Abstract

This paper describes the Karta-CASA project, an attempt to design an agent frame-
work that provides a flexible, extensible and easy-to-use base for constructing various
single-user and distributed groupware visualization and concept mapping applications.
The structure and the development process behind Karta-CASA are detailed, and sev-
eral novel aspects of the system are described. Details of several applications based on
the framework are provided. Further, this paper suggests several research directions
for extending the Karta-CASA system into areas that have not yet been explored by
other agent visualization systems.

The Karta-CASA framework: Concept
mapping and multi-agent systems

Viadimir Sedach, Eunice Lim, Kurtis Fraser and Rob Kremer
vsedach/lime[fraserkalkremer@cpsc.ucalgary.ca

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

1 Introduction

There exist many methods of visually presenting and manipulating information.
Concept mapping, defined by Kremer [11] as “an intuitive visual knowledge rep-
resentation technique,” is a general method applicable to visualizing a wide
variety of information sources. Multi-agent systems (MAS) [9] can be used to
construct both single-user and distributed groupware [4] applications. The syn-
thesis of these two ideas is the concept behind the Karta-CASA framework. The
Karta-CASA framework project is an attempt to create a flexible, easy-to-use
base for constructing either single-user or distributed groupware concept map-
ping, visualization, and graph drawing applications that can potentially exploit
the unique capabilities of multi-agent systems. The Karta-CASA framework
is based on the CASA (Cooperative Agent System Architecture) agent archi-
tecture, described in [13], and the Karta concept mapping tool, described in
Section 2.

2 The Karta Concept Mapping Tool

Karta is an extensible tool allowing users to create and manipulate concept
maps. Karta is written in Java, and is both a complete stand-alonc application
and a library that can be customized and embedded within any Java applica-
tion that requires concept mapping or graph drawing capabilities. Integration
with the embedding system is facilitated by both procedural interfaces and an
architecture based on a variation of the command design pattern [6]. The visual
appearance of a concept map is controlled by a novel system of hicrarchical
style (visual appearance property) “shects.” Karta includes a novel method for
dealing with edge congestion [3] based on the EdgeLens system [25].

3 The Karta-CASA Framework 3

3 The Karta-CASA Framework

3.1 Introduction

The Karta-CASA project is an agent framework in CASA that embeds Karta
in order to provide a flexible, extensible and easy-to-use base for constructing
various single-user and groupware visualization and graph drawing applications.
A major design goal of Karta-CASA is to take advantage of the capabilities of
CASA specifically and multi-agent systems in general. Since in CASA inter-
agent communication takes place using messages in the KQML |5] or XML [1]
standards, it is possible for other agent frameworks or even non-agent networked
systems to use the Karta-CASA framework. Several applications with varied
scope and purpose have been constructed using the Karta-CASA [ramework,
details of which are provided in Section 4. Another goal of Karta-CASA was to
demonstrate that multi-agent systems in general, and CASA in particular, are a
suitable and even desirable platform for building groupware and distributed soft
real-time applications. The existing CASA facilities and inherent flexibility in
creating new agent types simplified the construction of the framework consider-
ably, particularly those parts of it dealing with networking and communications.

3.2 The Karta-CASA Architecture

The CASA architecture [13] is a fundamentally very flexible agent communi-
cations framework that does not impose or favor any particular application
architectural style. This made the question of how to structure the Karta-
CASA gsystem an open ended one. Several approaches were considered, and
from these, two were evaluated: a replicated or peer-to-peer system architec-
ture [15, 8, 17], and a client-scrver architecture. Upon further progress in the
design and exploration of the usage scenarios, it was found that a replicated
architecture would offer few benefits for the intended use of Karta-CASA over
a client-server approach while being more complicated to implement. In consid-
eration of this conclusion, the client-server architecture was chosen as the basis
for Karta-CASA.

