
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2014-10-08

Lattice Isometries and Short Vector Enumeration

Meissen, Rebecca

Meissen, R. (2014). Lattice Isometries and Short Vector Enumeration (Master's thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/26732

http://hdl.handle.net/11023/1924

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Lattice Isometries and Short Vector Enumeration

by

Rebecca Meissen

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

September, 2014

c© Rebecca Meissen 2014

Abstract

We present an implementation in Sage and overview of several algorithms for integer lattices.

The first builds an isometry between lattices by considering partial maps. It also determines

whether two lattices are nonisometric by exhaustively searching all possible maps. Using

this algorithm, we give a method for computing the automorphism group of a lattice using

strong generating sets. These both make use of the set of small vectors of a lattice, which

can be enumerated using the last algorithm we present. We discuss the use of determining

isometry classes as part of computing the Smith-Minkowski-Siegel mass formula.

ii

Acknowledgements

I would like to thank my supervisor, Mark Bauer, for his guidance and support. Thanks to

my committee members Clifton Cunningham, beating me to the punchline every time, and

Mike Jacobson, a friendly perspective from computer science. Matthew Greenberg provided

me with the original topic for my thesis, for which I am very grateful. I would also like to

thank my many friends, both from the University of Calgary and from elsewhere, without

whom I would surely have lost my mind.

iii

Table of Contents

Abstract . ii
Acknowledgements . iii
Table of Contents . iv
List of Tables . v
List of Algorithms . vi
1 Introduction . 1
2 Background . 3
2.1 Matrix Decomposition . 8

2.1.1 Hermite Normal Form . 8
2.1.2 Cholesky Decomposition . 8

2.2 Hard Problems . 10
2.2.1 LLL Reduction . 11

3 Isometry Finding . 12
3.0.2 Definitions . 12

3.1 Preprocessing . 13
3.1.1 Fingerprint . 15
3.1.2 Vector Sums . 23

3.2 Finding an Isometry . 27
3.2.1 The Search . 28

3.3 Automorphism Group . 34
3.4 Tests . 36
4 Enumeration . 38
4.1 Generating Small Vectors . 38

4.1.1 Overview . 38
4.2 Quadratic Completion . 39
4.3 Bounding xi . 42

4.3.1 Algorithm . 44
4.3.2 Improvements . 47
4.3.3 Runtime . 47

5 Smith-Minkowski-Siegel Mass Formula . 49
5.1 Lower Bound . 51
5.2 Connections . 53
6 Conclusion . 55
Bibliography . 56
A First Appendix . 58

iv

List of Tables

3.1 Fingerprint Runtime . 23
3.2 Isometry Finding Runtime . 33
3.3 Automorphism Group Runtime . 36

4.1 Enumeration Runtime . 48

v

List of Algorithms

1 Number Of Continuations . 18
2 Fingerprint . 19
3 Lookup Table Of Vector Sums . 25
4 Vector Sums . 26
5 Test A Continuation . 29
6 Stabilizer Candidates . 30
7 Backtrack Search . 31
8 Find An Isometry . 33
9 Automorphism Group . 35
10 Generate Quadratic Completion . 40
11 Enumerate Small Vectors . 46

vi

Chapter 1

Introduction

Lattices arose as a mathematical curiosity out of problems involving integer solutions to

single and multivariate polynomials. These date back as early as the 18th century, when

Joseph-Louis Lagrange considered lattice basis reductions in two dimensions [16]. Shortly

after, Carl Friedrich Gauss made progress on what came to be known as Gauss’ Circle

Problem [11] which asks for the number of points inside a ball centered at the origin which

satisfy a specific quadratic form. Although many other contributions to the field were made,

it was not until 1910 that Minkowski published the seminal Geometry of Numbers [19], after

which many subsequent texts followed suit to introduce the field in a more approachable

manner.

Then in 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász published a highly

efficient algorithm [17] to reduce lattice bases, known as LLL reduction. This method found

applications in many computational areas, notably in attacks on cryptographic systems.

Now in the late 20th and early 21st centuries, lattices are being used to both design and

attack cryptographic systems. Their structures also translate to problems in the physical

sciences, such as crystallography and material science.

Many computational problems and algorithms call for the use of a collection of short

vectors, including the Shortest Vector Problem. In 1985 mathematicians Fincke and Pohst

published a method [10] of generating all lattice elements whose norm was less than a given

constant. Independently, Kannan published a similar method [14], which is now known as

Kannan-Fincke-Pohst enumeration (or KFP enumeration for short). Shortly after, Pohst

worked with Plesken to develop methods [22] to construct lattices whose shortest vectors

adhered to a given minimum. In 1997, Plesken and Souvignier published an algorithm [23]

1

for computing isometries between lattices which made use of these short vectors.

Being able to test whether or not two lattices are isometric allows one to construct

isometry classes of lattices. With the help of some other tools, we can even verify that we

are not missing any isometry classes, which we will discuss in Chapter 5. This is useful in

the study of modular forms, which can be viewed as functions on these isometry classes.

Currently such algorithms are available in proprietary software such as Magma [18].

Sage [24] is an open-source software designed with algebraic and number theoretic problems

in mind. The goal of this project is to add functionality to Sage by contributing algo-

rithms which enumerate short vectors, find isometries, and compute automorphism groups

of lattices.

Some background information on lattices is presented in Chapter 2. This information is

used in Chapter 3, which covers the main algorithm for finding isometries between lattices.

It also illustrates how to use the methods described for finding an isometry to also compute

the automorphism group of a lattice. A necessary component of these is the enumeration of

the short vectors within a lattice. An algorithm to compute these is presented in Chapter

4. Lastly, Chapter 5 shows how to apply these computations to the Smith-Minkowski-Siegel

Mass Formula to verify the presence of all isometry classes within a collection of lattices.

Each algorithm is broken into pieces which may be run and tested independently. Pseu-

docode is given for each piece. All code is written in Sage and can be found in Appendix

A.

2

Chapter 2

Background

A lattice can be thought of in several different ways, some of which will be more useful to

us than others. One visualization might be the regularly spaced points on an n-dimensional

grid. We might also describe a lattice as the integral span of a set of basis vectors. A formal

definition is given below.

Definition 1 A lattice L is a discrete subgroup of a vector space formed by the integer

linear combination of basis vectors {b1, . . . ,bn}, which span the vector space.

We will be using lattices specifically in Rn with integer coefficients.

L =

{

n
∑

i=1

xibi | xi ∈ Z

}

Definition 2 If we collect the basis vectors into the columns of a matrix B, we can express

a lattice element v as

v = Bx

for some x ∈ Zn. We call v the embedded vector and x the coordinate vector.

Example 3 As an example, take the lattice formed by the basis {[2, 1, 0], [0, 1, 0], [0, 3, 3]}.













2 0 0

1 1 3

0 0 3

























1

0

1













=













2

4

3













Here [1, 0, 1] is a coordinate vector, and [2, 4, 3] is the associated embedded vector.

Definition 4 A bilinear form on a lattice L is a function Φ: L × L → Z satisfying

linearity in each input variable.

3

• Φ(u,v +w) = Φ(u,v) + Φ(u,w)

• Φ(u+ v,w) = Φ(u,w) + Φ(v,w)

• Φ(au,w) = aΦ(u,w)

• Φ(u, aw) = aΦ(u,w)

for all u,v, and w in L and any scalar a.

In particular, given a basis we can define a specific bilinear form Φ on our lattice L as

part of its structure. In the case of integral lattices, we have Φ: L × L → Z. This form

describes a kind of distance between elements x and y of the lattice defined by Φ(x,y).

Definition 5 A quadratic form is a homogeneous polynomial of degree 2. A form Q is

called positive definite if Q(x) is strictly positive for any nonzero x.

A lattice is called positive definite if its quadratic form is positive definite. Similarly,

a lattice is called even (or sometimes type II) if Q(x) is always an even number. A lattice

is called odd (or type I) if it is not even.

The bilinear form has an associated quadratic form Q : L → Z, which is simply defined

by Q(x) = Φ(x,x). If the lattice L comes equipped with a bilinear form Φ, we will denote

it as (L,Φ).

The bilinear forms (and their associated quadratic forms) that we will be using will come

from the usual inner product on vectors in Rn, also known as the dot product, u · v for

embedded vectors, and multiplication with the basis matrix for coordinate vectors. That is,

if u = Bx and v = By for a basis B, we have Φ(x,y) = xTBTBy.

Example 6 Continuing from Example 3, we can define a bilinear form on the elements of

4

our lattice. Consider two coordinate vectors x = [x1, x2, x3] and y = [y1, y2, y3].

ϕ(x,y) = xT













5 1 3

1 1 3

3 3 18













y

= y1(5x1 + x2 + 3x3) + y2(x1 + x2 + 3x3) + y3(3x1 + 3x2 + 18x3)

Note that this is determined from the basis matrix B, so that the form is described by

BTB. The result is the inner product of the two embedded vectors corresponding to our

coordinate vectors.

The associated quadratic form is defined by the bilinear form on one element. For exam-

ple, on x we have:

ϕ(x) = 5x2
1 + x2

2 + 18x2
3 + 2x1x2 + 6x1x3 + 6x2x3

This sends the coordinate vector [1, 0, 1] to 29, which is result of the inner product of [2, 4, 3]

with itself.

This quadratic form specified by the basis is considered a norm on the lattice elements.

If v is an embedded vector of the lattice L, its norm is typically given by this quadratic form

defined on L.

Definition 7 If v = Bx, the norm of the embedded vector v is defined by the quadratic

form. We will be using the inner product v · v. The norm of the coordinate vector x is then

xTBTBx since

vTv = (Bx)T (Bx) = xTBTBx

Notice that this is also xTAx, where BTB = A. Here A is an example of the Gram

matrix of the lattice.

Definition 8 The Gram matrix of a lattice with basis B with respect to a bilinear form

Φ is defined to be the matrix A with entries aij = Φ(bi,bj).

5

Example 9 Using the bilinear form from Example 6, our Gram matrix would be

BTB =













5 1 3

1 1 3

3 3 18













since our bilinear form was defined as the inner product of the embedded vectors. This

matrix describes the form on the coordinate vectors.

We also saw that the associated quadratic form evaluated on the coordinate vector [1, 0, 1]

is 29. This is the norm of the coordinate vector. It is also the norm of the embedded vector

associated to the coordinate vector [1, 0, 1], which is [2, 4, 3].

The bilinear form on L can be written with respect to either embedded or coordinate

vectors. Using another basis to express the lattice elements is possible, and sometimes

preferable. But the Gram matrix is specific to the bilinear form on the lattice, and should

not change when operating on embedded vectors. If it is operating on coordinate vectors,

the change of basis must be accounted for.

We can even define a lattice without specifying a basis at all, although a basis can be

obtained once a description is given. In addition, although we use the usual inner product

for our bilinear forms, there are many other kinds. One classification of such forms is the

Hermitian form. Although our lattices are in Rn, the general form of this example is in Cn.

Definition 10 A Hermitian form on a vector space over C is a map f : V × V → C

satisfying:

1. f(au+ bv,w) = af(u,w) + bf(v,w)

2. f(u, av + bw) = af(u,v) + bf(u,w)

3. f(u,w) = f(w,u)

for u,v,w ∈ V and a, b ∈ C.

6

This definition yields an example of a bilinear form characterized by a matrix.

Definition 11 A matrix in Hermite Normal Form is an upper triangular matrix with

positive entries along the diagonal, and smaller nonnegative entries above each diagonal

entry. Specifically it must satisfy the following properties:

• any rows of all zeros are at the bottom

• each pivot (leading nonzero) entry of a row is positive

• below each pivot entry are only zeros

• above each pivot entry are smaller, nonnegative values

Example 12 A Hermitian form on Cn can be given by a matrix H in Hermite Normal

Form.

f(x,y) = xTHy =
∑

i

∑

j

hijxiȳj

This defines a bilinear form with the vectors x and y as input. The coefficients of the form

are determined by the entries hij in the matrix H when the expression above is expanded.

The matrix associated with the typical inner product x · y is simply the identity matrix.

A bilinear form on a lattice provides a sense of structure. Maps between lattices may or

may not preserve this structure. That is, for a map ϕ : (L,Φ) → (J ,Ψ), it is not always the

case that Φ(x,y) will yield the same result as Ψ(ϕ(x), ϕ(y)).

Definition 13 An isometry is a Z-linear bijection ϕ between two lattices (L,Φ) and (J ,Ψ)

that respects the bilinear form. That is, Φ(x,y) = Ψ(ϕ(x), ϕ(y)) for all x and y in L.

If such a map exists, the two lattices are said to be isometric.

An automorphism of a lattice (L,Φ) must preserve its bilinear form. We can try to

understand the symmetry of a lattice through its automorphism group, which we denote

Aut(L). The automorphism group of a lattice is the set of all automorphisms ϕ : (L,Φ) →

(L,Φ) with composition as the group action. This group is made up of isometries from the

lattice to itself.

7

2.1 Matrix Decomposition

Many lattice methods deal with specific matrix decompositions or forms. These are useful

because of the breadth of algorithms already available to work with matrices. In particular,

we have already mentioned Hermite Normal Form in Example 12. This type of form is also

used in the isometry finding algorithm in Chapter 3.

2.1.1 Hermite Normal Form

We have already seen the Hermite Normal Form from Definition 14. We will use it in our

isometry finding algorithm to compare sets of vectors by comparing the Hermite Normal

Form of matrices formed by these vectors.

