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Abstract—Collaborative virtual environments (VEs) require 
interaction models for resolving conflicts and promoting multi-
user collaboration. Common models, such as the first-come-first-
serve (FCFS) model, which grants interaction opportunities to the 
most agile user, and the static priority model, which gives 
interaction opportunities to the user with the highest predefined 
priority, disregard the importance of perceiving equality in 
interaction (EII) among all users. One exception is the dynamic 
priority (DP) model, as proposed in our earlier work, which grants 
interaction opportunities to a user based on the recency of his/her 
gained opportunities. To date, few research efforts have 
investigated the effect of interaction models on multi-user 
satisfaction. This paper hence presents an assessment of the DP 
model’s effect on multi-user satisfaction within a collaborative VE. 
We first verified that the DP model allowed multiple users to 
perceive EII. We then conducted an experiment to examine the 
effect of the DP and FCFS models on multi-user satisfaction under 
a quasi-practical scenario that mimicked a decision-making 
meeting of experts. The framework of the examination was based 
on several metrics, which we proposed for the components of the 
ISO/IEC 25010:2011 standard. This framework resolved issues 
with existing metrics that measure user satisfaction by analyzing 
individual experience, thus omitting EII desired by multiple users. 
The results of the experiment indicated that the DP model fulfilled 
the metrics of the framework significantly better than the FCFS 
model. This observation implies a potential application of the DP 
model in collaborative VEs where multi-user satisfaction is the key 
to productive collaboration.  

Index Terms— Framework of multi-user satisfaction, dynamic 
priority model, cognitive needs in collaborative work, 
collaborative virtual environments 

I. INTRODUCTION 

ULTI-USER virtual environments (VEs) have a potential 
to promote collaboration in a group work of experts (e.g., 

users). In the oil/gas industry, for example, experts of various 
disciplines routinely work together to view and manipulate 
shared 3D objects (e.g., geological and geophysical 
information) on a computer-based large display for 
communicating their ideas and solutions. Such multi-user 
collaborative work enriches the understanding of an 
engineering problem [1]. Currently, there are two typical 
settings for collaborative work: distributed and co-located. 
Over networks, a distributed setting encounters issues of 
network security and little awareness among users in disparate 
locations [2]. Targeting awareness among users, research 
activities attempt developing techniques of projecting the 
avatars of remote users to be co-located with other users [3]. In 
contrast, a co-located setting requires all users to be physically 
proximate, yielding mutual awareness among the users. The 
awareness establishes a foundation toward user satisfaction — 
an essential factor to promote genuine collaboration [2]. 
However, few multi-user VEs in practice elevate user 
satisfaction for co-located collaborative work. This results 
largely from an inconsideration of human cognitive needs (such 
as equality) in designing interaction models for multi-user 
collaborative VEs. 

An interaction model is a policy to coordinate interactive 
commands issued by multiple users when they intend to interact 
with a shared object. A conflict occurs inevitably when the 
users attempt to gain the interaction with the object 
simultaneously. The interaction model resolves the conflict by 
granting one of the users an access to the shared object. In 
existing collaborative VEs, interaction models lack the full 
capacity of conflict resolution [4]. Many models devote to 
conflict avoidance by assigning each user a distinctive, static, 
or dynamic region of interaction [5]–[7]. When a conflict arises, 
the models impose social protocols (behavioral policies among 
the users) to partially resolve the conflict. This partial solution 
is generally ineffective due to the overhead of imposing the 
policies [8]. For conflict resolution, common models are the 
first-come-first-serve (FCFS) model and the static priority (SP) 
model [9]. The FCFS model always grants the agilest user an 
access to the shared object. The SP model assigns the access to 
the user with a predefined priority higher than other users or 
applies the FCFS model to determine the access among users 
with a same priority. Thus, both the FCFS and SP models 
promote an inequality of interaction among the users. In 
general, both these models suffer from a deficiency of 
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disregarding cognitive needs among the users for collaborative 
work.  

Such deficiency usually leads to dissatisfaction among the 
users, causing an inefficiency of collaborative work [4][8]–
[10]. An inefficiency of collaborative work is a key concern of 
many businesses [11]. To overcome the deficiency, we 
proposed a novel interaction model, the dynamic priority (DP) 
model in our earlier work [12], to offer all users equal 
opportunities in interaction. The perception of equality in 
interaction (EII) is a vital cognitive need [13]. This need is 
crucial to underlie user satisfaction in collaborative work [14]. 
However, few research efforts have investigated how the 
perception of EII affects multi-user satisfaction within 
collaborative VEs. Some metrics exist to measure user 
satisfaction by analyzing individual experience in single-user 
tasks [15]–[19]. These metrics, in general, omit cognitive needs 
among multiple users of a group, who undertake a collaborative 
work. Thus, a comprehensive set of metrics to encompass the 
cognitive needs of multiple users is imperative for measuring 
multi-user satisfaction in collaborative VEs. 

Considering cognitive needs, our earlier work evaluated 
users’ perceived EII for conflict resolution within a 
collaborative VE. This work used a well-controlled scenario, in 
which multiple users employed identical devices to interact 
with a shared object simultaneously. The evaluation revealed 
that the DP model yielded significantly perceived EII among 
multiple users compared to the FCFS model. Under the DP 
model, haptic (pertinent to the sense of touch) cues were more 
intuitive for each user to perceive his/her gaining of interaction 
than visual cues. These findings were accompanied with similar 
levels of perceived workload under both models. Nevertheless, 
this earlier work did not investigate the role of the DP model in 
underlying multi-user satisfaction within a collaborative VE.  

In this paper, we propose a framework of multi-user 
satisfaction and present an experiment on how the DP model 
affects multi-user satisfaction within a collaborative VE. The 
framework incorporates both the ISO/IEC 25010:2011 standard 
[19] and the cognitive needs of multiple users. For the 
experiment, we verify at first that the DP model offers 
perceived EII even if users employ heterogeneous devices (such 
as a mouse, a haptic device, etc.) for their interaction. The 
verification and our earlier work serve as two-pillared 
prerequisites of the experiment. Under the proposed framework 
of multi-user satisfaction, the experiment compares both the DP 
and FCFS models to affect multi-user satisfaction in a quasi-
practical scenario [20], which mimics a decision-making 
meeting of experts (i.e., users who are specialized in different 
disciplines) in industrial settings. This experiment aims to 
provide an interaction model for improving multi-user 
satisfaction within a VE, in which experts undertake their 
collaborations.  

II. FRAMEWORK OF MULTI-USER SATISFACTION

The ISO/IEC 25010:2011 standard [19] defines user 
satisfaction as “degrees to which user needs are satisfied when 
a product or system is used in a specified context of use.” The 

standard classifies user satisfaction into four factors, trust, 
usefulness, pleasure, and comfort, but is unspecific about 
metrics to assess each factor. The elucidation of the metrics 
depends herein upon the particular context of use for a system. 
Various metrics exist to evaluate user satisfaction about 
collaborative systems [16]–[18]. These metrics are commonly 
based on subjective data, which are acquired through 
questionnaires to capture the users’ perception of using a 
system. Subjective data might be unreliable due to individual 
variations in interpreting the questionnaires [21]. A remedy is 
to use objective data, which are logged by the system. Although 
recording the behaviors of a system and its users at certain 
degrees, the logging could not fully capture the users’ 
perception. Combining subjective and objective data is thus 
necessary to increase the reliability and to capture the 
perception [21].  

