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ABSTRACT:

Let F be a field and let Q(a) = ¢*(a)---¢f*(¢) € F[a) be a polynomial of degree n
where ¢1(a),- -+, qx(a) are distinct irreducible polynomials. Let yi(a), -, yr(a), z1(a), -, z,(a)
be r + s, n — l-degree polynomials. It is shown that if Card(F) > maxi<ick 2deg ¥ () - 2
then the number of nonscalar multiplications/ divisions required to compute the coefficients of
zi(a)y1(a) mod Q(a),i = 1,---,s by straight line algorithms is s(2n — k). We also prove that if
H is a s x r matrix with entries from F then the number of nonscalar multiplications/ divisions
required to compute the coefficients of (z1(a),- -, z,(a))H(s1(e),- -, y-(a))7 by straight line al-
gorithms is rank(H)(2n — k). All those systems satisfy the direct sum conjecture strongly. For

some other algebras that are direct sum of local algebras the above results are also hold.

1. INTRODUCTION

Let F be afield and let z = (zi,-- -, 2,)T be a vector of indeterminates . Let Q, = {zTQyz,- -- , 2T Qmz}

be a set of quadratic forms on z1,---,z, over F' where Q; is a n X n matrix with entries from F. A straight
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line algorithm that computes Q. is a sequence of rational functions ¢y, -, 0 where

1) For every 1 < j < L we have 0; = wj 1 o wj,2 where o € {x,+}

n j-1
wj 1, Wi 2 € (F + Z Fz; + Z Fm) \F
i=1 i=1
oro=+ wj; € Fand wjs € (F + Z?:1 Fz; + Ef;ll Fg,») \F.
2) We have

n L
Q:CF+) Fai+)y Fo
i=1

i=1
We call the operation o in 1) a non-scalar o. Therefore in this model we count only non-scalar multi-
plications/ divisions.
The minimal L is denoted by L(Q;) or Lr(Q;) and called the mulliplicative complezity of Q.
When we compute @, by an algorithm oy, ---, 0, where o; = w;; X wj 2, wj,1,wj2 € E:;l Fz; then
we call the algorithm quadratic algorithm . The minimal y is denoted by u(Q;) or pr(Q;) and is called the
quadratic complezity of Q.. In [17] Strassen proved that for infinite fields F

Lr(Q:) = nr(Qz)- (1)
Let u = (uy,---,u,)T be a vector of new indeterminates and
QL ={zTQiz,---,2TQp, 2}, Q% = {u"Qum, 414, -, uT Qm,u}
be two sets of quadratic forms. It is obvious that
#(Q: U Q3) < p(Q}) + m(QY). (2)

In [9], [17] and [18] Fiduccia- Zalcstein, Strassen and Winograd , respectively, conjecture that for every two

sets of quadratic forms QL, Q2 we have

w(@zUQ:) = w(@Qz) + n(Qh), 3)
and every minimal quadratic algorithm 71, - - -, &, for (QLUQ?2) can be separated in to two minimal algorithms
s1 = (03 )ier, s2 = (0i)ied, (4)

where JUJ = {1,---,u}, INJ =0, and 5; and s, are minimal quadratic algorithms for Q) and Q2,

respectively. The set QL U Q2 is called the direct sum of QL and Q2. We also denote it by QL & Q2.
When (3) is satisfied for Q. and Q2 then we say that Q! and Q2 satisfy the direct sum conjecture in

the model of quadratic algorithms. We define DSCga or DSCqa(F) to be the set of all pairs (Q},Q32)

such that Q) and Q2 satisfy the direct sum conjecture in the quadratic algorithms model. When (4) is
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satisfied for @} and Q2 then we say that QL and Q2 satisfy the direct sum conjecture strongly in the model
of quadratic algorithms. We define DSCSg4 or DSCSqa(F) to be the set of all pairs (QL, @2) such that
Q! and Q? satisfy the direct sum conjecture strongly in the quadratic algorithms model. If for every Q2 we
have (Q},Q2) € DSCSqa then we write QL € DSCSqa.

Similarly, we define the classes DSCsp 4 and DSCSsp 4 for the straight line model. It is obvious that

DSCy C DSCSum

for every model of computation M. By the results of Strassen in {17] and Bshouty in (8], for infinite fields
F, we also have

DSCspa(F) = DSCqa(F),  DSCSspa(F)= DSCSqa(F).

Let z = (z1,---,2,)7 and y = (y1,---,ym)T be vectors of indeterminates. Let B,y be a set of bilinear
forms {z7 By, .-, 2T Bry}. A bilinear algorithm that computes B,y is a quadratic algorithm oy,---,05
where 0; = wj,1 X wj2, wj1 € Z?=1 Fryand w; s € Z:’;l Fy;. In a similar manner we define §(B; ) the
bilinear complezity of By . Obviously, p(Bzy) < §(Bs,y). We also define DSCp4 and DSCSpa.

Let A be an associative algebra of dimension k with a unity element 1 and let {a;,---,a;} be a base
of A. We denote by [zy]a = {7 Byy,---,zT Bry} the set of bilinear forms defined by the product of two

elements in the algebra A i.e,

S By = (Z ) (i y) |

i=1 i=1
In a similar manner we can define 21y, z2y, - -, Zny)a and [z1y1 + -+ T, yn]a or more general [zTCyy, - -,
zTCjy|a where & = (z1,---,20)T € A", y=(y1, -, ym)T € A™ and C},---,Cj are n x m matrices.
Obviously, [ ]r depends on the chooses bases {a;,---,a;}. By Feduccia-Zalcstein [9] and section 3
results, the complexity of [ ]r does not depend on the bases.

