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Abstract 

Multi-objective optimization involves the simultaneous optimization of two or more 

objectives. The objectives to be optimized are often conflicting to each other, whereas there is no 

single optimal solution in the search space that are superior to other solutions when all objectives 

are considered. Therefore, a set of trade-of optimal solutions, also known as Pareto-optimal 

solutions, are required to give decision makers an informed decision-making process within the 

acceptable time frame. Evolutionary algorithms, also known as genetic algorithms, are well 

suited to address the multiplicity of objectives in solutions in its search procedure and therefore 

used for solving multi-objective optimization problems. There have been a number of research 

conducted on using genetic algorithms to solve multi-objective optimization problems in the past 

decades, and many variations of multi-objective genetic algorithms in literature. However, the 

application of multi-objective genetic algorithm to solve real world problems is not documented 

much or cited due to the challenges and complexities presented in real world situations. 

Furthermore. real-world situations often require the Pareto-set to be obtained in a timely and 

efficient manner for decision makers, and subject expertise is required to be incorporated in the 

initialization and search process interactively. Furthermore, the visualization of Pareto-optimal 

sets is an important aspect in the decision-making process for decision makers to use and 

understand the impacts of choosing the solutions from the Pareto-optimal sets.   

This research presents an innovative unified hybrid framework with a novel multi-objective 

genetic algorithm with an integrated expert module that can be applied directly in helping 

decision makers to solve real world multi-objective optimization problems. The validity and 

effectiveness of the proposed algorithm are verified by conducting experiments with three well 

cited benchmark data sets and comparing with previous studies in the literature. The experiments 
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conducted with benchmark datasets proved that it can find a much better spread of solutions and 

better convergence near the true Pareto-optimal front compared to other research on Pareto 

evolutionary algorithm.  

The implementation of the proposed framework uses parallel and asynchronous design to 

achieve high performance computing and faster convergence of the algorithm. Sets of unique 

parallel, asynchronous parallel genetic and K-mean operators are used to reach a global 

optimality through population diversity. 

An expert module is included in the framework to integrate domain subject matter experts’ 

knowledge, experiences and preferences. The integration makes more it realistic and practical to 

apply this framework to solve real-world problems. A graphical reporting submodule for data 

visualization on the generated Pareto-optimal set is included in the expert module to visualize the 

results and outcomes for decision makers.  The proposed framework was applied to solve two 

real-world multi-objective optimization problems with expected Pareto-optimal solution sets. 
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Chapter One: INTRODUCTION 

 

1.1 Background 

Multi-objective optimization is to get a number of optimized objectives simultaneously. The 

objectives are often conflicting with each other; the improvement of one objective function often 

results in the degradation of other objective values. The solution to this type of problem usually 

involves searching for simultaneous optimization of several conflicting and competing objectives. 

However, there exists a set of solutions that no single best solution in the search space is better 

than the other with all objectives considered. This set of solutions are known as Pareto-optimal 

solutions. By using the generated Pareto-optimal solutions, the decision maker will take trade-

offs of all the objectives considered in solving real-world problems based on their knowledge, 

experiences and expertise. 

There are a number of methods to solve multi-objective optimization problems. Classical 

methods of solving multi-objective optimization problems use the algorithm to convert multi-

objective optimization to a single-objective optimization problem by emphasizing one particular 

Pareto-optimal solution at a time, which requires multiple-runs to produce the alternative 

solutions for every objective.  Real-world multi-objective optimization problems usually are 

multi-dimensional and multi-modal, and sometimes there is no clear definition of certain 

objective functions, classical methods are usually inadequate to produce the Pareto-optimal 

solutions for real world problem solving due to the high computational complexity [1]. Because 

there does not exist a single solution that simultaneously optimizes each objective in a nontrivial 
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multi-objective optimization problem, there have been various research and algorithms that were 

applied to solve the multi-objective optimization problems [2-8].  

The solutions of multi-objective optimization problems are considered equally good without 

additional subjective preference information, which are also referred as non-dominated, Pareto 

optimal, Pareto efficient or non-inferior solutions. Among the Pareto optimal solutions, decision 

makers determine the more applicable or favorable solution by taking trade-offs and sacrifices.  

Due to limitations of classical methods in searching for the Pareto-optimal sets for difficult 

problems with non-convex, discontinuous, and multi-modal solutions spaces, as discussed in 

section 1.4.1., Genetic algorithm are well suited to solve multi-objective optimization problems.  

Genetic algorithm can find a set of multiple non-dominated solutions in a single run by 

simultaneously searching different regions of a solution space. Over the past decade, the 

application of genetic algorithm (GA) in solving multi-objective optimization (MOO) problems 

and data mining processes for knowledge discovery has become a popular research area. There 

were a number of algorithms developed in the research to address the multiple and often 

conflicting objectives optimization problems [3-27].  

In this research, a novel hybrid and unified multi-objective genetic algorithm based 

framework is proposed. The applicability and effectiveness of the proposed framework are 

demonstrated by conducting experiments on three well-known benchmark datasets, the results 

are then compared with other well-known multi-objective genetic algorithms as comparative 

studies for validation and verification. Then the framework is applied to solve two real-world 

problems.  
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1.2 Multi-objective Optimization Problems (MOOP) 

A multi-objective optimization problem is an optimization problem that involves multiple 

objective functions. The solution is to get the optimized value of more than one objective 

function simultaneously. For a nontrivial multi-objective optimization problem, there does not 

exist a single solution that is better or dominates other solutions with all objectives considered. It 

is also an area of multiple criteria decision-making processes as multi-objective optimization has 

been applied in many fields of science, including engineering, economics and logistics, where 

optimal decisions need to be taken in the presence of trade-offs between two or more conflicting 

objectives.   

In mathematical terms, a multi-objective optimization problem formulated as a set of n 

decision variables, and a set of k objective functions and a set of m constraints. Objective 

functions and constraints are functions of the decision variables [101]. 

If k = 1, the problem becomes a single objective optimization problem, and the feasible set is 

reduced to one solution where one meets the objective function f(x) that gives the maximum or 

minimum value of the objective function f(x). Whereas, in multi-objective optimization, there 

does not typically exist a feasible solution that optimizes all objective functions simultaneously 

as the objectives are conflicting and cannot be optimized simultaneously.  

When the objectives k ³ 2, f(x) is only partially ordered. For example, in the computer design 

engineering, the goal is to get the most powerful computer (f1(x)) with lowest cost (f2(x)). The 

objectives are conflicting to each other, therefore, depending on the decision marker’s 
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requirements, an intermediate solution (Pareto front) might be an appropriate trade-off between 

the two conflicting objectives, as illustrated in listing below. 
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Definition 1:  Multi-Objective Optimization 

x: decision vector 

y: objective vector 

X: decision space 

Y: objective space 

Objectives: 

Max|Min:  y = f(x) = (f1(x), f2(x), …,fk(x)) 

Constraints/subject to:  s(x) = (s1(x), s2(x), …., sm(x))£0 

where   k ³ 2 

x = (x1,x2,…,xn) ∈ 𝑋 

Definition 2: Feasible Set 

Feasible set Xf is defined as the set of decision vectors x that satisfy the 

constraints s(x). 

Xf = { x ∈X | s(x)  <= 0 } 

 

Definition 3: Feasible Region 

Feasible Region Yf is the region in the objective space 

Yf = f (Xf) = ÈxÎXf { f(x) } 
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1.3 Decision Making Processes with Multi-Objective Optimization 

There are two processes required to solve real-world multi-objective optimization 

problems.  

• Search Process 

This process is to search the Pareto-optimal solutions. Real-world problems often have 

large and complex search space, and the requirements for fast outputs for decision 

makers. Result visualization on the Pareto-optimal sets is an important part at the end 

of the search process because decision makers need to understand result sets and 

visualize the impacts of choosing different solutions.  

• Decision Making Process  

Decision making process is based on past experiences, judgment and intuition and can 

be error prone. The human mind is not capable of perceiving in all details more than 

seven parameters, on an average, at a time [1,149]. In scientific decision making is to 

take the trade-offs among all the possible optimal solutions. The application of genetic 

algorithm to search the Pareto-optimal set is, therefore, becoming more useful.  The 

decision maker has to deal with vast data, number of alternatives and different decision 

situations before taking any decision. The issue becomes taking trade-offs in 

conflicting interests. Consequently, one of the most important and difficult aspects of 

any decision problem is to achieve an equilibrium among multiple and conflicting 

objectives [1]. With the help of generated set of Pareto-optimal solutions, human 

decision makers make the trade-offs between conflicting objectives and choose the 
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final solutions, in combination with their knowledge, experiences, preferences and 

expertise. 

Prior to the start of search process, decision makers set up the objectives of the targeted 

problems and/or initial conditions, including their preferences info, initial parameters, stopping 

constraints and thresholds. This usually required profound domain knowledge as the search 

process is performed with the objectives given.  Solving a multi-objective optimization problem 

is sometimes understood as approximating or computing all or a representative set of Pareto 

optimal solutions. When decision making is emphasized, the objective of solving a multi-

objective optimization problem is referred to supporting decision makers in finding the most 

preferred Pareto optimal solution according to their subjective preferences [1,85,90,92].   

In this research, the focus is to design and implement a framework for MOOP that are 

capable of handling the real-world MOOP with large and highly complex search spaces during 

the search process, with the visualization of Pareto-optimal sets for the decision-making process.  

 

 

 

 

 

 

Figure 1.1 Pareto optimality 

f1(x) 

f2(x) Pareto-Optimal front 
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1.4 Multi-Objective Optimization Methods and Algorithms 

1.4.1 Classical Methods 

Over the past four decades, there are large amount of research and applications of using 

classical methods (non-GA based method) on multi-objective optimization problem. They can be 

classified into the following classes: 

• Non-preference methods 

These methods do not assume any information about the importance of objectives, a 

heuristic is used to find a single optimum solution, without consideration of multiple 

Pareto-optimal solutions. 

• Posteriori methods 

Posteriori methods use preference information of each objective and iteratively 

generate a set of Pareto-optimal solutions. 

• A priori methods 

Priori methods use more information about the preferences of objectives and they 

usually find one preferred Pareto-optimal solution. 

• Interactive methods 

These methods use the preference information progressively during the optimization 

process. 

Some representatives of classical methods are discussed in section 2.1. The limitations of 

each method are also discussed in detail in this section.  
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1.4.2 Genetic Algorithms  

Genetic algorithm is the one of most commonly used methods to solve multi-objectives 

optimization problems. Genetic algorithms are search and optimization procedures that are 

inspired by the process of natural selection which is the differential survival and reproduction of 

individuals through evolution. Charles Darwin used the term "natural selection", and compared it 

with artificial selection. Natural selection is the differential survival and reproduction of 

individuals due to differences in phenotype. It is a key mechanism of evolution, the change in 

heritable traits of a population over time.  Because random mutations arise in the genome of an 

individual organism, and offspring can inherit such mutations, variation exists within all 

populations of organisms. Individuals with certain variants of the trait may survive and 

reproduce more than individuals with other, less successful, variants. Therefore, the population 

evolves over generations [90,91,93].  

The evolution usually starts from a population of randomly generated individuals, and is an 

iterative process, with the population in each iteration called a generation. In each generation, the 

fitness of every individual in the population is evaluated; the fitness is usually the value of the 

objective function in the optimization problem being solved. The more fit individuals are 

stochastically selected from the current population, and each individual's genome is modified 

(recombined and possibly randomly mutated) to form a new generation. The new generation of 

candidate solutions is then used in the next iteration of the algorithm. Commonly, the algorithm 

terminates when either a maximum number of generations has been produced, or a satisfactory 

fitness level has been reached for the population. Individuals that gives a reproductive advantage 
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may become more common in a population. Over time, this process can result in populations that 

specialize for particular ecological niches (microevolution) and may eventually result in 

speciation (the emergence of new species, macroevolution). Natural selection is a key process in 

the evolution of a population [71-74].  

In comparison with classical optimization techniques, genetic algorithm is different, as the 

objectives are often multiple and conflicting.  With these constraints and objectives, the design 

problem is nonlinear programming problem (NLP) [75,76,82]. 

In a genetic algorithm, a population of candidate solutions, also called as individuals, 

creatures, or phenotypes, are evolved toward better solutions in optimization search space. Each 

candidate solution has a set of properties (its chromosomes or genotype). The solutions can be 

mutated and altered after each generation; traditionally, solutions are represented in binary as 

strings of 0s and 1s, but other encodings are also possible [96,97].  The processes of evolution 

are used to construct genetic algorithms with genetic operations requires a genetic representation 

of the solution domain, a fitness function to evaluate the solution domain and a standard 

representation of each candidate solution is as an array of bits [98]. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these genetic 

representations convenient is that their parts are easily aligned due to their fixed size, which 

facilitates simple crossover operations. Variable length representations may also be used, but 

crossover implementation is more complex in this case. Tree-like representations are explored in 

genetic programming and graph-form representations are explored in evolutionary programming; 

a mix of both linear chromosomes and trees is explored in gene expression programming 

[119,112,114]. 
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Genetic algorithm (GAs) is a method for solving optimization problems based on a natural 

selection process that mimics biological evolution. Genetic algorithms (GAs) are often well-

suited for optimization problems involving several, often conflicting objectives. With pre-

defined set of iterations and goals, the algorithm continuously and repeatedly generates a 

population of better individual solutions. At each iteration, the genetic algorithm randomly 

selects individuals from the current population within the predefined goal settings and uses them 

as parents to produce the children for the next generation, in other words, it generates a 

population of points at each iteration and selects the next population by computation which uses 

random number generators. Over successive generations, the population "evolves" toward an 

optimal solution. In comparison, the classical, derivative-based, optimization algorithm generates 

a single point at each iteration and selects the next point in the sequence by a deterministic 

computation.  

1.5  Applications of Multi-Objective Genetic Algorithm 

Multi-objective optimization has been applied in many fields of science, including 

engineering, economics and logistics, where optimal decisions need to be taken in the presence 

of trade-offs between two or more conflicting objectives. For example, in the banking industry, a 

common problem for investors is to choose a portfolio when there are two conflicting objectives: 

highest investment returns with lowest risks. This problem shows the best combinations of risk 

and expected return that are available, and in which indifference curves show the investor's 

preferences for various risk-expected return combinations.  In resource management, including 

power, cell network, water etc., every user’s objective is to have sufficient utilization of the 

resources but with minimal cost, while resources themselves are limited and often difficult to 
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make up to demand, and another objective is to make them environment friendly while 

minimizing the cost of making the resources available. These objectives are conflicting to each 

other. The decision maker would need to find a Pareto optimal solution that balance the total 

resource supply and demand. In engineering and economics, many problems involve multiple 

objectives which are not describable as the-more-the-better or the-less-the-better; instead, there is 

an ideal target value for each objective, and the desire is to get as close as possible to the desired 

value of each objective. For example, computer design problem typically involves taking trade-

offs between performance and cost [105,106]. In economics, government might want to conduct 

open market operations so that both the inflation rate and the unemployment rate are as close as 

possible to their desired values. 

Genetic algorithm are well suited to solve multi-objective optimization problems in 

comparison with traditional algorithms. Traditional search and optimization methods often have 

difficulties solving the nonlinearities and complex interactions among problem variables in real 

world situation, especially when the search space has more than one optimal solution. [87,88, 89]. 

Genetic algorithm can be applied to solve problems that are not well suited for standard 

optimization algorithms, including problems in which the objective function is discontinuous, 

non-differentiable, stochastic, or highly nonlinear as GAs do not require derivative information 

or use gradient information in its search process. They use direct search procedures, hence 

allowing them to be applied to a wide variety of optimization problems. Additionally, in each 

iteration, there are multiple parallel solutions encoded in a population, hence in combination with 

the use parallel programming and modern multi-processor computers, can do a computationally 

quick overall search. The crossover operator of GA may exploit structures of good solutions with 
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respect to different objectives to create new non-dominated solutions in unexplored parts of the 

Pareto front. In addition, most multi-objective GA do not require the user to prioritize, scale, or 

weigh objectives. Therefore, GA have been the most popular heuristic approach to multi-

objective design and optimization problems. Jones et al. [138] reported that 90% of the 

approaches to multi-objective optimization aimed to approximate the true Pareto front for the 

underlying problem. A majority of these used a meta-heuristic technique, and 70% of all meta-

heuristics approaches were based on evolutionary approaches. Alternative and complementary 

algorithms include evolution strategies, evolutionary programming, simulated annealing, 

Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony optimization, 

particle swarm optimization) and methods based on integer linear programming. The suitability 

of genetic algorithms is dependent on the amount of knowledge of the problem. 

 There is a number of research on genetic algorithm applications in multi-objective 

optimization with the goal to find a representative set of Pareto optimal solutions, and/or 

quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that 

satisfies the subjective preferences of a human decision maker (DM), as illustrated in conference 

proceedings and domain-specific books, journals and proceedings [131,132, 135,136 et al]. 

Multi-Objective Genetic Algorithms (MOGA) have the following advantages in comparison with 

the traditional algorithms. MOGA can obtain a set of non-dominated solutions opposed to a 

single solution and it has flexibility in handling a wide range of types of variables, objective 

functions, and constraints, such as nonlinear, discontinuous as discussed in Section 2.12. 

Multi-Objective Genetic Algorithm are also applied in the knowledge discovery and data 

mining research. Data mining methods are designed for extracting previously unknown 
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significant relationships and regularities out of huge heaps of details in large data collections 

[20,21,22, 45]. If MOGA procedure can find solutions close to the true Pareto-optimal set, the 

solutions can be further analyzed for properties which are common. Such a systematic approach 

can be used in deciphering important and hidden properties. The finding of multiple trade-off 

and optimal solutions using a multi-objective optimization, and then analyzing the solutions to 

discover useful knowledge can be part of knowledge discovery process [130].   