The next step in the design involved choosing the particulars of the client-
server architecture implementation. This phase involved several iterations through-
out the design and implementation stages of the project. The final design
blueprint can be seen in Figure 1. Note that while the terminology used
and some of the aspects of the architecture resemble that of the Model-View-
Controller [18], there are important differences. In the Karta-CASA architec-
ture, the Supervisor agent acts as the user interface, embedding an instance of
Karta in its own address space. The Supervisor and its Karta instance com-
municate synchronously using their respective procedural interfaces. The role
of the Supervisor is to take any commands generated by the input to its Karta
instance and scnd them to the View agent to which it is subscribed to (more on
this below) for consideration. When a View agent receives a command from one
of its Supervisor subscribers, it determines whether that command may affect

3 The Karta-CASA Framework 4

Persistent Store J
[» | ¢emmand Interpretar
N\ R R Wimuar A e ke P S n~-|..; AL L
World Mioael Agent VvieWw Rgent Sy pervisor Agent Karta instance
I t e * Command Make
Command Filter

Fig. 1: A concept map of the Karta-CASA architecture.

the underlying model of the graph or not using the decision procedure of the
Command Filter interface. If the command could affect the Model, it is passed
on to the Model agent to which the View agent is subscribed to, and if not,
the command is added to a queue to be sent to all the subscribing Supervisor
agents. When a Supervisor agent receives a command from the View agent to
which it is subscribed, it executes that command unconditionally, which de-
pending on the command may produce a change to the graph on the screen.
The Model agent receives commands from View subscribers, and either rejects
them, or acts on them to affect the underlying model represented by the View
agents. When the underlying model changes, it sends a command notifying all
the View agent subscribers of the fact, which in turn send commands to all of
their Supervisor agent subscribers. In addition, the Model agent keeps a per-
sistent copy of the state of each View agent and a list of all the model changes
that have occurred since a particular View canceled its subscription, enabling
Karta-CASA application state to persist across work sessions.

Communication in Karta-CASA is accomplished by sending messages con-
taining Karta commands, and occurs bi-directionally between the Model-View
and View-Supervisor layers. Since one of the intended uses of Karta-CASA is
building groupware applications, sequence consistency [15] was selected as a ba-
sic requirement. This is accomplished by having a subscription model, where
several Supervisor agents may subscribe to a single View agent, and several
View agents may subscribe to a single Model agent, the "publisher" sending
sequentially numbered commands to its subscribers. The Model, View and es-
pecially the Supervisor agents lack any sophisticated reasoning facilities, mostly
responding to messages as they come in, so they can all be classified as reactive
agents [2, 26]. In hindsight, it is interesting to note how much similarity the
Karta-CASA architecturce also bears to Brooks’ idea of a layered agent architec-
ture [2]. Karta-CASA is made up of layers of asynchronously communicating
agents. Information is passed from the Supervisor up to the View and then
to the Model agent, each agent layer being able to subsume the role of lower-
level agents by modifying or suppressing their messages, and each successive
layer interpreting more of the lower layers’ information in its own higher-level

4 Karta-CASA Applications 5

context, the Supervisor agent sending raw graph commands, the View agent
filtering these to Model-relevant commands and the Model agent responding to
the information passed to it by the View by modifying the world or notifying
the view of changes in the world as appropriate.

It is important to note that the architecture presented here is itself a pattern.
From the beginning, the requirements focused on generality as a major goal of
Karta-CASA. The result is that the final architecture can be customized to
work with some parts omitted or expanded with additional functionality to
suit a variety of applications. This generality has been made use of in existing
Karta-CASA applications, details of which are provided below in Section 4.

3.3 Karta-CASA Implementation

The Karta-CASA system is implemented as three base classes and an inter-
face: the Supervisor, View and Model agent classes, cach of which extends the
basic agent class of CASA, and the Command Filter interface. Applications
based on Karta-CASA are built by inheriting from and extending the Super-
visor, View and Model base classes and implementing the application-specific
logic behind the Command Filter interface. Note that it is not necessary to im-
plement all three classes in all Karta-CASA applications. The Model agent may
be omitted for those applications that do not need to manipulate a shared un-
derlying model. For example this is the case in the Groupware Graph Drawing
and Ontology Editor applications, detailed below, where the Groupware Graph
Drawing application does not have an underlying model, and the model of the
Ontology Editor is not shared and its interface simple enough that integrating
the model manipulation capabilities right into the extended View agent is sim-
pler and more robust than constructing a separate Model agent. The authors
believe the capability to omit a component of the framework is just as impor-
tant as the features that framework provides, and the inherently loose coupling
enabled and encouraged by agent-based systems is a great benefit to providing
this capability.