For an integer-valued matrix A, the associated matrix H in Hermite Normal Form can

be obtained by a series of row reductions represented by unimodular matrices. The matrix

H is the unique matrix that can be obtained through this method. It can be helpful to keep

the transformation matrix X after computing H = XA.

Since the Hermite Normal Form is calculated with respect to rows, if basis elements are

represented as columns simply transpose the matrix A first to make use of algorithms which

find the Hermite Normal Form. In particular, we will later be comparing the reduced form

of matrices constructed from sums of vectors. Since the reduced matrix H is unique, we can

expect the reduction to yield the same matrix H for suitably similar matrices which differ

by only a unimodular matrix.

2.1.2 Cholesky Decomposition

To enumerate the short vectors of a lattice, we make use of the Cholesky Decomposition to

deconstruct the quadratic form.

Definition 14 The Cholesky Decomposition of a symmetric, positive definite matrix A

is a lower triangular matrix L with positive entries along the diagonal, and smaller nonneg-

8

ative entries below each diagonal entry. Specifically it must satisfy the following properties:

• any rows of all zeros are at the top

• each pivot (leading nonzero) entry of a row is positive

• above each pivot entry are only zeros

• below each pivot entry are smaller, nonnegative values

• A = LLT

Similarly, we can express this as A = RTR for an upper triangular matrix R = LT , which

we will use in Chapter 4.

In order to make use of the Cholesky Decomposition, we must restrict ourselves to certain

types of lattices. We require that the matrix A representing our bilinear form be symmetric

and positive definite, since the Cholesky Decomposition is only guaranteed to exist for these

types of matrices.

It is possible to apply these methods to bilinear forms in general. However, since we only

consider the inner product as our bilinear form, we can use the basis to express the form on

coordinate vectors with the Gram matrix. Using the associated basis B for our lattice, the

Gram matrix is A = BTB, so it is indeed symmetric. To be positive definite, the associated

quadratic form must be positive definite. That is, for a nonzero vector x, we must have

xTAx positive as well. Here L does not necessarily have to be equal to the original matrix

B, but rather BTB = LLT .

9

The process for finding the upper Cholesky Decomposition matrix R with entries rij from

a matrix A with entries aij is done one row at a time using the following formulas

rii =

√

√

√

√aii −
i−1
∑

j=1

r2ij

rij =
1

rjj

(

aij −

j−1
∑

k=1

rikrjk

)

2.2 Hard Problems

There are several computationally hard problems associated with lattices. These mainly

involve finding the smallest elements of the lattice. The symmetry of a lattice might imply

that these problems are easy, whereas in reality they are quite difficult. Although a lattice

might be easy to express in terms of its basis vectors, there are no known algorithms which

solve the following problems in polynomial time. This refers to the number of operations,

such as multiplications or comparisons, performed as a function of the size of the input,

which is typically a basis of a lattice. We measure the size of the basis by its dimension. So

if our input is a basis of dimension n, a polynomial time algorithm might perform n2 + n

operations. An algorithm which runs in polynomial time will perform a number of operations

that can be expressed as a polynomial of n. Current known algorithms which attempt to

solve these problems, however, perform an exponential number of operations in this regard.

An algorithm which runs in exponential time might perform 2n operations.

Given a lattice L and an arbitrary point x, both in Rn, what is the closest element of

the lattice to x? That is, find

ymin = min
y∈L

(||x− y||)

Note that here distance is typically given by the typical Euclidean norm in Rn, as that

is the original formulation of the problem. This holds true for the quadratic forms we will

10

evaluate, however. This problem is known as the Closest Vector Problem, often abbreviated

CVP. Another problem, called the Shortest Vector Problem, is phrased similarly.

Given a lattice L in Rn, find the shortest nonzero lattice element. That is, find

xmin = min
x∈L

(||x− 0||)

where x is not the zero vector.

This is really a variant on the Closest Vector Problem, with the origin standing in for the

arbitrary point in Rn. It stands to reason that any solution to the Closest Vector Problem

will be a valid solution to the Shortest Vector Problem as well. A solution to the Shortest

Vector Problem may also allow us to find a solution of the Closest Vector Problem by using

our short vector to define a small space to search for close vectors. Though these problems

were originally formulated for lattices in Rn under the Euclidean metric, they apply to other

lattices as well. Later in Chapter 4 we will explore an algorithm which enumerates all of the

shortest vectors of a lattice with respect to its inherent quadratic form.

2.2.1 LLL Reduction

These problems typically involve many computations involving the vectors of the lattice.

Computationally speaking, it is usually better to have a basis comprised of small, orthogonal

vectors. This keeps numbers from getting too large during routine computations, such as

sums and products of the entries in our vectors, and lessens the need for lots of memory.

The Lenstra-Lenstra-Lovász basis reduction algorithm (often abbreviated as LLL reduction)

provides an orthogonal (but not orthonormal) basis whose vectors’ norms are reasonably

bounded. Furthermore, it does this in polynomial time.

Because of its efficiency, the LLL algorithm is often used to reduce otherwise large bases

to smaller, more manageable bases. An outline and analysis can be found in [5].

11

Chapter 3

Isometry Finding

The definitions from Chapter 2 will guide the exploration in this chapter. Specifically we

will be using integer lattices in Rn equipped with a bilinear form which is specified with a

basis. Recall from Definition 4 that a bilinear form Φ: L × L → Z on an integral lattice L

also specifies a quadratic form Q : L → Z via Q(x) = Φ(x,x). As we search for an isometry,

we must check that these forms are preserved.

What follows is a framework for computing an isometry between two lattices (L,Φ) and

(J ,Ψ), each equipped with its own bilinear form. From there, we give a method for comput-

ing the automorphism group of a lattice (L,Φ) using strong generating sets. These methods

rely heavily on the use of a set of relatively small vectors, which we will denote S. Enumerat-

ing these short vectors is the primary topic of Chapter 4. This chapter explores the methods

of [23] for computing lattice isometries and automorphisms. For future consideration, [1] is

listed as a wishlist of future functionality for Sage.

Runtimes are given for the major algorithms. These times reflect computations on integer

lattices using a Pentium dual-core 2.20GHz processor with 3GB of 667mhz DDR2 RAM.

3.0.2 Definitions

Given a set of basis vectors collected into a matrix B = (b1, · · · ,bn), we regard the lattice

L as the set of all integer linear combinations of the basis vectors

L =

{

n
∑

i=1

xibi : xi ∈ Z

}

= { Bx : x ∈ Zn }

equipped with a (positive definite) bilinear form Φ: L×L → Z, and a Gram matrix F with

respect to Φ. That is, F is made up of the pairwise inner products of the basis vectors,

Fij = Φ(bi,bj). This inner product is given by the dot product of the two embedded lattice

12

elements. The norm of a lattice element x is defined to be the inner product Φ(x,x). If we

regard the basis elements as columns of a matrix, we can see that the Gram matrix F is

BTB. Alternatively, since the elements of the lattice can be represented by their coordinate

vectors, we can define the inner product in terms of the basis. That is, if u = Bx and

v = By are elements of the lattice, we can define their inner product by

Φ(u,v) = u · v = xTBTBy

For basis elements bi and bj we would then have

Φ(bi,bj) = bi · bj = eTi B
TBej = eTi Fej = Fij

Here x and y are known as the coordinate vectors of u and v with respect to the basis

B. Vectors written will be coordinate vectors unless otherwise specified, and evaluated with

respect to a chosen ordered basis. Although we can find multiple bases that yield the same

lattice, we assume that one has been fixed initially. When searching for an isometry, we

will attempt to construct alternative bases from a supply of candidate vectors. If found, our

isometry will map the basis B to a new basis D which preserves the bilinear form.

3.1 Preprocessing

A vector is considered short if its norm is less than a prescribed maximum. Usually this

maximum is given by the norm of the largest basis vector, which also appears in the Gram

matrix as max1≤i≤n(Fii). We define the set of small vectors in L more formally as

S =

{

v ∈ L : Φ(v,v) ≤ max
1≤i≤n

(Fii)

}

This set of small vectors is built up in Chapter 4 by first deconstructing the bilinear form

Φ and recursively searching for vectors with small inner products. Notice that this set will

be finite, since our lattices are finite-dimensional and our coordinate vectors can take on only

integer values.

13

To define an isometry between lattices, it suffices to define a good image of the basis

vectors. From there, the image of an arbitrary element will be defined, as each element is

a linear combination of the basis vectors. If we consider two lattice elements, Bx and By,

their inner product is defined by

xTBTBy = (Bx) · (By) =

(

n
∑

i=1

xibi

)

·

(

n
∑

j=1

yjbj

)

=
n
∑

i=1

n
∑

j=1

xiyjbi · bj

Say our map sends each basis vector bi to a new vector di, and that the inner product is

preserved on these basis vectors. That is, bi ·bj = di ·dj . Then the above can be equivalently

written as
n
∑

i=1

n
∑

j=1

xiyjdi · dj = xTDTDy

which is the inner product of x and y with respect to a second lattice. The columns of the

matrix D are the basis vectors of this second lattice.

Since our goal is to build up a complete basis (v1, · · · ,vn) from our candidate vectors in

S, we choose a potential image for each basis vector under the isometry and test the partial

image (v1, · · · ,vk) using the bilinear form to see if the inner products have been preserved.

Since we are building an isometry from one lattice to another, we will be taking our image

vectors from the set of small vectors within the second lattice. If the inner products are

preserved, we call this a k-partial automorphism, though it may be part of the construction

of an isometry and not an automorphism.

Definition 15 A k-partial automorphism is a partial map (v1, · · · ,vk) which sends bi

to vi for i ≤ k, satisfying Φ(vi,vj) = Fij for all i, j ≤ k.

The next step is to choose vk+1 from our small vectors within our second lattice and

check the additional inner products.

It is important to note that not all k-partial automorphisms can be extended to (k+ 1)-

partial automorphisms. However, [22] claims that we can use this fact to our advantage.

The number of possible extensions will be preserved under automorphisms. We will store

14

the number of possible extensions in a matrix, called the fingerprint, and use it to rule out

partial automorphisms that are not likely to extend to full automorphisms.

3.1.1 Fingerprint

The fingerprint stores information about extending k-partial automorphisms to (k+1)-partial

automorphisms. To compute each entry fki, we count the number of vectors from S that

have the same inner product as the i-th basis vector with a subset of the other basis vectors.

Definition 16 The fingerprint is an upper-triangular matrix denoted by f , defined by

fki = |{v ∈ S : Φ(v,v) = Φ(bi,bi) and

Φ(v,bj) = Φ(bi,bj) for j = 1, . . . k − 1}|

It will not be used for any matrix algebra. However, the matrix structure is convenient for

storing values. An entry fki stores the number of candidate vectors that can act as the image

of the basis vector bi with respect to the first k − 1 basis vectors. Each entry stores the

calculated values for the number of extensions of a k-partial automorphism of (L,Φ) to a

(k + 1)-partial automorphism. To test the number of these extensions, we let our k-partial

automorphism simply be the first k basis vectors of (L,Φ). Recall that the i-th vector in

our k-partial automorphism represents the image of the i-th basis vector under our desired

isometry.

For example, consider the partial map on a 4-dimensional lattice given by

(b1,b2,b3) → (v1,v2,v3)

This map sends b1 to v1, b2 to v2, and b3 to v3. However, it does not specify an image

for the fourth basis vector b4. In fact, there are likely many choices as to how to complete

this partial map by assigning an image to the last basis vector. If our partial map satisfies

15

the conditions of being a 3-partial automorphism, however, we cannot guarantee that the

complete map (after choosing an image for b4) will be a 4-partial automorphism.

At each stage we check to see whether our partial map is a k-partial automorphism. For

(v1,v2, . . . ,vk), we must check that Φ(vi,vj) = Φ(bi,bj), which is the same as checking that

Φ(vi,vj) = Fij for values of i and j up to k. After verifying that a partial map is indeed a

k-partial automorphism, we take a candidate vector v from S and test it as an extension to

a (k + 1)-partial automorphism. That is, we choose a candidate vector to be the image of

the (k + 1)-th basis vector and check its inner products with the other vectors. This means

that we must verify that Φ(vi,v) = Φ(bi,bk+1) for i = 1, . . . , k.

If the inner products are preserved, then we say that there is at least one extension of

a k-partial automorphism to a (k + 1)-partial automorphism. Out of all the vectors in S,

some may work as a viable candidate to extend the partial map, and some may not. We are

interested in the number of vectors which will work as an image for bk+1 with the partial map

(b1,v2, . . . ,bk). By testing every candidate vector in S, we will know how many different

extensions are possible. The number of such extensions is stored in the fingerprint.

For a lattice of rank 4, for example, the entry f23 would count small vectors v with the

same norm as b3 and matching inner products with b1.

Φ(v,v) = Φ(b3,b3) = F33

Φ(v,b1) = Φ(b3,b1) = F31

The entry f34 would count candidate vectors whose norm matched the basis vector b4

and whose inner products matched with b1, and b2. The entry f24 is similar to the entry

f34, except that it does not check for a correct inner product with b2. Since f is an upper-

triangular matrix, entries below the diagonal will be 0. These entries correspond to basis

vectors which we have already analyzed.