In [4], Alder and Strassen proved that for every set of quadratic forms Q, we have

u([zy)a @ Qu) 2 2dim A — Iz + p(Qu)

where I is the number of the maximal two side ideals of A. This result have been generalized by Auslander-

Winograd (5] and Hartman [13]. They proved that if A is a direct sum of division algebras then
ﬂ([zly7 T2y, )Zﬂy]A) 2 (2dlm A- IA)"

If p([z1y, 22y, -, nyla) < (2dim A — Ip)n then we call A an algebra of n—minimal complezity and if
8([z1y, 22y, -, 2ay]a) < (2dim A — I4)n, then we call A an algebra of n—minimal rank. Obviously, if A
is an algebra of 1-minimal complexity (rank) then it is an algebra of n-minimal complexity (rank) for every

n. In [10] De-Groote proved that a division algebra A is an algebras of 1-minimal complexity if and only if
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A is a field with |F| > 2dim A. Other characterization of 1-minimal rank algebras can be found in {12} and
(15].
In this paper we generalize all the results in (4], [5], [6], [13] and [18]. We prove the following:
Theorem I . Let A = A} x --- x A be an algebra where each A, is local commutative algebra and
there exist d; € A; such that {ala radA; = 0} = d;A;, or A; is a division algebra. Then for every set of

quadratic forms C we have
u(lz1y, -+, zayla ® C) 2 (2dimA — k)n + p(C).
If A is an algebra of n-minimal complexity then
[#19,---,2nyla € DSCSsLa.

Theorem II . Let A = Ay X --- X A be an algebra where A; is local algebra. Then for every set of

bilinear forms B we have
8([z1y, -, zny)a ® B) > (2dimA — k)n + §(B).
If A is an algebra of n-minimal rank then
(z1y,---,zny]a € DSCSpa.
Theorem III. Let A be a commutative algebra. Let H be a n x m matrix. Then
p([zT Hyla) > (2dimA — I5)rank(H).

If A; and A are commutative algebras of rank( Hy)- minimal rank and rank(H;)-minimal rank, respectively,

then
(T Hyya,, [#" Hayla,) € DSCSsp 4.

Theorem IV . Let A = A; x --- x A be an algebra where A; is local. Let H be an n x m matrix.

Then for every set of bilinear form B we have
§([zT Hyla ® B) > (2dimA — k)rank(H) + 6(B).
If A is an algebra of rank(H)-minimal rank then
[zT Hyla € DSCSpa.

Since by Artinian theorem, every commutative algebra is a direct sum of local commutative algebras,
Theorem II and IV are true for commutative algebras. In this case we have k = I .

We also prove lower bounds for some other bilinear systems over direct sum of local algebras.

4



Theorems LILIII and IV follows:

Let A = Fla)/(p(«)) where p(a) = p¥(a)---p*(a) € Fla] is a polynomial of degree n where py, -, pi
are distinct irreducible polynomials. Then [zy]a is equivalent to the problem of computing the product of
two n — 1-degree polynomials modulo p(a). By theorem I and II we have:

Corollary 1. Let A = F[a]/(p(a)) where p = p’f‘ ---p:“, p1,-- -, pk are distinct irreducible polynomials

and |F| > 2max;<i<k deg pf‘(a) — 2. Then for every set of quadratic forms C and bilinear forms B we have
(21, -, 2nyla ® C) = (2deg p — k)n + u(C),

§([z1y, -+, znyla ® B) = (2deg p — k)n + é(B),

and

(219, ,Zay]a € DSCSspa, DSCSp 4.

Notice that when F is finite field we need more restricted conditions on C and B. For details see [8].

For sets of quadratic forms Q] and QZ, [bilinear forms B ], let Algspa(QL), [Algpa(B.)], denote
the set of all minimal straight line algorithms, [bilinear algorithms], that computes Q}, [B; ,]. We denote
by Algsra(QL) ® Algsra(Q2) the set of all straight line algorithms oy, ---, ¢ such that there exist sets
LJc{l,---,t}, IuJ = {1,---,t} and INJ =0, where (0:)ier € Algspa(Q2) and (03)ics € Algsra(Q2).
Obviously, (Q1,Q2%) € DSCSsz4 if and only if Algspa(QL @ Q2) = Algspa(Q)) @ Algsra(Q3). By
corollary I we have

Corollary IT. Let A = Fla]/(p(«)) wherep = pf‘ - -pz", P1,-- -, Pk are distinct irreducible polynomials
and |F| > 2maxi¢ick deg pi*(a)— 2. Then for a base {a;, --,a,} that represent A as Fla}/(p® () x

- x Fla]/(pf* (a)) we have

Algspa([z1y,-- -, znyla) = Algsra([zry, -+, oYl playptr(ay) B © Algsrallzry, -, Y] Pl (ot (a))>

and

Algpa([z1y,- -+, znyla) = Alga([zry, -, z"y]p[a]/(pfl(a))) ©--- @ Algpa([z1y,- -, z"y}F[a)/(p:*(a)))'

Notice that section 3 shows that the classification of all minimal algorithms for [ ]4 for some base gives
the classification of all minimal algorithms for this system for any base.

This corollary shows that a classification of all minimal straight line algorithms, [bilinear algorithms], for
[z19, -+, 2ny)a where A = F[a]/(p%(a)), p(a) is irreducible gives a classification for all the minimal straight
line algorithms, [bilinear algorithms], for [z1y,- -, 2,y]a where A = Fla]/(p()), for any polynomial p(a).
A classification of all minimal bilinear algorithms in the case where n = 1 is completely studied in [2] and
[3].

Theorems III and IV follows:



Corollary III . Let A = F[a]/(p(a)) where p = ph ‘--pz“, p1, -, px are distinct irreducible polyno-
mials and |[F| > 2max;<i<i deg p?'(a) — 2. Then for every set of bilinear forms B we have
u((e" Hyla) = (2deg p(a) — k)rank(H),

([T Hy)a ® B) = (2deg p(a) — k)rank(H) + §(B)

and

[zTHyla € DSCS3a.