Few reports on collaborative VEs have measured multi-user 
satisfaction by considering all factors. For developing and 
evaluating interaction models used in collaborative VEs, there 
is also a lack of comprehensive metrics to assess multi-user 
satisfaction based on the standard. Focusing on EII (a vital 
cognitive need) in collaborative VEs, we thus defined a set of 
metrics for each factor as detailed in Table I. The metrics for 
trust evaluate whether a multi-user collaborative VE behaves as 
intended (i.e., the system’s behaviors). The metrics for 
usefulness reveal at what level the pragmatic aims of using the 
VE are achieved by multiple users (i.e., the users’ behaviors). 
The metrics for both trust and usefulness rely on objective data 

TABLE I.  
FRAMEWORK OF MULTI-USER SATISFACTION  

F
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Metrics Definitions Analysis

T
ru

st
 

Real-time 
response 

System response to users’ 
interactive commands without 
invoking their notice of needed 
processing time  

Eq. (1) 

Simultaneous 
interaction 

Capability of users’ interaction with 
a shared object 

Eq. (2) 

Conflict 
resolution 

Treatment of interactive commands 
issued simultaneously by users   

Eq. (3) 

U
se

fu
ln

es
s 

Task focus 

TF1: Degree of task completion by 
all users Eq. (4) 

Eq. (5) TF2: Degree of user participation in 
all interaction opportunities  

Decision time Time used to reach a common goal Eq. (6) 

Consensus 
Degree of similarity in the task 
behavior of all users to reach a 
common goal 

Eq. (7) 

P
le

as
ur

e 
Equality in 
interaction 

Perception of having equal 
opportunities in collaboration 

   Eq. (8) 

   Eq. (9)  
C

om
fo

rt
 

Perceived 
Workload 

Perception of workload in 
Collaboration 

 Eq. (10) 
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for reliability. In contrast, the metrics for both pleasure and 
comfort could apply subjective data to capture users’ 
perception. Considering cognitive needs, the metrics for 
pleasure indicate whether multiple users perceive EII during 
their collaboration. The metrics for comfort yield how the users 
perceive workload using the VE. These metrics need to 
minimize inconsistency due to individual variations. 

For trust, three metrics are commonly used to assess intended 
behaviors of a multi-user collaborative VE. These metrics are 
real-time response (RTR), simultaneous interaction (SI), and 
conflict resolution (CR) [4][22]. RTR is a general requirement 
for interactive systems [22]. SI and CR are specific 
requirements for interactive systems to support multi-user 
collaboration [4]. The fulfillment of these requirements is 
measurable and paves a foundation of user satisfaction [22].  

The metrics of RTR determines an upper boundary of system 
response time,	 , to users’ initiations of interactive 
commands. Both RTR and  have the following relationship: 

  . (1) 

Within this boundary, all users of a collaborative group shall 
not observe a delay between initiating an interactive command 
and enacting the interaction under the command. 

The metrics of SI is a system capacity of permitting multiple 
users to initiate their interactive commands at the same time. 
Using the logged data of interactive commands, this metrics is 
fulfilled when at least two command initiations occur among a 
group of N users for an interaction opportunity (e.g., oth 
interaction opportunity). An interaction opportunity is signaled 
to the users by a collaborative VE. That is, 

∀ 	 ∑ 2 	 ,   ∈ 0, 1 ; (2) 

where  is a binary value of 0 or 1 to register the kth user’s 
( ∈ 1, ) status of initiating an interactive command at oth 
interaction opportunity. If the kth user has initiated an 
interactive command,  is 1; otherwise,  is 0. 

The metrics of CR needs a policy (i.e., an interaction model) 
to coordinate interactive commands issued by multiple users. 
Given an interaction opportunity, the policy grants one user to 
access a shared object when the system logs at least two 
command initiations: 

∀ ∧ ∀	 ∑ 1 2  	∑ 1 ,

		 ∈ 0, 1  ; 
(3) 

where  is a binary value of 0 or 1 to represent the kth user’s 
status of gaining the exclusive access. If the kth user gains the 
access,  is 1; otherwise,  is 0. All metrics of RTR, SI, 
and CR shall accord with each other, although they are assessed 
independently.  

For usefulness, three metrics of task focus (TF), decision time 
(DT), and consensus (CS) are the pragmatic aims of using the 
collaborative VE by multiple users [25]. The metrics of TF is 
measured by a degree of task completion by all users [2], TF1, 
and a degree of user participation in all interaction opportunities 
[23], TF2, as 

1 / ∑ ⁄   , (4) 

2 ∑ ⁄ /  ;  (5) 

where TCT is the task completion time by a collaborative group 
of N users,  is the average task completion time by the kth 
user of the group,  is the number of interaction 
opportunities that the kth user participated in, and OPP is the 
total number of interaction opportunities. The VE determines 
the kth user’s task completion. Because TF measures the 
conjunction of both task completion (i.e., TF1) and user 
participation (i.e., TF2), a high degree of TF should reflect high 
degrees of both TF1 and TF2. Thus, TF is expressed as TF = 
TF1 ∧ TF2. 

The metrics of DT is the time that the group uses to achieve 
a common goal [24]. This metrics is an average of two 
components, D1 and D2, as indicated below: 

   1 ∆ /  , 2 ∆ ∑  ,  

,
0 				, 		,  (6) 

1, 2  ;   

where ∆  is the time length of a collaborative session, PG is the 
percentage of tasks accomplished toward the common goal, 

 is the same parameter used in Eq. (4),  is the number 
of remaining tasks to be accomplished by the kth user,  is the 
number of tasks for the kth user to complete, and  is the 
number of tasks that the kth user has accomplished. That is,  
is the difference between  and	 .  is set to zero if the 
kth user accomplishes a greater number of tasks than needed by 

. In other words, there are no remaining tasks for the kth user 
to complete. A smaller value of DT indicates shorter time used 
to achieve the goal. 

The metrics of CS is a degree of agreement among the 
behaviors of all N users in the group [26], as measured by 

1 ∑ | |/ / ,  (7) 

where the absolute difference between  and 	  covers two 
behavioral situations of the kth user. In one situation, the user 
has accomplished a fewer number of tasks than . In another 
situation, the user accomplishes a greater number of tasks than 

. Both situations cause disagreement among the behaviors of 
all users, leading to the decrease in the degree of consensus. 
Expressed in percentage, a higher degree of CS denotes more 
consensus among the users [26]. A higher degree of usefulness 
is thus associated with higher TF, lower DT, and higher CS, 
although they are assessed independently. 

The metrics for both pleasure and comfort focus on cognitive 
needs among multiple users to undertake collaborative work. 
The metrics used to assess pleasure is EII, because it promotes 
content and delight among users to underlie user satisfaction 
[14]. Commonly, Likert scales or variations are used to record 
users’ subjective responses to questions [27]. To obtain 
consistency in such responses, the questions should relate 
directly to the users’ actions and be constructive [21]. An 
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example of the questions is to solicit a percentage of interaction 
gained by each user during the users’ collaboration. The 
solicitation shall be constructive enough to derive EII perceived 
by the users. Given that the kth user indicates a percentage of 
his/her gained interaction,		 , 	, during a collaborative 
session, the standard deviation of the perceived percentages 
among all users, SD(	 , is as follows: 

	 ∑ , ⁄  , 

	 ∑ ,  ; 
(8) 

where  is the mean of perceived percentages of interaction 
among all users. The standard deviation, SD(	 , represents 
a dispersion from this mean. A smaller standard deviation 
represents a narrower dispersion of the perceived percentage of 
interaction, indicating a better trend of EII. Thus, EII is 
inversely related to 	  as 

	 1⁄    . (9) 

Eq. (9) agrees well with approaches commonly used for 
assessing equality in economics, such as the coefficient of 
variation and Gini index [28].  

