
THE UNIVERSITY OF CALGARY 

Nonlinearities in Biodielectrics 

by 

Stephen John Paddison 

A DISSERTATION 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF CHEMISTRY 

CALGARY, ALBERTA 

JULY, 1996 

© Stephen John Paddison 1996 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Graduate 

Studies for acceptance, a dissertation entitled "Nonlinearities in B iodielectrics" submitted 

by Stephen John Paddison in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy. 

Supervisor, Dr. R. Paul, Chemistry 

Dr. W.G. Laidlaw, Chemistry 

Dr. A. Rauk, Chemistry 

Dr. K.V.I.S. Kaler, Electrical and Computer Engineering 

External Examiner, Dr. P.R.C. Gascoyne 

M.D. Anderson Cancer Center, University of Texas 

Date 

11 



Abstract 

A mathematical model involving a nonlinear electric displacement vector at 

the interface of a spherical particle with a linear medium, has been derived to explain exper-

imental observations of multiple Clausius—Mossotti factors in the low frequency (10Hz. - 

1kHz.) domain in the dielectrophoretic spectrum of tobacco protoplasts. The developed 

model clearly demonstrates the active role of the electric field on influencing the physical 

properties of the medium—particle interface. Suitable choice of the second order parameters 

in permittivity and conductivity result in good qualitative agreement with the experimentally 

observed low frequency hysterisis loops. 

These charged dielectrophoretically levitated particles (both tobacco and Ca-

nola protoplasts) have also been observed to display stable periodic micro—motion within 

the same regime of the spectrum. An existing dynamical model, a highly nonlinear second 

order differential equation, constructed on the basis of Newton's second law, has been ex-

tended to include: (a) cubic nonlinearity in the dielectrophoretic forces; (b) convective flow 

contributions as described by Oseen's equation; and (c) a novel mathematical model to de-

scribe the nonlinear dependence of the particle surface charge on the electric field based on 

the solution of a Langevin equation. Numerical integration of the vector field by means of 

a Runge—Kutta sixth order algorithm, when evaluated over several frequencies and repre-

sented in phase plane portraits, provides an excellent means of estimating the surface charge, 

an important, and difficult to ascertain, fundamental cell property. Fast Fourier transforms 

of the numerical solutions show the experimentally observed higher harmonics in the mi-

cromotion attesting to the significance of the electric field dependent dissociation constant 

of the carboxylic groups in the surface proteins. Application of Melnikov's method to the 

dynamical system has shown that deterministic chaos is present, but is not realizable within 
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the experimental parameter space. 
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Chapter 1: Introduction 

1.1 Context of Research 

The determination and study of the electric and dielectric properties of bio-

logical cells is actively pursued because of their importance in several areas including physi-

ology, biophysics, and biomedical engineering ( 1). These properties determine the various 

pathways of current flow in the human body, and are therefore important in the experimental 

measurement of physiological parameters using impedance techniques, the study of the ef-

fects of electromagnetic fields on biological materials, nerve transmission, muscle contrac-

tion, and electrocardiography (2). 

Precise measurement of the electrical cellular parameters can be used as a 

diagnostic tool to assess the effects of chemical agents, various drugs, and even nuclear radi-

ation on living cells. In addition, they may be used to establish protocols to sort cells (3) and 

distinguish malignant cells from healthy cells (4). An understanding of the dielectric proper-

ties of the cells, along with cell—medium and cell—cell interactions is also crucial in modern 

biotechnology; where, in techniques such as electrofusion (5) and electroporation, it is very 

important to know the optimal applied field parameters including field strength and field fre-

quency. 

As biological cells are typically immersed in an electrolyte or suspension me-

dium, the electrical properties are a function of the electrical makeup of the cellular compo-

nents (i.e. the membrane and cytoplasm), and to some extent, the electrical properties of the 

medium. Thus, the underlying polarization mechanism(s) may be understood through moni-

toring the dielectric response of the cell. 

1.2 Purpose of Research 

Of the many experimental techniques developed to study and probe the di-

electric properties of particles or biological cells (several, of which, will be discussed later 

in this chapter), the single cell dual—frequency feedback—controlled dielectrophoretic levita-
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tion has proven to be a non—invasive technique, that has emerged as a powerful method for 

investigating the frequency—dependent polarization of living biological cells (6). Along 

with the various experimental approaches, a number of theoretical models have been pro-

posed to explain and predict the electrical properties, the most popular being the shelled 

model (see §2.2) and its various analogues. Although the shelled model has been successful 

in providing an adequate explanation of high frequency (>100Hz.) polarizability, it has utter-

ly failed in the low frequency regime. 

Because of this discrepancy between experiment and theory, the dielectro-

phoretic response in the low frequency region has been referred to as anomalous dielectro-

phoresis (7), (8). Typically in this region, the DEP spectrum is characterized by a rise in the 

polarizability as the frequency is decreased; the real part of the Clausius—Mossotti factor (Eq. 

(2.36)) often exceeding a magnitude of 1. This anomalous response has been investigated 

in several recent papers (7), (9), ( 10), but still lacks a complete explanation. 

More recently, hysteresis loops (see Fig. 3.1) in this same low frequency re-

gion of the DEP spectrum, have been observed from dual—frequency levitation experiments 

involving plant protoplasts upon reversing the direction of the frequency scan (the first scan 

proceeds in the direction of decreasing frequency; the reverse in the direction of increasing 

frequency); thus further complicating the polarizability of this region. 

Because of the short comings of conventional theory in either predicting or 

explaining the occurrence of multiple valued Clausius—Mossotti factors in the low—frequen-

cy region of the spectra, it was the purpose of the initial investigation to model the observed 

hysteresis in order to obtain insight into the origin of the phenomena; and as well, if possible, 

offer some insight into the cause of the anomalous dielectrophoresis. 

In addition to anomalous dielectrophoresis, a number of other related and un-

explained experimental observations have been reported which include: batch—type DEP 

measurements on Friend murine erythroleukaemic cells ( 11), ( 12) and yeast cells ( 13); and 

electrorotation measurements on latex particles ( 14). Very recently, another significant 
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anomaly, in the low frequency regime, has been observed (9), ( 10); this being the oscillatory 

motion of single DEP levitated plant protoplasts. This motion has been referred to as mi-

cromotion (8), and has received intensive investigation both experimentally (9) and theoreti-

cally ( 10). Perhaps the most interesting observation reported by the authors was the fact that 

the micromotion was not simple harmonic motion at applied electric field frequencies below 

20 Hz., but possessed significant higher harmonic components (see Figs. 4.1 and 4.2). 

The previous investigations ((9), ( 10)) failed to explain the physical origins 

of the phenomena; and in addition, the micromotion models proposed by the authors, did not 

reproduce the experimentally observed higher harmonics. It was clear, however, that the ob-

served dynamics were nonlinear, and thus, it is not surprising that the linear response theory 

previously proposed, did not provide an explanation for the origins of the phenomena. 

Therefore, it was the intent of the second part of the research, to determine 

the physical mechanism of the observed higher harmonics in the micromotion of the particles 

in the very low frequency regime of the spectrum. 

1.3 Definitions 

The title of this dissertation, "Nonlinearities in Biodielectrics", involves two 

"big words", or perhaps more correctly, two specific concepts: these being: nonlinear and 

biodielectric. Thus, it is fitting that at the onset, concise definitions be given so as to make 

clear the context of the research. 

1.3.1 Nonlinear Phenomena 

The use of the word "nonlinear" to describe phenomena or observable dy-

namics of physical variables, identifies that the underlying processes are understood to be 

governed by nonlinear equations. Thus the classification of phenomena as being nonlinear, 

is the result of an observer's or theorist's description and physical insight (which is only an 

approximate rationale for what is seen) into that specific phenomena through mathematical 

modelling. Jackson (15) in his excellent text: "Perspectives of Nonlinear dynamics" sug-

gests an operational definition for nonlinear phenomena as: "Physical phenomena concern 
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the interrelationship ofa set ofphysical variables which are deterministic (within some accu-

racy). Nonlinear phenomena involve those sets of variables such that an initial change of 

one variable does not produce a proportional change in the behavior of that variable, or 

some other variable. In other words, the ratio (action/reaction) is not constant." It should 

be realized that the interrelationship between the physical variables of a nonlinear process 

need not always be related in a nonlinear fashion; but for some situations may be related lin-

early. 

1.3.2 Biodielectrics 

Biodielectrics involves the study and investigation into the dielectric behav-

ior of biological materials. Dielectrics, in contrast with conductors, are materials where all 

charges are attached to specific atoms or molecules; and thus the motion or movement of 

charge is constrained within the bulk of the material. The principal mechanisms by which 

electric fields can distort the charge distribution of a dielectric atom or molecule are two fold: 

stretching and rotating. 

1.4 Properties of Nonlinear Dielectrics 

It should be fairly apparent from the definitions presented thus far, that di-

electric materials, whether biological or not, where the properties of the material are depen-

dent on the intensity of an input signal (e.g. an electric field) are classified as nonlinear. Fur-

thermore, it has been observed that the onset of nonlinearity also depends on the magnitude 

of the dipole moment and the stability of the individual molecules in the material. Several 

important mechanisms have been proposed to explain nonlinear electric polarization, and 

these will be discussed in this section. 

The first theory of electric polarization of polar molecules was developed by 

Debye (16) who suggested that the mean dipole moment < duD > of a group of molecules 

possessing a dipole moment 1U D, when subjected to an electric field, was: 

3  

> ,ttD (--) - -) + -...] [ 1 DE 1 /LLDE 2 45 h/ADE"kT 
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where E is the electric field intensity, k the Boltzmann constant, T the temperature, and the 

expansion in the square brackets, the Langevin function (L(a)) with argument a = duDE/kT. 

This expression (Eq. ( 1.1)) demonstrates that the mean moment is a function 

of the field intensity. The behavior of the Langevin function is plotted in Fig. 1.1. Examina-

tion of Fig. 1.1 shows that <'tD > increases linearly for small intensity fields but becomes 

nonlinear for large field intensities. Furthermore, for very large field intensities, the mean 

dipole moment approaches asymptotically the value of the dipole moment for the molecule; 

implying complete orientation or dielectric saturation. However, if the intensity of the ap-

plied field is small then all the higher—order terms in Eq. ( 1.1) may be neglected; and under 

these conditions, the polarizability a < u, > /E, becomes: 

_ < /D > _/D 2 
a E 3kT (.) 

It is clear from this equation that under conditions of a low intensity field, the polarizability 

is independent of E. It should also be realized that the onset of nonlinearity is also a function 

of the magnitude of YD; i.e. nonlinear dielectric behavior may be observed for molecules 

possessing very large dipole moments with relatively small electric fields. 

In addition to the mechanism of dielectric saturation for nonlinear electric 

polarization, several other causes of nonlinearity have been suggested. Wien ( 17) observed 

that Ohm's law is applicable to fields of only moderate intensity; that is, the resistance of 

strong or weak electrolytes may be independent of the voltage at low field intensities, but 

becomes voltage dependent at high field intensities. An additional effect observed by Wien, 

was the enhancement of theionization of weak electrolytes upon subjection to strong electri-

cal fields. Onsager ( 18) derived an equation that described the relative increase of the dis-

sociation constant in the presence of a strong field: 

K(E) = 1 + 23Q ± (4j9Q)2 (413Q)3  
K(0) 2!3! + 3!4! 

(1.3) 

where K(E) is the ionization constant in the presence of a strong field; K(0) the dissociation 
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constant in the absence of the applied field; and Q the effective association length defined 

by: 

- e1e2 

2ekT 
(1.4) 

where s is the dielectric constant of the solvent; and e1 and e2 are the charges of the 

ions. 

< YD > 

1   

0.8 

0.6 

0.4 

0.2 

0 2 4 6 8 10 
ALL DE/1CT 

Fig. 1.1 The behavior of the Langevin function. 

His theory was formulated such that if the distance r between two ions is larger than the 

association length Q, then the ions are considered separated and, if r < Q, the ions are con-

sidered paired. The quantity 2/3 in Eq. ( 1.3) is defined as follows: 

E(e1u1 - e2u2)I 
2/3 =  (15) 

kT(u1 + u2) 

where u1 and u2 are the mobilities of the ions. In agreement with Onsager's theoretical pre-

dictions, he observed experimentally that the effect of an applied field was more pronounced 

when the dielectric constant of the solvent is small. Thus, he concluded that the field induced 

enhancement of the ionization of weak electrolytes was much more pronounced if the dielec-
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tric constant of the solvent was small. 

Further work was done on Onsager's theoretical formulation by Bass ( 19); 

who treated q as a field dependent quantity and assumed that the contour of the potential bar-

rier surrounding anion would be altered by the application of an electrical field. In this sense, 

the basic formulation proposed by Bass is distinct from the work of Onsager, although his 

derived ratio of K(E)/K(0) is quite similar to Eq. (1.3). Takashima (20) has suggested that 

Bass' theory may be closer to the physical reality of nonlinear ionic processes. 

Nonlinear polarization effects giving rise to positive and negative increments 

in the dielectric constant of polar molecules, were reported by Piekara (2 1) and Malecki (22). 

These nonlinear effects were attributed to changes of the dipole moment and/or the polariz-

ability of the molecules by strong electric fields. They suggested that changes in the dipole 

moment may be due to conformation changes of the molecule or due to the realignment of 

dipoles causing enhancement or partial cancellation of effective moments. Piekara derived 

a correlation parameter to account for the nonlinear effects attributed to the interaction be-

tween a molecule and its near neighbors. Additional work was done by Böettcher and Borde-

wijk (23) who derived an extension to the second—order dielectric constant term. 

Very little work has been done on the study of the nonlinear dielectric behav-

ior of biological macromolecules. Block and Hayes (24) and Gregson et al (25) investigated 

dielectric saturation effects in poly—benzyl—L---glutamate; and Jones (26) measured the volt-

age dependent dielectric constant of myoglobin. 

The discussion and survey of previous work on the observation and elucida-

tion of the properties of nonlinear dielectrics has focused on the microscopic/molecular lev-

el. This dissertation is concerned with nonlinear dielectric properties of biological cells; and 

hence attention is now turned to the mesoscopic/cellular scale. 

1.5 Electrical Measurement Techniques 

As mentioned in the opening section of this dissertation, various techniques 

have been derived to quantify the characteristic dielectric response; and each is applicable 



8 

for a limited or specific set of circumstances and conditions. A brief discussion of the most 

common approaches is presented in this section. 

1.5.1 Cell Suspension Method 

The "cell suspension" method, a commonly employed technique in the study 

and determination of the frequency—dependent dielectric properties of both suspended bio-

logical cells and tissue (2), (27), involves the application of an electrical potential across a 

chamber in which a collection of cells are suspended in a conducting medium. The resistance 

is higher for the suspension than for the pure suspending medium, and this allows the deter-

mination of cellular properties such as volume and membrane capacitance (28). The capaci-

tance and conductance are both measured using a sensitive impedance bridge technique over 

a wide frequency range. From such measurements, the effective permittivity of the cells may 

be extracted by invoking the applicable dielectric mixture formulae (2), (29), (30); and in 

addition, valuable insight into the frequency—dependent polarization response mechanisms 

of the intact cells may also be obtained. 

There are, however, some deficiencies in the suspension method. As the 

measurements are performed on a collection of cells, the cellular parameters are only "aver-

aged" values and the variation of individual cell characteristics can not be assessed. In addi-

tion, since the measurements are all based on the relative change of impedance of the suspen-

sion chamber, a relatively high concentration of cells is required in order to observe a change, 

which results in cell—cell interactions that introduce error into the derived effective permit-

tivity. 

1.5.2 Micropipette Technique 

The micropipette technique was devised by several investigators (3 1) to mea-

sure the membrane conductance and capacitance of a selected individual cell for the purpose 

of studying the ion transport properties of the cell membrane. The micropipette, a borosili-

cate glass capillary, is filled with a brine solution and functions as a probing electrode. Dur-

ing a typical conductance measurement, a tight seal is maintained between the cell and the 
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tip of the micropipette through the application of a weak suction. A measuring bridge is set 

up between this tip electrode and the reference electrode immersed in the suspending me-

dium. The measurements are limited to low frequency (—'4 Hz. — 1000 Hz.) due to the large 

parasitic impedance of the micropipette. 

1.5.3 Electrorotation Method 

An additional technique developed to investigate the dielectric properties of 

single cells is the electrorotation method (32), (33). This technique examines the rotational 

response of biological cells induced by a rotating AC electric field. Sauer (34) has shown 

that the torque exerted on a polarized particle is related to the imaginary part of the excess 

effective polarizability Ke (see § 2.1.3 for a derivation of this quantity). The rotational veloc-

ity, in turn, may be related to Im{Ke} when the particle rotation reaches a steady—state. By 

measuring the cell rotation rate as a function of the applied field frequency the imaginary 

part of the effective polarization spectrum may be plotted. By fitting this experimentally 

determined rotation spectrum to a suitable theoretical model, the dielectric properties of 

membrane capacitance and conductance may be extracted. A practical drawback to this 

method is the difficulty arising in the data collection. Quite recently, Kaler and Sheng (35) 

have developed a new approach for detecting the velocity of the rotating cell using a digital 

image processing method. 

Prior to discussing additional single cell dielectric measurement methods, it 

is needful to interject a description of the physical phenomena on which these techniques are 

based; namely, electrophoresis and dielectrophoresis. 

1.6 Electrophoresis and Dielectrophoresis 

Electrophoresis is the phenomenon where a charged particle responds to 

Coulombic forces induced by an externally applied electric field. The electrophoretic re-

sponse is dependent on both the magnitude and sign of the net charge on the particle, and 

also on the field polarity. Consequently, the behavior differs for DC and AC electric fields, 

but is unaffected by field inhomogeneities. 
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The majority of cell types maintain a net negative surface charge under nor-

mal physiological conditions (36), (37). Thus, when placed in a DC electrostatic field, the 

cells tend to move toward the anode electrode. Through measurement of this electrophoretic 

velocity, the net surface charge has been estimated (see §4.4 for numerical values). Electro-

phoresis has also been used for cell separation (38). 

Dielectrophoresis (DEP), in contrast to electrophoresis, is the translational 

response of electrically polarizable particles (charged or uncharged) when subjected to an 

inhomogeneous electric field (39). As this phenomenon is operable on neutral particles, it 

is independent of the electric field polarity. Here, this dielectrophoretic force is a function 

of the excess effective polarizability of the particle with respect to the surrounding medium, 

the frequency of the applied field, the local field magnitude and gradient, and the particle 

shape and volume (for the exact mathematical details the reader is referred to Chapter 2). 

The phenomenon of dielectrophoresis has been successfully used in various 

industrial applications including the pumping of liquids and powders, the classification and 

separation of minerals, the removal of particulate matter in liquid or gas suspensions, and 

the anchoring of toner particles in xerography. Dielectrophoresis has primarily been applied 

to biological cells in the following three ways: (a) the measurement of the polarization spec-

trum of various cells over a wide frequency range; (b) the separation of cells differing in po-

larization characteristics; and (c) the manipulation and interrogation of cells. Since the 

1970's, several investigations have been conducted on the behavior of bio—particles under 

nonuniform electric fields with various methods, based on the principles of DEP, being de-

veloped (40). Most of these approaches and techniques are based on an indirect measure-

ment of the DEP force, performed on a sample containing a large quantity of cells; and there-

fore, the methods are inevitably subject to error and an averaged effect. However, these 

problems have largely been circumvented through the introduction of DEP levitation (41). 

Return is now made to the discussion of additional dielectric measurement 

techniques; the following been based on DEP levitation schemes. 
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1.7 Single—Cell DEP Levitation Methods 

Levitation is a very effective method of studying small particle properties and 

interactions. Techniques have been successfully developed to levitate particles with several 

types of fields including: magnetic fields, acoustic fields, and electric fields. DEP levitation 

is the three dimensional confinement of a single particle, where the gravitational and buoyant 

(due to the presence of the suspending medium) forces are balanced by the dielectrophoretic 

force. This is achieved by suspending a single particle between two electrodes constructed 

in such a manner as to produce an inhomogeneous electric field. Therefore, it offers the op-

portunity to investigate the polarization response of single particles with much improved ac-

curacy over the other techniques outlined above. 

All of the DEP levitation techniques discussed below exploit both the voltage 

dependence and the frequency dependence of the DEP force (see §2.1.4 for explicit function-

ality details). Essential to this is the fact that both parameters ( V,f) may be varied indepen-

dently of one another. The DEP force changes as the the applied electric field frequency is 

varied, while the gravitational—buoyancy force remains fixed. This results in the particle 

being displaced from its initial position and thus, the DEP force must be adjusted accordingly 

through the voltage dependence to return the particle to its equilibrium position at the new 

frequency. Provided that a force balance is maintained, the equation describing the equilibri-

um situation can be manipulated to yield the excess effective polarization of the particle as 

a function of the frequency; with the result being the construction of DEP spectrum (see 

§2.1.4) 

In the following sections, three experimental methods of obtaining DEP 

spectra are outlined. All three techniques are based on the principles outlined above. The 

distinctions between them arises as a result of the equilibrium stability requirements. For 

stable equilibrium situations,, no feedback control is required. However, for cases where an 

unstable equilibrium exists, there is the requirement of externally (typically through the elec-

tronic instrumentation) establishing and maintaining the stability of the particle at a fixed 
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point. It should be noted that biological cells suspended in aqueous media, typically exhibit 

both positive and negative DEP depending on the particular regime of the frequency spec-

trum. 

1.7.1 Passive Levitation 

The most straightforward situation is where the particle exhibits only nega-

tive DEP (see §2.1.4 for further description), that is the displacement of the particle under 

the action of the external inhomogeneous field is to the region of lower field intensity. Jones 

and Bliss (42) generated an axisymmetric electric field using a ring—disk electrode geometry, 

by which they successfully stably levitated bubbles, droplets, and dielectric particles in three 

dimensions. With this geometry, localized minima in the electric field exist which are de-

tached from the electrode surfaces. The electric field gradients in both the axial and radial 

directions are sufficiently strong so as to center the particle along the vertical axis, counter-

acting the buoyant force. This type of levitation that requires no feedback to maintain the 

particle at a fixed position is referred to as passive levitation. 

1.7.2 Active Levitation 

The levitation of particles that exhibit positive DEP (see §2.1.4 for further 

description) is complicated by the fact that to stably levitate the particle in a similar manner 

as described in passive levitation would require an isolated maximum in the field. This re-

quirement is not possible for divergence and curl—free electrostatic fields, as a maximum can 

only occur at an electrode surface. This situation is therefore one of unstable equilibrium; 

that is, any slight displacement is greatly magnified and the particle will inherently move 

toward one of the electrode surfaces where the maximum (positive DEP) or minimum (nega-

tive DEP) exists. Practically, the focused electric field is not capable of simultaneously en-

suring both radial and axial stability; the details of the analysis which may be found in the 

paper by Holmes (43). Therefore, stable levitation may only be achieved for particles exhib-

iting positive DEP where feedback—control is implemented (44), (45). This technique in-

volves the use of an axisymmetric cusped shaped electrode with a plate electrode (the corn-
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plete details of the apparatus may be found in §4.2). Radial stability is passively achieved 

using the focused electric field produced by the conic electrode; and axial stability is 

achieved through feedback control. 

1.7.3 Dual—Frequency Levitation Scheme 

As was alluded to previously, a biological cell will exhibit both positive and 

negative DEP: positive DEP in the intermediate and high frequency regions; and negative 

DEP at low frequencies. This fact makes it impossible to obtain dielectrophoretic measure-

ments over the entire frequency spectrum when using the same experimental apparatus as 

described in §1.7.2. The reason for this is that in the region of negative DEP, both the DEP 

and the net gravitational—buoyancy force act in the same direction (this is assuming, of 

course, that the density of the particle is greater than the density of the suspending medium) 

with the result that a balance of forces is impossible. Therefore, to obtain data in the negative 

DEP region (the low frequency region) using the same electrode configuration and feedback 

control as was used in the positive DEP region, a dual—frequency levitation technique was 

devised (6). 

The principle behind the dual—frequency levitation scheme is to utilize a pos-

itive DEP force to balance the negative DEP force and the net gravitational—buoyancy force 

when levitating a biological cell in regions of negative DEP. This is achieved by synthesizing 

two AC voltages of distinct frequencies (f1 < f). It has been shown (46) that the mean— 

square of the sum of two sinusoids is approximately equal to the sum of the mean—squares 

of each sinusoid if and only if the two frequencies are well separated. The situation is the 

same as for feedback—controlled levitation in the frequency region for which positive DEP 

exists; that is, a balance is maintained between the positive DEP and the net gravitational— 

buoyancy force by adjusting a single frequency voltage. When the frequency has been re-

duced to where a cross over occurs to negative DEP, the second field component, driven at 

the higher fixed frequency (f2), is added. The low field frequency voltage (V1) is fixed and 

the high field frequency voltage (V2)is adjusted by the feedback—controller to achieve and 
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maintain levitation. 