As in corollary II we have

Corollary IV . Let A = Fla]/(p(a)) where p = p‘f‘ . ‘p:" , D1, -, P are distinct irreducible polynomi-
als and |F| > 2max;<ick deg pf*(a) — 2. Then for a base {aj, -+, a,} that represent A as Fla)/ (0¥ () x
-+ x Flo]/(p{* (2)) we have

AlgSLA([xTHy]A) = AIQSLA([ITHy]p[a}/(P':l(a))) &---@ AIgSLA([ZTHy]p[a]/(ka(a)))
and

AlgBA([xTHy]A) = AIgBA([xTHy]F[a]/(p‘i'x(Q))) ® - AIgBA([zTHy]F(a]/(p:k (a)))'

In section 2 we give preliminary results in the bilinear and quadratic complexity theory. In section 3
we study some of the properties of the regular representation of associative algebras and in section 4 we use
these properties to classify some minimal bilinear and quadratic algorithms. In section 5 and section 6 we
study the complexity of [z1y, -+, zny]a and [zT Hyla, respectively. The technique we use can be used to

prove lower bounds for many other bilinear systems over associative algebras.

2. PRELIMINARY RESULTS

In this section we give some preliminary results
Definition 1. Let B = {By,---, By} be a set of n x m matrices. We define the T—dual and D— dual

sets BT and BP of B as follows:
BT ={B],---,B{} , B”={Ci,---,Cm},
Here BT is the transpose of B; and BY denotes the set of n x k matrices that satisfy
C!=Bii=1--m,j=1,.k,
where Bf is the j-th column of By, i.e
Ci = [Biem,i| - - |Beem,i]-
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where e, ; is the i-th column unit vector of order m.
We also define B = BTPT ie BE = {D,,---,D,} where
65,531
D; =
e:’,-Bk
Definition 2. Let B = {B,---, B¢} be a set of n x m matrices. Let M,N and K = (K; ;) be m x m’,

n’ x n and k' X k matrices, respectively. We define
k E
NBM = {NBM,--,NBM}, BK]=(> Ki;Bj,---,y Ku;B;}.
j=1 j=t

Definition 3. Let B = {By,---,B;} and C = {Cy,---,Ci} be sets of n x m and n’ x m' matrices,

respectively. We define
B@C: {BI,"',Bk,él,"‘,ék’}

where
~ B 0 + = 0 0 ’
Bi - 1 nxm ) , C. - ( nxm nxm )
(On'xrn Orxm¢ 7 On'xm Cj
and 0,x, denotes the zero s x r matrix.
Define

B®C={B£®CJ| izly"')krj‘:ly"')k,}~

where ® is the Kronecker product of matrices. If k = k/ then
diag(B, C) = {diag(B1,Cy),-- -, diag(Bg, C)}

where
diag(B:, C;) = (B" c.-)‘

Lemma 1. [7]. Let Ay, Ay and A be sets of ky, ky and k, ny x my, ng x my and n X m matrices,
respectively, and I, be the identity matriz of order r. Then
(1) ATT = A, APD — 4| ABE — g AE = ATDT _ 4DTD
(2) AK]J]= A[JK], (NAM)[K] = N(A[K])M.
(3) (NAM)T = MTATNT | (A[K)T = AT[K)]
(4) (NAY? = NAP | (AM)P = AP[MT], (A[K])P = AP KT,
(6) (Mo AT = AT @ AT , (A1 @ A2)P = AP @ AD.
(6) (A1®A)T = AT ® AT, (A1 ® A2)P = AP @ AD.
(7) A[K]® Az = (Ay ® A){diag(K, I,)] , NAM & Ay = diag(N, I,)(A; & Ag)diag(M, In,).
(8) Ai[K]® Az = (A1 @ A9)[K @ It,] , NAIM ® Ay = (N ® I, )(A1 ® A2)(M ® In,)
(9) AR (A1 © A2) =(A® A1) B (A® A,).



If we add A’ = A then the set {I,T,D,TD,DT,E} is a group that is isomorphic to the symetric group
53 = {( )x (1v2)1 (273)7(1|312)v(112a3);(1)3)}
Definition 4. For two k-sets of n x m matrices B and C we write B = C, B is equivalent to C, if there

exist nonsingular matrices N, M and K such that
B = N(CIK))M.

Obviously, this relation is an equivalence relation.
Lemma 2. [7]. Let Ay,---, Aj, By, -+, B; be sets of matrices. Then
(1) If Ay = B, then AP = BP and AT = BT.
(2) B1®---®B; = Byy® -+ @ By(jy and B1 ® ---® B; = By(1y ® -+ ® Byj) for any permutation ¢ on
{1,---,3}.
(3) IfA;=B;,i=1,---,jthen A, ® - - @A =B ® - ®Bjand 4;,®---QA4; =B, ®---® Bj.
Definition 5. We denote by M, 1, , the set of matrices defined by the product of n x m and m x p
matrices. It is known that

Momp=I@IR®IF.

This follows

D - E — —
Mn,m,p = Mm,n,pv Mn,m,p = Mp,m,n ) Mn.m,p ® Mn’,m',p’ = Mnﬂ’,mm’ypp"

and by the results in [7] we can find the exact relation between the above systems.

Definition 6. Let A = {4;,---, A¢} be a set of matrices. We define
rowrank(A) = rank[A,|---|4;], colrank(A) = rank[AT|...|AT],

and

dim(A) = dim L(A).

where L(A) is the linear space spanned by the elements of A.
It can be easily prove
Lemma 3. We have

(1) rowrank(A) = dim(AF), colrank(A) = dim(AP).

(2) For nonsingular matrices N, M and K we have
rowrank(NAM[K]) = rowrank(4), colrank(N AM[K]) = colrank(A).

Following (8], {14] and [16] we have
Lemma 4. We have

(1) u(4) < 8(A) < 2u(4).



5(4) = 5(AT) = 6(4P), w(A) = u(AT),
NAM([K)) = u(A), for every nonsingular matrices N, M and K.
A® B) < p(A) + u(B) and w(1, ® A) < w(@l_, 4) < tu(A).
A® B) < p(A)u(B).
(4) > 16(diag(4, 4T)).
(7) DSCspa = DSCqa,DSCSspa = DSCSqa.
(3),(4) and (5) are also true for the bilinear complezity 6.
Lemma 5. [6]. Let A be a set of matrices. If for every nonsingular matriz N there ezist Ay, A, €
A[N] such that
rank[Ay|---|As] >t or rank[AT]...|AT)] > ¢

then
p(A) >dim A+t —s.