The metrics for assessing comfort is perceived workload 
(PW) [29]. This metrics of PW embraces users’ attitudes toward 
their use of the VE, considering both physical and cognitive 
efforts. The most common method of evaluating this metrics is 
the NASA Task Load Index (TLX) [30]. The following 
equation depicts the computation of PW: 

	 ∑ ⁄   , 

	 ∑ , ∑ , ,⁄  ; 

 

(10) 

where 	is the TLX score of the kth user; ,  is the score 
of the kth user for the fth component among six workload 
components (i.e., mental demand, physical demand, time 
demand, effort, frustration level, and performance); and ,  
and ,  are the kth user’s perceived subscale rating and 
relative importance of the fth component, respectively. The 
individual variations of PW are minimized in Eq. (10) because 
of using ,  to reflect the kth user’s weighting on the fth 
component. The higher score of PW is, the more strenuous 
workload (i.e., less comfort) is for the N users. 
 In short, Table I describes a framework of measuring multi-
user satisfaction within a collaborative system. This framework 
provides a foundation to our experiment of assessing interaction 
models for conflict resolution to affect multi-user satisfaction 
within a collaborative VE. 

III. MULTI-USER INTERACTION MODELS 

In this paper, the interaction models for conflict resolution 
are the DP and FCFS models. Both models grant an exclusive 
access to a shared object among simultaneously issued 
interactive commands of multiple users. However, an 

understanding of the VE’s domain properties is vital for 
implementing the models in our collaborative VE. 

A. Domain properties 

The multi-user collaborative VE has stochastic properties. 
Within the VE, users can initiate randomly their interactive 
commands to gain an access to a shared object. Once a user 
gains the access, it is stochastic for the user to complete his/her 
task of interacting with the object. That is, both command 
initiation and task completion can be characterized as 
Markovian processes [31]. Thus, we used a queue to hold and 
manage command initiations of all users by applying the 
following Kendall’s notation [32]: 

⁄⁄⁄⁄⁄   , (11) 

where the first M depicts a Markovian process of the command 
initiations by the users at an interaction opportunity, the second 
M denotes a Markovian process of the task completion by the 
user who interacts with the shared object, the parameter S 
indicates the number of shared objects in the VE, the parameter 
QC describes the capacity of the queue to hold command 
initiations of N users, and the parameter IM represents an 
interaction model to select one of the command initiations from 
the queue. At an interaction opportunity, the queue holds all 
initiations in sequence. That is, the initiation of the agilest user 
arrives to the queue first and thus is placed at the front of the 
queue and so on. When an IM selects an initiation from the 
queue, the user of this initiation gains the exclusive access to a 
shared object for his/her task of interaction.  

The prediction of queuing command initiations is necessary 
for implementing an IM in our collaborative VE. According to 
the first M in Eq. (11), the sequence of the command initiations 
is discrete and mostly predicted by a Poisson distribution [31]. 
That is, the probability,	Pr	 , of a user to initiate a command 
after q other initiations already in the queue is given as 

Pr / !					, (12) 

where X is a random variable representing the number of 
initiations in the queue and  is the average initiation rate of all 
users. Similarly, the second M in Eq. (11) is representable by a 
continuous form of Eq. (12) for task completion, where � 
denotes the average time of task completion by all users. 

For the two-pillared prerequisites described in our earlier 
work [12] and in Section IV, we considered a well-controlled 
scenario. The scenario had a stochastic process of command 
initiation but a fixed (deterministic) process of task completion. 
The scenario becomes a special case of Eq. (11) using a D 
(deterministic) to replace the second M. Focusing on conflict 
resolution for multi-user satisfaction, the experiment in Section 
V used a quasi-practical scenario. The scenario was stochastic 
for both command initiation and task completion. The time 
length of a collaborative session was fixed to encompass a 
varying number of tasks. Hence, the quasi-practical scenario 
was represented by Eq. (11). In both scenarios, we took account 
Eq. (12) to queue command initiations at each interaction 
opportunity. 
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For the prerequisite verification in Section IV and the 
experiment in Section V, we specified the other parameters in 
Eq. (11) as S = 1 to inflict conflicts, QC = N = 3 to consider the 
availability of interaction devices, and IM ∈ ,  to be 
interaction models. The following sub-sections describe the IM 
for conflict resolution among the initiations in the queue.  

B. DP model 

The DP model incorporates the individual variation of agility 
(i.e., manifestation of physical fitness, mental ability, 
willingness, and work pace) to respond to a visual stimuli 
displayed in the VE. This incorporation is characterized by an 
x-interval, which is extra to the average value of the human 
visuomotor response time (VRT). For all command initiations 
queued within the x-interval, the DP model considers them as 
simultaneous. This consideration gives the initiations the same 
probability as: 

Pr 0 ; 							for	 0    . (13) 

Thus, the individual agility and the sequence of the initiations 
are irrelevant to determining the priority of the users — their 
probability of gaining exclusive access to the shared object. 

Without penalty, the priority of the users is determined using 
the following computation. At the beginning of a collaborative 
session (at the 0th interaction opportunity), the DP model 
assigns the kth user a priority of , 0 1/ . At the oth 
interaction opportunity, the priority of the kth user is 
dynamically updated based on his/her historical interaction. 
This update is formulated as 

,
,
,

, 1 , 1
1 1

,  

, 1
0,			gaining	 1 th	opportunity
1,			otherwise																																		

 ;  (14) 
 

where ,  and , 	are the numerator and 
denominator of the kth user’s priority, respectively, and 

, 1  is the update function based on the previous 
interaction opportunity. If the kth user gains the access to the 
shared object in the previous opportunity, the numerator 

, 	of the current opportunity remains unchanged; 
otherwise, this numerator is incremented by 1. In the meantime, 
the denominator	 ,  is updated to fulfill the condition as 

∑ , 1  ,     1  . (15) 

Hence, the DP model selects the command initiation of the user 
with the highest priority among all entries of the queue.  

C. FCFS model 

Although being commonly implemented in a collaborative 
VE, the FCFS model is known to promote “winner-takes-all.” 
The model favors the agilest user to enact the interaction with a 
shared object. That is, the FCFS model selects the command 
initiation at the front of the queue, for 0. This selected 
initiation has a probability represented in Eq. (13). The 
probabilities of other command initiations in the queue (for 
0) are as follows: 

 Pr 0 1 Pr 0 ∑ Pr   

             ⋯ ⋯   (16)

             Pr 0 ⋯  .   

Comparing Eq. (16) to Eq. (13), the probability of the 
selected initiation is less than the probabilities of the unselected 
ones. That is, the higher the probability of a command initiation 
is, the lower is its chance of being selected by the FCFS model. 
Under the FCFS model, users with an averaged VRT (or below) 
have less chance of being granted access to a shared object. 

For comparison, we used both the DP and FCFS models for 
conflict resolutions in the verification and the experiment 
described below. 

IV. TEST ENVIRONMENT AND PREREQUISITE VERIFICATION 

Two pillars are necessary as prerequisites to support our 
experiment described in Section V. One pillar is our earlier 
work [12] to evaluate the effect of the DP model on the 
perceived EII using homogeneous haptic devices, as 
summarized in Section I. Another pillar is a needed verification 
that this effect holds even if users employ heterogeneous 
devices (such as a mouse, a haptic devic, etc.) for their 
interaction. That is, the perceived EII under the DP model is 
independent of interaction devices in use. Thus, we undertook 
this verification.  

