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Abstract

The results contained in this thesis appeared in Annals of Mathematics in 1963 in a
paper by A. Dold. His paper was targeted to professional mathematicians; hence, his
proofs are brief and many “easy” parts are omitted. In this thesis, I will elaborate
the first four chapters of his paper so that these results become accessible to non-

specialists and graduate students.
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Table of Notation

(w-w')(t) : The product path is defined by

w(2t) if 0 S t S %1
(w- o)) =
J(2t-1) f3<t<L
B* : The n-ball is defined by B* = {z € R™:||z||< 1}.
s*1. The (n — 1)-sphere is defined by s"~! = {z € B* :||z|]|=1}.
Rt: The positive real numbers.
Cp: The category consisting of spaces over B and maps over B.
Cs: The category consisting of spaces over B and vertical homotopy

classes of maps over B.
W The path ,w is defined by ,w(t) = w(rt).
Tw: The path "w is defined by

w(t) =w(l -7 +71t) =w(l—7(1—t)).

Ay The standard g-simplex.

Ax: The diagonal function of X — X x X.

b, : The characteristic map for a cell e of a CW-complex.
e The j-th face of the standard simplex.

Vx: The folding function of X V X — X.

w” The reverse path is defined by w™(t) = w(1l — £).

0Oq : The ¢-th boundary operator.

ACB: A is a (not necessarily proper) subset of B.

Pe : The attaching map for a cell e of a CW-complex.



S,(X) :

X"

dimX :

The barycentre of A, is defined by B, = 37, =
The free abelian group generated by the singular ¢-simplices
of a space X.

The n-skeleton of a CW-complex X.

The constant path at z € X.

The dimension of a CW-complex X.



Introduction

One of our main problems in algebraic topology is the lifting problem, which is
a dual of the extension problem: given maps p : E — B and f : X — B, does
there exist a map g : X — E with pg = f? A variant of the lifting problem is the
homotopy lifting problem, which can be stated as follows:

Given maps p : F — B, f : X — E and a homotopy H : X x I — B with
pf(z) = H(z,0) for all z € X, does there exist a homotopy G : X x I — E with
pG = H and G(z,0) = f(z) for all z € X?

We say that the map p : £ — B has the homotopy lifting property, abbre-
viated as HLP in the future, with respect to X, if such a G exists for all f and
H with pf(z) = H(z,0). Note that if p : £ — B has the HLP with respect to X
and f ~ f': X — B, then f can be lifted to F if and only if f’ can be lifted to E.
It turns out that HLP is a crucial property in homotopy theory, and we have the
following definitions.

A map p: E — B is said to be a Hurewicz fibration if it has the HLP with
respect to every space X, and it is said to be a Serre fibration if it has the HLP
with respect to every I*, n > 0 where I is the unit interval [0,1] and I° = {0}.
Clearly, any Hurewicz fibration is a Serre fibration. For example, let f: X — Y
and define E; = {(z,w) € X x Y  :w(0) = f(z)} C X xY!. Thenp:E;f = Y
defined by p(z,w) = w(1l) is a Hurewicz fibration (cf. [5], p.86). An example of a
Serre fibration which is not a Hurewicz fibration is the map p : E — B defined by
p(z,y) =z, where L = {(z,2—1) €ER*:z € [}, E = Unex{(z,2) : z € [} UL and
B = I (cf. [8], p.360).



The study of fibrations is important, since any continuous function is a Hurewicz

fibration up to homotopy. (cf. [5], p.86) We also have the following results:

1. Let p: E — B be a Hurewicz fibration and by, 5, be elements of a path con-
nected space B. Then the fibres p~!(%) and p~!(b;) have the same homotopy
type. For a Serre fibration, we must also require that the fibres p~1(by) and

p~ (%) have the homotopy type of a finite polyhedron.

2. Let p : E — B be a Serre fibration with fibre . Then there is an exact
sequence of homotopy groups --- — m2(E,zo) 5 m2(B,by) — m(F,z0) —
m(E,zo) B m1(B,bs) — 7o(F,z0) — ®o(E,z0) 25 wo(B,bo), where zo is the
base point of FE and of F', and by is the base point of B.

The second theorem is very useful to compute homotopy groups. For example, we
can find the homotopy groups of complex projective space CP* from the fibration
St e §° B cpee,

Many examples of Serre fibrations are provided by locally trivial bundles. A
locally trivial bundle with fibre F is a map p : £ — B for which there is an
open cover V of B and homeomorphisms ¢y : V x F — p~}(V) for all V in V such

that pov(v,z) = v for all (z,v) € V x F. Here are a couple of examples.

1. Let £ = B x F. Then the projection p : E — B defined by p(b,z) = bis a
locally trivial bundle with fibre F'. In fact, this is called the trivial fibration.

2. The map ezp : R — S! defined by ezp(t) = €?** is a locally trivial bundle
with fibre Z. The map ezp is a standard example of a covering space, and in
fact, we have: every covering space p : X = X is a locally trivial bundle with

discrete fibre.



A further important example can be found in the theory of fibre bundles (cf. [6],
p.210).

The important concepts in this thesis are fibre homotopy equivalence, the sec-
tion extension property (SEP), and the covering homotopy property (CHP). For
definitions of these concepts, see pages p. 8, p. 23, and p. 67.

In 1963, A. Dold wrote an important paper [3] in the Annals of Mathematics.
In this paper, he proved that fibre homotopy equivalence, the SEP, and the CHP
are local properties in the following sense. Let {V3}aea be a covering of B which
admits a refinement by a locally finite partition of unity (see p. 18 for definition). If
P : p~Y(VA) — V, has these properties for each A, then so does p.

Dold uses the local finiteness of the partitions of unity cleverly; however, his proofs
are condensed and many parts are omitted. To make these concepts accessible to
non-specialists and graduate students, I have added some examples to clarify the
definitions and explicitly verified the statements where he omitted proofs. I have
also included standard definitions and properties referred to in his paper. My major
contribution in this thesis is to fill in all the details that Dold omitted.

The idea of fibre homotopy equivalence is crucial to many further developments
in homotopy theory and bundle theory. In particular, it has led to the development
of stable fibre homotopy equivalence and J-homomorphism (cf. [2], [6]), which in

turn was the basis of much of the development of the subject in the 70’s and 80’s.



Chapter 1

Spaces Over B

Definition 1.1 A continuous map p : E — B is called a space over B. Ifp: E —
B and p' : E' — B are spaces over B, then a continuous map f: E — E' is called a

map over B if p'f = p.

Definition 1.2 The category Cp has spaces over B as its objects, maps over B as
its morphisms, and composition is the usual composition of functions (cf. Appendiz,

p. 80, for definition of a category).

Remark 1.3

1. Cp ts indeed a category. The usual composition is associative, hence maps over
B are also associative. Also, it has the identity map 1g for all f € hom(p,p),
where (p : E — B) € objCg which satisfies the given azioms. Thus, Cg is a
category.

2. Any category Cp has a privileged object, the identity map lg, and every space

over B admits a unique map over B into lg; namely, p: E — B.

Definition 1.4 For every topological space Y, define a space over B by E= BxY,
p(b,y) = b, forallb € B, forally € Y. A space over B is called trivial if it is
equivalent in Cg to a space of this form, that is, letp’ : E' - B andp: E=BxY —

B be spaces over B where Y is any topological space. The space p' over B is trivial



if there ezist maps f : E' — E, and g : E — E’' over B such that fg = lg and

9f =1p.

£
E—g<—>B><Y
Pl
B

A homotopy 8 : ExI — E' is called a homotopy over B or a vertical homotopy
if6,: E — E', 6,(e) = (e, t) is a map over B for all t € I =[0,1].

Two maps fo, fi : E — E' are vertically homotopic, written as fo ~p fi, if
there exists a vertical homotopy 0 with 6o = fo, and 6, = f;. We write 8 : fo ~p f

and read “Q is a vertical homotopy from fo to f1”.

Example 1.5 A homotopy but not a vertical homotopy

Let E = {(z,z-1) e R*: 0 <z < 1}U{(z,1—z) e RZ2: 0 < z < 1} and
B =1 =1[0,1. Letp: E — B be a space over B defined by p = = |g where
m is the natural projection from R? to the z-coordinate. Define f : E — E by
f(z,y) =(z,|y|). Let 1g : E — E be the identity map. Note that f and 1g are both
maps over B. Then, since E is contractible, there erists a homotopy 0 : 1g =~ f from
1g to f; however, there is no vertical homotopy. Notice that the fibre p~2(0) has two
path components and (0,—-1), f(0,—1) = (0,1) are in distinct path components. If
there were a vertical homotopy ¢: of 1g to f, then o((0,—1),t) = (0, —1) will be

a path in p~1(0) joining (0,—1) to (0,1), leading to a contradiction.

The next lemma is useful to construct a new continuous function from existing

ones.



Lemma 1.6 Gluing Lemma

1. Let X be any topological space and X;, i = 1,---,n closed subsets of X with
X = UL, X:. Suppose that there are continuous functions f; : X; — Y such
that forany 1 < t,7 < mn, f; l xinx; = fj | Xinx, , that is, the functions agree on
overlaps. Then the function f : X — Y defined by f(z) = fi(z) ifz € X; is

well defined and continuous.

2. Assume that X is any topological space and {X,}acs is any open cover of X.
Suppose that, for each a € J, there is a continuous function f, : X, — Y such
that f.
the function f : X — Y defined by f(z) = fo(z) if z € X, is well defined and

XanX, = for I XanX,,, that is, the functions agree on overlaps. Then

continuous.

Proof: We first deal with Case 1.. Clearly, the function f is well defined because
of the overlaps hypothesis. To see the continuity, let C be a closed subset of Y.
Then, f~}(C) = (UL, Xi) N fH(C) = UL (XiN f7YC)) = U2, (X:N f7(C)). Since
fiH(C) is closed in X; and X; closed in X, X; N f1(C) is closed in X for each
¢t = 1,---,n. Since a finite union of closed sets is closed, f~1(C) is closed in X.
Hence, f so defined is continuous.

For Case 2., again, well definedness is obvious. For continuity, let O be an
open subset of Y. Then, f~1(0) = (UsesXa) N f71(0) = Uses(Xa N f7(O) =
Uaes(Xa N £51(0)). Since f71(0) is open in X, and X, open in X, X, N f71(0) is
open in X. Since a union of open subsets is open, f~2(0) is open in X. Hence, f so

defined is continuous. o



Proposition 1.7 The relation ~p is an equivalence relation between maps over B

which ts compatible with composition.
Proof: Let fo, f1, f2 : E — E' be maps over B.

reflexivity : The trivial vertical homotopy 8 : fo ~p fo defined by 6:(e) = fo(e)

for all t € I shows the reflexivity.

symmetry : Suppose there exists a vertical homotopy 8 : fo ~p fi. Then, ¥ :
E xI — E'is defined by (e, t) = 6(e,1—1), and therefore symmetry is shown.

Note that ¥: = 6,_; is a map over B for allt € I.

transitivity : Suppose there exist vertical homotopies 8 : fo ~p f1 and ¢ : f; ~p

f2- Then, define v : E x I — E' by

8(e, 2t) ift <
Yv(e,t) =

v
N W=

p(e,2t —1) if¢ .
By the Gluing Lemma (Lemma 1.6), % is well defined and continuous on E x I.
Note, again, that 1, = 8, if t < % and ¥, = o1 if t > —% are maps over B
since both # and ¢ are vertical homotopies. Thus, ¥ is a vertical homotopy

from fo to fo.
Thus, the claim holds. |

Definition 1.8 The category Cg has spaces over B as its objects and vertical ho-

motopy classes of maps over B as its morphisms.

Definition 1.9 We say that p: E — B is dominated by p’: E' — B if there ezist
maps f : E — E' and g : E' — E over B such that gf ~p 1g, i.e. p is a “retract”

of p’ in Cp.



Definition 1.10 A map f : E — E' over B whose class in Cg is an equivalence,
that is, it has left and right homotopy inverses, is called a fibre homotopy equiva-
lence. Furthermore, p: E — B is called fibre-homotopically trivial if it is fibre

homotopy equivalent to a trivial space B xY — B.

Remark 1.11 Ifp: E — B is a space over B and h : X — E a continuous map,
then ph : X — B is a space over B and h becomes a map over B. More precisely, if

g=ph: X — B, then q is a space over B and

x X E
e Ls
B =£- B

is commutative. Hence, h is a map over B of q into p.

Now, suppose that ho,hy : X — E are continuous maps satisfying pho = ph,
then hg and hy are maps of q into p over B, where ¢ = pho = phy. In particular, we
can talk of ho, hy being vertically homotopic; namely, hqg, h; are vertically homotopic

if there ezists a homotopy © : X x I — E such that ©g = ho,0; = h; and

X 5 E
o l7
B =£- B

is commutative for every t € I. This is equivalent to saying that pO(z,t) = phe(z)
= phy(z) for allt € I and for all z € X. Thus, two continuous maps hg, by : X — E
satisfying pho = phy are vertically homotopic if there ezists a continuous map © :
X x I — E such that p®; = phqg for allt € I with ©g = hg and ®1 = h;. On the
other hand, if p : E — B is a space over B and hg,hy : X — E with pho = ph,



in general, ho and hy are not necessarily vertically homotopic. Let E = I x {0,1},
B =1 and p: E — B the space over B defined by p(z,0) = z and p(z,1) = z. If
ho,hy : X = I — FE are defined by ho(z) = (z,0) and h1(z) = (z,1), then pho = ph;.
But, there are no homotopies from hq to hy since ho(z) and hi(z) are in different
path components of E. In particular, hg, hy are not vertically homotopic.

An ezample of hg ~ hy but hg #B h; can be obtained as follows. Let E' =
{(z,z2-1)eR?:0<z<1}U{(z,1-2)€eR2:0< z <1} and B = [0,1]. Let
p : E' — B be a space over B defined by p(z,y) = z and define hg : I — E' by
ho(z) = (2,1 —z) and hy : I — E' by hi(z) = (z,z — 1) (here, X =1 and ¢ =1;).

Then, as we saw in Ezample 1.5, hg ~ hy but hy %p h;.

Proposition 1.12 Letp: E — B be a space over B. The followings are equivalent:
1. The space p is a fibre homotopy equivalence viewed as a map over B into lp,

2. The space p is dominated by 1g, and
3. There ezists a section s : B — E, that is ps = 1g, and a vertical homotopy
0:sp~plg.
Proof:

Proof of 1. => 2. Suppose that p is a fibre homotopy equivalence viewed as a map
over B into 1g. Then there exist maps f of p into 15 and g of 1p into p in Cp
such that gf ~p 1g and fg ~p 1p. Notice that the only map of p into 1p is

p. Hence f = p and we get pg ~p 1g. This proves that p is dominated by 15.