Definition 7. We denote by NB*(r) the collection of sets of matrices A such that there exist a linear
subspace A; of L(A) and integers s and t where:
(1) For every nonsingular matrix N and for every By € (L(A)\A1) N A[N] there exist s — 1 matrices
By, ---, B, € (L(A)\A1) N A[N] such that

rank[B,|---|B,] >t or  rank[BT|...|BT]>1t.

(2) p(A) =dim(A)+t—s+r.
In [6], we proved the following two lemmas
Lemma 6.
(1) If A€ NB*(0) then A€ DSCSsr 4.
(2) IfAe NB*(1) then A€ DSCsra.
(3) If A€ NB*(r),r > 1 then for every set of matrices B we have

u(A® B) > dim(A) +t — s+ 1+ p(B).

Notice that all the results in lemma 5 and 6 are also true for bilinear algorithms.
Lemma 7. We have: A € DSCSgpy4 if and only if AP € DSCSp, if and only if AE € DSCSp 4.
Using the results in [16] we prove
Lemma 8. Let A= {A,,---,Ax} and B={By,---, By} be sets of mairices. If
(1) (diag(A, AT),diag(B, BT)) € DSCSpa,
(2) é(diag(A,AT)) = 26(A) and §(diag(B, BT)) = 26(B).
Then (A,B) € DSCSsp 4.
Proof . If (A,B) ¢ DSCSspa then by [8, lemmas 2,8] there exist a minimal quadratic algorithm
a1,--, 00 for {zT Ayy, -, 2T Ay, T Byv, - -, uT By} where 03, € Flz,y, u,v]\(Flz,y] U Flu,v]).
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Let
oi = (@i 1(z) + ai2(y) + @i 3(u) + ai4(v))(bi,1(2) + bi2(y) + bia(w) + bia(v)).

It is known [16] that the algorithm (&; j)i=1,...,1.j=1,2 Where

Fi1 = (ai1(z) + ai2(2') + a; 3(u) + a4 (w))(b;,1 () + bi 2(y) + bia(v) + bia(v)),
and
&i2 = (bi(2) + b 2(z') + by a(u) + bi a(u))(0i1(y") + ai 2(y) + ai 3(v') + a5 4(v)),

is a bilinear algorithm that computes D = diag(A, AT) ® diag(B, BT). Because
6(diag(A, AT) @ diag(B, BT)) = é(diag(A, AT)) + 6(diag(B, BT)) = 26(A) + 26(B).
we have {&;j}i=1,....1,j=1,2 is a minimal algorithm for D. By (1) and since
Fio1 € Flz,2',y, ¢/, u, v, v, '|\(F[z, 2/, y,¥') U Flu, v, v,v']),

we have a contradiction to [8, lemma 2]. This contradiction follows the result. (O

3. REGULAR REPRESENTATION OF ALGEBRAS

In this section we give the results in (7] that will be used in the next sections.

Let A be an associative algebra with unit element 1 and {ay,--,a,} be a base of the algebra A. Let

n
a;a; = Z V1.5, k 0k
k=1

with ¥ ;x € F,i,j,k=1,---,n. Thenforz =3}, zia; and y = Z}':l yja; we have

k=1 \i=1j=1

Let a;y = Z:=1 oikar and define Ay = (o) an n x n square matrix. Then it can be easily shown that
Oik = Z;.‘:l ¥ijkY; and RR;(A) = {Asla € A} form an algebra over F that is isomorphic to A under
the corresponding a — A, , {Aq,, -+, As.} is a base for the algebra RRy(A), Ay = Al,, 4.4y = Aas,
As+ Ay = Agpp, A, = Ay, for A € F and if ab = 1 then A! = A;. The algebra RR;(A) is called the left
regular representation of A. The left regular representation RR;(A) of A is depending on the chooses bases
B ={ay,--+,a,}. when we want to emphasize this dependency we write RR;(A, B).

Let za; = Z;":1 6;ia; and define A® = (§;;) an n X n square matrix. Then RR,(A) = {A%a € A}
form an algebra over F that is isomorphic to A under the corresponding a — A°. The algebra RR,(A) is

called the right regular representation of A.
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We define
B(A) = {By, -+, Bs}

where for x = (zla T :xn)Ta Y= (ylv o ')yn)T we have
n on
XTBiy =) ) %jkgiy;.
i=1j=1

i.e. the i—th coefficient of the product zy.
Let C;(A) = {A4,, ", Aq,} and C.(A) = {A%,-.. A% }. In (7] we gave the following connection
between B(A), C;(A) and C.(A).

Lemma 9. We have
Ci(A)? =B(A),C,(A)f =B(A),C,(A) = C;(A)TP.

Obviously, C;(A), C,(A) and B(A) depend on the chooses bases B = {a;,---,a,}. When we want to
emphasis this dependency we write C;(A, B), C.(A, B) and B(A, B).

Lemma 10. Let A and A’ be algebras. If A is isomorphic to A’ then there exist bases A = {ay,---,a,}
and A’ = {a},---,a,} for A and A’, respectively, such that

Ci(A, A) = C/(A', 4), B(A, A) = B(A", 4).
Lemma 11. Let A= {a1, --,an} and B={by,---,bs} be bases for the algebra A. If B = A[M)] then
B(A, B) = MB(A, A)[(MT)~"|MT , Ci(A,B) = MCi(A, A)[MIM~".

and

C.(A,B) = (MT)~'C.(A, AH)MIMT.

Lemma 12. Let A and A’ be algebras. If A is isomorphic to A’ then there ezist a nonsingular matriz
M such that
RR;(A) = MRRy(A")M~1.