A. Architecture 

As illustrated in Fig. 1, we developed a five-layered and 
multi-threaded architecture for a collaborative VE. Within this 
VE, multiple co-located users interacted with a shared object 
for their collaboration. Although the VE incorporated three 
interaction devices due to their availability, the architecture of 
the VE is expandable to accommodate more devices as 
described in Section III. Within the interaction space, Fig. 1a 
depicts a heterogeneous setup of different devices for user 
interaction, whereas Fig. 1b illustrates a homogeneous setup of 
identical haptic devices. Its illustration here serves for clarity to 
compare to the heterogeneous setup and to aid the description 
of the experiment in Section V. Thus, the context below focuses 
on the architecture of the heterogeneous setup in Fig. 1, 
including the elements of the homogeneous setup. 

1) Interaction space: Three different input tools (one per 
user), as interaction devices, were employed by the users to 
interact with a shared object. These devices were three types 
such as a mouse, a PHANToM® Omni device, and a crafted 
tool with a time-of-flight range camera (Swiss Ranger SR4000, 
MESA Imaging AG, Zurich, Switzerland). The Omni device 
could reflect force to its user’s hand as haptic cue. The crafted 
tool was made of an elongated stick with a small black ball (3 
cm in diameter) on the top of the stick, as illustrated in Fig. 1a. 
For all users of a collaborative group, the VE displayed a 
geological grid as the shared object on a wall-sized screen. To 
provide a 3D stereoscopic view to the users, we used the center 
screen of a computer-aided VE (CAVE). Each user used a pair 
of stereoscopic goggles to view the shared object. Fig. 2 
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exemplifies the interaction space. 

2) Core hardware: We connected the three interaction 
devices to a graphic computer with a 2.53 GHz (dual quad core 
processors) Intel® Xeon® CPU, a 4 GB RAM, and a Quadro 
FX 4800 NVidia® graphics card. 

3) Operating system: A copy of 64-bit Windows 7 
Enterprise was the operating system installed on the computer. 

4) Low-level APIs (application program interfaces): We 
used corresponding API to interface each interaction device 
with the layer of VE application. That is, OpenHaptics API and 
Camera API served to interface the Omni device(s) and the 
camera, respectively. For visual display, OpenGL API was used 
to render the shared object in 3D stereoscopic view. 

5) VE application: Using C++, we implemented a software 
application of the collaborative VE for multiple users. The 
implementation was multi-threaded. One visual thread 
displayed virtual objects in the VE, one haptic thread permitted 
interaction with the shared object via the Omni device(s), and 
one camera thread employed the crafted tool via the range 
camera, if necessary. These threads cooperated along a 
management thread, which was responsible for handling the 
following functionalities:  

 Configuration manager: inputted from a configuration file 
the scenario settings, including the number of collaborative 
sessions and the blocks of an experimental procedure, an 
interaction model used to resolve conflicts, the number of 
interaction opportunities, etc. 

 Interaction-model coordinator: employed the DP or FCFS 
model based on the settings of a scenario inputted by the 
configuration manager. 

 Log manager: logged data about user interactions.  

 Mouse manager: detected and managed the mouse events, 
if necessary. 

 Scenario manager: ran an experimental procedure based on 
the steps inputted by the configuration manager. 

B. Implementation of interaction models 

The management thread handled the timing relationship 
among the visual, haptic, and camera threads, as indicated in 
Fig. 3. This timing relationship was determined by the frame 
rate of the OpenGL rendering (66 Hz or ~15 ms), the updating 
rate of the OpenHaptics scheduler for the Omni device (1 kHz 
or 1 ms), and the sampling rate of the camera (50 Hz or 20 ms). 
Governed by the operating system, the mouse event ran at a rate 
of about 1 kHz (or 1 ms) in the software application. This rate 
was equivalent to the updating rate of the Omni device. Due to 
the low sampling rate of the camera, the software application 
detected a command initiation issued by the crafted tool at a 
much slower pace than by the mouse event or the Omni device. 
To synchronize the detection of command initiations by all 
interaction devices, the interaction-model coordinator added a 
penalty to the detection time of the mouse event and the Omni 
device. The penalty was 19 ms, equal to the difference between 
the sampling rate of the camera and the updating rate of the 
mouse event or the Omni device. In addition, we considered the 
VRT of the users as 200 ms, the upper boundary of the VRT in 
neuroscience literature [33]. 

 

Figure 1: Architecture of a collaborative VE with two setups in the 
interaction space: (a) heterogeneous setup and (b) homogeneous setup. 

a) 

b) 

c) 

 

Figure 2: Interaction space of the heterogeneous setup for three human 
participants as users to interact with a shared object: (a) the layout of the 
VE; (b) the participants using different devices for interaction; and (c) a 
visual display for interaction, including a 3D geological grid as the shared 
object, a visual cue, and an arrow. 
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At an interaction opportunity, the FCFS model selected the 

command initiation at the front of the queue. As illustrated in 
Fig. 3, the selection occurred at 219 ms (=VRT + penalty) after 
the rendering of the opportunity. In contrast, the DP model 
chose a command initiation among all entries of the queue 
arrived within the x-interval. As depicted in Fig. 3, the choice 
took place at 485 ms (=VRT + x-interval) following the 
rendering of the opportunity. Spreading from the emergence of 
the opportunity to the DP model’s choice of an initiation, the w-
interval was larger than one VRT to equal to 500 ms. We 
determined the length of the w-interval through several pilot 
tests to ensure that a user was unaware of a latency between 
issuing a command and the movement of the shared object 
within the w-interval. Thus, the x-interval was 285 ms, covering 
the much shorter penalty of 19 ms.  

C. Participants 

The verification had a total of 30 participants (16 males and 
14 females with the average age of 24.73 ± 3.61 years), who 
differed from those participated in our earlier work using the 
homogenous setup. We conducted a baseline check to confirm 
the eligibility of all participants, including their ages, historical 
participation in our studies, vision, and handedness. As results, 
all participants were over 18 years old and naïve to the purpose 
of the verification. They had normal to corrected-to-normal 
vision with a stereo acuity of at least 40 arc as determined 
using the Randot Stereo-test. They passed color testing using 
the Ishihara color-blindness test. They were all right-handed 
and had no impairment for holding a stylus in an elongated 
shape and a mouse. We undertook handedness test using a 
modified version of the Edinburgh Handedness Inventory. 
These participants formed 10 groups of three participants 
(users). Each group undertook co-located multi-user 
collaboration within the VE. This verification was a within-
subject-design and had the sample size of the 10 groups, which 
was larger than the minimal size (8) calculated using the Lehr’s 
formula [34]. The verification had an ethics approval. 

D. Procedure 

As shown in Fig. 2a, three seats for the three participants of 
a group were placed at 650 cm in front of the center screen (10 
 10). Each interaction device was aligned with the right arm 
of a seat for a participant’s right (dominant) hand. As depicted 

in Fig 2b, the range camera sampled the movement of the 
crafted tool. The camera was placed at a distance of 75 cm from 
the initial position of the crafted tool and calibrated according 
to this position. One flat obstacle was set between a pair of the 
participants. The obstacle prevented distractions from 
glimpsing other participants’ hand movement. Using a pair of 
shuttle goggles, each participant saw a shared geological grid in 
3D stereoscopic view, as shown in Fig. 2c. 