Data clustering can be used in MOGA for fast convergence to a global optimal solution as 

the size of populations can be reduced though clustering. Clustering is the task of grouping a set 

of objects in such a way that objects in the same group are more to each other than to those in 

other groups (clusters). Clustering analyses requires multiple objectives to be optimized. The 

objectives of clustering are to first have clear separation of clusters in data sets, which can lead to 

a larger number of clusters. On the other hand, another objective of clustering is to have smaller 

groups of quality clusters. These objectives are conflicting to each other and therefore, it is 

naturally a multi-objective optimization problem.  Without any previous knowledge about the 

data, it is hard to decide on the number of clusters, and there are always some trade-offs between 

the quality of a clustering result and the number of clusters. Cluster analysis is an iterative 

process of knowledge discovery or interactive multi-objective optimization that involves trial 

and failure, in combination with the use of genetic algorithm with generated data set and model 

parameters, can achieves the optimal result set [6, 130]. 

1.6 An Innovative Hybrid Unified Framework  

Multi-objective optimization is important in real-world practical problem solving, but not 

much attention has been paid so far in this respect among the GA research [209,210]. In real 



 

15 

world situations, multi-objective optimization problems become more challenging as there is no 

one algorithm that can be used to fit all problems and be applicable to all situations that can 

generate the Pareto-set in a timely and efficient manner for decision makers. Multi-objective 

evolutionary algorithms usually have following challenges, which include  

• Missing global optimum 

• Slow converge to global optimum  

• O(MN3) computational complexity (where M is the number of objectives and N is the 

population size) in the search process. 

• Lack of elitism or slow elitism selection approach in the search process.  

• Lack of efficient stopping criterion in the search process. 

• Lack of result visualization in the search process for decision makers. 

• Lack of integration with human decision makers in the decision-making process. 

 This research proposed an innovative unified and comprehensive multi-objective genetic 

algorithm to try to address the aforementioned challenges. The generated Pareto-optimal solution 

sets can give researcher and decision makers the best overview of the problems at hand and 

recommended solutions with expected impacts. 

The main contribution of this research is a novel genetic algorithm and a unified framework 

that provides a fast, comprehensive and general-purpose approach to solve real-world multi-

objective optimization problems. This framework can also be applied to date clustering in data 

mining and knowledge discovery as illustrated in the experiments. The proposed research has the 

following contributions. 
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1. Better convergence performance with a fast search algorithm and K-mean operators 

computing through the use of modern advancement of computational technology, 

including the parallel and asynchronous programming with O(MN2) computational 

complexity. 

2. A set of hybrid genetic algorithm with local search algorithm and K-mean operator that 

can create a global optimization population by combining the parent and offspring 

populations and selecting the best N solutions (with respect to fitness and spread).  

3. A framework that can find a better spread of solutions and better convergence near the 

true Pareto-optimal front compared to other researches on Pareto evolutionary algorithm.  

4. An innovative and unified framework that can be applied directly in helping to solve real 

world multi-objective optimization problems.  

 

The applicability and effectiveness of the described framework were verified by clustering 

validity analysis with extensive testing and experimental datasets from a variety of domains 

ranging from very general to very specific like gene expression data.  

This framework is then applied to solve two real-world multi-objective problems. The first 

application was on the blood bank utilization optimization for Calgary Health Region, Alberta, 

Canada. It provides a recommended set of actions to optimize the blood bank inventory. The 

second application was on shopping optimization application for Microsoft Canada Imagine Cup 

2013 competition.  It provides a recommend set of optimal routes for shopper to find the most 

cost-effective way of shopping. 
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The structure of this thesis is organized as follows. Chapter Two is an overview of related 

works in multi-objective genetic algorithm research. Chapter Three is devoted to the 

methodology, algorithm, setup and development of the entire framework. Chapter Four reports 

the actual results on experimental datasets to test the applicability, accuracy, performance, and 

efficiency of the framework, including the experimental testing on benchmark datasets, and the 

solution sets for two real world situations. Chapter Five concludes the outcome of this research, 

including the discussion of the strengths and limitations of this research and the developed 

framework with future possible enhancements with the rapid advancement of the modern 

computing technologies. 
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Chapter Two: RELATED WORK  

 

2.1 Traditional Methods in Multi-Objective Optimization  

Because of the computational complexity in the search process of multi-objective 

optimization solutions, traditional methods aggregate the objectives into a single, parameterized 

objective function by analogy for generating the optimal solution set to decision making. The 

input parameters of this function are set by different optimization runs with different parameter 

settings. The solution generated by each run are groups at the end to achieve a set of solutions 

which approximates the Pareto-optimal set.  Three representatives of traditional techniques are 

summarized below: 

 

2.1.1 Goal Programming  

Goal programming is a branch of multi-criteria decision analysis (MCDA). A criterion is 

a single measure by which the goodness of any solution to a decision problem can be measured. 

Depending on the fields of application, criteria can be cost, profit, time, distance, or performance 

of a system. A decision problem which has more than one criterion It is a generalization of linear 

programming to handle multiple, normally conflicting objective measures. For each of the 

objective measure, a goal or target value is set for the search is given, negative deviations from 

this set of target values are then minimized in an achievement function. Charnes and Cooper 

[1977] presented the general goal programming model as below: 
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Objectives 

Minimize:  𝑓 𝑥 = 𝑑'( + 𝑑'*
+
',-  

Where: 

 𝑓 𝑥 =	objective function = Summation of all deviations 

𝑑'* = negative deviational variable from the ith goal (underachievement) 

𝑑'( = positive deviational variable from the ith goal (overachievement). 

Variable Objective Condition 

𝑑'* Minimize 𝑑'* = 0 

𝑑'( Minimize 𝑑'( = 0 

𝑑'* + 	𝑑'( Minimize of the Total 𝑑'* = 0, 𝑑'( = 0 

 

Table 2.1 Generalized Goal Programming Model 

 

2.1.2 Constraint Method  

 Constraint method in general can be described as below: 

 Choose one of the objectives to be optimized, give other objectives an upper bound and 

consider them as constraints. Different PO solutions can be obtained by changing the bounds 

and/or the objective to be optimized.   
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 Maximize;  𝑓 𝑥 = 	𝑓1(𝑥) 

 Subject to:  𝑒' 𝑥 = 	𝑓' 𝑥 > 	 𝜀'		(1 ≤ 𝑖 ≤ 𝑘, 𝑖 ≠ ℎ) 

   x Î Xf 

As shown in Figure 2.1, the constraint method is able to obtain solutions associated with non-

convex parts of the trade-off curve. Setting h=1 and ε>	= r (solid line) makes the solution 

represented by an infeasible regarding the extended constraint set, while the decision vector 

related to B maximizes f(x) among the remaining solutions  

The problem is that the solution to the problem largely depends on the selection of the ε 

vector. In particular, it must be chosen such that it lies between the minimum and maximum 

value of each objective function. As the number of objectives increases, the complexity increases 

exponentially as well [135]. 

 

 

 

 

 

Figure 2.1 Constraint Methods in Multi-Objective Optimization 
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feasible 
infeasible 
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2.1.3 Weighted Sum Method 

Aggregation methods is one of the classical methods that combine the objectives into a 

higher scalar function which is used for fitness calculation; It can produce one single solution 

and require profound domain knowledge from subject matter expert, which is often not available.  

  This method secularizes the set of objectives into a single objective by multiplying each 

objective with a user supplied weight. The value of the weights is based on the relative 

importance of each objective. The mathematical model is described below: 

Maximize:		f x =	𝑤-𝑓- 𝑥 +	𝑤>𝑓> 𝑥 + ⋯+	𝑤J𝑓J 𝑥  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜: 𝑥	 ∈ 	𝑋R 

The weights wi are normalized such that 𝑤' = 1.  Different weight combination will 

generate set of solutions. As shown in Figure 2.2, in case of convex problems, the entire Pareto-

optimal set can be found. However, for multiple mixed objective optimization problems (min-

max), all the objectives need to be converted into one type, and it may not be able to find a 

uniformly distributed set of Pareto-optimal solutions as two different set of weight vectors not 

necessarily lead to two different Pareto-optimal solutions [38]. 
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Figure 2.2 Weighted Method with Convex and Non-Convex  

2.1.4  Limitations of Classical Methods 

Classical methods are attractive and popular in many single objective and simple multi-

objective optimization applications. However, for real world large-scale complex problems, with 

high dimension and modalities and lack of prior knowledge on the intrinsic of the problems, 

classical methods have difficulties with convergence and generate Pareto-optimal solutions. As 

shown in Figure 2.2, the weighted sum method may be sensitive to the shape of the Pareto-

optimal front. Therefore, their application of using classical methods to complex multi-objective 

optimization problems is limited and restricted. Moreover, classical methods require several 

optimizations runs to obtain an approximation of the Pareto-optimal set, which will result in high 

computation overhead. 

Evolutionary algorithms can overcome the aforementioned difficulties and have become 

established as an alternative to classical methods to solve multi-objective optimization problems. 

f2(x) 

w
W

f1(x) 
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EAs can handle large search spaces, and generate Pareto-optimal fronts with multiple alternative 

trade-offs a single optimization run. 

2.2 Issues with Classical Methods on Multi-Objective Optimization  

Classical approaches to solve optimization problems can be classified into two distinct 

groups: direct and gradient-based methods [83, 87, 88, 89].  In direct search methods, only 

objective function 𝑂 𝑥 	and constraint values are used to guide the search strategy, and 

derivative information are not used, this usually requires more function evaluations for 

convergence, and another issue with this approach is that it requires changes of algorithms for 

different objectives. 

Gradient-based method can converge to an optimal solution on linear cases but with issues in 

non-differentiable or discontinuous problems [83].  In addition, there are some common 

difficulties with most of the traditional direct and gradient-based techniques are summarized 

below: 

• Local or sub optimal solution 

• Requires specific algorithm for different optimization problem. 

• Not applicable to non-linear, discrete variables  

• Not efficient for parallel computing. 

• Optimal solution depends on the chosen initial solution 

2.3 History of Genetic Algorithms (GA) 

As discussed in the previous section, genetic algorithms (GAs) can overcome the limitations 

of classical algorithms and have become established method for exploring the Pareto-optimal 
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front in multi-objective optimization problems that are too complex to be solved by classical 

methods, such as linear programming and gradient search.  

Genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection, also 

known as the survival of the fittest. Genetic algorithms are also referred as evolutionary 

algorithms (EA), or as a subset of evolutionary computation [81,82]. GA has inherent parallelism 

and can approximate the Pareto-optimal front in a single optimization run by 

crossover/recombination, mutation and selection operators in a single simulation run.  Since 

genetic algorithms work with a population of solutions, a simple GA can be extended to maintain 

a diverse set of solutions with an emphasis for moving toward the true Pareto-optimal region. 

The goals for multi-objective optimization is to find the true Pareto-optimal sets, best uniform 

distribution of the solutions, and maximum spread of the obtained non-dominated front. 

Genetic algorithms (GAs) have been extensively used as search and optimization tools in 

various problem domains, including sciences, commerce, and engineering since John Holland 

[86] first introduced the concept of a genetic algorithm in 1975. Over the past decade, a number 

of multi-objective evolutionary algorithms (MOEAs) have been suggested with a number of 

research papers on genetic algorithm published.  A more comprehensive description of genetic 

algorithms can be found in the recently compiled Handbook on Evolutionary Computation, 

published by Oxford University Press [Back et al 1997] [71].  Two journals entitled Evolutionary 

Computation (published by MIT Press) and IEEE Transactions on Evolutionary Computation are 

now dedicated to publishing salient research and application activities in the area.  Some of the 

well-cited evolutionary algorithms used in multi-objective optimization (MOGA) were reviewed 

in the literature reviews section. 
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2.4 Design of Genetic Algorithms (GA) 

Genetic algorithm starts with an initial set of candidate solution and iteratively update the 

result sets through reproduction, mutation, recombination, and selection. Each new generation is 

produced by stochastically removing less desired solutions, and introducing small random 

changes. In biological terminology, a population of solutions is subjected to natural selection (or 

artificial selection) based on fitness, crossover, and mutation. As a result, the population will 

gradually evolve to increase in fitness and improve [76].  

The solution candidates are called as individuals and the set of solution candidates is called 

the population. Each individual represents a possible solution, which usually encoded as bit 

vector or real-value vector, or other structures like trees [95].  The set of all possible solution 

vectors constitutes the individual space I. The population is a multi-set of vectors i ∈ 𝑰.  

In general, a GA is characterized by Table 2.1 below: 

Input:   

  

P: population size 

G: maximum number of generations 

Pr: crossover probability 

        Rm: mutation rate 

Output PSet: Pareto non-dominated set 

 

Table 2.2 Inputs and Outputs of Generalized Genetic Algorithm 
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Genetic Algorithm Steps: 

Step 1:  Initialization:  An initial population is generated randomly, allowing the entire range of 

possible solutions, i.e., the search space.  Randomization of population is essentially a 

stochastic process. The diversity of population is an important factor to reach global 

optimality. Convergence in optimization process is crucial because it specifies 

termination condition of the process [50].  

 Set  P0 = ∅,	t =0 	

  For i= 1,…, N do 

a) Select i	∈ I based on pr 

b) Set P0 = P0 + {i} 

where I is the individual space. P0 can be "seeded" in areas where optimal 

solutions are likely to be found. 

Step 2:  Fitness setup:  the fitness is the value of the objective function f(x). The more fit 

individuals are stochastically selected from the current population, and each individual's 

genome is modified (recombined and possibly randomly mutated) to form a new 

generation. 

 For each individual i 	∈ Pt  

1. determine the encoded decision vector x = m(i)  

2. determine the objective vector y = f(x)  

3. calculate the scalar fitness value F(i) 
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Step 3:  Selection:  Based on the fitness value F(i), individual solutions are selected. Some 

selection methods rate the fitness of each solution and preferentially select the best solutions. 

Other methods rate only a random sample of the population, as the former process may be very 

time-consuming.  

  Set  P’ = ∅	

  For i= 1,…, N do 

1. Select i	∈ Pt based on F(i) 

2. Set P’= P’+ {i} 

where P’ is the temporary solution 

Step 4:  Crossover / Recombination: Within the selected solutions, the crossover operator is 

usually applied with a crossover probability (pc ∈  [0, 1]), which means the proportion of 

population members participating in the crossover operation. The remaining (1- pc) proportion 

of the population is copied to the offspring population. 

Set  P’’= ∅	

  For i= 1,…, N/2 do 

1. Select two individuals i, j	∈ P’ 

2. Remove i, j from P’ 

3. Crossover i,j into m,n∈ I 

4. Use Pr to add m,n to P’’, or re-use i,j  

where P’’ is the temporary solution 
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Step 5:  Mutation:  Within the population itself, mutation happens with a probability that an 

arbitrary bit in a genetic sequence will be changed from its original state. After the crossover 

operator, the individual is then perturbed in its vicinity by a mutation operator. A common 

method of implementing the mutation operator involves generating a random variable for each 

bit in a sequence. This random variable decides whether or not a particular bit will be modified.  

Every variable is mutated with a mutation probability pm , usually set as 1/n  (n  is the number of 

variables), so that on an average one variable gets mutated per solution. In the context of real-

parameter optimization, a simple Gaussian probability distribution can be used with its mean at 

the child variable value. 

  Set  P’’’ = ∅	

  For each individual i ∈ P’’ do 

1. Mutate i based on Rm =>j ∈ I 

2. Set P’’’= P’’’+ { i } 

Step 6:  Termination:  The evolutionary process will converge and stop when it reaches the 

predefined termination conditions.  Common terminating conditions are: 

• Satisfactory criteria reached 

• Predefined number of generations reached 

• Allocated resources (computation time/money) reached 

• The highest ranked solution's fitness is reaching or has reached to a point such that 

successive iterations no longer produce better results 

• Manual intervention 
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Set  P (t+1)= P’’’	

t = t+1   

If ( t < T or any of above stopping criterion is satisfied ) then  

set A =  p(m(Pt) 

else 

 go to Step 2. 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding 

from the pool selected previously, and the pair are used for producing offspring solutions with 

crossover and mutation operators, new offspring solution is created which typically shares many 

of the characteristics of its "parents". New parents are selected for each new child, and the 

process continues until a new population of solutions of appropriate size is generated for next 

generation. Some researchers [86] [87] suggests that more than two "parents" solutions selected 

for crossover and mutation processes can generate higher quality chromosomes. The selection of 

better solutions from every generation is also known as elitism.   

The elitism operator combines the old population with the newly created population and 

chooses to keep better solutions from the combined population. Such an operation makes sure 

that an algorithm has a monotonically non-degrading performance. 

Each step in genetic algorithm described above can vary in design, initial settings and 

configurations with restrictions, for example, the population size can have different limits; 

crossover can involve more than two parents, selection processed can be based on probability or 

tournament selection. Moreover, a large number of variations in selection, crossover, and 

mutation operators have been proposed for different representations.  
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2.5  Review of Existing Multi-Objective Genetic Algorithms 

Fonseca and Fleming [111] conducted a comprehensive overview of multi-objective 

genetic algorithms. Based on the simulation of evolutionary approaches, genetic algorithms are 

categorized into aggregating approaches, population-based non-Pareto approaches and Pareto-

based approaches; moreover, approaches using niche induction techniques were also reviewed. 

There have been a number of more researches on multi-objective genetic algorithms (MOEAs) 

since then. Five of the most salient MOEAs have been chosen for the comparative studies 

reviewed in the next chapter. A summary of their main features and their differences is described 

as well. The thorough discussion of different evolutionary approaches to multi-objective 

optimization are not discussed in this paper. 

2.5.1 VEGA - Vector Evaluated Genetic Algorithm 

Schaffer [84] proposed an multi-objective optimization using genetic algorithm, called 

vector evaluated genetic algorithm (VEGA), which is a representative of the category selection 

by switching objectives. VEGA is the first genetic algorithm to approximate the Pareto-optimal 

set by a set of non-dominated solutions. In VEGA, population Pt is randomly divided into K 

equal sized sub-populations; P1, P2,…, PK. Then, each solution in subpopulation Pi is assigned a 

fitness value based on objective function Zi. Solutions are selected from these subpopulations 

using proportional selection for crossover and mutation [84]. 
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VEGA Description: 

Let  N = Population Size 

 K = Number of Objectives 

 Ns = sub-population size (Ns = N/K) 

Step 1: Initialization - Choose a random population Pt with t=0 

Step 2: Check stopping condition: if yes, return Pt 

 Else goto Step 3 

Step 3: Sort - Randomly sort population Pt 

Step 4: Fitness Assignment - For each objective K = 1,…, k 

Step 4.1. for i = I + (k-1)Ns, …, kNs. Assign fitness value f(xi) = Zk(xi) to the ith solution 

                          in the sorted population. 