1.8 Dissertation Outline 

In this dissertation, the anomalous observations of hysteresis and higher har-

monic components in the micromotion have been theoretically explored with the intent of 

obtaining insight into the underlying mechanism(s). Chapter 2 reviews in some detail the 

basic conventional theory of dielectrophoresis: including a derivation of the DEP force and 

discussion of typical models and polarization mechanisms. The novel experimental ob-

servation of hysteresis loops in the DEP spectrum of levitated plant protoplasts are presented 

in Chapter 3, along with the derivation and results of the mathematical modelling. Chapter 

4 begins with a discussion of the experimental setup and measurement technique implement-

ed in the detection of the micromotion of levitated plant protoplasts; followed with an over-

view of previous modelling; and concluding with a presentation of the new modelling inves-

tigations. The Melnikov method is derived and applied to the micromotion system in 

Chapter 5. The final chapter, Chapter 6, connects the two theoretical investigations together, 

and makes suggestion of possible future research. 
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Chapter 2: Theory 

As was alluded to in the introductory chapter of this dissertation, there is a 

significant amount of basic theory lying at the foundation of dielectrophoresis. The review 

and presentation of this material is both useful and beneficial if the specific theoretical con-

tributions of the modelling done on hysteresis (Chapter 3) and micromotion (Chapter 4) are 

to be understood. The material presented in this chapter is based primarily on: the venerable 

and excellent tome of Stratton on electromagnetic theory (47); Pohi's monograph on dielec-

trophoresis (39); and the very recent engineer's text on the electromechanics of particles by 

Jones (48). 

2.1 The Dielectrophoretic Force 

An appropriate starting point is to be realized in the derivation of the DEP 

force experienced by a spherical, polarizable, and homogeneous particle immersed in a ho-

mogeneous dielectric medium subjected to a nonuniform electric field. The DEP force is, 

in essence, the force experienced by a dipole (permanent or induced) in a nonuniform electric 

field and hence it is convenient to consider its derivation in 3 steps: ( 1) the net force on an 

infinitesimal dipole subject to a nonuniform field; (2) the derivation of the effective dipole 

moment in a lossless system consisting of a dielectric sphere in a dielectric medium; and (3) 

the effective moment method calculation of the DEP force. The results will then be extended 

to the more physically realistic situation allowing for dielectric losses in both the particle and 

the medium. This type of approach shows the basic assumptions that are involved in obtain-

ing an expression for the ponderomotive force experienced by dielectrics in an inhomoge-

neous electrostatic field. This ' rather straight forward result for the DEP force is then 

compared to the result of the DEP force rigorously derived by Sauer (49), (34) based on the 

Maxwell stress tensor and the principle of the conservation of electromagnetic momentum 

density; the full details, which are to be found in the Appendix. 
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2.1.1 The Net Force on an Infinitesimal Dipole 

Consider a finite dipole consisting of oppositely charged point charges of 

equal magnitude +q and —q separated by a distance d located in an electric field E; shown 

pictorially in Fig. 2.1. 

X 
Fig. 2.1 Force on a dipole in a nonuniform electric field. 

As the electric field is not uniform, the two point charges experience different values of the 

electric field with the net effect being that the dipole itself experiences a net force, 

given by: 

''dipole = qQ' + + (.- q)(-) (2.1) 

where T is the position vector of the negative point charge (—q). Now if the magnitude of 

d is small compared to the characteristic dimension of electric field nonuniformity, then the 

electric field experienced by the positive point charge may be expanded according to the Tay-

lor expansion: 

(2.2) 

If the higher order terms (terms that express the contribution of higher order poles) in Eq. 

(2.2) are neglected (being small) and the result substituted into Eq. (2. 1), one obtains for the 

net force of this finite dipole: 

''dipale = qd 

After conventional formalism, the dipole moment may be defined according to: 

(2.3) 
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(2.4) 

and if the limit k - 0 is taken with the constraint that the dipole moment remains finite, 

then Eq. (2.3) becomes the net force of an infinitesimal dipole in a nonuniform electric field: 

F dipole = j - VE (2.5) 

It should be noted that this approximation for the net force, referred to as the dielectropho ret-

ic approximation, is fairly good for typical conditions where the electric field nonuniformity 

is large compared to the particle dimensions. 

2.1.2 Derivation of the Effective Dipole Moment for a Lossless System 

Consider an insulating dielectric sphere of radius R and permittivity e,, sus-

pended in a fluid medium of permittivity 8rn and subjected to a uniform electric field 

E>() = E0 ; it may be conveniently represented by Fig. 2.2. 

X 
Fig. 2.2 Schematic of lossless system consisting of dielectric particle and medium. 

Initially, expressions for the electric potentials of both the particle and the medium,must be 

derived. It should be realized that the higher order multipoles will make no contribution be-

cause of the insistence that the field be uniform in the initial phase of the derivation. An ap-

propriate starting point for this electrostatic problem is the Maxwell's equations: 

(2.6) 

(2.7) 
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where E and H are the intensities of the electric and magnetic fields respectively, D the elec-

tric field displacement, B> the magnetic field induction, and J the current density vector. The 

divergence of Eq. (2.7) yields the important result: 

(2.8) 

where use has been made of: (a) the divergence of the curl of any vector vanishes identically; 

and (b) the commutability of the two operators V and . Recognition of the significance 
at 

of Eq. (2.8) is made by recalling the definition of the current, I: 

I da 

S 

(2.9) 

where S is the surface, Ws the normal vector to the surface, and da an infinitesimal surface 

element; and realizing the obvious relationship between the current with the charge density, 

df faQQdv-5 dv (2.10) 

V V 

where V is the volume, dv the infinitesimal volume element, and the second equality is the 

result of assuming that the surface through which charge passes is fixed and that the integral 

is convergent. Applying Gauss' divergence theorem to Eq. (2.9) gives: 

fJ - n da f V - .1 dv (2.11) 

and therefore equating the results of Eqs. (2.10) and (2.11) yields: 

f (V . i + L(O- dv=0 
at) 

(2.12) 

Now if this integral is to vanish for arbitrary volumes V, it is necessary that the integrand be 

identically zero, i.e.: 
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-V . i + L = 0 - 

at 
(2.13) 

Now the differential equation given in Eq. (2.13) is a continuity equation expressing the prin-

ciple of the conservation of charge in the neighborhood of a point. Substitution of Eq. (2.13) 

into Eq. (2.8) gives: 

--Q) = 0 Tt (2.14) 

and with the assumption that at some time in its past or future the field may have or may van-

ish, one obtains the following result: 

(2.15) 

which is a familiar result and implies that the sources of the electric displacement are the 

result of the distribution of charges with density Q. 

It should be clear that the results derived so far, are completely general and 

thus apply for any system lossy or otherwise. For the problem, described above in Fig. 2.2, 

it has been assumed that there is no free charge anywhere in the sphere or the dielectric me-

dium; and therefore , in Eq. (2.15), can assumed to be equal to zero. If, in addition, it is 

assumed that the displacement vector in both dielectric regions has only a linear dependence 

on the electric field intensity, i.e.: 

DP = 8p Ep Dm = £m Em (2.16) 

then from Eq. (2.15) the following two equalities hold: 

V6m Em +6 niVEm 0 (2.17) 

If both the sphere and the medium are homogeneous then: 

VSp = Vem = 0 (2.18) 

and hence Eq. (2.17) becomes: 

\7•J0 (2.19) 

which expresses, of course, that the electric field is divergence—free. Now if the electric field 
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in both regions is also curl—free, then the electric field must be the gradient of some scalar 

function: 

(220) 

where 7pp, m are the electric field potentials of the particle or sphere and the medium respec-

tively; and therefore with substitution into Eq. (2.19) gives Laplace's equation for each re-

gion: 

= 0 and V2,Dm = 0 

where because of the azimuthal symmetry, the Laplacian has the form: 

V2 = Q_(r2 Q + 1 a (sinA 
ar k Tr) sin 0 ae \ äO 

The solution of Laplace's equation in polar coordinates is, of course: 

A  

- r' 41 
n1 

P(cos 0) + 
n1 

('221) 

('222) 

Br P(cos 0) (2.23) 

where A and Bn are arbitrary constants and P(cos 0) the standard Legendre polynomials, 

the first few terms of which are given in Table 2.1. 

Table 2.1 The first few Legendre polynomial terms 

ii P(cos 0) 

0 1 

1 cosO 

2 .[3c0520 - 11 

3 [5cosO - 3 cos 0] 

As Eq. (2.23) expresses a superposition of solutions, i.e. ip(r, 0) = i/,',7, then, for sim-

n=1 

plicity, the first term in the summation (n=1) is chosen as an appropriate solution. Thus, 

acceptable solutions of Eq. (2.21) are: 

A1 A1 
ip(r, 0) = cosO + B1 ,, rcosO 1pm (r, 0) - r m cosO + B11 rcosO (2.24) 
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Physical constraints to the problem impose the two conditions: 

lim 'p(r,O) = - E0r Cos O 
r— co 

- 00 < limip(r,O) < 00 
r—'O 

(2.25) 

where the first condition is the requirement that at distances far away from the particle, the 

electric field is simply the applied field; and the second condition, that the electric field must 

remain finite at all places within the particle. Thus, with application of these two conditions 

to the electric field potentials of the two regions (Eq. (2.24)), one obtains: 

p,,(r,O) = B1,,, rcosO (2.26) 

p A1(r,O) = — cosO - E0rcosO (2.27) 

In addition to the constraints of Eq. (2.25), there are also the following important boundary 

conditions which occur at the particle—medium interface: 

= 1Pm(R,0) (2.28) 

(R,8) . Ii's = óm(R,0) Ii's (2.29) 

where Eq. (2.28) expresses the principle of the continuity of the electric field potential across 

the particle—medium boundary; and Eq. (2.29) declares that the normal component of the 

electric flux density vector must be continuous across the uncharged surface separating the 

two regions (iTs is the unit normal vector at the surface). Now if the linear relations of Eq. 

(2.16) are again assumed, then Eq. (2.29) becomes: 

Ii's = 6m1(R,O) (2.30) 

Applying the boundary conditions, Eqs. (2.28) and (2.30), to the derived electric field poten-

tial solutions, Eqs. (2.26) and (2.27), gives the electric field potentials for the two regions: 

(r, O) = (8p m  E0rcosO (2.31) 
+ 2e) 

lep -  8m'R3EüC0S0 
Pm(r,0) = 1tp + 2€m) .2  E0rcosO (2.32) 
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Of the two derived potentials, it is Eq. (2.32) that is of particular significance, as the first term 

on the right hand side has the form of a dipolar potential. It is the result of the dipole induced 

on the sphere as a consequence of an applied external electric field. The electrostatic poten-

tial I'due to a finite dipole consisting of two point charges +q and —q, separated by a distance 

d and aligned on the z—axis, immersed in a linear dielectric of permittivity 8m is: 

- qdP1(cosO) + qd3P3(cosO) . 

4YV8mr2 167V8m14 

where the first term is the dipole term and the second is the octupolar term; with higher order 

terms following. Recognizing that the product qd is the effective dipole moment Peff' the 

dipole potential in Eq. (2.33) may be written in terms of an effective dipole moment: 

p JcosO 

lPdipole 1, - 4rer2 

(2.33) 

(2.34) 

Comparison of Eq. (2.34) to the induced electric dipole term in Eq. (2.32) yields the result 

for the effective dipole moment of the homogeneous, dielectric sphere: 

- m  
= 42V8m(7+ 28m)RSEO '235) 

It is worth recognizing at this point, that the ratio of permittivities in Eq. (2.35) is the so called 

Clausius—Mossotti factor or function, Ke: 

Sp - 

Ke(p, m) --  8p  EM 
+ 2m 

(2.36) 

The Clausius—Mossotti factor provides a measure of the magnitude of the effective polariza-

tion of the spherical particle as a function of s and 6m• If one recalls that for an isotropic 

dielectric sphere, that is one in which the electrical properties at a particular point are inde-

pendent of the direction of the applied field, the induced dipole moment is related to the elec-

tric field through the polarizability a, according to: 

= /rRaE (2.37) 

then the Clausius—Mossotti factor is essentially a measure of the excess effective polarizabili-
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ty of the sphere; comparison of Eq. (2.37) with Eq. (2.35) and use of the definition in Eq. 

(2.36) reveals the following relationship between the Clausius—Mossotti factor and the po-

larizability: 

('238) 

2.1.3 Extension of the Effective Dipole Moment to a Conducting System 

Now the derivation in §2.1.2 began with the explicit assumption that both the 

sphere and the medium were non—conducting and that the applied electric field was a 

constant DC field. The derivation is extended to the situation where conductive losses occur 

in both the particle and the medium and the electric field is a sinusoidal steady—state AC elec-

tric field. The ohmic loss is incorporated into the system through making the permittivities 

complex: 

0's, 
S 

' 10) 

0'rn m Cni +7j (2.39) 

where the underscoring indicates a complex quantity; o',, m are the conductivities of the par-

ticle and the medium, respectively; and w the radian frequency of the AC electric field 

(i = fT). The applied field is uniform and periodic, with a magnitude of E0, and there-

fore may be represented as: 

-. —joi1 
E(t) = ReEoe-  e (2.40) 

The same geometry as represented in Fig 2.2 is assumed, and thus all the governing and 

constraining equations are the same with the exception that the second boundary condition 

becomes: 

-, 

,E(R,O,t) iTs = ç2Em(R,O,t) V (2.41) 

where the electric fields are now explicitly time dependent and the permittivities complex. 

This leads to similar results as before except the Clausius—Mossotti factor becomes complex: 

- -rn 
Ke(.p'.m) - p  + 2 (2.42) 



24 

and thus the effective moment in Eq. (2.35) becomes complex: 

i?eff = 4Yt6mKeR3E (2.43) 

It is important to note that the measured effective moment jYej/t) = Re{15eff e - icot} may be 

envisaged as the moment of a time—varying equivalent free charge dipole that produces the 

same electrostatic field in the same dielectric medium. Furthermore, because the Clausius— 

Mossotti factor is complex, both its magnitude and phase are functions of the field frequency. 

This phase angle represents the lag between the applied electric field and the induced dipole 

moment. Jones (48) points out that such ohmic, dispersive behavior is the result of the finite 

time required to build up a surface charge at the interface. It should also be realized that the 

permittivity of the medium appearing explicitly in Eq. (2.43) can not be complex because 

its origin is based on Gauss's law of charge interaction relating the charge to the electric field. 

2.1.4 Effective Moment Calculation of the DEP Force 

Attention is now given to the problem of calculating the dielectrophoretic 

force on the homogeneous, dielectric, spherical particle immersed in a dielectric medium 

(fluid) as represented in Fig 2.2. The effective moment method of calculating the DEP force 

is based on the assumption that the force may be related to the effective moments identified 

from the calculated induced electrostatic field due to the particle. Thus within this frame-

work, it may be assumed from Eq. (2.5) that the DEP force can be calculated from the rela-

tion: 

I'DEP(t) = j5(t) . V(t) (2.44) 

where all quantities are real and instantaneous functions of time. It should be realized that 

there will be higher—order moment contributions to this force which will be significant if the 

nonuniformity of the applied electric field is made substantial. Furthermore, Eq. (2.44), 

strictly speaking, only applies to systems that are lossless. For the more physically realistic 

situation were conductive losses occur in either or both the particle and medium, potential 

energy is not conserved and thus the foundations of this method of force calculation is not 



25 
tenable. Hence for the lossless system of §2.1.2, in combining Eqs. (2.35) and (2.44) one 

obtains: 

FDEP = 2.7V6mR ( "  
'sep + 2em)V(E 

(2.45) 

Now this expression for the dielectrophoretic force, is the traditional one that was first 

derived by Pohl (50) and is a good approximation for spherical particles with no dielectric 

losses and subject to only slightly nonuniform fields. 

For the extension described in §2.1.3 involving a sinusoidal steady—state AC 

electric field applied to a system with ohmic conduction, Eq. (2.44) is modified according 

to: 

j'DEP(t) = Refr ff e - iwt} . V Re{(7) e - icvt} (2.46) 

Applying the Cycle Average Theorem to Eq. (2.46), one obtains for the time average dielec-

trophoretic force: 

-, _* 

1'DEP(t) = Refre11(t) VE (i., t) } (2.47) 

where the bar indicates time average and the * signifies the complex conjugated quantity. 

Substitution of Eq. (2.43) into Eq. (2.47) gives: 

FD,-P(t) = .R442ve2R3LEo'ze 1Wt . VEoe1t} 

= 22vR3em Re{KeV((Eo)2)} 

VR3em Re{Ke}V(Eo)2 (2.48) 

Now the maximum amplitude of the AC electric field may be related to the root—mean--

square magnitude of the externally applied AC electric field through the definition: 

Erms = 
E0 

— 
(2.49) 

Thus substitution of Eq. (2.49) into Eq. (2.48) gives for the time average of the DEP force: 
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FDEP(t) = 27vR38m Re{Ke}V(Errns)2 (250) 

Examination of Eq. (2.50) shows that the time average DEP force is a function of the real 

part of the Clausius—Mossotti factor which itself is a function of the field frequency. From 

Eq. (2.42) it is clear that the complex Clausius—Mossotti factor, a function of the complex 

permittivities of both particle and medium, will be positive when > 8 , and negative 

when < ; and therefore when Re{K} > 0, we have positive dielectrophoresis and 

when Re{Ke} < 0, negative dielectrophoresis. Positive DEP manifests itself in movement 

of the particle to a region of greater electric field intensity; and negative DEP, movement to 

a region of lower field intensity. 

2.1.5 Comparison of DEP Force Derivations 

As was alluded to earlier, the derivation of the DEP force using the effective 

moment method for lossy systems is not really correct in its methodology because the poten-

tial energy is not conserved. The first rigorous derivation of the DEP force for a lossy system 

consisting of a dielectric spherical particle in a dielectric medium was published by Sauer 

in 1983 (49) and with the same formulation extended to derive the electrical torque in 1985 

(51). The derivation is based on the principle of the conservation of electromagnetic mo-

mentum (rather than energy) and therefore involves the evaluation of the net force on the 

particle through integration of the Maxwell stress tensor over the surface of the sphere. The 

formalism is quite complicated and since many of the details were omitted in Sauer's paper, 

the full derivation is included in this dissertation (see the Appendix). Comparison of Sauer's 

final result, Eq. (A.66): 

F,  - rR3 Re{s1} Re{K}VIEI2 (2.51) 

with the result from the effective dipole method, Eq. (2.48): 

1'DEP(t) = ytR3em Re{Ke}V(Eo)2 

indicates that the general form is essentially the same. The negative sign appearing in Sau-

er's expression is a result of his choice of sign convention of the net force: the electromagnet-
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ic force being directed towards the center of the particle. It should also be realized that the 

Clausius—Mossotti factors are slightly different in the two expressions; the permittivities in 

Sauer's expression containing complex components - is and - ie which express di-

electric loss mechanisms in the medium and particle that are not just the result of a phase lag 

induced through ohmic losses between the applied external field and the induced dipole in 

the particle. It is worth remarking on the fact that a very similar derivation, to that of Sauer's, 

of the electromagnetic forces on dissipative dielectric media has appeared very recently by 

Giner et al (52). They calculated the electromagnetic force for three different systems: (a) 

an oscillating charge facing a semi—infinite dielectric; (b) the rise of a liquid between parallel 

charged plates; and (c) the DEP force on a spherical particle. Their results are in complete 

agreement to that of Sauer. 

2.2 Shell Model Treatments 

The treatment of the particle up to this point has been to consider the particle 

as simply a homogeneous sphere (either lossless or lossy). However, this is really an over 

simplification for most real particles as they do possess structure, and even more importantly, 

an interface or surface of finite thickness with dielectric properties distinct from the main 

bulk of the interior of the particle. Biological cells, the particles with which this dissertation 

is concerned, are very clear examples of layered particles possessing either a cell wall (as 

in the case of plant cells) or a cell membrane (found on animal cells). Thus, to model a lay-

ered particle various so called "shelled models" have been constructed; the first probably 

being that of Pauly and Schwan (53). The simplest dielectric shell model consisting of a 

single concentric layer is shown in Fig. 2.3. 

Fig. 2.3 Spherical concentric dielectric shell with distinct shell and core permittivities. 
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It may be assumed, as was done in §2.1.2, that Laplace's equation holds for the electric poten-

tials in each of the three regions. Now after solution of these equations followed by applica-

tion of similar constraints and boundary conditions (for both interfaces) one obtains for the 

DEP force under the hypotheses of the effective moment method: 

FDEP = 2YCSmRK(8m, 8p1' e2)V(E0)2 

where the Clausius—Mossotti factor has the explicit form: 

St - 

Ke(Sm6pi8p2) - 8 + 2 sm 

with the effective permittivity, st, being defined according to: 

) [a3 + 2( p2 2p1 
p2p1  \ 

- 1 p2p1 \ 
a3 P2+ 28P1) 

(2.52) 

(2.53) 

(2.54) 

where a = For a similar shell where ohmic losses take place in both the medium and 

the particle, and where the the applied field is an AC electric field, the results are the same 

as the lossless system equations above (Eqs. (2.52) - (2.54)), except that all permittivities 

become complex; i.e.: 

and is: 

81 

Ke(rn'p1.p2) = 
—p -'li 

1a3 + 2" 
t def (_-Op2p1) 

-p -p1 
a3 

(--'p2 + 2--pi 

(2.55) 

(2.56) 

The model of a particle or biological cell consisting of a single concentric 

shell or membrane is the most basic attempt at modelling the surface. Other more sophisti-

cated models have been proposed including: models consisting of additional layers; special 
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cases of very thin films involving either series or shunt admittance elements; and specific 

biological models such as the walled cell model and the protoplast model. The reader is re-

ferred to the text of Jones (48) for specific details concerning these models. 

2.3 Polarization Mechanisms 

Having derived expressions for the excess effective polarization for systems 

experiencing ohmic losses when subjected to AC fields; namely Eq. (2.42) of §2.1.3 for a 

simple spherical dielectric particle, and Eq. (2.56) of §2.2 for a spherical concentric dielec-

tric shell, it is appropriate to briefly outline the various mechanisms attributed to the induced 

polarization (see Chapter 3 in reference (39) for a full description). There are essentially 

three types of mechanisms; the first being microscopic which includes electronic, atomic, 

and dipolar polarization; the second, interfacial, referred to as Maxwell—Wagner polariza-

tion; and the last, counterion polarization. All polarization mechanisms are very much de-

pendent on the frequency of the applied electric field; some operable at low frequency while 

others being evident only at high frequencies. 

2.3.1 Electronic, Atomic, and Dipolar Polarization 

Electronic polarization is the result of the distortion of the positive and nega-

tive charge centres withiti atoms due to the application of an external electrical field. At suf-

ficiently high field frequencies a polarization dispersion occurs as a result of the inability of 

the distortion to follow the alternating field. This dispersion is typically observed in the very 

high regime of the frequency spectrum, i.e. the ultraviolet. 

Atomic polarization, to be distinguished from electronic polarization, arises 

from the actual physical displacement or shift of differently charged atoms within a molecule 

or complex. This dispersion is usually seen at infrared frequencies. 

The third microscopic mechanism is dipolar or orientational polarization and 

comes into play as a result of the orientational responses of molecules due to an applied field. 

This mechanism is realized in molecules possessing a permanent dipole and is driven by the 

effort of the molecules to minimize their potential energy by realignment. This polarization 
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dispersion is characterized by a Debye type relaxation process (54). 