All groups underwent the procedure of the well-controlled 
scenario, as described in Section III. At an interaction 
opportunity, the VE application presented the shared object and 
a yellow arrow pointing to one of six directions (left/right, 
up/down, and inward/outward), corresponding to a Cartesian 
coordinate system. As soon as the arrow turned into green, the 
task of the participants was to translate the object along the 
arrow-pointed direction simultaneously. For the task, one 
participant moved the mouse while holding down its left button 
for translating the object left/right and up/down and its right 
button for translating the object inward/outward. Another 
participant pressed and held the dark gray button of the Omni 
device while using its stylus to translate the object along the 
arrow-pointed direction. The third participant moved the 
crafted tool from its initial position along the specified direction 
to translate the object. However, only one of the participants 
could actually move the object, because the DP or FCFS model 
selected his/her command initiation among all queued 
initiations. A visual cue appeared to indicate the selection, 
while all participants viewed the visual cue and the movement 
of the object. The visual cue was a unique sphere, cube, and 
torus to represent the mouse, Omni device, and crafted tool, 
respectively. The interaction opportunity lasted 10 s, as ended 
by the reappearance of the yellow arrow. Being a special case 
of Eq. (11), the well-controlled scenario inflicted conflicts for a 
worst case of collaboration, similar as the homogenous setup. 

There were totally one practice block and six testing blocks. 
The practice block consisted of three sections. In each section, 
a total of 30 interaction opportunities replicated six arrow-
pointed directions for five times. The order of these 
opportunities was randomized. Each participant used a different 
interaction device for the opportunities in one section. Thus, the 
practice block ensured each participant to acquire the proper use 
of all interaction devices, to familiarize with the task, and to 
learn how to complete an identical questionnaire. Following the 
practice block, the six testing blocks were organized into three 
pairs. Each pair had one block under the DP model and another 
block under the FCFS model. The order of the models was 
counter-balanced. After each pair, the three participants 
switched their seats on a clockwise basis. Thus, all participants 
used each device for the task under both models. Each testing 
block included 30 randomized interaction opportunities, 
replicating each arrow-pointed direction for five times. At the 
end of each block, all three participants completed the identical 
questionnaire. The whole procedure lasted about 75 min, 
including the completion of the questionnaire and short breaks 
of 3 to 5 min between two blocks. 

   

Figure 3: Timing relationship among the visual, haptic, and camera 
threads under both the DP and FCFS models for the heterogeneous setup. 
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E. Data collection 

In each testing block, we used two methods to collect data. 
One method was data logging. At each interaction opportunity, 
the VE application automatically logged the following 
information: the user who gained the control of the shared 
object and the history of interaction for all users. The latter was 
applied to compute the priority under the DP model but 
discarded under the FCFS model. The log recorded objective 
data about the actual interaction with the shared object for all 
participants in all testing blocks. 

Another method collected subjective data through a two-
component questionnaire. The first component requested each 
participant to mark a vertical line on a horizontal bar, which was 
bounded from 0% to 100%. The vertical line on the bar 
indicated the participant’s perception (that arose in his/her 
mind) of gaining the interaction with the shared object. The 
second component applied the NASA TLX [30] to assess the 
workload perceived by each participant during a block. We 
converted all answers into numeric for analyses. 

F. Data analyses 

We applied the objective data to verify whether there was any 
misbehaver (as an outlier) among the participants of each 
group. Because the well-controlled scenario inflicted conflicts 
for a worst case of collaboration, each participant was required 
to initiate an interactive command at an interaction opportunity. 
From these logged data, we derived the percentages of the 
interaction with the shared object for all participants in the 
group and computed the mean and standard deviation of the 
percentages for the group. Although the mean was similar 
(about 33.3%) for each group under the DP and FCFS models, 
the standard deviation deserved an attention of investigation. 
The standard deviation under the DP model should be zero due 
to its theoretical definition described in Section III. In contrast, 
the standard deviation under the FCFS model should be non-
zero, implying that a participant was more agile than the others. 
Any departure from these means and standard deviations 
suggested misbehavers among the participants. Their subjective 
data were to be consequently disqualified for analysis. 

To analyze the subjective data for perceived EII and 
workload, we applied the statistical methods of two-way 
analysis of variance (ANOVA) and two-tailed paired t-test [35] 
for repeated measurements. Two pre-tests needed before these 
analyses. One pre-test evaluated normality (normal probability 
density function [36]) of the data to verify their validity for the 
statistical analyses. Based on the perceived percentages of 
interaction under the DP and FCFS models, we used Eq. (8) to 
compute their means and standard deviations. Another pre-test 
was one-way ANOVA to assess the  indifference of the means 
between the DP and FCFS models. This pre-test ensured the 
comparability of the standard deviations under the DP and 
FCFS models. 

To investigate the participants’ perception of EII, we 
analyzed the standard deviations of the perceived percentage of 
interaction. Within the heterogeneous setup, each participant 
employed a different device for interaction in a testing block. 

Under the DP or FCFS model, we thus calculated the standard 
deviation of the perceived percentages for each device, 

, as follows: 
 

      ∑ , ̅  ,        (17) 

where ,  is the perceived percentage of interaction by the 
kth participant of a group to use a particular device and ̅  is the 
average perceived interactions by the kth participant. Based on 
the standard deviations derived from Eq. (17), we executed a 
two-way ANOVA (models  devices). To validate the results 
of analyzing the standard deviations, we repeated this analysis 
for the highest and lowest bounds of the perceived percentages, 
respectively. When the analyses presented any significant effect 
of differences, we performed two-tail paired t-test analyses to 
further examine the sources of the effect.  

To analyze perceived worload, we used Eq. (10) to compute 
the workload from the data collected by the second component 
of the questionnaire (NASA TLX). Then, we conducted a two-
way ANOVA on the workload (models  devices).  

G. Results and discussion 

The analyses of the objective data revealed that the total 
percentage of interaction opportunities with three command 
initiations within each group was 100% for every testing block. 
For all groups, the means of the percentages of the interaction 
were the same at about 33.3% in all testing blocks. The standard 
deviations of the percentages were indeed zero under the DP 
model and non-zero under the FCFS model. These results 
validated the participants’ behavior for analyzing their 
subjective data. None of the participants was an outlier. 

As a pre-test, normality tests verified the normal distribution 
of the subjective data for all testing blocks. As depicted in Fig. 
4a, the means of the perceived percentages of the interaction 
under both DP and FCFS models were below 50.0% and within 
the range from 35.0% to 40.0% — close enough to the 
theoretical 33.3%. As another pre-test, one-way ANOVA on 
these means revealed that there was no significant difference 
between the DP and FCFS models [F(1,9) = 0.29; p > 0.05]. 
Thus, the standard deviations of the percentages were suitable 
for acquiring the perceived EII. 

Fig. 4b illustrates the average standard deviations under the 
DP and FCFS models for all devices (i.e., the mouse, the Omni 
device, and the crafted tool). The average standard deviations 
of the DP model were smaller than those of the FCFS model. 
Two-way ANOVA (models  devices) revealed a significant 
difference between the models [F(1,9) = 24.62; p < 0.001] but 
indifference among the devices [F(2,18) = 0.11; p > 0.05]. 
There was no interaction between models and devices [F(2,27) 
= 0.71; p > 0.05]. These observations indicate that the 
differentiability of the averaged standard deviations between 
the DP and FCFS models is independent of the devices. 

On the highest bound (mean + standard deviation) of the 
perceived percentages, a two-way ANOVA found that there 
was a significant difference between the models [F(1,9) = 8.68; 
p < 0.05] but no differentiability among the devices [F(2,18) = 
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0.10; p > 0.05]. No interaction existed between the models and 
devices [F(2,27) = 1.15; p > 0.05]. The mean of the highest 
bound under the DP interaction model (52.97%) was much 
lower than its counterpart under the FCFS model (64.3%). The 
same analyses on the lowest bound of the perceived percentages 
(mean - standard deviation) yielded similar observations: 
significant difference between the models [F(1,9) = 7.89; p < 
0.05], no differentiability among the devices [F(2,18) = 0.04; p 
> 0.05], and no interaction between the models and devices 
[F(2,27) = 0.03; p > 0.05]. However, the difference of the 
means of the lowest bound between the DP (24.6%) and FCFS 
(15.7%) models was much smaller than that of the means of the 
highest bound. 