Step 4.2 Based on the fitness values assigned in Step 4.1, Select Ns solutions between the 

(1 + (k-1)th and (kNs)th solutions of the sorted population to create a new sub-population Pk. 

Step 5: Combine all subpopulations P1, …, Pk and apply crossover and mutation operator on the 

combined population to create P t+1 of size N.  Set t= t+1 

Step 6: Combine all subpopulations P1,y,Pk and apply crossover and mutation on the combined 

population to create Pt+1 of size N. Set t ¼ t þ 1, go to Step 2. 
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In VEGA, each subpopulation is evaluated with respect to a different objective. Fitness 

value and comparison is executed for each of the k objectives separately. The population of 

mating pool have equal size for crossover operator. Steps 2 and 3 of this algorithm are executed k 

times per generation, respectively replaced by the following algorithm [84]: 

Input:  Pt (population) 

Output: P’ (mating pool) 

Step 1: Set i =1 and mating pool P’=0 

Step 2: For each individual i ∈Pt, do F(i) = fi(m(i)) 

Step 3: for j=1,……,N 

 Select individual I from Pt according to a given scheme and copy it to the mating pool 

 P’ = P’ + {i} 

Step 4: Set i = i +1  

Step 5: If i <=k,  

then go to Step2  

 Else 

 STOP 
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As shown in Fig. 2.3, the best individuals in each dimension are chosen for reproduction. 

Afterwards, the mating pool is shuffled and crossover and mutation are performed as usual. 

Schaffer implemented this method in combination with fitness proportionate selection [84], it is 

straightforward implementation, but tends to converge to the extreme of each objective.  

 

 

 

 

 

 

 

Figure 2.3 VEGA Illustration  

 

Since VEGA, there have been a number of enhanced genetic algorithms developed [80] 

based on VEGA’s design principal, and VEGA has been used as a strong reference in many 

related literatures.   
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2.5.2 NPGA Genetic Algorithm 

The Niched Pareto Genetic Algorithm (NPGA) [110] is another well-known genetic 

algorithm (GA) to deal with multiple objectives optimization problems. It incorporates the 

concept of Pareto domination in the selection operator, and applying a niching pressure to spread 

its population out along the Pareto optimal tradeoff surface. The design of NPGA is summarized 

below. 

Input:  Pt:   Population  

 𝜎Y1Z[\:	𝑁𝑖𝑐ℎ𝑒	𝑟𝑎𝑑𝑖𝑢𝑠 

 tdom:  domination 

Output: P’ (mating pool) 

Step 1: Set i =1 and mating pool P’=0 

Step 2: Randomly choose 2 individuals x, y ∈Pt in a set Pdom Í  Pt  

Step 3: If I(x) dominates in Pdom, and I(y) doesn’t, then I(x) is the dominating individual (winner) 

 of the tournament. P’ = P’ + I(x)  

 If I(y) dominates in Pdom, and I(y) doesn’t, then I(y) is the dominating individual (winner) 

 of the tournament. P’ = P’ + I(y)  

 Else 

Choose the winner by fitness sharing in Step 4 

Step 4: Tournament by fitness sharing 
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Find the individuals that are within the 𝜎Y1Z[\  for I(x) and I(y) 

D(x|y) < 𝜎Y1Z[\  

If D(x) < D(y), then P’ = P’+I(x), else P’ = P’+ I(y) 

Step 4: Set i = i+1. If i < Population size, then go to step2, else terminate.  

In NPGA, the fitness assignment can be either value based, or by tournament selection in 

selection operator in the objective space. Binary Pareto tournaments is illustrated in Figure below. 

Two competing individuals and a set of tdom individuals are compared. The competitor 

represented by the white point is the winner of the tournament since the encoded decision vector 

is not dominated with regard to the comparison set in contrast to the other competitor. 

 

 

 

 

 

 

 

 

 

Figure 2.4 NPGA Illustration  
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2.5.3 NSGA Genetic Algorithm 

Goldberg [79] proposed the first Pareto ranking technique. Pareto-ranking approaches 

explicitly utilize the concept of Pareto dominance in evaluating fitness or assigning selection 

probability to individuals. Individual population ranking and selection are based on a dominance 

rule, and then each solution is assigned a fitness value based on its rank in the population, not its 

actual objective function value.  NSGA is described below: 

Step 1: Create a random parent population P0 of size N. Set t=0 

Step 2: Apply crossover and mutation to P0 to create offspring population Q0 of size N 

Step 3: If the stopping criterion is satisfied, stop and return to Pt 

Step 4: Set Rt = Pt ∪ Qt 

Step 5: Using the fast non-dominated sorting algorithm, identify the non-dominated fronts  

F1, F2, … Fk in Rt 

Step 6:  For I =1, …, k do the following steps: 

Step 6.1. Calculate crowding distance of the solutions in Fi 

Step 6.2 Create Pt+1 as follows: 

 Case 1: if |Pt+1 | +|Fi| <= N, then set Pt+1 = Pt+1 ∪ Fj 

 Case 2: if |Pt+1 | +|Fi| > N, then add the lest crowded N - |Pt+1| solutions 

                         from Fj to P t+1 
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Step 7: Use binary tournament selection based on the crowding distance to select parents from 

Pt+1. Apply crossover and mutation to Pt+1 to create offspring population Qt+1 of size N.  

Step 8: Set t =t+1 and go to Step 3. 

 

Goldberg’s ranking technique [98] is described below: 

Step 1: Set I =1 and TP =P 

Step 2: Identify non-dominated solutions in TP and assigned them to Fj  

Step 3: Set TP = TPFj   If TP = 0, goto step 4, else set i = i+1 and goto step 2. 

Step 4: For every solution x∈ 𝑃 at generation t, assign rank r1(x,t) = I if  x∈ Fj 

where: Fi are non-dominated fronts,  

F1 is the Pareto front of population P in step 1. 

 

In NSGA, only non-dominated solutions participate in the crossover and selection 

operator when the combined parents and offspring population includes N non-dominated 

solutions. There are a number of the Pareto-based MOEAs developed since then, Srinivas and 

Deb[112] have used  different trade-off fronts in the population and fitness sharing is performed 

for each front separately in order to maintain diversity. Fitness assignment is shown below: 
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Input:  Pt (population) 

 𝜎Y1Z[\(𝑛𝑖𝑐ℎ𝑒	𝑟𝑎𝑑𝑖𝑢𝑠) 

Output: F (fitness values) 

Step 1: Set Premain = Pt and initialize the dummy fitness value Fd with N 

Step 2: Determine set Pnondom of individuals in Premain whose decision vectors are nondominated 

regarding m(Premain). Ignore them in the futher classification process, i.e., Premain = Premain - Pnondom 

(Multiset subtraction). 

Step 3: Set raw fitness of individuals in Pnondom to Fd and preform fitness sharing in decision 

space, only within Pnondom. 

Step 4: Decrease the dummy fitness values Fd such that it is lower than the smallest fitness in 

Pnondom : 0<Fd<min {F(i)|i∈ Pnondom} 

Step 5: If Premain ≠0 then goto Step 2 

 Else STOP 

 

2.5.4  FFGA Genetic Algorithm 

Fonseca and Fleming proposed a Pareto-based ranking procedure [111]. In this algorithm, 

the fitness assignment procedure is different from the aforementioned genetic algorithms, and an 

individual’s rank equals the number of solutions encoded in the population by which its 

corresponding decision vector is dominated.  
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Input:  Pt - population 

       						𝜎Y1Z[\ − 	𝑁𝑖𝑐ℎ𝑒	𝑟𝑎𝑑𝑖𝑢𝑠 

Output: F – fitness values 

Step 1: Calculate rank R(i) of every individual i 

 R(i) = 1 + | x | x Î Pt Ù (x>i) | 

Step 2: Based R, Sort the current population and assign corresponding sorted fitness value F’(i) 

           for every individual.  

Step 3: Calculate the fitness value F(i) by averaging and sharing F’(i) in objective space. 

As illustrated in Figure 2.5, based on the sorted individuals, the ranking values are 

assigned from rank high (1) to low (10) accordingly. The crossover populations are implemented 

using stochastic universal sampling based on the ranks. FFGA use the idea of fitness sharing 

which was proposed by Goldberg and Richardson [79] in the search of Pareto front on multiple 

local optima for multi-modal functions. FFGA applies some penalties to fitness of solutions in 

densely populated areas in order to find the undiscovered Pareto front and to maintain diversity 

of population. A "niche penalty" is any group of individuals of sufficient similarity (niche radius) 

have a penalty added, which will reduce the representation of that group in subsequent 

generations [110,124].  It identifies the densely populated areas and applies penalty the solution 

located in such areas as shown below. 
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Step 1: Calculate the Euclidean Distance D(x, y) between every  pair of individuals  x and y in 

the normalized objective space between 0 and 1. 

𝐷 𝑥, 𝑦 = 	 	
J

J,-

	(
𝑧J x − 𝑧J 𝑦
𝑧J+Zh − 𝑧J+'i

)> 

where	𝑧J+Zh and 𝑧J+'i are the maximum and minimum value of the objective function Zk(x,y) 

Step 2: Based on the distances, calculate the niche count for each solution x∈ P as 

𝑁𝑖𝑐ℎ𝑒	𝐶𝑜𝑢𝑛𝑡 = 	 𝑀𝑎𝑥	{
𝜎Y1Z[\*m(h,n)

𝜎Y1Z[\
	}

h∈p

 

where	𝜎Y1Z[\is the niche size. 

Step 3: Assign the fitness of each solution F’ = q
r's1\	tuviw

   

The niche count and fitness sharing based on niche count requires computational effort 

because Fitness sharing requires a new parameter be selected and niche count is also an 

expensive calculation [124]. Some researches [79,124] proposed methods of dynamically 

updating the parameter σshare and dynamically niche sharing to increase effectiveness of 

computing niche counts. 
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Figure 2.5 FFGA Illustration  

2.5.5 WBGA Genetic Algorithm 

WBGA [38] uses weighted average of normalized objectives with predefined weight. The 

drawback is the difficulties in nonconvex objective function space. 

2.5.6 MOGA -Fonseca and Fleming’s Multi-Objective Genetic Algorithm 

MOGA was the first multi-objective GA that explicitly used Pareto-based ranking and 

niching techniques together to encourage the search toward the true Pareto front while 

maintaining diversity in the population. Fonseca and Fleming [111] proposed a Pareto-based 

ranking procedure. An individual’s rank equals the number of solutions encoded in the 

population by which its corresponding decision vector is dominated.  

Rank 4th Rank 3rd 
Rank 5th 

Rank 1st 

Rank 2nd 

f1(x) 

f2(x) 
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Step 1: Start with a random initial population P0.    

Set t=0 

Step 2: If stopping criterion is met, 

 then return P0 

Step 3: Evaluate the fitness of the population: 

Step 3.1 Assign a rank r(x,t) to each solution x Î Pt with defined ranking scheme. 

Step 3.2 Assign fitness values f(x,t)  to each solution based on r(x,t) 

Step 3.3 Calculate the niche count nc(x,t) of each solution x Î Pt 

Step 3.4 Calculate the shared fitness value f’(x,t)  of each solution x ∈Pt 

Step 3.5 Normalize the f(x,t) by f’(x,t) 

Step 4: Use a stochastic selection method based on f’ to select the parents of the mating pool.  

Apply the mutation and crossover on the mating pool 

 until offspring population Qt of size N is filled. Set Pt+1 = Qt 

Step 5: Set t = t+1, goto Step 2.  

 

In this algorithm, the fitness assignment is performed with Pareto ranking, i.e., adaptive 

fitness sharing and continuous introduction of random immigrants. It’s a simple extension of 

single objective GA, but can have slow convergence. 
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2.6 Mixed Multi-Objective Genetic Algorithms  

Multi-objective genetic algorithms have wide success and applicability to many practical 

problems as discussed in section 2.3. Several well-known MOGA algorithms discussed have 

shortcomings as listed section 2.2, including the slow convergence speed to the Pareto optimal 

front; or missing theoretical convergence proof to the Pareto optimal front; or issues with proper 

stopping criterion. There were some researches attempted to address these shortcomings with 

mixed approaches.   

Miettinen [91] suggested a weighted sum of objective functions, which is one type of a 

scale function. In this method, multi-objective optimization problem can be transformed into a 

single objective optimization problem with such a scale function. The weighted sum of objective 

functions is formulated with predetermined weights. If the weighted sum of objective function 

values of the locally optimal solution is better than that of the individual in the comparison set, it 

is treated as winner out of the population. However, the weighted sum of objective functions is 

known to be inappropriate in handling nonconvex problems and there are many issues that affect 

the performance of this approach [91].  Lina et al [149] used a hybrid evolutionary multi-

objective optimization algorithm based on a probability function with a periodic increase and 

decrease of probability of local search. The local search module can overcome slow convergence 

problems. Among the popular genetic algorithm discussed above, Population-based non- 

Pareto approaches can produce multiple non-dominated solutions in parallel, and hence generate 

non-dominated solutions. But in contrast to the Pareto-based approaches, most of them do not 

make direct use of the concept of Pareto dominance.  
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2.7 Comparison of Genetic Algorithms  

There are a number of studies conducted on the comparison of GAs to evaluate the 

correctness and performance of the GAs by using close to real world multi-objective 

optimization problem.  An example of a NP-hard test problem, 0/1 knapsack problem, represents 

an important class of real-world problems.  The comparison focused on the effectiveness in 

finding multiple Pareto-optimal solutions.  The validity of the comparison requires the valid test 

case setup. In order obtain reliable and sound results, a test problem for a comparative and 

experimental study need to be chosen carefully. The tests and experiments need to be repeatable 

and verifiable. Additionally, in order to be applied in real-world situation, the problem should 

ideally represent a real-world problem. Some researchers suggested the experiments with 

knapsack problem, which is a multi-objective optimization problem, but difficult to solve (NP-

hard). A 0/1 knapsack problem consists of a set of items, weights and profits associated with 

each item, and an upper bound for the capacity of the knapsack. The objectives are to find a 

subset of all items which maximizes the total of the profits in the subset, yet, all selected items 

need to have minimum size and can be fit into the knapsack, i.e. the total weight does not exceed 

the given capacity [4]. The two objectives are competing and conflicting to each and therefore, it 

is naturally a multi-objective optimization problem.  

The test problems of 0/1 knapsack is defined as: 
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Input:  

m: number of items 

n: number of knapsacks  

d: number objectives  

pi,j = profit of j in knapsack i 

wi,j = weight of item j in knapsack i 

ci = capacity of knapsack i 

Output:  

Vector X = (x1, x2,…. Xm) 𝜖 {0,1}m 

Such that: ∀'∈ 1,2…𝑛 ∶ 	 𝑤} ≤ 𝑐}+
},-  and F(x) = (f1(x), f2(x),…. fn(x)  ) is maximum   

where: fi(x) = 𝑝'} ∗ 𝑥𝑖+
},- 𝑥} 

Zitzler et al[5] did a comprehensive comparative studies on knapsack by using nine 

different test problems with different population size. The number of knapsacks and number of 

population are chosen differently. From the research in [5], random profits and weights were 

chosen, where Pi,j and wl,j are random integers in the interval [10,100]. The knapsack 

capacities were set to half the total weight regarding the corresponding knapsack: 

𝒄𝒋 = 𝟎. 𝟓 𝒘𝒊,𝒋
𝒎
𝒋,𝟏  As reported in [4], about half of the items are expected to be in the optimal 

solution (of the single-objective problem), when this type of knapsack capacities is used.  The 
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test results are shown in Table 2.3 below. For comparison purpose, all GAs considered were 

implemented with the same selection scheme. From this test result, NSGA covers the greatest 

fraction of the Pareto sets achieved by the other algorithms.  VEGA has second best performance 

in this comparison, similar to the results concerning the absolute size of the space covered. On 

the remaining test problems, VEGA and the weighted-sum approach show almost equal 

performance [5]. 

A B 2/100 2/250 2/L500 3/100 3/250 3/500 4/100 4/250 4/500 mean

Weighted 0.011 0 0 O% 0 0 0 0 0 0.001

Niched 0 0 0 0 0 0 0 0 0 0

VEGA 0 0 0 0 0 0 0 0 0 0

NSGA 0 0 0 0 0 0 0 0 0 0

Random 0.98 1 1 1 1 1 0.993 0.999 1 0.997

Niched 0.025 0.015 0 0.727 0.726 0.757 0.308 0.495 0.792 0.427

VEGA 0 0 0 0.414 0.329 0.306 0.38 0.3 0.409 0.238

NSGA 0 0 0 0.232 0.22 0.141 0.241 0.117 0.27 0.136

Random 1 1 1 1 0.996 1 0.996 0.999 1 0.999

Weighted 0.925 0.95 l00% 0.129 0.201 0.146 0.408 0.265 0.045 0.452

VEGA 0.009 0.103 0 0.124 0.142 0.076 0.478 0.233 0.086 0.139

NSGA 0.007 0.044 0.022 0.077 0.056 0.008 0.271 0.088 0.036 0.068

Random 1 1 1 1 1 1 0.994 1 1 0.999

Weighted 1 0.988 1 0.438 0.546 0.474 0.343 0.483 0.347 0.624

Niched 0.865 0.879 0.92 0.732 0.776 0.8 0.317 0.597 0.796 0.742

NSGA 0.258 0.169 0.205 0.208 0.238 0.16 0.224 0.169 0.26 0.21

Random 1 1 1 1 1 1 0.995 1 1 0.999

Weighted 1 1 1 0.597 0.672 0.727 0.499 0.728 0.497 0.747

Niched 0.938 0.975 0.988 0.88 0.897 0.952 0.511 0.844 0.91 0.877

VEGA 0.58 0.763 0.674 0.625 0.587 0.727 0.605 0.724 0.58 0.652

VEGA

NSGA

Algorithm Number	of	knapsacks	/	Number	of	population

Random

Weighted

Niched

 

Table 2.3 Comparison of GAs using Predefined Test Data [from Zitzler, 5] 

However, there are several factors need to considered in the comparative study regarding 

the testing data and experiments,  

a). the quantitative measures used to express the quality of the GA outcomes  

b). the number of generations to reach optimal solutions. 

c). the side effects caused by different selection schemes or mating restrictions in GAs 
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d). the initialization of parameters of the EA, particularly the niche radius   

 The quantitative measures can be addressed by using a set of non-dominated 

solutions. The Pareto-optimal set regarding all individuals generated over all generations is taken 

as output of an GA. The total number of Pareto-optimal solutions for all the objective space are 

used as a quantitative measure.  In the case of convex solution space, certain solutions can be 

overrated. The overrating can be addressed by comparing the outcomes of the EAs directly by 

using the coverage relation. Given two sets of non-dominated solutions, each set the fraction of 

the solutions which are covered by solutions in the other set can be computed and use for 

comparison. Randomness is one of the key factors in genetic algorithm, especially in the 

initialization and selection process. To reduce the influence of random effects, the experiments 

need to be repeated per test problem, different randomly generated initial population need to be 

tested per experiment for all GAs ran on the same initial population. The performance of a 

particular GA on a given test problem can be evaluated by using the average of its performances 

over all experiments.  Konak et al [187] presented a summary of comparison on some well-

known genetic algorithms as shown in Table 2.4 below. 
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Table 2.4 General Comparison of Existing GAs [from Konak et al, 187] 

2.8 Issues with Genetic Algorithm application in Multi-Objective Optimization 

There are many variations of multi-objective genetic algorithms in the literature, the above 

cited GA are well-known algorithms used in many applications and their performances were 

tested in several comparative studies [111,187]. The implementation strategies of genetic 
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algorithms differ mostly in elitism in the selection operator and population diversity preservation. 