2.3.2 Maxwell—Wagner Polarization 

Interfacial or Maxwell—Wagner polarization is the result of charge accumula-

tion at the structural interfaces of heterogeneous materials. The characteristic relaxation 

time constant for this process, TMW' may be realized by recasting Eq. (2.42) in the following 

form: 

- - am I  ia)T0 + 1 
Ke&pm) -  or P a + 2am ZWVMW + ii (257) 

8p/fl 8p+28,n 
where r0 - ,, =  + Therefore, from this expression it is quite evi-

dent that the Maxwell—Wagner interfacial polarization is a first order process, and is seen as 

the dispersive response of a homogeneous ohmic dielectric sphere immersed in an ohmic 

dielectric medium. The frequency regime to which this type of mechanism is operable may 

be determined by examining both the low and high frequency limits of the Clausius—Mossot-

ti factor expressed in Eq. (2.57): 

lim[KeJ -  orp  - am 
(J)- O a + 2Cm 

urn [Ke] -  -  

EM 

co—> o° + 2m 

(2.58) 

(259) 

From these limits it is clear that the Maxwell—Wagner polarization mechanism, and hence 

charge accumulation at the particle/medium interface, occurs on the long time scale, 

t at low electric field frequencies. The ratio in Eq. (2.58) confirms the physical intu-

ition that surface charge accumulation is governed by DC conduction. On the other hand, 

Eq. (2.59) indicates that at high frequencies the response is simply that for a lossless or insu-

lating dielectric sphere, Eq. (2.36). 

2.3.3 Counterion Polarization 

Counterion polarization is the result of ionic diffusion within the electrical 

double layer created by the charge accumulation at the interface of two heterogeneous mate-
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rials. The double layer consists of a layer of counterions that encompass the surface charge 

ions in a spherically symmetric fashion providing there is no outside perturbation. Upon the 

application of an external electric field, the symmetry of the counterionic cloud will be bro-

ken resulting in a "dipole" or induced polarization. The effects of counterion polarization 

have been observed in a number of different systems including: emulsions (55), charged 

polystyrene sphere suspensions (56), micro—organisms (57), and linear macromolecules in-

cluding DNA (58). The effects of this type of polarization are manifest significantly at low 

frequencies and are difficult to quantify in a rigorous manner because of the phenomena be-

ing governed by nonlinear hydrodynamic—electrical equations ( 1). Many theories and mod-

els have been proposed to explain and describe this phenomena; the first due to Schwarz (59) 

who successfully described the amplitude of the dispersion. Schurr (60) extended the theory 

of Schwarz to include tangential surface flux with the bulk medium while still maintaining 

the features of a tightly bound layer of charges. This aspect of Schwarz's original model was 

abandoned by Fixman (61) and Chew and Sen (62); both groups incorporating the Guoy— 

Chapman model of a diffuse double layer with a potential for the ionic charge cloud de-

scribed by a Boltzmann distribution. These exceedingly complicated models were simpli-

fied while maintaining their characteristic features by Grosse (63). More recently yet, Paul 

et a! (7) proposed a nonequilibrium statistical mechanical model to account for anomalies 

in the surface conductance of the double layer for very low field frequencies. 

2.4 Theoretically Generated DEP Spectra 

Through the derivation of the DEP force in §2.1.4 and the discussion of the 

various polarization mechanisms, in particular Maxwell—Wagner polarization in §2.3.2, it 

should be clear that the dielectric properties of the particle are contained in the expression 

of the Clausius—Mossotti factor; and in particular, for lossy systems the real part of this ex-

pression. The derived expressions for the Clausius—Mossotti factor for both the homoge-

neous dielectric sphere, Eq. (2.42), and the concentric dielectric shell, Eq. (2.55), are intrin-

sically frequency dependent through the complex permittivities. Thus, the frequency 
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dependence of a particular theoretical model is displayed in a DEP spectral plot of the 

Re { K, ). The suitability of a specific theoretical model may be determined by comparison 

of theoretically generated DEP spectra with those obtained experimentally. The results for 

the two models are examined separately in the following two sections. 

2.4.1 The DEP Spectrum of a Homogeneous Dielectric Sphere 

The DEP spectrum, that is a plot of the real part of the Clausius—Mossotti fac-

tor versus the frequency (f = fi-) of the applied electric field, for a lossy system consisting 

of a homogeneous dielectric sphere in a homogeneous dielectric medium is displayed in Fig. 

2.4. 
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Fig. 2.4 DEP spectrum of a homogeneous dielectric sphere. 

(8m = 80s, 6p = WE,, or. = 0.001Sm 1, a1, = 0.5Sm 1) (44) 

The selected permittivities and conductivities (45) are typical values (or estimates) for a 

plant protoplast suspended in a dilute electrolyte solution (essentially water). The effective 

polarizability plot shows that the polarization of the particle remains at a constant maximum 

value for the low frequencies indicating that in this region the induced dipole is synchronized 

with the oscillating electric field. Beyond a frequency of approximately 1 MHz, the fluctuat-

ing dipole (movement of charges within the particle) lags behind the AC field resulting in 
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a polarization dispersion; energy is lost within the particle. For sufficiently high frequencies 

(> 108 Hz.) charge movement essentially ceases and a constant minimum value in the effec-

tive polarizability is observed. 

2.4.2 The DEP Spectrum of a Homogeneous Concentric Dielectric Shell 

As was alluded to in §2.2, the concentric dielectric shell was developed to 

better model the physical reality of a biological cell with its distinct cell membrane. The cell 

membrane for a plant protoplast consists of a very thin (that is, when compared to the overall 

dimensions of the cell) lipid protein bi—layer (64). The membrane capacitance Cmb is typical-

ly - 0.005Fm 2 and the transmembrane conductance gmb' very small, in fact negligible 

except at very low frequencies. Thus, the theoretically generated DEP spectrum (where the 

real part of the Clausius—Mossotti factor is evaluated from Eqs. (2.55) and (2.56)) for a plant 

protoplast modelled as a lossy concentric dielectric shell, is plotted in Fig. 2.5. 
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Fig. 2.5 DEP spectrum of a homogeneous concentric dielectric shell. 

(Sm = 80s, 8p2 = 60ev, am = 0.001Sm 1, Cp2 = 0.5Sm', 8p1 = 

= 0 Sm 1, R2 = 17.5 x 10 6m, R2 - R1 = 0.01 X 10 6m) 

Now the parameters listed in Fig. 2.5 are related to the specific membrane parameters of the 

capacitance and conductance through the following relations: 
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8p1  
Cmb --  D - 0 

'2 '1 

6P I  
- gmb 0 - 0 At2 L1 

It is perhaps worth noting that these results obtained through the simple shelled model treat-

ment of §2.2 are essentially identical to the results obtained by the previously alluded to se-

ries admittance model (48), which specifically introduces the conditions of a finite potential 

drop, EZ(R2 - R ), across the thin shell through modifying the boundary condition (see Eq. 

(2.28)) requiring continuity in electric field potential to be: 

.mb(1Pm(R2, o) - ip 2(R2, o)) = j,jEm(R2, 0) (2.60) 

where the complex capacitance of the membrane cb is defined according to: 

- gmb 

and both the electric field potentials and the electric field intensities are, of course, complex 

after the fashion of Eq. (2.40). The effective permittivity 4 in Eq. (2.55) is now replaced 

by: 

I  -p2  (2.61) 

This parallel to the series admittance model further attests to the insulating character of the 

membrane being incorporated into the shelled model; with the selected parameters given in 

Fig. 2.5. Examination of Fig. 2.5 indicates that the polarization of the particle at high fre-

quencies is the same as was seen for the simple homogeneous sphere - high frequency disper-

sion. The low frequency behavior, however, is quite different in that a constant minimum 

value (-0.5) is observed. This low frequency result indicates that the membrane is effective-

ly insulating the interior of the cell with the effective permittivity being less than the permit-

tivity of the medium, and hence negative DEP is observed. The rise in the polarizability 

above 1000 Hz is the result of penetration by the electric field into the interior of the cell and 

corresponding charge build up at the interface (Maxwell—Wagner polarization). 
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Chapter 3: Hysteresis 

3.1 Introduction 

The previous two chapters have already made reference to the importance of 

the electrical properties of the particle—medium interface in determining the physicochemi-

cal properties of the particle, where the specific context has been that of the cell membrane 

of living intact plant protoplasts. As alluded to in Chapter 1, the anomalous observation of 

hysteresis loops in the low—frequency regime of experimentally measured DEP spectra, has 

suggested a nonlinear interaction of the external electric field with the cell membrane. Being 

that conventional theory has failed to explain or predict this phenomena, a careful theoretical 

investigation beginning from first principles, was deemed to be useful in suggesting the pos-

sible cause and physical mechanism of the hysteresis. Thus, this chapter presents the details 

of the theoretical modelling. 

This author has recently reported the experimental observations along with 

a detailed theoretical analysis in the journalBioeiectrochernistiy andBioenergetics (65), and 

thus some of the material contained in this chapter has been published. 

3.2 Experimental Observations 

The DEP spectral results obtained from a typical dual—frequency levitation 

experiment involving a tobacco protoplast in 8% sorbitol is displayed in Fig. 3.1. 
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Fig. 3.1 Experimental DEP spectrum showing double valued Clausius—Mossotti factor 
in the low frequency region. 
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The complete experimental details, including the isolation and preparation of the protoplast 

sample, and experimental setup and technique are given in Chapter 4 (the context in which 

the author carried out his own experiments); however, there are a few important details per-

taining to the hysteresis measurements. 

The spectral scan was usually carried out starting from a high frequency, typi-

cally 5 MHz.; and the time averaged levitation voltage monitored at a minimum of 10 evenly 

spaced frequency points per decade. The downward sweep was halted when the frequency 

reached 1 Hz. and then the frequency scan was repeated on the same cell; the direction of 

the scan, however, was reversed (i.e. low to high). From the example (Fig. 3.1) of a typical 

Clausius—Mossotti response for an individual protoplast, it is seen that the polarizability is 

essentially independent of the scan direction over an appreciable frequency range (1 KHz. 

to 5 MHz.). In the low frequency region (< 1 KHz.), however, the Clausius—Mossotti factor 

is clearly sensitive to the scan direction. 

One also notes, that in the up and down scan of the spectrum, a splitting of 

the value of the Clausius—Mossotti factor is exhibited in a manner that is clearly typical of 

a hysteresis effect. Furthermore, this characteristic splitting appears to be sensitive to the 

previous history of the sample. This is quite distinct from the high—frequency response re-

gion where even after repeated scans the characteristic features are retained. During the 

course of such prolonged levitation studies, usually about 20 minutes for 5 complete scans, 

no alteration was detected in either the cell size or shape. The occurrence of some cell leak-

age can not be entirely ruled out, and could probably be ascertained through electrorotation 

measurements (66). It is, however, unclear how cell leakage would relate to or explain the 

hysteresis. 

3.3 Theoretical Thrust 

As outlined in §2.1.3, the Clausius—Mossotti factor for systems exhibiting 

ohmic dielectric losses when subjected to an AC electric field, is a function of the complex, 

frequency—dependent permittivities. The permittivity arises through the relationship be-
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tween the electric field intensity and the displacement vector; which for free space is: 

(3.1) 

where e, scalar constant, is the permittivity of free space. It is well known from the general 

theory of electrodynamics, that the choice of a linear relationship between the displacement 

vector and the local electric field is basically a phenomenological one. From a physical 

standpoint, this choice simply amounts to assuming that the complex permittivity may de-

pend on the local field frequency, but is independent of the amplitude of the field. This as-

sumption is valid so long as the local field does not alter the structure of the medium in which 

it is present. An examination of Fig. 3. 1, however, shows that when the direction of the fre-

quency scan is reversed, the value of the Clausius—Mossotti factor has been altered by the 

previous scan, thus indicating a change in the complex permittivity as a result of the presence 

of the field. This, of course, implies that the permittivity is a function of the electric field: 

= 

3.4 Introduction of the Nonlinearity 

The possibility of considering a displacement vector that is nonlinear in the 

local field has already been the subject of some interest in the topic of dielectric saturation, 

a good account of this work which may be found in Scaife's book (67). The permittivity in 

the context of dielectric saturation is taken to be quadratic in the local field: 

- ,tE2) (3.2) 

Here, the first term e(0) is the standard field independent permittivity, while the second term 

represents a quadratic correction, with I a small parameter that measures the degree of non— 

linearity. Substitution of Eq. (3.2) into Eq. (2.15) with the assumption of Q = 0 gives for 

a curl—free electric field: 

[1 -  A(— - — )]V2,p VIP VIP = A.([(VIP) .V VV 'V?P) (3.3) 

Now Eq. (3.3) is a nonlinear extension of Laplace's equation (Eq. (2.21)) which for the iossy 
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system under consideration, must be solved within both the particle and the surrounding me-

dium; subject to the boundary conditions of Eqs. (2.28) and (2.41). This highly nonlinear 

equation can not be solved exactly, and thus one is obliged to attempt solving it numerically 

or by means of a perturbative technique. Although the perturbation, as represented by the 

parameter A., is small, the calculation of this type presented by Scaife does not reveal the mul-

tiplicity of solutions one would expect from a nonlinear theory. 

Therefore, in order to obtain the multiplicity of solutions observed in the ex-

perimental plot (Fig. 3. 1), it is essential that the model constructed be one that may be subject 

to analysis without any approximations. Such a model can not employ the sophisticated 

mathematics envisaged in Eq. (3.3), nor can it be a completely linear treatment as used in 

the traditional approach outlined in §2.1.2 and §2.1.3. 

The model developed and presented here, avoids the necessity of solving a 

highly nonlinear partial differential equation by assuming that the material both inside the 

particle and in the surrounding medium continues to obey the standard linear Laplace equa-

tions (Eq. (2.21)). Consequently, the exact solutions obtained for the homogeneous sphere 

model (Eqs. (2.26) and (2.27)) can still be utilized along with the boundary condition invok-

ing the continuity of the electric potential (Eq. (2.28)). The second boundary condition re-

quiring continuity of the electric flux density across the boundary, must be reformulated be-

ginning with its defining equation, Eq. (2.41). Thus, the constructed model essentially 

consists of taking two linear dielectrics and separating them by an infinitesimally thin non-

linear boundary. It should be pointed out, that such an approach in which the nonlinearity 

is introduced through the boundary conditions rather than the differential equation itself, is 

not unique, but in fact has been used in other areas of nonlinear dynamics (68). 

The displacement vector is assumed to have the standard form (47) applica-

ble for describing the electromagnetic state of a sample of matter: 

D(t) = 80E(t) + P(t) (3.4) 

where (t) is the total polarization vector for the region of interest, which in the present case 
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is the particle—medium interface. For a completely general nonlinear case, the polarization 

vector may be expressed in terms of the local field (69) as follows: 

F(t) = [e0x(1)(w) + icJ(1)(w)l (t) + I EOx2)w) + a(2)(w )l : (t) (t) + 
1w 21w j 

+ [S'X(n)(Co) + 
niw 

I (t) (t) (t)" (t) 

(3.5) 

where x((o) is the nt1 order susceptibility tensor, a )((o) the nh order conductivity tensor, 

and w the frequency of the electric field. Substitution of Eq. (3.5) into Eq. (3.4) gives for 

the general nonlinear displacement vector: 

{i + x'w)} + -1_a(1)(w)] (t) + [60x (2)(w) + la(2)(w)1 21w E(t) E(t) D(t) = 180 
1w 

+. + [80X(n)((0)+ 1a(n)(w)l I (t) (t) (t)" . 
niw j 

(3.6) 

There are n terms in Eq. (3.6) and therefore, for the ease of keeping track of each of the terms, 

this general displacement vector may simply be written: 

L(t) = D1(t) + D2(t) + . . + D,(t) (3.7) 

In addition, one may further represent the general displacement vector in terms of permittiv-

ity tensors by employing the following definitions: 

E1 (W) 641 + 

E(W) + —1—o'(w) 
fliw 

(3.8) 

and therefore Eq. (3.6) may be written in terms of permittivity tensors: 

L(t) s(1)(w) (t) + c(2)(w ) : (t) (t) + . + 8(!z)(w) I (t) (t) . (t) (3.9) 

Butcher and Cotter (69) point out that X '2(w) vanishes in media possessing 

inversion symmetry because the polarisation must change sign when the optical electric field 
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is reversed. Both the particle and the medium possess inversion symmetry. The particle—me-

dium boundary or interface when considered over the entire spherical surface also has inver-

sion symmetry. Hence, the even powered terms in Eq. (3.9) should be set to zero for the prob-

lem dealt with here. However, in the model that follows, the quadratic term is retained on 

the particle side of the interface (see Eq. (3.10)) on the assumption that the interface, though 

treated spherically, actually possesses intrinsic asymmetry. 

Now as the simplest extension to the traditional linear model, a nonlinearity 

is introduced on the particle side of the interface by retaining both the linear and quadratic 

field dependent terms of Eq. (3.9); while on the medium side, only the linear term is retained. 

Thus, the model may be represented pictorially as shown in Fig. 3.2. 

-.> -4 

D2 ) . r=R = Dim fl r'=R 

Ai,m 
—cos0 - E0rcos0 
r2 

(3.10) 

Fig. 3.2 Representation of nonlinear boundary condition at particle—medium interface. 

Such an assumption results in a nonlinear model that may be handled exactly and with area-

sonable mathematical sophistication beyond that required in the linear; but also affords some 

attractive and interesting physical and chemical insights. 

The membrane of biological cells is almost impervious to conduction current 

in the low—frequency regime; thus restricting most of the electrically measurable properties 

to the cell surface (70). It is also well understood that the cell membrane is a fairly compli-

cated structure, and thus presents a surface that is capable of displaying a very rich and non-

linear response to the external field. In many treatments involving the computation of the 

Clausius—Mossotti factor, the cell surface is generally regarded as a charged object with an 

electrical double layer; hence performing a relatively passive role. Such a view is rather sim-

plistic since the membrane lying immediately within the surface is a center of much activity 

(71). In the work of Kell and Harris (72), a much more active role has been ascribed to the 
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membrane in which the diffusional motion of the protein molecules affect the dielectric 

properties. Furthermore, if one considers the fact that an applied electric field is capable of 

altering the conformation of the proteins and influencing the equilibrium constants of the 

various chemical reactions, as discussed in Takashima (20), it is indeed reasonable to assume 

that the surface electrical properties will be dependent on the local field, and thus display the 

type of nonhinearities already alluded to in this chapter. The medium side of the interface, 

however, is further removed from the membrane, and thus a linear approximation may be 

considered adequate. 

It should be noted that no attempt has been given in this dissertation to give 

a detailed account of the molecular mechanisms that could contribute towards the nonlinear 

response at the interface. It is possible, however, to relax the assumption made earlier regard-

ing the uncharged nature of the cell surface, and to consider the nonlinearity as originating 

in the surface charge and its accompanying double layer. This feature is fully consistent with 

the model being presented here; and this aspect may be clearly seen by rewriting the bound-

ary condition (Eq. (3.10)) given in Fig. 3.2 in the following manner: 

- 

(D ip Dim)fl r=R'2p r=RQ 

where g is an equivalent surface charge density. This interpretation is more consistent with 

the fact that the surfaces of cells are charged objects. 

Both the first—order, E'(w), and the second—order, e(2 (w), permittivities in 

Eq. (3.9) are tensors of the second and third rank respectively; since the formalism is com-

pletely general and thus the tensorial properties allow for the possibility that the displace-

ment vector and the local electrical field may not be parallel. The first order permittivity may 

therefore be written: 

= ± 3 
ii e(1) i'j (3.11) 

i=lj=1 

where are the components of the second rank tensor, and the dyadic product of two 
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arbitrary unit vectors. A comparison of Eq. (3.7) with Eq. (3.9), followed by the substitution 

of Eq. (3.11), gives for the linear displacement vector: 

i 
151(t) =lj=1 

 = (1) 'i:i• (t) (3.12) 

With the assumption that both the particle and the medium behave isotropically under influ-

ence of the electric field, the first order complex permittivity tensor must reduce to a diagonal 

tensor of rank two possessing equal components, i.e.: 

11 

= 

= = 

With this constraint, Eq. (3.12) becomes: 

D1(t) = 
i=1j=1 

(3.13) 

j. E(t) (3.14) se 

where (1) = .(1)22 = The linear displacement vector may be expressed in 

terms of the scalar electric field potential as given in Eq. (2.21), resulting in the following: 

3 

1=1 

3 

1=1 

ejej 

--

e 1e1 

k=1 

3 

- ax1. 
i=1 k=1 

(3.15) 

where x1, x2, and x3are the cartesian coordinates x, y, and z, respectively. Now the quadratic 

term in the displacement vector, D2(t), may be treated in a similar fashion. The complex 

frequency dependent permittivity tensor is a third rank tensor and so may be written: 
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± 
3 =  

i=lj=1 k=1 

and therefore the quadratic term becomes: 

-> 

ejejek 

-ifk eje.Jek E(t) f E(t) (3.16) 
i=1j=lk=1 J 

The isotropicity condition requires that Eq. (3.16) be reduced to a diagonal second rank ten-

sor with equivalent elements; and thus the quadratic term becomes: 

D2(t)=[ 
i=lj=lk=1 

i=lj=lk=1 

(2) 
k eefek 

3 

E1 (t) 

1=1 ] 

(2) - 

ijk EkI . (t) 

= 77, i=lk=1 -iik E] (t) 

= [(L(2),E1 + (2)fl E2 + e(2) E3) 
3 

i=1 

j] (t) (3.17) 

where the last line of Eq. (3.17) is the result of the requirement of the diagonal elements being 

equal and the invoking of the definitions: .(2a e(2) 6(2)221 = 6(2)331; 

S (2) 6(2) 112 = s(2) 222 = (2); and e(2) 8(2) = 8(2) 6(2) 

D2(t) maybe expressed in terms of the electric field potential: 

1i2(t) = [8(2) + 62p + ] •aX2 7 •X!3  

The protoplast particles have obvious spherical symmetry and therefore a coordinate trans-

formation to polar spherical coordinates is desirable. The transformation from cartesian 

coordinates to polar spherical coordinates is, of course, according to the relations: 

x1 = rsin0cosq5 x2 = rsin0sinO x3 = rcosO 

And thus, 

(3.18) 
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and the corresponding differential operators obtained from the equations: 

—p--= sin O Cos 5 + COSOCOS95 a sin  
ar r rsinoaØ ax1 

= sin 0 sin 4 + cos 0 sin 0 + cos  

8x2 ar r TO _._rsinea0 Cos 0ô sin Gä 

ax3 ar r ao 

(3.19) 

The boundary condition, Eq. (3.10), requires an expression for the unit normal vector to sur-

face which in polar spherical coordinates is: 

sin o cos O + sin 0 sin q e2 + cos 0 e3 (3.20) 

The boundary condition of Eq. (3.10) requires the evaluation of the normal component of 

the linear term of the electric flux density for both the particle and the medium; and thus one 

may calculate a general expression for D1(t) h> from Eq. (3.15) coupled with the trans-

formation equations, Eqs. (3.19) and (3.20); with the result: 

• = - 8(1)!. (sin O cos O + sin 0 sin 0 e2 + cos  e3) 

= - e() alp-sin 0 cos 0 + -LIP- sin0sin0 + -- cos 0 
- äx1 ax2 ax3 

alp 
= - 

- 0  
(3.21) 

where azimuthal symmetry has been invoked on the last line. Similarly, one may evaluate 

the quadratic term required on the particle side of the boundary condition from Eq. (3.18) 

and Eqs. (3.19) and (3.20): 

= [(2) + (2) + ao (2) l NOXI - /3 ax2 V 

(sinocosO + sinOsinO e2 + c0s0 e3) 

= [L(2)a alp + (2) + (2) alp 1 
ax, - flax2 
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= [((2) cosØ + e(2) sin 15 ) sin  + + ] 8r / 
3 [( cos + e(2) sin cos 0 - e2) sine]  

(3.22) 

The left hand side (particle side) of the boundary condition, Eq. (3.10), may now be deter-

mined from Eqs. (3.21) and (3.22): 

(51 t) + E2 (t)) 

r = R 

)P I " (1) a; + 
ar 

r = R 

[(6 (2)apCOS + s(2)p psin) sin 0 + 8(2)YP coso](11 + 
är) I 

r=R 

1[(e(2) , cos + s(2) sin) COS  - e(2)ypsinO1( I at' ] ao)T 
/ r  

(3.23) 

Substituting the particle potential ip, from Eq. (2.26) into Eq. (3.23) gives the much simpli-

fied result: 

(1(t) + 2 (t)) r R B1,(B1, V 'P - g(l) P )  COS  (3.24) 

The right hand side (medium side) of Eq. (3.10) is evaluated from Eq. (3.21) with substitu-

tion of Eq. (2.27), yielding: 

(2A,, m 
1M(t) =  R3+ E0) COS  

r=R 
('325) 

Use is now made of the boundary condition requiring continuity in the electric field potential 

across the boundary, Eq. (2.28), to eliminate the constant B1 and then equating Eq. (3.24) 

to Eq. (3.25) in keeping with the second boundary condition of Eq. (3.10). This results in 

the following equation, where for the sake of brevity the subscript y is dropped from the se-

cond—order permittivity: 
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rn R3 + E0) + 
(1) 2A 

A1 — P ( R3 rn 

2 

- E0) - (2) (4i.m E 0 ) L (2)p(' 

R3 

(1) (2Aim  tmk R3 + Eo) - = 0 
(3.26) 

Now this relation clearly declares the resulting extension of the linear model in treating the 

medium—particle interface in a nonlinear fashion; realizing that when is set to zero, the 

standard linear dipolar coefficient results. 