Proof of 2. = 3. Suppose that p is dominated by 1z, then there exist maps f :

E — Band g : B — FE over B and a vertical homotopy 8 : gf ~p 1. By
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setting s = g, we have ps = pg = 1g. Also f = p since p is the only map of p

to 1p over B, cf. Remark 1.3. Hence, sp = gp = gf ~p 1. Thus, 3. holds.

Proof of 3. = 1. Assume that there exists a section s : B — E such that sp ~p 1g.
Since ps = 1p, there exists v : ps ~p 1g; namely, ¥(b,t) = ps(d) for all t € I.

Thus, p is an equivalence in Cg and hence p is a fibre homotopy equivalence.Ol

Definition 1.13 A space p : E — B over B is called shrinkable if p is a fibre

homotopy equivalence viewed as map over B into 1p.

Examples 1.14 Shrinkable Spaces

1. Let E = Bf = {w : I — B} with the compact-open topology (cf. [7], p.286)
and p : £ — B be the space over B defined by p(w) = w(0). For any b € B, let
ey denote the constant path at b in B; namely, e;(t) = b for all £ € I. Define
s : B — E by s(b) = e;. Then, clearly, ps = 15. f we define ® : ExI — E
by O(w,t) = wy, where wi(1) = w(tr), for all T € I, from pO(w,t) = w(0) =
w(0) = p(w), we see that each ©; is a map over B where O:(w) = O(w,1).
Note also that Oo(w) = eu) = sp(w) and ©;(w) = w. Thus, © is a vertical
homotopy between sp and 1g. By Proposition 1.12, i.e. 3. = 1., p is shrinkable.

2. A fibre-homotopically trivial space over B is shrinkable < Y is contractible.

Before proving this, we prove the following lemma.

Lemma 1.15 Suppose Ey -2 B is fibre homotopy equivalent to E, 22 B.

Then, py ts shrinkable & po is shrinkable.
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Proof: Notice that it suffices to show the implication =>. Since p, is fibre
homotopy equivalent to p,, there exist maps f : By — E; and ¢ : B, — E;
over B such that fg ~p 1g, and gf ~p 1g,. Since p, is shrinkable, there exists
a section s : B — E,; with sp; ~p 1g,. Then 0 = fs : B — E, is easily seen

to be a section for p; : E; — B. Moreover, op; = fsp; = fsp1g because

E, - FE
| |
B =£ B
is commutative. Since sp; ~g 1g,, op2 ~p fg ~p 1g,. 0

Now, we deal with the second example.
Proof: Because of Lemma 1.15, we need to show that B x Y 2+ B where

p1(b,y) = b is shrinkable <> Y is contractible.

First, suppose Y is contractible. Then there exists a homotopy H : Y xI — Y
such that H(y,0) =y, for all y € Y and H(y,1) = yo, a fixed element in Y.
Let s: B — B x Y be given by s(b) = (b,y). Then © : BxY xI - BxY

given by ©(b,y,t) = (b, H(y,?)) is a vertical homotopy between lgyy and sp;.

Conversely, assume that B xY -2 B is shrinkable. Then, there exists s : B —
B xY with pys = 1p and sp; ~p 1gxy. Choose some by € B. From pys = 15,
we get s(bo) = (bo,yo0) for some yo €Y. Let @ : BxY xI — B x Y yield a
vertical homotopy between 1pxy and sp;. Then, ©(bo,y,t) = (bo, H(y,t)) for
some continuous map H : Y x I — Y satisfying H(y,0) =y and H(y,1) = yo.

Hence, Y is contractible. a
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Definition 1.16 Let p : E — B be a space over B and a : A — B a continuous
map. Then, we define the induced space p,: E, — B, = A by p.(e,a) = a, where
E, ={(e,a) € E x A:p(e) = a(a)}.

Definition 1.17 A commutative diagram of continuous maps,

F 4 E
o &
A % B

is called a pull-back diagram (or seid to have the pull back property) if given
any pair of continuous maps By : X — E,B, : X — A satisfying pBy = 65,, there

ezists a unique continuous map B: X — F with pf8 = B and qf = Bs.

Remark 1.18 Let p : E — B be a space over B and  : A — B a continuous
map. Let p, : E, — A be the induced space over A, as given in Definition 1.16. Let

&: Ey — E be defined by &(e,a) = e for every (e,a) € E,. Then

E, 2% E
lpc lP
A = B

is a pull-back diagram in the sense of Definition 1.17. Given continuous maps B :
X — E, B : X — A with ppy = ap,, then B(z) = (Bi(z), B2(z)) is in E, for any
z € X. Thus, B : X — E, defined by B(z) = (B1(z), B2(z)) is a continuous map
(note that E, is a subspace of the product space E x A); it clearly satisfies &8 = B
and p.f = fB,. Moreover, the equations &B(z) = Pi(z) and p.B(z) = Ba(z) imply
that B(z) has to be (B1(z), B2(z)) for any z € X. Thus, B is unique. This proves the
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pull-back property for diagram

E, % E
l?a l?
A = B.

Since the pull-back property is a universal property, the diagram above is essentially

determined by this pull-back property.

Remark 1.19 If a : A — B is the inclusion of a subspace A C B, we write
Pa-E4 — A for the induced space which can be identified with p |,~1(4) : p71(A) — A.
This is because E, = {(e,a) € E x A : p(e) = a} and the map 0 : E, — p~1(A)
given by 6(e,a) = e is a homeomorphism with

E. — p(4)

lp"‘ lplp‘l(A)

A =2— 4

commutative.

Definition 1.20 If f : E — E’ is a map over B, the induced map f,: E, — E,
is defined by fa(e,a) = (f(e),a) and we write f4: E4 — E', if a: A— B.

Remark 1.21 The induced spaces and maps form a covartant functor C, : Cg —
Ca(cf. Appendiz, p. 80, for definition of a category). Since C, preserves vertical
homotopies, it induces a functor C, : Cg — Cg4.

Let p,p',p" € 0bjC,f € hom(p,p’),f' € hom(p',p"),a¢ : A — B. Then,
clearly, p, is a map over A; it is continuous since it is a projection. We also

have (Ca(Ff))(e,a) = (ff)a(e,a) = (Ff'(e),a) = fa(f'(e)a) = fafile,a) =



14

(Ca(f)Ca(f))(e,a) whenever ff' is defined. Hence, C, : Cg — C4 is a covariant
functor.

Let f,g: E— E' be mapsover B,a: A— Band D : f ~g g. We want to show
that there ezists a vertical homotopy over A from f, to go- Define D, : E, X I —
E, by D,((e,a),t) = (D(e,t),a). Then, p’D(e,t) = p'Di(e) = p(e) = aa) and
therefore D, is well defined and clearly, it is continuous. Moreover, D,((e,a),0) =
(D(e,0),a) = (f(e),a) = fa(e,a), Da((e,a).1) = (D(e,1),a) = (g9(e),a) = ga(e, a),
and p,D,((e,a),t) = p,,(D(e,t),a) = a = po(e,a) for allt € I. Hence, Dy : fo ~4
Jo-

A similar argument shows that C, is a functor, that is, for p,p’ € objCs, f €
hom(p,p), Ca(p) = Po : Ea — A; Ca(f : E — E') = fa : Es — E, and Ca(p) = pa;
Calfl=fol ={g: Ba — E{ : g =4 fa}-

541
a°
Q)
R}
—— 1
.

; - F
Aa'{; o= o B’{'
—— ——
inCA m CB

Definition 1.22 If P is a property of continuous maps, then we say thatp: E — B
(respectively f : E — E’') has the property P over A C B ifps (respectively fa)
has the property P. In this sense, we use, for ezample, “p is trivial over A”, “f isa
fibre homotopy equivalence over A”, and so on. We say that f has the property P
locally if every b € B has a neighbourhood V such that f has the property P over V.
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For exzample, one can combine this definition with Definition 1.4 and thereby obtain

the definition of a locally trivial space over B.



16

Chapter 2

The Section Extension Property (SEP)

Definition 2.1 A halo around A C B is a subset V of B such that there ezists a

continuous function T : B — I with A C 771(1) and V¢ C 771(0) where V¢ = B\V.

Definition 2.2 A topological space X is called normal if any disjoint closed subsets
A and B can be separated by disjoint open neighbourhoods; that is, there exist open
subsets U and V of X suchthat ACU, BCV andUNV =¢.

Example 2.3 Halo

1. Every subset V C B is a halo around 4.
Proof: Take 7 : B — I by 7(b) = 0 for all b € B. Then ¢ C 771(1) and
Ve C B =77Y0). o

2. Let B be normal, A closed in B. Then, any neighbourhood V of A is a halo

around A.

Proof: Since V is a neighbourhood of A, there is an open set U of B such

that AC U C V. Then C = B\U is closed in B and AN C = ¢. Hence,
by Urysohn’s Lemma, there exists a continuous function 7 : B — I such that
7(a) = 1 for all a € A and 7(c) = 0 for all ¢ € C. For this 7, we have
AcC t7Y(1) and B\V Cc B\U c 7(0). O
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3. Let 7 : B — I be continuous. Then, V' = r71(0,1] is a halo around r~[e, 1]
for every € > 0.
Proof: Let A = r7![¢,1]. Define 7/ : B — I by 7/(b) = min(1,17(d)). Then,
be A= 1r(b) > 1, hence 7(b) = min(1,27(b)) =1 and b € V¢ = 7(b) =
0 = 7(b) = min(1,0) = 0. Since the minimum of two continuous real valued
functions is a continuous function, 7’ is continuous. Also A C 7~!(1) and

Ve C r=1(0). =

Definition 2.4 A family {A,}aes of subsets of a topological space X is said to be
locally finite if for any z € X, there ezists a neighbourhood U, of =z in X with the
property that I(U;) is finite, where I(U;) = {a € J : A, N U, # ¢}.

Definition 2.5 Let {As}acs be a covering of X. A covering {B}aen is said to be
a refinement of { A, }acs if for each A € A, there ezists some o € J, depending on

A, with By C A.; equivalently, if there ezists a map § : A — J with By C Agy)-

Definition 2.6 A Hausdorff space X is said to be paracompact if every open

covering of X admits an open locally finite refinement.

Definition 2.7 Let X be a topological space and f : X — R a real-valued function
defined on X. The support of f, denoted by supp(f), is the closure of the set
{r € X : f(z) # 0} in X. Thus, = &€ supp(f) implies that there ezists an open
netghbourhood U, of z with f(U;) =0.
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Definition 2.8 Let A = {Aa}ae; be a covering of a topological space X. A parti-
tion of unity is a family F = {fy : X — I}seca of continuous functions defined on

X with values in I satisfying

1. {supp(fr)}sren is a locally finite family of (closed sets in X ), and

2. Laeafis(z) =1 forall z € X.

Note that the above sum makes sense since it is a finite sum.

If further, {supp(fa)}area is a locally finite refinement of A, then F is said to
be a partition of unity subordinate to A. A partition G = {ga }aecs of unity is
subordinate to the cover A of X with the same index set if supp(g.) C

Ag for alla e J.

Definition 2.9 A (not necessarily open) covering {Vi}iea of B is called numer-
able if it admits a refinement by a locally finite partition of unity, that is, if there
ezists a locally finite partition of unity {x., : B — I}.er such that every set =;(0,1]

is contained in some V) (Dold calls such a partition of unity e numeration of

{Valsrea ).

Example 2.10 Numerable Covering

1. Paracompact (respectively normal) spaces are characterized by the fact that
every open covering (respectively every locally finite open covering) is numer-

able.

Before proving this, we need some preliminaries.
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Lemma 2.11 Shrinking Lemma
Let {Aa}aes be a locally finite open covering of a normal space X. Then, there

is an open covering {B,}ocs of X such that B, C Ay for each a € J.

Proof: Well order J. We will define a family {B,}.cs of open sets in X, by

transfinite induction, such that

z) B,CcA,forallaecJ

#) for each o € J, the family formed by the B) for A < a and by the A4, for

A > ais an open covering of X.

Let v € J be fixed. Suppose that we have defined the B, for a < v so that
the both conditions are satisfied for all @ < 4. We want to construct B, that

satisfies the conditions above.

First, we will show that the B,,a < v and A4, > v form a covering of X.
Since {Aq}aes is a locally finite cover of X, for each £ € X, there are only a
finite number of indices A € J such that z € Ay, say A; < A2 < ... < A,. Let
A be the largest of the A; such that A\; < 4. If 2 < n then, we have z € A4,,
and A, >, and if A = n, then A, < v and therefore the inductive hypothesis
X = (Urca, Br) U (Ux>a, Ax) shows that z belongs to B, for some A < A, <«
since z € A, for any A > \,. Hence X = (UpcyBa) U (UazyAa).

Let C = (UscyBa) U (UasyAa). Then, C is open, and AS C C since C U A, is
an open cover for X. Hence, there exists an open set V such that A C V C
VcC. Ifweput B, = (V),, wehave B, CV°C A, and BE =V CcC =
BiNC°=¢ = B,UC = X, so that the B, such that @ < v and the A, such



that o > v cover X.

Thus, there exist open sets {8,}acs of X satisfying the above conditions )
and ). To prove the Shrinking Lemma, we have to show that Uy,esB, = X.
Given any z, there exist only finitely many elements A\; < --- < A, in J with
z € Ay, Thus, z & A, whenever A > ). From (Ua<i, Ba) U (Ussa, 4r) = X,

we see that z € Ua<i, Bo. Hence, the Shrinking Lemma holds. )

Proposition 2.12 Existence of a Partition of Unity
Given any locally finite open covering {Aa.}aes of @ normal space X, there

ezists a partition of unity {f.}aes on X subordinate to the covering {As}acys-

Proof: By the Shrinking Lemma above, there exists an open covering { B, }acs

of X such that B, C A, for each a € J. It is clear that the covering { B, }aes
is locally finite (since {Ba}aes is a refinement of {As}ecs and {As}aeys is
locally finite). For each a € J, let C, be an open set of X such that B, C
Cy € C, C A,. By Urysohn’s Lemma, there exists a continuous function
go : X — I with g,(B,) C {1} and g.(X\C.) C {0}, that is, 31(0,1] C C,.
Thus, supp(ga) C Ca for all a € J. Since {B,}aes is a covering of X, we have
Laesga(z) 2> 1 for each z € X. This sum makes sense since { B, }qes is locally
finite. Let fo(z) = % for all @ € J and for all z € X. The function f,
is well-defined since ¥,es9.(z) # 0 and it is continuous since each « € J, g, is
continuous. Then, the f, form a partition of unity subordinate to the covering

{As}ees. (Note that by construction, supp(fa) C Ca for all € J is locally
finite, fa(z) 2 0 for any z in X, and Zsesfa(z) = 1.) |
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Theorem 2.13 Every paracompact space is normal.