A different ordering of the basis vectors will yield a different fingerprint. Some orderings

are better than others, in that they may lower computation time later when we can rule out

16

partial automorphisms faster. If there is a vector which only has a few possible images under

any isometry, it behooves us to try to replace that vector first. A good ordering would check

such vectors before other, less restrictive vectors. An optimal ordering cannot necessarily be

known before computation, but we can try to optimize as we go. To optimize our ordering,

we may reorder our basis vectors as we compute the fingerprint. After computing the k-th

row of the fingerprint, check to see if fkk is the minimal nonzero entry in the row. If it

is, we do nothing. If it is not, we swap the k-th column of the fingerprint with whichever

column contains the minimal nonzero entry in that row. We will swap the corresponding

basis vectors, as well as the entries in any coordinate vectors in S.

Say we computed the first row of a fingerprint to be [4, 5, 2]. This tells us that there are

four small vectors whose norm matches b1, five small vectors whose norm matches b2, and

only two small vectors whose norm matches b3. Clearly then b3 will be the most restrictive

choice. If we start our search with b3 instead of b1, there will be fewer possible partial maps

to verify.

Alternatively, we can keep a running list of indices of the minimal nonzero entries in each

row, and use that to compute the fingerprint. Instead of assigning zeros to columns in order

from 1 to n, we assign them in order of these minimal entries. This results in a matrix which

is not upper triangular, but keeps us from having to reorder our vectors.

In [23], fki is defined to be 0 when i ∈ I, where I is a set of indices denoting the smallest

entry in each row. Using this method, we would try to find an image for b3 first then, as it

only has two possible replacements.

The smallest entry in our example row is 2, and so the index 3 would be added to I.

This tells us to find an image for b3 first, before proceeding to find images for the other

basis vectors. The remaining entries of the third column of the fingerprint would be 0, since

we will not be changing the image of b3 unless we exhaustively rule out all complete maps

which use our current candidate. If we cannot complete our map to a full isometry, only

17

then will we backtrack and change our choice for the image of b3.

We use the values in the fingerprint to rule out k-partial automorphisms quickly. Testing

a k-partial automorphism amounts to testing norms and inner products, as well as the

number of continuations. Given a k-partial automorphism, we select small vectors from S

and test them as continuations to a (k + 1)-partial automorphism. If the number we find is

different from the corresponding entry in the fingerprint, we know that our current k-partial

automorphism will not work. We then throw out the last vector we had chosen from the

previous step and try to extend a different k-partial automorphism.

Here we have an overview of how to compute the number of continuations for a k-partial

automorphism, as well as an outline of how to compute the fingerprint. Below these is an

example, which can be used to test the algorithms.

Algorithm 1 Number Of Continuations

1: procedure numCont(B,F, S, k)

Input: basis B, Gram matrix F , small vectors S, index k

Output: number of continuations count

2: for v ∈ S

3: if Φ(v,v) = Fkk

4: if Φ(v,bj) = Fkj ∀j = 1, . . . , k − 1

5: count++

6: return count

18

Algorithm 2 Fingerprint

1: procedure fingerprint(B,F, S)

Input: basis B, Gram matrix F , small vectors S

Output: fingerprint f

2: for k = 1 . . . n . Compute each row at a time

3: for i = 1 . . . n

4: if i ≥ k

5: fki = numCont(B,F, S, k) . Count replacements for bk

6: else

7: fki = 0

8: return f

Example 17 Consider the basis B =







1 0

0 2






. The largest basis element is [0, 2]T , whose

norm is 4. The (coordinate) vectors in the lattice spanned by B with norm less than 4 are:

S = {[1, 0], [−1, 0], [2, 0], [−2, 0], [0, 1], [0,−1], [0, 0]}

Note that these are the coordinate vectors associated to the lattice elements. To see the

element as it would appear in R2, multiply the basis by the coordinate vector. For example

the coordinate vector [0,−1] is associated with the vector B[0,−1]T = [0,−2]T in R2.

To calculate the fingerprint matrix f , begin with f11. We must first check the norm of all

of our candidates to see that it matches the norm of the first basis element. The first basis

element is [1, 0]T which has norm 1. The vectors with this norm are [1, 0] and [−1, 0]. Since

this is the first row of the fingerprint, we need not check the inner product with the other

basis elements. The number of appropriate candidates is therefore 2, so f11 = 2.

Next, to find f12, we must find the vectors whose norm matches that of the second basis

element. There are 4 of these, so f12 = 4.

We automatically set f21 = 0, since k = 2 (where k is taken from the definition above),

19

so we would be counting the number of vectors with the same norm as the first basis vector

who also have the same inner product with the basis vectors numbered up to k − 1. But in

this case k− 1 = 1, so we would be counting the vectors whose norm is the same as the first

basis vector, which we have already done. The fingerprint f is an upper triangular matrix

for this very reason.

To find f22, we must check for vectors with the same norm as the second basis vector, but

who also match the inner product of the second basis vector taken with the first. We know

that 4 vectors have the appropriate norm

{[2, 0], [−2, 0], [0, 1], [0,−1]}

but only [0, 1] and [0,−1] have the same inner product with the first basis vector. So f22 = 2.

The fingerprint f is then f =







2 4

0 2






.

Example 18 Continuing with our basis from above, consider the map which sends the first

basis vector to [−1, 0]. Is this a 1-partial automorphism? We first check the norm of [−1, 0]

to make sure it is the same as the norm of the first basis vector. Since they match, we move

on to check the fingerprint.

How many ways can we extend this map to a 2-partial automorphism? We must consider

all the candidates which have not only the same norm as the second basis vector, but also

the same inner product with the first basis vector. The candidates with the same norm are

{[2, 0], [−2, 0], [0, 1], [0,−1]}

Of these, only [0, 1] and [0,−1] have an inner product of 0 with our first vector. Since

either can be chosen as the image of the second basis vector, we can extend our 1-partial

automorphism in two possible ways. This matches the entry in the fingerprint, so we may

proceed to select an image for the second basis vector and check the vector sums which are

explained below.

20

Taking the product of the diagonal entries of each row in the fingerprint gives an upper

bound on the size of the automorphism group of L, since the diagonal entry in row i of

the fingerprint bounds the size of the orbit biGi, where Gi is the pointwise stabilizer of

{b1, . . . ,bi−1}. That is, Gi is the set of maps which fix each basis vector up to bi. These are

maps ϕ : L → L with ϕ(bk) = bk for k = 1, . . . , i − 1. This will become useful to us when

we determine Aut(L) later on.

Example 19 An interesting case is the E8 root lattice, so named because it is formed as the

integral span of the roots of the E8 Lie algebra. These roots are vectors in R8, comprised of

either whole- or half-integers which sum to an even number, with a norm of 2. There are 8

such vectors, arranged in columns as a basis for the E8 root lattice.















































2 −1 0 0 0 0 0 1
2

0 1 −1 0 0 0 0 1
2

0 0 1 −1 0 0 0 1
2

0 0 0 1 −1 0 0 1
2

0 0 0 0 1 −1 0 1
2

0 0 0 0 0 1 −1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2















































21

We calculate the following fingerprint matrix:















































240 240 2160 240 240 240 240 240

0 56 126 126 126 126 126 126

0 0 27 27 72 72 72 72

0 0 0 10 40 16 40 40

0 0 0 0 8 8 24 24

0 0 0 0 0 4 6 12

0 0 0 0 0 0 3 6

0 0 0 0 0 0 0 2















































In this example, reordering was used. After completing each row, the minimal nonzero entry

was noted. The basis was reordered, simply by swapping bk with bj whenever fkj is the

minimal nonzero entry in the k-th row. This also means we swap corresponding entries in

the previous rows of the fingerprint, as well as permuting the values in the short vectors we

enumerated. (If they are embedded vectors, no swapping is necessary.)

Taking the product of all the diagonal nonzero entries in each row, we find a bound on

the size of the automorphism group

240 · 56 · 27 · 10 · 8 · 4 · 3 · 2 = (24 · 3 · 5)(23 · 7)(33)(2 · 5)(23)(22)(3)(2) = 214 · 35 · 52 · 7

This is indeed the order of the automorphism group of the E8 root lattice.

While the number of arithmetic operations and comparisons needed in calculating the

fingerprint grows polynomially with respect to the size of S, this set of small vectors can

often be quite large and not necessarily polynomial in size with respect to the basis. The

Gram matrix may give an indication as to how many small vectors there are. If the norm

of the smallest basis vector is much smaller than the norm of the largest basis vector, this

could indicate that there will be many small vectors. This is because the norm of the largest

basis vector will determine the upper bound on norms of small vectors. There can be many

22

combinations of the smaller basis vectors whose norms would still be well below the upper

bound. If, however, the basis vectors all have relatively similar norms, then there may not

be very many small vectors.

The fingerprint was calculated for the standard integer lattice in varying dimensions to

gauge the runtime using the timeit() command in Sage. Below are the results in millisec-

onds corresponding to each lattice in dimension 2 through 6. For example, in dimension 2

we used the lattice generated from the basis ([1, 0], [0, 1]). These results are consistent with

what we expect. Since the short vectors of the lattice are required to compute the finger-

print, these short vectors must be enumerated before any other computation can occur. The

enumeration causes the runtime to grow exponentially as the dimension increases. These

results are consistent with our predictions, as the time necessary to compute the fingerprint

(and enumeration) increases at an exponential rate as the dimension increases.

dimension 2 3 4 5 6 7 8

runtime (ms) 12 43.2 116 267 538 1010 1760

Table 3.1: Fingerprint Runtime

3.1.2 Vector Sums

We continue to test our k-partial automorphism by taking inner products between our image

vectors and our small vectors. Since an isometry must preserve these inner products, we can

check them against the inner products of the basis vectors with the small vectors.

Here we check the inner product of each vi from our k-partial automorphism (v1, . . . ,vk)

with small vectors from S. Since we are searching for an isometry, we must verify that inner

products are preserved. To verify this completely, it would suffice to check the inner products

Φ(vi,vj) of vectors from a full map (v1, . . . ,vn) against the inner products of the original

basis vectors. But it becomes potentially time intensive to only check full maps, since S

can be quite large. It is helpful to be able to rule out partial maps as soon as possible. We

23

can instead check that the inner product of a basis vector with a small vector from S is

preserved.

Φ(vi, ϕ(u)) = Φ(bi,u)

When checking this condition, we must be sure to take small vectors from the second

lattice to check with the images of the basis vectors. In practice, this is not done by specifying

the images of each small vector from the first lattice. Instead, we store the value of Φ(bi,u)

in the form of a lookup table and check against it using the following methods.

Let Bk = (b1, · · · ,bk) be the subset of the basis consisting of the first k basis vectors.

For each candidate vector u, we create a list of inner products of u with each member of

this subset.

Φ(u, Bk) = (Φ(u,b1), . . . ,Φ(u,bk))

We then create a lookup table of pairs (Φ(u, Bk),u). If two vectors u and u′ exist with the

same list of inner products,Φ(u′, Bk) = Φ(u, Bk), update the entry to be (Φ(u, Bk),u+ u′).

In this way, we have a table of pairs (Φ(u, Bk),w), where w is the sum of all candidate

vectors u from S that have the same list of inner products Φ(u, Bk).

Definition 20 A vector sum is the sum of two or more vectors from the lattice L, say u

and u′, for which

Φ(u′, Bk) = Φ(u, Bk)

for a list of vectors Bk and a bilinear form Φ: L × L → Z.

Here we call each element w a vector sum. In practice, we separate the vectors in S by

their inner products with Bk. We do this by creating a lookup table which uses the inner

product with Bk as the key. Each entry then contains a list of vectors which have identical

inner products with Bk. After the vectors have been separated, we then compute the vector

sums by adding the vectors which had identical inner products with Bk.

24

Algorithm 3 Lookup Table Of Vector Sums

1: procedure lookupTable(B, S)

Input: basis B, small vectors S

Output: lookup table of vector sums T

2: for v ∈ S

3: compute Φ(v, Bk) = [Φ(v,bi)]
k
i=1

4: if Φ(v, Bk) is in T

5: (Φ(v, Bk),u) = (Φ(v, Bk),u+ v) . Update the entry

6: else

7: add (Φ(v, Bk),v) to T . Create a new entry

8: return T

Example 21 Consider the lattice spanned by the columns of the matrix







1 3

2 4






. It has 27

small vectors. We start with B1, which is simply the first basis vector. We group the small

vectors of the lattice by their inner product with B1. Some of these are given below, grouped

by the value of their inner product with [1, 0].

(0) : [11,−5], [−11, 5], [0, 0] (−6) : [−10, 4], [1,−1]

(−1) : [−9, 4], [2,−1] (7) : [8,−3], [−3, 2]

(−2) : [−7, 3], [4,−2] (8) : [−5, 3], [6,−2]

(3) : [−6, 3], [5,−2] (9) : [4,−1]

(−4) : [8,−4], [−3, 1] (−10) : [−2, 0]

(5) : [−10, 5], [12,−5], [1, 0] (11) : [0, 1]

In the table above, each entry is of the form Φ(u1, B1) : u1, . . . ,un where each ui has the same

inner product with B1. The first entry here is the set of vectors whose inner product with B1

is (0). When we reach the list of vectors corresponding to Φ(u1, B1) = (0), represented by

25

the list (0), we see the coordinate vectors [11,−5], [−11, 5], and [0, 0]. The vector sum for

this entry is then [11,−5] + [−11, 5] + [0, 0] = [0, 0].

Each vector sum is itself a vector. These vector sums will become the columns of a

matrix, Wk. That is, Wk = (w1, . . . ,wh) for some h ≤ |S|, where each wi is a column of Wk.

This matrix will help to determine if an ordered list of k vectors chosen from S is a k-partial

automorphism by checking to see if it yields the same vector sums as the partial basis.