4 Karta-CASA Applications

4.1 Groupware Concept Mapping

The Model, View and Supervisor base classes include all the functionality needed
to build a Karta-CASA application (see Figure 2). Somewhat unexpectedly,
this functionality was also enough to cnable a useful multi-user concept map-
ping [12] application, where scveral users could edit a single concept map at the
same time. This functionality was used as an early stage proof-of-concept of the
Karta-CASA design, lending invaluable input to the architecture revision pro-
cess, and was later dubbed the Groupware Concept Mapping application. The
Groupware Concept Mapping program itself compromises nothing more than
the base classes for View and Supervisor agents, that when instantiated cnable
several Supervisor agents to subscribe to a single View agent, the aggregate

4 Karta-CASA Applications 6

View Agent

F’Essthro ugh Filte

=

Supervisor Agent Karta Instance

Fig. 2: A concept map of the Groupware Concept Mapping application. As the
name suggests, the Passthrough Filter accepts all commands.

system acting as a groupware application for drawing concept maps, including
all of the functionality of stand-alone Karta.

4.2 MASExplorer

Early on in the Karta-CASA project, the idea of having an application to vi-
sualize a multi-agent system as a concept map became a goal of the project.
The initial idea of the system was to display agents and membership relation-
ships between them to visualize the structure and relationships of a MAS in a
straightforward way. In contrast to other work on MAS visualization [22, 20, 19]
no attempt is made to visualize the inner workings of individual agents or to
visualize the temporal changes in a MAS, which the authors thought could be
more simply visualized using the stepper interface that is part of the advanced
debugging facilities built into CASA. The resulting system, dubbed the MA-
SExplorer, can now be used to examine the structure and memberships of an
arbitrary MAS (see Figure 3). Although currently there is no provision for doing
so, MASExplorer can be adapted to visualize a task-specilic MAS with struc-
tures and graphics appropriate to that MAS model [24]. Other useful extensions
to MASExplorer are the visualization of social commitments and graphic ma-
nipulation of multi-agent systems. A more in-depth discussion is provided in

4 Karta-CASA Applications 7

wl CASA - Local Area Coordinator Window (sockalcommitments)

¥
i mr= . o B B
o Agent Agent Commands LAC yetow Pages Cooperstion Domsins indowe leip | eip
CD Cormmitrments Comnmand

Agent Agent Commands LA vl Cooperstion Domains Window Views Help
0 | Commitments | Graph | Commmand

L ee B

1 L] | [I Qlo

Fig. 3: A typical MASExplorer session.

Section 5.

The architecture of MASExplorer can be seen in Figure 4. Only the Model
and View agents are extended with specific functionality for the MASExplorer
application - the base Supervisor agent class has enough capabilities to enable
it to act as an effective GUI for the application. The Model agent is responsible
for gathering all information about the MAS, passing it on to the subscribed
View agents to interpret and represent with View-specific options and graphics
to the subscribers of a View. The built-in groupware capabilities of the View
agent are leveraged to provide the option of having several users interact with
a specilic visualization simultaneously.

4.3 Ontology Editor

Each agent in the CASA architecture includes a performative type hierarchy
(subsumption lattice), used to reason about received messages (see [10]), from
here on referred to as an ontology. The ontology itself is structured as a directed
acyclic graph, the content of which is a representation of knowledge, making the
ontology a type of computational concept map [11] that can be conveniently vi-
sualized and graphically manipulated. The Ontology Editor application was
created to do precisely that. Upon receiving a request from the user to edit the
agent’s ontology, a View and Supervisor agents start up. The View agent con-
verts the ontology of the agent whose ontology is being edited into an internal

Agent Agent Commands LAC # Cooper ation Domains Window Help Lt Agent Commands LAC - + Cooperstion Domars Window Help
0 | commamens | Commana | D | Commaments | Comemand
Coaper stxn Domasr: 0 Partcipants ot stmon Do D Particpants
. 1017160 7
s sedacvEICT7 160, b cosc ucaigary.

BASViewAgent Kt sVaewhgent ? T ~0000

4 Karta-CASA Applications 8

MAS Model Agent

MAS View Agent

r

-

Supervisor Agent [* » Karta Instance

Fig. 4: A concept map of the MASExplorer architecture.

representation suitable for manipulation, then constructs a graph from its inter-
nal representation, laid out according to a graph layout algorithm adapted from
Paulisch and Tichy [16] and Sugiyama [21], and then sends commands to the
Supervisor to draw that graph. See Figure 5 for an example of the final result.
The user can then proceed to view and manipulate the graph representation of
the ontology using intuitive menu commands.