Also for B = A[M) where A and B are as in lemma 11 we have
RRy(A,B) = MRR;(A, A)M~.
Lemma 13. Let A, and A, be algebras. Then
Ci(A1 x A3) = Ci(A1) ® Ci(A;), B(A; x Az) = B(A,)® B(A,),

C[(Al ® Az) = CI(Al) ® C[(Ag), B(A1 ® Az) = B(Al) ® B(Ag).
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Let A be an algebra. The reciprocal algebra A~ of A is an algebra with elements of A and the
multiplication * such that a + b = ba. We have

Lemma 14. Let {a1,---,a,} be a base for A. Then
B(A™) = B(A)T,Ci(A) = Ci(A), C,(A™) = C,(A)® , C,(A”) = Gy(A)T.

Observe that when A is commutative algebra then A~ = A and therefore we have
Lemma 15. We have C;(A) = C;(A)F iff C.(A) = C.(A)T iff B(A) = B(A)T iff A is commutative
algebra.
Definition 8. Let A be an algebra. For W € {D,T, DT, TD,E} we say that A is W-algebra (W~-
algebra) if
Ci(AY =Ci(A), (Ci(A)Y =Ci(AM)).

We say that A is W-isomorphic algebra ( W~ -isomorphic algebra) if there exist matrices N and M such that
NL(C;(A)Y)M is an algebra that is isomorphic A (to A~) [Recall that L(H) is the linear space spanned
by the elements of H]. Obviously

W — algebra == W — isomorphic algebra.

W= —algebra = W~ —isomorphic algebra.

and the following lemma follows
Lemma 16. Let W, W, W, € {D,T,TD,DT,E}. Then
(1) If A is Wy-algebra and Wy-algebra then A is W Ws-algebra.
(1) A is W -algebra iff A is W E-algebra iff A is EW-algebra.
(i11) A is W~ -isomorphic algebra iff A is WT-isomorphic algebra.
Lemma 16 follows
Lemma 17. For every algebra A one of the following can happen
(1) A is W-algebra for every W € {D,T,TD, E}.
() A is W-algebra for only one W € {D,T,TD,E}.
(i) A is not W-algebra for every W € {D,T,TD, E}.
Lemma 18. Every algebra A is TD-isomorphic algebra.
For E-algebras we proved
Lemma 19. A s E-algebra iff A is E- isomorphic algebra iff A is T- isomorphic algebra iff A is
isomorphic to A~
For T and D-algebras we proved
Lemma 20. We have
(i) A is D-algebra iff A~ is T-algebra.
(i) If A is D-algebra then A is isomorphic to A~
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For TD and DT-algebras we proved
Lemma 21.
(1) A is DT-algebra iff A is TD-algebra iff A~ is DT -algebra.
(i1) A is DT-algebra iff There exist a regular matriz N such that RR.(A) = NRR;(A)N~!.
Lemma 22. If A, and A, are W-algebra (W-isomorphic algebra) then are the algebras Ay x A, and
A;QA,.
Let M,, be the total matrix algebra of order n. For semisimple algebras we proved
Lemma 23. Let A = x!_,M,, @ D; be a semisimple algebra. Then
(1) A is DT-algebra and T D-algebra.
(2) A is E-algebra iff A is D-algebra iff A is T-algebra iff there ezist a permutation ¢ on {1,--.,1} such
that

N = (), D;E‘D;(i),iz 1, L

(2 = isomorphic).
This lemma implies that every semisimple algebra over the complex field or the real field is W-algebra
for all W € {E,D, T, DT, TD}.
For local commutative algebras we proved
Lemma 24. Let A be a local commutative algebra. Then
(1) A is E-algebra.
(2) A is DT-algebra iff A is TD-algebra iff A is D-algebra iff A is T-algebra iff there ezist d € A such that

{a]a rad A =0} = dA.

By Artinian theorem, every commutative algebra is a direct sum of local commutative algebra. For
commutative algebra we proved

Lemma 25. Let A = A;® - -® A; be a commutative algebra where A; are local commutative algebras.
Then
(1) A is E-algebra.
(2) A is DT-algebra iff A is TD-algebra iff A is D-algebra iff A is T-algebra iff Ay, ---, A; are D-algebras.

Using lemma 25 it can be easily prove

Lemma 26. FEvery algebra A = Fla]/(p(e)), where p(a) is a polynomial, is W-algebra for every
We {E,D,T,DT, TD}.

This lemma follows that every semisimple algebra over a finite field is W-algebras for all W € {D,T,TD
,DT,E}.

Let C = {Cy,---,Cr} be a set of n x m matrices, A be an algebra. The quadratic complezity of C
over the algebra A is p(C ® B(A)), ie the complexity of {zTCyy,---,27Cry} where z = (zy,---,z,)7,
y= (%, -, ¥m)¥ and z;, y; are elements in the algebra A. In the same manner we can define the bilinear

complexity of C over the algebra A as §(C ® B(A)). By lemma 4, 7, 9 and 14 we have
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Lemma 27.
(1) 8(C®B(A)) = 6(CP ® Ci(A)) = 6(CF ® C(A)).
(2) IfA is D-algebra then §(C ® B(A)) = §(CP ® B(A))
(8) If A is T-algebra then §(C ® B(A)) = §(CE ® B(A))
(4) If A is TD-algebra then §(C ® B(A)) = 6§(CPT @ B(A))
(5) If A is D-algebra then u(C ® B(A)) = u(C ® C;(A)) = p(CT ® C.(A™))
(6) If A is T-algebra then u(C ® B(A)) = p(C ® C.(A)) = p(CT ® Ci(A™))
(7) If A is TD-algebra then u(C @ B(A)) = u(C ® C;(A~)) = u(CT @ Ci(A))

before we leave this section we shall prove the the following lemma

Lemma 28. [Let A be a local algebra. There ezist a base {ay, --,ax, k41, -, ark} for A where
apy--, 0k g radAr Qk41, 3 0rk € T'(ldA,
A; *
Aa.= ( . ) 3 1:1: 1ka (5)
0 A;
C(A/radA) = {4‘1,‘},’:1,...‘); and
Ok x & *
A, = , i=k+1,---,rk. (6)
0 kak

Proof . Let A = L ®F radA and {a;,---,a,} be a base for L. Since A is local, all the elements in L
are invertible. Let i be the least integer such that (radA)’ # 0 and (radA)io+! = 0. We choose an element
by € (radA)*. Then b,L C (radA)¥ because L contains invertible elements. Let by € (radA)i\b; L. Then
byL C (radAYe. If byL NbyL # 0 then there exist a;,ay € radA such that bya; = bya;, which implies
by = b1a1a;1 € byA = b(L ®F radA) = b L. A contradiction. Therefore b,L ®r b2L C (radA)’. By

induction hypothesis we can prove that there exist by, - - -, by, € (radA)* such that
Li,=b,L®p --- ®F by, L = (radA)*

and {biaj}i‘:l,:::;o is a base for (radA ).