Algorithm 4 Vector Sums

1: procedure vectorSums(B, S, k)

Input: basis B, small vectors S, index k

Output: vector sum matrix Wk, transformation matrix Xk, reduced matrix Ak, reverse

transformation matrix Yk

2: T = lookupTable(B, S)

3: Wk = [w](w,(Φ(w,bi)))∈T . Vector sums become columns of W

4: Ak, Xk = HNF(Wk) . Compute Hermite Normal Form of W

. Save transformation matrix X

5: Solve Wk = AkYk for Yk

6: return Wk, Xk, Ak, Yk

We then create a lattice from our k-partial automorphism. Recall that at each step, our

partial automorphism is given by the image of a partial basis (in this case, the first k basis

elements). The potential k-partial automorphism is then itself a partial basis. We must

check to see if the lattice it generates is the same as the lattice generated by the first k basis

elements.

Hk =

{

h
∑

i=1

xiwi : xi ∈ Z

}

and find a basis Ak = (a1 . . . a`) with ` ≤ k such that

Hk = {Akx : x ∈ Z`}

26

In practice we do this by reducing Wk to its Hermite Normal Form and saving the trans-

formation matrix as Xk. Since Ak is constructed from the vectors in Wk, we have two

expressions:

Ak =WkXk

AkYk = Wk

As one might expect, the matrix Ak will have at most as many columns asWk. It is preferable

here to pare Ak down to a full-rank matrix, but if necessary we may leave the unnecessary

columns in, provided we do not consider them when we express the columns of Wk as linear

combinations of the columns of Ak.

For each 1 ≤ k ≤ n we must remember Wk, Ak, Xk, and Yk computed from S and Bk

with respect to L. In practice, we can store these in an array:

((W1, A1, X1, Y1), . . . , (Wn, An, Xn, Yn))

In the future we will use this information to rule out k-partial automorphisms by checking

their vector sums against the vector sums of a partial basis consisting of k elements. This is

done by feeding in the k-partial automorphism as Bk and computingWk using the candidates

from S. Since the completed automorphism must preserve inner products, the list of inner

products should also be preserved. If the vector sums do not match, then the k-partial

automorphism will not be extended to a full automorphism.

3.2 Finding an Isometry

To begin searching for an isometry between two lattices, (L,Φ) and (J ,Ψ) with bases B

and B2 respectively, we first enumerate the short vectors of L, which we call S. We use S

to then compute the fingerprint and the sublattice information of the vector sums for L.

We must then enumerate the short vectors of J , which we call S2. Our isometry (if it

exists) will be built up by assigning an image vector from S2 to each basis vector from B.

27

At each step, check to see that the inner product is preserved by using the fingerprint and

the vector sums. The isometry will be completely determined once we have found the image

of the entire basis B using candidate vectors from S2.

3.2.1 The Search

In building up an isometry between (L,Φ) and (J ,Ψ), we are really constructing a partial

basis. At each step, we verify that the current partial basis (v1, · · · ,vk) represents a k-partial

automorphism by checking the number of possible extensions against the fingerprint of L,

as well as the vector sum information generated by using (v1, · · · ,vk). Though we call it a

k-partial automorphism, what we are building here is an isometry as (L,Φ) and (J ,Ψ) may

be different lattices.

Since inner products will be preserved under an isometry ϕ, the vector sum information

generated by B should be the same as the vector sum information generated by the image

of B. To check a partial map (v1, · · · ,vk), we compute the inner product of each candidate

vector from S with vi. We store these in a lookup table W ′
k, and use it as a matrix to

calculate A′
k = W ′

kXk. Here Xk has already been calculated with respect to the first k basis

vectors from B, which we denote by Bk = (b1, · · · ,bk). Checking that the inner products of

the vectors in A′
k match those of Ak will help us rule out possible k-partial automorphisms

which will not extend to (k + 1)-partial automorphisms. We also compute a third lookup

table and matrix, W ′′
k = A′

kYk, where Yk was computed with respect to Bk, and check that

the inner products of the vectors from W ′′
k match those of W ′

k.

If all of these conditions are met, we can continue to try to extend our partial automor-

phism. Choose a vector v from the set of candidates (in this case what is left of B2 after

removing the vectors already present in our partial automorphism) and check (v1, · · · ,vk,v)

using the above methods.

28

Algorithm 5 Test A Continuation

1: procedure meetsCriteria(B1, B2, [v1, . . . ,vk−1,v],Wk, Xk, Ak, Yk, S1, S2, f)

Input: first basis B1, second basis B2, partial map [v1, . . . ,vk−1,v], vector sum matrix Wk,

transformation matrix Xk, reduced matrix Ak, reverse transformation matrix Yk, first

set of small vectors S1, second set of small vectors S2, fingerprint f

Output: True if continuation is valid, otherwise False

2: if k < n

3: F2 = BT
2 B2

4: count =numCont(B2, F2, S2, k)

5: if count 6= fkk . First criteria

6: return False

7: W ′
k = vectorSums([v1, . . . ,vk−1,v], S, k)

8: A′
k = W ′

kX

9: if {Φ(ai, ai)}A 6= {Φ(a′
i, a

′
i)}A′ . Second criteria

10: return False

11: W ′′
k = A′

kY

12: if {w′′
i }W ′′ 6= {w′

i}W ′ . Third criteria

13: return False

14: return True

If (v1, · · · ,vk) fails one of these conditions, we remove it from the pool of candidates and

choose another vector. If the pool of candidates is empty, we backtrack and throw out the

most recently added vector, leaving us with (v1, · · · ,vk−1), which we must then extend using

candidates other than vk. The search terminates either with a complete basis or an empty

partial automorphism. In the case where no isometry is found, we will have exhaustively

searched the set of candidates for a suitable image of the basis B. We can conclude with

certainty that it will terminate since the pool of candidate vectors is finite. This limits the

29

search for each successive basis vector, and results in a finite search altogether. A simplified

version of this function is given below.

Algorithm 6 Stabilizer Candidates

1: procedure stabCandidates(B,F, S, k) . Similar to numExt()

Input: basis B, Gram matrix F , small vectors S, index k

Output: candidates with correct inner products

2: for v ∈ S

3: if Φ(v,v) = Fkk

4: if Φ(v,bj) = Fkj ∀j = 1, . . . , k − 1

5: candidates = candidates + v

6: return candidates

30

Algorithm 7 Backtrack Search

1: procedure Search(B1, B2, [v1, . . . ,vk−1], Candidates,Wk, Xk, Ak, Yk, S1, S2, f)

Input: first basis B1, second basis B2, partial map [v1, . . . ,vk−1], small vectors Candidates,

vector sum matrix Wk, transformation matrix Xk, reduced matrix Ak, reverse transfor-

mation matrix Yk, first set of small vectors S1, second set of small vectors S2, fingerprint

f

Output: compete isometry map or -1 if none exists

2: Ck = Candidates

3: Ck+1 = Candidates

4: while Ck 6= ∅

5: choose v ∈ Ck

6: if meetsCriteria(B1, B2, [v1, . . . ,vk−1,v],Wk, Xk, Ak, Yk, S1, S2, f)

7: Ck+1 = Ck+1\{v}

8: map = Search(B1, B2, [v1, . . . ,vk−1], Ck+1,Wk, Xk, Ak, Yk, S1, S2, f)

9: if map = -1

10: Ck+1 = Ck+1 + {v}

11: else

12: return map

13: return -1

The set of candidate vectors S is treated as an unordered list. In practice, however, it

has an unspecified ordering which determines which candidates are chosen first. Because of

this, the algorithm will search the space of candidate vectors in the same order, finding the

same isometry between two lattices each time, even if many isometries exist.

It is possible to exhaustively find every isometry that exists between two lattices, either

by reordering S to account for all permutations, or by keeping a list of isometries already

found. When a candidate is selected to extend a partial map, those vectors which would

31

complete the map to an already found isometry should be removed from the candidate pool.

The randomized element of the backtrack search random.shuffle(C) allows the user to

call the function many times and expect to get a few different maps. For lattices of small

dimension this is one way of generating a few automorphisms. However, one drawback of

this functionality is that we may not receive the particular isometry we expect to receive

when more than one exists between two lattices. Because of the deterministic behavior of the

algorithm otherwise, this problem still exists without randomization. The shuffle command

at least allows the chance of finding different isometries, whereas without it we might expect

to get the same isometry regardless of which is the most obvious map. An example of this

is given in the Tests section.

Below is an overview of how to use the tools we have constructed so far to test two

lattices for an isometry. Our search is conducted in such a way that if the two input lattices

(L,Φ) and (J ,Ψ) are isometric, this algorithm will return an isometry ϕ : (L,Φ) → (J ,Ψ).

If they are not isometric, the algorithm will return a value of -1 after exhaustively checking

any partial maps that preserve the bilinear form on L. If no partial map extends to a full

isometry, only after ruling out all partial maps will our algorithm return -1.

32

Algorithm 8 Find An Isometry

1: procedure isIsometric(B1, B2)

Input: first basis B1, second basis B2

Output: compete isometry map or -1 if none exists

Preprocessing

2: F1 = (B1)
TB1

3: S1 = enumerate(B1)

4: f = fingerprint(B1, F1, S1)

5: for k = 1, . . . , n

6: Wk, Xk, Ak, Yk = vectorSums([b1, . . . ,bk], S1, k)

Search

7: S2 = enumerate(B2)

8: map = Search(B1, B2, [∅], S2,Wk, Xk, Ak, Yk, S1, S2, f)

9: return map

The number of possible maps to check is exponential with respect to the size of S. We

reduce this number by ruling out partial maps which will not extend to full maps. The

number of arithmetic operations and comparisons in the search grows exponentially with

respect to the size of the basis. The runtime will therefore also grow exponentially as the

dimension increases. We tested this algorithm by asking it to find an isometry between the

standard integer lattice in dimension n and an identical integer lattice in dimension n using

the timeit() command in Sage. Below we list the average runtime for n = 2, . . . , 8. The

results are consistent with what we predicted. The runtime grows exponentially with the

dimension.

dimension 2 3 4 5 6 7 8

runtime (ms) 101 295 720 1580 3240 6030 10700

Table 3.2: Isometry Finding Runtime

33

3.3 Automorphism Group

To compute the automorphism group Aut(L), we rely on methods for computing strong

generating sets. We make use of the pointwise stabilizers

Gi = { ϕ ∈ Aut(L) : ϕ(bj) = bj for j = 1, . . . , i− 1 }

and attempt to calculate a generating set G for Aut(L) which contains the generators for

each Gi. To do this, we iteratively build up G by building up each Gi. As we build it up,

we call the intermediate group which we generate at each step Hi. We generate Hi from a

set of generators in G which we know to be in Gi. As G grows, so does each Hi, until finally

Hi is the full set of stabilizers Gi. At each step, we compute Hi = 〈Hi ∩ G〉 for 1 ≤ i ≤ n.

Begin with G empty, and start by computing H1. To do this, we simply search for

isometries ϕ : L → L. At each stage we continue this process and add these maps to G.

We then regenerate Hi and update the candidates. Over time the value fii taken from

the fingerprint will decrease as vectors are ruled out. Similarly, the size of the orbit Hibi

will increase as completed maps are added to Hi. Since the set of candidates Ck is finite,

eventually |Hibi| ≥ fii, and we will move on to the next value of k. Once k = n, we cannot

continue any further, and the algorithm will terminate. An outline of this method is given

below.

34

Algorithm 9 Automorphism Group

1: procedure Aut(B)

Preprocessing

Input: basis B

Output: automorphism group Aut

2: Compute F, S, f,Wk, Xk, Ak, Yk as before

3: G = ∅

4: for k = 1, . . . , n

5: Hk = ∅

6: Ck = stabCandidates(B,F, S, k)

7: for k = 1, . . . , n

8: while |Hkbk| > fkk and Ck 6= ∅

9: choose v ∈ Ck

10: map = Search(B1, [b1, . . . ,bk−1, v], Ck,Wk, Xk, Ak, Yk, S1, f)

11: if map = -1

12: fkk = fkk − |Hkv|

13: else

14: G = G ∪map

15: Hk = 〈Hk,map〉

16: Ck = Ck\Hkv

17: Aut = 〈G〉

18: return Aut

We can use the automorphism group of a lattice to construct the set of all isometries

between two lattices L and J . First, search for an isometry ϕ : L → J . Then compute the

automorphism group Aut(L). Compose each map γ ∈ Aut(L) with ϕ to obtain all isometries

35

between L and J . Searching for an isometry between the two lattices will also tell us if they

are not isometric, in which case we will have nothing to compose with our maps in Aut(L).

3.4 Tests

These methods were tested on integer lattices of varying dimensions, whose automorphism

group is known to have order 2n · n! for dimension n. As an object of type MatrixGroup,

the output of the above algorithm can be treated as a group in Sage, and the order can be

obtained.

Because computing the automorphism group uses the same procedures as searching for

isometries, it runs in exponential time with respect to the size of the basis. We tested this

algorithm on integer lattices with the timeit() command in Sage. Listed below are the

runtimes corresponding to n = 2, . . . , 5. Higher dimensions require more memory to run.

