 and y2. x1 shares r(x1)1
2 with y1, and r(x1)2

2

with y2. Then x1 supplies x1+r(x1), y1 supplies y1+r(x1)1
2, e supplies y2+r(x1)2

2 as the inputs

for the secure comparison. If x1 +r(x1)−(y1 +r(x1)1
2)−(y2 +r(x1)1

2) ≥ 0⇔ x1−y1−y2 ≥ 0,

the winner determination is verified, and vice versa. x1 is not leaked to y1 or y2.

b: There are two winners x1 and x2 and only one verifier y1. y1 receives shares r(x1)1
1 =

r(x1) from x1 and r(x2) from x2. In this case, x1 and x2 each only knows x1+x2+r(x1)+r(x2).

x1 and x2 cannot learn each other’s bids. y1 can learn x1 + x2. Unless there is a collusion

between x1 (or x2) and y1, x2 (or x1) is protected.

c: x1, x2 and x3 as the three winners, can only learn x1 + x2 + x3 + r(x1) + r(x2) + r(x3),

rather than the total valuation of other winners.

d: Since y1 is the only verifier, it can learn the total valuation of the winners. Note that

this verifier cannot belong to any other maximal independent set based on the definition of

maximal independent sets.

e: No extra information about the bid is leaked other than those discussed in Section 7.1.2

e.

100



f: In this scenario, since x1 cannot learn the bid of x2 because x1 does not know the total

valuation x1 + x2, so x1 cannot learn the upper bound or the upper bound of y1.

g: In this scenario, since x1 cannot learn the total valuation of other winners, such as

x2 + x3 because x1 does not know the total valuation x1 + x2 + x3, so x1 cannot learn the

upper bound or the lower bound of y1.

The above discussions on the information leakage leads to Theorem 6.

Theorem 6. Using random numbers from the winners can achieve almost the same level of

privacy protection as in the case of full winner participation, while reducing the computation

cost. The only exception is the scenario where there is only one winner and one verifier.

Proof. The extra information leakage discussed in Section 7.1.3 can be prevented by intro-

ducing the random share method. The bid of the single winner can be protected for two

or more verifiers as discussed in Section 7.1.4 a. If there are only two winners, the bid of

the other winner is also protected as discussed in Section 7.1.4 b. The extra upper or lower

bounds are also unknown to a curious bidder as discussed in Section 7.1.4 f and Section 7.1.4

g.

7.2 Verifying Prices

In the pricing phase, each winner in the winning independent set has its price calculated

as the difference between the total valuation of the winning independent set and the total

valuation of another winning independent set when the winner is absent from the auction. We

assume that there are NW bidders in the winning independent set for the original auction.

The maximal independent sets without the winner being removed do not change in the

pricing verification process. For those maximal independent sets that previously have the

winner, removing the winner results in an independent set that may or may not be still

maximal — and that will be checked during the verification. The remaining elements in a

independent set without a winner may belong to other maximal independent sets. Hereby,
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after removing a winner from all the maximal independent sets it belongs to, we shall check

whether the remaining elements compose a maximal independent set first.

7.2.1 Verification Algorithm

Recall that the goal is to verify whether the price pa for a winner a is equal to the damage

caused to other bidders by the winner’s presence. For all the ∑Nw
i=1 vi −

∑Na
j=1 vj − pa, there

should be only one that equals 0, and all others shall be larger than 0.

Theorem 7. The method of checking whether ∑Nw
i=1 vi−

∑Na
j=1 vj−pa = 0 exists for only one,

and all other comparisons are ∑Nw
i=1 vi −

∑Na
j=1 vj − pa > 0, can verify whether the pricing is

correctly implemented by the auctioneer.

Proof. By definition of VCG prices, ∑Nw
i=1 vi −

∑Na
j=1 vj − pa = 0 only exists for the highest

maximal independent set Na. For all other maximal independent sets without a, ∑Na
j=1 vj +

pa <
∑Nw
i=1 vi.

If the auctioneer charges the winner a higher price, there will be an instance of ∑Na
j=1 vj +

pa >
∑Nw
i=1 vi. If the auctioneer colludes with a winner by charging a lower price, all the max-

imal independent sets without a will have ∑Na
j=1 vj + pa <

∑Nw
i=1 vi. Therefore, the auctioneer

has to charge the price correctly following the requirement of VCG auctions. Otherwise, the

one equal, all others less relations will not hold.