Two-way ANOVA (models  devices) on the data of PW 
indicated no significant difference between the models [F(1,9) 
= 0.85; p > 0.05] and among the devices [F(2,18) = 0.40; p > 
0.05]. No interaction existed either between the models and 
devices [F(2,27) = 0.71; p > 0.05]. Therefore, the participants’ 
PW was relatively indifferent under both interaction models and 
for three interaction devices. 

The above results indicate that, without incurring extra PW, 
the DP model provided the participants a much better perceived 
EII than the FCFS model. This finding agreed with the effect 
observed in the homogeneous setup. Importantly, the perceived 
EII under the DP model is independent of interaction devices in 
use. Thus, the findings from the homogeneous setup and this 
prerequisite verification confirm that the DP model has the 
ability of resolving conflicts and yielding perceived EII under 
the well-controlled scenario. However, this ability remains 
unclear under a quasi-practical scenario, which permits users to 
work at their own pace. As confirmed by our previous work on 
multi-user usability [20], the quasi-practical scenario 
conformed to Eq. (11) to inflict occasional conflicts at some 
interaction opportunities. This paves the way for our 
experiment on examining multi-user satisfaction under the 
quasi-practical scenario. 

V. EXPERIMENT 

Using the framework of multi-user satisfaction presented in 
Section II, the experiment compared the DP and FCFS models 
to affect multi-user satisfaction. We conducted the experiment 
in a quasi-practical scenario within a collaborative VE. Derived 
from interviews with petroleum engineers, the scenario 
emulated a decision-making process of experts in petroleum 
industry. The process involves routinely three types of experts 
(i.e., reservoir engineers, production engineers, and geologists) 
whenever a problem arises from production of an oil/gas 
reservoir. Each expert consults certain changes and 
consequences related to part of the reservoir’s properties (e.g., 
viscosity, pressure, and permeability). Together, they 
collaborate to identify factors that cause the departure of an 
actual production from its predicted counterpart. Their 
collaboration attempts to complete a property map of a 
geological grid. Although the map is a common goal to all 
experts, the individual task of each expert is uniquely different 
in the collaboration. As well, the task initiation and completion 
depend on the expert’s own pace. Thus, the active contribution 
of each expert is crucial for achieving the common goal. 

In brief, the quasi-practical scenario encompassed three 
unique attributes: (a) each user initiated and performed a task at 
his/her own pace with various lengths of completion time, (b) 
each user undertook a different task, and (c) all users 
collaborated to achieve a common goal. Hence, the scenario 
simulated a decision-making meeting of experts, who are peer 
users but specialized in various knowledge domains. The 
scenario was stochastic for both command initiation and task 
completion, as theorized by Eq. (11), to provide a relatively 
realistic situation of collaboration. That is, the scenario might 
not inflict conflicts at some interaction opportunities. In 
contrast, the well-controlled scenario used for the two-pillared 
prerequisites required all users to perform an identical task 
simultaneously to inflict conflicts. Due to its fixed processes of 
both command initiation and task completion, the well-
controlled scenario was a special case of Eq. (11).  

We assessed the multi-user usability of the DP and FCFS 
models under the quasi-practical scenario [20]. This work not 
only revealed that the DP model promoted effective, efficient, 
and satisfactory completion of collaborative tasks but also 
validated that the setup of the quasi-practical scenario was 
suitable for a collaborative VE. Hence, we employed the quasi-
practical scenario for this experiment. Due to the fulfillment of 
the two-pillared prerequisites, we provided all users in the 
experiment with identical Omni devices for interacting with a 
shared object. The devices provided the users haptic cues to 
recognize their gained access to the object. The context below 
details the experiment that had a within-subject design.  

A. Architecture 

For the experiment, we implemented the collaborative VE 
with a five-layered and multi-threaded architecture as the 
homogeneous setup illustrated in Fig. 1b. This architecture 
employed three identical Omni devices and used the haptic 
thread to handle the events of these devices. As there was no 

a) 

 

b) 

 

Figure 4: Analyses of means and standard deviations of the perceived 
percentages of the interaction: a) mean perceived percentages of the 
interaction; and b) average standard deviations. [Error bars represent 
standard errors.] 
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need of using the mouse and camera-based crafted tool, we 
disabled the camera thread and mouse manager of Fig. 1. To 
simplify the timing relationship between the visual and haptic 
threads, the camera thread and penalty in Fig. 3 were disabled 
and set as 0 ms, respectively. Other hardware and software 
components of the architecture for the experiment were the 
same as those in Fig. 1 for the prerequisite verification.  

B. Participants  

Thirty right-handed participants (17 males and 13 females 
with the average age of 25.27 ± 5.12 years old) were involved 
in the experiment to form 10 groups. Being naïve to the purpose 
of the study, they underwent the same baseline check of eligible 
ages, historical participation in our studies, stereo acuity, color 
blindness, the use of a stylus, and handedness as in the 
prerequisite verification. These participants differed from those 
in our earlier work and the prerequisite verification. For the 
experiment, the 10 groups of the participants were more than 
the minimal 8 groups required by the Lehr’s formula [34]. The 
experiment had an ethics approval. 

C. Procedure 

To carry out their collaboration, three participants of each 
group followed the same procedure under the quasi-practical 
scenario. The VE and participants’ seating had the identical 
layout as depicted in Fig. 2a. Playing the role of an expert, each 
participant used an Omni device for interaction with the shared 
geological grid that possessed numerous property cells, as 
illustrated in Fig. 2c. Fig. 5 presents the placement of the Omni 
devices and the participants. Two flat obstacles among the 
devices blocked viewing the hand movements of the 
participants. Using shutter goggles, the 3D stereoscopic view 
was enabled for all participants.  

There were three sessions: a practice session before two 
testing sessions. The practice session consisted of interaction 
opportunities, which were arbitrarily in order and examples of 
two testing sessions. In the practice session, we randomly 
assigned a pseudo-expert role to a participant of each group and 
trained him/her to become the pseudo-expert. Performing a 
unique list of tasks, each participant of the group needed to 
master three skills. The first skill was for interaction using an 
Omni device to rotate, translate, point, and highlight the shared 
object. The second skill was for collaboration by observing the 
activities of others on the display screen and using this 
observation to assist his/her next interaction. The third skill was 
for being an expert by understanding the grid organization of 

 
the shared object to perform his/her designated tasks. To 
measure whether the participants acquired these skills, we 
logged data of task completion time and the number of 
accomplished tasks. The procedure of qualifying a pseudo-
expert included two steps. At first, we used the logged data to 
ensure that a participant was able to complete about seven 
designated tasks consecutively in less than 30 s per task. 
Second, we asked the participant about his/her accomplishing 
the designated tasks. The outcomes of these steps were in 
agreement to qualify the participant as a pseudo-expert. The 
practice session lasted about 20 min, ended after each 
participant filled out an identical questionnaire.  