Because of the parallel nature and intensive iterative processes by generations, genetic algorithm 

has substantial high requirements on computational efforts. Therefore, the performance of GAs 

can not only be impacted by the design, but also by programming skills, data structure, computer 

hardware configuration including memory, disk IO, CPU clock time etc. Some of the main issues 

in genetic algorithms are discussed below. 

2.8.1 Population Diversity 

Maintaining a diverse population is critical in multi-objective GA in order to obtain the 

global optimal Pareto front solutions and hence the true global optimality. During the search 

process, the populations need maintain good diversity by getting uniform distribution of 

individuals and forming only relatively few clusters to keep the number of population under 

control. To generate and maintain diverse populations, fitness evaluation and assignment in the 

selection step plays important role. Several classical approaches proposed in the literatures are 

discussed below.  

Fitness assignment in Pareto-based genetic algorithms is achieved by individuals’ 

comparison. The mostly referred fitness assignment is fitness sharing, or niching techniques. 

Fitness sharing bases on the idea that individuals in a particular niche have to share the resources 

available, similar to nature. The fitness value of an individual is degraded if there are more 

individuals are located in its neighborhood. Neighborhood is defined in terms of a distance 

measure and specified by the so-called niche radius. The benefits of applying penalties to the 

fitness value of dense populations can help GAs to achieve better spread and diversity of 

population, hence reach the global optimality, other than local optimality.  
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Deb et al [79] reported the erratic behavior of genetic algorithms from the conventional 

combination of fitness sharing and tournament selection. NSGA uses a slightly modified version 

of sharing, called continuously updated sharing. It uses the partly filled next generation, other 

than the current generation to calculate the niche count. Horn and Nafpliotis [110] introduced 

this concept in the Niched Pareto GA as well. 

NSGA-II [144] uses a crowding distance to obtain a uniform spread of solutions along the 

best-known Pareto front. The crowding distance method is described below: 

Crowding distance method in NSGA-II: 

Step 1: Get the non-dominate set of individuals P1 … Pk form the population nin the current 

generation 

Step 2: For each i= 1 to k of Pk 

 Rank individual i and sort the P based on object function k 

 Define the crowding distance as: 

 𝑑J(𝑥',J) =  ��(h���,�*(h���,�)
��
���*	��

���  

 where xi,k is the ith individual in the sorted population of objective k 

Step 3: Get the total crowding distance D = 𝑑J(𝑥)J  
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From the above description, the density of the population can be measured by the crowding 

distance. Fitness value is not required in the definition of the density distance measure. This 

crowding distance measure used in a selection technique is also called the crowded tournament 

selection operator. By this definition, if the two solutions x and y are in the same non-dominated 

front, the solution with a higher crowding distance will be selected and put into the next 

generation. In PESA, the objective space is divided into regions or cells and the number of 

solutions in each cell is defined as the density of the cell, and the density of a solution is equal to 

the density of the cell in which the solution is located. The density index defined this way can 

achieve diversity similarly. Between two non-dominated solutions, the one with a lower density 

is preferable. PESA-II further refined the design of density definition by using region-based 

selection, instead of using individual solutions, cells or regions are selected during the selection 

process.  

In addition to the density definition, probability method is also used in the selection 

process. A sparse cell has a higher chance to be selected than a crowded cell for the next 

generation. Once a cell is selected, solutions within the cell are randomly chosen to participate to 

crossover and mutation. Lu and Yen [148] developed an efficient approach to identify a 

solution’s cell density in case of dynamic cell dimensions. In this approach, the width of a cell 

along the kth objective dimension (𝑧J+Zh − 𝑧J+'i)/𝑛J is used, where nk is the number cells 

dedicated to the kth objective dimension and 𝑧J+Zh and 𝑧J+'i are the maximum and minimum 

values of the objective function k in the current search. Cell boundaries are updated when a new 

maximum or minimum objective function value is discovered. This approach has better 

computational efficiency compared to the niching or neighborhood-based density techniques. 
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Yen and Lu [132] proposed several data structures and algorithms to efficiently store cell 

information and modify cell densities. From the result of the density calculation, the cell-based 

density approach can also obtain a global density map of the objective function space. The search 

can be encouraged toward sparsely inhabited regions of the objective function space based on 

this map.  

2.8.2 Objective function complexity 

The fitness function determines the quality of the populations through the selection of 

non-dominate individuals.  Evolution of the population takes place after the repeated application 

of the genetic operators with selected the non-dominate population. Coello [135] did a complete 

survey on the methods of objectives constraints handling in single-objective genetic algorithm, 

including discarding infeasible solutions, reducing the fitness of infeasible, using genetic 

operators to always produce feasible solutions; and transforming infeasible solutions to be 

feasible.  

The evaluation of objective functions in the multi-objective optimization may take 

considerable time in solving real-life problems [135]. Reducing execution time and resource 

requirements of multi-objective GA using advanced data structures is the one of most interested 

research areas.  

VEGA is the first GA used to approximate the Pareto-optimal set by a set of non-

dominated solutions. Each solution in subpopulation Pi is assigned a fitness value based on 

objective function zi in the same way as for a single objective GA. This type of using single 

objective GA to solve multi-objective problems is computationally efficient as it reduces the 
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complexity of selection operator, but the objective switching through the entire objective space 

tends to converge to the local optimality [116]. 

NSGA uses Pareto dominance in evaluating fitness or assigning selection probability to 

solutions. The population is ranked according to a dominance rule, and then each solution is 

assigned a fitness value based on its rank in the population, not its actual objective function value. 

SPEA used a ranking procedure to assign better fitness values to non-dominated solutions. The 

ranking procedure selects solution which covers the least number of solutions in the objective 

function space to achieve a wide, uniformly distributed set of non-dominated. However, because 

in multi-objective GA, the fitness assignment is based on the non-dominance rank of a solution, 

not on its objective function values, the implementation of penalty function strategies is not 

straightforward. As discussed in section 2.8.1, some GAs penalize redundancy in the population 

due to overrepresentation through ranking density [110,111].  

One of the latest trends is parallel and distributed processing. Several recent papers 

[159,121] presented parallel implementation of multi-objective GA over multiple processors. But 

the data structure and design patterns in the implementation of algorithms are not discussed in 

depth. 

2.8.3 Maintaining elitist solutions in the population 

All non-dominated solutions, Pareto front, discovered by a multi-objective GA are 

considered elite solutions. Elitism means that the best solution found so far during the search 

always survives to the next generation, i.e., best organism(s) from the current generation to carry 

over to the next to guarantee that the solution quality obtained by the GA will not decrease from 
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one generation to the next generation. Multi-objective GA using elitist [3], tend to outperform 

their non-elitist counterparts. Because of the large number of possible elitist solutions in multi-

objective optimization, the maintenance of elite solutions can be very complex. Multi-objective 

GA in general uses two strategies to implement elitism [3]:  

• Maintaining all elitist solutions in the population internally, as discussed in 

NSGA above. All non-dominated solutions in population Pt are copied to 

population Pt+1, then filling the rest of Pt+1 by selecting from the remaining 

dominated solutions in Pt. In this case, no external storage is used to store 

discovered non-dominated solutions.  When the total number of non-dominated 

parent and offspring solutions is larger than initial set size of population NP, this 

approach will not work and some additional measures need to be taken to reduce 

the elite population size.  

• Storing elitist solutions in an external secondary list and re-introducing them to 

the population [3]. During the search space, non-dominated solutions found in 

the current generation so far are stored in an elitist list E and E is updated each 

time a new solution is created by removing elitist solutions dominated by a new 

solution or adding the new solution if it is not dominated by any existing elitist 

solution [3]. The manipulation of list E is computationally expensive. To 

efficiently store, update, and search in list E, there are some data structures have 

been proposed [33, 130]. There also might possibly exist a very large number of 

Pareto optimal solutions for a problem, the size of list E can grow extremely 

large. Trimming or pruning techniques [146] have been proposed to control the 
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size of E. For example, SPEA[137] used the average linkage clustering method to 

reduce the size of E to an upper limit N when the number of the non-dominated 

solutions exceeds N as follows:  

 

Step 1: Assign each solution x∈E to a cluster cj,  

 C = {c1, c2, …. cm } 

Step 2: Calculate the distance between all pairs of clusters ci and cj as below: 

𝑑 𝑐𝑖, 𝑐𝑗 = -
s� (|s�|

𝑑(𝑥, 𝑦)h,n  

 Where xÎci, yÎcj. d(x,y) can be calculated in objective function space. 

Step 3: Merge the cluster pair ci and cj with the minimum distance among all 

clusters into a new cluster 

Step 4: If |C| <= N, goto Step 5, else goto Step2 

Step 5: For each cluster, determine a solution with the minimum average 

distance to all other solutions in the same cluster (Centroid solution). Keep the 

centroid solutions for every cluster and remove other solutions from E. 

 

Other examples of elitist approaches using external populations are PESA [147], 

RDGA, RWGA, and DMOEA [111]. 
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2.8.4 Fitness function evaluation for complex problems 

To understand the difficulty of high-dimensional multi-objective optimization problems, 

some researchers suggested the use of fitness landscape metaphor [111], i.e. the ability of a 

searcher to find the optimal solution for that problem. In general fitness landscapes cannot be 

drawn because of the huge dimension of the search space, it is important to define the important 

features of fitness landscapes that have a direct relationship with the difficulty of the problem. 

fitness-distance correlation and negative slope coefficient [160, 179] are the two interesting 

measures of problem hardness based on the concept of fitness landscape. 

For a complex problem, because of the high-dimension and multi-modalities of the 

search space and number of objectives, finding the optimal solution to complex high-

dimensional, multimodal problems often requires very expensive fitness function evaluations. A 

single function evaluation may require several hours to several days of complete simulation. In a 

real-world situation, decision makers often require the timely output of the Pareto-optimal 

solutions, and therefore, it may be necessary to forgo an exact evaluation and use an 

approximated fitness that is computationally efficient. A number of researchers suggested a 

workaround by using an approximated fitness that is computationally efficient, instead of extract 

fitness value. The use of amalgamation of approximate models in GA to solve complex real-life 

problems are described in [75,95,102,107,112].  

 However, with the advance of modern computing technology, including parallel 

processing and cloud-based computing technologies, the performance problem of fitness 

evaluation can be much alleviated, as discussed in the methodology section. 
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2.8.5 Scalability problem 

Genetic algorithms do not scale well with complexity. Because the chromosome 

encoding for the problem representations can evolve during the evolutionary process, and the 

complexity of solutions can evolve too. In classical genetic algorithm, initially individuals are 

randomly selected from an initial population set with the other initial setup parameters, fitness 

functions for the objectives, and termination conditions. The size of search space will increase 

exponentially as new generations are produced following by crossover and mutations operator. 

Hence the computational complex will increase accordingly. In order to make evolutionary 

search manageable and converge, genetic algorithm needs to improve performance by using 

appropriate data structure, programming skills with code reusability and design patterns. Some 

approaches were developed by adding modules to the system, for example, n tree-based 

representations of population. The most well-known of these methods is Koza’s Automatically 

Defined Functions (ADFs) [74]. The search space was broken down into the simplest 

representation possible, but with the isolated parts that have evolved to represent elite solutions 

from further destructive mutation, particularly when their fitness assessment requires them to 

combine well with other parts.  

There are a large and varied literature related to modularity in genetic algorithm, the use 

of modularity in genetic programming can help to solve some problems like number of iteration 

and new data abstractions, for instance in the form of ADFs [74], but the challenges and issues 

still remain open in most cases. 
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2.8.6 Benchmarks problem 

It is difficult to define a true Pareto-optimal set just based on the fitness value at the end 

of evolutionary process, especially when the experimental data are not well-known or not well 

studied.  The "better" solution is only in comparison to other solutions. As a result, the stop 

criterion is not clear in every problem. Genetic algorithms are not applicable to solve decision 

problems in which the only fitness measure is a linear single right/wrong measure, as there is no 

way to converge on this type of solution where a random search may find a solution quickly.  

However, for a multi-objective optimization problem which is not linear or not convex, genetic 

algorithm can use the ratio of successes to failures to provides a suitable fitness benchmark 

measure to produce the Pareto-optimal solution by fitness evaluation. 

2.8.7 Data visualization problems 

Data visualization itself is not a part of MOGAs process, however, in order for the 

MOGAs to be used in real-world problem solving, the Pareto-optimal sets need to be presented 

in a way that can be understood by the decision makers who may not have technical background. 

Therefore, data visualization is an important tool in the decision-making process. It allows 

business decision makers to quickly examine large amounts of data, diagnose the trends and 

issues efficiently, exchange ideas with key players, and influence the decisions through the 

experiments results visualization that will ultimately lead to success. 
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2.8.8 Local optima problem 

 

 

 

Figure 2.4 Local vs Global Optimality 

  Genetic algorithm is designed to find the optimal sets from the search space. If not 

properly designed or setup, genetic algorithm may terminate or converge towards local optima or 

even arbitrary points rather than the global optimum of the problem, as shown in Fig. 2.4.  The 

search process in the n-dimensional space is by heuristic process, and termination condition are 

not mathematically determinative, and thus it’s difficult for the algorithm to know whether the 

final solution sets or global optimum found is the best one, or there is better solution yet to be 

searched.  Due to the inherent heuristic nature of the optimization process, there is no absolute 

optimum, or no single best solution. There are some researches to alleviate the local problems by 

using a different fitness function, increasing the rate of mutation, or by using selection 

techniques that maintain a diverse population of solutions. However, the No Free Lunch theorem 

[105] proves that there is no general solution to this problem. Other techniques include re-
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sampling by simply replacing part of the population with randomly generated individuals, when 

most of the population is too similar to each other; adding penalty to any group of individuals of 

sufficient similarity (niche radius), which will reduce the representation of that group in 

subsequent generations, permitting other (less similar) individuals to be maintained in the 

population, etc.   

To prevent early convergence, some research proposed to increase genetic diversity either 

by increasing the probability of mutation when the solution quality drops or by occasionally 

introducing entirely new, randomly generated elements into the gene pool [120] [121] [122], 

where a population of candidate solutions is employed other than maintaining a single candidate 

solution. This allows a diversity of potential solutions to be maintained, which increases the 

likelihood that a sufficient solution exists at any point in time to ensure the survival of the 

population in the long term. Population diversity is important in genetic algorithms because 

crossing over a homogeneous population does not yield new better solutions and result in early 

convergence to local optimality.  

2.8.9  Stop/termination problem 

Due to the inherent heuristic nature of the optimization process, there is no absolute 

optimum, or no single best solution. The "better" solution is only in comparison to other 

solutions. Depending on the complexity of the problem and the shape of the fitness landscape, 

certain termination conditions may be required stop the search process, for example, the 

termination conditions can be defined as maximum time of execution, threshold of fitness 

differences between generations. 
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2.8.10 Dynamic dataset problem 

Given the degree and frequency of population changes that can occur during the 

evolution, operating on dynamic data sets is difficult, as genomes begin to converge early on 

towards solutions which may no longer be valid for later generations. Elitism is effective on 

solving dynamic dataset problems. 

2.9 Multi-Objective Genetic Algorithm Application in Clustering Analyses 

Data clustering is one of the key tasks in data mining, knowledge discovery and can be 

used of multi-objective genetic algorithms to reduce the population size through the selection of 

centroid representative individuals. There are a number of clustering algorithms developed in the 

past [2-19], but a good cluster result depends on the application subject to various criteria, both 

ad hoc and systematic. Clustering algorithms arise in many different applications, such as data 

mining and knowledge discovery, data compression and vector quantization, pattern recognition 

and pattern classification [10,11,12].  

The objectives on clustering can be summarized below:  

• f1(x): Maximize homogeneity within the cluster 

• f2(x): Maximize separateness between clusters 

• f3(x): Minimizing the number of clusters.  

These objectives are conflicting with each other.  f2, the maximization of separateness 

between clusters will result in the number of clusters increases, which is contradictory to 

objective f3.  Maximization of Objective f1 also result in the maximization of objective f3. Hence 

clustering itself is naturally a multi-objective optimization problem. As the number of clusters 
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decreases, the values of the other two objectives will be negatively affected. To reach the multi-

objective optimization, some trade-offs between the quality of a clustering result and the number 

of clusters need to be taken for the final solution from the Pareto-optimal solution set. 