Each maximal independent set shall expect the result to be greater-than, with one excep-

tion of equality. Once a maximal independent set observes equality, the bidders in this set

shall broadcast to all the other bidders. If more than one maximal independent set broadcast

equality, the pricing is declared as fraudulent and the verification process terminates. If a

less-than inequality is detected, the verification similarly terminates.

We propose two methods for pricing verification. One aims to protect the privacy of

the bidders in the best capacity. The other is more computationally efficient by reusing

intermediate computation.
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7.2.2 Privacy-Oriented Comparison

Algorithm 8 Privacy-Oriented Pricing Verification (Input: Bids of the Bidders, Price of a
Winner pa. Output: Whether pa is Correct or Not

1: while A bidder i is a winner of a VCG auction do
2: i generates a random value r(i)
3: i supplies vi + r(i) into a secure multiparty addition
4: i calculates r(i)1

1, r(i)1
2, r(i)2

2, . . . , r(i)1
NM
B

+ r(i)2
NM
B

+ · · ·+ r(i)N
M
B

NM
B

as random shares for
r(i)

5: end while
6: The winners publish the secure addition result f(TW ′) = ∑Nw

i=1(vi + r(i))
7: while A bidder j is the winner a, or it belongs to a maximal independent set when a

winner a is removed do
8: if The bidder is the winner a then
9: a sets va = pa

10: end if
11: while A bidder i is a winner of a VCG auction do
12: i supplies r(i)jn, part of r(i) to j or a according to the size of the maximal independent

set n and (7.2)
13: end while
14: j supplies its bid vj plus its share into a SMC
15: end while
16: The SMC outputs f(TW ′)−∑Na

j=1(vj + r(i)jn)
17: The pricing is correct, iff. ∀f(TW ′) −∑Na

j=1(vj + r(i)jn), one of them is equal to 0, all
other are greater than 0; otherwise the pricing is incorrect

The first comparison method, in Algorithm 8, focuses on privacy protection. Prices

charged to the winners are only known to themselves. We can use the similar method with

SMC, except that a winner a with price pa also acts as a verifier with input pa to a SMC

after the removal of a. In this case, a holds pa as well as va+r(a). For each r(a), the number

of random numbers that can add up to r(a) will be the length of the maximal independent

sets plus one:
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r(a) =



r(a)1
2 + r(a)2

2

r(a)1
3 + r(a)2

3 + r(a)3
3

. . .

r(a)1
N
M′
B+1

+ r(a)2
N
M′
B+1

+ · · ·+ r(a)N
M′
B+1

N
M′
B+1

(7.2)

We denote the algorithm of the privacy-focused pricing verification as Algorithm 8.

For the extra information leakage, we discuss the scenarios where the curious bidder

belongs to a highest maximal independent set when a winner is removed. In these scenarios,

a bidder may learn extra information by learning the equation.

Role of A Curious Bidder Scanario
Only in a Maximal Independent Set One Winner (h)

Both in the Winner Set and in a Two Winners (i)
Maximal Independent Set Three or More Winners (j)

Table 7.3: Different Scenarios During the Pricing Verification Process

h: There is only one winner x1. For all the maximal independent sets without x1, the

highest one is also a single bidder y1. In this case, x1 supplies x1 + r(x1) as the input from

the winners. y1 learns r(x1)1
2 and x1 + r(x1). It still cannot learn x1 without knowing p1.

i: For two winners x1 and x2, the removal of x1 will bring x2 as the only member of

the maximal independent set after the removal of x1. Then the desired verification result

is x1 + x2 = x2 + p1. The verification process is as follows. x1 supplies r(x1)1
2 to x2 and

keeps r(x1)2
2 to itself. x2 supplies r(x2)2

2 to x1 acting as the verifier, and keeps r(x2)1
2 to

itself. Then x1 and x2 calculates x1 + x2 + r(x1) + r(x2) as the input from the winners. x2

acts as a verifier by supplying x2 + r(x1)1
2 + r(x2)1

2. x1 also acts as a verifier by supplying

p1 + r(x1)2
2 + r(x2)2

2. If x1 + x2 + r(x1) + r(x2) = x2 + r(x1)1
2 + r(x2)1

2 + p1 + r(x1)2
2 + r(x2)2

2,

x2 is verified as the highest maximal independent set among all the maximal independent

sets without x1. During this process, x2 learns x1 + r(x1) and r(x1)1
2. However, it cannot

learn x1 without knowing p1. x1 also learns x2 + r(x2) and r(x2)2
2, but cannot learn x2.