This boundary condition is a statement to the fact that the electric flux density 

on the particle side of the interface must be equal to the electric flux density on the medium 

side, if no charge is present at the interface. Thus far, the dipolar coefficient Aim which de-

termines the polarization of the cell, is an unknown quantity and has to be selected in such 

a way that this balance of the electric flux density is satisfied. It is instructive to write this 

equation in a form that closely resembles its linear counterpart by defining an effective field— 

dependent permittivity for the particle as follows: 

.eff.,p e(1) + s(2) E (3.27) 

12A1 \ IA \ 
 + Eo) + Eo) = 0 '328) 

Writing the effective permittivity of the particle in this form emphasizes the fact that the 

complex permittivity is altered by the action of the field, in contrast to the standard linear 

permittivity. This, of course, does not preclude a frequency dependence of both (l) and 

s(2) and hence 

From a physical standpoint, this new quadratic particle field dependence has 

a profound effect on the properties of the particle. To see this, the situation where there is 

no external field (E0 = 0) is considered; thus Eq. (3.26) becomes: 

(1) (2) Ai,m Alm ( (l) + m - . Pj) = 0 (3.29) 
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In order to ensure an electric flux density balance, this equation can have two solutions: 

Ai,m = 0 

(EM + 2e(1)nz 'o3 

(3.30) 

r / 



48 

Re{A i,•m}  
- 

Re{Ke}i - E0R3 

Re1A
-  nzJ 

1 
1, 

Re{Ke}2 E0R3 (3.33) 

Prior to carrying out the calculations envisaged in Eq. (3.33), it is instructive to identify the 

root in Eq. (3.32) that leads to the standard Clausius—Mossotti factor in the linear analysis 

(2.1.2 and 2.1.3). This is achieved by carrying out a power series expansion in E0 of both 

roots in Eq. (3.32): 

AjT,, Z = EOR3( E(1) - '00)",) 9ER3( 1)m)22)p 
26(1)m + €(1) +  [28 M + 

((l) + 5E 1m 
1 ,m 

- e (2) £(28(')m + + EOR3 2(l)m + 

+... (3.34) 

9ER3(1)m)22)p + -. 

3 

[22) + .(1)] (3.35) 

Examination of these two expansions reveals that it is the A j root that becomes the standard 

linear Clausius—Mossotti factor when g (2) = 0. It is clear that the electric flux density bal-

ance equation will lead to the traditional single—valued Clausius—Mossotti factor in the linear 

analysis, if and only if, (2) = 0, while even infinitesimally small values of this parameter 

will produce bifurcation to multiple values. 

Such a result may at first glance appear strange, but it is a phenomenon that 

has been observed in other areas of nonlinear dynamics. One of the best known examples 

is the Andronov—Hopf bifurcation in chemical kinetics ( 15). In this example, the coupled 

rate equations describing the concentrations of two chemical species are considered. If the 

nonlinear second—order terms in the rate equation are ignored, then the equilibrium state of 

the system consists of a single fixed point with zero concentrations of all chemical species; 

the analogous situation here being expressed by Eq. (3.30), where a state of zero polarization 

is predicted. With the inclusion of nonlinearity, a second equilibrium state appears in which 

the chemical concentrations are no longer vanishing quantities but possess finite values, and 

this corresponds to Eq. (3.31), where a finite polarization is observed. The Eqs. (3.34) and 
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(3.35) clearly show the two solutions as power series expansions around these two equilibri-

um states. It is indeed the appearance of these two states, in the constructed model, that re-

suits in the hysteresis in the DEP spectrum, the complete frequency dependence which is to 

be presented in the next section. 

3.6 Extraction of Real Clausius—Mossotti Factors 

Having established the point of contact with the traditional theory in a concise 

manner, the real parts of the two Clausius—Mossotti factors in the second—order theory, de-

scribed in the previous sections, are derived. It should be remembered that all permittivities 

considered in this nonlinear model are complex quantities defined by Eq. (3.8), and thus it 

is convenient to introduce a compact notation as follows: 

A1 A = - B1 - (2E(2) + £(l) + 26 (1)m )R3; 
2 2w' 

(E0o.(2) + + 2U(1)m)R3 
B2 Co 

F2 

F1 E0(2E0e(2) + e(l) - e(')m)R3; 

Eo(E0a(2)p + 2o(') - 2a('))R6 

2w 
(3.36) 

In terms of the definitions described in Eq. (3.36), the imaginary part of the quantities under 

the square root sign in Eq. (3.32) is given by: 

2(AF2 + A2F1) - B1B2 (3.37) 

Depending on the sign of il, the real parts of A can be expressed as follows: 

ij<O: Re(A}=Z1+t1—t2; 

17 > O: RefA,)=Z1 —ti—t2; 

Here: 

A1B1 + A2B2 

zi - 2(A+A) 
tl 

Re(AM ) = Z1 - t1 + t2 

Re{A,} = Z1 + t1 + t2 

A24t—t' A1 jt+' 

12 = 

(3.38) 

(3.39) 
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2 22 2 2 2 A' 2 2 
(B 1 + B 2) + 8(A 1B2 - 2A2B1B2 - A1B1)F1 + 16(A 1 + + F2) 

+ 8(A 2B - 2A 1B1B2 - A2B)F2; 

B—B-4A 1F1+4A2F2 

Thus the experimental quantities Re{ Ke } I and Re{ K } 2 are readily obtained from Eqs. 

(3.38) and (3.39). 

The molecular processes that govern the shape of the polarization curves as 

a function of the field frequency, from a dynamical point of view, have some common fea-

tures with the linear case. 

(A) It is predominantly ionic motion that is responsible for the polarization of the particle 

at low frequencies. This can be seen by taking the zero frequency limits of Re{Ke}1 and 

Re( Ke}2. For t7 < 0, the low frequency limits are: 

Limit R K - E0a(2) + o(') + 2O 1)m 
0 e{ e} -   1,2  E0ci(2) +, - 

.s/6E0ct 1)np(2)p + (a( 1))2 + 4o 1)mo 1)p + 4(o<I))2 

and for 17 > 0, they are: 

Limit - E0a(2) + <l) + 2O' m 

0 Re{K} 1, - E0a(2) + 

/6EOOKI).U(2)p + (am)2 + 4ø(1)m cr(')p + 4((1))2 

E0a2 p 

(3.40) 

(3.41) 

(B) At high frequencies, it is the dipolar motion that determines the polarization through the 

permittivities. Once again, this feature can be ascertained by taking the high—frequency lim-

its of Re{Ke}i and Re(Ke}2. For 77 < 0, the high frequency limits are: 
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Limit Re{Ke}1 = E0e(2) + + 26(1)m 
+, — 2  E08(2) 

6E0s(1)(2) + ( 1))2 + 4s(')e(1) + 4((1))2 

E0s (2), 

and for ij > 0, they are: 

Limit 
w — oo 

=  ,+ E0 2) + + 28)m 
Re{Ke}1,2 

\/6E06(1),fle(2)p + (e(1))2 + 4e(1),e(1) + 4(1)m)2 

p 

(3.42) 

(3.43) 

At any given moment the particle is characterized by only one of the two 

Clausius—Mossotti factors (for a given set of parameters 77 will be either less than zero or 

greater than zero). Each of these is related by standard equations to the macroscopic dipole 

moment of the particle (39). Thus, in the nonlinear case, two dipole moments are possible 

at each frequency and they may be described in terms of the local field. The expressions 

become particularly simple if it is assumed that to a good approximation the local field is 

equal' to the applied field o: 

= 42vR3e1m Re{Ke}iEo 

= 4JTR3E1mRe{Ke}2Eo 

Corresponding to these dipoles, the energies are given by: 

- ,U EO = - 4.7rR3e(1)nzRe{Ke}iIoI2 

= - = - 47tR8' m Re{Ke}2IEol2 

The probabilities of finding the particle in one of the two Clausius—Mossotti factors are 

therefore given by: 

P1 = = 

P2 = J'e S12/k9T = X 2e431)m 1 e121Eo12h/CaT 

(3.44) 

(3.45) 

Here, the two constants .J'V and ..N'2 are the normalization constants for the two probability 
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functions P1 and P2, kB is Boltzmann's constant, and T is the absolute temperature. From 

Eqs. (3.44) and (3.45) it can be seen that if both choices (Re{Ke}j and Re (K,) 2)are avail-

able to the particle then it is more likely to be found in the state with the larger value of the 

Clausius—Mossotti factor. The two dipoles, 11Z1 and liT2, are macroscopic quantities that char-

acterize the particle as a whole; however, it is important to realize that these are the man-

ifestations of dipoles that are produced as a consequence of the polarization of molecular 

entities in the particle. If the particle is subjected to an external field in two sweeps in oppo-

site directions (as is done in a typical experiment leading to the DEP spectrum of Fig. 3. 1), 

then during the course of the first sweep, those molecular processes that lead to the larger 

of the two Clausius—Mossotti factors will come into play predominantly. In addition, if the 

time required for the relaxation back to their initial conditions is longer than the time between 

the two sweeps, then the molecular processes leading to the smaller of the two Clausius— 

Mossotti factors will come into play during the second sweep. The theory predicts that the 

upper parts of the loops in the DEP spectra will be traced during the initial scan, while the 

lower parts will appear on reversal of the direction. This prediction is verified by the experi-

ments. Several statements were made earlier in this chapter pointing out that the nonlinear 

treatment applies to the situation in which the applied field alters the electrical properties of 

the particle. These statements are to be understood within the context just described, that 

is within the duration of time during which the molecules have not had the opportunity to 

relax back to their initial conditions. If this duration is very long, then in effect, the particle 

has undergone an aging process which is not reversed. 

3.7 Numerical Computations and Comparison with Experiment 

In order to carry out the numerical computations, experimental values of all 

the parameters listed in Eq. (3.32) are required. From this list, the electrical properties e'1m, 

and a1) are the standard linear permittivities and conductivities for the medium 

and particle respectively and are well known, measured quantities being available. The mag-

nitude of the applied field E0 and the particle radius R are also available. At the present time, 



53 

however, the second—order electrical permittivity e (2) and conductivity cr 2 are not avail-

able, since in the present context these quantities have been introduced for the first time. 

Lacking available values for these parameters, we investigate a range of values and try to 

obtain bounds that produce dielectrophoretic spectra possessing the qualitative features of 

the experimentally measured spectra. 

As has already been pointed out in §3.2, the low frequency region is not only 

characterized by multiple Clausius—Mossotti factors, but overlaid on this is also the phenom-

enon of anomalous dielectrophoresis (introduced in the beginning of this chapter). The 

traditional linear theory of a concentric shelled sphere (described in Chapter 2), in the ab-

sence of this phenomenon, predicts a constant value of —0.5 for the real part of the Clausius— 

Mossotti factor as the frequency approaches zero for an insulating particle (see Fig. 2.5). 

Anomalous dielectrophoresis, however, causes a transition to positive values in this frequen-

cy domain. It is clear that the observation of multiple Clausius—Mossotti factors will also 

be colored by this effect. It has not been the intent of this theoretical investigation to focus 

attention on anomalous dielectrophoresis, but rather to offer explanation into the source of 

the multiple Clausius—Mossotti factors. Hence it is imperative for the reader to keep in mind 

that in comparing theory with experiment, the features of anomalous dielectrophoresis ap-

pearing in the experimental spectra will not appear in the model. As a consequence of this, 

it is expected that a typical plot of Re{Ke}1 (since Eq. (3.34) shows that this is the branch 

that leads to the linear Clausius—Mossotti factor) will display qualitative resemblances to Fig 

2.5. The zero frequency limiting value of—O.5 will, however, only be realized for some spe-

cific values of C(2 . 

It is seen from the experimental DEP spectrum of Fig. 3.1 that two paths are 

available to the system as the frequency is changed, and that these two paths meet at the low 

frequency (below 10 Hz.) and high frequency (above 104 Hz.) ends, with a crossing occur-

ring at an intermediate value of about 102 Hz.. At frequencies greater than 104 Hz., the field 

is able to penetrate into the cell membrane, and the spectrum is complicated by the appear-
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ance of Maxwell—Wagner relaxation effects (see §2.3.2) due to the membrane. Immediately 

prior to the membrane effects, a double loop is seen in the form of two hysteresis curves. 

In the model presented here, a shell has not been introduced and thus the applicability is 

strictly low frequency. The two paths are interpreted to correspond to the two different Clau-

sius—Mossotti factors and as such, it is important that the two roots A and A become 

degenerate at frequency values where the curves cross; and approximately degenerate in 

those regions where they approximate each other. 

In order to carry out a numerical investigation into probable values for the 

unknown second—order parameters, the first—order parameters were initially fixed at some 

reasonable values that describe a tobacco protoplast immersed in a water based medium. 

Thus, the following first—order parameters were selected: [ 1 ] o'' m = 10 4 S  1; [2] 

since the low frequency region is exclusively influenced by the values of the conductivities, 

the parameter or( ,, was allowed to vary from a value of 10 —9SM -1 corresponding to a pure 

surface conductance effect (59),(74) to a value of 10 4Sm , where the particle conductiv-

ity becomes significant; [3] = 7.083 x 10'0Fm 1; [4] s 1p = 5.312 )< 10 -10 

Fm 1; [5] R = 17.5 X 10 6m; and [6] E0 = 200 Vm 1. 

The selection of the sign of the second—order permittivity s (2) was made on 

the requirement that the root A im reproduce qualitatively the appearance of the linear Clau-

sius—Mossotti factor in keeping with (3.34). Numerical investigation has shown that this fea-

ture is realized for positive values of only. Choosing &2 > 0 implies that 17 > 0, and 

hence the real part of the two Clausius—Mossotti factors (i.e. Re{ K8} 1,2) must obey Eqs. 

(3.41) and (3.43). Furthermore, the high frequency limits of the Clausius—Mossotti factors 

given by Eq. (3.43), coupled with the fact that the two experimentally determined Clausius— 

Mossotti factors, displayed in Fig. 3. 1, approach each other for values of the applied field 

frequency greater than 104Hz., sets a fairly strong limitation on the numerical values of e 

For the typical values of the linear parameters given above, these conditions are reasonably 
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well realized with 10 9FV 1 ≤ ≤ 10 7FV 1 and in the subsequent calculations 

this range of values was adopted. The value of determines the low frequency behavior, 

and a series of values were selected in order to reproduce the experimental observations. The 

result of these calculations are displayed in Fig. 3.3. Examination of these plots clearly indi-

cates that if the phenomenon of anomalous dielectrophoresis is neglected, then the hysteresis 

loops observed experimentally are qualitatively represented theoretically. 

In all of the above calculations, the implemented electrical properties are the 

conventional properties, but the nonlinear parameters that are capable of reproducing the ex-

perimentally observed DEP spectra with hysteresis are characterized by &2 > 0 and 

.(2) 

Re[K] 

3 4 

= l0 F V' 

-2 "•'ORW (2) = - 3.0 x 10-6 S V 1 

6 
Log10f 

Re[KeJ 

6 
Log 10 f 

= 10-7 F V 1 

= - 2.8 x 10_6 S V 

Re[Ke] 

Re[Ke] 2 

1.5 

1 

0.5 

—0.5 

—1 = iO F V' 

—1.5 7 c2 = - 3.0 x 10-6 S V' 

—2 

1 2 3 4 

Fig. 3.3 Behavior of the two Clausius-Mossotti factors for different values of the 
second-order particle parameters. 

6 
Log10 f 

The implications of this choice of the sign of the second-order parameters on the effective 

permittivity of the particle may be seen from substitution of the definitions of the complex 

permittivities (Eq. (3.8)) into Eq. (3.27): 
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= (e() + Is(2)lE) - (a(1) - 1(y(2) PI E 
P 2 P) 6eff.,p - 

(3.46) 

Thus the introduction of the surface nonlinearities results in the real part of the effective par-

ticle permittivity being raised by a field proportional quantity while the imaginary part is 

lowered by a similar field proportional term. From a physical point of view, increasing the 

real part of the complex permittivity is equivalent to increasing the density of bound charges, 

while decreasing the imaginary part appears to an external observer as a decreased conduc-

tivity or current, which in turn reflects a decrease in the free charge carrier (ionic) density. 

All of these are the result of the action of the applied field. 

3.8 Conclusions 

The traditional cell models and their electrical characters are based on simple 

static structures. It is well known, however, that cellular components such as the lipid bilayer 

bear a closer resemblance to ordered fluids rather than to solids, as the transmembrane sur-

face proteins exhibit both lateral and rotational diffusion (72). This diffusional motion is 

believed to be the result of gradients in the chemical potential but a similar motion could also 

be induced as a direct consequence of the externally applied field or directly via the double 

layer polarizations (gradients in the electrical potential). If the time constants associated 

with such motions are comparable in magnitude to the externally applied field, then it is quite 

possible that the electrical measurements will be plagued by memory effects leading to a 

splitting of the Clausius—Mossotti factors, such as that observed in the low frequency regions 

of the DEP spectra. 

The introduction of a nonlinear boundary condition at the cell—medium inter-

face has resulted in multiple Clausius—Mo ssotti factors which explains the observed hystere-

sis loops in the DEP spectra. The theory developed here is the simplest possible extension 

of the linear theory into a nonlinear regime that allows analytical treatments to be performed. 

It is important to realize that in this analysis no perturbation techniques were carried out 

which would only have improved the linear results quantitatively without introducing any 
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new qualitative features such as multiple Clausius-Mossotti factors. In colloidal suspen-

sions where the surface area between the suspended particles and the surrounding medium 

is very large, the nonlinear interface could play a very major role in determining the physical 

properties of the suspension. 

The hysteresis can be attributed to the motion of the transmembrane proteins 

under the influence of a local electrical field which produces alterations in the nature of the 

cell surface. These changes alter the complex permittivity by terms that are linear in the field. 

In addition, it is imperative to keep in mind the fact that even infinitesimally small values 

of the proportionality constants that relate the complex permittivity to the local field, will 

result in a bifurcation of the linear Clausius-Mossotti factor. 
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Chapter 4: Micromotion 

4.1 Introduction 

In the initial investigation by Kaler et al (9), the experimental observations 

of low frequency micromotion of single DEP levitated plant protoplasts were reported along 

with the proposal of a simple model equation describing the levitation of a particle with a 

single—frequency electric field. A number of pertinent physical parameters were varied in-

cluding: (a) the size of the cell; (b) the frequency of the electric field; (c) the conductivity 

of the suspending medium; and (d) the cell surface charge. Perhaps the most interesting ob-

servation reported by the authors was the fact that the micromotion was not simple harmonic 

motion at applied electric field frequencies below 20 Hz., but possessed significant higher 

harmonic components. Their simple modelling of the dynamics could not account or explain 

the emergence of the additional harmonics seen in the FFT spectra. 

A second investigation by Barrie et al (10), extended the simple mathemati-

cal model, and with the recognition that the micromotion dynamics were nonlinear, studied 

several additional aspects of the problem. The effects of both the high and low frequency 

fields in a dual frequency levitator were introduced to the model (the actual experiments 

were performed using a dual frequency levitation system). In addition, an attempt was made 

to find the best possible linear approximation to the exact micromotion equation. This re-

vealed that the retention of certain nonautonomous terms, neglected in the initial study (9), 

were necessary in order to recover the experimentally observed low frequency drop off in 

the Bode plot (a measure of the linear response of a given system to an excitation). Finally, 

a careful Fourier expansion was performed on the equation of motion along with a stability 

analysis, revealing that all modes with frequencies higher than the frequencies of the driving 

forces were damped out in a linear regime. This lead the authors to the conjecture that the 

higher harmonics may have arisen as a consequence of the nonlinearities resulting from the 

field inhomogeneities. 
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The observation of higher harmonics is not unique to the DEP levitation ex-

periments, but has been reported by Gaigalas et al (75) in electrophoretic light—scattering 

experiments with submicron polystyrene latex spheres subject to uniform AC electric fields. 

The authors observed higher harmonic frequency components below 50 Hz. in aqueous solu-

tion. They were, however, unable to discern the physical origins of the nonlinear low fre-

quency electrophoretic response but suggested four possible mechanisms: (a) a hydrody-

namic interaction between the particle and the surrounding fluid; (b) a coupling of charge 

fluctuations in the Helmholtz layer of the particle with the external field; (c) Onsager's 

theory ( 18) of the field—induced dissociation of a weak electrolyte; and (d) the theory of Duk-

hin and co—workers (76) implying the implicit presence of nonlinear terms in the electropho-

retic velocity. Since the experimental work of Gaigalas et al (75), Robertson (77) estimated 

the mobility variance by calculating the homodyne correlation function for a general light 

scattering experiment involving an AC electrophoretic field. His analysis showed that high-

er harmonics were possible for low field frequencies, but the origins were not disclosed. 

This chapter presents the results of a theoretical investigation into physical 

origins of these higher frequency harmonics in the micromotion of DEP—levitated plant pro-

toplasts. It should be noted that this author has recently published much of the results pres-

ented here in the Journal of Colloid and Interface Science (78). 

4.2 Experimental 

Typical experimental FFT spectra, are displayed in Figs. 4.1 and 4.2, of a pro-

toplast excited by a 20 Hz., 1.0 V—rms AC signal, and a 2Hz., 1.0 V—rms AC signal, respec-

tively. It is appropriate that some details regarding the performed experiments be outlined 

in this section as the author had opportunity to perform his own experiments. The reader 

is referred to references: (45), (6) ,(9), and (79) for complete details. The experimental 

equipment and measurement technique is described in the next section; and following that, 

the isolation procedure for the protoplasts. 



60 

—10.000 

—70.000 

* 

Fundamental 

Second harmonic 

IJAJIfJ\/VJ\d.J 
0 10 20 30 40 

Frequency (Hz) 

100.00 

Fig. 4.1 Sample FFT spectrum from the centroid detector obtained for a 45 !.Lm—diameter 

protoplast excited by a 20 Hz., 1.0 V—rms AC signal (9). 
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Fig. 4.2 Sample FFT spectrum from the centroid detector obtained for a 45 gm—diameter 

protoplast excited by a 2 Hz., 1.0 V—rms AC signal (9). 
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4.2.1 Measurement and Detection of Micromotion 

The dual—frequency levitation scheme, described in Chapter 1, was made use 

of to facilitate the measurement of both the positive and negative DEP spectra of the proto-

plast cells. The levitator, shown in sectional view in Fig. 4.3, is comprised of gold—plated 

stainless steel cone—plate electrodes (Zm = 0.45 mm and 9 = 600), housed in an acrylic 

plastic chamber fitted with optical windows to facilitate viewing of levitated cells. The 

chamber was first loaded with a dilute cell suspension, then sealed and mounted upright on 

a vertical microscope stage. The optical monitoring was simultaneously performed by two 

systems: a standard video camera; and a high—resolution, high speed centroid detector. 

field lines 

) V(w2) 
protoplta 

plate electrode 

Fig. 4.3 Cross—sectional view of the levitation chamber, showing the axisymmetric 
electrodes and the dual—frequency excitation scheme used to measure the DEP 
spectra of a lone protoplast. 

8a 2 cone electrode 

Zm in 

In conjunction with the image processing hardware, the video camera monitored the location 

of the cell, passed information on the position of the cell to the digital feedback control sys-

tem, and allowed for the visual examination of the characteristics of the levitated cells. The 

microcomputer—based feedback system employs an adaptive proportional/integral (P1) con-

trol algorithm that maintains an individual protoplast at a fixed preset position on the axis. 

The high frequency voltage V((02) at fixed frequency w2, is summed with a fixed amplitude, 

variable frequency signal V(w1) and then applied to the chamber electrodes. 
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Utilization of a sensitive centroid detector (79), capable of resolving very 

small cell displacements ( 0.1 tm), enabled the very close monitoring of the micromotion 

of the levitated protoplasts. The detector output was fed to a dual—channel spectrum analyzer 

(HP 5423A) for Fourier analysis to facilitate the processing of both phase and magnitude 

information. To improve the signal—to—noise ratio of the frequency spectra, at least 10 con-

secutive sets of data were sampled, transformed, and then averaged. 