2.9.1 Classical Clustering Methods 

Traditional clustering techniques can be classified into hierarchical clustering [31], 

Centroid-based partition clustering [32, 70, 170, 183], graph-based [65] and distribution model-

based [40] approaches. Typical cluster models that related with this research are summarized 

below. 

• Connectivity-based hierarchical clustering 

Hierarchical clustering is based on the idea of data nodes being more related to nearby 

objects than to objects farther away. Based on the distances between nodes, clustering algorithms 

calculate and form clusters with individual nodes.  Hierarchical clustering methods are 

categorized into agglomerative (bottom-up) clustering and divisive (top-down) clustering [31]. 

An agglomerative clustering starts with one-point (singleton) clusters and recursively merges 

two or more clusters at a time until a single cluster is obtained. A divisive clustering starts with 

one cluster of all data points and recursively splits the most appropriate cluster until each point 

ends in a cluster. For both categories, the process continues until a stopping criterion is achieved 

[31].  

Hierarchical clustering is robust with respect to input parameters, less influenced by 

cluster shapes, less sensitive to largely differing point densities of clusters, and it can represent 

nested clusters. However, the tree structure is prone to errors and it suffers from different aspects 

as stated by statisticians, including robustness, non-uniqueness, and inverse interpretation of the 
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hierarchy [31]. Segal et al [188] proposed probabilistic abstraction hierarchies (PAH), where 

each class is associated with a probabilistic generative model for the data in the class. This 

method improved the performance of traditional hierarchical clustering by handling the 

drawbacks mentioned above. It is more robust and less sensitive to noise in data.  

§ Centroid-based partition clustering 

K-Means is a commonly used algorithm for partition clustering [32, 70, 170, 183]. K-means 

clustering aims to partition N datasets into K clusters in which each dataset belongs to the cluster 

with the nearest mean, serving as a prototype of the cluster. This initial step of k-means 

algorithm starts with seeds positions defined [32], All data elements are assigned to the nearest 

seed and the process repeats on a new assignment step until no further improvement can be made, 

also known as “local optimum” has been found. Implicitly this process will produce a 

minimization of the "sum of the L2 distance squared between each data point and its nearest 

cluster center" [70]. This results in a partitioning of the data space into Voronoi cells. [33, 38,39] 

The purpose of K-Means clustering is the optimization of an objective function that is described 

by the equation:   
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where mi is the center of cluster Ci, and d(x, mi) is the Euclidean distance between a point x and 

mi.  

The object function is to minimize the distance between each point and the center of its 

cluster. The algorithm begins by randomly initializing a set of C cluster centers, then assigns 



 

64 

each object of the dataset to the cluster whose center is the nearest, and re-computes the centers. 

This process is repeated until the total error criterion converges.  

Most k-means algorithms [32, 70, 170, 183] requires the number of clusters K to be 

specified in advance, and tend to cluster datasets into approximately similar size by assigning an 

object to the nearest centroid. This can result in the incorrectly cut borders in between of clusters, 

and convergence to a local minimum. In case that data sets are in n-dimensions, k-means 

clustering algorithm to get the optimal number of cluster can be NP-hard [32, 70, 170, 183]. If k 

and d (the dimension) are fixed, the problem can be exactly solved in time  𝑂(𝑛�J(- log 𝑛)where 

n is the number of entities to be clustered. Thus, a variety of heuristic algorithms such as Lloyd's 

algorithm given above are generally used [39]. 

§ Distribution model-based clustering 

The model-based approach assumes that data are generated by a mixture of finite number 

of probability distributions. If a complex probability model is used, a small number of clusters 

may suffice, while if a simple model is used, a larger number of clusters may be needed to fit all 

the data appropriately. Examples of model-based approach are Bayesian method and the mixture 

model-based algorithm (EMMIX-GENE). The Bayesian method is a distribution model-based 

approach used in gene expression data analysis. Mar [40] proposed a mixture model-based 

algorithm (EMMIX-GENE) for the clustering of tissue samples and presented a case study 

involving the application of EMMIX-GENE to breast cancer data.  

The Bayesian method has the advantage that it can identify the number of distinct clusters 

but it has the disadvantage of relying on the assumption that the modeled time series are 

stationary [40]. The model-based approach assumes that data are generated by a mixture of finite 
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number of probability distributions. In this approach, each cluster represents a probability 

distribution and a likelihood-based framework can be used.  However, the assumption of 

Gaussian distribution in real dataset can lead to inaccurate clustering result. 

§ Density based clustering 

In density-based clustering [45,46,50], clusters are defined as areas of higher density than 

the remainder of the data set. Objects in these sparse areas - that are required to separate clusters 

- are usually considered to be noise and border points. 

DBSCAN [45] is a popular density based clustering method which features a well-defined 

cluster model called "density-reachability". It connects points within certain distance thresholds, 

i.e., only the points that satisfy a density criterion, in the original variant defined as a minimum 

number of other objects within this radius. A cluster consists of all density-connected objects 

(which can form a cluster of an arbitrary shape, in contrast to many other methods) plus all 

objects that are within these objects' range. The complexity of DBSCAN is low as it requires a 

linear number of range queries on the dataset and it is deterministic for core and noise points in 

each run, therefore there is no need to run it multiple times. 

OPTICS [50] is a generalization of DBSCAN that removes the need to choose an 

appropriate value for the range parameter, and produces a hierarchical result related to that of 

linkage clustering.  

DBSCAN, OPTICS and other similar density-based clustering only work well with 

clusters that have some kind of density drop in order for the algorithm to detect cluster borders. 
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Moreover, because of the intrinsic cluster structures in real life data, DBSCAN and OPTICS 

cannot detect the clusters’ borders accurately.  

Mean-shift[134] is a clustering approach where each object is moved to the densest area in 

its vicinity, based on kernel density estimation. It is a non-parametric feature-space analysis 

technique for locating the maxima of a density function. Eventually, objects converge to local 

maxima of density. Similar to k-means clustering, mean-shift can detect arbitrary-shaped clusters 

similar to DBSCAN. Mean-shift algorithms require expensive iterative procedure and density 

estimation. 

§ Graph based clustering 

Self-Organizing Maps (SOM) [10] maps centroids into 2D plane for better visualization 

and analyses. It provides a straightforward visualization, and therefore it is popular in vector 

quantization for clustering. Vector Quantization is a special case of the SOM and is essentially 

the same as the k-means algorithm. It is a neural network approach that uses competitive 

unsupervised learning and eventually the winner-takes-all approach.  

 The priori condition that SOM need to have is the shape and size of a network of clusters 

to fit the data into, i.e., the size of the two-dimensional grid and the number of nodes have to be 

predetermined [28,58,59]. This can be problematic if this type of information is unknown before 

the clustering starts.  

2.9.2 Genetic Algorithm in Clustering  

As discussed in Section 2.9.1, the objectives of clustering are multi-modal and self-

conflicting. The classical clustering methods works well when the datasets to be clustered are 
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well-understood and the parameters and objective functions are pre-defined, however, lack of the 

prior knowledge of the datasets are common an, especially when the datasets are large, multi-

dimensional and multi-modal, therefore, use of classical methods can lead to the in-accurate or 

not solution (NP-Hard) [35, 178,181,182].  In this case, genetic algorithm is more suitable and 

application to get the best clustering solutions because it does not require the prior knowledge 

about the datasets, and it can produce the approximation of the best sets of solutions, also known 

as the Pareto-optimal sets of number of clusters. 

2.9.3 Application of Clustering 

In computational biology and bioinformatics, clustering is employed to find the 

relationships among genes and discover the hidden knowledges. By clustering, genes/samples 

groups and intrinsic relationship between them can be discovered. In data distribution direction, 

observations are gauged to fit certain probabilistic distribution such as Gaussian or Mixed 

Gaussian, and clustering process is statistical manipulations on distributions [157-164]. 

Clustering different samples based on gene expression is one of the key issues in problems 

like class discovery, normal and tumor tissue classification, and drug treatment evaluation [164].  

Clustering analysis can also be used to find direct gene-sample correlations [179]. 

BiCluster [76] enables gene/condition correlation analysis that can lead to molecular 

classification of disease states, identification of co-fluctuation of functionally related genes, 

functional groupings of genes, and logical descriptions of gene regulation, among others.  



 

68 

2.9.4 Clustering validation  

The criteria used to evaluate the outcome and performance of clustering algorithms are 

compactness of the clusters and their separateness. These criteria should be validated and optimal 

clusters should be found. Clustering validity criteria used for the validation include Dunn index, 

Davies-Bouldin (DB) index, Silhouette Coefficient, C index, SD index and S_Dbw index etc. 

[24].   

The SD validity index definition is based on the concepts of average scattering for 

clusters and total separation between clusters. The average scattering for clusters is defined as 

[24]. 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑛s = 	
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where ( )ivs  is the average standard deviation (average of the Euclidian distance 

between all the points) of cluster centers; and ( )xs  is the average standard deviation of 

all the data points.  

The total separation between clusters is defined as: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑛s = 	
𝐷𝑚𝑎𝑥
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where Dmax = max(||vi - vj||)  "i, j Î{1, 2,3,…, nc} is the maximum distance between 

cluster centers and Dmin= min(||vi - vj ||) "i, j Î{1, 2,…, nc } is the minimum distance 

between cluster centers. 

The SD index is calculated using the following equation [24]: 

𝑆𝐷 𝑛s = 	𝛼 ∗ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑛s + 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛(𝑛s) 

( )ivs ( )xs
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     where α is a weighting factor. 

Scattering(nc) indicates the average compactness of clusters. Separation(nc) indicates the 

total separation between the n clusters. A weighting factor α is needed to incorporate both terms 

in SD definition to balance out the two terms.  The number of clusters that can minimizes the 

index is an optimal value.   

 S_Dbw[24] is based on the clusters’ compactness (intra-cluster variance) and the density 

(Inter-cluster Density) between clusters. Inter-cluster density is defined as follows: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐼𝑛𝑡𝑒𝑟 𝑛s = 	
1

𝑛s(𝑛s − 1)
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑢'})
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where vi and vj are centers of clusters ci and cj; and uij is the middle point of the 

line segment defined by the clusters’ centers vi and vj. The term density(u) is given 

by following equation: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑢 = 	 𝑓(𝑥', 𝑢)

i��
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where nij is the number of tuples that belong to clusters ci and cj, i.e., xl Î ci, and 

cj Î S. Function f(x,u) is defined as: 

    f(x,u) = 𝑓(𝑥, 𝑢) 0, 𝑖𝑓	(𝑑 𝑥, 𝑢 > 𝑠𝑡𝑑𝑒𝑣
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒			𝑎𝑏𝑜𝑣𝑒	  

where stedev  is the average standard deviation of cluster. 

Inter-cluster Density (ID) evaluates the average density in the region among clusters in 

relation to the density of the clusters. Intra-cluster variance measures the average scattering of 

clusters (Scat(nc)) and has already been defined in the SD index part [24]. 

The S_Dbw is calculated using the following equation:
𝑆𝑆m ¡

is
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S_dbw(nc) = Scattering(nc) + DensityInter(nc) 

The definition of S_Dbw considers both compactness and separation. The number of clusters that 

minimizes the index is an optimal value.  

The Dunn index is calculated using the following equation [191]:  

𝐷 𝑛s = min{min	{

1
|𝑐'||𝑐}|

𝑑(𝑥, 𝑦)

max	(
𝑑(𝑥, 𝑐J)h∈s�
|𝑐J|

)
	}} 

where ci represents the i-cluster of a certain partition, d(x,y) is the distance between data 

points x and y, where x belongs to cluster i and y belongs to cluster j , d(x, ck) is the 

distance of data point x to the cluster center that it belongs to, |Ck| is the number of data 

points in cluster K.  

The main goal of the measure is to maximize the intercluster distances and minimize the 

intracluster distances. Therefore, the number of clusters that maximizes D is taken as the optimal 

number of clusters.   

The DB index is calculated using the following equation [24]: 

𝐷𝐵 =
1
𝑛 max	{

𝑆i 𝑄' + 𝑆i(𝑄})
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where n is the number of clusters, nS  is the average distance of all objects from the 

cluster to their cluster center, ( , )i jS Q Q  denotes the distance between centers of clusters.  

The Davies-Bouldin index is a function of the ratio of the sum of within-cluster scattering to 

between clusters separation. When it has a small value, it exhibits a good clustering.  

The following formula is used to calculate the Silhouette index [24]: 
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where a(i) is the average dissimilarity of i-object to all other objects in the same cluster, 

Euclidian distance is used to calculate the dissimilarity; and b(i) is the average dissimilarity of i-

object to all objects in the closest cluster.    

The above formula indicates that the silhouette value is in the interval [–1, 1]: 

§ Silhouette value is close to 1:  means that the sample is assigned to a very appropriate 

cluster.  

§ Silhouette value is about 0: means that the sample lies equally far away from both clusters; 

it can be assigned to another closest cluster as well.  

§ Silhouette value is close to –1: means that the sample is “misclassified”.  

The application of Dunn index aims to identify dense and well-separated clusters. It is 

defined as the ratio between the minimal inter-cluster distance to maximal intra-cluster distance. 

For each cluster partition, the Dunn index can be calculated by the following formula [24]:  

 

where   d(i,j) = Distance (clusters i and j) 

d '(k) = Intra-cluster distance of cluster k.  

d(i,j) can be any number of distance measures, such as the distance between the centroids 

of the clusters. Similarly, d '(k) can be measured in a variety ways, such as the Max(Distance(any 

pair of elements in cluster k)). Clusters with high Dunn index are more desirable [27] because 

the internal criterion seek clusters with high intra-cluster similarity and low inter-cluster 

similarity. 
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Silhouette Coefficient [24] contrasts the average distance to elements in the same cluster 

with the average distance to elements in other clusters. Objects with a high silhouette value are 

considered well clustered, objects with a low value may be outliers because it is based on 

tightness and separation of clusters. It finds the overall average of the ratio of the difference of 

each object's minimum average dissimilarity to all objects in other clusters. This index works 

well with k-means clustering, and is also used to determine the optimal number of clusters [27]. 

Depending on the shape and size of the datasets, cluster validity index should be applied 

carefully. For example, many evaluation indexes assume convex clusters where k-means 

clustering is used because it is good to find convex clusters, but for anon-convex clusters, k-

means, or any evaluation criterion that assumes convexity should be avoided.  

Other evaluations for clustering results are based on external evaluation benchmarks in 

comparison with aforementioned internal evaluation. The external benchmarks consist of a set of 

pre-classified items, and these sets are often created by domain subject matter expert. These 

types of evaluation methods measure how close the clustering is to the predetermined benchmark 

classes. However, this type of evaluation may not be applicable to real world data sets because 

classes can contain internal structure and the attributes present may not allow separation of 

clusters or the classes may contain anomalies, and therefore the reproduction of known 

knowledge may not necessarily be the intended result [27,36,37,38].  External evaluation 

criterion includes the following method.  

The Jaccard index [24] is a statistic used for comparing the similarity and diversity of 

sample sets and is defined as the size of the intersection divided by the size of the union of the 

sample sets:  is used to quantify the similarity between two datasets.  The Jaccard index takes on 
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a value between 0 and 1. An index of 1 means that the two datasets are identical, and an index of 

0 indicates that the datasets have no common elements. The Jaccard index is defined by the 

following formula [24]: 

 

where 0  £  J(A,B) £ 1 If A = Æ and B = Æ, then  J(A,B) = 1 

C-index is another technique used for cluster validity. It uses the within cluster pairwise 

dissimilarity. Further, according to the number of pairs in the within cluster pairs, minimum and 

maximum summation of the number of pairwise object distance parameters are used in the 

calculation. However, this method is not recommended since it is likely to be data dependent. SD 

index is evaluated by using the average scattering for clusters and the total scattering between 

clusters. S_Dbw is similar to SD index, but it also considers inter-cluster density instead of total 

scattering in SD, and no weighting is used. Density formula uses the average standard deviation 

of the clusters.  

Examples of other cluster validity approaches used in gene expression data analysis 

include Principal Component Analysis (PCA) [68] and Gap statistic [69]. PCA is a statistical 

method that can improve the extraction of cluster structure and compare clustering solutions [68]. 

Gap statistic utilizes within-cluster distance to determine the “appropriate” number of clusters in 

a dataset. It is good at identifying well-separated clusters, but it does not produce satisfactory 

results for not-well-separated data and data concentrated on a subspace. 
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2.10  MOGA Applications in Resources Management  

 There are a number of researches on using genetic algorithms (GAs) to solve multi-

objective resource allocation problems [163][165][167][168] due to the limitation of dynamically 

programming such as performance and scalability [163][166].  Real-world multi-objective 

optimization problems are difficult to deal with because they are multidimensional data, which 

varies in precision and resolution. Genetic algorithm can provide meaningful classifications and 

tackle the challenges prompted by the presence of some fuzziness in data. There have been 

several interesting and successful applications of multi-objective GAs in solving real-world 

problems. 

In engineering, many problems involve multiple conflicting objectives, an ideal target 

value for each objective, and the desire is to get as close as possible to the desired value of each 

objective, sacrifice and trade-offs have to be made in order to get the most desirable result. For 

example, Sharizi et all [94, 95] used multi-objective optimization in energy systems to manage a 

trade-off between performance and cost. Amirahmadi [137] employed SPEA multi-objective 

optimization on the optimal controller design to solve problems are subject to linear equality 

constraints that prevent all objectives from being simultaneously perfectly met, especially when 

the number of controllable variables is less than the number of objectives and when the presence 

of random shocks generates uncertainty.  

In designing high performance buildings, designers often have to deal with multiple and 

conflicting design objectives in the same requirement, for example, minimum energy 

consumption but with maximum thermal comfort, minimum energy utilization efficiency with 

minimum construction cost. This has led to the application of multi-objective optimization 
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algorithms (MOOAs) that identify the Pareto optimum trade-off between conflicting design 

objectives [147] [148].  Nguyen et al [146] conducted a comprehensive review on optimization 

methods applied to building optimization problems, as shown in Figure 2.5. The result was 

derived from more than 200 building optimization studies given by SciVerse Scopus of Elsevier. 