j: For three winners x1, x2 and x3, the removal of x1 will bring x2 and x3 as the members

104



of the maximal independent set after the removal of x1. Then the desired verification result

is x1 +x2 +x3 = x2 +x3 + p1. The verification process is as follows. x1 supplies r(x1)1
3 to x2,

r(x1)2
3 to x3, and keeps r(x1)3

3 to itself. x2 supplies r(x2)3
3 to x1 acting as the verifier, r(x2)2

3

to x3, and keeps r(x2)1
3 to itself. x3 supplies r(x3)3

3 to x1 acting as the verifier, r(x3)1
3 to x2,

and keeps r(x3)2
3 to itself. Then x1, x2 and x3 calculate x1 +x2 +x3 + r(x1)+ r(x2)+ r(x3) as

the input from the winners. x2 acts as a verifier by supplying x2 + r(x1)1
3 + r(x2)1

3 + r(x3)1
3.

x3 acts as a verifier by supplying x3 + r(x1)2
3 + r(x2)2

3 + r(x3)2
3. x1 also acts as a verifier

by supplying p1 + r(x1)3
3 + r(x2)3

3 + r(x3)3
3. If x1 + x2 + x3 + r(x1) + r(x2) + r(x3) =

x2+r(x1)1
3+r(x2)1

3+r(x3)1
3+x3+r(x1)2

3+r(x2)2
3+r(x3)2

3+p1+r(x1)3
3+r(x2)3

3+r(x3)3
3, x2+x3

is verified as the highest maximal independent set among all the maximal independent sets

without x1. During this process, x2 learns x1+x2+x3+r(x1)+r(x2)+r(x3) and r(x1)1
3, r(x3)1

3.

However, it cannot learn x1 or x3. x3 learns x1 + x2 + x3 + r(x1) + r(x2) + r(x3) and

r(x1)2
3, r(x2)2

3. However, it cannot learn x1 or x2. x1 learns x1 +x2 +x3 +r(x1)+r(x2)+r(x3)

and r(x2)3
3, r(x3)3

3. However, it cannot learn x2 or x3.

In summary, as long as the price is kept private, the bidders cannot learn the bids of

other bidders by taking advantage of the equation where the total valuation of the winners

equals to the total valuation of maximum independent set after the removal of the winner

plus the price.

7.2.3 Efficiency-Oriented Comparison

The second comparison method focuses on computational efficiency. We note that the max-

imal independent set based comparisons in price verification may contain a substantial level

of redundancy. If we assume that the prices charged to the winners are public, then we can

enable the bidders to reuse previously computed comparison results. We can further even

combine price verification and winner verification to improve system efficiency.

Recall that the auctioneer is verified as correct if and only if ∑Nw
i=1 vi −

∑Na
j=1 vj − pa = 0

exists for only one, and all other comparisons are ∑Nw
i=1 vi−

∑Na
j=1 vj − pa > 0. In the privacy-
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oriented comparison where the price pa is kept secret, the winner a puts its price pa into the

same group of verifiers, aiming to compare ∑Nw
i=1 vi and

∑Na
j=1 vj − pa = 0. If pa is public, a

can output ∑Nw
i=1 vi − pa with the random numbers to compare with ∑Na

j=1 vj. We denote the

algorithm of the efficiency-oriented pricing verification as Algorithm 9.

Algorithm 9 Efficiency-Oriented Pricing Verification (Input: Bids of the Bidders, Price of
a Winner pa. Output: Whether pa is Correct or Not

1: while A bidder i is a winner of a VCG auction do
2: i generates a random value r(i)
3: i supplies vi + r(i) into a secure multiparty addition
4: i calculates r(i)1

1, r(i)1
2, r(i)2

2, . . . , r(i)1
NM
B

+ r(i)2
NM
B

+ · · ·+ r(i)N
M
B

NM
B

as random shares for
r(i)

5: end while
6: The winners publish the secure addition result f(TW ′) = ∑Nw

i=1(vi+r(i)) and their prices
pa, . . .