The lattices tested have relatively uniform basis vectors. Runtime is lower for these than it

would be for lattices with basis vectors whose norms vary widely.

dimension 2 3 4 5

runtime (ms) 913 3250 14100 196000

Table 3.3: Automorphism Group Runtime

Lastly, obtaining different isometries by making use of the randomization allows us the

possibility of finding a particular map. An example of this is given below for the integer

lattice in 3 dimensions and a lattice given by a permutation of its basis vectors.

for i in range(100):

V = is isometric(L,J)

if V not in poss maps:

poss maps.append(V)

for v in poss maps:

36

print Matrix(v)

if Matrix(v) == J.embedded basis matrix():

print "We have a match!"

print "\n"

...

[1 0 0]

[0 0 1]

[0 1 0]

We have a match!

...

37

Chapter 4

Enumeration

4.1 Generating Small Vectors

A popular method of finding the smallest vector of a lattice involves enumerating all the

vectors of the lattice with relatively small norms and searching for the smallest member.

Since the Smallest Vector Problem is considered computationally hard, we can expect this

enumeration to have exponential complexity. Until 1985, this involved calculating all the

suitable vectors inside a rectangular area. Michael Pohst and Ulrich Fincke improved on this

method by reducing the search to a hyper-ellipsoid. At the same time, Kannan devised a

similar method which involves searching a hyper-parallelepiped. This method is referred to

as KFP enumeration, for its creators Kannan, Fincke, and Pohst.

Below we discuss the Fincke-Pohst algorithm. This algorithm is utilized in Chapter

3, where the set of small vectors belonging to a lattice helps us to find isometries and

automorphisms. These methods are useful for determining isometry classes of lattices.

4.1.1 Overview

We are interested in finding all of the small vectors of a lattice L.

Definition 22 We call a vector v small if its norm Φ(v,v) is less than a constant C.

When C is not specified, it is assumed to be the norm of the largest basis vector of the lattice.

This clearly depends on the basis which is given, and can vary depending on the choice

of basis. If a particular basis is not specified, it is assumed to be the matrix B which defines

the Gram matrix A = BTB. This is equivalent to solving the inequality Φ(y,y) ≤ C, where

Φ(y,y) denotes the norm of the vector computed with respect to the lattice. Let B denote

38

the matrix whose columns are the basis vectors of the lattice L. As an element of the lattice,

y = Bx for some coordinate vector x ∈ Zn. So our inequality becomes

Φ(y,y) = yTy = xTBTBx ≤ C

We consider the quadratic form Q(x) = xTBTBx and solve Q(x) ≤ C.

4.2 Quadratic Completion

To solve our inequality, it helps to first rearrange the terms of our quadratic form. This

reformulation is called the quadratic completion or quadratic complementation. Here we

assume the lattice is positive definite. That is, every nonzero element has a positive norm.

With this, we can find the Cholesky decomposition A = LLT , where L is a lower triangular

matrix. Equivalently, we can express this as A = RTR, where R is an upper triangular

matrix. Since [10] uses upper triangular matrices, this is what we will use. The formulas

below will reflect this. We now express Q as:

Q(x) =
m
∑

i=1

qii

(

xi +
m
∑

j=i+1

qijxj

)2

Our coefficients qij are obtained from R, and stored in a matrix for convenience.

qij =















rij
rii
, i < j

r2ii, i = j

Since R is upper triangular, the matrix Q = [qij] will be as well.

39

Algorithm 10 Generate Quadratic Completion

1: procedure genQ(A)

Input: Gram matrix A

Output: coefficients qij stored in matrix Q

2: for i = 1, . . . , n

3: for j = i, . . . , n

4: qij = aij −
i−1
∑

k=1

qkiqkjqkk

5: if i 6= j . For non-diagonal entries

6: qij = qij/qii

7: return Q

Example 23 Let A =













4 −2 −4

−2 5 0

−4 0 30













. We will find R such that RTR = A. Expanding

this, note that













r11 0 0

r12 r22 0

r13 r23 r33

























r11 r12 r13

0 r22 r23

0 0 r33













=













r211 r11r12 r11r13

r11r12 r212 + r222 r12r13 + r22r23

r11r13 r12r13 + r22r23 r213 + r223 + r233













We proceed column by column, beginning with the first.

r211 = 4

r11r12 = −2

r11r13 = −4

It is easy to see that r11 = 2, r12 = −1, r13 = −2.

r212 + r222 = 5

r12r13 + r22r23 = 0

40

Solving for the second column we find r22 = 2 and r23 = −1.

r213 + r223 + r233 = 30

Lastly, r33 = 5. Thus, R =













2 −1 −2

0 2 −1

0 0 5













.

To obtain the upper triangular matrix R from our matrix A, we compute the diagonal

and non-diagonal entries as follows:

rii =

√

√

√

√aii −

i−1
∑

k=1

r2ki

rij =
1

rii

(

aij −

j−1
∑

k=1

rkirkj

)

Using these, we can reformulate the construction of the coefficients of Q to use values

from A. We will soon see how it is possible to do away with using the Cholesky decomposition

entirely.

qii = aii −

i−1
∑

k=1

r2ki

qij =
1

r2ii

(

aij −

j−1
∑

k=1

rkirkj

)

Example 24 Continuing with the example given above, we obtain Q (put in matrix form

for simplicity) to be













4 −1/2 −1

0 4 −1/2

0 0 25













. The quadratic form is then given by:

Q(x) = 4(x1 −
1

2
x2 − x3)

2 + 4(x2 −
1

2
x3)

2 + 25(x3)
2

= 4(x2
1 − x1x2 − 2x1x3 +

1

4
x2
2 + x2x3 + x2

3) + 4(x2
2 − x2x3 +

1

4
x2
3) + 25(x2

3)

= 4x2
1 − 4x1x2 − 8x1x3 + 5x2

2 + 30x2
3

= xTAx

41

By putting this construction in terms of the coefficients of Q only, we arrive at the

following

qii = aii −

i−1
∑

k=1

q2kiqkk

qij =
1

qii

(

aij −

i−1
∑

k=1

qkiqkjqkk

)

We can then calculate these coefficients, starting with q11 and calculating q1j for 1 ≤ j ≤ m.

Then we continue by calculating q22 and q2j for 2 ≤ j ≤ m. We proceed by first always

calculating the diagonal entry qii and then qij for i ≤ j ≤ m until we reach qmm.

In practice, this is how we compute the coefficients for our form. However, it is equally

possible to first compute the Cholesky Decomposition using available methods, and then

computing the entries of Q from this.

4.3 Bounding xi

Since the sum Q(x) is less than C, the individual term qmmx
2
m must also be less than C.

m
∑

i=1

qii

(

xi +
m
∑

j=i+1

qijxj

)2

≤ C

qmmx
2
m ≤ C

x2
m ≤ C/qmm

In fact, xm is bounded above by
√

C/qmm and below by −
√

C/qmm.

This illustrates the first step in establishing bounds on a specific entry xi. Adding more

42

terms from the outer sum to this sequence, a pattern emerges.

qmmx
2
m ≤ C

qm−1,m−1 (xm−1 + qm−1,mxm)
2 ≤ C − qmmx

2
m

qm−2,m−2

(

xm−2 +
m
∑

j=m−2

qm−2,jxj

)2

≤ C − qmmx
2
m − qm−1,m−1 (xm−1 + qm−1,mxm)

2

We denote this internal sum by Uk

Uk =
m
∑

j=k+1

qkjxj

so that we can rewrite Q(x) as

Q(x) =
m
∑

i=1

qii (xi + Ui)
2

In general,

qkk (xk + Uk)
2 ≤ C −

k−1
∑

i=1

qii (xi + Ui)
2

The bound on this summand is denoted Tk. So Tm = C, Tm−1 = C − qmmx
2
m, and

Tm−2 = C − qmmx
2
m − qm−1,m−1 (xm−1 + qm−1,mxm)

2

It helps to simply set Tm as C and find each subsequent Tk by subtracting the next term

from the outer summand.

Tk = C −
k−1
∑

i=1

qii (xi + Ui)
2

Tk = Tk+1 − qk+1,k+1 (xk+1 + Uk+1)
2

Now we have an upper bound for each summand.

qkk (xk + Uk)
2 ≤ Tk

43

Using this, we can estimate upper and lower bounds for each xk in the coordinate vector x.

We start by computing the last entries of x and their bounds first. Assuming that the last

several entries of x have been assigned, upper and lower bounds on xk can be determined.

Now that we have established a bound on a term in the outer sum, we can determine bounds

on the specific entry xk. Take the above equation, and solve for xk.

(xk + Uk)
2 ≤ Tk/qkk

xk + Uk ≤
√

Tk/qkk

xk ≤
√

Tk/qkk − Uk

Similarly we have a lower bound.

xk ≥ −
√

Tk/qkk − Uk

Since xk must be an integer, we can restrict our bounds further. Let tk =
√

Tk/qkk.

UBk = btk − Ukc

LBk = d−tk − Uke

Here UBk is the upper bound on xk and LBk is the lower bound on xk.

LBk ≤ xk ≤ UBk

4.3.1 Algorithm

To enumerate all of the vectors x such that Q(x) ≤ C, begin with the last entry xm (letting

all other xj = 0). Determine the upper and lower bounds UBm and LBm by first calculating

tm =
√

Tm/qmm. We define Um = 0, and by definition remember that Tm = C.

For each entry xi, starting with xm and going down to x1, we initialize the value to be

xi = LBi−1. After the value is initialized, we begin to increment the values of all the entries,

adding 1 to each entry until we either reach the last index (in which case we have found a

44

solution) or we exceed the upper bound on a particular entry (we will need to readjust the

previously assigned entries). If at any time the lower bound exceeds the upper bound for a

given entry, it will become immediately apparent when the value for that entry is initialized.

We must then backtrack to our previous entries (that is, entries with a higher index). If we

reach x1 without exceeding the upper bounds for any entry, then we have found a complete

vector x which satisfies Q(x) ≤ C.

We will know we have found all the short vectors when we reach the zero vector. This is

because we start by assigning each value xi its lower bound, which is calculated with respect

to the values xi+1, . . . , xn. We increase xi incrementally, until it exceeds the corresponding

calculated upper bound. When this happens we revisit xi+1, increasing its value. Since xi+1

was originally assigned its own lower bound, it starts off as a negative integer and increases

steadily until it reaches 0. Likewise, the other values will start off negative at each iteration

and slowly increase in value. It is only when all entries are 0 that the algorithm terminates.

When we add each vector, we also add the vector with entries −xi for each i. In this we

capture all the small vectors without having to check positive values for xn.

Before beginning the search, first find the coefficients of the quadratic form expressed as

above. Initialize Tk, Uk, UBk and xk to be 0 for all k. Begin with i = m and Ti = C as the

value bounding our vectors.

45

Algorithm 11 Enumerate Small Vectors

1: procedure enumerate(B)

Input: basis B

Output: small vectors solutions

2: Initialize Gram matrix A and start with i = n

3: Q = genQ(A)

4: stillEnumerating = True

5: while stillEnumerating

6: ti =
√

Ti/qii

7: UBi = bti − Uic . Set bounds for xi

8: xi = d−ti − Uie − 1

9: updatingEntries = True

10: while updatingEntries

11: xi = xi + 1 . Increase xi

12: if xi > UBi

13: i = i+ 1 . Increase i

14: else

15: if i = 1

16: add x to solutions . Coordinate vector is a solution

17: if x = (0, . . . , 0)

18: return solutions

19: add −x to solutions

20: else

21: Ti−1 = Ti − qii(xi + Ui)
2

22: i = i− 1 . Decrease i

23: recompute Ui

24: updatingEntries = False

46

4.3.2 Improvements

It is noted in [10] that if we label the columns of R by ri (from the Cholesky decomposition

xTRTRx) and the rows of R−1 by r′i, then we see that

x2
i =

(

r
′T
i

(

m
∑

k=1

xkrk

))2

≤ r
′T
i ri

(

xTRTRx
)

≤ ||r′i||
2C

So it may behoove us to reduce the rows of R−1 in order to reduce our search space. Fur-

thermore, it helps to put the smallest basis vectors first, so reordering the columns may also

be beneficial.

Express this reduction with a unimodular matrix V −1, so that R−1
1 = V −1R−1. Then

reorder the columns of R1 with a permutation matrix P . Since R1 = RV , we then have that

R2 = (RV)P .

Then R−1
2 = P−1V −1R−1. If we find a solution to the inequality yTRT

2R2y ≤ C, we can

recover a solution to our original inequality by x = V Py. Since R−1
2 = P−1V −1R−1, we

know that R2 = RV P .

yTRT
2R2y ≤ C

yT (P TV TRT)(RV P)y ≤ C

(yTP TV T)RTR(V Py) ≤ C

(V Py)TRTR(V Py) ≤ C

xTRTRx ≤ C

This improves the search time by giving us a nicer quadratic form to work with. Once

we find solutions to the inequality given by Q2(y) = yTRT
2R2y ≤ C, it is a simple matter of

translating them into solutions of our original inequality.

4.3.3 Runtime

While reformulating the quadratic form runs in polynomial time with respect to the size of

the basis, enumerating all of the small vectors runs in exponential time with respect to the

47

basis. There are an exponential number of possible vectors to check. This algorithm reduces

that number slightly by estimating bounds on the values to rule out vectors which need not

be checked. The algorithm was run on the standard integer lattice in varying dimensions,

similar to the tests we ran in Chapter 3, using the timeit() command in Sage. The runtimes

below are given in seconds.

dimension 2 3 4 5 6 7 8

runtime (s) 1.58 2.37 3.47 4.59 5.89 7.14 8.92

Table 4.1: Enumeration Runtime

48

Chapter 5

Smith-Minkowski-Siegel Mass Formula

One application of the methods that we have established so far is the computation of the

Smith-Minkowsky-Siegel mass formula. The mass formula gives a weighted sum of the in-

equivalent lattices in a genus. To define the genus of a lattice, we first require the concept

of localization.