[146] 
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Figure 2.5 Optimization Algorithms Application in Building Design [from Nguyen, 146] 

Resources management optimization usually involves multiple but conflicting objectives.  

There are only a limited number of resources available, yet there are a number of different ways 

in which the resources are needed and allocated. Reviewing all multi-objective evolutionary 

algorithm on resources management is beyond the scope of this research because of a large 

number of existing evolutionary optimization methods.  The research on scarce resources 

management, for example, blood bank management, in general requires an understanding of the 
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subject domain concepts, the decision-making, and the interdependence of all related factors in 

the domain area.  

Blood inventory management belongs to the scarce resource management in general as 

blood or red cell is in high demand by hospitals, yet the supply is limited. Red cell has shelf life 

of around 40 days, in order to make sure there are sufficient supply for patients, hospital 

authorities usually over-stock the inventory, which will inevitably result in the waste. The 

objectives are to maintain the maximum amount of inventory for sufficient supply to patients and 

minimize the waste. These two objectives are conflicting and yet need to be optimized at the 

same time. 

There are few researches on using MOGA in blood bank management due the complexity 

of problem domain, Hsieh[151] used NSGA-II for blood bank supply chain model. Sivakumar et 

al [152] used a genetic program for inventory and routing structure optimization, which is also 

part of supply chain distribution problem. Adewumi[153] used genetic algorithm on Assignment 

of Blood in a Blood Banking System with some initial result. Most of existing research and 

literatures focused on the supply chain model but missing the other real-world situations, 

including emergency/epidemic situation, prediction of shortage, visualized Pareto-optimal result 

set for the decision makers etc.  Additionally, performance of MOOAs on blood bank 

management optimization problems are not well researched. Therefore, a more complete multi-

objective optimization framework with comprehensive reviews in solving blood bank 

management problem is needed for decision maker. 
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Chapter Three: METHODOLOGY  

 

This research proposed a novel framework of hybrid multi-objective genetic algorithm 

with expert system. The Genetic algorithm module is based on the contributions from previous 

researches, mainly on the basis of the well-known Fast-Genetic K-means Algorithm (FGKA) 

[170] and the Niched Pareto Genetic Algorithm II [110] with the introduction of innovative 

operators in the evolutionary process.  It can achieve a fast convergence to global optimal 

solution with integration of human domain expert knowledge and preferences.  

The framework described in this research is designed to handle multiple and conflicting 

objectives optimization in real world situation. The framework was first applied to solve 

clustering problems for validity and performance experiments. Clustering itself is multi-objective 

optimization problem as discussed in Chapter two. Unlike the other common clustering methods 

that use a fixed threshold value and\or a prior specified fixed number of clusters, this framework 

proposed in this research doesn’t require the prior knowledge of the datasets. It finds the optimal 

number of clusters which is a set constituting Pareto optimal solution. It proves that there is 

better number of clusters are superior to the generated Pareto-optimal solutions. This idea differs 

from traditional multi-objective algorithms that scale the objectives by assigning subjective 

weights to each objective function. Hence, weights are not used and assigned to each objective 

function in the system. Furthermore, the scalable design of this framework provides the divide 

and conquer concept. It can partition the large datasets into subsets to improve the performance 

of the computation where each subset is manageable. The clustering results produced by this 

framework are then validated with some well-known benchmark experimental datasets and 
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compared with other MOGAs. After the validation, the framework is further applied in two case 

studies to solve the real world multi-objective optimization problems. 

3.1 Framework Description 

The proposed Multi-Objective Hybrid K-means Genetic Algorithm (MOHKGA) with 

expert module is described below. The framework includes the following modules. 

1. A novel K-Mean operator module to address the population size problem.  

2. A novel parallel approach to increase the GA performance and diversity of 

population to achieve global optimality. 

3. An innovative expert module to improve the convergence process. It provides an 

interactive tool for decision makers to incorporate their knowledge and expertise in 

the frames to improve the performance and visualized the result sets. 

4. A data visualization module at the end of GA process for decision making to 

visualize the Pareto-optimal solutions. 

The proposed hybrid framework with expert system is scalable and flexible, therefore, it 

is applicable to various multi-objective optimization problems. The K-Mean operator module can 

locally improve diversity of selected individuals and reach the global optimality. In real world 

application, the expert system can provide dynamic decision variable inputs for preferred 

termination and constraint handling.  

This section is organized as follows. The architectural design of MOHKGA is discussed 

in Section 3.2. The chromosome representation process in MOHKGA is introduced in Section 

3.3. The uniqueness of the framework is discussed in Section 3.4. Section 3.5 discusses the 
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experiments of framework application on some well-known datasets to prove the validation of 

the framework.  Section 3.6 discussed two case studies where the framework was applied to 

solve two real world problems. 

3.2 Framework Design Flow 

The design of Multi-Objective Hybrid K-means Genetic Algorithm (MOHKGA) is shown 

in Fig. 3.1. The standard genetic algorithm operators, including initialization, fitness assignment, 

selection and mutation are integrated with the unique K-mean operator and the expert module. 

The novel algorithm used in fitness assignment, parallel processing of selection, crossover and 

mutation are described in details in each section below.  

 

 

 

 

Figure 3.1 MOHKGA with Expert Module 
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3.3 Genetic Algorithm Operators 

3.3.1 Initialization and Problems Encoding 

The solutions to the multi-objective optimization problems are encoded in a data structure 

than can represent the potential solutions to the problem. The genetic representations with 

chromosome encoding has fixed size that are corresponding to the objectives. This also 

facilitates crossover operation in the next step. The standard representation of each candidate 

solution is encoded as array of string in this research. Arrays of other types and structures can be 

used in essentially the same way for chromosome encoding.  

Initialization of MOHKGA 

Step 1: Set the initial and boundary parameters with input from expert module 

Step 2: Set the initial population P0 = {Æ} and i=0 

Step 3: For each i= 1 to N  

 Set P0 = P0 +I where i is selected based probability P(x) in 3.3.2 

3.3.2 Selection 

 In this research, the modified Niched Pareto tournament selection scheme is referred for 

the selection process in the multi-objective genetic algorithm. The selection probability of each 

solution is defined by the roulette wheel selection using the linear scaling: 

𝑃 𝑥 = 𝑓 𝑥 − 𝑓+'i(𝑛)	/( 𝑓 𝑥 − 𝑓+'i(𝑛)
i

h,-
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where 𝑓+'i 𝑛 = 𝑚𝑖𝑛	{𝑓𝑥|𝑥Î𝑛}	is the fitness value of the worst solution in the current 

population. 

Selection of MOHKGA 

Step 1: Two candidates for selection are picked randomly from the population, C1, C2 

Step 2: Set domination flag  

D1 of C1 = false;  

D2 of C2 = false 

Step 3: For each of the candidate Ci in Ck 

For each individual i in the comparison set 

If the candidate i is dominated by the comparison set,  

then delete i  

If both candidates are non-dominated, they will be kept in the population.  

Step 4: Select the population for the next generation: 

Set the temporary population P’’ =0. For i=1,….. n do 

 Select one individual i∈Pt, based on the given scheme and fitness Value F(i) 

Set P’’ = P’ +{i} 
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The selection design and implementation are different from the original Niched Pareto 

Tournament Selection. In NSGA selection process, if neither the two candidates are dominated 

by the comparison set, a winner will be chosen based on the fitness sharing. In MOHKGA, the 

selection doesn’t choose a winner. If the candidates in the comparison sets are not dominated, 

then they are both kept in the population for the next generation, as shown in Figure 3.2. This 

can result in the number of population grow and cause problem for crossover operation. K-means 

operator is applied to solve this problem, which is discussed in the K-means operator section. 

During the selection process, the ranking approaches can be directly used to assign fitness values 

to individual solutions, they can also be combined with other fitness sharing techniques to 

achieve the second goal in multi-objective optimization, finding a diverse and uniform Pareto 

front. 

 

 

 

 

 

 

 

 

Figure 3.2 Pareto Tournament Selection of MOHKGA 

Two candidates (C1, C2) for selection are picked randomly from the population 

each of the candidates is compared against each individual in the comparison set 
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3.3.3 Recombination (Crossover)  

The purpose of the crossover operator is to pick two or more solutions (parents) randomly 

from the mating pool from the previous step. Crossover creates one or more offspring solutions 

by exchanging information among the parent solutions. The crossover operator is applied with a 

crossover probability Pc Î [0,1], indicating the proportion of population members participating 

in the crossover operation. Two types of cross-over, point based and arithmetic cross-over are 

proposed in this method. It combines corresponding individuals within the two populations to 

produce a new individual and all the new individuals constitute a new population to be tested 

whether it fits in the whole population better than the existing individual. The crossover 

operation is carried out on the population with crossover rate Pc.  

The probability of crossover operation is pre-defined in the initialization step. The 

probability value needs to be carefully set because the high crossover rate will result in the slow 

convergence time, extreme high rate can lead to the non-stop state of the process, whereas the 

low rate can lead the premature convergence to local optimality. 

Two-point cross-over are used in this research as illustrated below. 

111000111000111000              001011001000100100 

000111000111000111              110100110111011011 

The implementation of crossover in the framework is described below: 
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Crossover of MOHKGA 

Step 1: Set P’’ = ∅ 

Step 2: For each j in i – 1, …., N/2  

Step 3: Choose 2 individuals i, j ∈ P’ 

Step 4:  Remove i,j from p’  

Step 5: Crossover i and j with resultant children k, l  ∈  I with probability Pc  

Step 6: Add k,l to P’’. Otherwise add i, j to P’’  

3.3.4 Mutation 

The mutation operator makes the individual an is replaced by an
’ within itself according to 

the probability rate of mutation.  The mutation probability is usually defined as Pi = 1/N , which 

represents the probability interval of a mutating individual i.  

Mutation rate plays an important role in the genetic algorithm to keep the diversity of 

population generation by generation. The principle of setting the mutation rate is similar as 

crossover rate.  Low mutation rate can lead to the loss of population diversity and local 

optimality. High mutation rate can lead to the difficulty of convergence due to the randomness of 

new individuals generated by high mutation rate. 

Two-point cross-over are used in this research as illustrated below. 

111000111000111000              001011001000100100 
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Mutation of MOHKGA 

Step 1: Set P’’’ = ∅ 

Step 2: For each individual i in P”  

Step 3:  Mutate i with regard to mutation rate Pm 

Step 4:  individual i becomes  individual  j ∈ current generation  

Step 5: Set P’’’ = P’’’ + { j } 

3.3.5 K-Mean Operator 

K-mean operator proposed in this framework is unique and critical. Because the selection 

operator does not choose of the winner from every comparison set, instead, all the non-dominate 

individuals are kept for the next generation. Hence a large number of candidate individuals for 

next generation are generated. The large number of individuals can not only cause high 

computation complexity and slow convergence of global optimal Pareto set, but also the make 

the next generation operation impossible as the size of the population to be crossed over does not 

match. Therefore, clustering and re-group of candidate solutions into smaller size without losing 

elitism is necessary. The distribution of populations from every generation can be formed into 

clusters. The density and shape of clusters have direct impacts on the quality of final global 

Pareto-optimal solution set.  The distribution of the tentative Pareto set solutions achieved so far 

is an important aspect. In the case the trade-off surface is continuous or contains many points, 

clustering approach can be applied directly to further reduce the number of solutions. 
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 The K-means operator is applied to re-analyze the candidate solutions through clustering. 

As discussed in the Chapter two, K-mean operator calculates the centroid for each cluster and re-

assigns each solution to the closest cluster. In other words, applying K-means helps in quickly 

rectifying any unwanted outcome from the crossover operator and reduce the size of tentative 

Pareto-optimal sets. Additionally, the K-means operator can speed up the convergence process 

by clustering with the reduced population size.  

The design and implementation of K-Means operator is described below: 

 

 

 

 

 

 

 

The algorithm of non-dominated set K-mean clustering is described below, and illustrated in 

Figure 3.3  

  

Step 1:    For each individual in the current population         

Step 2:  Get the centroid for each cluster 

Step 3:             for each data point in an individual 

Step 4:    Get the Euclidean distance from the data point to each centroid 

Step 5:    If a closer centroid is found  

Step 6:    Assign the data point to that cluster 
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Input:   P’ = external set 

  N’ = maximum size of external set 

Output: P’’ = updated external set 

Algorithm: 

Step 1: Initialize cluster sect C 

 Each individual i ÎP’ constitutes a distinct cluster C = ∪'∈¥¦ { 𝑖 } 

Step 2: if |C| <= N’, goto Step 5  

 else goto Step 3. 

Step 3: Calculate the distance Dc of all possible pairs of clusters.   

 Dc = -
|s-||s>|

	 𝑑(𝑖1, 𝑖2)'-∈s-,'>∈s>  

 The distance in objective space is used. 

Step 4: Find minimum dc of cluster c1 and cluster c2  

And  the chosen clusters group into a larger cluster C. 

C = {c1,c2}∪ {𝑐1𝑈𝑐2} 

Go to Step 2.  

Step 5: Per cluster, select a representative individual  

and remove all other individual form the cluster.  
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The centroid is the representative individual.  

The representative of the clusters is the reduced non-dominated set P’’ 

 

 

Figure 3.3 K-Mean Clustering of Tentative Pareto optimal solutions 

 

 

 

 

 

 

 

Figure 3.4 Centroids Representation of Pareto-optimal sets 

Tentative Pareto Sets 

Centroid representation after Clustering 
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3.3.6 Termination 

The program terminates when one of the following conditions applies: 

• It converges and generate the final Pareto-optimal sets. No-more better solutions can 

be generated based on the objective functions 

• The predefined stopping criteria are met, including: 

o The execution time 

o The number of generations 

• Manual intervention through the expert module. Users can choose the stop the 

execution whenever necessary.  

3.4 Uniqueness of MOHKGA 

In addition to use the outcome from the previous researches, MOHKGA incorporates some 

innovative ideas and algorithm in the algorithm. The implementation is discussed in the 

following sections. 

3.4.1 Reducing the Non-dominate Set by K-Mean Clustering 

  In real-world multi-objective optimization, the number of the tentative Pareto-optimal 

solution set in the genetic process and the final Pareto-optimal sets can be very large, this is 

especially true when the selection operator keep all the non-dominate solutions for the next 

generation. As discussed in the methodology, the unique introduction of K-mean operator to 

cluster, re-group and reduce the size of populations can solve the aforementioned problems, 

improve the performance and also keep the population diversity. The application of K-mean 

cluster on the final Pareto-optimal set can make the result visualization easy in the expert module 

so that they can be used as recommendations for decision making.  
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3.4.2 Termination with Expert customized local search module 

Many other genetic algorithms referred in the literature are terminated after a prefixed 

number of generations or when no better new individuals have entered the non-dominated set 

after a prefixed number of generations. The converge process of global optimality are usually 

slow when the problem itself is complex and hence requires high computational costs.  The 

expert module proposed in this framework can speed up the converge process and using domain 

subject expert’s input as input parameters to terminate the GA process.  

For a large number of solution set, the computation time can be too long to be used for 

real-world decision-making process, therefore, the customized initialization and termination 

condition setup can help reduce the computation time. 

3.4.3 Visualization and Reporting module 

Effective data visualization is an important tool in the decision-making process. It allows 

decision makers to quickly examine large amounts of data, identify trends and issues efficiently, 

exchange ideas with key players, and influence the decisions that will ultimately lead to success. 

After finding a set of representative Pareto-optimal solutions and the reduced number of 

solution sets, the expert module provides the result with the visualized results for decision 

makers. Presenting and visualizing the preferred recommendations form the obtained Pareto set 

is important on solving real-world practical problems during the decision-making process.  

3.4.4 Integration with Subject Domain Expertise 

A decision maker’s preference information, if there are any, can be integrated in interactive 

approach during the search process. In the interactive approach, decision maker’s preference 

information can be configured as input parameter for each generation and is presented with 
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solutions chosen from the current non-dominate front. The decision maker can rank the solutions, 

taking trade-offs according to their preferences.  

3.5 MOHKGA Validation and Comparison with Other MOGAs 

To prove the validity of the proposed framework, several well-known experimental 

datasets are used for data clustering analyses. The clustering results were analyzed by using six 

of the cluster validity techniques proposed in the literature, Silhoutte, C index, Dunn’s index, SD 

index, DB index, and S_Dbw index, and then compared with the published result from other 

researches from the literature.  

Different cluster validity indexes aforementioned are used to validate the result. As 

discussed in the literature, minimal SD index indicates an optimal cluster number, while 

maximal Dunn index shows the optimal number of clusters as it means maximal inter-cluster 

distances and minimal the intra-cluster distances, i.e., good separation of clusters. DB index is a 

function of the ratio of the sum of within-cluster scattering to between clusters separation, a 

small value exhibits a good clustering. Silhouette value is in the interval [–1, 1], it’s value that is 

close to 1 means that the sample is assigned to a very appropriate cluster, whereas 0 means that 

the sample lies equally far away from both clusters while close to –1 means that the sample is 

misclassified. 

3.5.1 Objectives Definition of Clustering 

As discussed in Chapter two, clustering itself is A multi-objective optimization problems, 

and is generalized blow: 
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Objectives: 

Minimize {f1(x), f2(x)….., fk(x) } 

Where :  

1. with k is the number of objectives and K³2.    

2. f(x) = (f1(x), f1(x), … fk(x))T is the objective vector 

3. x = (x1, x2, …  xn)T is the decision vectors belong to the search space S with 

constraint. 

For clustering process, two conflicting objective functions are defined:  

• Min (f1), minimizing the cluster partitioning error with minimal Total Within-

Cluster Variation (TWCV), i.e. to maintain the clear separation of clusters with 

minimal number of clusters [130]. 

𝑇𝑊𝐶𝑉	 = 	 𝑋i�>
m

�,-

−	
1
𝑍J

¬
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𝑆𝐹J�>
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�,-
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where X1, X2,.. , XN are the N objects, Xnd denotes feature d of pattern Xn (n = 1 to N), Zk 

denotes the number of patterns in cluster k, and SFkd is the sum of the d-th features of all 

the patterns in cluster k: [130]  

𝑆𝐹J� 	= 	 𝑋i�
h�Î®�

	(𝑑 = 1,2, … . 𝐷) 

• Max(f2), maximize the separateness of the clusters.  