7: while A bidder j belongs to a maximal independent set when a winner a is removed
do

8: while A bidder i is a winner of a VCG auction do
9: i supplies r(i)jn, part of r(i) to j according to the size of the maximal independent

set n and (7.1)
10: end while
11: j supplies its bid vj plus its share into a SMC
12: end while
13: The SMC outputs f(TW ′)−∑Na

j=1(vj)− pa
14: The pricing is correct, iff. ∀f(TW ′)−∑Na

j=1(vj)− pa, one of them is equal to 0, all other
are greater than 0; otherwise the pricing is incorrect

The system efficiency is improved along two directions:

1. For two prices pa > pb, when the maximal independent set after the removal

of b is the same as that after removing a, if the total valuation of the winners∑Nw
i=1 vi subtracting the price pa is greater than the total valuations of the

maximal independent set after removal of a, then the total valuation of the

winners subtracting the price pb must also be greater than ∑Na
j=1 vj.

2. If the total valuation of the winners ∑Nw
i=1 vi subtracting the price pa is at least

the total valuations of the maximal independent set after removal of a, then
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due to pa > 0, we have ∑Nw
i=1 vi >

∑Na
j=1 vj.

The first observation can be used when a maximal independent set exists in both the

verification process for the prices of a and b. This relation can be extended to all prices

charged to the winners. The winners first sort their prices and then each maximal inde-

pendent set can only compare with the highest price first. If the relation is less-than, the

auction is detected as incorrect. If the relation is equal-to or greater-than, the same maximal

independent set does not need to compare with other prices.

The second observation can be used to combine the two verification processes for winner

determination and pricing together. Some maximal independent sets do not contain the

winners and they remain the same in the two processes. With the verification of pricing

coming first, the bidders first compare the total valuation subtracting the price first. If∑Nw
i=1 vi − pa <

∑Na
j=1 vj, the auction is detected as incorrect. If ∑Nw

i=1 vi − pa = ∑Na
j=1 vj or∑Nw

i=1 vi − pa >
∑Na
j=1 vj, the bidders can also learn that ∑Nw

i=1 vi >
∑Na
j=1 vj, which is needed

for the winner determination verification process.

This comparison method can improve the system efficiency by reducing the number of

comparisons. However, by publishing the prices charged to the winners, individual bids may

be leaked in the two scenarios Section 7.2.2 h and Section 7.2.2 i discussed above. There is an

inherent trade-off between privacy protection and computational efficiency. If the winners

are not willing to share their prices and there are some maximal independent sets with only

one or two bidders, the efficiency-oriented method is not applicable.

7.3 Sufficiency of Only Using Maximal Independent Sets

Since all the bids are positive integers, the total valuation of a maximal independent set

is greater than any subset of it. For the verification of pricing, if the total valuation of

the winners is greater than the total valuation of every maximal independent set, then it is

greater than the total valuation of any independent set. Hence we have the Corollary 1.
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Corollary 1. The verification process can verify the results of winner determination and

pricing with only maximal independent sets, without comparing with other independent sets

7.4 Incentive for the Bidders

In our proposed methods for verifying winner determination and pricing, different bidders

have different incentives. In the winner determination verification process, all losing bid-

ders have a natural incentive to verify the correctness of the auction, for which they need

assistance from the winners. The winners can be very active in the verification process by

supplying their individual bids for every comparison (as Section 7.1.1), or be less active by

supplying the total valuation as well as the random numbers, and provide the secret shares

for the verifiers in maximal independent sets of different lengths (Section 7.1.4). In the latter

case, the winners only supply their input to the verification process once.

In the pricing verification process, winners have a natural incentive to verify whether the

prices charged to them are correct, for which they need assistance from losing bidders. The

losing bidders are expected to participate in all the comparisons with their maximal inde-

pendent sets. To improve efficiency, they can reduce the number of comparisons if they know

the prices charged to the winners (Section 7.2.3). The comparisons can also be implemented

before the verification of winner determination to reduce the overhead (Section 7.2.3).

Winning and losing bidders in the VCG spectrum auctions are therefore motivated to

enter such a mutually benefiting cooperation, by participating both verification phases.

During the two phases of verification for VCG auctions, the winners and the verifiers

need to help each other to achieve their verification goals. These mutual interest can be an

incentive for all the bidders no matter whether they are the winners or not. In addition,

the verification processes aim to detect whether the auction is correctly implemented by the

auctioneer or not. Once an auctioneer is detected as faulty, it will not be trusted in the

future auctions. Thus, the common goal of identifying the misbehaviour of the auctioneer is
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another incentive for the bidders.