4.2.2 Protoplast Preparation 

Sterile seeds of canola (Brassica napus L. cv. Westar) were planted aseptical-

ly in sterile Magenta jars (6 seeds/jar) containing 50mL of nutrient medium, developed by 

Murashige and Skoog (80), of pH of 5.8 and solidified with 0.65% Phytagar®(Gibco BRL). 

One week after planting the seedlings were thinned to 3/jar. The plants were grown for 3-4 

weeks with a 16 hour photo—period (photon fluency rate: 100-110 Rmol m 2s _ 1) at 25 °C, 

after which the leaves and cotyledons were harvested and used for protoplast isolation. 

The leaves (ca. 2g) were cut into pieces about 2 m long and wide and placed 

into an enzymatic digestion mixture containing 0.4% Cellulase "Onazuka" RS (Yakult Hon-

sha Co., Ltd., Tokyo), 0.025% Pectolyase Y-23 (Seishin Pharmaceutical Co., Ltd., Tokyo) 

(45), 1 mg/ml CaCl2-2H20, and 8% (w/v) sorbitol; pH 5.8 in Petri dishes (about 10 mL of 

digestion mixture was used per gram of leaves). The leaf pieces were incubated on a gyrotary 

shaker (ca. 30 rpm) for 12 hours at room temperature. After incubation, the extract was fil-

tered through a 149 pm nylon mesh to remove large debris. The filtrate was then centrifuged 

at 40 x g to collect the protoplasts. The protoplast pellet was resuspended gently in auto-

claved 8% sorbitol (pH 5-6) and then washed 3 times followed by centrifugation (40 X g) 

and then resuspended. After the final wash in an 8% sorbitol medium of known conductivity 

and pH, the protoplasts were diluted with 8% sorbitol to a suitable concentration for use in 

the levitation chamber (the final suspension had a very pale green color), and kept on ice until 

use. The conductivity and pH of the dilute cell suspension were monitored by a conductivity 

meter (model #1710 Bio—Rad Laboratory, Richmond, CA) and a pH meter (Accumet, model 
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#620, Fisher Scientific, Pittsburgh, PA). 

4.3 Dynamical Equation of Study 

The micromotioh of the levitated protoplast at low frequencies may be de-

scribed by the application of Newton's 2nd law. Derivation of the protoplast dynamics for 

the various models considered may be found in the first two papers published on the phenom-

ena (9), ( 10). However, for the purpose of completeness, a complete derivation of the mi-

cromotion dynamical equation is presented here. 

4.3.1 Derivation 

Under dual frequency conditions, the net electric field acting on the levitated 

particle (protoplast or cell) consists of two components: E1(z, t) the low frequency electric 

field; and E2(z, t) the high frequency electric field; produced by the summation of two AC 

voltages at distinct frequencies co  and v2. By convention, it is assumed that co I is the test 

frequency at which all spectra are measured and that co I < w2. Since the phenomenon of 

dielectrophoresis is basically the response of the particle to the field inhomogeneity, the two 

fields possess both a spatial and a temporal dependence. In those regions of frequency w1 

where negative DEP is observed, the potential producing the high frequency component E2 

is automatically adjusted by a feedback controller in order to achieve levitation at some fixed 

point in the chamber. Mathematically, this implies that the high frequency field must incor-

porate in its amplitude a factor that would simulate the activities of the feedback controller. 

Thus the two electric fields will be described by the following expressions: 

E1(z, t) = E01 (z) cos(w 1t); E2(z, t) = 02(z, t) cos(o2t) 

02(z, t) cos(o2t) E0[1 + A01 (4.1) 

The explicit forms of the two spatially dependent functions (amplitudes) E01 (z) and E02(z) 

will be defined later. The precise form of the feedback—controlled amplitude modulation 

function f(t) will also be described later. 

As alluded to earlier, the dynamics of the cell may be described by Newton's 

second law; and thus the various forces experienced by the cell will be considered separately. 
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(1) Because of the surface charge, q, carried by the cell, it experiences electrophoretic forces 

due to both applied fields: 

Fei,i qE01 (z) cos(w1t); Fe12 = q 02(z) cos(w2t) (4.2) 

(2) The induced dipole moment on the cell arising from the two fields results in two dielec-

trophoretic forces: 

FDEP(W i) = 2a (co 1)E01 (z)Ei(z) cos2(o 1 t) 

FDEp((02) = 2a((o2)€ 02(z, t)j2(z, t) c0s2()2t) 
(4.3) 

where the prime () denotes a differentiation with respect to the variable z and the quantities 

a(co) are related to the standard linear Clausius—Mossotti factor according to the definition: 

a(o1) 21VR38m Re(Ke(Wj)} (4.4) 

(3) Under the influence of the above forces the protoplast displays periodic motion (mi-

cromotion) which is subjected to a viscous damping force arising from the surrounding me-

dium. This force is given by: 

_ ,,dz 
£ damping - dt (4.5) 

where b denotes the viscous drag coefficient which may be evaluated from Stoke's equation 

b = 6niiR with the parameter 17 being the medium viscosity. 

(4) Both gravity and buoyancy produce a force fgb defined as follows: 

fgb = - mg - - ym ig (4.6) 

where m, is the buoyant mass of the protoplast that depends upon densities y, and Ym of the 

particle and the medium respectively and upon the radius R of the particle. 

With the system forces defined above, the equation of motion can be written 

from Newton's 2nd law: 
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med2z + bdz = q E01 (z)cos(o) 1t) + 2a(w 1)E01 (z)E01 '(z)cos2(w 1t) + 

q 02(z, t) COS(0)2t) + 2a(w2) 02(z, t)€ 02 ' (z, t) COS 2((02t) - mg 

(4.7) 

where me is the effective mass of the particle that also depends upon the densities of the par-

ticle and medium according to: me = .7TR3[YP + 2 ]. This expression is a result of the 

additional induced inertia arising from the acceleration of the sphere and fluid, where the 

fluid contribution is equal to half the mass of the fluid displaced by the sphere. 

4.3.2 Approximations 

In order to make use of the above derived dynamical equation (Eq. (4.7)), cer-

tain assumptions and approximations need to be implemented. If it is assumed that the fre-

quency w2 is very high then Eq. (4.7) may be averaged over the period of oscillation 

of this field and all time dependent quantities except COS(0) 2t) will be assumed to 
0)2 

remain constant during this period. Applying this time average to Eq. (4.7) gives: 

d 2Z 
M  + b4d = q E01(z)cos(w 1t) + 2a(w 1)E01(z)E01 '(z)cos2(w 1t) + 

< F P(w) > (z) - mg 

(4.8) 

where: 

< F((0) > (z) 2a((02) o2(z) o2 (z)J COS 2((02t)dt = a(w 2)@02(z) 02'(z) 

In a typical dielectrophoresis experiment, the particle or protoplast is lifted 

and maintained at an equilibrium position z0. As the oscillatory micromotion will occur 

about the equilibrium position it will be convenient to introduce the following new variable 

ô(t) in the dynamical equation: 

z(t) = z0 + ó(t) (4.9) 

Substituting Eq. (4.9) into Eq. (4.8), yields: 
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d26 bdô = qE01 (z0 + ô)cos( 1t) + 2a(w1)E01 (z0 + ô)E01 '(z0 + ô)c0s2(w 1t) + 
lned2 + •dt 

<FDEp(w2) > (z0 + (5) - m1g 

(4.10) 

Now Eq. (4.10) is the foundation governing equation that was studied in or-

der to understand the dynamics and characteristics of the micromotion. It is clear from ex-

amination of Eq. (4.10) that it is a very complicated nonlinear equation for which closed 

form analytical solutions are not available. Therefore, approximations were required in or-

der to elucidate the dynamics. 

The spatial inhomogeneity of the electric field was modelled through simply 

expanding the spatial dependent amplitudes of both the high and low frequency fields as Tay-

lor series in z about the point z = z0, and therefore: 

E01 (z0 + 6) = + /l.6 + A262 + )t.36 +"' (4.11) 

where = 1dE01 (z0) 
T! dz 

and: E01 (z0 + â)E01 1(z0 + 6) = Yo + V16 + Y26 + Y36 +" (4.12) 

where: = 0a1, Yi = O2 + 'lip V2 = 3AC4 + 3AIA2, etc. 

E02(z0 + 6) = 1a0 +u6 + 1226 +/236 +" 

1 d'1E02(z0) 
where : --   ii! dz 

0 

and with f(t) = - G6 (t) 

<FDEp((02) > (z0 + 6) = 2a(w2){yo + 716 + 7262 + 57363 + } 4.13) 

where: 

7o = oui' 7i = (2uou2 + - 2uouiG), y2 = (312 1122 + 31u3u0 - 4G120U2 

- 2G12 + G21u0u1) etc. 

Substitution of Eqs. (4.11), (4.12), and (4.13) into Eq. (4.10) gives the highly nonlinear dy-
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namical micromotion equation: 

me4 + b qQto + , â + A.262 + i3o3)cos(w It) + 2a(w 1) 
dt 

(Yo + 1 â + Y262,+ 7363)c0s2(w1t) + 2a(602) (V() + V,6 + y26 + )136) +". 

(4.14) 

4.3.3 Dimensionless Form 

For the purposes of studying the micromotion equation (Eq. (4.14)) numeri-

cally, it was cast into the following dimensionless form: 

d26 + dO + kO + k'62 + k"03 = G0 + (G1 + G30 + G502 + G703) cos(th 1t + 

( - -2 G2 + G46 + G66 + G86 ) cos(2& i 

(4.15) 

where the variable transformation was accomplished through the following variable defini-

tions: 

e Zm in  *, &1 c)1T1, T1 - m --, h 0 (4.16)' 

Zm in denoting the electrode spacing and ° a the asymptotic angle of the cone electrode; and 

the following parameter definitions: 

T2 
k — [a'(ô 1)y1 + 

Me 

hT 
me k' - [a'( 1)y2 + 2a (CO 

h 2 T 2 

C  IaWOOY3 + 2a(w2)y3]_me' 

T2 
- {a'(ái i)yo + 2a(w2)70 — mg]ffjL; G1 hme G3 = me 

A2qTh t3qTh2 a'(th1)y0T2 
G5 me ; G7  me G2 hme 1; G4 = Me 

a'(d 1)y2Th a'(ã 1)y3Th2 
G 6 Me G8= me (4.17) 
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where: a'(@ 1) = a CO _) a(w 1) 

Various forms or truncations of Eq. (4.15) have been examined in the past. The zero—order 

model, (9), is Eq. (4.15) with = k" = Go = G3 = G4= C5 = G6 = G7 = C8 =0; 

thefirst—orderniodel(10) is the case where k' = k" = G0 = C5 = G6 = C7 = G8 = 0; 

and the quadratic model (10), the case where k' = k" = C0 = C7 = C8 = 0. Investiga-

tion by the authors into the dynamics of all three of these models showed only simple har-

monic motion, i.e. motion containing only a single frequency component (the frequency of 

the electrophoretic driver w1). Because it was the purpose of this investigation to determine 

the physical origins of the experimentally observed higher harmonics in the very low fre-

quency regime, and believing that they were the result of the inhomogeneity of the electric 

field, it was decided to study the equation where the nonlinear terms of the left hand side of 

Eq. (4.15) were retained, and the force constants of the two drivers were assumed to be inde-

pendent of the displacement. Thus, the nonlinear second order differential equation studied 

in the initial investigation was: 

d2Ô dO - kO + kó + k"53 = G1cos(di 1 + G2cos(2ã 1 ('4.18) 
de dt 

4.3.4 Comparison with Duffing Equation 

It is not surprising that there exists no analytical solutions of Eq. (4.18), since 

it is a highly nonlinear nonautonomous differential equation; and thus one is obliged to study 

the equation numerically. However, prior to seeking for numerical solutions it is useful to 

make some qualitative observations. Casting Eq. (4.18) into the form of an autonomous vec-

tor field: 
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d6 1 - - 
7 62 

= - 0 1 - - + G1cos(& 163) + G2cos(2163) - 62 

do3 

di 
(4.19) 

makes it clear that the system is defined on the toroidal phase space R2 X S1 

(S1 = ]F/T; T = 2.t/th 1). It is well known that for a system with such a topology, there 

exist parameter spaces where the dynamics are nonlinear and even deterministically chaotic. 

A very well known and studied R2 x 51 system with rich and varied dynamics is the Duffing 

oscillator (81) of the form (82), (83): 

=ycos(wt) (4.20) 

where the equation models the sinusoidally forced, aerodynamically damped, vibrations of 

a cantilever beam subjected to a nonuniform magnetic field. This nonlinear system has been 

studied fairly extensively using both analytical (84), (85) and numerical (86), (87) tech-

niques; and these investigations have revealed regimes in the parameter space where the dy-

namics are simple (period one motion), more complicated (higher periodicity), and chaotic 

(motion with essentially an infinite period). Comparison of Eq. (4.18) with Eq. (4.20) shows 

important qualitative similarities and differences. Although both systems are damped, the 

Duffing equation allows the flexibility in the sign of the damping (positive or negative) and 

the magnitude of the damping (the rich dynamics, though, having been observed for 

0 < 0 < 1). The micromotion equation does not contain this flexibility as the transforma-

tion to dimensionless form shows that coefficients of the inertial and damping terms are 

equal. Both of the systems are sinusoidally driven, though Eq. (4.18) is doubly driven; the 

second driver being at a frequency commensurate with the frequency of the first driver. The 

internal force terms of the two systems are similar, both containing a cubic term and a linear 

term. The micro—motion equation, however, also contains a quadratic force contribution, 
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and in addition possesses 'spring constants' (k, k', k") which allow variability in the sign 

and magnitude of all the internal force terms. Therefore, the significance of all terms are 

realized in their numerical evaluation. 

4.4 Numerical Investigations 

Numerical integration of Eq. (4.18) requires the evaluation of the five fre-

quency dependent parameters: k, k1, k", G1, & G2; and the spatial and temporal scaling 

factors: hand T1, respectively. For the purpose of selecting a set of particle specific parame-

ters needed in the solution of the model equation, the representative experimentally mea-

sured Canola protoplast DEP spectrum, shown in Fig. 4.4, was selected. This particular 

spectrum has the particle specific parameters: R = 26 X 10-6M; Yp 1.1 x k-gm- 3; 

and me = 1.2 x 10 10kg; the medium specific parameters: Ym = 1.0 x 103kgm 3; 

17 = 1.0 x 10 3kgm's'; and b = 4.9 x 10 7kgs 1; and 6m = 7.083 X 10 10 

Fm 1; and the experimental system parameters: 0a = 600; Zj = 4.25 x 10 4m; and 

z0 = 3.25 X 10 4m. 

Fig. 4.4 Experimentally measured Canola protoplast DEP spectrum. 

As detailed in Eqs. (4.11) - (4.13) and (4.17), the evaluation of the "spring constants" 
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k, k', and k" requires an analytical expression for the induced electric fields (high and low 

frequency) according to the electrode geometry. The general expression for cone—plate elec-

trode configurations as derived by Jones and Kraybill (44) was adopted for the purposes of 

these calculations: 

E01,2(z) - 

- 2V01,2 

h(1 (Z)2) mEl +COS(Ba/2)l 
- - 1 - cos(Oa/2)j 

'421) 

where V01,2 denotes the rms voltage of the low and high frequency fields, respectively. The 

value of Vol was held constant at 1.0 V, while V02 fluctuated between approximately 2.0 

V and 0.2 V.. The evaluation of the force constant of the electrophoretic driver, G1, requires, 

as indicated in Eq. (4.17), an estimate of the surface charge. The "true" unperturbed surface 

charge of a biological membrane is a difficult physical quantity to measure, largely because 

the probing alters the charge. Obi et al (88) have estimated the surface charge density of 

barley mesophyll protoplasts by electrophoretic studies to be 

- (3.92 ± 0.05) x 10 3Cm 2, and in the extensive review article by Cevc (64) the range 

of net surface charge density of cell membranes is estimated to lie within the range of 

- (0.02 - 0.2)Cm 2• Since the surface charge on the membrane is not well characterized, 

the following range for the total surface charge was selected: 

- 10 13C ≤ q ≤ - 10'5C. 

Previous investigations ((9), ( 10)) into the dynamics of the micromotion de-

termined that the maximum amplitude, 161, in the low frequency (<100 Hz.) region of the 

spectrum, increased as the driving frequency ((o i) of the test field was decreased. Therefore, 

to assess the sensitivity of the model equation to changes in the frequency to 1,Eq. (4.18) was 

numerically integrated using a Runge—Kutta algorithm of the 6th order for the following 

three test frequencies: 10, 50, and 100 Hz. The calculated frequency dependent and charge 

dependent parameters for the experimental DEP spectrum of Fig. 4.4 are presented in Table 
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4.1. 

Table 4.1 Micromotion Equation Parameters 

Frequency k k' k" 

10 - 3.63 x 10 - 1.75 x 10 -4 
- 6.68 x iO 4 1.8 x 10 -6 

50 - 3.65 x i0 - 1.60 x i0 - 5.04 x i0 6.3 x 10 

100 - 3.66 x 10 - 1.53 x i0 - 4.21 x i0 3.7 x 10 -8 

Charge(C) 

- 10 -14 2.69 x 10 

- 5 x 10 -14 1.35 x 10-4 

- 10 -13 2.69 x 10-4 

4.4.1 Initial Numerical Results 

The results of the numerical integration of Eq. (4.18) with the parameters of 

Table 4.1 are presented in the form of phase plane portraits in Fig. 4.5, where the initial 

conditions are kept the same for all calculations and the units of both position and velocity 

are dimensionless. Displayed in Fig. 4.5 are three sets of portraits computed at distinct fre-

quencies: (a) at 100 Hz.; (b) at 50 Hz.; and (c) at 10 Hz. At each of these three frequencies, 

separately computed phase plane portraits were generated at distinct estimates for the total 

surface charge, and labelled (i), (ii), and (iii); where the order is according to increasing sur-

face charge. All portraits labelled (1) were computed from an assumed total surface charge 

of q = - 10 14 C; the portraits labelled (ii), q = - 5 x 10C; and the portraits la-

belled (iii), q = - 10_ 15 C. 

To obtain a measure of the magnitude of the variables plotted in the phase 

portraits, the Eqs. (4.16) may be used to convert the dimensionless quantities to real mea-

sured parameters. For example, an instantaneous point on the phase portrait of Fig. 4.5 of 

dj = 1.2 x 10 -5 and 3 = 0.001 corresponds to a realized particle velocity of 
dt-

2.45 x 10 5m 1 and a displacement of 0.49 x 10 6m. It is clear from the results that 
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(c) 

6 

(b) 

Fig. 4.5 Mathematically generated phase plane portraits. 

the micromotion predicted in all parameter spaces investigated, is simple periodic motion; 

the period being dictated by the low frequency driver and the motion possessing only one 

frequency component. Comparison of the generated results for the different frequencies cor-

rectly predicts the experimentally observed trend that the amplitude of the micromotion is 

inversely proportional to the driving frequency. In addition, comparison of the maximum 

amplitude of the motion, at a particular frequency, for different estimates of the surface 

charge, shows the expected electrophoretic result that charge is directly proportional to am-

plitude. It is therefore clear that these two agreements with experimental observations pro-

vide a means of estimating the surface charge of a given particle through the fitting of numer-

ically generated maximum displacements with experimentally measured maximum 

displacements. However, the micromotion model as represented in Eq. (4.18) fails to predict 

any higher harmonic components in the frequency of the oscillations. 

When comparison is made of the magnitude of the various parameters it is 

evident that the "spring" constants are relatively insignificant and that the system is actually 
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heavily damped. This conclusion may be substantiated by setting the "spring" constants to 

zero and then numerically solving the resulting differential equation. The phase plane por-

trait solutions of Eq. (4.18) with k = = C = 0, for the range of surface charge values 

at a frequency of 50Hz, is plotted in Fig. 4.6. 

do 
di 

a 

Fig. 4.6 Phase plane portrait solution from Eq. (4.18) with spring constants set to 0. 

Comparison of the phase portraits of Fig. 4.6 with those of Fig. 4.5b, reveal that the "spring" 

constants make no realizable contribution to the dynamics. This, of course, implies that the 

inhomogeneity of the electric field is not sufficiently nonlinear to cause an observable dielec-

trophoretic contribution to the particle dynamics. This is not to imply, of course, that the par-

ticles equilibrium position is not the result of the field inhomogeneity, but rather that the per-

turbations or micromotion about the equilibrium position is not effected by the nonlinearity 

in the electric field. Therefore, from the modelling thus far it can be concluded that the high-

er harmonics are not the result of the inhomogeneity in the electric field. Furthermore, even 

the presence of the dielectrophoretic driver, as realized in G2, commensurate in frequency 

with the electrophoretic driver, fails to produce the second harmonic for experimentally real-

ized values. This seems to imply that the experimentally observed second harmonic is not 

dielectrophoretic in origin. 
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4.5 Additional Modelling 

The attempt to model the micromotion dynamics for the purposes of obtain-

ing insight in the origin of the higher frequency harmonics was unsuccessful through the se-

cond order differential equation, Eq. (4.18). Hence, additional modelling was pursued. 

4.5.1 Nonlinear Hydrodynamic Interactions 

Having ruled out the cause of the higher harmonics being the nonuniformity 

in the field, attention was turned to the possibility of the nonlinear response being the result 

of hydrodynamic interactions as suggested by the preliminary analysis of Gaigalas et al (75). 

The existing modelling of viscous drag is incorporated into Eq. (4.18) by means of Stoke's 

equation, and therefore a straightforward extension to a model with quadratic velocity con-

tributions is through Oseen's formula (89): 

F = 6ri7R[ +  dt 817 ()2] dt 

Incorporating Eq. (4.22) into the micromotion (Eq. (4.18)) gives: 

(4.22) 

2 

d2Ô + d6 + B(4&\ + 0 + k'52 + k" 3 = G1cos(ãi 1) + G2cos(2d) (4.23) 
di) 

where the parameter B is dimensionless and is defined by: B = 3hRym Evaluation of the 

parameter B to account for possible effects of convective flow for the experimental parame-

ters given above results in B = 21.9. Examination of any of the phase space portraits in Fig. 

4.5 indicates that the maximum value of to be approximately 0.00027. Therefore, it is 
dt-

clear that the parameter B, modelling nonlinear hydrodynamic interactions through Oseen's 

formula, will make no observable contribution to the micromotion dynamics. Arbitrarily 

assigning significantly larger numerical values to B causes instability in the oscillations 

about the equilibrium point. 
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4.5.2 Field—Dependent Surface Charge Model 

Ruling out the significance of hydrodynamic interactions, it seemed logical 

to pursue the possible electric field induced effects on the cell membrane as a mechanism 

responsible for inducing the higher frequency harmonics. As was mentioned in the introduc-

tory section of this chapter, this possible mechanism was suggested by Gaigalas eta! based 

on Onsager's theory. Rather than following the methodology of Onsager, a novel model, 

based in part on the work of Chiabrera et al (90), was constructed to justify the possible field 

dependence of the surface charge density. 

The proposed model assumes that the charge that appears on the surface of 

a biological cell is the result of the dissociation of weak acids in the protein molecules that 

lie in the membrane (64), and thus maybe represented in a most elementary fashion as: 

HA ___ A+H 
k2 

and therefore the equilibrium constant maybe simply expressed as: 

K_ 11 _& 
[HAJ k2 

(4.24) 

(4.25) 

where k1 and k2 are the kinetic rate constants for the forward and reverse reactions. To deter-

mine the effect of the applied electric field on the rate constant k1, construction is made of 

a hypothetical biological cell with surface charge dynamics given by Fig. 4.7. Any cation 

whose centre lies within the shell of thickness /3 is considered to be in the bound state HA. 

The rate constant k1 is, of course, a unimolecular rate constant and therefore is the inverse 

of the time required for the centre of the cation to traverse the distance P. This distance /3 

is really a quantum mechanical quantity as it represents the distance where the bond is 

'stretched' to the point of 'breaking'. It should not be confused with the Bjerrum length 

which is a quantity that is governed strictly by electrostatics (9 1) and concerns ionic associa-

tion; and thus would be much greater in magnitude than P. Therefore, k1 may be 
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Z 

E1(t) 

x 

Fig. 4.7 Diagram geometry for electric field frequency dependent surface charge model. 

evaluated by determining the traverse time of the cation. 

With the assumption that the electric field has a noticeable effect on the sur-

face chemistry, connection is made through transforming the problem into a dynamical one. 