3.5.2 Experimental Datasets 

The multi-objective genetic algorithm-based approach proposed in this research are tested 

with various initial and boundary environmental conditions. The validity of MOHKGA was 
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tested on the following well-known experimental datasets for clustering. The result Pareto-

optimal front gives the optimal number of clusters. The results are then compared with the 

known result and other MOGAs in the literature for parallel analyses.  

3.5.2.1 IRIS Datasets 

The Iris dataset is a well-known dataset widely used in pattern recognition and clustering. 

It is a four-attributes dataset containing 150 instances; it has two or three clusters each has 50 

instances. One cluster is linearly separable from the other two and the latter two are not exactly 

linearly separable from each other. Jiang et al [15] applied visual rendering to the Iris dataset by 

using a linear and reliable mapping model to visualize the k-dimensional dataset in a 2D star-

coordinate space.  

 

Figure 3.5 Cluster distribution of the original Iris dataset  
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 Cole [13] also conducted tests on the Iris dataset using general genetic algorithms with the main 

parameters: 

• number of iterations = 1000,  

• range of exponential mutation rate = from 10.0 to 0.000001,  

• population size = 50,  

• crossover probability = 1.00 

The optimal number of clusters obtained are 3 for the Davies Bouldin method and 2 for the 

Calinski and Harabase method.  

MOHKGA experiment with this dataset with the following parameters are setup: 

Parameters Value 

population size 200 

number of comparison set 20 

crossover rate 0.8 

mutation rate 0.01 

Threshold* 0.0001 

 

Table 3.1 Initial Setup Parameters for Iris Dataset 

* was used to check if the population stops evolution after 50 generations or if the 

process needs to be stopped.  
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Average changes in the Pareto-optimal front by running the proposed algorithm for the 

Iris dataset are displayed in Fig. 3.6 for different generations. It demonstrates that the system can 

quickly converges to an optimal Pareto-optimal front. some key TWVC values are reported in 

Fig.3.7 and Table 3.2 contains the TWVC values and index values. 

 

Figure 3.6 Pareto-optimal front using Iris dataset 

The intermediate values during the genetic process is listed in Table 3.2. It can be 

observed that the program converges well towards to the true Pareto-optimal number. Figure 3.7 

shows the average values of various clustering index for the comparison purpose over ten runs. 

Six indices were used to analyzed the output results of the Iris dataset. The results obtained are 

compared with the corresponding results reported by the other researchers [13, 15,16].  
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Generations TWCV(k=3) TWCV(k=8) 

1 65.9482 57.2637 

10 41.7086 29.2056 

25 41.7086 28.3555 

50 41.7083 28.1758 

100 39.043 28.1758 

k-means 45.5185 34.1203 

 

Table 3.2. IRIS dataset TWCV for k = {3,8} 
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Figure 3.7 Iris dataset cluster validity C, Dunn, DB, SD, S_Dbw and Silhouette indices.  
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Validity Index Best Index Value Number of Clusters 

Dunn 1 4 

DB 0.5 2 

SD 1.2 2 

S_Dbw 1.8 3 

Sil. 1.8 3 

 

Table 3.3. Best Validity Index Value with Cluster number 

As discussed in Chapter 2, SD validity index definition demonstrates the average scattering 

for clusters and total separation between clusters. A small value for SD index indicates compact 

clusters. The number of clusters that minimizes the index is an optimal value.  This is in 

agreement with the expected result shown the Fig.3.7. The number of cluster is two with the 

minimum SD index value. Previous research [13] suggested the optimal number of clusters for 

the Iris data is 3, which ranks second for all the indexes except S-Dbw and C. This finding is 

consistent with the result of the DB cluster validity index published by Cole [13]. Small DB 

index value indicates a good clustering, but this index alone is not representative to show the 

optimal number of clusters. The six indices altogether indicate the optimal number of clusters for 

IRIS dataset, which includes properly combined compactness and separation. Clusters are more 

compact but less separate from each other for the number of clusters taken as 3, while clusters 

with number of clusters taken as 2 are better separated.  
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3.5.2.2 Breast Cancer Datasets 

Breast cancer is known to be a heterogeneous class of cancer.  Data classification and 

clustering of genes/tumors expression data is generally unstable. Tow datasets which are freely 

available at http://www.ncbi.nlm.nih.gov/geo/, GSE12093 and GSE9195 are selected to test the 

performance and accuracy of the framework since they are known to be a heterogeneous nature 

and they are well studied from the previous researches. 

3.5.2.2.1 GSE12093 Dataset 

The GSE12093 dataset has 76-gene signatures defined high-risk patients that benefit from 

adjuvant tamoxifen therapy, from 136 breast cancer samples that were treated with tamoxifen. It 

contains 22284 genes with 136 attributes/features. filtering standard of more than 200% 

coefficient of variation are used to reduce the data size and the distribution of this dataset is not 

sensitive to standard deviation or other filtering criteria.  

For experimental purpose, the initial input parameters are shown in table 3.4. 

Parameter Value 

Size of initial population size 700 

The number of comparison set 10 

Crossover rate 0.8 

Mutation 0.01 

Termination Threshold 0.1 

 

Table 3.4 Initial Setup Parameters for GSE12093 

The generated Pareto-optimal front on the GSE12093 dataset are displayed in Figure 3.4 with 

number of generations. We can observe the following from the algorithm output as shown in 

Table 3.5. 
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Generations	 c1	 c2	 c3	 c4	 c5	 c6	

1	 1.49E+12	 1.79E+11	 1.79E+11	 1.79E+11	 1.67E+11	 2.86E+11	

100	 1.49E+12	 1.79E+11	 1.79E+11	 1.79E+11	 1.67E+11	 1.33E+11	

200	 1.49E+12	 1.79E+11	 1.79E+11	 1.79E+11	 1.61E+11	 1.30E+11	

300	 1.49E+12	 1.79E+11	 1.79E+11	 1.78E+11	 1.56E+11	 1.27E+11	

400	 1.49E+12	 1.52E+11	 1.52E+11	 1.75E+11	 1.37E+11	 1.23E+11	

500	 1.49E+12	 1.33E+11	 1.33E+11	 1.61E+11	 1.41E+11	 1.20E+11	

600	 1.49E+12	 1.09E+11	 1.09E+11	 1.63E+11	 1.45E+11	 1.15E+11	

700	 1.49E+12	 1.48E+11	 1.48E+11	 1.48E+11	 1.24E+11	 1.09E+11	

 

Table 3.5 TWCV with Corresponding Generations and Cluster number for GSE12093  

Figure 3.8 shows that the algorithm converges quickly with the Pareto-optimal front when 

the number of cluster stabilizes at two or three. There is not much improvement with the 

increased number of generations. The actual change in the value of TWVC is not significant as 

shown in Figure 3.8 where the values are very close.  Therefore, the true Pareto front can be 

considered as much smaller optimal solution sets, other than a large solution sets. As shown in 

Fig.3.8, the optimal number is two or three and these two solutions dominate the others. 
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Figure 3.8 Pareto-fronts for GSE12093 dataset 

Cluster validity are analyzed on the filtered GS12093 datasets to compare the results of 

our experiments. Three indices from internal measures (connectivity, Dunn and Silhouette index) 

and four from stability measures (Average proportion of non-overlap (APN), Average distance 

(AD), Average distance between means (ADM) and Figure of merit (FOM)) are used for the 

validation purpose. The test results are reported in Figure 3.9 and Figure 3.10 for internal 

measures indices and stability measures indices, respectively.  

The minimum connectivity value indicates the optimal number of clusters of two, as 

shown in Fig.3.9. This is consistent with convergence of Pareto-optimal front. The variation of 

Dunn and Silhouette index are not significant in this case.  

The higher value of AD usually indicates the optimal number of clusters, which is two. 

This is in consistent with the optimal number of clusters shown in Fig 3.8. All three internal 

measures indices and two stability measures indices show the same results, with similar trend.  
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Figure 3.9 GSE12093 dataset cluster validity results using Connectivity, Dunn and 

Silhouette indices 

 

Figure 3.10 GSE12093 dataset cluster validity results using stability measures 

 

3.5.2.2.2 GSE9195 Dataset 

The GSE9195 dataset contains molecular profiling in estrogen receptor-positive (ER+) breast 

cancer treated with tamoxifen. Gene expression profiling is used to develop an outcome-based 

predictor using a training set of 255 ER+ BC samples. The data set contains 5,4675 samples with 
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77 attributes/features. For this research, the data was filtered with more than 1.6 standard 

deviation in order to reduce the data size.  

The initial setup parameters are shown in Tables 3.6.  

Parameter Value 

Size of initial population  150 

Number of comparison set 10 

Crossover rate 0.8 

Mutation 0.01 

Termination Threshold 0.1 

 

Table 3.6 Initial Setup Parameters for GSE9195 

The generated Pareto-optimal front from this framework on the GSE9195 datasets are 

displayed in Figure 3.11 for different generations. The actual results of TWVC with the 

corresponding generations and cluster numbers are shown in Table 3.5. 
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Generations	 c1	 c2	 c3	 c4	 c5	 c6	

1	 9.46E+04	 8.76E+04	 8.76E+04	 8.60E+04	 85653.4	 8.48E+04	

100	 9.46E+04	 8.76E+04	 8.42E+04	 8.17E+04	 81402.5	 8.21E+04	

200	 9.46E+04	 8.60E+04	 8.42E+04	 81070.9	 81211.7	 8.13E+04	

300	 9.46E+04	 8.60E+04	 8.42E+04	 80983.7	 8.07E+04	 8.10E+04	

400	 9.46E+04	 8.78E+04	 8.42E+04	 8.07E+04	 8.00E+04	 8.02E+04	

500	 9.46E+04	 8.42E+04	 8.42E+04	 80713.3	 7.94E+04	 7.94E+04	

600	 9.46E+04	 8.42E+04	 8.42E+04	 8.05E+04	 7.89E+04	 7.82E+04	

700	 9.46E+04	 8.42E+04	 8.42E+04	 8.05E+04	 7.86E+04	 7.74E+04	

 

Table 3.7 TWCV with Corresponding Generations and Cluster number for GSE9195 

Dataset 

 The actual change in the value of TWVC is not reflected in Figure 4.7 where the values are 

very close and all the five curves almost overlap due to the scale used.  
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Figure 3.11 Pareto-fronts for GSE9195 dataset 

As shown the in the Figure 3.11, with the increased number of generation, a refined Pareto-

optimal solution are generated. Unlike the previous dataset GSE12093, a clear Pareto-optimal 

front can be observed from Figure 3.11.  

We run the same validity process for the GSE9195 dataset. However, due to the large 

variances of the index values, the indices are re-grouped and shown in two figures. Figure 3.12 

shows the indices with value between 0 to 6, while Figure 3.13 shows the connectivity and AD 

indices with larger value.   

Fig. 3.11, we can observer a clear Pareto-optimal and it stabilizes when the cluster number 

four. From validity index as show in Fig. 3.12, ADM and Silhouette index also shows at the 

cluster number four, the index values start to stabilize to a point that no better value can be 

achieved. This is in consistent with the Pareto-optimal front in Fig. 3.11, where the Pareto front 

starts to show less variance on the TWCV values with the number of clusters pass over four.  
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Figure 3.12 dataset cluster validity results APN, Dunn, ADM, FOM and Silhouette indices 

 

 

Figure 3.13 GSE9195 dataset cluster validity results using connectivity and AD 

Fig. 3.13 shows the connectivity and AD index value with regards to this dataset. index, 

connectivity index provides a quantified value to show the degree of connectivity of individual 

clusters, and how well-separated clusters are. It’s similar to Dunn’s index but with better 
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indication of separation. In this case, the connectivity index value shows a large increase to at 

cluster number three, while AD is not sensitive for this dataset.  

3.6 Applications of MOHKGA in Real-World MOOP 

After the validation of MOHKGA from the experimental data sets, MOHKGA was applied 

to solve real-world multi-objective optimization problems. The first application was on the blood 

bank inventory management and optimization for Calgary Blood Services, Alberta, Canada. The 

outcomes are used to provide recommended solutions for decision maker to manage the blood 

bank more efficiently and predict the future outages based on simulation results. The 

implementation details and results are described in section 3.9.1.  The second application of 

MOHKGA is to provide the mobile users a set of optimized shopping options for the products 

they want to buy, for example, the best prices with shortest travel time and distance, with 

configurable preference settings. This application and implementation was used for Microsoft 

Imagine Cup 2013 worldwide competition and won the first category price in Canada. The 

implementation details and results are described in section 3.9.2. 

3.6.1 Case Study: MOHKGA on Blood Bank Management 

3.6.1.1 Problem Statement and Formulation 

Calgary Health Region (CHR), Alberta, Canada has four referral hospitals and ten 

community health care centers. All its hospitals and care centers require different level of blood 

services and Calgary Lab Services (CLS) is one of main authority to manage the blood bank 

inventory. Blood bank management is commonly known as red cell inventory management.  

There are 16 types of red cells. The shelf life or storage time for each type of red cell are 

different, but the commonly used maximum 42 days are used in this research.  In the current 
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management practice, even with commercial inventory management software and large amount 

of manpower to manage the Red Cells (RC) inventory, over the past years, the inventory of red 

cells is generally over-stocked on purpose in order to guarantee sufficient supply for patients use 

and to prepare for emergency use, as a result, the over-stocked inventory often is wasted due to 

the expired shelf life of red cells.  

Red cells can be treated as a type of scarce, perishable good, the cost of getting them is 

the same as commercial goods despite some of them are from the donors other than purchase. In 

order to maintain the sufficient supply of red cell in stock, while keeping the waste to the 

minimum level, the local health authority need an expert system that can provide recommended 

solutions for decision making process on the optimal inventory level. More importantly, the 

system should also be able to predict the sustainability of current inventory level for various 

situations as input parameters, including flu season, epidemic situations and situations where 

sudden massive volume of red cells under emergency situation.  

The formulation of research is described below. The main objectives in RC management 

are: 

• f1: Minimize the cost of total waste (TWC) of red cells (RC)  

 Min. TWC = 𝐼 + 𝑆J¬
J,- + 𝑅J¬

J,- − 	𝐼J𝐶J −	¬
J,- 	𝐼�	m

�,³>  

Where:  

I: Initial inventory level of all rec cells   

Rk: daily replenishment of RC type k 
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Ck: daily consumption rate of RC type k 

Sk: daily savings of RC type k 

• f2: Maximize the sustainment time with current inventory: 

Max T = F(𝐼, 𝑅, 𝐶, 𝑆) 

 Where T Î {t, .. . µ } t is the minimum inventory level for critical usage. 

 In order to achieve the objective f2, i.e., to maintain or sustain the maximum availability 

of RC supply, RC banks would need to maintain an excessive high level of inventory to 

guarantee the sufficient supply, however, the high level of inventory will inevitable result in 

waste and hence, the maximum f2, which is the opposite of objective f1. 

 Hence the two objectives to be optimized are conflicting and well fit the application area 

of multi-objectives optimization in this study. 

3.6.1.2 System Design and Implementation  

The system consists of n-tier architectural design as show in Figure. 3.17 below. It is a 

client–server software architecture pattern including the presentation (user interface), business 

logics (functional process logic), computer data storage and data access tiers. It was developed 

by John J. Donovan in Open Environment Corporation (OEC), a tools company he founded in 

Cambridge, Massachusetts. 

The design of three-tier architecture is intended to allow any of the three tiers to be 

upgraded or replaced independently in response to changes in requirements or technology. For 

example, a change of operating system in the presentation tier would only affect the user 
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interface code. The first tier is the presentation tier including the web graphical user interface 

including calendar representation of inventory levels as results of the pre-defined initial 

conditions. This is the top-most level of this application; the main function of the interface is to 

translate tasks and results from MOHKGA framework to the decision maker with understandable 

data visualization. The Pareto-optimal results are then encoded in the web services module in 

standard serialized formats over HTTP, JSON and XML. It is for the web visualization of 

MOHKGA generated Pareto-set, rendered with HTML5, CSS3 and JavaScript at the time of 

writing.  

The business logic tier consists of MOHKGA framework and the integrated expert 

module, which generates the Pareto-optimal set based on the user’s preferences form 

presentation tier. This layer coordinates the application, processing commands, perform the 

logics command, evaluation and calculation defined in MOHKGA. 

 The backend tier is for the storing the results in the persistent store as an archiving and 

tracking tool. Users preferences info are stored in this tier as well. The data tier includes the data 

persistence mechanisms (database servers, file shares, etc.) and the data access layer that 

encapsulates the persistence mechanisms and exposes the data. It provides an API to the business 

tier that exposes methods of managing the stored data without exposing or creating dependencies 

on the data storage mechanisms. Avoiding dependencies on the storage mechanisms allows for 

updates or changes without the application tier clients being affected by or even aware of the 

change.  

 Data security is another important factor that needs to be considered in this case study as 

the problem domain contains sensitive information. All data, including the input and output of 



 

112 

the frameworks, are encrypted between the communication of the tiers. The encryption within 

HTTPS is intended to provide benefits like confidentiality, integrity and identity.  

 

 

Figure 3.14 MOHKPA System Architectural Design for CLS 

3.6.1.3 Assumptions  

In this case study, the following assumptions are made: Because of political reasons and 

regulatory policy, only experimental data are used, including the decision maker’s preference 

setting, initial inventory data, daily replenish and consumption rate, daily waste level etc. These 

data are not the actual data from Calgary Heath Region. 
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3.6.1.4 Result Analyses and Benefits  

 

Figure 3.14 Detailed View of RC Daily Inventory Level with Various Settings 

The novel expert module in this proposed framework contains an interactive user 

interface for decision makers or domain subject experts to integrate their experience, knowledge 

and expertise into the framework. As shown in Fig. 3.14, the following parameters are can be set: 

• Initial conditions: The initial inventory level for the 16 different types of red cells, 

average daily consumption rate at the specific time/season of the year, average 

daily replenish rate at the specific time/season of the year, expected waste. 