Proof: First, we prove the regularity. Let a be a point of a paracompact space
X and B be a closed subset of X disjoint from a. Then, for each b € B, there
exists an open neighbourhood Uy of b such that a & U, since X is Hausdorff.
So, {Us}seB U X\ B is an open cover for X. Let C be a locally finite open
refinement and D = {U € C : U N B # ¢} the sub-collection of C consisting
of all elements of C which meet B. Thus, D is a family of open sets in X and
D € D = a € D, since D intersects with B, D lies in some U, whose closure
is disjoint from a. Let V = Upep D, then V is an open set in X containing B.
Since D is locally finite, V = UpepD is disjoint from a. Thus, X is regular,

that is, V, X\V are disjoint open sets of X containing B, a, respectively.

To prove the normality, repeat the same argument replacing a with a closed

subset A and the Hausdorff condition with the regularity. 0O

Corollary 2.14 Given any open covering {Aq.}ecs of a paracompact space
X, there ezists a partition of unity {fa}acs on X subordinate to the covering

{Ac}aes (with the same indez set).

Proof: Since X is paracompact, there exists a locally finite open covering
{Uxr}sea of X which refines { A, }aecs. We choose a set theoretic map 6 : A — J
satisfying Uy C Ag(y) for all A € A. From the Proposition 2.12, there exists a
partition of unity {g\ : X — I} with supp(gr) C Uy, forall A € A. Let
fa = Tago~1(a)9r = Tg)=agr- First of all, observe that f, is continuous from

X into I. To see this, notice that any z € X admits an open set V. with
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A(z) = {A € A: V; NU, # ¢} finite. Then clearly fa.|v. = Zieca(zm)ns-1(a)9» is
a finite sum. Hence, f, |v. is continuous. From gx = 0 and ¥ eagx = 1, we see

that 0 < f, < 1.

It is clear that the set {z € X : fo(z) > 0} is the same set as Ujgg-1(a){z :
gr(z) > 0}. Since the family {z : g\(z) > 0} is a locally finite family of sets in
X, we have Cl(Ujxgg-1(a){T : ga(z) > 0}) = Useg-1(o)Cl{z : gr(z) > 0}. Thus,
supp(fa) = Uregs-1(a)supp(gr) C Uies-1(a)Us C Aa- Hence, {fo : X — I}aes
are continuous functions with supp(f,) C A, for all « € J. Moreover, a #
o = 071(a) N0 (a’) = ¢ and therefore Tocsfa = Treagr = 1. This shows
that {fa : X — I}.csis a partition of unity subordinate to {As}acs (With the

same indexing set).

This completes the proof of 1. in Example 2.10 since in both cases, the con-

verses are obvious. m]

. If {Vi}sea is 2 numerable covering of B and if @ : X — B is continuous, then
{e"'(VA4)} is a numerable covering of X.

Proof: Let z € X, then a(z) € V, for some A € A, and therefore z € a™1(V}).
Hence {&~1(V3)}aea covers X. To see if {&~1(V))}rea admits a refinement by
a locally finite partition of unity, define =/ : X — I by n/, = m,a for each
v € I’ where {m,}er is a partition of unity subordinate to {V\}sea. First note
that supp(r!) C a~!(supp(x,)). For a(z) € B, there exists an open neigh-
bourhood U, C B of a(z) which intersects with only finitely many supp(=.),
say, 71, .- ., Hence the open neighbourhood U’ = a~!(U;) C X of z inter-

sects at most k of &~ (supp(r,)); namely, a1 (supp(r., )); ..., a~(supp(m, ).
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Clearly, we have Z,erm!(z) = Z,ermya(z) =1 since a(z) € B. Thus, {x},er
is a partition of unity on X. Since {7} er is a refinement of {Vi}ea, there
exists 0 : A — T' with supp(w,) C Vi) for all ¥ € I'. For the same 6§, we get
supp(w)) C o~ (supp(w,)) C a ' (Vy(n))- This proves that {a"}(Vi)}aea is 2

numerable covering of X. a

Definition 2.15 A4 spacep : E — B over B has the Section Extension Property
(SEP) if the following holds. For every A C B and every section s over A which
admits an ezrtension as a section to a halo V around A, there ezists a section S :

B — E over B with S|4 = s. We refer to such an S an eztension over B of s.

Remark 2.16 In particular, if p: E — B has the SEP then p always has a section
by taking A= =V.

Proposition 2.17 Suppose p : E — B is dominated by p’ : E' — B. Assume p’ has
the SEP. Then so does p. (In particular, every shrinkable space has the SEP since
1p has the SEP.)

Proof: Since p’ dominates p, there are maps f : E — E’, g: E' — FE over B and a
vertical homotopy © : gf ~p 1g. Let AC B and s: A — E a section over A which
admits an extension to a halo V. Let 7 : B — I be a haloing functionand s’ : V — E
the extension of s. We ought to find a section S : B — E with S|4 = s|4. By above
Example 2.3(halo), 77%(0, 1] is a halo around 7~%[%,1] and 7~2(0,1] C V. Note that

fs': V = E'is a section. Since V > r7(0,1], V is also a halo around v7%[,1].



24

Since p’ has the SEP, there is a section S’ : B — E' "l = 8 l,_1[_;, -

Now define S: B — FE by
95'(b) ifr(b) < 3,

1
5(b) = :
O(s'(b),27(b) — 1) if (b) > 1.
Then, for 7(b) = 3, we have gS'(b) = gfs’(b), and O(s'(b),27(b) — 1) = O(s'(d),0) =
gfs'(b). Hence, S is well defined and continuous by the Gluing Lemma. Using the

fact that pgf = p’f = p, we see that

pS'(b) = pgfs'(b) =ps'() =b i r(b) < 3,
pS(b) =
pO(s'(d),27(b) — 1) = ps'(b) =b ifr(b) >3
Thus, S is a section; hence p has the SEP, that is, S|4 = s. a

Proposition 2.18 Let p: E — B be a space over B, BC B andr : B  — B a
retraction. If the induced map p, : E. — B’ has the SEP, so does p.

Proof: Let A C B, V a halo around 4, 7 : B — I a haloing function, s : A — E
a section and § : V — FE a section extending s. We want to find an extension
S :B — E with S|4 =s. Let A’ = r"}(A), V' = r"}(V) and 7 = 7r where
7' : B’ — I. Then V' is a halo around A’ in B’ with 7' : B’ — [0,1] as the haloing
function.

A—>V—B E
NN, AP
Al>- VB’
Note that E. = {(e,¥') € E x B' : p(e) = r(¥)}. Also note that p(5r(v’)) = r(v').

Hence (3r(v'),v') € E x B’ satisfies p(3r(v’)) = r(v’) and therefore (3r(v’),v") € E,.
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Also, p.(e,b') = ¥ for any (e,¥’) € E,. Hence p.(3r(v'),v") = v'. It follows that
s': V' — E, defined by s’(v") = (§r(v’),v’) is a section of p, over V'.
Since p, has the SEP, there is a section S’ : B’ — E, with S'|y = s'|ar. We

know that the diagram

- |7
B . B

is commutative, where 7(e,d’) = e for any (e,b’) € E,. Let S(b) = +5’(b) (note
that B is a subspace of B’). Then pS(b) = p#S’'(b) = (rp,)S’'(b) = r(b) = b. Hence
S : B — E is a section of p. Also for any a € A, since A C A’, we have S'(a) =
s'(a) = (3(a),a) = (s(e),a) and therefore S(a) = 7#5'(a) = s(a) for all a € A. This

proves Proposition 2.18. m|

Example 2.19 SEP

Ifp : E — B is dominated by a trivial space B x Y with (YY) = 0 fori < n
(1o(Y) = 0 means that Y is pathwise connected), and if B is a reiract of a CW-
complez of dimension < n, then p has the SEP. (Here, n is either an integer > 0 or

n = 0o.)
Before proving this, we need some basic definitions and properties.

Definition 2.20 Let B*= {z € R":||z||< 1} and S""*= {z € B" :||z||=1}. Then B*

is called an n-ball and S™! is called an (n-1)-sphere.

Definition 2.21 Let X be a Hausdorff space. A CW-decomposition of X is a

set € of subspaces of X with the following properties:
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1. X = Uecsge,e # € = eNe’ = @, that is, £ is a covering of X by pointwise
disjoint sets.
2. Every e € £ is homeomorphic to some Euclidean space R, where the number

le| is called the dimension of e. The sets e € £ which are homeomorphic
with R™ are the n-cells, and the union X"= Uj.<cne is the n-skeleton of the

CW-decomposition.

3. For every n-cell e € &, there ezists a relative homeomorphism @, : (B*,8*1) —
(X*tue, X™1).
Remark 2.22 Condition 3. refines Condition 2 in the following sense: not
only is e homeomorphic with R™ = B* — S™~, but also a homeomorphism can
be chosen which extends to the boundary S™%, that is, on S™!, &, need not
be homeomorphic but ®.(S*~1) C X"~ 1. The function P, is called a charac-
teristic map for e, and .= ®. [gn-1 : S*"! — X! gn attaching map for

e.

4. (Closure finiteness)

The closure € of every cell is contained in a finite union of cells.

5. (Weak topology)
A subset A C X is closed in X if and only if AN E is closed in € for every
cell e € €. Equivalently, a map f : X — Y is continuous if every f|z is

continuous.
A Hausdorff space X together with a CW-decomposition € is called a CW-

complex or CW-space . The dimension of a CW-complez, dimnX, is the least

integer n such that X™ = X; if no such n ezists, then dimX = oco.
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Definition 2.23 The standard g¢-simplex A, consists of all points z € RI*!
such that 0< z;<1,i=0,1,---,q, and 3, z; = 1, where R?*! denotes Euclidean
space and {z;} are the coordinates of * = (z¢,21,---,z,) € R¥*:. The unit points

e’=(0,---,0,1,0,---,0) of R?*! are called the vertices of A,.

Definition 2.24 A continuous function f of A, into R™ is called affine linear if
there ezists a linear map F : RY"! — R™ in the usual sense such that F IA‘I = f. For
a given set of points Py, Py,---, P, € R", the unigue affine linear map g : A; — R™
with g(e') = P:, namely, g(z) = TL, z:P;, is called an affine linear simplex with

vertices P, P,,---, P,.

Definition 2.25 The j-th face of A, is the (affine) linear map & =€ : Ay — A,
defined by
. e ifi < 3,
(&) = fi<j
el ifi>j,

where 3 =0,1,---,q.

Definition 2.26 Let X be a topological space. A singular g-simplex of X is a
continuous map o = 04 : Ny — X,q > 0. We consider the free abelian group Sy(X)
which is generated by the set of all singular g-simplices.

Define 9, : §54(X) — S3-1(X) by 94(0) = Tl o(—1)(0€)) for each singular g-
simplez o, and then extending linearly to all of S,(X). The homomorphism 9, is

called a boundary operator .

Remark 2.27 Any continuous map f : X — Y induces homomorphisms f. :

S(X) = 5,(Y) given by f.(o) = fo for every singular g-simplez o : Ay — X.
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Definition 2.28 Let X be a non-empty convez subspace of FEuclidean space R™. Let

Pe X. Foreveryog: Ay — X,q >0, define (P-0,) : Agy1 — X by

P if.’to = 1,
(P o) (Zo,T1,- -, Tg41) =
ZoP + (1 — zo)og(75=, -+, B28)  ifzo # L.

This defines homomorphisms P = P, : §)(X) — S;41(X), Py(0) = P - o, called the

cone construction.

Remark 2.29 Intuitively speaking, P -o is obtained by erecting the cone with vertez

P overo.

Definition 2.30 For every space X, we define homomorphisms B, : Sy (X) —
S¢(X), g = 0, called the barycentric subdivision, as follows:

1. Bg = 1g,x, and for ¢ > 0,

2. Bgiq = By - By—1(0%,), and

3 Be(ag) = (09)=(Bqty),
wherei, € 5;A, denotes the identity map of A,, (0¢)« : Si(A,) — So(X) is induced

byo,: Ay = X, B,= (q_}_—l, ?413""’?-}-—1) = ?=Oq% is the barycentre of A,, B,-

is the cone construction, and o, : Ay — X is an arbitrary singular simplez.

Remark 2.31 Loosely speaking, the barycentric subdivision of o, is obtained by pro-

Jecting the barycentric subdivision of 0o, from the centre of o,.

Definition 2.32 The diameter of 7 : A, — R* is defined by

lirll= maz{lr(z) — r(¥)ll: 2,y € A,}.
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Lemma 2.33 Ifo: A, — R is a linear simplez with vertices Py, P,,---, P,, then
1. ||[P — P'||< mazoci<q [|P — Pi| for all P, P’ € 0(A,), and
2. lloll= mazogi i<q 1P — Fill-
Proof:

1. Let P' = £1 .z P: with z > 0 and $%, z} = 1. Then,

1= T

1P — P 1P — Eico 21 P =[Zic0 zi(P — P
< Yo [P ~ Pl oo zi(mazocic{IIP — P}

mazoci<e{||P — Fi[}-

2. It is clear that [|o]l= mazppes(a){||P — P'||} = mazoci i< {||P: — Pj||}. For

the other inequality, by applying the property above,
llell = mazppesa{llP — P} < mazocic {||P — Fill}
< mazogijgq{[IP — Fill}-

Hence, the equality holds. a

Lemma 2.34 Let 0 : A, — R be a linear simplex. Then B(c) contains only linear
simplices of diameter less than or equal to i ||o||. In particular, B"(i;) contains
only simplices of diameter less than or equal to ()™ el

Proof:

1. Given 7 : A, —+ R/, P € R/, and a linear map f : R' — R*, we have f(P-7) =
(fP)-(fr).
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Recall that P- 7 : A,y — Rf by

P if.’Bo=l,
P-7(zo, -, Tr41) =
.'BQP <+ (1 -— 1'0)1'('51— L z—ﬁi) if.’l:o ;é 1.

1~zp? ?1—zg
SO, we get f(P'T)(zﬂa M ’zr-f-l) = f(P) = ((fP)'(fT))(307 ot 1xr+1) isz = 17

and for z¢ # 1, we have

f(P . T)(:BO, e 7zr+l) = f(zOP) + f((l - 20)7’(1 flzo’ T lx:+;o))
= 2of(P) + (1 — zo) f(r(—2—, .-+, oL y)

1—3‘0, ’l-ZQ

= ((fP)- (fr))(Z0, -+ 1 Zr41)-

. f7r:A, - R'is a linear map with vertices Qq,---,Q,, then P-7:A,;; — R’
is linear map with vertices P, Qo,- - -, @>.