In order to make progress in this direction, only the radial component of the cation velocity 

designated v is considered. The location of the cation with respect to the origin of the coordi-

nate frame at the centre of the cell is denoted by the vector i. If the mass of the cation is 

M, then the equation of motion according to Newton's second law is simply: 

MLV =F (4.26) 

where F is the sum of the radial components of all the forces that act on the cation. Now the 

components of the net radial force are: [ 1] the frictional force: 

F1= — a1v (4.27) 

where af frictional coefficient; [2] the force due to an external electric field: 

F,.nai = qE1 Cos 19 (4.28) 

where q + is the cationic charge; [3] the force due to the induced polarization of the cell; 
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Finduced = 2q Re[K(w 1)}R3  Cos O 73 

[4] the Coulombic or electrostatic force due to surface charge of the cell: 

- qpq+ - q+p[A] 
Fei 8m  m1 .2 - 6nj .2 

(4.29) 

(4.30) 

where qp is the charge due to the surface proteins and thus may be related to [A ] through 

a constant p; and [5] a random force due to the solvent denoted as A '(t). Substituting Eqs. 

(4.27) - (4.30), and incorporating the random force into Eq. (4.26) gives the stochastic or 

Langevin equation for the dynamics of the cation: 

M LV = - aN + qE1 cos O + 2qRe{K(w 1)}RcosO + qp[, j + A'(t) 
dt 73 Sm! 2 

('431) 

This equation may be written in a more compact form: 

dy 
Tt + a0v = a1c05w 1t + a2[A] + A(t) 

af q E01 cos 81 + 2 Re[K(w 1)}R31 = b cos 0, 
where: a0 a M r3 j a2 - q+p 

- m 

(4.32) 

and 

A(t) = A(t) Now Eq. (4.32) was written in this form to explicitly show the time depen-

dence of the various terms; thus the constants a0, a1,and a2 are assumed to be independent 

of t. In reality, however, the variable r depends upon t; however, r may be treated as a 

constant over this extremely short distance /3 (essentially the H—A bond distance), in which 

the value of r does not change appreciably. In addition, it has been assumed that the Clau-

sius—Mossotti factor remains essentially constant within /3. 

In order to make progress with Eq. (4.32) the stochastic force, A(t), is initially 

neglected and thus the corresponding dynamical equation in the radial velocity variable v0(t) 

that is wholly deterministic is: 

dv0 
-- + a0v a1 cos w1t + a2[Adt  (4.33) 
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which upon integrating with the initial condition v0(t = 0) = 0, gives: 

a1(w 1sinw 1t + a0c0sw 1t) + a2A] + (a2WA -] 
+ a(a2A] + a1))eaot 

VOW = 2 + a a0 ao(w + a) 

(4.34) 

Thus, the cation velocity may be considered to have two components: 

VW = v0(t) + VR(t) (4.35) 

where VR(t) is the random force velocity contribution. The corresponding displacement r(t) 

can be evaluated by integrating Eq. (4.35) over t: 

r(t) = J v(t')dt' = J v0(t')dt' + J v(t')dt' 

= ai(aosinw it - wicoswit) + a2[Aj(aot 1) + 

wi(w+a) a 

(a2[Aiw + a(a2[Aj + ai))eot 
+ J V(t)dt (4.36) 

a(co + 4) 0 

If the system is assumed to be heavily damped then the second last term may be dropped: 

= a1(a0sinw 1t - w1c05(olt) + a2{Aj(aot - i) + j vR(t)dt 

W,(W2 + a2) a0 
1 0 0 

= T1 + T2 + T3 (4.37) 

Taking the ensemble average of the square of Eq. (4.37) gives: 

<r2(t)>=<T> +< T> +< T> + 2<T1T2 > + 2<T1T3 > + 

2<T2T3 > 

= T + + < + 2T1T2 (438) 

where the averaging of a purely stochastic term with a purely deterministic term is taken to 

be 0, and the ensemble average of the product of any two deterministic terms is simply the 
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product of the two terms. Now the ensemble averaging performed in Eq. (4.38) are thermal 

averages but due to the angular dependence (0), an angular average must also be performed. 

Thus Eq. (4.38) becomes: 

< < r(t) > > an  = < T 2 > ang + < T > ang 

where the angular average is defined to be: 

27t ;r 

J do J dO sin  Q(O, 

< Q > ang 

IdJdO sin O 
0 0 

+ < < T > > ang 

23r 

= d4 J dO sin G Q(O,q5) 
2r 

+ 2 < T1T2 > ang 

(4.39) 

(4.40) 

Applying the definition of Eq. (4.40) to Eq. (4.39) gives: 

b2(a + a[A ]2(ao 2 10 sin o 1 t - w1 cos COw1t) - t - i) 
+ < r2(t) > -   

a2 0 

Jdt' J dt" < VR(t)VR(t) > th 

0 0 
(4.41) 

With introduction of a diffusion coefficient for the cation, the third term of Eq. (4.41) may 

be set to: 

Jdt' J dt" < vR(t')vR(t") > th = 6Dt (4.42) 

0 0 

and therefore Eq. (4.41) becomes: 

1b2(aosinwit - w1 COS w1 2 t) +  2  + 6Dt (4.43) a2[Aj t - i) 2 
< r2(t) > -   

3 (02(602 + a )2 ao 

Now if the time dependent radial distance, r(t = t1), be set equal to j3, the thickness of the 
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region over which the activated complex must pass before allowing the cation to escape, then 

the time t1 will be the reciprocal of the rate constant for the forward reaction of the dissoci-

ation of the surface protein (Eq. (4.24)). Furthermore, if it is assumed that w1 is very small 

(the low frequency region) then the oscillating functions are the result of the oscillations in 

the applied electric field which possesses a large period, and hence the time variation of these 

oscillating functions will be much slower than the cationic motion. Thus the dynamics of 

the cation may be decoupled from the oscillation of the electric field by selectively substitut-

ing for t1. With these substitutions and assumptions, Eq. (4.43) becomes: 

2( a0 2 
b2(a05inw1t - w1c05w1t) a{Aj - 1)2 
 +  

- 2 
W2(w2 + a2 0 

Before solving for k1 in Eq. (4.44), the following compact notation is introduced: 

xl 
a0b —co 1b 

X2  w1(w 1 + ao) + ao) 

- tan — 1(— a0\ wi ) U cos(w it + 

_2 X 3 = 
0 

and thus with these definitions Eq. (4.44) may concisely be written: 

2 

= U2 + [A_]2x3(2_ i + Q ) Ic1 

Solving for k1 in Eq. (4.25) and substituting the result into Eq. (4.46) gives: 

U2 + x3(C1ao - [A]) 2 + 6[ADC—] 

- [HA]  
Solving for [A ] in Eq. (4.47) gives a real root of the form: where C1 - {H]k2 

\ 
[A] =(2aoCi 2 c5 + c2 ) 

where: 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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C2 /C3 + C4 C3 VC4 + 4X3C5 C5 3(u2 _/32)_ aox C 

U  32 + aoC1C6) + 16C - 1624C1D C6 a0C1x3 C4 18x3C6(  

As was alluded to previously, the surface charge of the particle, q, is directly related to the 

concentration of the anions, [A ]. Therefore, the result derived above (Eq. (4.48)) shows 

that the surface charge is a nonlinear function of the electric field frequency. To see this, Eq. 

(4.48) may be expanded as a Taylor series in u; the exact details which are omitted here be-

cause of their messiness and the fact that the details offer nothing to the final result. Howev-

er, computation of the power series in u from Eq. (4.48) reveals, not surprisingly, that only 

the odd powers in cos(o) 1t) are non—zero. Therefore, the Taylor expansion of the correspond-

ing surface charge may be written in the general form: 

q=qp =q0 +q1u+q3U3 + 

= q0 + q w cos( 1t) + q3 c0s3((0 1t) +" . (4.49) 

From this 'remodelling' of the surface, the external force constant, G1, in the micromotion 

equation will become a function of the low frequency electric field according to: 

G1 = G10 + G11 cos(ã) + G13 COS 3(ô 1?) +" (450) 

and therefore the electrophoretic driver becomes: 

G1cos(á3 1) = G10 cos(& 1t) + G11 cos2( 1 + G12 cos4(& 1t) + 

G10 cos(th 1) + G1 cos(2th 17) + G'i2cos(4ái l) + (4.51) 

4.6 Final Numerical Results 

The previous numerical results, §4.4.1, have shown that the "spring" 

constants k, k', and k" make no contribution to the micro motion dynamics. In addition 

the significance of nonlinear hydrodynamic interactions through Oseen's formula have been 

ruled out. Therefore, with incorporation of the electric field frequency dependent surface 

charge modelling the micromotion equation becomes: 
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d26 + = G10 cos(& 1 + G 1cos(2th 1t + G2cos(4 1 +" + G2cos(2 1t 

(4.52) 

Unlike for Eq. (4.18), analytic solutions exist for the various truncations of Eq. (4.52). Con-

sidering only electrophoretic force constants to G 1, Eq. (4.52) may be integrated to give 

the solution: 

= ClO 1 + sin(th 11) - cos(& 11)] + G 1 + G2 f1 + sin(2& 1) - cos(2th 11)] 

(4.53) 

where the requirement that the displacement remain finite has been invoked along with the 

initial condition that 6(T = 0) = 0. As was alluded to previously, the surface charge model 

has introduced parameters into the force constant (G10, Gil, G2, etc.) of the electropho-

retic driver to which little or no experimental information exists as to the estimation of their 

magnitude. Thus, one is obliged to estimate the value of these parameters through fitting 

to the experimentally obtained spectral data. For the purpose here of modelling the higher 

harmonics observed in the FFT spectra, selection for testing of Eq. (4.52) and thereby the 

frequency dependent surface charge model, an electric field frequency of 20 Hz. and a sur-

face charge of - 10- 14 were chosen. The numerical value of G10 was selected to corre-

spond to the previously calculated magnitude of G1 (see Table 1), and then the value of G 

was estimated to be equal to the value of G10. As no additional harmonics were observed 

at an electric field frequency of 20 Hz., the higher components G12, G13, etc. have been set 

to zero. The phase plane portrait solution of Eq. (4.52), for the stated parameters, is pres-

ented in Fig. 4.8. In addition , a Fourier transform of the numerical solution is displayed in 

Fig. 4.9. Examination of the phase portrait indicates, not surprisingly, that the introduction 

of a "second electrophoretic driver", G1, has increased the maximum displacements slight-

ly and changed the overall character of the oscillations from simple harmonic motion to mo-

tion possessing an additional frequency component with the same periodicity. 
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do 
di 

a 

Fig. 4.8 Phase plane portrait from numerical solution of Eq. (4.52) @ 20 Hz.; 
with G11 = G10 = 2.69 X i0. 

The Fourier transform clearly shows the appearance of a significant second harmonic similar 

to that observed experimentally (compare to Fig. 4.1). This numerical result is clearly sub-

stantiated by examination of the analytical solution of Eq. (4.53) where the Fourier coeffi-

cients can virtually be seen by simple inspection. 

By including higher components in the électrophoretic driver, i.e. 

G 2, G3, etc., it is clear that additional harmonics would appear and that these harmonics 

would be even multiples of the driver frequency (i.e. 4ä 1, 6th 1, etc.) consistent with exper-

imental observations in the very low frequency region (< 10 Hz.). To prove this Eq. (4.53) 

was solved at 10 Hz. with G2 = 1/2 x G 1 and G1 = G10 = 2.69 x 10. The Fouri-

er transform of the solution is displayed in Fig. 4.10. 

4.7 Conclusions 

Various extensions of the originally proposed micromotion equation have 

been carefully studied with the purpose of determining the physical origins of the observed 

higher harmonics in the low frequency region of the DEP spectrum. The original conjecture, 
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Fig. 4.9 Fourier transform of the displacement for the numerical solution displayed in 

Fig. 4.8, 

reported previously ( 10), that these higher harmonics were probably the result of the intrinsic 

dielectrophoretic response resulting from the external inhomogeneous electric field, has 

been proven incorrect and that even the second harmonic at the frequency of the dielectro-

phoretic force can not be obtained from the field inhomogeneities. Furthermore, if the mo-

tion was primarily dielectrophoretic in origin the dominant frequency would be twice the 

applied frequency; both the experiment and the model indicate that the dominant frequency 

is the electric field frequency. The proposal, by others (75), that the higher harmonics could 

be the result of a nonlinear hydrodynamic interaction between the particle and the surround-

ing medium, if modelled through Oseen's formula has been shown to be insignificant in the 

particle dynamics. Having exhausted these plausible explanations as the source of this non-

linear response, an investigation was launched into the possible electric field frequency ef-

fects on the surface charge of the particle; a phenomena originally suggested by Onsager 

(18). The implementation of the derived electric field frequency dependent surface charge 

model into the micromotion equation, has resulted in good agreement with experimental ob-

servations of this nonlinear response; attesting to this being the source of the phenomena. 

The modelling predicts the higher harmonics to be only even multiples of the fundamental 
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Fig. 4.10 Fourier transform of the displacement from the solution of Eq. (4.53) 
@ 10 Hz., with G12 = 1/2 x G11 and G11 = G10 = 2.69 X i0. 

frequency; similar to experimental observations. Numerically generated phase portraits pro-

vide a means of estimating the surface charge through comparison of predicted maximum 

displacement in oscillation to that seen in experiments. Thus strong evidence has been pro-

vided to show that the dissociation constant of the carboxylic groups within the membrane, 

and thereby the surface charge, is effected by the application of an external AC electric field. 
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Chapter 5: The Melnikov Method 

5.1 Introduction 

The micromotion equation derived initially (i.e. Eq. (4.18)) in the investiga-

tion of the nonlinear dynamics displayed by a levitated protoplast in the low frequency do-

main (< 20 Hz.), was compared in § 4.3.4 with the well studied Duffing oscillator (81) —(87). 

This insightful comparison was made because the two systems are topologically equivalent; 

i.e. the dynamics of both systems occur on an R2 x S1 toroidal phase space. It was also 

stated that for certain regions in the parameter space, the dynamics of such systems may be 

exceedingly complex; that is, highly nonlinear and possibly even deterministically chaotic. 

During the initial study of the micromotion dynamics, attempts were made to analytically 

determine regimes where the dynamics became nonlinear. This was deemed important be-

cause of the experimental observation that the onset of nonlinear dynamics in the micromo-

tion of a levitated protoplast occurred only as the frequency of the applied electric field was 

reduced below 50 Hz. 

An analytical method for analyzing the dynamics or motion near separatrices 

was originally developed by Melnikov (92) and applied to the study of perturbed dynamical 

systems by Morosov (93), (94), McLaughlin (95), and Holmes (84), (96). As both Morosov 

and Holmes have studied Duffing's equation using this technique, the Melnikov method was 

deemed suitable for application to the micromotion system. 

In this chapter the results of applying the Melnikov method to determine 

conditions where the dynamics of the micromotion equation become chaotic, is presented. 

Prior to deriving and applying the Melnikov method to the micromotion system, a number 

of fundamental definitions are presented, followed by a derivation of the method. The reader 

is referred to Wiggins (97) for additional details. 

5.2 Definitions 

The study of nonlinear dynamics involves a number of important ideas, con-
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cepts, definitions, and jargon; the fundamentals as required in the Melnikov method, of 

which, are presented in this section. 

5.2.1 The Vector Field 

The form of the vector field or ordinary differential equation derived for the 

purposes of studying the micromotion dynamics has already been presented, Eq. (4.19). In 

general, a nonautonomous vector field describing a dynamical system may be expressed in 

the following form: 

=f(x,t;1u) (5.1) 

where the overdot means ".". For the 1E12 X S1 systems considered here: x E U C 
dt 

t E 51 = 1F 1/T; and It E V C R". In addition, T is the period (fixed) of the vector field, 

U and V are open sets in R2 and R" respectively, and 4u the parameters. In the representation 

given in Eq. (5. 1), one notes the explicit time—dependence of the vector field (hence, nonau-

tonomous) and the parameter dependence of the system. 

5.2.2 Phase Space 

The space of dependent variables of the vector field is called the phase space. 

5.2.3 Initial Condition(s) 

With x(t) denoting a solution of Eq. (5. 1), an initial condition for the system 

is denoted: 

(5.2) 

where to is some initial time chosen to begin observation of the system, and x0 the vector 

field at this time. 

5.2.4 Solution(s) 

The solution of the vector field may be represented as follows: 

x(t, to, x; 1u) 

where the explicit dependence of the solution on both the initial time, to, and the vector field 

at the initial time is implied. The solution is often referred to as a trajectory or phase curve 
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through the point x0 at t = to. 

5.2.5 Integral Curve 

The graph of x(t, to, x) over t is referred to as an integral curve. More pre-

cisely, graph x(t, to, x) = {(x, t) E R X S1 I x = x(t, to, x0), t E i] where I is the time 

interval of existence. 

5.2.6 Orbit 

If x0 is a point in the phase space of Eq. (5. 1), then the orbit through x0, de-

noted 0(x0), is the set of points in phase space that lie on a trajectory passing through x0. 

More precisely, for x0 C U C R2, the orbit through x0 is given by 

0(x0) = (x C R I x = x(t, to, x0), t c z}. 

5.2.6.1 Homoclinic Orbit 

An orbit that connects a hyperbolic fixed point (see §5.2.11.1) unto itself. 

It should be noted that a homoclinic orbit is sometimes called a separatrix because it is the 

boundary between two distinctly different types of motion. 

5.2.6.2 Heteroclinic Orbit 

An orbit that connects two distinct hyperbolic fixed points (see §5.2.11.1). 

5.2.7 Manifold 

The concept of a manifold in its full generality is vast and deep. For the pur-

poses here, a manifold, roughly speaking, is a set (or more specifically, a solution set of the 

vector field) which locally has the structure of Euclidean space; and thus for the vector field 

defined in Eq. (5. 1), the manifold is either a linear vector subspace of R or a surface em-

bedded in R which can be locally represented as a graph (justified by the implicit function 

theorem). 

5.2.8 Equilibrium Solution 

Consider the autonomous vector field: 
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x x E (5.3) 

An equilibrium solution of the autonomous vector field is a point V E )R2 such that 

f() = 0; thus Yis a solution which does not change in time. Other terms used synonymous-

ly with equilibrium solution are:fixed point, stationary point, rest point, singularity, critical 

point, or steady state. 

5.2.9 Stability (of the fixed point) 

Once a solution of Eq. (5.3) has been found, the stability of the solution is 

determined. Roughly speaking, the solution '(t) is stable if solutions starting "close" to (t) 

at a given time remain close to (t) for all later times. Formally, the stability of a solution 

is classified as Liapunov stable or asymptotically stable according to the following defini-

tions: (a) (t) is said to beLiapunov stable if, given 8 > 0, there exists a 6 = 6(s) > 0 such 

that, for any other solution, y(t), of Eq. (5.3) satisfying (t0) - y(t0)I < 6, then 

I(t) - y(t)l < e for t > to, to E IR; (b) (t) is said to be asymptotically stable if it is Lia-

punov stable and if there exists a constant b > 0 such that, if I(t0) - y(t0)I < b, then 

urn l(t) - y(t) = 0. 

5.2.10 Determination of Stability: Linearization 

The stability of a solution (t) is determined through understanding the na-

ture of solutions near (t). Let 

X = x(t) + y (5.4) 

Substitution of Eq. (5.4) into Eq. (5.3) gives: 

x = (t) + =f((t) +y) (55) 

Taylor expanding f((t) + y) about the point Y(t) yields: 

f((t) + y) = f((t)) + Df(x(t)) y + O(IyI2) (5.6) 

where Df is the derivative off (essentially a 2 by 2 Jacobian). Substitution of Eq. (5.6) into 

Eq. (5.5) gives after straight forward manipulation: 
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(5.7) 

where the higher order terms have been neglected under the requirement that y is small. 

Thus, Eq. (5.7) implies that the question of the stability of (t) involves the determination 

of the stability of . It should also be clear from Eq. (5.7) that the system of is a linear 

system, whereas the system of Eq. (5.3) was not necessarily linear. If '(t) is an equilibrium 

solution, i.e., (t) = then Df('(t)) = Df(x) is a matrix with constant entries, and thus 

the solution of Eq. (5.7) through some point Yo E R of t = 0 can immediately be written 

as: 

y(t) = (5.8) 

Therefore, the stability of the solution, '(t) = Z of the autonomous vector field, Eq. (5.3), 

may be determined by evaluating the eigenvalues of Df(x) (obtained from the corresponding 

secular equation). It should be clear from the definition of asymptotic stability in §5.2.9, that 

if all of the eigenvalues of Df(x) have negative real parts, then the equilibrium solution is 

asymptotically stable. 

5.2.11 Stability Classification 

The stability of a a fixed point is classified under the linear approximation 

described above ( 5.2.1O) according to the nature of the eigenvalues of the associated linea-

rization. 

5.2.11.1 Hyperbolic 

An equilibrium solution, Z of a vector field is called a hyperbolic fixed point 

if none of the eigenvalues of Df() have zero real part. 

5.2.11.2 Saddle Point 

A hyperbolic fixed point of a vector field is called a saddle if some, but not 

all, of the eigenvalues of the associated linearization have real parts greater than zero and 

the rest of the eigenvalues have real parts less than zero. 
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5.2.11.3 Stable Node (Sink) 

A hyperbolic fixed point where all of the eigenvalues of the associated linea-

rization have negative real parts is referred to as a stable node or sink. 

5.2.11.4 Unstable Node (Source) 

An unstable node or source is a hyperbolic fixed point where all of the eigen-

values of the associated linearization have positive real parts. 

5.2.11.5 Center or Elliptic Point 

A nonhyperbolic fixed point where the eigenvalues of the associated linea-

rization are purely imaginary and nonzero is termed a center or elliptic point. 

5.2.12.1 Stable Manifold 

A stable manifold is a manifold that under the flow (evolution) of the vector 

field tends toward an equilibrium solution. 

5.2.12.2 Unstable Manifold 

An unstable manifold is a manifold that under the flow (evolution) of the vec-

tor field moves away from an equilibrium solution. 

5.3 Derivation of the Melnikov Method 

The following derivation of the Melnikov method is only an outline, and does 

not contain the rigor or details that would satisfy the mathematician. For the complete details 

of the derivation, the reader is referred to the article of Greenspan and Holmes (85), and the 

texts of: Guckenheimer and Holmes (98); Arrowsmith and Place (99); Wiggins (97), ( 100); 

and Lichtenberg and Lieberman (101). 

The purpose of the Melnikov method is to analytically determine the para-

metric conditions required in a near integrable system (i.e. systems that are Hamiltonian - 

see Eq. (5.12) for the explicit mathematical definition), where the stable and unstable man-

ifolds of an unstable periodic orbit near a separatrix, intersect transversely. These transverse 

intersections, for the perturbed vector field, imply that the motion near the separatrix is ex-

ceedingly complicated having embedded orbits of arbitrarily large period, the dynamics of 
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which are equivalent to the Smale horseshoe map ( 102). These intersections of the stable 

and unstable manifolds result in what is referred to as a homoclinic tangle which implies lo-

cal deterministic chaos. For this reason, this particular method has been referred to as the 

homoclinic Melnikov method (the original theory of Melnikov (92) was much more general). 

5.3.1 Perturbed Vector Field 

The general class of systems that the homoclinic Melnikov method will be 

applied to is: 

x = f(x) + eg(x,t,e;it) (5.9) 

which for the R2 X S1 vector field considered here, may be written as an autonomous three— 

dimensional system in expanded form: 

=f(x1,x2) + 8g1(x1,x2,fr,e) 

X2 =f2(x1,x2) + eg2(x1,x2,fr,$) 

q=w 

(5.10) 

(x1,x2,) E R2 X S1 

where the parameter dependence is assumed but not explicitly written, and the frequency of 

this periodically forced system is cv. It should be evident after comparing Eq. (5.10) to the 

initial representation of a nonautonomous vector, Eq. (5. 1), that written in this form, a per-

turbation, of the order of e, to the system has been implied. The unperturbed system is there-

fore, the system where s = 0; i.e.: 

±1 f1(x1,x2) 

X2 =f2(x1,x2) 
(5.11) 

Now the unperturbed system is taken to be integrable or Hamiltonian (that is, conservative), 

and therefore Eq. (5.11) may be written: 

±1 = x1,x2) 

x2 = - aH 

(5.12) 

where H is the Hamiltonian for the unperturbed system. 