We now handle (radA)~1. Let bx,41 € (radA)o=!\(radA). Then by41L C (radA)o~1\(radA)'
and therefore bg,41 LNL;, = 0. Assume bgo42 € ((radA) o= \(radA)o\bxo1 L. I g4 LN(bros1 LOF Li,) #
0 then there exist a;,a; € L and ¢ € Ly, such that by, 4282 = bg,4181 + ¢. Then by 40 = banala;l + ca,.
Since alaz'l is invertible we have ala;1 = a+ w where a € L and w € radA and then by, 42 = bro110 +
bkg+1w + caz. Now br,p1w + caz € (radA)™, a € L and therefore by, 42 € bgo1L + Li,. A contradiction. In

this way we can find bgy41,- - -, b, such that

b L®dp - @p by, L = (radA)~!,
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Therefore we have (By induction hypothethis)
A=L®rbL®p---Dpb L

such that if &, € (radA)1\(radAY1~! b, € (radA)’3\(radA)3~! and iy > i; then js < ji.
We want now to find the regular representation C;(A, B) where B = {a;,---,ax} U {br_,‘.{.laj};zi,:::,;.

Let ¢ : A — A/radA be a canonical projection. Then ¢; = ¢(a;), i =1,.--,k is a base of A/radA. If
k
CiCj = Z'}’i,j,lcl ()
=1
then since ¢(a;a;) = cic; = Zf:x Yijic =@ (Zf___l 7,-“,-,,a1), we have

k
a;a; = Z“/g,]"}az + w, w € radA.
i=1

Assume that

w € (radA)™\(radA)" w1,

and

b; € (radA)™\(radA)"» 1!,
Now since (b = 1)

k
(biai)a; = Z’Yi,j,lbtal + bw

i=1
and byw € (radA)™\(radA)**!, n’ > n;, and by (7) we have (5) where 4; = A, in C(A/radA,
{er, -+ ex}).
Since for r,s > 0, e = min(r, s) we have (b.a;)(b,a;) € be_1 L ®F - -- ®F b1 L then (6) follows. (O

4. CLASSIFICATION

In this section we show how a classification of all minimal quadratic [bilinear] algorithms for some bilinear
systems can give a classification of minimal quadratic [bilinear] algorithms for other bilinear systems. This
section is independent on the next sections. The reader who are interesting only in the proofs of the results
in the abstract can leave this section.

Let P = {Pi,---, P} be a set of n x m matrices. It is well known that every quadratic and bilinear

algorithm for 2T Py = {zT Py, -- - 2T P,y} can be written as
E((Az + By)o (Cz+ Dy)) G(Hz o Jy),

respectively, where 4, B,C, D, E, H,G and J are p(P)x n, p(P)xm, u(P) xn, p(P)xm, kx p(P), k x §(P),

6(P)xn and 8(P)x m matrices, respectively, with entries from the field F, and o is a componentwise product.
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We shall simply write (E, A, B,C, D) and (G, H, J) for quadratic and bilinear algorithms, respectively. We
also define Algps(P) the set of all minimal M algorithms for P, M € {QA, BA}.

By the results in [9], [14] and (18] we have

Lemma 29. Let P be a set of matrices and let N, M and K be nonsingular matrices. Then
(1) (E,A,B,C,D) € Algga(P) iff (KE,AN,BM,CN,DM) € Algqa(N P{KIM).

(2) (G,H,J) € Algga(P) ff (KG,HN,JIM) € Algpa(P).
(8) (E,A,B,C,D) € Algqa(P) iff (E,B,A,D,C) € Algga(PT).
(4) (G,H,J) € Algga(P) iff (H,G,J) € Algpa(PP) iff (G, J,H) € Algpa(P).

For sets of matrices Q; and Q2, we denote by Algar (Q1)® Alga (Q2) the set of all M algorithms oy, -- -, 0y
such that there exist sets I,J C {1,---,t}, IUJ ={1,---,t} and INJ = @, where (0;)ies € Algrp(Q1) and
(0i)ies € Algm(Q2). Obviously, (Q1,Q2) € DSCSy if and only if Alga (Q19Q2) = Algm(Q1)® Alga (Q2).

Now we prove

Lemma 30. The complezity and the strong direct sum conjecture of a set of bilinear form C over the
algebra A do not depend on the chooses bases. A classification of ell minimal quadratic [bilinear] algorithms
for C over A for one representation gives a classification of all minimal quadratic [bilinear] algorithms for
any representation.

Proof . In other words we have to prove that
#(C ® B(A,E)) = u(C ® B(A, Ey)),
where Ey, E, are any sets of bases of A. Also we should find nonsingular matrices N, M and K such that
C®B(A,E|) = N(C® B(A, E))M[K].

Now both results are easily follows from lemma 11, 27 and 29. QO
This lemma follows

Lemma 31. Let A= A; x---x A, be an algebra. Then
#(C ® B(A)) = p(i=1(C x B(A))).

In particular we have
#(C ® Fla]/(p(a))) = p(®f=1(C ® Fa/(p{*(2))),

where p(a) = HLI p¥(a), and p; are distinct irreducible polynomials.