Let (zo,--,zr+1) € A, with z; = 0 or 1,0 < 7 < r + 1. Then, we have
P-7(zg, -+ ,2r41) = Pifzo=1and for z; =1 and 1 <7 < r + 1, we have

P'T(307"'azr+1) =T(0""’071707"'70) =Qi-

- Using 1. above, 8,0, = 04(8,1,) = 04(B, - B4-1(0%,)) = (04By) - (6464-18%,)
= (04B;) - (B1-1040%) = (04B,) - (B-104 Tjco(—1)€) = Tio(-1)(0,B,) -
(B4-104€’). Thus, B,0, contains only simplices of the form ¢’ = (¢, B,)- 7 where
7 is contained in some B,;_1(o,¢’).

By the Lemma 2.33 above, ||o’||=||P — Q|| where P,Q are either vertices of ,
or 0,B,. If P,Q are both vertices of 7, then, using Lemma 2.34,

g—1 o q—1 q
le'll=llP — QU< —— llo€’l|< =— Jloll< —— lle]| -
q q qg+1
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If one of them, say P = 0,B,, then ||o’||=|| P — Q||<|| P — P:|| for some .

Hence, we have,

1
ol = IIP—QIISII%B — Pf[=[I(X3=0 =015 — £l

Ehmo 7 (B — Rl —-2 w=o 1P — Pll_~———llall

Now we will deal with Example 2.19.

By Proposition 2.17, we can assume £ = B x Y, and by Proposition 2.18 assume
that B itself is a CW-complex of dimension less than or equal to n.

Let AC B,V ahalo around A in B with asections: V — E,ie. s[4 :A— E
is a section which admits an extension s to a halo V, and 7 : B — I a haloing
function. Composing the projection B xY — Y with s, weget amapo:V =Y
with s(v) = (v,0(v)),and we want tofind 2 : B— Y with |4 = o |4-

Let B* denote the i-skeleton of B, and T* = B*Ur~'[],1],7 =0,1,- - -. Clearly,
A C 77I(1) c T%Vi. By induction on z, we will construct ' : T¢ — Y such that
T gi-i = Xt |gii ,i = 1,2,3,---, and £ |4 = o|4,i = 0,1,2,---. The first
equation shows that & = lim; %" is well defined and continuous, and the second
gives X |4 =0 |a.

To start the induction, define X° to be ¢ on 77![},1] and let £° have arbitrary
values on the remaining vertices of B. Now, assume that £*~! has already been found
for ¢ > 0. Pick an i-cell €}, and let & = & : A’ — B be its characteristic map,
where A is the standard i-simplex which is homeomorphic to B. Note that we can

make /N so large that every simplex which meets (7®)~![4£],1] lies in (7@) (5, 1]
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by Lemma 2.34. Thus, for large NV, the N-fold barycentric subdivision of A? contains
a subcomplex K with (@)} [#],1] C K C (@)~ [, 1].

Notice that the map £*~'® is defined on K since ®(K) C 77![5,1], and it is
defined on the boundary Af of Af since ®(Af) C Bi~!. Thus, £1® is defined on
the subcomplex K U A? of A’. Since 7,(Y) = 0 for g < i, £*"1® can be extended
by the usual skeleton-after-skeleton construction to £ : A* — Y. Apply the same

process to all i-cells €}, and define

Si(z) = Ti-1(z) for z € BtU T[S, 1] D BT U A,
Ti(®"Y(z)) forz €€l

The function ¢ is clearly well defined by the construction, that is, €} N (B*1 U
771[&1,1]) C é UK. It is continuous on closed é-cells and therefore on B*. Moreover,
it is continuous on the closed subset 77![&,1], hence on the union T¢ = B‘U
T #2,1]. It is clear that 5F satisfies the conditions Tf|gi-: = %% |giw1 ,i =
1,2,3,--- and &' |4 = 0|4 ,2 = 0,1,2,---. Thus, as we mentioned above, S : B —
B x Y defined by S(b) = (b, (b)) is a section of p over B. This completes the proof

of Example 2.19. o
Our next goal is to show that the SEP passes from a space B to any “nice” open

subset W C B. First, a technical lemma on patching continuous functions is needed.

Lemma 2.35 Let B be any topological space, p : B — I be continuous and W =
p~1(0,1). Let § : W — I be continuous and suppose that there ezists a §,0 < § < 1
such that for any 0 < € < 6, there ezists an n(e) > 0 with the property 67 [¢,1] C
p~[n(€), 11; equivalently, p(b) < n(€) implies 6(b) < €. Then, the function p: B — I
given by @ lw = 0 and ©(b) = 0 for all b € B\W 1is continuous.
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Proof: We know that W is open and ¢|w = 6 is continuous, so ¢ : B — [ is
continuous at every point in W. To show the continuity of ¢ on B, we have only to
check the continuity of ¢ : B — I at every point of B\W. Let b € B\W. Then,
©(8) = 0. We need to check that for any € > 0, ™[0, €) is a neighbourhood of & in
B. Without loss of generality, we can assume € < §. We show that o[, 1] is closed
in B.

Since ¢(b) = 0, for b € B\W, p~'[¢, ]]JN B\W = ¢; in other words, ¢~ '[¢,1] C W.
Since ¢ = 6 on W, we see that ¢~ 1[¢, 1] C 87 1[¢, 1]. Hence, ¢~ [¢,1] C p~[n(¢), 1] for
some 7(€) > 0. Since ¢ |w is continuous, so is ¢ |p-x[,,(¢)'1]. Hence ¢~ 1[e, 1] is closed

in p~[n(€), 1] and therefore closed in B. Thus, ¢, so defined, is continuous on B. O
Proposition 2.36 Ifp : E — B has the SEP, and if W C B is an open set such
that W = p~1(0,1] for some continuous function p : B — I, then pw : Ew — W
has the SEP.

Proof: We have the following commutative diagram:
Ew - E

e b
w - B
where Ew = {(e,w) € E x W : p(e) = w} and W = p~1(0,1]. Let a be a section
of pw over X C W Then B = tx : X — E is a section of p over X since we have
pB = pia = ipwa = ilx = 1x. Thus, we can restate the proposition as follows:

(*) Let p: E — B have the SEP, p: B — I a continuous map, and W = p~%(0, 1].
Let 7 : W — I be any continuous map and s : 7(0,1] — E any section
of p over 7=1(0,1]. Then, there exists a section S : W — E of p such that
S

i) = S |-
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In the sense of Definition 2.15, 7=1(1) = A and 771(0,1] = V. Note also that
7 is NOT defined on B but on W and the section Sy : W — Ew is defined by
Sw(w) = (S(w), w).

To show (*), we will construct sections S, : B — E, n =2,3,..., such that
i) Sn(b) = Sn-1(b) for p(b) > L7, n = 3,4,.

&) Sn(b) = s(b) for {r(8) > 1 — % and p(b) > 733}, » =2,3,.... Note that this
condition is well defined since p(b) > ;17 implies that b € W, and therefore
7(b) and s(b) are defined.

We impose these conditions since the first implies that S = lmn .o Sn is 2 well-
defined section over W = p~1(0,1], and the second implies that S(b) = s(b) for
7(b) = 1, b € W. Now we start the induction on n.

For n =2, define v/ : B — I by

T(b)p(b) HbeW,
T'(b) =
0 otherwise.
By setting 6(b) = 7(b)p(d), b € W, and 5(€) = ¢, we see that 7’ is continuous on B

by Lemma 2.35 above. Notice that the set
{beB: T(b)>l——a.ndp(b) >—}n_2—{b€B 'r(b)> and p(b) > }

is an open subset of B contained in 7'~![%, 1]. Thus, if we find a section S, : B — E

such that S,

reiflg] =S I,.,_l[%,ll, we are done the case n = 2. Let V' = {b € B :
7/(b) > 0}, then V' C W. Note that s|y- is a section of p over V’ and V" is a halo
around 7'[%,1]. Since p has the SEP, by assumption, there exists a section S, such

that S, l""_l[%vll =s

P=1[3,1] > hence the case n = 2 holds.
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Suppose that sections S5, ..., S, have been constructed satisfying the two condi-
tions ) and z). We will define An4; C B and V41, a halo around 4,4, in B so that

we can conclude, by the SEP for p, that there exists a section Sp4; : B — E with

Snt1 [Angs = Snt1 l Ang: Where sqyy @ Voyy — E is a suitably constructed section over
Vat1 of p. Thus, sp41 I Any 18 @ section of p over A,4; which has an extension to a
halo V4, around An4; in B. Of course, we still need to verify the two conditions z)

and z) above for Sp;.

For this, we consider the functions A,, g, : I — I defined by

L ; 1
n+l ift<1-2,
An(t) = nlﬁ ft>1-— n+1’
t4d-1, 1 1 .
m + I n+3 n+1) Othemse'/
n ift<1-L,
un(t)= n—:-Z. 1ft>1——+-i’

t+d-1 1 -
= +1 + -;—n-;— = +2 — +) otherwise.

The graphs below show the relation between the functions A, and .

I/n Ax(t)
1/(n+1) Ua(t)
1/(ﬂ+4)\ .......... 1 /(n+2) 1/(n+3)
1-1/n

>t

1-1/(o+1) 1
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It is easy to check that both A, and u, are well defined and continuous. Then, we
have 0 < 715 < An(t) < pal(t), pa(t) < L and An(2) < =5, forall ¢ € I. Now,
define V41 = {b € W : p(b) > Au(7(b))}. Observe that b € Vo = Au(7(8)) >
1 — 2 orp(b) > n1? Note that 7(b) < 1 — = = Au(7(b)) = ;37 by definition of

dn = p(b) > 71 Thus, Vapr C{be W :7(8) > 1 — LY U{be W: p(3) > 17}

Define a section sp4; : Voy1 — E over Vyq of p by

Sa(b) if b€ Vay1 and p(b) > 25,
s(b) ifb€ Vo1 and 7(b)>1— 1.

Sn1(b) =

Recall that s : X = r~1(0,1] — E is a section of pover X and S, : B — E is a
section of p over B satisfying the two conditions ¢) and #). Note that the condition
z) of S, guarantees that s,y is well defined. Let Ap4q = {6 € W : p(b) > pa(7(5))},
then An41 C Vayi since g, > \,. As we have mentioned earlier, we want to show
that V.41 is a halo around A, in B. Thus, we have to define a haloing function
h:B—Iwithhis,, =

ve , = 0. We construct such an % in three steps.

1. Define 8 : W — R by B(b) = ﬁg%%ﬁ?@. Clearly 8 is continuous on W
since p, T, A, and pu, are all continuous on W, and u, > A,. Then, the function
f: W — R defined by f(b) = min(1, (b)) is continuous on W. A couple of

facts need to be mentioned. First,

b€ An1 & p(b) > pa(7(8)) >0

& p(b) = An(7(8)) > un(7(8)) — An(7(8)) > 0

o) = An(r(®)
& BB = B =)
& F(8)=min(l,B(8) = 1,
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and

be W\Anta & p(b) < pa(7(d))

& p(B) = Mn(r () < pin(r(8)) = Mn(7(8))
p()) = Mn(r(®)  _ |

Ea((B) — Mn(r () ~

& f(5)=B).

<

Thus, we can rewrite f as

1 if b€ Any1,
HOE “
B(b) ifbe W\Appr-

Secondly, b € Vo1 = p(b) > An(7(8)) = p(b) — An(7(8)) > 0 = f(b) > 0 since
pn(T()) — An(7(d)) > 0. Thus, f(b) > 0, for all b € Voya. Also, b &€ Voyy =
p(b) — A (7(8)) <0 = f(b) < 0. Note that f(b) <1, forallbe W.

. Since f is continuous on W, g(b) = maz(0, f(b)) is continuous on W. Since

f(b) <1, we have 0 < g(b) < 1. Explicitly,

1 if b € Anya,
g®)=4 0 if b € W\V,q1 (since f(b) < 0 on W\V,;;1),

B(b) otherwise.

. Observe that for b € Vp41, we have p(b) > A(7(b)) > ;3. Define h : B — I by
hilw =gand h l B\w = 0. Notice that A~[¢,1] C Vo4 C p[;35, 1] whenever
0 < € < ;3. Hence, k is continuous on B by Lemma 2.35 above (take

6= 7z =n(e)
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Thus, V,4; is a halo around A,4; in B with the haloing function k. By the SEP for

p, there is a section S,y : B — E with Spq1 |_4n +1 = Sn+l [Any; - We now check the

conditions z) and z).

i) p(b) > X = p(b) > pn(r(d))(because L > un(t), forallt € I) = b € Any1 =
Sn+1(b) = sn+1(b) (by the very construction of Spy1). Also, from Apy1 C Vaga
and L > -3, any b with p(b) > % automatically satisfies b € Voya, p(0) > 35

By definition, sp4+1(b) = Sn(b) then.

g) 7(b) > 1 — 77 and p(b) > L5 = p(b) > 25 = pa(7())) = b € Anpr =

Sn+1(b) = sp41(b) by the construction of S,4;1. Also, 1 — ﬁf > 1 - 1. Hence,

T0) > 1—Zy b€ A, T(0) > 1 -2 b€ Voyy, 7(8) > 1 -2 = 5,44(b) =

sn(b). Hence, S,41(b) = s(b).

This completes the inductive step.
Now, by setting S = limp—oc Sn, We get a section S from B to E such that
S I-,——l(]_) =s If-x(l) and therefore the claim holds. o
The last proposition may be thought of as passing from a global property to a
local property. We now turn to the main theorem of this chapter, which may be

thought of as passing from a local property to a global one.

Theorem 2.37 Section Extension Theorem
Let p: E — B be a space over B. If there exists a numerable covering {V) }aea of

B such that p has the SEP over each V), then p has the SEP.

Proof: Note that {V)}1ea numerable implies that there exists a locally finite partition

of unity {7 : B — I},c4 such that each 77 1(0, 1] is contained in some V4, A = A(a).
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Since p|,-1(v;) : p~}(VA) = Vi has the SEP, Proposition 2.36 implies that the induced
space, Pr-101) © Exzioy) — 7a (0, 1], has the SEP. So, without loss of generality, we
can assume that the covering {V)}.ea itself corresponds to a locally finite partition
of unity {m) : B — I}aea, that is, VA = 732(0,1]. .

Let A be a subset of B, V a halo around A with a haloing function 7 : B — I,
and s : V — F a section of p over V. We want to find a section S : B — E such
that S|4 = s|a. Define n} : B — I by #{(b) = (1 — 7(b))x(b), and let x5 = 7 and
A’ = AU{0}, the disjoint union of A and {0}. Then, 75 2(0,1] = {b € B : m(b) #
0 and 7(b) # 1} = {b € B : 7(b) # 1} N n7*(0,1]. Note also that T year 74(b) =
SreaTh(8) + Th(E) = Theall — 7(BNmB) + 7(8) = (1 = 7(8)) Taea ma(b) + 7(8) =
(1—7(d))-1+7(d) = 1 for all b € B and therefore {7} } ea- is a locally finite partition of
unity. (The local finiteness comes from {7 }rea being locally finite.) For any A € A,
(1—-17) I,,;1 ©1] ° 7371(0,1] — I is continuous. Writing 4, for (1 — 7) Lr;‘(cu]’ we see
that 6571(0,1] = =4%(0,1]. By Proposition 2.36, Ey-100) — 651(0,1] has the SEP;
equivalently, E',,:A-1 o1 — 751(0, 1] has the SEP.