Two testing sessions corresponded to the DP and FCFS 
models, respectively. The order of the sessions was counter-
balanced for all groups. In each session, all pseudo-experts of a 
group played their trained roles to complete collaboratively a 
property map on the shared object (the common goal). 
According to his/her role, each pseudo-expert was assigned a 
unique list of designated tasks, corresponding to particular 
properties for a set of cells. A cell with a particular property 
needed to be found and highlighted with a color to label the 
property in consultation. Complementing each other, all lists 
together formed the property map on the shared object. Each 
pseudo-expert could decide whether or not to take part in an 
interaction opportunity. The participation was logged by his/her 
pressing the dark gray button on the stylus of his/her Omni 
device. When a pseudo-expert gained access to the shared 
object at an opportunity, his/her hand could feel a haptic cue via 
his/her Omni device. The haptic cue was a trapezoidal force, as 
depicted in Fig. 6. The access permitted the pseudo-expert at 
his/her own pace to accomplish one designated task from 
his/her list. The accomplishment of the task ended one 
interaction opportunity and began the next opportunity. As 
described in Section IV, the same visual signals indicated the 
beginning and end of an opportunity. A consent decision of the 
map marked the achievement of the goal. 

Each testing session was divided into four blocks, with 30 
interaction opportunities per block. Within a block, the number 
of accomplished tasks was not constant however. We 
constrained the time length of each block to be 5 min. This 
constraint yielded the total length of a testing session to be 40 
min, including the time of completing the four blocks, the time 
of filling the questionnaires and short breaks. The length of the 
session met the upper threshold of human sustained 
concentration [37]. Thus, each group of three participants took 
at most 2 h in the study, including the baseline check, the 
practice session, and both testing sessions. Notably, the length 
of 2 h complied with that of regular meetings of experts in 
petroleum industry. 

 

Figure 5: Corresponding placement between three Omni devices and three 
participants in the collaborative VE of the experiment. 

 

 
Figure 6: Force profile of the haptic cue. 
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D. Data collection and analyses 

Same as in the prerequisite verification, we gathered 
objective and subjective data for each group. The objective data 
were logged information about each pseudo-expert at an 
interaction opportunity, such as the initiation of his/her 
interactive command, the timing of the initiation, the 
identification number of the pseudo-expert who gained access 
to the shared object, the time length of accomplishing a task, 
and the history of interaction for all pseudo-experts. The 
subjective data were the same as those in the prerequisite 
verification. 

Under the framework of multi-user satisfaction, we used all 
metrics presented in Table I for data analyses. From the logged 
data, we applied Eqs. (1)–(3) to compute trust and Eqs. (4)–(7) 
to assess TF, DT, and CS for measuring usefulness. Based on 
the subjective data, we used Eq. (9) to calculate the perceived 
percentages of interaction for measuring pleasure and Eq. (10) 
to obtain PW for measuring comfort. We undertook these 
measurements from collected data of both testing sessions, 
respectively. Because all metrics of trust were requirements to 
ensure intended behaviors of the VE, there would be 
unnecessary to compare each metrics between the DP and FCFS 
sessions. To compare each metrics of usefulness, pleasure, and 
comfort of the DP session to those of the FCFS session, we used 
the statistical method of one-way ANOVA (repeated 
measures). 

Again, we performed pre-tests on the data to ensure the 
absence of outliers and the verification of normality before 
ANOVA. However, the criterion of determining outliers 
differed from that used in Section IV. Under the quasi-practical 
scenario, there might be no conflicts at some interaction 
opportunities. Each pseudo-expert of a group needed to 
participate in collaboration because of his/her unique task list 
to complement his/her peers’ lists. Thus, the number of 
commands initiated by a pseudo-expert below a minimal 
threshold for a testing session indicated him/her to be an outlier. 
We set the threshold to be 25%, much lower than the average 
participation of 33% expected for the group. Both objective and 
subjective data of misbehavers were to be consequently 
disqualified for further analyses. 

E. Results and discussion 

There was no outlier among the participants of each group. 
For all groups, the data obtained for the metrics of usefulness, 
pleasure, and comfort in Table I were normally distributed 
under both testing sessions. These pre-test outcomes ensured 
ANOVA on the data. 

For trust, the analyses of logged data revealed a consistency 
of RTR, SI, and CR under both DP and FCFS models. Table II 
gives the logged data averaged over all groups of participants 
for each of these metrics. System response time, R(t), was 
averaged at 300.00 ± 8.41 ms and 15.50 ± 0.48 ms for the DP 
and FCFS models, respectively. This response time was less 
than the allowed upper boundary of 500 ms –— the w-interval 
as depicted in Fig. 3. When questioned after all sessions, none 
of the participants noticed a delay between initiating an 

interactive command and enacting the interaction. These met 
the condition of RTR, as required in Eq. (1). The number of 
logged command initiations per group, ∑ , was more than 2 
at each interaction opportunity. This indicates the realization of 
SI, as specified in Eq. (2). Among the multiple initiations, the 
VE granted one participant an exclusive access, ∑ , to the 
shared object. This validates the fulfillment of CR, as indicated 
in Eq. (3). Thus, the collaborative VE met all requirements to 
ensure its intended behaviors at all interaction opportunities 
under both DP and FCFS models. 

For usefulness, the ANOVA of TF revealed no significant 
difference between the DP and FCFS models. This was evident 
by [F(1,9) = 0.06; p > 0.05] for TF1 and [F(1,9) = 2.72; p > 
0.05] for TF2. Being unit-less, TF1 was averaged as 55.17 ± 
5.65% and 57.81 ± 11.36% under the DP and FCFS models, 
respectively. Similarly, TF2 had a mean of 93.85 ± 3.88% under 
the DP model versus 91.70 ± 4.70% under the FCFS model. 
However, the ANOVA of DT yielded a significant difference 
between both models [F(1,9) = 5.55; p < 0.05]. The average DT 
was 35.61 ± 1.15 min for the DP model and 39.57 ± 2.31 min 
for the FCFS model. As illustrated in Fig. 7, the average DT 
was much less spread among all groups under the DP model 
than under the FCFS model. The ANOVA on CS indicated a 
significant difference between the DP and FCFS models 
([F(1,9) = 72.38; p < 0.05]). The average value of CS was 95.40 
± 1.28% under the DP model compared to 74.10 ± 7.57% under 
the FCFS model. The standard deviation was much smaller 
under the DP model than under the FCFS model, as depicted in 
Fig. 8.  

Unsurprisingly, the results of analyses on pleasure and 
comfort were in agreement with those of the homogeneous 
setup and the prerequisite verification (i.e., the heterogeneous 
setup). That is, ANOVA on the standard deviation of perceived 
percentages of interaction revealed a significant difference 
between both models ([F(1,9) = 41.16; p > 0.05]). Further 
analyses confirmed this observation with [F(1,9) = 15.62; p < 
0.05] for the lowest bound and [F(1,9) = 20.68; p < 0.05] for 
the highest bound. Again, there was no significant difference of 
PW between both models [F(1,9) = 1.05; p > 0.05]. 

These findings imply that the DP model offers an advantage 
over the FCFS model on multi-user satisfaction. Compared to 
the FCFS model, the DP model promotes usefulness of the 
collaborative VE by offering the similar level of TF, reducing 
DT and enhancing CS. With the VE’s intended behaviors 
ensured by trust, the usefulness was accompanied with fostering 

TABLE II. 
THE FULFILLMENT OF THREE METRICS FOR TRUST AVERAGED OVER ALL 

GROUPS OF PARTICIPANTS. 