An interesting aspect of the Ontology Editor is how the Karta-CASA archi-
tecture is employed (see Figure 6). Here, the View agent is run in the same
address space as the agent whose ontology is about to be edited, and commu-
nicates with that agent using the procedural interfaces defined by CASA. This
means that no additional code had to be added to any of the existing CASA
agents - only the separate GUI class had to be modified to add the Ontology
Editor as a menu option if the Ontology Editor classes were present, via reflec-
tion [7]. The Supervisor agent is then run as it normally would be, and all the
Supervisor-View agent interaction happens normally by sending messages. This
means that the Ontology Editor can be used to edit the ontologies of agents
on remote machines provided that the View agent class has been loaded on the
remote JVM, regardless of whether those machines have GUT capabilities or not.

5 Future research directions 9

CASA - Local Area Coardinator Window (sscialcommitments)

LAC Window el
AR Agents } | Desktop | Commments | Connand
— —
- oasa B Agent: 2001 a0 @
o= kartaCASA
[} Ressanriac [oreph |

Restare onisbogy
Maks child node
Delate node
Cellapse nods
Cut
Cepy

Bring ta front
Bring farward

Send backwards
58Na 10 EbeK

CurEMDE Karts

Shiw Eye

Ext

-‘-l-;'..,',.." -wn.nn' -.‘, "" ’ .,'. “‘. . _’. m"m:-

Fig. 5: A typical Ontology Editor session.

By adding some rudimentary message handling code to the agents themselves,
it is possible to decouple the View agent from the agent whose ontology is being
edited entirely.

5 Future research directions

One of the aspects of the CASA system is that besides sending messages to cause
agents to perform actions, there also exist means for dircct agent manipulation
through a command-line language or a graphical interface. One of the concepts
for MASExplorer was the possibility to use it as another means of directly ma-
nipulating agents. A human user would be able to request services from a MAS
by finding an agent that offers those services, based on visual cues, and then
request those services from that agent via menu items or direct manipulation
such as dragging the representation of an agent from one place to another (for
example to direct an agent controlling a robot to go from one room to another).

Another proposed extension relating to the example given above is visual-
izing a MAS as the model it is supposed to represent. A CASA-based MAS
has certain intrinsic relationships between the agents, such as membership in

5 Future research directions 10

Agent

Ontology View Agent

Orntology Model F+er

Ontology Supervisor Agent » Karta Instance

Fig. 6: A concept map of the Ontology Editor architecture. Here, Agent refers
to the agent whosc ontology is being cdited.

cooperation domains [13], that the current version of MASExplorer is designed
to visualize. In addition to these properties, a MAS is frequently used to model
some external system, for example, a team of robots navigating a building.
MASExplorer can be extended to visualize this model. Using the above ex-
ample, a blueprint of the building can be imported and the agents controlling
the robots each placed in the part of the blueprint corresponding to the robot’s
physical location. The proposed extension can in principle be used to make a
2-dimensional visnalization of any kind of MAS model.

A third proposed extension to MASExplorer involves the visualization of so-
cial commitments [10]. This extension will be useful for both understanding the
workings and interactions and for the debugging of an arbitrary MAS. The basic
idea is to visualize an individual commitment as an arc pointing between the
debtor and the creditor of the commitment. More research and experimentation
will be required to visualize in a coherent way commitment-based conversations

6 Conclusions 11

[10] between agents.

A practical extension that will enhance the usefulness of Karta-CASA for
constructing groupware applications is a framework for change awareness [23,
14]. The capabilities of the change-awareness framework should encompass the
range of currently known techniques, from identifying what parts of the concept
map are being edited by whom, to sophisticated revision control systems with
intelligent branching and merging features.

6 Conclusions

This paper has introduced the Karta-CASA project, an agent framework for
constructing various single-user and groupware visualization and graph drawing
applications. The structure and some of the thinking behind the development
process were detailed and justified, and scveral novel aspects of the system were
described. Several applications constructed using Karta-CASA were described,
with attention paid to how the framework is utilized. Further, this paper has
suggested several research directions for extending the Karta-CASA system into
areas that have not yet been explored by other MAS visnalization systems.

References

[1] Extensible Markup Language (XML), August 2005,
http://www.w3.org/XML/.

[2] R. A. Brooks, A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation 2 (1986), no. 1, 14-23.

[3] M. S. Carpendale and X. Rong, Framining edge congestion, CHI ’01 Ex-
tended Abstracts on Human Factors in Computing Systems (New York),
ACM Press, 2001, pp. 115-116.

[4] Clarence Ellis and Jacques Wainer, Groupware and computer supported
cooperative work, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence (Gerhard Weiss, ed.), MTT Press, 2000, pp. 425-457.