For every I' C A’, define nr : B — I by nr = 3, #’,. Consider the family
F of all pairs (T',Sr) where 0 € I' € A’ and Sp : 7%(0,1] — E is a section with
Sr I.,-1(1) = sl.,—z(l). Note that ({0},s) is such a pair for s = Syo3 : 75 '(0,1] =
771(0,1] — E is a section since V D 77(0,1]. Hence the collection of pairs (T, Sr)
is not empty. Now we construct a section S : B — E with S|4 = s|4 using the
following steps.

Step 1: Define a partial order on F and show that any chain of this collection has
an upper bound in F.

Step 2: By Zorn's Lemma, there exists a maximal element (M, Syr) in F. We will
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show that M = A'.

Proof of step 1:
We define (I, 5t) < (IV, Srv) & ' C I and Sp(b) = Sr+(b) at all b € B satisfying
7r(b) = 7+ (8) > 0. Observe the following: if (T, Sr) < (I, Srv) in F, then

1. Sp(b) is defined & b € n£1(0,1] & nr(b) # 0.

2. (b)) = 7r:(8) > 0 = Ter 74(8) = Ly 5,(B)
= Z‘/yel" 7!‘;(6) + &er:\r ‘/T.ly(b) = Eyer'\r Kfy(b) =0= 7l',ly(b) =0 forall v €
\T.

3. Sr(b) # Sr:«(b) = wr(d) # mr+(b) and both positive by 1. above imply that
there exists v € I'"\I such that x| (b) # 0, that is, xr:(b) > = (d).

Let (I'?, Sre)sex be a strictly ordered system of such pairs. Let A = U,esl®. We
want to show that there is a section S : 73'(0,1] — E such that (A,S,) >
(I?,Sre) for any 0 € . We construct Sa as follows: Let b € n3(0,1]. Since
{=%71(0, 1]} rea- is locally finite, there exists an open neighbourhood W; of b which
intersects only finitely many of the sets {75"2(0,1]}aeas, hence only finitely many of
the sets {r}y 1(0,1]}rea. Without loss of generality, we may assume W C 731(0,1].
Let Aq,...,A; be all the elements of A satisfying #372(0,1] N W # é. Since A =
UsesI'?, we can find elements o; € £ for 1 <7 <, with A; € I'’i. Since (T'?, Sre)ses
is totally ordered, one of these 't will satisfy I'% C I’ for 1 < j < r. Then,
Aj € T'% for 1 £ j < r. Writing p for o;, we see that \; €[ for 1 < j < r and
p € X. If 0 € X satisfies (I'°, Spe) > (I'®, Sre), then for any g € I'\I'*, we have

70,1} N Wy = ¢, since (T'?, Sre) > (T'%, Spe;) for 1 < j < r. Hence 7, vanishes
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on W, that is, 7},(8) = 0 for all B € Wj. It follows from observation 3 mentioned
above that Sre [w, = Spe |w,. Thus, for any b € 73%(0, 1], we have an open set W,

of 731(0, 1] with b € W} satisfying the following condition:
(*) There exists a p € £ with Sre |w, = Ste |w, for any (I'°, Spe) > (%, Srs)-

We define Sa |w, = Sre|w, for any choice of such a p. To see Sa is well defined,
let 5,6’ be any two elements of w3'(0,1]; W, Wy are open sets in w3(0,1] with
b € W,/ € Wy and p,p’ are elements in ¥ satisfying Sre |w, = Sre |w, for all
(T, Spe) = (T*, St); Ste |w, = Sre|w, for all (T%,5pe) > (T¥', Spr). Since either
one of (I'*, Sre) > (T¥, Spp) or (T, Spw) > (I, 5re) is valid, we see that Spe =

Srs = Srv, on Wy N Wy, for every o with (T'?, Spe) > maz((T?, S’pp),(I"",Srp:)).
Thus, Sa : 737%(0,1] — E is a well-defined section.

We claim that (A,Sa) = ([9, Sre) for any 0 € . Clearly, A O I' for any
o € . To prove the claim, we have only to show that b € =3'(0,1] N 75+ (0,1],
and Sa(bd) # Sr-(b) imply that there exists some g € A\I'Y with x,(b) > 0. Since
b € m3(0, 1], our earlier discussion shows that there exists a p € T satisfying Sa(d) =
Srs(b) = Sre(d) for all (I, Sps) > (I, Sre). Since Sa(b) # Sre(b), it follows that
(T'?,Sre) > (I'?, Sp<) and that 7,(b) # 0 for some u € I'"\I'°. This u is clearly in
A\I'?. This completes the proof of Step 1.

Proof of step 2:
By Zorn’s lemma, there exists a maximal element (M, Syr) in F. Suppose, if possible,
that M # A’. Let p € A'\M and M’ = M U {u}. Notice that the sets D; = {b €
ma(0,1] : mu(8) < war(B)}, D2 = {b € 734(0,1] : 7,(b) > 7mar(B)} are closed subsets
of 73£:(0,1] with D;UD, = wj5(0,1] and DN D, = {b € 735(0,1] : 7,(b) = masr(B)}.
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Since b € Dy = mar(b) + 7,.(b) = war(b) > 0 with war(b) = 7.(b), we get war(b) >

0 on D,. Similarly, 7,.(5) > 0 on D,. Define ¢ : 73:(0,1] — I by

1 if b€ Dy,
©(b) =
%gg if b € D,.

The function ¢ is continuous on D; and D, separately. Also, on D; N D, mar(b) =
7,(b), hence ¢ is well defined. It follows that ¢ is a continuous function 737(0,1] — I.
Note that (b) > 0 = either b € D; or mp(d) > 0 if b € D;. But as already seen,
Ta(b) > 0 if b € D;. Hence, @(b) > 0 = mpr(b) > 0. Thus, ¢~1(0,1] C n3/(0,1].
Hence Sy l,,,-x(o'l] is a section over ¢~(0,1]. Moreover, D; C ¢~%(0,1]. Notice that
@ I,,;x o) * T2 +(0,1] — I is a continuous function and ©~*(0,1] N #;*(0,1] is a halo
around ~1(1) N 7;1(0,1] in =;%(0,1] with a haloing function 7 = ¢ I,,;x(o'l]. Since
p has the SEP over x;1(0,1], we see that there exists a section S, : 7;1(0,1] — E

with S,,, |¢-1(1)n,;1(0'1] = SM I‘P"‘(l)nﬂil(l).l]' Define SM' : WA-:II:(O, 1] - F by

Su(b) ifbe Dy,
S,(b) ifbe Da.

Sar(b) =

On D; N D,, we have ¢(b) = 1; hence S)r = S, on D, N D,. It follows that Sas is
a section over 755(0,1]. Also, for b € 731(0,1], Sar(d) # Sm(d) = b &€ ©7(1) =
w(d) <1 = 0 < mp(d) < 7w.(d), that is, p € M'\M with 7,(b) > 0. Hence
(M, Sner) > (M, Sp), contradicting with the maximality of (M, Sar).

Hence M = A’. This yields B = n3/(0,1] and hence Sy is a section over B with

Sm IT‘1(1) = Ir-1(1) . o

Theorem 2.38 Let p: E — B be a space over B, A C B, and s a section over A

which admits an extension s’ to a halo V around A. Assume there exists a numerable
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covering {Vi }rea of B\A such that

1. g,kis shrinkable for each ), that is, fibre homotopy equivalent to a trivial space

Vi X Y with contractible Y, or

2. pV*is dominated by a trivial space V) x Y, with 7;(Y)) = 0 for i < nj, and V)

ts a retract of a CW-complez of dimension < nj, n) < co.

Then, there ezists a section S : B — E with S|a = s.
If S,5' are two sections of p with S|lv = S'|v, then S ~g S'relA, provided that, in

case 2, we further have 7;(Y)) =0 for: < ny + 1.

Proof: From the previous results, p has the SEP over each V), and by the Section
Extension Theorem, p -has the SEP over B’ = B\ A. Let 7 : B — [0, 1] be a haloing
function for V around A. Let A’ = B'N717!{3,1] and ' = min(1,27). Then V is
a halo around A’ with a haloing function /. Since A’ C V, s’ |4+ is a section over
A’. By the SEP for B’, there exists a section S’ : B’ — E such that S|4 = s'|a.

Define S : B — E by
s'(b) if r(b) > ¢,

S'(b) i 7(b) < L.

S(b) =

Note that 7(b) > 2 =>be AUA and 7(b)) <1 = b ¢ A= b € B’. Note also that
{beB:7(d)>1}n{be B:7(b) <1} C A’ Let a’ € A', then s'(a’) = S§’(a’) by the
property of S’. Thus, S is a well defined section from B to F and continuous by the
Gluing Lemma. Now, if a € A, we get S(a) = s'(a) = s(a) since s’ is an extension
of s: A— E, hence S|4 = s. Thus, p has the SEP over B.

For the second assertion, let A =B x {0,1}UAXxI,V =B x N{3}uVxlI,
then A C V. Further, V is a halo around A with a haloing function # : B x I — I
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by 7(b,t) = min(r(b) + |2t — 1[,1). To see this, let & € A then & = (a,t), (5,0) or

(b,1), for some a € A, b€ B, t € I. Since we have
1. ¥(e,t) =min(7(a)+ |2t — 1|,1) = min(1 + non-negative ,1) =1,
2. 7(5,0) = min(r(d)+]2-0 — 1|,1) = min(r(b) +1,1) = 1, and
3. 7(b,1) =min(r(b)+|2-1 —1|,1) = min(r(b) +1,1) =1,

7(@) = 1. For b € V¢, we have b = (4,1), for some & € V°. Hence, #(5,1)

= min(r(8) +|2-1 ~1[,1) = min(0+0,1) = 0. Define S: V — E x I by
2

(S(b),t) if (b,t) € B x [0,3),
5(6,t) =1 (5'(8),¢) if (5,%) € B x (L,1],
(S(@),t) if (v,t) eV x I.

Since S |v = S'|v, S is well defined. Since B x [0, 2) and B x (3, 1] are both open,
and (S5(b),t) and (S’(b),t) are both continuous on these open sets, we only have to
show the continuity of $ on V x I. Since §(v,t) = (S(v),t), we have to show that
5-1(0) is open in V where O is an open set containing the point (S(v),t). But,
(S, 1) is continuous on B x I,so O’ = (S,17)7*(0) is open in B x I containing (v, t)
and therefore O’ = O NV is open in V. Thus, § is continuous on V. Hence S is a
section over V. Note that in case 1., (px 11)vyxr is shrinkable. In case 2., (p X 11)v, xr
is dominated by V) x I x Y). Now V) x I is a retract of a CW-complex of dimension
ny + 1. By assumption, m(¥)) = 0 for 0 < 7z < ny + 1. Hence, the result proved
already yields a section $: BxI — E x I with §|; =S5 |;. Define®@: Bx I — E
by ©(b,t) = &5(b,t) where & : E x I — E is a projection by &(e,t) = e. Then, we

get the following;:
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1. ©(b,0) = &S5(b,0) = &5(b,0) = &(S(b),0) = S(b),
2. O(b,1) = aS5(b,1) = &5(b,1) = &(S’(b),1) = §'(b), and

3. O(a,t) = &5(a,t) = O(a,t) = &S(a,t) = &(S(a),t) = S(a) for all t € I and
foralla € A,

since (5,0), (b,1) and (a,t) € A. Thus, © : S ~p S’ rel A since Sy(b) = 5(b,t) is a

map over B. o

Remark 2.39 There ezist spaces over B which are not locally trivial (cf. Defini-
tion 1.22) for which the corollary above applies. Let E = {(z,y) € R?: [y| < |z[},
B=Randp: E — B, p(z,y) = z. Clearly, p is shrinkable. If s(z) = (z,0) € E,
then ps = 1p and sp ~p lg. However, p : E — B itself is not locally trivial; the
fibre of p over {0} is a single point {0} and for any t # 0 in R, the fibre of p over

{t} is the closed interval [—t,t] of R.
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Chapter 3

Hereditary SEP and Fibre Homotopy

Equivalence

In this chapter, we will show that fibre homotopy equivalence is a local property,
that is, for a numerable covering {Vi}iea of B, if fi : p~1(Vi) — p"~1(V)) is a fibre

homotopy equivalence for each A € A, then so is f.
Proposition 3.1 Let p: E — B be a space over B. The following are equivalent:

1. Every tnduced space p, has the SEP.

2. Given G: X — B, ahaloV around ACX, and f : V — E with pf =G|y,
there exists F : X — F with pF =G and F |4 = f.

3. GwenG:X —-B,AC X, and f : A— E with pf = G|a, there ezists a lift
F:X —FE of Gwith Fl|g ~p f.

4. The space p over B is shrinkable.

3. The space p over B is fibre homotopy equivalent to a trivial space B xY — B

with Y contractible.

6. The space p over B is dominated by a trivial space BxY — B with Y con-

tractible.

Proof: Recall 2 of Example 1.14. This shows the equivalence of 4. & 5.. The

implication 5. => 6. follows directly from Definition 1.9. Moreover, a trivial space
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B xY — B is homotopic to B when Y is contractible, the hypothesis 6. is equivalent
to saying that the space p over B is dominated by 1. It follows from Proposition 1.12

that 6. = 4.. Hence we need only to verify the equivalence of 1. — 4..

Proof of 1. = 2. Recall Eg = {(e,z) € E x X : p(e) = G(z)}, pc(e,z) = z. Then
pe : Ec — X is the induced space over X. If G(e,z) = e, then
Ec % E
lpa J.P
X % B

is commutative. From the commutative diagram (and the hypotheses),

E,—% E

ATk

V‘-—>X—G>B

we can express s : V — Eg by s(v) = (f(v),v). Since pf(v) = G(v), (f(v),v) €
Eg. The function s is continuous, since f and 1y are both continuous. Further,
pes(v) = pe(f(v),v) = v = s is a section of pg over V. Since pc has the SEP,
there exists a section S : X — Eg with S|4 = s|4 (since s|4 is a section
and has an extension s : V — Eg). Define F : X — E by F = GS, then
pF = pGS = GpeS = Glx = G and F(a) = GS(a) = GS|a (a) = Gs |4 (a) =
G(f(a),a) = f(a), for all @ € A. Thus, 2. holds.