It is also assumed that for e = 0, the perturbed vector field of Eq. (5.10) pos-
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sesses a homoclinic orbit q0(t), to a hyperbolic saddle point Po Therefore, from the above 

definitions this implies: 

urn q0(t) = Po 
t—. ± CO 

(5.13) 

It will also be necessary to define a Poincaré map P°: ° - itO, where 

ZO = t(X, t) I t = to E [0, T] C X S1 is the global cross section at time to for the 

suspended (i.e. a "snap shot over the period") autonomous flow of Eq. (5.10). 

The derivation is based on two fundamental perturbation results stated in the 

form of Lemmas (97). 

Lemma 1: Under the above assumptions,for sufficiently small e, the system of Eq. (5.10) 

has a unique hyperbolic periodic orbit y(t) = Po + 0(s). Correspondingly, the Poincaré 

map has a unique hyperbolic saddle point pO = Po + 0(s). 

Lemma 2: The local stable and unstable manifolds W7y8), 10 of the perturbed peri-

odic orbit are Cl-close to those of the unperturbed periodic orbit Po X S1. Moreover, orbits 

q(t, t0), q(t, t0) lying in Wy6), W cye) and based jj can be expressed as follows, 

with uniform validity in the indicated time intervals: 

q(t,t0) = q0(t - t0) + eq(t,t0) + Q(2), t E [t0,CO ); 

q(t, t0) = q0(t - t0) + sq(t, t0) + 0(8 2), t E (- 00 ,t0J. 
(5.14) 

This implies that solutions lying in the stable manifold are uniformly approximated, for 

t ≥ 0, by the solution q (t, t0) of the first variational equation (i.e. the time derivative of Eq. 

(5.14)): 

(t, t0) = Df (qo(t - t0))q(t, t0) + g(qo(t - t0), t) 

and implies similarly for q(t, t0) with t ≤ 

ij(t, t0) = Df(q0(t - t0) )q'(t, t0) + g(qo(t - t0), t) 

(5.15) 

(5.16) 
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5.3.2 Computation of the Separation Distance of the Stable and Unstable Manifolds 

As outlined at the onset of this derivation, the Melnikov method provides a 

means of determining the conditions where the stable and unstable manifolds intersect trans-

versely. Thus, the next step is to derive an expression for the separation distance of the man-

ifolds W"(p0) and WS(p0). 

The time—dependent distance function is defined: 

t0) Jf(qO(t - t0)) A {qu(t, t0) - qs(t, t0)] 

and the individual distance functions for the unstable and stable manifolds: 

Us(t, t0) Leff it - t0)) A sq(t, t0) 

(5.17) 

(5.18) 

where in Eqs. (5.17) and (5.18) the wedge product is defined by a A b a1b2 - 

(a, b E R2; possessing Cartesian coordinates (a1, a2) and (b1, b2), respectively). There-

fore, in combining Eqs. (5.17) and (5.18), the time—dependent distance function may be ex-

pressed: 

e8(t, t0) = A(t, t0) - A(t, t0) + 0(s2) (5.19) 

The differential equations for z(t, t0) and i(t, t0) are obtained from differentiating Eq. 

(5.18): 

,&(t, t0) = e[Df(q°(t - t(,) ) °(t - t0) A q (t, t0) + f( q0(t - t0)) A (t, t0)] 

(5.20) 

\(t, t0) = s{Df(q0(t - t0) ) °(t - t0) A q'(t, t0) + f(q°(t - t0)) A 4(t, t0)] 

It should be clear from Eq. (5.10) and the definition of q°(t) that q 0(t - t0) = f( °(t - t0)) 

and therefore with this identity, and the first variational equations, Eqs. (5.15) and (5.16), 

Eq. (5.20) becomes: 

= s[Df(q0)f(q0) A q + f(qO) A (Df (qo)q + g(q0,t))] 

= s[t1.aceDf(q0)t + f(qO) A g(qo, t)] (5.21) 
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A: = 4Df(qo(qo) A qu + f(qO) A (Df (qo)q + g(q0, t))] 

= s[traceDf (q°)A. + f(q0) A g(q0, t)] (5.22) 

Because the unperturbed system is Hamiltonian (see Eq. (5.12)), the Eqs. (5.21) and (5.22) 

are simplified through the consequent identity: traceDf 0. Integrating Eq. (5.21) from 

to to 00 gives the desired expression for (t0, t0): 

00 

(t0, t0) = - e J f(q°(t - t0)) A g(q°(t - t0), t)dt (5.23) 

to 

where use has been made of the fact that ,( oo, t0) = 0 because urn f(q°(t - t0)) = 0. 
J-  00 

Similarly, integrating Eq. (5.22) from - 00 to to gives for A(t0, t0): 

to 

All (t0, t0) = e f f (qo(t - t0)) A g(qO(t - t0), t)dt (5.24) 

CO 

Through use of Eq. (5.19), Eqs. (5.23) and (5.24) may be combined to give an expression 

for the time—dependent distance function at 

00 

e(tø,to) = f f (qO(t - t0)) A g(q0(t - to), t)dt (5.25) 

00 

The separation of the manifolds W"(p'°) and WS(p0) on the section '° at the point q0(0) is 

defined as: 

d(t0) I q(t0) - q(t0) (5.26) 

where q(t0) q(t0, t0), q(t0) q(t0, t0) are the unique points on W'(p0), W'(,p'0) "cbs-

est" to p0 and lying on the normal: 

f±(qO(o)) = (— f,(qo(0))j,(qo(0) ) )T (5.27) 

to r° (r° = W(t) I t E U {po}) at q°(0). The C' closeness of the manifolds to I'°, and 
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Lemma 2, then imply that: 

f(q°(0)) A {q(t0) - q(to)] + Q(2) 

d(t0) = jf(q°(0))I ('5.28) 

where f(qo(o)) A [q(t0) - q(t0)} is the projection of q(t0) - q(t0) onto fi(q0(0)). 

5.3.3 Melnikov Function 

Finally, the Melnikov function is defined as: 

CO 

M(t0) = J f(qO( - t0)) A g(q°(t - t0), t)dt (5.29) 

-00 

and therefore from Eqs. (5.25) and (5.28), the separation of the manifolds W'(p0), Ws(p0) 

may be expressed in terms of the Melnikov function as: 

d(t0) = !f(q°(0))I + 0(62) (5.30) 

5.3.4 Final Remarks 

Since f(q0(o) )i = 0(1), M(t0) provides a good measure of the separation 

of the manifolds at q0(0) on 'o From Eq. (5.27) it should be fairly clear that the vec-

tor f-'- (q0(o)) and its base point q0(0) are fixed on the section 110 and that, as to varies, 0 

sweeps around 1F 2 X S1. Therefore, if M(t0) oscillates about zero with maxima and minima 

independent of s, then from Eqs. (5.26)— (5.28), q(t0) and q(t0) must change their orienta-

tion with respect to 1-'- (q0(o)) as to varies. It is thus required, that M(t0) be independent 

of e to ensure that e can be chosen sufficiently small so that the 0(52) error in Eq. (5.30) is 

dominated by the term sM(t0) . This leads to the fundamental theorem of the Melnikov 
If(q°(0) )i 

method: 
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Theorem: If M(t0) has simple zeros (dM(t0)/dt0 # 0) and is independent of e, then, for 

6 > 0 sufficiently small, W"(p°) and WS(po) intersect transversely. If M(t0) remains away 

from zero then W"(p0) fl W8(p°) = 0. 

5.4 Application of Melnikov's Method 

Having presented a number of pertinent definitions and concepts followed 

by a derivation of the Melnikov method, the reader is hopefully in a frame of mind to appreci-

ate and understand the application of the method to the micromotion system. The Melnikov 

method was applied to the vector field described by the nonlinear differential equation of Eq. 

(4.18): 

d26 L6 - kô + kó + k"63 = G1cos(& 1t) + G2cos(2& 1 5.3J) 
dt-

In keeping with the notation dictated in the previous sections of this chapter, Eq. (5.31) is 

rewritten in the following form: 

I + 61 + ax + bx2 + cx3 = y cos(wt) + cos(2wt) '532) 

where comparison of the two equations makes clear the variable transformation; and where, 

undoubtedly the astute reader notices, that the variable 6 has been arbitrarily inserted as a 

means of "measuring" the contribution of the dissipative term ± As a means of studying the 

significance of the quadratic and cubic "spring" constants, and to keep the analytical treat-

ment which follows solvable, Eq. (5.32) is split up into the following two "study" equations: 

I + 6± + ax + bx2 = ycos(wt) + cos(2wt) (5.33) 

I + 6± - ax + cx3 = ycos(wt) + cos(2wt) ('5.34) 

To indicate explicitly the integrable part and the perturbation part, these equations are writ-

ten: 

I + ax + bx2 = e(-- 6± + ycos(wt) + cos(2wt)) (535) 

I - ax + cx3 = s(— 6± + ycos(wt) + cos(2wt)) (5.36) 

These differential equations are nonautonomous and are transformed into autonomous sys-
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tems after the form of Eq. (5.10). For the first system of Eq. (5.35), the transformation gives: 

±1 = 

x2 = - ax. - bx + 8 (- ôx + ycos 95 + COS 295) (5.37) 

and for the second system of Eq. (5.36): 

±1 = 

= ax1 - cx 3 + e(— ox2 + 'Y COS 0 + COS 20) (5.38) 

q=w 

Examination of Eqs. (5.37) and (5.38) indicates that the Hamiltonian systems (i.e. s = 0) 

are different but the perturbation to the integrable systems are identical. 

In order to evaluate the Melnikov function (Eq. (5.29)) the homoclinic orbit 

of the unperturbed systems, q0(t - t0) must be evaluated. Prior to determining an analytical 

expression for this homoclinic orbit, it is worth noting that the change of variables 

t - t + to makes evaluation of the Melnikov integral a little more straight forward. With 

this variable transformation, Eq. (5.29) becomes: 

00 

M(t0) = J f(qo(t)) A g(qo(t), t + t0)dt (5.39) 

-00 

and hence q0(t) must be determined. 

From this point on, the two systems are examined separately; Eq. (5.37) be-

ing examined first. The unperturbed system is: 

±1 = X2 

= - ax1 

or after the vector notation of Eq.(5.3): 

- bx 

1. X2 

x = f(x) = ax 1 - bx 
I ) 

From Eq. (5.12) the Hamiltonian for this system is therefore: 

(5.40) 

(5.41) 
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H = + 

The equilibrium solutions are obtained from: 

/ x2 

f()=(g)= (_ axi_bx) 

(5.42) 

(5.43) 

and thus the two fixed points are: Yj = (0,0) and Y2 = ( , 0). Classification of the sta-

bility of these two points by linearization requires the evaluation of the Jacobian: 

which for this system, at the two fixed point solutions, gives: 

/ 0 
Df( 1) a - 2bx1 o) 

/ o 
Df( 2) = a o) 

(5.44) 

(5.45) 

The eigenvalues of the corresponding secular equations are: (a) for = ± I 1; and (b) 

for X2: . = ± Ta. Therefore, these two fixed points are classified as a center and a hyperbol-

ic saddle point, respectively. This infers that the homocinic orbit q0(t) will include the fixed 

point Y2. Now to determine the equation for the homocinic orbit, q0(t), use is made of the 

equation for the constant energy of the unperturbed system (i.e. the Hamiltonian). Substitu-

tion of the hyperbolic saddle point solution into Eq. (5.42), results in the Hamiltonian with 

a value of which when substituted back into Eq. (5.42) and upon rearranging for x2, 

gives: 

2 2 
1/2 

= ± (3b2 - ax1 - bx) (5.46) 

By means of Eq. (5.40), Eq. (5.46) may be transformed into the first order differential equa-

tion: 
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dx1 

-i=± (3b2 I • I ) , 
(5.47) 

which upon selection of the positive root and integrated, gives: 

x(t) = - 3tanh2[(_ t - F3 C, )11 (5.48) 

Choosing the integration constant C1 to be zero, gives for xt (t) on the homoclinic orbit: 

x1' (t) = a 1 - 3tanh2(#t)] (5.49) 

Thus the homoclinic orbit, q(t), involving the saddle point x2 = (- ., 0) and the point 

(, 0) is: 

q(t) = (l - 3 tanh2(#t) , - 3 Itanh( Ta t) sech2(# t))T (5.50) 

Evaluation of the Melnikov integral, Eq. (5.39), requires computation of a wedge product 

of the Hamiltonian part of the system with the perturbation part of the system (i.e.f A g); 

the components of which may be identified from Eq. (5.37) when written in the form: 

/ X2 \ (.yCOS(60t)X2  = f(x) + 6g(x) = - ax - bx) +  + cos(2wt) - 6x2) (5.51) 

The wedge product f(x) A g(x, t), is therefore: 

f(x) A g(x,t) = x2(y COS wt + cos2wt - ox2) - o(— ax1 - bx) 

= x2(y cos wt + cos 2an' - Ox2) 

Thus, the wedge product for the homoclinic orbit in Eq. (5.39) is: 

f(q(t)) A g(q(t),t') 

(5.52) 

(\ = - a3/2tanh _y t) sech2(#t)(y COS wt1 + cos2wt') 

afa  sech4(#fa t) 

(5.53) 
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where t' = t + to. The Melnikov integral for this first "study" equation, therefore, involves 

the computation of three integrals: 

00 

1 
M(t0) - 3I 2b y j tanh(#t) sech2(#fa t) cos(w(t + t0))dt - 

-00 

00 

J tanh (#Ea t) sech2(t) cos(2w(t + t0))dt - 

2b 
-03 

03 

9a3 6 I tanh2(#t)sech4(#Fa t)dt (5.54) 
4b2 j 

-00 

Prior to evaluating these integrals, return is made to the second "study" system (i.e. Eq. 

(5.38)). 

A similar analysis when performed on the second system reveals for the un-

perturbed system: 

a Hamiltonian: 

±1 = 

= ax1 - cx 

a2 

(5.55) 

(5.56) 

The equilibrium solutions for this system are: Yj = (0,0), Y2 = Fa- 0) and 

= (- ,, 0). Stability analysis using linearization shows that the first root is a hyper-

bolic saddle point and the latter two are elliptic fixed points. The value of the Hamiltonian 

for the desired homoclinic orbit (i.e. for ) is, of course 0; and therefore the analytical form 

of q0(t) is obtained by solving the differential equation: 

dx / \1/2 
C2 

dt — x1a2x1 

Selection of the positive root results in the homoclinic orbit, q0 (t), with coordinates: 
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q9(t) = /(sech(/t), - vsech(/t) tanh(y/t))T (558) 

The wedge product f(x) A g(x, t), is the same as before, i.e.: 

f(x) A g(x, t) = x2(y cos cot + C cos 2wt - 6x2) 

Thus, the wedge product for the homoclinic orbit in Eq. (5.39) is: 

(5.59) 

f(q?(t)) A g(q?(t),t') = - + cos2cot') - 

(Ta  sech2(/t) (5.60) 

Thus, the Melnikov integral for this second "study" equation involves the evaluation of the 

following three integrals: 

00 

M(t0) = - ya F2 J sech(ra  + t0))dt - 

-00 

co 

Jsech(t) tanh(Fa  cos(2w(t + t0))dt - 

-00 

00 

2.â J tanh2(/t) sech2(It)dt (5.61) 

-00 

Examination of the Melnikov integrals for the two systems (i.e. Eqs. (5.54) 

and (5.61)) shows that all the integrals are quite similar in form involving various powers 

of sech and tanh. At the onset of the evaluation of these integrals it is beneficial to convert 

the argument of the hyperbolic functions into simply t. Therefore, for Eq. (5.54) the variable 

transformation Fa -.t => t1 => t is made, resulting in the Melnikov integral: 

03 
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Co 

3a 
T 
Jtanh(t) sech2(t) COS (2w(t + to) dt - 

Co 

9a5126 tanh(t) sech4(t)dt (5.62) 
2b2 

- Co 

= m1 + m2 + m3 

Following this variable change, the cosine functions in the first two integrals are expanded 

according to: 

cos(CO( t + t0)) = COS Ztcoswt0 - sin t sin wt0 

COS (2w( t + to)) = COS tcos2wt0 - sin t sin 2wto 

and thus, because of the symmetry of the integration, the first two integrals m1, m2 become: 

00 

MI = ysin(wt0) J tanht sech2t sin ( t)dt Fa 

(5.63) 

= ffsin(wto) J tanhtsech2tsin(4qi t)dt 
Va— 

Now of these three integrals, M3 is the most easily evaluated through a standard integral for-

mula giving: 

Co 00 

9a5/26 tanh2tsech4t dt - 9a5/26 tanh2tsech4t dt 
I b2  

-Co 0 

9a5/2 ô(sech5  ( 20 sinh t + 5 sinh 3t + sinh 5t))I' 
- b2 120 

_9a5/26(2 
- b2 \15 ) 

6a5/26 
5b2 

(5.64) 
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The first two integrals (i.e. m1, m2) require somewhat more ingenuity to evaluate. As they 

are very similar (the only difference being the argument of the sine function), only the details 

will be shown for m1. 

The procedure in evaluating m1 begins by recalling: 

tanhtsech2t dt = - 1 d g (sech2t) 

and therefore, m1 may be written: 

00 

m1 = - ysin(wt 260 0) J .(sech2tdt )sin(t ra )dt 

-00 

This integral may be integrated by parts with the result: 

00 

ra  
M 1 = —h--wysin((oto) I sech2tcos(2?t)dt 

-00 

3I 
03 cosh ( Lt' 

 dt J = —h-_WY sin(wt0) cosh2 t 

-00 

(5.65) 

(5.66) 

Progress with the integral appearing in Eq. (5.66) requires the application of the method of 

I 
residues. Consider the integral around the rectangle C in the complex plane: 2w iz cosh dz 

f  
C 

diagramed in Fig. 5.1; where after conventional notation z = x + yi, and w' 
ra 

- R + n1 
* 

Y 

R + ri 

2 + 
—R R 

x 

Fig. 5.1 Integration contour diagram. 
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e20) 'lz 
  occur where cosh 2 z = 0, that is, where z = + The poles of cosh2z 2) 

n = 0, ± 1, ± 2, The only pole totally enclosed by C is (see Fig. 5.1). Therefore 

2oiiz 
the residue, a_1, of  e cosh2z at z = 2 is: 

a...1 = urn 1  d J(z 2 e20)1Z  1 
(2— 1)! ) c0sh2 zJ 

= urn -1-(2z - jvi)sech2ze1Z(2 + rw ' + 2w'iz + vitanhz - 2ztanhz) 
2 

2w 'i 

Therefore, by the Residue Theorem: 

2oiiz 2w'i\ 4rw' 
COSh dz = 2i( ) e 

C 

Now the integral around the rectangle C may be broken up as follows: 

(5.67) 

R 

2o 'iz 1 2co'ix J 2w'i(R+iy) 
dz=J e e  idy+ coshz cosh2x cosh2(R + iy) 

C —R 0 

—R 0 J e20'I1 dx+ J  e2  idy (5.68) 
cosh2(x + sri) cosh2(— R + iy) 

R 

In evaluation of the second integral in Eq. (5.68), consider the following arguments: 

le 
2ai(R+ iy) 1 = Ie e— 2w'iR 2oy < e2° Icosh(R + iy)I = I + e_?_ô1 > [Ie'''I — le i —e 

—R—iy 1 R —R 1 R 
2  

2E Z J e2°' ( + iy) - 2oYy idy< e d cosh2(R + iy) - eR =? 2o) ' e 4 ( — 2iZ 0 

0 0 

Hence, it should be clear from the above arguments that for the entire complex plane (i.e. 
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when R - co), the second and fourth integrals are simply: 

f0 1 I l 2w 'i(R + iy) I - • J —R + iy) idy I = 0 (5.69) urn e  idy I hm 
R—.00 cosh2(R + iy) - cosh2(— R + iy) 

0 ) 1??; ) 

Therefore, from Eq. (5.69), the integral around an infinitely large rectangle (Eq. (5.68)) sim-

plifies to: 

IR —R 

I 2o) 1Z I J 2w'L J  e 
cosh2z R— cosh2x cosh2(x + sri) 

C,. 

 dz limt e  dx+ 

—R R 

2w'i(x+3ri) 
dx (5.70) 

Realizing cosh(x + 'vi) = - coshx, and hence cosh 2(X + vi) = cosh2x; Eq. (5.70) be-

comes: 

dx dx 

dx 

—R 

C 2w'iz CiZ = urn J .2o) 'ir dx + e - 2w' 2w'ix dx 
cosh2z R00t cosh2x i e cosh2x J 1:P   

IR —R 

e  =lirn' e ix  I J 2w' 2 2w'A 

Lcosh2x - e J cosh2x 
—R R 

00 

—2w'r J e 2w'L 
=(1—e ) cosh2x 

-00 
(5.71) 

Substituting the result obtained from the residue theorem (Eq. (5.67)), Eq. (5.71) becomes: 

00 

I. ' 
4vw ' e— ) f - 1 2w'\ e 2w ix dx ( -  coshx 

which upon rearrangement gives: 

CO 
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for an integral very similar to the integral appearing in the expression for nil (Eq. (5.66)). 

All that remains is manipulation of the left hand side of Eq. (5.73) to make connect with the 

desired integral in m1. This may be achieved as follows: 

cc 0 CO I 2w'Lx J 2w'ir r 2w'Lx e  dx= e  dx+' e  
cosh2x cosh2x j cosh2x 

dx 

-00 -00 0 
0 00 

—2co'L 2 ' e  dx+I e  dx 
coshx J cosh Lvxx 

cc 0 
cc cc 

J e20X  dx+J e  dx -   ' 

- cosh2x j c 2a osh ixx 

0 0 
00 00 

= os(2w'x) 2J cosh(2w'ix) d 
2 x cJ  coshx dx  

0 0 

00 r cmiii  —=- . 
\ia 

J cosh2x 
dx (5.74) 

- Co 

Therefore, from Eqs. (5.73) and (5.74), the value of m1 is: 

6r&y sin(a)to) 
m1 

b sinh() 

and that of rn2 is: 

24'vw2 sin(2wt0) 
M2 =   

b sinh( 

(5.75) 

(5.76) 

Combining the results of Eqs. (5.64), (5.75), and (5.76) gives the following expression for 

the Melnikov integral for the first "study" system (Eq. (5.37)): 

6rw2y sin(wt) 242rw2 sin(2wt) 5/2 

ZW 0 2 
b sinh( ra ) b sinh(2?) 

A similar methodology including the application of the method of residues is used to evalu-
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ate the Melnikov integral (Eq. (5.61)) for the second system (Eq. (5.38)); with the final result 

being: 

M(t0) = rw 2y sin(at0) sech1'2\ + 22ro vdc.• sin(2wt0) sech( ) 3c (5.78) 

5.5 Discussion of Results 

Although both of the derived expressions (Eqs. (5.77) and (5.78)) for the 

Melnikov function are quite complicated in appearance (i.e. they involve several parame-

ters), conditions in the parameter space may be chosen so that M(t0) = 0, dM(t0)/dt0 # 0; 

these being the requirements for local deterministic chaos (see Theorem in §5.3.4). Hence, 

the critical parameters upon which nonlinear dynamics may depend are: a, b or c, y, 6, 

and to; all of which may be determined or estimated. The implemented change of variables 

(see Eq. (5.31)) from the original micromotion system to the "study" systems along with the 

approximate magnitude of the parameters (see Table 4.1) is presented here in Table 5.1 for 

purposes of the discussion following. 

Table 5.1 Variable Transformation 

Melnikov Parameter Micromotion Parameter Magnitude 

a k i0 

b k' iO 

c k" 5x1cr4 

y G i0 to iO 

G2 10 8 to 10 6 

a - 1 

W CO 10 2 

Examination of the magnitude of the first 5 parameters clearly indicates that 

all are at least 4 orders of magnitude smaller than the "damping" coefficient (6). This, of 

course, implies as previously indicated (4.4.1), that the system is very highly damped. The 

significance of this strong damping to the results of the Melnikov method is that the per-
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turbation to the integrable system (i.e. the combination of the two drivers - electrophoretic 

and dielectrophoretic - and the damping) is not small. This is seen clearly by rewriting the 

micromotion equation in the approximate form: 

+ k6 + k'82 + k"63 = 1O 5(cos(a 1) + 10 2cos(2& 11) -  105 dj  (5.79) 
dt - dt- ) 

where s has been arbitrarily given the value of Now the first two terms on the left 

hand side of Eq. (5.79) are obviously small (of the order of e), but the last term is not. This 

parameter analysis indicates that the micromotion system with the experimental parameters 

of the sorbitol suspended protoplasts is not near.-integrable; and therefore the Melnikov 

method is not applicable. This system is not near—integrable because it is far from being a 

conservative system. It is the significant damping of the micromotion caused by the interac-

tion of the protoplast with the suspension medium that results in a perturbation that is far 

from small. 
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Chapter 6: Concluding Remarks 

6.1 Connection 

The theoretical investigations (Chapters 3 and 4) into the two distinct anoma-

lous responses of DEP levitated plant protoplasts subjected to inhomogeneous electric fields, 

although treated and analyzed separately, are nevertheless connected. The two phenomena 

were observed under essentially identical experimental conditions with the same apparatus. 