7.5 Performance Evaluation

7.5.1 Efficiency Evaluation

We implement the verification methods for winner determination and pricing in FairplayMP

[10]. FairplayMP is the first framework that allows to implement generic SMC in a high level

language. Since the run time has linear dependency on the size of the circuit, we only evaluate

the relations between the size of circuit and the number of inputs. Figure 7.1 illustrates the

relations in the winner determination and pricing verifications. We can observe that the run

time has linear dependency on the number of inputs in the SMC, in verification methods for

both winner determination and pricing phases; the pricing verification costs more resources

than the winner determination verification.
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Figure 7.1: Relations between the Size of Circuits and the Number of Inputs.

7.5.2 Reducing Number of Comparisons in Winner Determination Verification

In Section 7.1, we proposed two methods of comparing the total valuation of a winning

independent set with other maximal independent sets: one with the winners participating in

all the comparisons (as in Section 7.1.1), the other with the winners publishing their total

valuation with random numbers (as in Section 7.1.4). Now we want to observe how many

comparisons can be saved when the winners only participate in a secure addition once to
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calculate their total valuation with random numbers. Figure 7.2 illustrates the relations

between the number of bidders and the number of comparisons in simulation results in a

random graph.
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Figure 7.2: Relations between the Number of bidders and the Number of Comparisons in a
Random Graph.

The method to verify winner determination in Section 7.1.4, where the winners publish

their total valuation with random numbers, can reduce the number of secure comparisons,

compared to the method in Section 7.1.1 where the winners participate in all the compar-

isons.

7.5.3 Reducing Number of Shares in Secret Sharing

In Section 7.1.4, we introduced a privacy-oriented comparison with secret sharing of random

numbers generated by the winners. In contrast to the intuitive way of generating one share

per verifier per maximal independent set, we proposed the secret sharing method as in

(7.1). We simulate the enumeration of maximal independent sets and the sharing of random

numbers on conflict graphs with different number of verifiers. Figure 7.3 illustrates the

comparisons of these two methods.

Our proposed secret sharing methods as in (7.1) can significantly reduce the number of

shares generated for the verifiers. The more verifiers, the better efficiency improvement.
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7.5.4 Reducing Number of Comparisons in Pricing Verification

In Section 7.2.3, we introduced an efficiency-oriented method to reduce the comparisons

during the verification process. Figure 7.4 illustrates the number of comparisons with (1) no

improvement of efficiency; (2) efficiency improvement based on observation 1; (3) efficiency

improvement based on observation 2; and (4) efficiency improvement based on both. For

the winners, the two observations in Section 7.2.3 can be applied to reduce the number of

comparisons.
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Figure 7.4: Number of Comparisons in Pricing Verification.
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7.5.5 Information Leakage Evaluation

In Section 7.1.2, we discussed information leakage after a bidder learns the results of many

comparisons. We simulate the number of relations and bounds (upper or lower) leaked during

the verification process as in Figure 7.5 and Figure 7.6.

The comparisons to verify winner determination as in Section 7.1.1 can only partially

leak the relations between bidders, as well as the upper or lower bounds of other bidders. As

the number of bidders increases, the probabilities of the relations and bounds to be leaked

will decrease.

7.6 Concluding Remarks

In this Chapter, we proposed the first fully distributed scheme to verify whether a VCG

spectrum auction is correctly implemented by the auctioneer or not, without modifying

the auction itself. In our system, we assume that a single identity system exists among
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all the secondary users. We also assume that all the secondary users use an out-of-band

communication system to exchange control messages. In our adversary model, we assume

that the secondary users themselves are honest by reporting truthful values. We also assume

that there is no collusion between the auctioneer and the secondary users.

In our simulation process, we only implemented the system in a small scale. A future

direction to extend this work can be a thorough experimental study in a real spectrum

auction process, with different kinds of secondary users as bidders. Another future direction

to extend this work can be a study on the verification methods for double spectrum auctions,

where multiple primary users simultaneously submit their ask prices when the secondary

users submit their bids to the auctioneer.

Another future direction to extend this work can be a study on more sophisticated ma-

licious behaviours, such as

1. The malicious auctioneer may collude with some secondary users whose bids

are low, aiming to get some side payments from the falsified winners. This is

the limit of explicit manipulation. In this scenario, the inputs from the sec-

ondary users into a SMC may not be trustworthy. Extra security mechanisms

are required to verify the auction results, including both winners and prices.

2. The malicious users can attack the whole distributed spectrum sensing and

allocation process together, including the work presented in Chapter 5 and

Chapter 6.