Localizing a commutative ring at an element p allows us to include powers of p in our

denominators. The resulting ring contains fractions a
pk

where a is an element of the original

ring and k is some integer. Localizing a lattice at p changes the types of coefficients that we

can have in our linear combinations. Using our integer lattices, for example, if we localize

at 3, then the element 2
3
is now a valid coefficient that we can use in our coordinate vectors.

A valid coordinate vector might be [1, 0, 2
3
].

One way to view this is by examining the tensor product L ⊗Z Zp. Here our coefficients

come from the p-adic integers Zp, which are a subset of the p-adic completion Qp.

Definition 25 Two lattices L and J are locally isometric at p if their localizations Lp

and Jp are isometric.

Lattices which are isometric are also locally isometric. However, lattices which are locally

isometric are not necessarily isometric. Even if lattices are isometric at every prime p, they

are still not necessarily isometric. In fact, this is what gives us the notion of the genus of a

lattice.

Definition 26 The genus of a lattice L is the set of all lattices whose tensor product L⊗ZZp

and J ⊗Z Zp are isometric at every prime p.

49

Since we know that not necessarily all lattices in a genus are isometric, a genus can be par-

titioned into isometry classes. Inside each isometry class are the lattices which are mutually

isometric to each other. These form equivalence classes inside the genus.

Example 27 Among lattices of rank 3, we have an example of two distinct isometry classes

in the same genus. From the first, we take the standard integer lattice L with basis vectors

[1, 0, 0], [0, 1, 0], and [0, 0, 1] to be the representative. From the second, take the lattice J with

basis vectors [1, 0, 0], [0, 3, 0], and [1/3, 2/3, 1/3].

We equip each lattice with the bilinear form given by the matrix

A =













2 0 1

0 2 0

1 0 6













On coordinate vectors x and y of L, we have xTAy. On coordinate vectors x and y of

J we compute xTBTABy, where B is the matrix whose columns are the basis vectors given

for J . These lattices, equipped with this bilinear form, are not isometric. That is, there is

no map ϕ : L → J for which ϕ(x)BTABϕ(y) for all x,y in L.

Currently our methods use the inner product induced by the basis as the bilinear form

on the elements of the lattice. Arbitrary bilinear forms can be included in the testing by

modifying the functions which compute the Gram matrix and the inner product to use a

new bilinear form. When tested on this example, the modified algorithm should exhaust all

possible maps between the lattices before certifying that no isometry exists.

Example 28 An example of two distinct genera of lattices of of the same rank occurs in

dimension 8. One genus contains a single isometry class, characterized by the E8 root lattice,

which we see in Example 29. The other contains the standard integer lattice of dimension 8.

From each isometry class, we choose one representative. The mass formula uses these

50

representatives to construct a weighted sum.

h
∑

i=1

1

|Aut(L(i))|

Here each L(i) is a representative of an isometry class.

This formula is useful because it allows us to verify our enumeration of isometry classes.

Say we have generated a multitude of lattices. We can use the isometry testing in Chapter 3

to separate the lattices into isometry classes, but we still would not know whether we have

found every isometry class in the genus.

To test this, choose a representative from each known isometry class and compute the size

of its automorphism group using the algorithm outlined in Chapter 3. Compute the mass

of the genus using these values and the Smith-Minkowski-Siegel mass formula. Compare the

result of this computation with known values of the mass formula, which are often calculated

using other methods such as Bernoulli numbers. If the known value exceeds our computed

value, we can conclude that we have not yet enumerated all of the isometry classes.

5.1 Lower Bound

To arrive at a lower bound for the mass formula, we begin with an upper bound on the size

of the automorphism group of a lattice. If computing the full automorphism group of a class

is too costly, a lower bound can be established.

In Chapter 3 we covered the construction of a matrix called the fingerprint of a lattice.

When computing each row, we took note of the diagonal entry. Together these entries gave

us an upper bound on the size of the automorphism group of the lattice.

We let Gi be the set of pointwise stabilizers for b1 up to bi−1. Each entry fii of the

fingerprint then gives an upper bound on the size of Gibi. We see that fii bounds the size

of this particular orbit of bi, since fii tracks the number of extensions of the (i− 1)-partial

automorphism (b1, . . . ,bi−1) to an i-partial automorphism (b1, . . . ,bi−1,v).

51

For an n-dimensional lattice, we should obtain n of these bounds. Their product then

yields an upper bound on the size of the automorphism group.

|Aut(clL)| ≤
n
∏

i=1

fii

Example 29 Recall from Chapter 3 that we estimated the size of the automorphism group

of the E8 root lattice by taking the product of the diagonal entries in the fingerprint. Below

is the fingerprint. We take the product of the diagonal entries.















































240 240 2160 240 240 240 240 240

0 56 126 126 126 126 126 126

0 0 27 27 72 72 72 72

0 0 0 10 40 16 40 40

0 0 0 0 8 8 24 24

0 0 0 0 0 4 6 12

0 0 0 0 0 0 3 6

0 0 0 0 0 0 0 2















































240 · 56 · 27 · 10 · 8 · 4 · 3 · 2 = 214 · 35 · 52 · 7 = 696729600

The mass of a genus can be calculated for even unimodular lattices whose rank is divisible

by 8 by using Bernoulli numbers. The E8 root lattice is in fact the only even unimodular

matrix of rank 8, and so completely characterizes the mass of its genus. The mass of its

genus is therefore 1
696729600

.

An upper bound on automorphism groups yields a lower bound on the mass of a genus,

since in each case we can provide a lower bound for a given summand. Furthermore the

upper bound on a single automorphism group can provide a somewhat looser bound on the

mass of a genus.

52

1

Mk

≤
1

|Aut(L(k))|
≤

h
∑

i=1

1

|Aut(L(i))|

for a particular isometry class, represented by the lattice L(k), whose automorphism group

is bounded above |Aut(L(k))| ≤ Mk.

5.2 Connections

The methods we have described so far are useful not only for finding isometries, but also

in the context of algebraic modular forms. The work of Benedict Gross [13], M. Greenberg

and J. Voight [12] tie together algebraic modular forms and methods on isometry classes of

lattices.

Definition 30 The class set of a lattice is the set of isometry classes within the genus.

Using the mass formula, the algorithms described in Chapter 3 contribute to a larger

endeavor to examine algebraic modular forms using lattice methods. In particular, Sarah

Chisholm presents a method of enumerating all lattices in a genus [4]. Her methods involve

enumerating lattices, which can be tested at each stage for isometries, until each isometry

class is represented in the collection. We can test pairs of lattices to determine isometry

classes within the collection. Termination requires all of the isometry classes to be present.

At least one representative from each isometry class should be in the collection of constructed

lattices.

To check this condition, we use the mass formula to ensure that we have a representative

from each isometry class in the genus. This is done by selecting a representative from each

isometry class and computing the size of its automorphism group. We then evaluate the mass

formula using these automorphism groups. By comparing the result of the mass formula to

known values, we can determine if we have the entire class set. If the result does not match

the known value of the formula, then at least one isometry class is missing from our collection.

53

Once the enumeration of the class set is finished, we can use this to further examine

certain types of algebraic modular forms using the work of Gross, Greenberg, and Voight.

Since these class sets can be considered the domain of certain kinds of algebraic modular

forms, combining our methods with the results of Chisholm [4] provides us with a necessary

tool to futher the study of algebraic modular forms.

54

Chapter 6

Conclusion

These algorithms were coded and tested in Sage 5.10 using the standard packages. Although

these algorithms have been adapted to work in existing software, Sage has not yet seen the

addition of these methods. They are used as a framework in proprietary software such as

Magma [18], where the algorithms cannot be read or improved upon by an outsider. By

submitting this code to Sage, third parties will be able to learn from or improve upon these

methods. In addition, they will expand functionality of Sage so that more complex ideas

can be developed which make use of them. For example, having access to algorithms which

can compute the order of an automorphism group of a lattice may enable development of

algorithms which look at the Smith-Minkowski-Siegel mass formula.

Future work with these methods would involve reducing runtime and applying the con-

cepts in a more abstract setting. Implementing a depth parameter or the use of Bacher

polynomials may reduce computation time for finding isometries. Runtimes which include

these parameters are given in [23]. In addition, perhaps specific pieces might be optimized

regarding matrix operations. Lastly, these methods could also be extended to work over

number fields with more interesting forms.

55

Bibliography

[1] Overview of Magma V2.17: Lattices and Quadratic Forms. 2014.

[2] J. W. S. Cassels. An Introduction To The Geometry Of Numbers. Springer-Verlag,

1959.

[3] J. W. S. Cassels. Rational Quadratic Forms. Academic Press, 1978.

[4] Sarah Chisholm. Algorithmic enumeration of quaternionic lattices. PhD thesis, Univer-

sity of Calgary.

[5] H. Cohen. A Course in Computational Number Algebraic Number Theory. Springer,

3rd edition edition, 1996.

[6] Henri Cohen. Hermite and smith normal form algorithms over dedekind domains. Math.

Comp, 65:1681–1699, 1996.

[7] Shafi Goldwasser Daniele Micciancio. Complexity of Lattice Problems. Kluwer Aca-

demic Publishers, 2002.

[8] Fred Diamond and Jerry Shurman. A First Course in Modular Forms. Springer, 2005.

[9] Claus Fieker and Damien Stehl. Short bases of lattices over number fields. In In Proc.

of ANTS-IX, volume 6197 of LNCS, pages 157–173. Springer, 2010.

[10] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a

lattice, including a complexity analysis. Mathematics of Computation, 1985.

[11] C.F. Gauss. Disquisitiones arithmeticae. 1801.

[12] M. Greenberg and J. Voight. Lattice methods for algebraic modular forms on classical

groups. 2012.

56

[13] Benedict Gross. Algebraic modular forms. Israel Journal of Mathematics, pages 61–93,

1999.

[14] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-

lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,

STOC ’83, pages 193–206. ACM, 1983.

[15] L. J. P. Kilford. Modular Forms: A Classical and Computational Introduction. Imperial

College Press, 2008.

[16] L. Lagrange. Recherehes d’arithmetique. Nouv. Mdm. Acad., pages 265–312, 1773.

[17] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational

coefficients. 261(4):515–534, 1982.

[18] Magma. Magma computational algebra system for algebra, number theory, and geom-

etry, July 2014.

[19] Hermann Minkowski. Geometrie der Zahlen. Leipzig : Teubner, 1910.

[20] O. T. O’Meara. Introduction to Quadratic Form. Springer-Verlag, 1963.

[21] Sachar Paulus. Lattice basis reduction in function fields. In In ANTS-3 : Algorithmic,

pages 567–575. Springer-Verlag, 1998.

[22] W. Plesken and M. Pohst. Constructing integral lattices with prescribed minimum i.

Math. Comp., (45(171)):209–221, 1985.

[23] W. Plesken and B. Souvignier. Computing isometries of lattices. Journal of Symbolic

Computation, (24):327–334, 1997.

[24] Sage. Sage is a free open-source mathematics software, July 2014.

[25] Jean-Pierre Serre. A Course in Arithmetic. Springer, 1973.

57

Appendix A

First Appendix

def gen Q(A):

”””

A − Gramm matrix of a lattice

”””

numCols − Number of columns (rank)

Q − coefficients for quadratic completion

Q sum − summation, temporary variable

numCols = len(A.rows())

Initializing Q to a matrix of all 0s

Q = [[0 for s in range(numCols)] for t in range(numCols)]

Constructing quadratic completion

for i in range(numCols):

for j in range(i ,numCols):

Q sum = 0

for k in range(i) :

Q sum += QQ(Q[k][i])∗QQ(Q[k][j])∗QQ(Q[k][k])

Q[i][j] = A[i][j] − Q sum

For non−diagonal entries

if i != j :

58

Q[i][j] = QQ(Q[i][j])/QQ(Q[i][i])

return Q

def gramMat(B):

Computes Gram Matrix from column−based basis matrix

return B.transpose()∗B

def enumerate(B,maxVal=0,verbose=False):

”””

B − list of columns

maxVal − maximum value

”””

GramMat − Gram Matrix

dimA − dimension of A

Construct basis and Gram matrix from list of columns

B = matrix(B).transpose()

GramMat = gramMat(B)

if verbose:

print B,"\n\n",GramMat

if maxVal == 0:

maxVal = max(GramMat.diagonal())

if verbose: print "Maximum value:",maxVal

Generate Q, the quadratic completion

59

A = GramMat

dimA = len(A.rows())−1

if verbose: print "Calculating Q..."