Now for the bilinear complexity we have

Lemma 32. If A is W-algebra for W € {D,T,TD} then the classification of all bilinear algorithms
for (gTHyla where z = (21,-+-,20) and y = (v1,--,Ym) and H is a n X m matriz of rank r, gives a

classification of all bilinear algorithms for [zy;,-- -, zyn]a and conversly.
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Proof . Let (A1, By, C}) be a bilinear algorithm for [zTHy]A = H®B(A). It is well known that there

exist  x m and n x r matrices N and M with rank r such that NHM = I,. Therefore
(N L) H®B(A)(MQIL)= I, B(A)

and therefore (A3, B2, C2) = (A1, BI(N ® Ix),Ci(M ® I})) is minimal bilinear algorithm for I, @ B(A).
If A is D-algebra then by definition 8, there exist nonsingular matrices U, V and W such that

B(A)? = UB(A)V[W].

By lemma 1 and 29 (4,, B;, Cs) is a minimal bilinear algorithm for I, ® B(A) if and only if (Bs, A2,C») is

a minimal bilinear algorithm for
(I, ® B(A))® = I? @ B(A)® = (I e U)(I2 ® B(A))(I, ® V) @ W]
if and only if ((I, ® W)B,, Ax(I, ® U),Ca(I, ® V)) is a minimal bilinear algorithm for I? ® B(A) =

[zlyv"'yzry]A' O

5. COMPLEXITY OF X,Y,...,XyY IN ALGEBRAS

In this section we investigate the complexity of computing z;y, ..., z,y in algebras which are direct sum

of local algebras. This problem is equivalent to the complexity of {€n,1, -, €nn} over the algebra A. Le
#(z1y, -, zny) = p(I2 ® B(A)).
Since (I ® B(A))P = I, ® C(A) = {1, ® Aq,|{a:}iz1,...k is a base for A} we have
I ®B(A) = {[(In ® 4a,Jent,il - |(In @ Aa, Jenr lli = 1, - -, nk}

where k = dim A.
For v € F™* we denote by

B(v) = [(I,, ®A,,l)v| e l(l,, ® Ag, )v]

Observe that
A1B(v1) + A2 B(v2) = B(A1v1 + Agva). (8)

We first investigate the case where A is division algebra.

Lemma 33. Let A be a division algebra of dimension k, vy,--- v € F™* and let

s=dim L{(In ® Aa)vli =1, k,j = 1,---,1}
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Then for every nonsingular matriz N and every B(uy) € {B(v1),---, B(v;)}[N] there exist £ — 1 matrices
B(ug),---,B(u,/k) in {B(v1),---, B(v1)}[N] such that

rowrank({B(u1), -, B(u,/¢)}) = s.
Proof . By (8) we have for every nonsingular matrix N
{B(v1), -+, Bu)}{N] = {B(wy),-- -, B(w)}
for {wy,---,wi} = {v1, -, u}[N] C F™. Since L(wy, -+, w) = L(vy, ---,v) we have
dim L{(I, ® AaJwjli=1,-- - k,j=1,-..,1} =5 (9)
If I = s/k then by lemma 3 we have
rowrank({B(wy), -, B(w)}) = rank[B(wy)] | B(w)]

=dimL{(I, ® A, )wjli=1,--- k,j=1,--- 1} =5,

and then the proof is completed.
Il > s/k then the set {(I, ® A, )w;li=1,---,k ,j= 1,---,1} contains Ik > s vectors and therefore

there exist one vector that is depending on the other. Assume (w.l.o.g) that

Z,\(I ® Aa,)wr = ZZ&,,(I ® Ao, )w (10)

i=1 j=2

where not all ); are zero. Then for a = Zf=l Aia;, we obtain

k1

(In® Aa)wr = Y36 j(In ® Aa,)uj.

i=1j=2
Since A is division algebra we have 4, nonsingular and then
E o
wy = ZZ&, i(In ® Ag-1g)w; = ZZ i(In ® Ag,)wj
i=1 j=2 i=1; =2
then for every d = 1,--., k we have

(In ®Aa4)w1 ZZ ®Aa‘

i=1j=2

which implies that
dim L{(I, ® Aq,)w;|i = L kj=2,-1} =5

By induction hypothesis it can be proved that there exist Jt,++, Js/k such that
dim L{(I, ® Aiwj|i=1,--- kg =1, s/k} = 5.

18



Then as before
rowrank({B(w;, ), ",B(wj.,.)}) =s.

It is obvious from (10) that we can always assume that j' € {j;, - yJspe} forany j e {l,---1}. O

For vy, -+, v € F™ we denote by
LA(vly"'vvl):L({(I"®Adi)vj|i= 17"'rk ) J= 11:1})

The following theorem gives a lower bound for computing a subset B C L(I? @ B(A))
Theorem 1. Let A be a division algebra, V = {v1,---,u} C F™ ¥mA and B = {B(v,),---, B(w))}.
Then
1
=di -—)di .
B) 2 o= dim L)+ (1= 1) dim La(V)

(1) If p(B) = pg then B € DSCSsr .
(2) If u(B) = po+ 1 then B€ DSCsr 4.
(3) Ifu(B) > po + 1 then for every set of matrices C we have

H(B®C) > po+ 1+ p(C).

Proof . We shall prove that B € NB*. Let 4, = §. By lemma 33, for every nonsingular matrix N and
every B(w;) € B[N] there exist r — 1 = (dim L4(vy,---,v)/dimA) - 1 matrices B(wy), -+, B(w,) € B[N}
such that

rowrank({B(wy), -, B(w,)}) > dim Lp(vy,---,v).

Then by lemma 5

u(B) > dim(B) + (1 _ EI_;—A) dim La(V) = dim L(V) + (1 - ﬁ) dim La(V)

By lemma 6 the result follows.
Theorem 2. Let A be a direct sum of division algebras Dy x - -+ x Dy. Then

w(I? @ B(A)) 8 C) > Ew:(zdim D; - Dn + p(C)

i=1
If the bound is tight then I? @ B(A) € DSCSsp4.
Proof . By theorem 1 we have for B = I? @ B(A;), dim B = n dimD; and dimLp (V) = n dimD;
and therefore

#((I7 © B(Dy)) @ C) > (2dim(D;) = 1)n + u(C).