[5] Tim Finin, Yannis Labrou, and James Mayfield, KQML As An Agent Com-
munication Language, Software Agents (Jeffrey M. Bradshaw, ed.), MIT
Press, 1997, pp. 291-316.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
patterns, pp. 233-242, Addison-Wesley Prolessional, 1995.

[7] Dale Green, The Reflection API 2005,
http://java.sun.com/docs/books/tutorial /reflect /index.html .

[8] Saul Greenberg and David Marwood, Real time groupware as a distributed
system: concurrency control and it’s effects on the interface, CSCW 94,

6 Conclusions 12

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[13]

[19]

Proceedings of the Conference on Computer-Supported Cooperative Work,
ACM Press, 1994, pp. 207-217.

Michael N. Huhns and Larry M. Stephens, Multiagent systems and soci-
eties of agents, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence (Gerhard Weiss, ed.), MIT Press, 2000, pp. 79-120.

R. Kremer and R. Flores, Using a performative subsumption lattice to sup-
port commitment-based conversations, Proceedings of the Forth Interna-
tional Joint Conference on Autonomou Agents and MuliAgent Systems
(New York), ACM Press, 2005.

Rob Kremer, Concept mapping: Informal to formal, Proceedings of the
Third International Conference on Conceptual Structures, Knowledge Ac-
quisition Using Conceptual Graphs Theory Workshop, 1994, pp. 152-167.

Rob Kremer and Brian R. Gaines, Groupware concept mapping techniques,
Proceedings SIGDOC’94: ACM 12th Annual International Conference on
Systems Documentation, Ban(l, Canada (New York), ACM Press, 1994,
pp. 156-165.

Robert C. Kremer, Roberto A. Flores, and Chad La Fournie, A perfor-
mative type hierarchy and other interesting considerations in the design of
the casa agent architecture, Workshop on Agent Communication Languages
2003 (Berlin), Springer-Verlag, 2003, pp. 59-74.

L. McCaffrey, Representing change in persistent groupware environments,
Grouplab report, University of Calgary, January 1998.

Manoj Misra and Isi Mitrani, On the propagation of updates in distributed
replicated systems, Performance Evaluation 35 (1999), 131-144.

F. N. Paulisch and W. F. Tichy, Edge: an extendable graph editor, Software
- Practice and Experience 20 (1990), 63-88.

David P. Reed, Naming and synchronization in a decentralized computer
system, Ph.D. thesis, Massachusetts Institute of Technology, 1978, also
available as MTT LCS Technical Report 205.

Trygve M. H. Reenskaug, The original MVC XEROX PARC 1975-
79, http://heim.ifi.uio.no/ trygver/themes/mve/mvc-index.html, Septem-
ber 2005.

David Rehor, David Kadlecek, Pavel Slavik, and Pavel Nahodil, Vat - «
new approach to multi-agent systems visualization, The 3rd TASTED In-

ternational Conference on Visualization, Imaging, and Image Processing
(VIIP 2003) (Calgary, AB, Canada), ACTA Press, 2003.

6 Conclusions 13

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Michacl Schroeder and Penny Noy, Multi-agent visualisation based on mul-
tivariate data, AGENTS ’01: Proceedings of the fifth international con-
ference on Autonomous agents (New York, NY, USA), ACM Press, 2001,
pp- 85-91.

Kozo Sugiyama, Graph drawing and applications for software and knowl-
edge engineers, World Scientilic, 2002.

Pedro Szekely, Craig Milo Rogers, and Martin Frank, Inierfaces for under-
standing multi-agent behavior, TUT '01: Proceedings of the 6th international
conference on Intelligent user interfaces (New York, NY, USA), ACM Press,
2001, pp. 161-166.

James Tam and Saul Greenberg, A framework for asynchronous change
awareness in collaboratively-constructed documents, Proceeding of the In-
ternational Workshop on Groupware (CRIWG 2004), Springer, 2004,
pp. 67-83.

Jeff Weston, Visualization for multi-agent systems, Septlember 2005,
http://mas.pf.itd.nrl.navy.mil /visualization. html.

N. Wong, S. Carpendale, and S. Greenberg, Edgelens: An interactive
method for managing edge congestion in graphs, Proceedings of IEEE Sym-
posium on Information Visualization, TEEE Press, 2003.

Michael Wooldridge, An introduction to multiagent systems, pp. 89-104,
John Wiley & Sons, 2002.