Q = gen Q(A)

if verbose: print "Quadratic matrix:\n",matrix(Q)

Initialize variables for enumeration

i − index specifying entry in coordinate vector

T − upper bound on partial sum

U − bound on inner sum

UB − upper bound on entries in coordinate vector

x − candidate coordinate vector

solutions − list of small vectors

i ,T,U,UB = dimA,[0 for q in Q],[0 for q in Q],[0 for q in Q]

x = [0 for q in Q]

T[i] = maxVal

solutions = []

Iterate through coordinate vectors recursively

outerLoop = 1

while outerLoop:

Z = (QQ(T[i])/QQ(Q[i][i]))ˆ(1/2)

UB[i] = RR(Z−U[i]).floor()

x[i] = RR(−Z−U[i]).ceiling()−1

innerLoop = 1

60

while innerLoop:

x[i] += 1

if x[i] > UB[i]:

i += 1

else:

Found a small vector

if i == 0:

solutions .append(vector(x)) # Aadds the

coordinate vector

if not vector(x): ## If x is the zero−vector

return solutions

solutions .append((−1)∗vector(x))

Updating bounds

else:

if verbose:

print T[i],Q[i][i], x[i], U[i]

T[i−1] = T[i] − Q[i][i]∗(x[i]+U[i])ˆ2

i −= 1

U[i] = 0

for k in range(i+1,dimA+1):

if verbose:

print "adding",Q[i][k],x[k]

U[i] += Q[i][k]∗x[k]

if verbose:

61

print x,"\tT[%d] ="%(i),T[i],"U[%d] =

%d"%(i,U[i])

break

innerLoop = 0

def test enumerate():

expectedVectors = [(10, −5), (−10, 5), (11, −5), (−11, 5), (12, −5), (−12, 5),

(8, −4), (−8, 4), (9, −4), (−9, 4), (10, −4), (−10, 4),

(5, −3), (−5, 3), (6, −3), (−6, 3), (7, −3), (−7, 3), (8, −3), (−8, 3),

(3, −2), (−3, 2), (4, −2), (−4, 2), (5, −2), (−5, 2), (6, −2), (−6, 2),

(0, −1), (0, 1), (1, −1), (−1, 1), (2, −1), (−2, 1), (3, −1), (−3, 1),

(4, −1), (−4, 1), (−2, 0), (2, 0), (−1, 0), (1, 0), (0, 0)]

actualVectors = enumerate ([[1,2],[3,4]])

expectedVectors2 = [tuple(u) for u in expectedVectors]

actualVectors2 = [tuple(w) for w in actualVectors]

if set(expectedVectors2) != set(actualVectors2):

print "Error in test_enumerate()"

def prod vect(B,u,Bk,verbose=False):

”””

Computes a list of dot products of u and bi in Bk.

u − a vector

Bk − a list of (column) vectors

”””

inner = ()

for bi in Bk:

62

u bi = dot(B,u,bi)

if verbose: print "vector products:",u,bi,u bi

inner = inner + (u bi,)

if verbose: print "inner products:",inner

return inner

def test1 prodVect():

expectedList = (−10,10,−6)

actualList = prod vect ([[1,2],[3,4]],[−1,1],[[−4,1],[−3,2],[−8,3]])

if expectedList != actualList :

print "Error in test1_prodVect"

print expectedList,actualList

#−−Dot Product

−−−

def dot(B,u,v,verbose=False):

”””

B − list of basis columns

u,v − coordinate vectors

”””

if verbose:

print "Inside dot product",u,v

print "Inside dot product",vector(u)

print "Inside dot product",matrix(B).transpose()

u1 = matrix(B).transpose()∗vector(u)

63

if verbose: print "Inside dot product",u1

v1 = matrix(B).transpose()∗vector(v)

if verbose: print "Inside dot product",v1

return u1.dot product(v1)

def test dot () :

expectedDot = 7

actualDot = dot ([[1,0],[0,1]],[3,1],[1,4])

if expectedDot != actualDot:

print "Error in test_dot"

def swap(myList,i,j) :

temp = myList[i]

myList[i] = myList[j]

myList[j] = temp

return myList

def numExt(k,S,inds,B,GramMat,k partial=None,verbose=False):

”””

Computes the number of ext/continuations from a k− to (k+1)−partial

automorphism.

k − length of the partial automorphism, number of vectors to check against

S − set of candidates for continuation

inds − set of indices

B − list of basis vectors (columns)

64

GramMat − Gram matrix corresponding to the basis B

k partial − set of vectors (k−partial automorphism)

”””

If no k−partial automorphism is given, use the coordinate basis as a control

if k partial == None:

k partial = matrix.identity(len(B)).rows()

if k == len(B):

print "Last possible index."

if verbose: print "Indices given:",inds

ext = 0

Test each candidate vector

for u in S:

if verbose: print "Trying to extend by",u

Initialize decision variable

toAdd = 0

1st Test: Does the norm (squared) match?

if dot(B,u,u)== GramMat[k][k]:

if verbose: print "Inside numExt",k,k partial,u,GramMat[k][k]

toAdd = 1

for j in inds:

if verbose: print "Inside numExt",k,inds,k partial,u,dot

(B,u,k partial[j]) ,GramMat[k][j]

65

2nd Test: Do the inner products match?

if (j != k) and (dot(B,u,k partial[j]) != GramMat[k][j

]):

if verbose: print "Inside numExt dot product

 (u,bk) does not match for",k,k partial[j],

dot(B,u,k partial[j]), GramMat[k][j]

toAdd = 0

break

if verbose: print "uk:",dot(B,u,k partial[j]) ,GramMat[

k][j]

else:

if verbose: print "dot (u,u) product did not match",dot(B,

u,u),GramMat[k][k]

if toAdd:

ext += 1

if verbose: print "vector found:",u

return ext

def test1 numExt(verbose=False):

smallVectors = [(0, 0, −2), (0, 0, 2), (0, 1, −2), (0, −1, 2),

(0, 2, −2), (0, −2, 2), (0, 3, −2), (0, −3, 2),

(0, 4, −2), (0, −4, 2), (0, −1, −1), (0, 1, 1),

(0, 0, −1), (0, 0, 1), (0, 1, −1), (0, −1, 1),

(0, 2, −1), (0, −2, 1), (0, 3, −1), (0, −3, 1),

(0, −2, 0), (0, 2, 0), (0, −1, 0), (0, 1, 0),

66

(−1, 0, 0), (1, 0, 0), (0, 0, 0)]

indicesToCompare = []

basisCols = [[4,0,0],[0,1,1],[0,0,2]]

basisMatrix = matrix(basisCols).transpose()

gramMatrix = basisMatrix.transpose()∗basisMatrix

correct = [6,4,4]

for i in range(len(basisCols)) :

whichToReplace = i

N = numExt(whichToReplace,smallVectors,indicesToCompare,basisCols,

gramMatrix,None,verbose)

if N != correct[i]:

print "Error! test1_numExt",N,correct[i]

def nonzeroMin(fList):

return min([x for x in fList if x != 0])

def rowOfFingerprint(B,S,inds=[],verbose=False):

”””

B − list of basis vectors (columns)

inds − a list of indices [j1 ,..., j (i−1)], typically [1,..., i−1]

S − set of candidates

”””

67

Compute Gram matrix from column−basis

F = gramMat(matrix(B).transpose())

if verbose: print "Inside fingerprint",inds

Initialize i−th row of fingerprint to all 0s

f = [0 for i in B]

Compute the number of appropriate vectors

for k in range(len(B)):

if k not in inds:

if verbose:

print "fingerprint so far...",f

f [k] = numExt(k,S,inds,B,F,None,verbose)

if verbose: print "Entry for fingerprint:",f[k]

Find the index of the smallest nonzero entry

f min = nonzeroMin(f)

inds.append(f.index(f min))

return (f,inds)

def fingerprint (B,S,verbose=False):

”””

B − list of basis vectors (columns)

S − set of candidates

”””

Inds = []

68

f rows = []

for i in range(len(B)):

fi ,Inds = rowOfFingerprint(B,S,Inds,verbose)

f rows .append(fi)

if i != Inds[−1]:

if verbose: print "finerprint:\n",matrix(f rows)

if verbose: print "Reordering basis...",i,Inds[−1]

for row in f rows:

row = swap(row,i,Inds[−1])

B = swap(B,i,Inds[−1])

for v in S:

if verbose: print v,i ,Inds[−1]

v = swap(v,i,Inds[−1])

if verbose: print v

Inds[−1] = i

finMat = matrix(f rows)

return B,S,Inds,finMat

def test fingerprint () :

expectedFin = ([4,6],[0])

smallVectors = [(10, −5), (−10, 5), (11, −5), (−11, 5), (12, −5), (−12, 5),

(8, −4), (−8, 4), (9, −4), (−9, 4), (10, −4), (−10, 4),

69

(5, −3), (−5, 3), (6, −3), (−6, 3), (7, −3), (−7, 3), (8, −3), (−8, 3),

(3, −2), (−3, 2), (4, −2), (−4, 2), (5, −2), (−5, 2), (6, −2), (−6, 2),

(0, −1), (0, 1), (1, −1), (−1, 1), (2, −1), (−2, 1), (3, −1), (−3, 1),

(4, −1), (−4, 1), (−2, 0), (2, 0), (−1, 0), (1, 0), (0, 0)]

actualFin = fingerprint ([[1,2],[3,4]], smallVectors)

if expectedFin[0] != list (actualFin [3][0]) :

print "Error in test_fingerprint"

def innerProductTable(B,S,Bk,verbose=False):

”””

B − list of basis vectors (columns)

S − set of candidates

Bk − partial basis or images of basis vectors

”””

lookup = {}

for u in S:

inner = prod vect(B,u,Bk)

if inner in lookup.keys(): # If an entry is present ...

if verbose: print "Found a duplicate:",u,inner,lookup[inner]

lookup[inner]. append(vector(u)) # update it!

else:

if verbose: print "New entry:",inner,u

lookup[inner] = [vector(u)] # Otherwise create a new entry

return lookup

70

def test innerProductTable():

smallVectors = [(10, −5), (−10, 5), (11, −5), (−11, 5), (12, −5), (−12, 5),

(8, −4), (−8, 4), (9, −4), (−9, 4), (10, −4), (−10, 4),

(5, −3), (−5, 3), (6, −3), (−6, 3), (7, −3), (−7, 3), (8, −3), (−8, 3),

(3, −2), (−3, 2), (4, −2), (−4, 2), (5, −2), (−5, 2), (6, −2), (−6, 2),

(0, −1), (0, 1), (1, −1), (−1, 1), (2, −1), (−2, 1), (3, −1), (−3, 1),

(4, −1), (−4, 1), (−2, 0), (2, 0), (−1, 0), (1, 0), (0, 0)]

actualTable = innerProductTable ([[1,2],[3,4]], smallVectors ,[[1,0]])

Table = {(−6,): [(−10, 4), (1, −1)], (−4,): [(8, −4), (−3, 1)],

(−1,): [(−9, 4), (2, −1)], (9,) : [(4, −1)], (11,) : [(0, 1)],

(−10,): [(−2, 0)], (1,) : [(9, −4), (−2, 1)], (3,) : [(−6, 3), (5, −2)],

(5,) : [(−10, 5), (12, −5), (1, 0)], (7,) : [(8, −3), (−3, 2)],

(−7,): [(−8, 3), (3, −2)], (−5,): [(10, −5), (−12, 5), (−1, 0)],

(−3,): [(6, −3), (−5, 2)], (8,) : [(−5, 3), (6, −2)], (−2,): [(−7, 3),

(4, −2)], (10,) : [(2, 0)], (−11,): [(0, −1)], (0,) : [(11, −5), (−11, 5), (0, 0)

],

(−9,): [(−4, 1)], (2,) : [(7, −3), (−4, 2)], (4,) : [(−8, 4), (3, −1)],

(6,) : [(10, −4), (−1, 1)], (−8,): [(5, −3), (−6, 2)]}

expectedTable = {}

for i in Table.keys() :

expectedTable[i] = []

for j in Table[i]:

toAppend = vector(j)

expectedTable[i]. append(toAppend)

if expectedTable != actualTable:

print "Error in test_innerProductTable"

71

for i in actualTable:

if expectedTable[i] != actualTable[i]:

print i ,expectedTable[i], actualTable[i]

def vectorSums(B,S,k,exten=None,verbose=False,partial=False,depth=None):

”””

B − a set of vectors (either the basis or automorphism)

S − small vectors

k − a maximum index

depth − depth (previous steps to repeat)

OUTPUT

W − matrix of vector sums

A − reduced basis for W

X − coordinate vector WX = A

Y − coordinate vector W = AY

”””

lookupInner − lookup table of vectors and inner product lists

inner − list of inner products of candidate vector with basis

startIndex − which basis vector to start with for comparison

if verbose: print "Vector sums, basis:\n",B

if depth==None:

startIndex = 0

else:

startIndex = max(0,k+1−depth)

72

if exten == None:

Bk = matrix.identity(matrix(B).rank())[startIndex:k]

else:

Bk = exten

if verbose: print "Inside vectorSums",startIndex,k,"\n",Bk

Initilize lookup table of inner products

lookupInner = innerProductTable(B,S,Bk)

lookupkeys = lookupInner.keys()

lookupkeys.sort()

Initialize list of vector sums

W = []

Create vector sums as columns in a list

for matches in lookupkeys:

if verbose: print "Vector Sums, before summing",lookupInner[

matches]

W.append(sum(lookupInner[matches]))

if verbose: print "Vector Sums, after summing",sum(lookupInner[

matches])

Create a row−matrix of the list of vector sums

W = matrix(W)

if verbose: print "Index:",k,"\nVector Sums:\n",W

73

If checking a k−partial automorphism, nothing further is necessary

if partial : return W

Prepare for LLL

A, X = matrix(ZZ,W).hermite form(transformation=True, include zero rows=False)

if verbose: print "Reduced Basis:\n",A

Y = A.solve left(W)

if verbose: print "Y",Y

if verbose: print "X",X

return (W,A,X,Y)

def condition1(num,f k,verbose=False):

”””

num − number of extensions

f k − entry in fingerprint

”””

if num != f k:

if num < f k:

if verbose: print "Fewer extensions were found; backtrack."