The studies were performed on same type of particles (canola and tobacco protoplasts), and 

the phenomena observed within a similar region of the DEP spectrum (< 50 Hz.). More im-

portantly, both observations are nonlinear; where specifically: the nonlinear response occurs 

at the particle/medium interface as a result of the applied electric field. The hysteresis is at-

tributed to an electric field dependent permittivity at the interface, and the higher harmonics 

in the micromotion attributed to an electric field dependent ionization constant at the inter-

face. The fact that these observations occurred at only low field frequencies is not too sur-

prising, as it is only under these conditions that the cellular components have sufficient time 

to respond to the electric field. It should also be realized that both phenomena indicate that 

the electric field profoundly changes the character or nature of the dielectrophoretic mea-

surement; not simply a relative or proportional alteration. 

6.2 Future Research 

As with any research effort, there always remains more to be explored and 

additional investigations that will possibly add additional understanding or strengthen exist-

ing understanding. Such is certainly the case with this work. The following three sugges-

tions are offered as possible areas of future research. 

1. As mentioned earlier in this dissertation, the scale of these experimental measurements 

may be classified as "mesoscopic". On this scale, precise understanding of the underlying 

physical processes and mechanisms causing the observable behavior of the levitated proto-

plast, is somewhat elusive. Thus, measurement on a "microscopic scale" needs to be per-
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formed. The intent of these measurements would be to elucidate the actual mechanism (pres-

umably polarization related) that is responsible for either the hysteresis or nonlinear 

micromotion. Having concluded that these phenomena are the result of the action of the elec-

tric field on the protoplasilmedium interface, suggests that the measurements should focus 

on the determining the field functionality of the perrnittivity of the cell membrane as a result 

of the possible flux of membrane proteins and lipids. 

2. Although the Melnikov method could not be successfully implemented to the micromo-

tion system because of the heavy damping of the motion, through providing conditions 

where the particle is levitated in a medium with a very small frictional drag coefficient, it 

would be applicable. The requirements of a near—integrable system may be met by the use 

of air as the medium. Under these conditions, the Melnikov method might be used as a means 

of determining conditions under which the micromotion may become deterministically 

chaotic. 

3. The conclusion that the higher harmonics in the micromotion are the result of electric field 

induced alteration in the dissociation constants of surface proteins, is not really measured. 

To the knowledge of this author, the specific measurement of the effects of electric fields 

on the dissociation constant of weak acids has not been made. In the early work of Onsager 

(18), experimental estimates of a two—fold relative increase in the dissociation constant of 

benzene occurred under applied electric field strengths of approximately an order of magni-

tude greater than used in these DEP studies. Further work needs to be done in measuring 

the effects of electric fields of similar magnitude ( 5 kV/m) on the dissociation constants 

of weak acids. 
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Appendix 

As the dielectrophoretic (DEP) force is fundamental to the theoretical work 

of this dissertation, a rigorous derivation from first principles explicitly showing all assump-

tions and approximations is presented here. Although the DEP force was first derived for 

a lossless particle and medium, more recently it has been extended to include a particle with 

dielectric losses. 

The DEP force was first derived for lossy particles by Friedrich Sauer in his 

article: "Interaction—Forces between Microscopic Particles in an External Electromagnetic 

Field" (49). His derivation is fairly complicated and many of the details are not explicitly 

shown and therefore this appendix will clearly declare these details. 

We begin by defining two fundamental electromagnetic entities: (a) the elec-

tromagnetic field energy density: 

u(E+H.B) (A.]) 

and (b) the electromagnetic momentum density: 

C (A.2) 
') 

where a superscript T indicates the transpose of the vector (and thus a row vector) and 

E, D, H, and B denote, in accordance with the standard electrodynamic convention, the 

electric field intensity, the electric field displacement, the magnetic field intensity, and the 

magnetic induction, respectively. The balance equation or general conservation equation for 

either of these quantities will possess the general form: 

aA = - divergence (Flow of A) + (Production of A) 

And thus for the electromagnetic field energy density, the time derivative of Eq. (A. 1) is: 

- .TaBl 
1 Ij 
aE -, 

D + E aD  'B+H (A.3) 
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We recall the fundamental classical equations that govern all electromagnetic phenomena, 

the Maxwell equations: 

at 

V D=g 

at 

-. 

V B=O 

where 7 denotes the current density and Q denotes the charge density. 

(A.4) 

Use of the Maxwell equations in Eq. (A.3) gives for the time change of the field energy densi-

ty: 

I-> _T _ aUe1( T -* aE+T(VXH)E J+B T()) (A.5) 
at 2' at at 

Now in general for any two vectors and b: 

->T ._> - ._,T 
V.(xb)b.(VX)—a.(VXb) 

and therefore application of this vector identity to Eq. (A.5) gives: 

i3Ue = 1 (..,.T a - 
at at at (A.6) 

Now we have seen from Maxwell's equations that: 

._ - - 

—v .(ExH)—E . J 
at at 

(_V _,T _ -and:. . .(ExH)_E - J—P _ T at (A.7) 
2_ at 

Adding the left hand side of Eq. (A.7) to the right hand side of Eq. (A.6) gives: 

aue _j - - 11 -T 
EJ KT 

at at (A.8) at . (E X H) + ( D at at 

It is clear from comparison of the above outlined general statement of a balance equation and 

Eq. (A.8), that Eq. (A.8) is not in generality a conservation law. The deviation from the con-

tinuity equation for the electromagnetic energy density is realized in the dissipated power 

term: 
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Qpw = E 71( T 8E T 8D T aHñT 8B 
at at at (A.9) 

a term which expresses the dielectric losses in the media. For periodic fields we have: 

kir, t) = Re IE— ,(r-)e iOl} 

= = Re 1,6,(r)e'} 

H = H(i t)= Re IHO(P e°'} 

= t) = Re JW0(_r)e-'(01J 

I = J(7 t) = Re JfO(r)e iwi} 

and therefore the expression for the dissipated power becomes: 

(A.JO) 

-> an Qpw = Re E . Ref - (R eD Re - ReT. Re + ReST. Re + 
at at 

(ReH Ref )  

Now the time average of Eq. (A. 11) is: 

-> 1 / ->T ...T . T aTI 
Qpw = Re E Ref - Re D Re- - Re E 'Re at at -- + ReB Re) + 

(RefiT  / 

ReTt )(A.l2) 

which upon application of the Cycle Average Theorem gives: 

L>T _>* T aD 
QP = ReE J * J [ e{ - Re{ - j - 

[-f' e{B1 _T .  aH - j - Re{!f . 
at 2 

(A.13) 

where the * denotes the complex conjugated quantity. If the following linear relationships 

are assumed: 
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(A.14) 

where: s is the complex electric permittivity, i.e. s = e' + is"; 4u is the complex magnetic 

permeability, i.e. It = + i4u"; and ois the complex conductivity, i.e. a = 0' + icr"; then 

the time average of the dissipated power over the period of the oscillating fields of frequency 

w becomes: 

- 1 1E_>T 
= .- Rej . 

1 -,T 
— (,RejE iwE - E iwe" 

- -T 

= .Re{o*ILI2} - (Re{iw(e -  •E*)I— 121)  - (Refiw(1u - L )1 0011 

1 
= a IE0I - (Re{_ 2ws'hIE0I2}) - (Ref _ 2wu'hIn0I2}) 

and .. •pw = i(o + ws")iLi2 + w,u "Iii0I2 (A.15) 

It is clear from Eq. (A.15) that for dissipative particles and media where: 

a # 0, s" # 0, and u" # 0, that UPW will not be equal to zero and therefore a force cal-

culation using the law of the conservation of electromagnetic energy density will lead to 

meaningless results. We therefore turn to the electromagnetic momentum balance equation 

to derive an expression for the body force. From the definition of the electromagnetic mo-

mentum density and the use of Maxwell's equations it can be shown for the local time change 

of 5e: 

(n. V) — j; where we define: (n. k) = (A.16) 
aXk 

and H is the Maxwell stress tensor and f the electromagnetic body force. We choose II to 
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be a symmetric tensor of the form: 

1 (— _J  --. T __T _,T ( _T - _>T ,\ 
ED + DE + HB + BH — D E+B . H)U 

- 

where the product &b isthe dyadic product of the two vector and b, i.e.: 

(,ih ,i1"h2 " a h. 

I... 

13 
-+T ' 

Zib - 1a1\ b2, b3) a2b1 a2b2 a2b3 
a3b1 a3b1 a3b3 

(A.17) 

and U the unit tensor whose elements are â. Now from the definition of the it/i component 

of the product (ii ) in Eq. (A. 16) and from our choice of a symmetric Maxwell stress 

tensor, it is clear after some very straight forward manipulation that: 

(IT 

:LIB 

+f _T ...,\ (-.T _>\.. 

Vj+EV .D)+E .V)D+D(V 

V )H  + H-,. ..+fV -.T 
. ff) (-.T \, —(—T+H . V)B+BV V (D T,T)] 

(A.18) 

The last term in Eq. (A.18) may be expanded by use of the following vector identity: 

Thus: 

V(a T (-,.T \, I-> ._.,.\- -= V Zi)b + (->T j> ZiX (V x b) + b x (v x 
it) 
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(u = l[(T + (..+T )s + (.+T -\-,. f- T 

-,.\ - I-' -.\ - I --, 

L (A.20) 

From Maxwell's equations we know: 

and .. D T V E tOE _ I(D T . V)E (A.21) 
2(-  2 

f_T 
(B V)H = 0 (A.22) 

-' au -, -> - BxVxH)=BxJ+Bx—-= — JxB---aD xB 

> "'. -,\ > at at 
3B DxVxE)= —Dx-

and .. at 
x ( x ii) + S x ( x +7 x + . (5 x = 0 (A.23) 

and therefore with application of Eqs. (A.21) — (A.23), Eq. (A.20) becomes: 

(
1 [(•T + , X + J X B + 1  D 

Tj - V 2 > X X (--, X[(->T . —) — _ (—I . —)— + — X -> -> 

—) a,(->  J (A.24) 
V HB B (VXH H V 

From the continuity equation in the electromagnetic momentum density, Eq. (A. 16), the def-

inition of the electromagnetic momentum density, Eq. (A.2), and the derived result of Eq. 

(A.24), we have for the body force: 

fe •[(•T + X X X X V E D V D )E D V 

(->T 
j' + X(XH•  > ") -> -> -, 

)_ñx V at (D B C2 E X H) 

+ (OE +JXB (A.25) 

If we assume the media to possess no free charge or current, then: 

=O and 7=o (A.26) 
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and thus our expression for the body force in Eq. (A.25) becomes: 

z 2 V E D+DX X,•) 

1[(T. i + ( ii) 
_x(x)]+ 

_x(x)]+x 
C2 

(A.27) 

Now we wish to derive an expression for the time average of the body force under the condi-

tions of Eq. (A.26) and the fact that the fields are periodic, i.e. the equalities of Eq. (A. 10) 

hold. This derivation will most easily be seen if each term of Eq. (A.27) is considered sepa-

rately: 

1St Term . .. .-. T .. ->(v . E)D (—Tv E)D = D(V E) = Re{D}Re{V . E} 

I_. T 
- I_ ..+ 

Re{D}ReV T Ej = Re{l(V ) = Re1sE(V E) f 
From Maxwell's equations under the conditions of Eq. (26): V D = 0 

- ->T - _T -> 

V D = V 8E=E E=0 

V . E_...(E •v) 

Re{D}Re{V 

r * 

—!Re EE . ve 
2 8 

2nd Term: 5 x ( x DX ( x ) : Re{D} x Re {V X 
91 

Reffi} X Re{V x = 'ReIS— x ( x ) } 
= Re{5 X ( 4)*} = Re{5 x (i.,W)*1 

Rel — iwsE x i H } 
1 1 _> *1 = — Re1iwuEXH 

(A.28) 

(A.29) 
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3rd 

4th 

Term: _ x(x5) (V x 5) X E = Re{V x DI x Re{} 
Re {V x x Re{) = ..Re{(V x 5) xE .. Re{(V x x E->*l 

= Re1 Vs X E + eV X E) X E 

aB 
•Rej(V•E- X g) XE + 8 (— at) X i} 

/-T 
Term: V H)B 

1 ( .- - _>* 

=.Ret_E xVsXE)+iweBXE 

1_i I. * \ 
1 * -> _> ...  

= 3JReE .v.)E_(E .E)v+iwIiHxE 
j(  

I 

I i __ T * .-> - .- _•* 

= jRetEE V. - EI2Vs - iWJLE x H (A.30) 

_(_,T .,\ f_T . 

= BV H) = Re{B}Re1V 

r r 
- 1 . 1 

Re[nh}Re{V H} Re1B(V H) j. = Re1H(V H) 

From Maxwell's equations: V .1 = 0 

=;V• 
... ., _., 

B=V H=HVu+ 1uVH= 

-' 1 1 u - _,T* -> * 

Re{B} Re {V H} = - .Rej,9HH Vy 

0 

(A.31) 
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5th Term: BX(VXH) 

Re{B} x Re{V x 14} 

(V x ) x 14 = R4V X X Re {H} 

(A.32) 

Term: — Hx (V x B) 

x x Re[ H-11 = Re{(V x x = Re{(V XuH X H 

=Re{(ViLX H+iV x H) x H 

Re{(Viu x ii) x + x— W) 

Re {V 

Last term 

\ - 

= -Re{_FX(VtX _H)_iwtDXHJ 

f(H 
\, Re 'Vii)H—(H .H)V1u+iwEXH 

1. * 

= Rej4,1414 iTh - x (A.33) 

-  
- DxB-- c2 ExH) 

_i j4 
C2 

= - Re{B} X Re (V x 14} - Re[ D} X Re{V x El 
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1 (6 
* * 

= _ Re{x(xJi) + 5x(x) I 
= - 1 fx (aD ))* ± af 

at eE X (-
- Re[ui X (- iwD) + EEK x (iw,6)* } 
1 * - _,.* *_ 
ReIiw/HXE — iwuEXH (A.34) 

Collecting Eqs. (A.28) - (A.34) together, we obtain for the time average of the body force 

as derived in Eq. (A.27): 

I * * * 

1 I -, -. -, -> 

Rej IEI2VE + IHt2V,u + -= EE . Ve' - EE . V + - HH It 

VY ±(1 )EY  

(A.35) 

Eq. (A.35) may be expressed in slightly more compact form upon realizing the following: 

6 ::;? = 
-=EE V6EE .v.= 

U 
and similarly 

* 

-> S 
*EE V= 

S 

V,u*_ñjiI . Vy 

And thus the time average of the body force may be written: 

_ -> _ -> _>_>T* -> / - 

fe = - Re1  IEI2Vs + IHI2V,u - EE - 1u*HH 

* __ T*-+*—(f Flu ) HH 

1  )••I 
Refiw( x + x 

(A.36) 
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Now in the time average, the continuity equation for the electromagnetic momentum density 

becomes: 

-=() (A.37) 

With the choice of a symmetric Maxwell stress tensor according to Eq. (A. 17), and with peri-

odic electric and magnetic fields, the time average of the Maxwell stress tensor is: 

H 
1 1 _>_>T* _ ._T* _,_>T* _>_T* / ->T - -.T _*\ 

=...RetED + DE + HB + BH E + B . H)U 

_T * * * 

= - - EE + EE + t HH + HH - ( I2 + Th2 Re IE )III 

_* 

* * 

= Re{(6* + ) T + ( + ) T - ( El81'2 + HII2)u 

1. * * 

= Rej2 Re&} + 2Re{&JiFi - 81`2 + ITh2) 

r * 

1 — T ....,_,T 
= Re{} RetEE + EE - Re{e}IEI2U + 

I_>_T* __ T* 

[Re Ll RetHH + HF! - Re(It}ITh2U] 

1 1 _>' _T _*._T* ( _T _ - \ 
Re{s}E E + EE - IEI2U) + Re[ii)H H + HH - IHI2U) (A.38) 

The conservation law for the total momentum density (both mechanical and electromagnet-

ic) when no external forces are present is: 

( + = (—  -'-" + n - p) V (A.39) 

where P is the pressure tensor, il the velocity, and r the mass density. Substitution of Eq. 

(A.16) into Eq. (A.39) gives the material momentum density balance equation: 

_> 
= - (TVV _> T + . V ± fe (A.40) t =) 

In the time average, if no external forces are present, the material momentum density balance 
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equation becomes: 

With an external force present that keeps the body at rest, Eq. (A.41) becomes: 

(A.41) 

(A.42) 

where f is actually the external force density. Substitution of Eq. (A.37) into Eq. (A.42) 

gives: 

(A.43) 

As the external force fe., is actually a force density, the external force is actually: 

J?ex11's = f rr S - dV (A.44) 

where V is the volume of the solid body to which the external force acts and which is subject 

to an electromagnetic field. With both the Maxwell and the pressure tensors be selected so 

as to be symmetric we have: 

=S) - •) = r9s =S 

and from the divergence theorem of Gauss we know: 

fV 
-> 

V 1 AdV= Ah'da 

a 

where Z is the unit normal vector to the surface and da an infinitesimal surface element; and 

thus the right hand side of Eq. (A.44) may be converted to give: 

I ?ex1Vs = rE s - fl hda (A.45) 

At a surface of discontinuity, i.e. between a solid body (s) immersed in a liquid (I), there is 

a surface force density: . For a surface that is stationary, the surface force density must 

be compensated by an external force density, and therefore: 1 = - IS,. From limit consid-
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erations of Eqs. (A.37) and (A.41) applied on a small volume including the surface of discon-

tinuity one obtains: 

(A.46) 

Therefore, the total external force which maintains the body stationary in the time average 

is: 

Fet = f 7e.4a, + f fexdVs (A.47) 

and with substitution of Eqs. (A.45) and (A.46) gives: 

= - f [(TT,  - L) - ( - 

= f(Ti i_fli) .iisdas 

,P)] • Wda, + -  TT  • da 

(A.48) 

Thus with Eq. (A.48) one is able to calculate the force acting on the center of mass of a solid 

body immersed in a liquid if both the Maxwell and pressure tensors are known for the liquid 

at the surface of the body. As the general problem involved in calculating the force in Eq. 

(A.48) is too complicated, several approximations have to made in order to solve the problem 

analytically. We begin by assuming that the radius R of the particle is small compared to the 

distance separating the electrodes and that this distance is small compared to the wavelength 

of the external field in a vacuum. Under these assumptions the terms involving the magnetic 

field strength H in the Maxwell stress tensor (A.17) can be neglected as they are small and 

thus the time average of the body force (Eq. (A.36)) becomes on the right hand side of Eq. 

(A.42): 

Re{lE Ve_*EE . V 
I2 (A.49) 

If the electric field strength is not too high then the dielectric losses in the media resulting 
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through the terms: Vs and v(4) may be neglected, resulting in a constant pressure tensor. 

Now with these assumptions, Eq. (A.48) becomes: 

Fex = - f (TTI) -  h5da 

1 .,* -Re{s 1} (EIEI + E1E1 - IE1I2U h'uia3 (A.50) 

where in the last equality use has been made of Eq. (A.38). There are two boundary condi-

tions pertinent to the problem as follows: 

(1) Di its= Dsits = 

(2) E1x it, = EXits 

(Au) 

(A.52) 

We wish to transform the integrand of Eq. (A.50) into electric field dependent terms inside 

the spherical body; and this may be accomplished through the boundary conditions of Eqs. 

(A.51) and (A.52). From Eq. (A.51) we have: 

8 ->1' 
E1 

- .s -  
and defining: b - , we have: 

- J T 
Eii 5=(b+1)E'h' (A.53) 

And from the second boundary condition, i.e. Eq. (A.52): 

its X 
f_T 
(E1 X its its Es its 

K \ - (.T \ 
(n . it, El fls)fls = fl its )Es - 

K  

.T \ 
and thus from Eq.(53) : E1 - (b + 1) (E, its s 

_> — _-T . _> Y 
El = E, + b (Es /is its 

f,T 
E. n, it, 

- 

=E5— E5 

(A.54) 

Substitution of Eqs. (A.53) and (A.54) along with there complex conjugated analogues into 
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Eq. (A.50) gives after some straight forward substitution: 

_> I 'T . • ) _•* 
= - Re{s} f [(b + 1) (Es + (b* + i) - Li2is]das 

- Refei} J IbII ?I2 4a (A.55) 

Before preceding to evaluate this integral a couple of points should be noted. Firstly, the 

integrand in Eq. (A.55) is real as expected, as the total external force must be real. It should 

also be realized that Eq. (A.55) is different than the derived analogue of Sauer's (Eq. (3.3)). 

Sauer's expression is complex and therefore must be incorrect as the external force can not 

be complex. Now in order to evaluate the integral of Eq. (A.55) some approximations must 

be implemented. If one assumes that the body is rigid and subjected to only a slightly inho-

mogeneous field then use may be made of the gradient approximation in expanding the elec-

tric field at the surface by means of a Taylor expansion around the center of the sphere up 

to first order terms, i.e.: 

E(Rfl5) = E(0) + R(EV )o (A.56) 

where the 0 indicates that the quantity is evaluated at the center of the sphere, i.e. where R 

=0; and where it is understood that all electric field quantities refer to the solid body (as op-

posed to the liquid in which the body is immersed) and hence the subscript s has been 

dropped. Evaluation of Eq. (A.55) involves four integrals and thus with the approximation 

made in Eq. (A.56), each integral will be considered separately: 

First integral: f (b + 1) (' = (b + 1) f(' iis)L*cias 

I- ..,T_,.T  

= (b + 1)VL(VE )o E (0) + (V E )0E(0) 

-> -FT - 

(b+ 1)V(VE )o E (0) (A.57) 

where the last line of Eq. (A.57) is the result of the application of Maxwell's equations under 

conditions of no free charge and a homogeneous body (Vp. = 0); and where V is the volume 
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of the sphere (V = yrR3). The second integral is, of course, the complex conjugate of the 

first integral: 

Second integral 
I 
f(b* + 1)E 

__ T* 

s)sas = (b* + 1)V(vE ) E(0) (A58) 

I - > .-., T _> - T* -> I 
Third integral: J IEI.da VI(VE ) E (0) + (VE E(0)] (A.59) 

And finally the last integral: 

I _T Fourth integral: E h ii >5I2Tda8 IbI2 IE >3I2Tida5 IbI2I  

.-+--T _* - I 
= IbI2V (VE ) E (0) + (VE )o' E(0) (A.60) 

Hence, with substitution of Eqs. (A.57) - (A.60) into Eq. (A.55) gives after cancellation of 

some terms: 

- IT - 

Fex = - Re( i}V[b(VE )o E (0) + b*(VE T)O. 

- Re{i}V[bb*(VE ) E (0) + (VE )o E(0) 

which may be written: 

_,.T* -> 

= - Re(ei}[b*(2b + 5)(V- E'  ) E (0) + b(2b* + 5)(VE ) E(0) j (A.61) 

Now it is clear from the derivation with its approximations thus far, that the electric field in 

Eq. (A.61) is the actual electric field at the center of the sphere or body. The electric field 

in the sphere may be expressed in terms of the external electric field, E, through a multipole 

expansion about the center of the sphere: 
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(0) - b - 3E (A.62) 

—,.T 
and (VE ) - 2b + 5VEex (A.63) 

Substitution of these relations into Eq. (A.61) gives for the total external force: 

Fex = - . v(e + l)[3 + 3 ±  VIE, 12 (A.64) 

Now from the definition of the permittivities ratio b, we know: 

b  _ ci ><  1  
3+b .l 3+— 

_s — lx   
- .—i 3s+ 

- EI  

ECS - + 2 

Ke 

- El 

(A.65) 

where K is, of course, the complex Clausius—Mossotti factor; and thus Eq. (A.64) may be 

written: 

Fex = - T-6(AZR3)2RejE,j2Re{Ke)V--V I2 

= - ZR3RejLjjRejKeIVIEeX I2 (A.66) 