• Stop constraints: MOGAs usually can’t control the stopping/termination in the 

search process on DM, as discussed in section 2.6.9.  Time is an important factor in 

Real-world application of MOHKA in MOOPs as decision makers may require the 

Pareto-optimal solution sets, even may not be so refined, under emergency 
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situation, especially for the blood services. Decision makers can set the time to stop 

the program if it runs over the pre-set time threshold.  

 

 Figure 3.15, 3.16, 3.17 shows the intermediate output of framework run for generation 1, 

100, and 150. It can be observed that the Pareto-Optimal set can be generated at generation 150. 

Because of the conflicting objectives in this case, the result provides a valuable recommendation 

to decision makers.  

 

Figure 3.15 Temporary Pareto Solutions at Generation 1 
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Figure 3.16 Temporary Pareto Solutions at Generation 100 

 

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45

f2
	(M

ax
im

ize
	su

st
ai
nm

en
t	t
im

e)

f1	(Minimize	TWC)



 

116 

 

Figure 3.17 True Pareto Optimal Set at Generate 150  

3.6.1.5 Result Analyses and Benefits  

For practical real-world problem solving, visualization from the framework simulation 

results are necessary for executive decision makers because not only it can provide user friendly 

formats, but also for quick decision making where timing is a critical factor, including 

emergency situations.  Furthermore, a web-based visualization provides even more values for 

decision makers as it can be used anywhere as long as there is an internet connection. 

 Fig.3.18 is the screen shot of the real-time result from the framework.  
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Figure 3.18 Web-based visualization of MOHKGA Output with Reporting 

Daily Saving plan is one of the recommended solutions to decision makers, as shown in 

Fig. 3.19. Because it’s user configurable settings and can be integrated in the framework during 

the MOOP search process.  Fig.3.19 also shows that without the use of recommendation of daily 

saving plan. It can be observed that the inventory would quickly drop to below critical service 

level. 

Fig.3.20 shows the calendar visualization of framework outputs with indications of over 

supply (Sufficient), Optimal, Amber alert under currently supply and consumption rate. Amber 

alert is defined as when the inventory level is below pre-defined threshold value which is defined 

by domain subject expert.   
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Figure 3.19 Inventory Level without Saving Plan 

 

 Figure 3.20 Framework Result Visualization on Calendar 
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3.6.2 Case Study: MOHKGA on Mobile Shopping Application 

3.6.2.1 Problem Statement and Formulation 

At the time of this writing, mobile devices and various mobile applications have become 

an essential part of people’s everyday life.  Shoppers usually look for the good deals when 

making purchases, basically, the general objectives are to  

1. find all cheapest products with minimal costs  

2. use minimal travel time to get the products. 

 The above objectives are often conflicting to each other, and trade-offs need to be made 

on their shopping decision making. Hence this is naturally a multi-objective optimization issue. 

With the use of the proposed framework as backend, an experimental mobile application, named 

YouSave, was created to provide recommendations to shoppers based on their current location, 

which can either be readily available through GPS sensor on their mobile phone, or can be 

inputted manually. Shoppers can then make the decision on where/what/when to purchase their 

intended items on their mobile device. The recommendations are from the Pareto-optimal sets 

generated by MOHKGA with users’ preferred ways of savings, for example, save on travel time 

or save on costs.  

3.6.2.2 Assumptions 

Only certain shops and stores in the Calgary are considered in this application and goods 

prices information from each store does not reflect the real-time store prices. The 

recommendations generated by the system are only for demonstration purpose.  
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3.6.2.3 System Design and Considerations 

The selected stores are based on the location and good prices from major stores in 

Calgary, Alberta, Canada. Detailed geological location information (longitude and latitude) and 

list of products prices information are stored in the backend database as part of MOHKA input. 

The outputs are in JSON data format through RESTful web services.  

Input:   

Users’ preferences: T, C 

Products:  (X1,X2, …. Xi) 

Output:  Pareto-optimal solutions (Recommended stores with trade-offs 

Constraints: Max execution time: 5 seconds 

Objectives: 

Min: T (Total time of traveling) 

Min: C (Total Cost of goods) 

Where T is the Traveling Time and C is the Total Cost of goods. 

Web services technology has become an industry standard for connecting remote and 

heterogeneous resources and it overcomes the physical location constraints of conventional 

computing. Because of the heterogeneous nature of mobile devices, including the various 

hardware platform, operating systems, and programming languages, the integration of mobile 

computing with Web Services technology are the current industrial best practice. Mobile 

applications consume web services as web services provide strong interoperable capability. 
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YouSave consumes the web services from MOHKPA framework which contains the data of the 

Pareto-optimal sets. The Web Services used in the case study uses Representational state transfer 

(REST) or RESTful web services is a way of providing interoperability between the servers that 

running MOHKGA framework on the Internet. REST-compliant Web services allow requesting 

MOHKGA to access and manipulate textual representations of Web resources using a uniform 

and predefined set of stateless operations. In this case, the other Web services such as WSDL and 

SOAP are not considered as they expose their own arbitrary sets of operations. 

Through the use of RESTful Web service, the requests and response between mobile 

users and MOHKGA framework can be streamed in XML, HTML, JSON or some other defined 

format.  By using a stateless protocol and standard operations, REST systems in this study can 

provide fast performance, reliability, and the ability to grow, by re-using components that can be 

managed and updated without affecting the system as a whole, even while it is running. 

Framework stopping time is another important factor for MOHKGA application in this 

application as the end user will need to have the Pareto-set solutions, i.e., the recommended 

stores in relatively short time in order to make their shopping decision. Therefore, MOHKGA in 

this case produce the recommended sores within five seconds, even there is not enough 

generations to produce the refined Pareto-optimal set. The expert module integrated in the 

framework provides the stopping condition enforcement. 

The architectural design of YouSave is shown in Figure 3.21. 
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Figure 3.21 Architectural design of the Mobile Application from MOHKGA 

3.6.2.4 Result Analyses and Benefits  

A sample experimental results are shown in Figure 3.22 form MOHKGA based on some 

big box stores in the City of Calgary, Alberta.  

The triangle represents shopper’s current location; the round dots are stores found nearby 

while the green dots represents the recommended shopping stores for shopper. With the 
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consideration of both time and cost as objectives, the stores recommended in the Pareto set are 

store A and C, whereas store B is not in the Pareto set.   

This application was used for Microsoft Imagine Cup 2013 competition [203] and 

received first place awards on the category and run-up of Canada. 

 

 

Figure 3.22 YouSave Pareto Sets from MOHKGA 
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Chapter Four: DISCUSSION  

 

In general, genetic algorithms can find multiple Pareto-optimal solutions in one single 

simulation run if properly designed and implemented, because Genetic algorithms use population 

of solutions, and can be extended to maintain a diverse set of solutions toward to the true Pareto-

optimal region. The common issues and challenges of genetic algorithms are performance, global 

optimality and result visualization, especially when the search space is complex.  Many real-

world problems involve a simultaneous optimization of multiple, yet competing objectives in 

multiple modal and high dimensional search space. In comparison with non-genetic classical 

algorithms, genetic programming in general has advantage on solving non-linear multi-objective 

optimization problems, however, the selection of algorithms and approach should be based on 

nature of the specific problem domain and purpose of the research.  A good understanding of the 

problems to be solved, and the advantages and disadvantages of both genetic algorithms and 

classical methodologies is essential for specific problem solving. A possible hybrid approach 

with combination of both approaches can be an interesting research area to address the varying 

degrees of search-space complexity.  

 In this research, an innovative framework, Multi-Objective Hybrid K-Mean Genetic 

Algorithm (MOHKGA), was developed to solve the complex multi-objective optimization 

problems. The common issues from genetic algorithms are addressed with the unique operators. 

The uniqueness of the MOHKGA are described below.  
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4.1 Performance and Global Optimality 

Real-world decision making on multi-objective optimization problems often has to deal 

with vast amounts of data, a number of alternatives and different decision situations. At the same 

time, the rapid diversification in industries is adding to the complexity in the search space. 

Because MOGAs are computational expensive, especially in multi-dimensions and multi-modal 

search space, MOGAs can take days or weeks to converge or complete, depending the size of 

datasets, the number of objectives in the objective space and hardware resources. The long 

execution time may not be suitable for solving real-world problems. Therefore, performance in 

genetic programming is a critical issue, especially when used to solve the real-world 

optimization problems where stringent criteria on system response time and system reliability are 

required, as demonstrated in the two case studies.  The performance can be improved by either 

adding more hardware resources, like CPU, memory or solid-state drives, or by improvement of 

the algorithm design and implementation, or the combination of both.  

The number of generations that genetic algorithms need to run and reach the true Pareto 

optimal front, or to converge completely, decides the performance of the algorithm because of 

the stochastic nature of the population-based optimization algorithms. The use of K-mean 

operator and parallel asynchronous process in MOHKGA is unique and proved to be very 

effective in improving the performance.  As discussed in Chapter 3, the introduction of K-Mean 

operators and parallel asynchronous genetic operators can help the genetic algorithm to converge 

and reach the stable condition faster.   

The K-mean operator utilizes the better populations and uses them to recreate (selection, 

mutation and crossover) locally for better populations until the process converge and meet 
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termination criterion. The K-mean operator during the selection steps also alleviates the local 

optimal problem as it increases the diversity of populations by re-grouping and selecting the 

representative candidates from cluster centroids as shown in Chapter 3. The framework can do a 

global search by maintaining a diverse population to reach global optimality and discovering 

potentially good regions of interest. The expert module can enhance the converge process by 

manual intervention and through interactive inputs in the expert module, it can achieve a more 

efficient search in the more specialized local search algorithm. 

Data structure, software design and programming skills in the implementation of genetic 

algorithm also have important impacts on performance. The asynchronous parallel processes on 

selection, crossover and mutations can help the algorithm to find the true Pareto-optimal front 

and converge to the global optimality quickly.   In the case study of mobile shopping 

applications, the importance of algorithm performance was demonstrated as the response time 

from the framework is critical to users.  

4.2 Pareto-optimal Sets Visualization 

Visual representation of multi-dimension Pareto-optimal front is one of the key functions 

that MOHKGA provides. Visualization of the generates Pareto-optimal fronts is important in 

decision-making process. It enables decision makers to quickly examine large amounts of data, 

understand the Pareto-optimal results, expose trends and issues efficiently, exchange ideas with 

key players, and make an informed decision. 

The proposed MOHKGA framework has a built-in expert module with visualization 

feature. The two case studies of MOHKGA show the importance of the visualization of Pareto-

optimal results for decision makers. There are few online visualization modules like the one 
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described in this research existing in the previous MOGAs, at the time of this writing. Like most 

research that is used for solving practical real-world problems, MOHKGA has this salient feature 

of providing the Pareto-optimal set in a user-friendly format to decision makers in a timely and 

efficient manner, instead of using separate tools to interpret and visualize the results. In the case 

study of blood bank inventory management, the importance of Pareto-optimal sets visualization 

is demonstrated. Decision makers can understand and visualize the impacts under various 

scenarios through the visualization of Pareto-optimal sets different, and hence take the trade-offs 

among the optional solutions  

4.3 Expert Module 

Decision makers are subject matter experts. In order to solve real-world multi-objective 

optimization problems, the integration of the decision makers’ knowledge, expertise and 

preferences in the framework can the help setup the objectives to be optimized accurately with 

initial and boundary conditions. With the expert module, decision maker can choose suitable 

operators and problem-specific information with preferences, including the termination 

conditions, as demonstrated in the two case studies.  The decision maker has to deal with vast 

data, number of alternatives and different decision situations before taking any decision. At the 

same time, the rapid diversification in industries is also adding to the complexity to the search 

space. Therefore, expert module can take critical information such as boundary constrains and 

preferences into consideration in order to determine the best course of action.  

4.4 Interactivity 

Genetic algorithms have inherent randomness during the evolutionary process because 

probability model is used in every genetic operator. Use of probability model in selection, 
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crossover and mutation is necessary to generate even spread and distribution of populations, and 

maintain the diversity. The randomness in some extreme case can cause slow convergence of the 

algorithm, and delayed output of the Pareto-optimal results for real-time decision making. The 

interactivity in the expert module can address the issue with users’ manual intervention by the 

web-based interactive tool with user-friendly graphic user interface in MOHKGA. The 

interactive feature of MOHKGA frameworks also provides a practical tool for decision makers 

to use their domain subject expertise on the specific problems for the initial framework setup, 

stop the program execution without waiting for complete convergence, examine the alternative 

solutions from MOHKGA based on different scenarios, and take trade-offs among the solutions, 

in accordance with their domain subject matter expertise.  

The interactivity also enables decision makers to include problem specific information in 

in creating the initial population to speed up the initialization process as a customized 

initialization can get to a faster convergence.  

4.5 MOHKGA Design and Applications 

MOHKGA is a complete framework that was designed with innovation methods and 

operator, developed and implemented with n-tier architecture design pattern. Besides the 

innovative design of algorithms, the implementation and development that make the design into 

a complete working framework are challenging because of the high complexity of algorithm and 

inherent parallel nature of the search processes. Data structures, design patterns, threads 

management and programming skills are necessary to complete the framework.  

At the time of this writing, the use of the mobile device is becoming a part of people’s 

everyday lives as discussed in case study two. The development of mobile application to receive 
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and interpret the Pareto-optimal sets from MOHKGA is challenging because of the 

heterogeneous major mobile operating systems, iOS, Android and Windows UWP. 

MOHKGA is less susceptible to the shape or continuity of the search space. It can deal 

with non-linear, discontinuous or concave Pareto fronts, which are problematic and real concerns 

for classical approaches to deal with. MOHKGA has some advantages over other MOGAs in the 

literature. It has the aforementioned innovative design and implementation.  In clustering 

application, MOHKGA doesn’t require the estimated number of clusters as input parameters, and 

it can find the optimal number of clustering in the Pareto-optimal sets. This is very important in 

the areas of data mining and knowledge discovery as no prior information are often not known 

about the datasets to be studies. As demonstrated in the experimental datasets tests, the optimal 

number of clusters are generated as shown in the Pareto-optimal set. The results are consistent 

with other well-known MOGAs.   

4.6 Future works 

With the recent advancement of computing technology, large data sets (also known as big 

data) processing are made much easier and faster with the help of cloud computing [206, 207, 

208]. Genetic algorithm is computationally expensive. Cloud computing offers the scalable, 

dynamic and elastic resources management.  The power and scalability that cloud computing 

offers can improve the performance of genetic programming, especially when response time is a 

critical factor in certain real-world multi-objective optimization problems. Therefore, the use of 

cloud computing for MOGAs can be an interesting new direction of research. Moreover, cloud-

based computer also provides the ease of access and better cost-effective management.  Figure. 

3.21 shows the architectural design of using MOHKGA in cloud computing.  
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An outlier identification module can also be added in MOHKGA in the selection operator. 

An outlier is a piece of data which falls far outside the expected variation, i.e., an observation 

that appears to deviate significantly from others. However, outliers can reveal hidden knowledge 

or useful intelligence in the datasets, especially the extreme conditions, for example; events such 

as epidemics that might have an effect on red cells supply in case study one, the unexpected 

events can lead to the extreme conditions of the blood supply and consumption and extremely 

unbalanced inventories. How to predict and manage the extreme cases is an important part of 

decision making scope.  

In MOHKGA, the dominated individuals are discarded and removed from the rest of the 

generations as they are usually viewed as nuisance. The dominated individuals which are 

discarded can be added to a separate storage for future research as they are extreme occurrences.  

One suggestion is that outliers can be collected and assigned into separate populations sets 

during the evolutionary processes, the extremely inferior dominated solution sets can be reserved 

for future outlier analyses after the Pareto-optimal solutions set are obtained. 
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Chapter Five: CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

 

In this research, an innovative hybrid framework MOHKGA was developed to find the 

Pareto-optimal sets on multi-objective optimization search space. The framework presented and 

analyzed in this research is unique. It has the combination of local K-mean search algorithm with 

K-mean operator, and expert module with input to integrated user or decision makers’ preference, 

and visualization of the Pareto-optimal fronts in user friends format.  

MOHKGA can be theoretically applied in any knowledge domain of multiple objectives 

optimization that is subject to resource constraints and decision problems. We have demonstrated 

its ability to maintain a diverse population and converge to the true Pareto optimal front, 

applicability and effectiveness by extensive testing and analysis. We have used datasets from a 

variety of domains ranging from very general to very specific like gene expression data. We have 

also shown how the developed framework may benefit number of real-life domains. Two vital 

applications have been described. Blood management and utilization is a very important and 

challenging application with direct social impact. It helps in better serving different kinds of 

patients in need for blood transfusion. Shop and save is the other interesting application 

described in this thesis where we showed how we could help people make informed decision in 

terms of shopping based on their preferences through the suggested matching plan.  MOHKGA 

provide a tool for faster decision making through the high performance and parallel computing, 

identification of trends and understanding of impacts of different decision actions. The built-in 

data visualization module presents the Pareto-optimal solutions in the form of charts and graphs 

in an easy to understand and summarized way. 
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MOHKGA can help decision maker to incorporate environmental, organizational, and 

managerial consideration into the model through objectives, preferences and priorities, and 

taking trade-offs of the conflicting objectives from the Pareto-optimal solutions, because a gain 

in one objective form one point happens only by sacrificing in the other objective. The trade-off 

property between the Pareto-optimal solutions provides recommendations to decision makers, 

who can pick the more applicable or optimal solution by taking considerations of all related 

factors and the knowledge of expertise. 

MOHKGA is a complete tool that can be applied directly to solve complex multi-

objective optimization problems. However, multi-objective optimization problems can be solved 

from different viewpoints and goals, thus, there exist different solutions and algorithms, which 

may be more suitable for other multi-objective optimization problems. For example, the goal 

may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in 

satisfying the different objectives, and/or finding a single solution that satisfies the subjective 

preferences of decision makers.  

We are currently investigating other applications of the proposed approach in domains 

like resource management in countries who are suffering economic crisis and seeking for the 

better allocation of resources. Helping such countries in better managing their resources will be a 

great benefit to them, their allies and partners. We are also investigating whether other objectives 

would be important to consider in general or should we concentrate on domain specific 

objectives for more focused outcome. The latter may require tuning the approach to fit better 

each domain after deciding on and integrating its domain specific objectives.
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