Logged 
Data  

DP FCFS Criteria 
Metrics 

Fulfillment 

 R(t) 
300.00 ± 8.41 

ms 
15.50 ± 0.48 

 ms 
≤500 
ms 

RTR:  Yes 

∑   2.82 ± 0.09 2.71 ± 0.18 ≥2  SI:     Yes 

∑   1 1 =1 CR:    Yes 
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better pleasure for the similar level of comfort in the VE. This 
advantage might be achieved by providing the perception of EII 
to fulfill cognitive needs among multiple users as pleasure. 
After all, the perception could increase the awareness of 
multiple users for establishing a foundation toward user 
satisfaction [2].  

VI. GENERAL DISCUSSION 

Existing research efforts of improving collaborative VEs 
disregard the cognitive needs of multiple users and employ 
various metrics of user satisfaction [15][16][38]–[42]. 
Measuring user satisfaction experienced in single-user tasks, 
the existing metrics are unfit to gauge multi-user satisfaction in 
collaborative work. In contrast, our framework of multi-user 
satisfaction has two advantages: (a) to champion the 
combination of both ISO/IEC 25010:2011 standard [19] and 
multi-user cognitive needs and (b) to foster the collaboration of 
multiple users. Although the framework takes account objective 
and subjective data to remedy individual variations in 
interpreting questionnaires, future work is needed to validate 
each metrics by comparing its objective and subjective data.  

The framework is generic and applicable to both distributed 
and co-located settings as long as a VE underlying a 
collaboration fulfills all three metrics of trust and provide 
proper awareness among the users. Derived from ISO/IEC 
25010:2011 standard [19], the metrics of trust reflect the nature 
of collaboration, the metrics of usefulness indicate the achieved 
degrees of pragmatic aims under collaboration, and the metrics 
of pleasure and comfort give levels of cognitive needs fulfilled 
and of workload required for collaboration. In other words, the 
metrics of each factor is related to collaboration but 
independent of users’ tasks. The framework would thus be 
potential for gauging multi-user satisfaction under a 
collaborative system, which supports users’ interaction with 
shared objects/information. 

Based on the framework, our experiment demonstrated the 
effect of the DP model on multi-user satisfaction. Targeting  
multi-user cognitive needs (i.e., EII) for collaboration, the DP 
model resolves conflicts to fulfill Eq. (3) and thus to promote 

multi-user satisfaction within collaborative VEs. This 
encourages genuine collaboration among multiple users to 
cultivate the efficiency of a collaboration [2]. To our best 
knowledge, this experiment advocates uniquely the role of 
interaction models in affecting multi-user satisfaction. 
Although the experiment was undertaken in a co-located 
setting, the outcomes of the study are serviceable to 
collaborative work in a distributed setting. This versatile 
serviceability needs to be warranted through the 
implementation and verification of RTR, SI, and CR for a multi-
user collaborative system. 

In our experiment, we compared the DP model to the FCFS 
model that is mostly common for conflict resolution. The 
comparison overcomes an issue of determining a threshold 
value for applying each metrics, because such determination is 
usually dependent on users’ tasks. The comparison was 
supported by two well-examined considerations. One 
consideration was two-pillared prerequisites. The observations 
of both prerequisites built a solid foundation to apply the 
homogenous setup of interaction devices and haptic cues for the 
comparison. Another consideration was scenarios of multi-user 
collaboration. The two-pillared prerequisites used a well-
controlled scenario, which inflicts conflicts at each interaction 
opportunity. In contrast, the comparison employed a quasi-
practical scenario, which mimics a collaborative meeting of 
industrial experts. Depending on the tasks of each expert, the 
scenario did not always inflict conflicts at some interaction 
opportunities as validated in our work on usability of 
collaborative VEs [20]. Together, the two considerations not 
only confirmed conflict resolution of the DP model for 
providing the perception of EII but also verified the quasi-
practical scenario for multi-user collaboration — a novel aspect 
of the experiment. 

As summarized in Table III, both DP and FCFS models 
ensure the fulfillment of trust and realize the same level of 
comfort for a multi-user collaborative VE. The DP model 
underlies the fulfillment of the framework of multi-user 
satisfaction significantly better compared to the FCFS model. 
Although both models have an indifference of high TF, the DP 
model results in lower DT and higher CS than the FCFS model. 

 
Figure 7: Average decision time among all groups under the DP and 
FCFS models. [Error bars represent standard errors.] 
 

 
Figure 8: Average consensus among all groups under the DP and FCFS 
models. [Error bars represent standard errors.] 
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TABLE III.  
COMPARISON OF THE INTERACTION MODELS. 

Factors/metrics DP FCFS 
Significant 
difference 

Trust  Yes  Yes  — 

U
se

fu
ln

es
s 

Task 
focus 

High High No 

Decision 
time 

Low High Yes 

Consensus High Low Yes 

Pleasure High Low Yes 

Comfort Moderate Moderate No 

 



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. XX, NO. X, MONTH 201X 
 
 

13

These observations indicate that the DP model elevates the 
usefulness of the VE by promoting genuine collaboration. The 
elevation concurs with higher pleasure under the DP model 
compared to the FCFS model. Consequently, the DP model 
fosters higher multi-user satisfaction than the FCFS model. This 
outcome results directly from the distinct principles of conflict 
resolution used by both DP and FCFS models, as described in 
Section III. In multi-user collaboration, the DP model meets 
cognitive needs of the users to defy the “winner-takes-all” 
mentality of the FCFS model. That is, the perception of EII 
plays a crucial role in fulfilling multi-user satisfaction. 
Evidently, the DP model persuades collaboration by offering 
EII for all users. Hence, how an interaction model resolves 
conflicts to meet cognitive needs has a great impact on 
achieving a common goal in a multi-user collaborative VE.  

Interestingly, the DP model was independent of the types of 
interaction devices. The comfort under both DP and FCFS 
models were similar, as observed in the two-pillared 
prerequisites and the experiment. That is, the utilization of 
different types of interaction devices, such as a cheap mouse, a 
reasonably costed Omni device, and an expensive crafted tool 
with a range camera, did not impair the workload of multiple 
users in collaborative work. This opens a possibility of using 
cheaper interaction devices for a multi-user collaborative VE if 
developmental costs of the VE are a concern. The benefit of 
cost reduction certainly strengthens the DP model for use in 
industrial settings of collaboration. 

In both well-controlled and quasi-practical scenarios, we 
imposed a constraint of no verbal communication among the 
participants of each group. This constraint enabled us to 
examine the effect of the DP model on multi-user satisfaction. 
However, verbal and visual communication among multiple co-
located or distributed users might also contribute to their 
perceived collaboration and thus to multi-user satisfaction. 
Further work remains to examine the robustness of the DP 
model to fulfill the framework of multi-user satisfaction under 
verbal and visual communication. 

VII. CONCLUSION 

We presented a framework of multi-user satisfaction to 
incorporate both the ISO/IEC 25010:2011 standard and the 
cognitive needs of multiple users. Based on the framework, we 
conducted an experiment on assessing the DP and FCFS models 
for multi-user interaction within a collaborative VE. The 
experiment was supported by two well-examined 
considerations. One consideration is a prerequisite verification. 
The verification ensured that the perception of EII offered by 
the DP model is independent of the types of interaction devices. 
Another consideration is the use of a validated quasi-practical 
scenario to mimic a collaborative meeting of industrial experts. 
The results of the experiment revealed that, compared to the 
FCFS model, the DP model induces significantly higher 
degrees of usefulness and pleasure while sustaining intended 
system behaviors by trust and maintaining a similar level of 
comfort for multi-user satisfaction. The experiment sheds a 
light on how to design interaction models to promote genuine 

collaboration of multiple users within VEs without considering 
verbal communication. Future work will thus validate the 
metrics of the framework and verify the robustness of the DP 
model under verbal communication in a practical scenario of 
multi-user collaboration.  
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