if verbose: print num,f k,"The number of extensions did not match the

fingerprint."

return False

74

if num == 0:

if verbose: print "Could not extend to automorphism."

return False

return True

def test cond1() :

expected = False

actual = condition1(6,7)

if expected!= actual:

print "Error in test_cond1"

def condition2(B1st,B2nd,A,A2):

”””

B1 − first list of basis vectors (columns)

B2 − second list of basis vectors (columns)

A − reduced vector sum matrix

A2 − second reduced vector sum matrix

”””

Check the scalar products of A2 against A

prod A2 = []

for vect1 in A2.rows():

for vect2 in A2.rows():

prod A2.append(dot(B2nd,vect1,vect2))

prod A = []

75

for vect1 in A.rows():

for vect2 in A.rows():

prod A.append(dot(B1st,vect1,vect2))

if prod A2 != prod A:

return False

return True

def test cond2() :

expected = True

A1st = matrix ([[1,1],[2,−2]])

A2nd = matrix ([[1,1],[2,−2]])

actual = condition2 ([[1,2],[3,4]],[[1,2],[3,4]], A1st,A2nd)

if expected!= actual:

print "Error in test_cond2"

def condition3(A2,Y,W2):

”””

A2 − second reduced vector sum matrix

Y − transformation matrix YA = W

W2 − second unreduced vector sum matrix

”””

W3 = Y∗A2

W2 = set([tuple(w) for w in W2.rows()])

W3 = set([tuple(w) for w in W3.rows()])

if not W3.issubset(W2):

76

return False

return True

def test cond3() :

expected = True

Y1st = matrix ([[1,0],[0,1]])

W2nd = matrix([[1,1],[2,−2]])

A2nd = matrix ([[1,1],[2,−2]])

actual = condition3(A2nd,Y1st,W2nd)

if expected!= actual:

print "Error in test_cond3"

def meetsCriteria(B1st,B2nd,k partial,v,Vect Sums,S,S2nd,f,inds,verbose=False):

”””

B1 − first list of basis vectors (columns)

B2 − second list of basis vectors (columns)

k partial − k−partial automorphism

v − candidate for image of b(k+1)

Vect Sums − vector sum matrices

S − first set of small vectors

S2 − second set of small vectors

f − fingerprint

inds − set of indices (for fingerprint)

”””

k = len(k partial)

v ext = k partial + [v]

77

GramMat1st = gramMat(matrix(B1st).transpose())

num = 0

if len(B1st)!=k+1:

num = numExt(k+1,S2nd,inds[:k+1],B2nd,GramMat1st,v ext)

if verbose: print "Found",num,"extensions for", k partial+[v]

#print ”Inside meetsCriteria, numExt gives:”,num,f[k+1][k+1],k

if dot(B2nd,v,v) != vector(B1st[k]).dot product(vector(B1st[k])) :

if verbose: print "Inner product of candidate did not match

basis."

return False

if (len(B1st)==k+1) or condition1(num,f[k+1][k+1]):

W2 = vectorSums(B2nd,S2nd,k+1,exten=v ext,partial=True)

try:

X = Vect Sums[k][2]

A2 = X∗W2

except TypeError:

if verbose: print "Vector Sums of candidate not

compatible with original vector."

return False

A = Vect Sums[k][1]

if condition2(B1st,B2nd,A,A2):

Y = Vect Sums[k][3]

if condition3(A2,Y,W2):

if verbose: print "Extension approved",v

return True

78

else:

print "Failed condition 3",k partial+[v]

else:

print "Failed condition 2",k partial+[v]

else:

print "Failed condition 1",num,f[k+1][k+1],k partial+[v]

return False

def Search(B1st,B2nd,k partial,Candidates,Vect Sums,S,S2nd,f,inds,randomized=False,

verbose=False):

”””

B1 − first list of basis vectors (columns)

B2 − second list of basis vectors (columns)

k partial − k−partial automorphism

Candidates − set of candidates to search for an extension

Vect Sums − vector sum matrices

S − first set of small vectors

S2 − second set of small vectors

f − fingerprint

inds − set of indices (for fingerprint)

Note: Vect Sums,S,f,inds − Needed to pass on to numExt and vect sums

OUTPUT

Either a map [v1 ,..., vn] or False

”””

if verbose: print "\n",matrix(k partial)

if len(k partial) == len(B1st):

79

print "Isometry found."

return k partial

Initialize set of candidates, not ”linked” to original set

C = []

C = C+Candidates

Initialize set of candidates to pass along

C next = []

C next += Candidates

Randomize to obtain a different isometry (if possible)

if randomized: random.shuffle(C)

Exhaustively check combinatons until no candidates remain

while len(C) != 0:

if verbose: print len(k partial) ,"Candidates:",C

v = C.pop()

if meetsCriteria(B1st,B2nd,k partial,v,Vect Sums,S,S2nd,f,inds,verbose):

if verbose: print "Candidate approved\t",k partial+[v]

C next.remove(v)

map = Search(B1st,B2nd,k partial+[v],C next,Vect Sums,S,S2nd,f,inds,

randomized)

if verbose: print "backtracking...\n"

if map == −1:

C next.append(v)

80

continue

return map

else:

if verbose: print "Candidate failed\t",k partial+[v]

return −1

def is isometric (LBas,JBas,verbose=False,randomized=False):

”””

LBas,JBas − two lists of (column) basis vectors

NOTE: These cannot be from the same object, instantiate separately.

OUTPUT

Either an image of LBas in J [v1 ... vn] or −1 (no map found)

”””

B = LBas

B2nd = JBas

F = gramMat(matrix(B).transpose())

G = gramMat(matrix(B2nd).transpose())

if randomized: import random

Verify the inner products are the same

if verbose: print "\nVerifying scalar products of J..."

Inner prod = set ([])

Inner prod2 = set ([])

for bi in matrix. identity (len(B)):

Inner prod.add(dot(B,bi,bi))

Inner prod2.add(dot(B2nd,bi,bi))

81

if Inner prod2 != Inner prod:

return −1

F max = max(F.diagonal())

S = enumerate(B,F max) ### Uses rows of B to reconstruct matrix

Assumes matrix has column−

basis

print "\n\nEnumerated short vectors of first lattice."

if verbose: print S

if verbose: print "Number of candidates:",len(S)

Calculate fingerprint of L

if verbose: print "\nCalculating fingerprint of L..."

B,S,inds,fingerprintMat = fingerprint(B,S)

F = gramMat(matrix(B).transpose())

if verbose: print "\nFingerprint:\n",fingerprintMat,"\n",Inds

print "Fingerprint calculated."

aut bound = prod([fingerprintMat[i][inds[i]] for i in range(len(B))])

if verbose: print "We estimate Aut(L) <= %s"%(aut bound)

Calculate vector sums of L

if verbose: print "\nCalculating vector sums of L..."

Vect Sums = []

for k in range(matrix(B).rank()):

(W,A,X,Y) = vectorSums(B,S,k+1,exten=None,verbose=verbose)

82

Vect Sums.append((W,A,X,Y))

print "Vector sums calculated."

Search for an isometry using the basis of J as candidates,

and S from L to measure extensions

if verbose: print "Our second basis:\n",B2nd

S2nd = enumerate(B2nd,F max)

#print S2nd

print "Enumerated short vectors of second lattice."

if len(S) != len(S2nd):

print "Candidate sets have different sizes:",len(S),len(S2)

return −1

print "Searching for an isometry..."

return Search(B,B2nd,[],S2nd,Vect Sums,S,S2nd,fingerprintMat,inds,randomized,

verbose)

def orbitCalc(vectors , group):

”””

vectors − set of vectors to operate on

group − group of maps to use

”””

orbit = []

for v in vectors :

for h in group:

83

orbit .append(h∗vector(v))

return list(set ([tuple(w) for w in orbit])) ## Removes possible duplicates

def stabCandidates(k,S,B,GramMat,verbose=False):

”””

k − current index

S − set of small vectors

B − list of (column) basis vectors

GramMat − Gram matrix

”””

k partial = matrix.identity(len(B)).rows()

candidates = []

Test each candidate vector

for u in S:

if verbose: print "Trying to extend by",u

Initialize decision variable

toAdd = 0

1st Test: Does the norm (squared) match?

if dot(B,u,u)== GramMat[k][k]:

if verbose: print "Inside numExt",k,k partial,u,GramMat[k][k]

toAdd = 1

for j in range(k):

if verbose: print "Inside numExt",k,inds,k partial,u,dot

(B,u,k partial[j]) ,GramMat[k][j]

84

2nd Test: Do the inner products match?

if (j != k) and (dot(B,u,k partial[j]) != GramMat[k][j

]):

if verbose: print "Inside numExt dot product

 (u,bk) does not match for",k,k partial[j],

dot(B,u,k partial[j]), GramMat[k][j]

toAdd = 0

break

if verbose: print "uk:",dot(B,u,k partial[j]) ,GramMat[

k][j]

else:

if verbose: print "dot (u,u) product did not match",dot(B,

u,u),GramMat[k][k]

if toAdd:

candidates.append(u)

if verbose: print "vector found:",u

return candidates

def Aut(Bas,verbose=False):

”””

Bas − list of (column) basis vectors

OUTPUT

G − the automorphism group of the lattice

”””

85

if verbose: print "Inside Aut:\n",Bas

import random

B = Bas

r = len(B)

F = gramMat(matrix(B).transpose())

F max = max(F.diagonal())

S = enumerate(B,F max) ### Uses rows of B to reconstruct matrix

Assumes matrix has column−

basis

print "\n\nEnumerated short vectors of first lattice."

if verbose: print S

if verbose: print "Number of candidates:",len(S)

Calculate fingerprint of L

if verbose: print "\nCalculating fingerprint of L..."

B,S,inds,fingerprintMat = fingerprint(B,S)

Recomputing Gram Matrix after (possible) reconfiguration of basis

F = gramMat(matrix(B).transpose())

if verbose: print "\nFingerprint:\n",fingerprintMat,"\n",inds

print "Fingerprint calculated."

aut bound = prod([fingerprintMat[i][inds[i]] for i in range(r)])

if verbose: print "We estimate Aut(L) <= %s"%(aut bound)

Calculate vector sums of L

if verbose: print "\nCalculating vector sums of L..."

86

Vect Sums = []

for k in range(r) :

(W,A,X,Y) = vectorSums(B,S,k+1,exten=None,verbose=verbose)

Vect Sums.append((W,A,X,Y))

print "Vector sums calculated."

Compute Strong Generating Sets

Initialize candidates

gens,G = [matrix.identity(r)],[[matrix. identity (r)] for i in range(r)]

#H = [MatrixGroup(G[i]+gens) for i in range(r)]

H = [MatrixGroup([g for g in G[i] if g in gens]) for i in range(r)]

#C = [S for i in range(r)]

C = []

for i in range(r) :

C.append(stabCandidates(i,S,B,F))

orbits = [orbitCalc(C[i], H[i]) for i in range(r)]

orbitBounds = fingerprintMat.diagonal()

#orbitSizes = [len(orbits [i]) for i in range(r)]

Update by: orbitSizes = [len(orbitCalc(matrix. identity (r) [i], H[i])) for i in

range(r)]

orbitSizes = [1 for i in range(r)]

if verbose:

print "gens\n",gens

print "G\n",G

print "H\n",H

print "orbitBounds\n",orbitBounds

87

print "orbitSizes\n",orbitSizes

print "C\n",C

print "orbits\n",orbits

Choose k

k=0

if verbose: print "\nSearching for generators..."

randomized=True

while k != None:

if verbose:print "\n\nC[k]\t\t",k,C[k]

if verbose: print "orbits[k]\t",k,orbits[k]

v = C[k].pop()

#v = orbits[k].pop()

partialBasis = matrix.identity(r) .rows() [: k]

if verbose: print "Trying to complete...\t",partialBasis+[v]

Does [b1,...,b(k−1),v] complete to a valid map?

map = −1

if meetsCriteria(B,B,partialBasis ,v,Vect Sums,S,S,fingerprintMat,inds,

verbose):

map = Search(B,B,partialBasis+[v],S,Vect Sums,S,S,

fingerprintMat,inds,True,verbose)

toRemove = orbitCalc([v],H[k])

if verbose: print "toRemove\t",toRemove

if map == −1:

88

orbitBounds[k] −= len(toRemove)

else:

if verbose: print "map\t\t",map

gens.append(matrix(map).transpose())

G[k].append(matrix(map).transpose())

H[k] = MatrixGroup([g for g in G[k] if g in gens])

if verbose: print "H[k]\t",k,H[k]

orbitSizes [k] −= len(orbitCalc([matrix.identity(r) [k]], H[k]))

orbits [k] = orbitCalc(C[k],H[k])

if verbose: print "Recalcuated orbits\t",orbits[k]

for hv in toRemove:

try:

C[k].remove(vector(hv))

if verbose: print "Removed\t\t",C[k]

except ValueError:

if verbose:

print "Failed to remove: not a candidate."

k = None

for i in range(r) :

if orbitSizes [i] < orbitBounds[i]:

if len(C[i]) !=0:

k = i

continue

89

print "Generators found."

if verbose: print "Now for the generators..."

M = MatrixGroup(gens)

print "Automorphism group constructed."

if verbose: print "Aut(L) has order", M.order()

return M

def test global () :

test enumerate()

test dot ()

test1 prodVect()

test1 numExt()

test fingerprint ()

test innerProductTable()

test cond1()

test cond2()

test cond3()

90