3. The malicious users can implement other security attacks to a CRN, such as

primary user emulation attacks and jamming attacks into the control channels,

as described in Section 3.4.
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Chapter 8

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we conclude the thesis by summarizing the contributions made, and directions

for future research.

8.1 Summary of the Thesis

We can summarize the contributions of this thesis as follows.

1. We studied SSDF attacks in CRNs, and proposed the first fully distributed

security scheme ReDiSen to countermeasure SSDF attacks in cooperative sens-

ing. Using well-designed reputation systems in the value update algorithms,

ReDiSen can effectively improve the cooperative sensing performance in dy-

namic yet adversarial environments, despite the removal of the fusion centre.

We proposed two methods of assigning reputation on value differences and

received values. Theoretical analysis and simulation results both indicate that

reputation can help honest nodes obtain higher cooperative sensing results

when the primary user is transmitting, and lower cooperative sensing results

when the primary user is not transmitting, as long as the majority of neigh-

bours report correctly sensed values. The method of assigning reputation to

received values is less effective compared to the method of assigning reputation

to value differences since the improvements are less significant. The method

of assigning reputation to received values can help honest nodes converge to

consensus faster.

2. We proposed to use reputation as a pricing factor in the spectrum allocation

process to incentivize cooperative sensing in distributed CRNs. The repu-
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tation values are generated from both sensing accuracy and sensing partic-

ipation. Both theoretical analysis and simulation results indicate that this

method can incentivize secondary users to participate in more channels and

report more accurate sensing results, in order to obtain lower prices in the

spectrum allocation process. To countermeasure attacks in the reputation

fusion process, where malicious nodes report spurious reputation values, we

proposed a method with the help of other honest neighbours. Our methods,

from cooperative spectrum sensing to reputation fusion then to spectrum allo-

cation, are entirely distributed without a central authority, and are thus more

applicable to distributed CRNs.

3. We proposed the first verification scheme for VCG spectrum auctions in cogni-

tive radio networks. When the auctioneer misbehaves, our scheme can protect

the integrity of VCG auctions by verifying the correctness of the auctioneer in

the winner determination and pricing processes. Our method protects the pri-

vacy of individual bidders. Our method does not bring any new computation

or communication to the auction itself. The optional verification and intro-

ducing no third party enable our verification scheme to be more applicable in

the cognitive radio networks.

8.2 Limitations and Future Directions

This thesis has some limitations, such as

1. Our simulation is in a small scale, without an experimental study in a real

CRN, with different kinds of devices as primary and secondary users.

2. In our adversary model, we assume that the malicious users attack in the same

manner during a sensing session without collusion. Malicious users can im-
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plement more sophisticated attacks. They can coordinate how to attack the

system in a colluded manner, aiming to reduce the probabilities of being de-

tected. They can attack the whole distributed spectrum sensing and allocation

process together, including the work presented in Chapter 5, Chapter 6, and

Chapter 7. They can also implement other security attacks to a CRN, such

as primary user emulation attacks, as described in Section 3.4.

3. We assume that all the secondary users use an out-of-band communication

system to exchange control messages, without considering potential jamming

attacks into common control channels.

Below we list some of the possible future works.

1. A future direction to extend this work can be a thorough experimental study

in a real CRN. The recommended parameters during the experiment process

are presented in Section 5.5 and Section 6.5.

2. Another future direction is to explore how to achieve the security goals during

the spectrum sensing and spectrum allocation process, when the malicious

users attack in a sophisticated manner.

3. The cooperative sensing performance can be further improved, by enabling

nodes to use second-hand reputation information from trustworthy neigh-

bours about the nodes in the network that they have not interacted with.

Such second-hand information needs to pass a deviation test in the reputation

system. We also plan to explore other possible applications for reputation

information in a computer communication system.

4. To improve system performance, we may use other information to help with the

reputation update process. Even within a single neighbourhood, the distance
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between two honest nodes may differ significantly. A node closer to the primary

user has a higher sensed value compared with a node that is farther away from

the primary user. These two nodes have a high chance to judge each other

as malicious. In this case, the distance between two honest secondary users

may be taken into the process of generating reputation. The farther away a

neighbour is, the higher is the difference the two nodes may have on the sensed

values. The success of this approach relies on the accuracy and overhead of

the localization algorithm between secondary users.

5. VCG auctions have many extensions, such as double spectrum auctions where

multiple primary users also submit their ask prices, to achieve other desired

goals. Extending the verification methods to reflect other new auction mech-

anisms is another future direction.
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