Proof of 2. = 1. Let o : X — B be continuous, p, : B, — X the induced space,
V a halo around A C X, and s: V — E, a section of p, over V. We want to

find a section S : X — E, with S|4 = s|a4.
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% E
P
AQV}:})&F’? g
Let f : V — E be defined by s(v) = (f(v),v). The continuity of f is clear
since s is continuous. Since (f(v),v) € E,, pf(v) = a(v). Thus, pf = alv.
By hypothesis 2., there exists F : X — E with F|4 = f|4 and pF = a.
Define S : X — E, by S(z) = (F(z),z). Since pF(z) = a(z), (F(z),z) € E,.
Further, F and 1x are both continuous on X, so S is continuous. Note also
that S is a section since poS(z) = po(F(z), z) = z. Finally, S(a) = (F(a),a) =
(f(a),a) = s|4 (a), for all @ € A. Thus, p, has the SEP.

Proof of 2. = 4. Recall Example 2.3. Then, by hypothesis 2., there exists a map

F': B — E such that pF’ = 1pg, hence F’ is a section of p over B.

E
e

¢—¢—B

Define G : E x I — B by G(e,t) = p(e) and let V = E x I\{3}, A =
E x{0,1} = E x {0} U E x {1}. Then, V is a halo around A with a haloing
function 7 : E x I — I by 7(e,t) = |2t — 1|. Note that 7(e,0) =1[2-0~1| =
|-1=1=|2-1-1]=7(e,1) and 7(e,3) = [2- 3 — 1| = 0. Thus, A C 7~(1)
and V¢ C 771(0). Define f : V — FE by

e ift <%,

F'pe) ift> 1.

fle,t) =

Then, we have pf = G|v.
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f k4 E
EX]—=EXIG}—= EXI—B
By hypothesis 2., there exists a lift F of G with F |4 = f|4. Then we have
F(e,0) = f(e,0) = e = 1g(e) and F(e,1) = f(e,1) = F'p(e). Note that
pF = G = p is a map over B and therefore F' : 1z ~g F'p. Thus, p is
shrinkable.

Proof of 4. = 3. Since p is shrinkable, there exists a section S : B — E and a
vertical homotopy © : 1g ~g Sp. Given G : X — B, f : A — E with
pf = Gl4, define F : X — E by F = SG. Then O(f(a),0) = f(a) and
O(f(a),1) = Spf(a) = SG |4 (a) = F|a (a). Since O is a vertical homotopy,

O |axr : f ~p F |4 as required.

Proof of 3. = 2. Suppose that for given G: X — B, AC X, and f: A — F with
pf = G|a, there exists a lift F' : X — E with F'|4 ~p f.

E

A—~X-—B

Let G: X — B, V a halo around A C X with a haloing function 7 : X — I,
and f : V — E with pf = G|v. We want to find F : X — F such that
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pF = G and F |4 = f|a. By assumption, there exists a lift F/ : X — FE
with F'|y ~v f. Let D be a vertical homotopy from F’|y to f, and define

F:X —- Eby
F'(z ifr(z) <%
ro | 7O ()<}
D(z,2r(z)—1) if r(z) > 3.
Note that 7(z) > 1 = z € V° = z € V and when 7(z) = 1, we get F(z) =

D(z,271(z) — 1) = D(z,0) = F'(z), so F is well defined. Hence, by the Gluing
Lemma, it is continuous on X. If e € A C X, then F(a) = D(a,27(a) -~ 1) =
D(z,1) = f(a) since A C 771(1). Recall that F' and D; are maps over B
where Dy(z) = D(z,t).

///ilp

A— V‘—> X— B
Hence pF’ = F and pD, = G. Thus, pf = G and therefore the claim holds. O

Lemma 3.2 Ifp: E — B is shrinkable, then, for any a : X — B, the induced space
DPa : Eo — X is shrinkable.

Proof: The space p over B shrinkable implies that there exists a section s : B — E
and a vertical homotopy ¢ : sp ~p 1g. Define S : X — E, = {(e,z) € Ex X :
p(e) = a(z)} by S(z) = (sa(z),z) and ¥ : E, x I — E, by ¥({e, z),t) = (¢(e, t), z).
Since p(sa(z)) = a(z), S is well defined, and p,S(z) = pa(sa(z),z) =z =1x(z) =
S is a section of p, over X. Note that the continuity of S is clear, since each

coordinate function is continuous.
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Since p(p(e,t)) = pp:(e) = p(e) = a(z), ¥ is well defined. The continuity of % is
obvious. Since pati(e, ) = pat¥((e, z),t) = pa(p(e, t),z) = z = pa(e, z),%: is a map
over X for all ¢ € I. Moreover, ¥((e, z),0) = (¢(e,0),z) = (sp(e), z) = (sa(z),z) =
5(z) = Spa(e, z), and ¥((e,z),1) = (v(e,1),z) = (e,z) = lg,(e,z). Hence, ¥ is a
vertical homotopy from Sp, to 1g,, and therefore p, is shrinkable by definition. O

Corollary 3.3 Ifp: E — B is shrinkable over each set V; of a numerable covering
{VA} of B, then so is p.

Proof: Let a : X — B be continuous. Then, by Lemma 3.2, p, is shrinkable over

a~!(V3), and p, has the SEP over a~!(V4) by Proposition 2.17 for each A € A (note
that p, should be written as p, lp;‘(a"‘(Vx)) to be precise). But, {a1(V))}rea is a
numerable covering of X by 2. of Example 2.10. Hence, p, has the SEP over X by
the Section Extension Theorem (Theorem 2.37). Since « is chosen arbitrary, every
induced space p, has the SEP, and therefore, by 1. & 4.. in Proposition 3.1, p is
shrinkable. o

We now turn to the proof of a technical result (Lemma 3.4), after which the main
theorem of this chapter (Theorem 3.6) will follow comparatively easily. Although the
proof of the lemma occupies over ten pages, most of it consists of tedious verification
of many details and is not conceptually difficult.

Let B = {w : I — E} with the compact-open topology. Define R = {(y,w) €
E' x E': p/(y) = pw(t) for all £ € I and w(1l) = f(y)}. Then, a point (y,w) € R is
a pair consisting of a point y € E’ and a path w completely contained in p~(p/(y)).

Now we state the lemma.
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Lemma 3.4 If f : E' — E is a fibre homotopy equivalence over B, then q: R — E
defined by q(y,w) = w(0) is shrinkable with R as defined above.

Proof: We will show this by defining a section o : E — R (qo = 1g) such that there
exists a vertical homotopy D : 1g =g oq. Throughout this proof, we will adapt the

following notations: let w,w’: I — X be paths in X, and 7 € I fixed.

1. The product path w - w’ is defined by

w(2 fo<t<i,
- =4 < =t

W(2t—1) Hl<t<l

For simplicity, we take [, £] to be the domain of the ith path of a product

of n paths where: =1,...,n.

o

sw:I — X is defined by ,w(t) = w(rt).
3. "w:I — X is defined by "w(t) =w(l — 7+ 7t) = w(l — 7(1 —¢)).
4. w™ : I — X is defined by w™(t) = w(1 —t), the inverse path (the reverse path).

¢z : I — X is the constant path at z € X.

o

For example, w = 1w = 'w, qw = c,0) and w = ¢,(3)-

Let f' : E — E’ be a fibre homotopy inverse of f over B, that is, ff’ ~p 1g and
f'f ~p 1g, and let ¢ : 1gr ~p f'f and ¢ : 1g ~p ff’ be vertical homotopies. Let
t € I be fixed, then ¢; : £/ — E' and ¢; : E — E are maps over B, and therefore
p'o: =0, po: = p. Similarly, for fixedy€ E'and z€ E, ¢y : I - E'and ¢, : [ = E

are paths in E’ and E, respectively. Note that for any (y,w) € R and for any ¢ € I,
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we have

“ { Pu(t) = P((0),) = P(w(0)) = p(w(0) = P(y) aad,
Pey(t) = Po(y, t) = Poe(y) = p'(y).
We now return to the proof. First, define o : E — R by o(z) = (f/(z),%.). Note
that (f'(z),%:) € R since py(t) = p(2,t) = p¥e(2) = p(2) = P'f'(2) = P'(f'(2)),
for all t € I, and %.(1) = #(2,1) = ff'(z) = f(f'(z)). Since both f’ and %, are
continuous on E, so is o. Furthermore, since qo(z) = ¢(f'(z),%:) = %:(0) = ¥(z,0)
= 1g(z) = 2, o is a section of ¢ over E.

It remains to construct a vertical homotopy D : R x I — R over E from 1p to

oq.
RXI2R-% &)

(o3
EXIiEE‘fEE’é"—E’XI

p\ #P
B

Consider u : R — (E')! by u(y,w) =@y - f' o (w™ - Yooy ffw- feg -w™). Here

, means (). The following steps verify that u is well defined.
L oy(1) = ¢(y,1) = f'f(y) = fw(l) = fw™(0) = f(w™ -Yuo) - ffw- fo; -w(0)).

2. w™(1) = w(l — 1) = w(0) = 15(w(0)) = $(w(0),0) = %u(o(0).

(L)

- Yu(o)(1) = ¥(w(0),1) = ff(w(0)) = ff'w(0).

4. Since (y,w) € R, ffw(l) = ff'f(y) = fo(y,1) = feu(1 = 0) = fo; (0).

ot

- oz (1) = fey(1-1) = fo(y,0) = fle(y) = f(y) = w(1) = w(1—0) = w™(0).
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The continuity of u is clear by the definition of product path. Since a composition
of continuous functions and any product path is again continuous, we will not show
the continuity in this proof if a function is so defined. Similarly, we do not prove
the continuity of a function if each coordinate function is continuous as well as those
satisfying the assumptions of the Gluing Lemma.

We will construct a vertical homotopy D : R x I — R of 1g to oq in six stages,

namely,
[ d((y,),67) H0<r<l,
dy((y,w), 67 —1) fr<7<2
D((y,w),r) = | D@h6r=2) #3<r<g,
dy((y,w),67 —3) f2<r<4§,
ds((y,w),67 —4) fi<r<E,
| ds((y,w),67—5) if$<T<,

where the vertical homotopies d; and v, are defined below. For suitable maps K; :
R — R, the method to be used can be outlined as d; : 1 ~g Ki, d2 : K1 ~g Ko,
d3 : Kz g KsKg, d4 : K3K2 ~E K4, ds : K4 >~E Ks, ds : Ks jag Ks = 0q.

Let Ko =1p. Foreach:=1,...,6, we will

1. define K; and show that the path used in the definition by K; : R — R is well
defined,

2. show that imK; C R and K; is a map over E,

3. define d; and show that the path defined by (d;),, T € I is well defined,

>

show that :md; C R and (d;). is a map over E, and
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5. show that d; is a vertical homotopy from K;_; to Kj.
di:RxI—-R:
1. Define K; : R — R by
Kl(y7w) = (y7w * cw(l))a
where ¢,(1) is the constant path at w(1). The product path w - ¢, is
clearly well defined.
2. Since (y,w) € R, Ki(y,w) = (y,w - cu()) € R. Clearly, K; is a map over
E since ¢Ki(y,w) = q(y,w - cu1)) = w - cu(1)(0) = w(0) = ¢(y,w).

3. Defined; : Rx I — Rby

di((y,w), 7) = (y,wgr),

where g, : I — I by g,(t) = min((1 + 7)¢,1). Since g, is continuous and
0 < g-(t) <1 for any t, T € I, the path wg, € E' is well defined.
4. Clearly p(wg-(t)) = p'(y), for all £ € I and wg,(1) = w(1) = p'(y). Hence
d; is well defined. Since q(y,wg;) = wg,(0) = w(min((1+7)-0,1)) = w(0)
= q(y,w), (d1)- is 2 map over E.
5. Note that wgo(t) = w((min((1+0)¢,1)) = w(min(t,1)) = w(t) and
wgi(t) = w(min((1+1)¢,1))
= w(min(2t,1))
w(2t) ifo<t<3,
co)(2t —1) f<t<1,

= (@ eam)@).
Thus, d; is a vertical homotopy from Kj to Kj.
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dz :RxI—=R:
1. Define K, : R — R by
K2(y7w) = (f'w(O),w : f o u(yv GU)),
where u o (y,w) = @y - /(W™ - Yu(o) - ff'w- fio; -w™) (recall that u: R —
(E’)Y). Since (y,w) € R, we have
fou(y,w)(0) = flpy- f(w™ - tuo) - ffw:- foy -w™)0))
= fy(0) = fo(y,0) = fle(y) = f(y) = w(1),
and therefore w - f o u(y,w) is well defined.
2. Note that p’ f'w(0) = pw(0) = p'(y) and

o fouly,))(t) = { p(t)=p'(y) 0<t< 4,
Pu(y,w)(t) $<t<1

Thus, by (%), we see that p'u(y,w)(t) = p'(y), for all t € I, and therefore

p'f'w(0) = p(w - fou(y,w)), for all t € I. Note also that w- f o u(y,w)(1)

= fpy - flo(w™ Pu) - Ffw- fogy -w™)(1)) = ffw™(1) = f(fw(0)), and

therefore K(y,w) € R. Moreover, ¢K;(y,w) = ¢(fw(0),w - f o u(y,w))

=w- fou(y,w)(0) = w(0) = ¢(y,=), hence K, is a map over E.

3. Defined, : RxI — Rby
d2((yv w)v T) = (u(y,w)(‘r),w -fo (ru(yaw)))'

The product path w - f o (;u(y,w)) is well defined since f( . u(y,w)(0))
= f(u(y,w)(7-0)) = f(u(y,w)(0)) = f(¥4(0)) = f(y,0) = fle(y) = f(y)

= w(1).
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4. We have just seen that p(w- f(u(y,w)(t))) = p'(y) for all ¢ € I, and since
w - fru(y,w)(1)) = f(ruly,w)(1)) = f(u(y,w)(r)), dz is well defined.
Note that ¢(dz)-(y,w) = q(u(y,w)(7), w- fo(ru(y,w))) = w- f( ru(y,w)(0))
= w(0) = ¢q(y,w) shows that (dz). is a map over E.

5. Notice that dy((y,w),0) = (u(y,w)(0),w - f o (ou(y,w))) = (¥,(0),
w - fo (ou(y,w))) = (¥(y,0),w- f o (ou(y,w))) = (y,w - f o (ou(y,w))).
Notice also that, for 0 < t < 7, we have w - f o (ou(y,w))(t) = w(2t), and
for <t <1,w- fo(ou(y,w))(t) = fuly,w)(0- (2t ~1))) = f(y(0)) =
f(¥(y,0)) = fle(y) = f(y) = w(1) = cu(r)(2t —1). Thus, (w- f)(ou(y.w))
= w-Cu(1), hence dz((y,w), 0) = Ki(y,w). Since dz((y,w), 1) = (u(y,w)(1),
w- fo(1u(y,w))) = (flw™(1),w- fo(1u(y,w))) = (fw(0),w- fo(u(y,w)))
= Ka(y,w), d, is a vertical homotopy from K to K.