Since by lemma 1 and 13 we have I? @ B(A) = &% ,(I? ® B(D;)) the result follows. O
For a matrix S we denote by L.,i(S) and Ly (S) the linear space spanned by the columns and the

rows of S, respectively. We have
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Lemma 34. Let A be a division algebra of dimension k. Then for every nonsingular mairiz N and for

every C1 € (I ® C(A))[N] there ezistn — 1 matrices Cs,---,Cp € (IP ® Ci(A))[N] such that
Leat[Ch] -+ |Cn] = FPE.
Proof . Since A is a division algebra, by lemma 23, A is DT-algebra and therefore
I7® C(A) = I ® Ci(A)PT = I @ B(A™).

Therefore by lemma 33 the result follows. (O
Lemma 35. Let A be a local algebra and A = I? ® C;(A). There ezist a linear space A; C L(A)
such that for every nonsingular matriz N and every C; € A[N]N (L(A)\A1) there exist Cy,---,C, €
A[N]IN(L(A)\A;) where
rowrank{Cy,---,C,} > n dim A.

Proof . We shall use the base in lemma 28. Let Ci(A) = {Aal,"',Aa.,,AaH“"',Aa,k} , A =
I? ® L{Aqa,,,, -, Aa,,} and Ay = (L(A)\A;). Let N be any nonsingular matrix. Observing the first &
columns of the matrices in (I2 ®C;(A))[N] we conclude by lemma 34 that for every C; € (I?®Ci(A))[N]NA4,
there exist C,---,C, € (I? ®Ci(A))[N]N A; such that L, (first k columns in Cy, - - - yCn) = nk. Actually,
it can be easy verify that

Leo(first k columns in Cy,---,C,) =

{(v1,0ima—k, v2, 0gimai, - 1V, Odima—k)T|(v1,v2, -, vs) € Frky .

Since [Cy]---|C,] is of the form

CI,I * Cl ,2 * Cl n *
Cl,l 01,2 Cl,n
0 Cl,l 0 Cl,2 0 Cl,n
Ca, * Cy2 * Con *
C2,1 CZ,Z CZ,n
0 C2,1 0 C2,2 0 C?,n
Cn,l * Cn,2 * Cn,n *
Cn,l Cn,Z Cn,n
0 C,-.yl 0 Cn 2 0 Cn,n

We have
Leoi(i-th k columms of Cy,---,C,) =
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{(*(i—l)k;"lyOi(dimA—k)y*(i—l)kyUZin(dimA—k)a “ 4=k U Oicdima—k)) T [ (v1, 02, -+, o) € Fr¥Y,
where #;_1y; is (i — 1)k entries with some possible nonzero elements from the field. Then obviously,

Leat(Chy -+, Cn) =Leoi(first k columns of Cy, - - Cn)®F

Lcoi(second k columns of Cy, - - -, Cr)®r

Leq(last k columns of Cy,---,C,) = F" %mA

This follows the result. (O

Lemma 35 follows

Theorem 3. Let A = Ay x --- x A be an algebra where A; is local algebra. If A is W -algebra for
some W € {D,T,TD, DT} then for every set of matrices C we have

B([ery, -, 2ay]a ® C) > (2imA — k)n + u(C). (1)
If A is an algebra of n-minimal complezity then equation hold in (11) and
[:cly,---,:cny]A € DSCSsra. (12)

Proof . If Ais D,T,TD or DT-algebra then I? ® B(4) = I? ® Ci(A),IP @ Ci(A-)T 1P
Ci(A~),IP ® Ci(A-), respectively. Then by lemma 35 the result follows. O

Theorem 4. Let A = A; x --- x Ay be an algebra where A; is local algebra. Then for every set of
matrices C we have

§([z1y, -, zayla ® C) > (2dimA — k)n + §(C). (13)

If A is an algebra of n-minimal rank then equation hold in (13) and
[z1y,--+,zny]la € DSCSp.4.
Proof . By Theorem 11 we have
8((I? ® Ci(A)) ® CF) > (2dimA — k) + 6(CE).
Then by lemma 27 and since IPF = IP we have
5((I7 ® Bi(A)) ® C) > (2dimA — k) + 6(C).

If A is of minimal rank then Ip ®Ci(A) € DSCSg 4 and therefore by lemma 7, IP ®Bi(A) € DSCSg4. O

6. COMPLEXITY OF ONE BILINEAR FORM OVER ALGEBRAS
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In this section we shall study the complexity of one bilinear form over algebras.

Let H be a n x m matrix and A be an algebra. Then

Lemma 36. u(H ® B(A)) = u(I, @ B(A)) where r = rank(H).

Proof . Let N and M be a nonsingular matrices such that NHM = diag(I.,0). Then

(N ® It)(H ® B(A))(M ® I) = diag(I,,0) ® B(A)

which implies the result.
In this section we prove
Theorem 5. Let A=A x --- x Ay be an algebra where A, is local. Let H be a n x m matriz. Then

for every set of matrices C we have
5" Hyla & C) > (2dimA - k)rank(H) + §(C).
If A is an algebra of rank(H)-minimal rank then
[eTHyla € DSCSpa.

Proof . Let r = rank(H). In lemma 35 we prove this theorem for I? ® C)(A). Then by lemma 7,9,

27 and 36 it is also true for
(17 ®CA)P = I, ®B(A) =[z1y1 + -+ + Zntnla = [zTHyla. O
Theorem 6. Let A be a commutative algebra. Lel H be n x m matriz. Then
#([=" Hyla) > (2dimA ~ In)rank(H).
If Ay and A, are commutative algebras of minimal rank then
([z" H1y]a,, [T Hyyla,) € DSCSsia.
Proof . Let r = rank(H). By lemma 4 and 36 we have
u((=" Hyla) = (1 © B(A) > 58(diag((J, ® B(A), (I & B(A)T).
Since A is commutative we have by lemma 15, B(A)T = B(A), and by theorem 5
W= Hola) 2 58(0r ® B(A)) = (2dimA — k)rank(H).

Now by lemma 8, ([cT Hyy)a,,[z7 Hayla,) € DSCSsp 4. O
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