Remark 3.5 Notice the following properties:

1. (gw)=(t) = (gw)(1 — t) = gw(1 — t) = gw(¢).
fw(2t) if0<t<
<t<

fur@t—1) i}

— W=

2. flw-w(t)) = { } = (fuw- fu')(t).

t



3.
(W) () = (w-)(1-12)
_ jw(2—2t) fo<1-t<1i,
| W'(2-2t-1) f3<1-t<1,
_ Jw(l—-(2t—-1)) if —1<—t< -1,
| wa-2 f-1<—t<0,
) wr@e-1) f3<t<1,
- { w'=(2t) f0<t< 3,
= (W7 -wT)(2)-
Thus, we get

w-fou(y,w) = w-(f(dy- f(w™ - Yu) fflw-fo; -wT)))
w- féy - ffw™ - ff%uo)- ffffw-fffo; - fflw™
= w-foy- fflw™ ffbu)- ffow-féy- fflwT)™
= vy [ %uo) - Ffvg

where vy = w - fopy - fflw”
= vy ff 0o (Yuo) - v5)-

Hence, we can write K; : R — R by K»(y,w) = (f'w(0),vy - ff 0 (%u(o) - v;))-

Note that by (*), we have pv,(I) = p'(y).
d3:K2(R)XI—PR:
1. Define K3: K»2(R) — R by

K3Ky(y,w) = K3(f,‘-‘)(0)’vy -ff'o (¢w(0) . 'U;))
= (f’w(O), Vy-C1e ff'(¢'w(o) . vy') - €2),
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where ¢; = ¢ = ¢47(0), the constant path at ff'w(0). To see the product
path is well defined, we check the following: v,(1) = w - fo] - f f'(w~(L))
= ff(w(1-1)) = e(0), FF (($uio)-vy )(0)) = Ff'(¥(w(0),0)) = ff'(w(0))
= c1(1), and ff' (w0 vy ) (1)) = ff'(vy(1-1)) = ff((w- feoy- F f'w™)(0))
= ff'(w(0)) = c2(0). Hence, vy -¢1 - ff' 0 (Yu(o) - v, ) - c2 is well defined.
. Clearly, (fw(0), vy - ff'($ue) - v)) € R implies that Ka(K(R)) C R,
hence K3 is well defined. We see that K3 is a map over E from K,(R) to
R since gK3(f'w(0), (vy - £f')(%uio) - v5)) = vy - &1 - ff (%uioy - v;) - €2(0)
= vy(0) = vy - £ (Puio) - v5)(0) =¢ IK,(R) (f'w(0), vy - ff (Yuro) - v7))-

. Defined;: RxI — R by
d3((y,w), ) = (f'w(0), B - Bz),

where B, = vygr, B. = [f'($ug) - v7)gr» and gr : I — I is defined
by g-(t) = min((1 + 7)t,1) as before. Since f-(1) = vyg.(1) = v,(1) =
w- féy- ffw™(1) = ffw(0) and B(0) = ff'(¥u(o) vy )9-(0) = ff'%uio)(0)
= ffw(0), B, - B. is well defined.

. Since Br - B; = vygr - Ff 0 (Yu(o) - v7)gr = (vy - ff 0 (Yuo) - ¥7))gr
and (fw(0),vy - £ © (Yuo) - 7)) € R, ds is well defined. Moreover,
q(ds)-(f'w(0), vy - ff 0 (¥uro) - v7)) = q(F'w(0), 8- - B7) = B-(0) = wv,(0)
= vy - ff' 0 (Yu(o) - v5)(0) = ¢(f'w(0),vy - ff 0 (Yu(o) - v;)) shows that

(d3)- is a map over FE.
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5. The following show that d3 is a vertical homotopy from K, to K3K,.

)
Bo(2t) fo<t<3,
Bo- Bit) = 2
| Ao(2¢ - 1) fl<t<l,
_ J vy(min(2t,1)) fo<t< %’
| ff'(Yuio) - v7)(min((2t —1),1)) f1<t<1,
(
_ ) () if0<t<i,
| fF (Yoo - v5)(2t — 1) fl<t<l,
= vy - ff'(Yu(o) - v;)(t), and
Ar(2t) fo<t<i,
B Bi(t) = ¢ 2
pi(2t —1) ifl<t<l,
_ vy(min(2 - 2¢,1)) fo<t<s,
| fF (%ugo) - v7 )(min(2(2t — 1),1)) ifi<t<l,
vy (42) Hf0<t< i,
= Cuy(1)(t) = (o) (4t — 1) if% <t< %,
' (Yuio) - v7)(2(2t — 1)) ifl<t<i,
U St o)) () = Cruo)(4t —3) f2<e<,
= vy-c1- [ (Yu)-vy) - ca(t)-
d4 :RxI—-R:

1. Define K4 : R — R by

K4(y1 w) = (f,W(O), Uy - ¢;(o) : 'wa(O) : ‘Uy— - ¢w(0))

The following verifies the product path v, - Yu0) - Yu(0) - Vy - Yu(o) is well
defined:
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(2) vy(1) =w- foy - ffw™(1) = ffw(0) = %(w(0),1) = P54 (0)-

(b) %50)(1) =(w(0),0) = 1u(0)(0)-

(€) Yu(o)(1) = $(w(0),1) = ffw(0) =w- foy- ffw™ (1) = vy(1) = v; (0).
(d) vy (1) =v(0) =w- féy - ff'w™(0) = w(0) = $(w(0),0) = Pu(0)(0)-

- By (%), p(vy - ¥50) - Yu(o) - ¥ - Yu(o))(t) = P'(y), forallt € I. Also,
Uy Yi0)" Yu(0) ¥y *Yu(0)(1) = Yu(e)(1) = ff'w(0), and hence Ky(y,w) € R.
Furthermore, ¢K4(y,w) = q(fw(0),vy - ¥20) - Yuo) - ¥y - Yu(0)
= (vy - ¥o0) “ Yu(0) * Vg - Yu(0))(0) = vy(0) = w(0) = ¢(y,w), and therefore

K4 is a map over E.

. Defineds: RxI — R by
d4((y7w)7T) = (flw(o)’ Uy * "¢z:(0) * ¢1—T(¢w(0) : ’Uy-) : T¢w(0))'

Notice that vy(1) = f fw(0) = $(w(0), 1) = Yu(o)(1) = ¥2)(0) = +¥5)(0),
bo(l) = bg(r) = $*O1 — 1) = $(w(0),1 — 7) = $1--(w(0)) =
D1-r($(w(0),0)) = HP1+(Pu)(0)) = 1-+(du(o) - v;)(0), and
Vr-r(Yuio) - 05 )(1) = P1-705 (1) = $1-70(0) = Y1r(w - f&, - Ffw™)(0)
= 1 (w(0)) = B(w(0),1 — ) = bue)(l = 7 +07) = thu(0). Hence,
the product path v, - .,g[z;(o)  Y1-(Yu(0) - vy ) - "tu(o) is well defined.

- Again by (*), we have p(v, - +(¥q) - b1-r(Yu(0) * v}) - "%u()))(2) = P'(¥),
for all ¢t € I. Since v, - (¥o0) " Pr-r(Yuio) - v5) - "Yu@))(1) = "u(o)(1)
= P(w(0),1 -7+ 7) = ¥(w(0),1) = ff'w(0), ds((y,w),7) € R. Hence,
d4 is well defined. The map (d;). is a map over E, since ¢q(dy)-(y,w)
= ¢(F'w(0),vy - H0) * Yr-r(Puto)  v5) - "Wu(0) = vy(0) = w(0) = g(y,w)-
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5. Finally, we show that d; is a vertical homotopy from K3K; to K4. For
ds((y,w),0) = (fw(0), vy - o(¥5q)) - Y1-0(Puio) - ¥5) - *buiey) = (fw(0),
vy - & - FF (o) - 05) - &) = KaKa(y,w), where ¢ = ¢rpuo) = ¢, and
do((y,w), 1) = (f'w(0),vy - 1(¥5q)) - Y1-1(Yui0) - ¥y) - Yuio)) = (fw(0),
Vy - Yo0) - (Yu(0) * V5 ) - Yu(o)), We have dy : K3K> ~p K.

ds:RxI—-R:
1. Define K5 : R — R by
KS(Z/?‘") = (f’L«J(O), C3 - ¢u(0))a

where c3 = ¢,(0), the constant path at w(0), and clearly the path is well
defined.

2. Since ¢w(0)(1) = ff’w(0)1 by (*)7 KS(va) € R1 and qKs(y,w)
= g(f'w(0),c3 - Yuo) = c3(0) = w(0) = ¢(y,w) implies that K5 is a
map over E.

3. Define Ks(y,w) = (fw(0),vy - ¥3) - (vy - $50))” * Yute) and Ks(y,w) =
(f'w(0), cuo) * Cw(o) - Yuw(o))- Then, clearly, there exist vertical homotopies
ds: Ky ~g Ks and ds : Ks ~g K;. Defined, : Rx I — R by

ds((y,w),7) = (f'w(0), 1-r(vy - V7)) - (V5 - ¥0))7) * Yut0))-
Since v,(1) = ffw™(1) = $(w(0),0) = $74(0), the product path
vy - B3y is well defined, and 1. (v, - $3q)(1) = vy - Prgy(l = 7)
= (vy ¥o0) (1= (1 =7)) = " ((vy - $5(0)7)(0) and *~"((vy - 5))(1)

= (vy - Pge) 1= =7)+ (1 =17)) = (vy - ¥5))(1) = v,(0) = w(0)
= 1,(0)(0) show that the entire path is well defined.
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4. By (*)7 we have P( l—r(vy - 7.b;(o)) : l-f((vy . ¢w(0))-) . ¢w(0))(t) = p'(y)
for all t € I. Since 1—-(vy - Vo) = (vy - Yu(0) ) - Yugo)(1) = Ffw(0),
df is well defined. Also

Q(dls)f(va) = Q(f,w(o)a 1-1-(vy : ¢;(o)) . l-f((vy : "l’w(O))—) . ¢w(0))
= 1-r(vy - ¥50) - (v - Yute)”) - u(o)(0)

= 1oty $50)(0) = v (0) = w(0) = a(y,w),

and therefore (d5), is a map over E.

5. Since d5((y,w),0) = (f'w(0), 1-0(vy - Y5ia)) - (v - ¥0))7) - Yui@) =
(f'w(0), o(vy-¥50)) - *((vy-¥50))7) - Yu(0)) = (f'w(0), Cu(o) - Cuwto) * Yut0))s I
is a vertical homotopy from K to K. Putting these vertical homotopies
ds : Ky ~p K5, d, : K5 ~g Ks, and ds : K5 ~g Ks together gives
a vertical homotopy ds : K4 ~g K;s where ds is the vertical homotopy

obtained by concatenation of ds, di, and ds.
ds:RxI—R:
1. Define K¢ : R — R by
Ke(y,w) = (fw(0), Yu(o));

then, the path is clearly well defined.

2. There is nothing to show.

3. Defineds: RxI — R by

ds((y,w),‘r) = (f’l-{J(O), 71')7
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where 7-(t) = Y. (0)(maz(0, ZE=2)). It is also obvious that the path is
well defined since 0 < maz(0, 2=2) <1 for allt € I.

4. By (*) together with 31_*_1"'1,;1 =1 when ¢ = 1 we see that dg is well defined.
Clearly, de(R x I) C B. Moreover, g(de)s(y,) = a(f(0), %) = 7+(0)
= Yu(oymaz(0, 1) = $u(0)(0) = w(0) = q(y,w). Hence, (ds): is 2 map

over F.
3. d6((?/1“’)7 0) and = (f’w(O), 70) 70(t) = ¢W(0)max(0’ mT-l)

Yu(0)(0) if2t—1<0

= ¢3 - Yu(o)(t)-
Yu)(2t —1) if2t—-1>0

Finauy, ds((% QJ), 1) = (flw(o)’ 71)’ and 71(t) = d’w(O)maz(Oa _22_t) = ww(O)(t)'

Hence, ds is a vertical homotopy from K5 to Kg over E.

Notice that oq(y,w) = o(w(0)) = (f'w(0),%u0) = Ke(y,w). Note also that d; :
lp ~g Ky, d2 : K1 ~g K3, d3 : K3 ~g K3K>, dy : K3K, ~g K,, ds : K4 ~p K,
ds : Ks ~g K¢ = 0q, and therefore D is well defined. Hence, D is continuous by the

Gluing Lemma. Thus, we have D : 1z ~g oq. This completes the proof. a

Theorem 3.6 Let f : E' — E be a map over B. If f is a fibre homotopy equivalence
over each set V\ of a numerable covering {V\} of B, then f is a fibre homotopy
equivalence.

More generally, if under the same assumptions on f, a partial homotopy inverse
fv : p7HV) = pY(V) of f, and a vertical homotopy Dv : ly-1(vy ~v fvfy are

given over a halo V around A C B, then f;,D4 can be extended to B.

Proof: For each A € A, let fi : p~1(VA) — p~}(V)) be the part of f over V), and

fx 171 (VA) — p""1(V3) be a homotopy inverse of fy over V3, and write, for each A,
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2r = Ploivay : 271 (Va) = Vi and p = pf |yt : p71(V3) = Va. By Lemma 3.4,
for each A € A, ¢\ : Ry — Ej is shrinkable where Ry = {(y,w) € pi1(V)) x
(xR : AA(y) = paw(t) forall ¢ € I and w(1) = fa(y)}, and B} = p~I(VA).
Thus, by Corollary 3.3, ¢ : R — E itself is shrinkable where R = {(y,w) € E’ x ET:
P(y) = pw(t) for all t € I and w(1l) = f(y)} and therefore by Proposition 2.17, it
has the SEP. A section of ¢ is a pair § = (f',0) : E — R by S(z) = (f'(z),6(z))
where 8(z) = 0, : I — E. Note that f' : E — E’ is a map over B. By the SEP,
we can choose this f' to be an extension of the given map fy with /|4 = fi [4.
Now, define © : E x I — E by O(z,t) = 8(z)(¢) = 6.(t). Then, since pb.(t) =
P'(f'(2)) for all t € I, we have pO;(z) = pO(z,t) = pb.(t) = p'(f'(z)) = p(z). Hence,
© is a vertical homotopy over B. From O(z,0) = 6,(0) = ¢(f'(2),6.) = ¢S(z) = z
and O(z,1) = 6,(1) = f(f'(2)), we see that © : 1g ~p ff’. Recall how we defined
the ¢, in Lemma 3.4; it is defined by the vertical homotopy ¥, : Loiva) 2vi fafx -
Thus, again, by the SEP, we can choose © to be an extension of the given vertical
homotopy Dy with @ [4 = Dy |4, i.e. ¥, is a restriction of Dy over V.

Now, it remains to show that 1z ~p f'f. By applying the analogous process
to this f' as above, we see that there exist a map f” : E' — E over B and a
vertical homotopy ©' : 1g ~p f'f"”. Here, R, is replaced by R} = {(z,«') €
P (V3) x (52 (V) : pa(2) = pie(J) and w'(1) = f5(2)}. But, f/f" = flef” ~z
f'ff' f" ~g f'flg: = f'f; hence 1g ~p f'f, as desired. ]
Remark 3.7 One cannot, in addition to f;, D4, prescribe D'y : 1y-104) ~4a f7 fa,

as the following ezample shows. Let B = [0,1,E = Bx S* = E',p: E —
Bbyp(bz) = b,q: E — Bbyg(hz) = b,f =1g : E —- E(= E'), and A =
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{0} U {1}, where S* = {(z,y) € R? : 2? + y® = 1}. Prescribe f =lg,D:E x I —
E by D(0,2,t) = (0,2),D(1,2,t) = (1,*2), and D’ : E' x I — E’ by D’'(0, z,t) =
0,2),D'(1,2,t) = (1,z). Since D and D' are vertical homotopies, we have pD; =
p=qf = q=g¢Dj. But, D rotates {1} x S* while D’ fizes {1} x S, a contradiction.
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Chapter 4

The Covering Homotopy Property (CHP)

Definition 4.1 Let p: E — B be a space over B and H : X x I — B a homotopy.
We say that p has the covering homotopy property (abbreviated henceforth as
CHP) for H if the following holds:

Given h : X — E with ph(z) = H(z,0) forallz € X, any 7: X — I and any
H' : v7Y0,1] x I — E satisfying pH'(z,t) = H(z,t) and H'(z,0) = h(z) for all

z € 77Y(0,1] and t € I, there ezists an H : X x I — E with

pH = H,H(z,0) = h(z) for all z € X and %)
H |-r"1(1)xI =H' lr—l(l)xz .
In the above definition, I can be replaced by an arbitrary interval [a,b] of R where
a < b. We replace 0 by a and 1 by b in the above postulated definition.
We say that p has the CHP for X if it has the CHP for all homotopies H with

domain X x I. If it has the CHP for all spaces X, we say that it has the CHP.

In the special case when 7 =0 : X — I, we have 771(0, 1] = ¢ and the condition
postulated in the Definition 4.1 takes on the following form:

Given a homotopy H : X x I — B and a map k : X — E satisfying ph(z) =
H(z,0), then there exists H : X xI — E satisfying H(z,0) = h(z) for all z € X and
pH = H. In fact, this apparently weaker condition (which is the “classical> CHP,
cf. p.1) implies the conditions of the Definition 4.1. Namely, we have the following.
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Proposition 4.2 Suppose for every G: X x I — B and g : X — E with pg(z) =
G(z,0) for all z € X, we can find a G : X x I — E satisfying pG = G and
G(z,0) = g(z), then p has the CHP for X.

Proof: Let H: X xI - B,h: X - E,7: X - ITand H : 771(0,1] x I - E
satisfy

ph(z) = H(z,0) for all z € X,
pH'(z,t) = H(z,t), and
H'(z,0) = h(z),

for all z € 771(0,1] and for all t € I.

Let 7 : X — I be given by 7/ = maz(0,27 — 1). Then 7’ is continuous. Let
D = {(z,t) € X xI :t < 7/(z)}. Note that if (z,t) € D with ¢ > 0, then
0 < 27(z) — 1, hence 7(z) > ; or z € 771(},1] C 771(0,1]. Also, since 7/(z) > 0 for
all z € X, we have X x {0} C D. As already observed, (z,t) € D,7(z) < 3 =t =0.

Define H” : D — E by H"(z,0) = h(z) for all z € X and H"(z,t) = H'(z,t) if
7(z) > 1. Thesets {(z,t) € D : 7(z) < 1} = Xx{0} and {(z,t) € D : 7(z) > }} are
closed subsets of D. When 7(z) = 3, we have (z,t) € D = t =0 = H'(z,0) = k(z).
Hence, H” is well defined. Since H” is separately continuous on the above closed
sets of D, we see that H” : D — E is continuous by the Gluing Lemma.

Let G: X xI — B and g : X — E be defined by
G(z,t) = H(z,min(l,7'(z) + t))

and

g9(z) = H"(z,7'(z)).
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Then G(z,0) = H(z,'(z)). Also

h(z) if (z) =0,
g9(z) =
H'(z,7'(z)) if7'(z)>0.
Hence,
(
h if 7'(z) =0,
po(z) = 4P (z) (z)

| pH'(z,7'(z)) if'(z) >0,
j H(z,0) if r'(z) =0,
| I_{(z,'r'(:z:)) if 7'(z) > 0,

= H(z,T'(z)) in each case.

Thus, G(z,0) = pg(z) for all z € X.
By our assumption, there exists a G : X x I — E satisfying pG = G and
G(z,0) = g(z). Define H: X x I — E by

H"(z,t) if t < 7'(z),

G(z,t —7'(z)) ift>7'(z).

H(z,t) =

Note that when ¢ = 7'(z), H"(z,7'(z)) = g(z) = G(z,0). Thus, the two definitions
agree when t = 7'(z). It follows that H : X x I — F is a well defined continuous
map.

We claim that H satisfies all the requirements in (*) of Definition 4.1. Since

T(z) 2 0 for all z € X, we get H(z,0) = H"(z,0) = h(z). Also,

ph(z) = H(z,0) ift=0,
pH(z,t) = ¢ pH'(z,t) = H(z,t) if 0 < t < 7'(z),
pG(z,t — 7'(z)) = G(z,t — '(z)) ift > 7'(z),



70

H(z,t) if 0 <t < 7(z),
H(z,min(l,7(z) +t—7(z))) ift>7(z),
= H(z,t)forallt el

Also when 7(z) = 1, we have ’(z) = 1. Hence, H(z,t) = H"(z,1) = H'(z,t). Thus,

H I,.-xmx 1 =H l.,.-z(l)x r- This completes the proof of Proposition 4.2. O

Proposition 4.3 Ifp : E — B has the CHP for X, then so does every induced
space py : Eq — B, where a : By, — B, E, = {(e,a) € E x B, : p(e) = a(a)}, and

(e, a) = a.

Proof: Let p : F — B have the CHP for X, « : B, — B,g : X — E, and
G : X xI — B, with p,g = G. Then, oG = ap.g = piag where & : E, — E
is given by é&(e,a) = e. Since p has the CHP for X, there exists G' : X x I — E
with G'(z,0) = &g(z),pG'(z,t) = aG(z,t). Define G : X xI — E, by G =
(G',G). Then, we have G(z,0) = (G'(z,0),G(z,0)) = (&g(z), p-g(z)) = g(z) and
paG(z,t) = pa(G'(z,t), G(z,t)) = G(z,t). Hence, p, has the CHP for X. a

Example 4.4 FEvery trivial space B x Y — B has the CHP.

Proof: Consider p: BxY —+ B,g: X - ExY and G : X x I — B with pg(z) =
G(z,0) forallz € X. Define G : X x I —- B x Y by G(z,t) = (G(z,t),p'9(z)),
where p’ : B xY — Y is the projection to the second coordinate. Then, we get
G(z,0) = (G(2,0),P'9(z)) = (pg(z),P'9(z)) = g(z) for all = € X and pG(z,t) =
p(G(z,t),p'9(z)) = G(z,t) forall z € X and forall ¢ € I. O
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Definition 4.5 Given H : X x I — B, for any b : X — E satisfying ph(z) =
I;l'(:z:,O) for all z € X, we define a space q, : R — X over X as follows:

R = {(z,w) € X x E! : h(z) = w(0), pw(t) = H(z,t)}, qu(z,w) = z.

The following lemma will enable us to use the results of previous chapters (on

SEP) to obtain new results on CHP.

Lemma 4.6 The space p over B has the CHP for H : X x I ~ B & q = q; has
the SEP for all h : X — E with ph(z) = H(z,0).

Proof: First, suppose that p has the CHP for A. Let V be a halo around A C X
with a haloing function 7 : X — I, s: A — Rasectionof gover A,s': V — R
an extension of s, and A : X — E with ph(z) = H(z,0)forallz € X. Then
s'(v) = (v,w,) where w, : I — E with w,(0) = k(v) and pw,(t) = H(v,t), for all v €
Vioralltel

Define H' : 7=1(0,1] x I — E by H'(v,t) = wy,(t) (note that V' D r~1(0,1] since
Ve C r71(0)). Then, we have pH'(v,t) = pw,(t) = H(v,t) and H'(v,0) = w,(0) =
h(v) for all v € 771(0,1] for allt € I. Since p has the CHP for H, there exists
H:X x I — E with H(z,0) = k(0), H |;q)xr = H' |--1)xz, and pH = H. Write
H.(t) for H(z,t), and define S : X — R by S(z) = (z,H;). Note that H.(0) =
H(z,0) = h(z) and pH.(t) = pH(z,t) = H(z,t) imply that S is well defined. The
continuity of S is clear. Also, ¢S(z) = ¢(z, H;) = z shows that S is a section of ¢ over
X. Also from A C 71(1), we see that S(a) = (e, H,) = (a, H.) = (a,w,) = s(a).
Since S |4 = s, ¢ has the SEP for any A : X — E with ph = H.

Conversely, assume that ¢ has the SEP for all & : X — E with ph(z) = H(z,0).
Let 7: X — I,H : 771(0,1] x I — E with pH' = H and H'(z,0) = h(z) for all z €
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771(0,1] for all £ € I. Let A= 771(1) and V = 771(0,1], then V is a halo around
A C X. Define s : V xI — R by s(v) = (v, H,) where H!(t) = H'(v,t). Notice
that H,(0) = H'(v,0) = h(v) and pH!(t) = pH'(v,t) = H(V,t)forallv € V
and for allt € I imply s(v) € R. Clearly, s is a section of g over V, that is,
gs(v) = g(v, H,) = v. Since q has the SEP for any & : X — E with ph(z) = H(z,0),
there exists a section S : X — R of ¢ over X with S|4 = s|4. Then S(z) = (z,wz)
where w; : I — E with wz(0) = k(z) and pw () = H(z,t)for allz € X and
forallt € I.

Define H : X x I — E by H(z,t) = wg(t). Then, pH(z,t) = p-(t) = H(z,1)
and H(z,0) = wz(0) = k(0), forallz € X forall t € I. Since S

=1(1) = 8 i‘r"l(l) 3

we see that H |.,.-1(1)xz = H' Ti(1)xI- =

Lemma 4.7 Leta<b<c€Rand H: X x[a,c] = B. If p: E — B has the CHP
for H |xxiap) and H |xxp.d, then p has the CHP for H itself.

Proof: Let & : X — E with ph(z) = H(z,a) forallz € X,7: X — [a, c] continuous,
H' : 7 Ya,c] x [a,c] — E with H'(z,a) = h(z) and pH'(z,t) = H(z,t) for all z €
7 a,c] and for all ¢ € [a,c].

Define H; = E[lx,([a,b] yhi = k1 0 X — [a,b] by i(z) = min(b,7(z)) and
H =H Ir;‘(a,b]x[a.b]' Note that z € 7{(a,b] & T (z) = min(b,7(z)) > a & 7(z) >

a & z € 771(a,c] and therefore

H = H

7=1(a,c}x[a,b] - (4'1)

Note also that phi(z) = ph(z) = H(z,a) = Hi(z,a) and Hi(z,a) = H'(z,a) =
h(z) = hi(z) for all z € 7 (a,b]. Moreover, pHj(z,t) = pH'(z,t) = H(z,t) =
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H,(z,t) for all z € 77'(a,b] and for all £ € [a,d]. Since p has the CHP for A lXx[a.b]
(with 71), there exists H; : X x [a,b] — E with pHy(z,t) = H;(z,t) and Hi(z,a) =
hi(z) forallz € X and for all ¢ € [a,b] and Hy|,-14xp0s; = Hi

Ti)xles - But,

z € T (b) & mi(z) = min(b,7(z)) = b& 7(z) > b <> z € T7[b, ¢]. Thus, we have

H, l-r-l[b,c]x[a..b] = H; l-r"l[b.c]x[a,b] . (4.2)

Define #; = H |xxpq » h2(z) = Hi(z,b),72: X — [b,¢] by o(z) = maz(b, 7(z)),
and H) = H' Ir;‘(b,c]x[b,c] . Then, we get pha(z) = pHy(z,b) = pHi(z,b) = Hy(z,b) =
Hy(z,b) for all z € X. Note that z € 7571(b,c] & m(z) = maz(b,r(z)) > b <
7(z) > b & z € 771(b, ¢] and therefore H; = H' |,.-1(b'c]x[b',:] . Thus, forz € 75 (b, c] =
T7Y(b, ] C 771, ] C 77 (a,c], Hi(z,b) = H'(z,b) = Hj(z,b) = Hy(z,b) = ha(z).
Furthermore, pH}(z,t) = pH'(z,t) = H(z,t) = Hy(z,t) for all z € 7571(b, ¢] for all
t € [b,c]. By the CHP for IE_IIXX[I,,C] (with 7,), we get Hy : X x [b,c] - E with
pHy(z,t) = Hy(z,t) forall z € X and for all t € [b, ], Hy(z,b) = hy(z) for all z €
X and

H, lf{ so)xd = Ha 5 () x[bye] - (4.3)

Since z € 75 1(c) & (z) = maz(b,7(z)) =ce T(z) =c & z € T7c),
H, |T“‘(c)><[b.c] =H' I«r;l(c)x[b,c] . (4.4)
Now define H : X x [a,c] — E by

Hy(z,t) iftela,b),
Hy(z,t) iftelbd.

H(z,t) =

Notice that ¢ = b = Hy(z,b) = ha(z) = Hy(z,d) for all z € X, hence H is well

defined and its continuity is obvious from the Gluing Lemma. For any z € X, we
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have
PH(z,1) = pHy(z,t) = Hi(z,t) ift€ [a,} - H(z.1),
pH;(z,t) = Hy(z,t) ifte (b,

and H(z,a) = Hy(z,a) = hi(z) = h(z). Moreover,
( .
H, 7=1(e)x[a,b] ifte [a7 6]7

H l‘r-’- (c)xfa,d] = 3 .
H, 7=1(c)x[b,c] ifte [bv C],

H{ 7=1(c)x[a,b} ifte [av b] by (4°2)1

Hé T=1(c)x[bc] ifite [bv C] by (4-3)7

H l‘r—l(c)x[a,b] if t € [a,b] by (4.1),
L .H’ l‘r"l(c)x[brc] if t e [b, C] by (4.4),

= H I‘r‘l(c)x[a,c] .

Thus, p has the CHP for H. ]

We are now ready to obtain the main theorems on the local nature of the CHP.

Theorem 4.8 Let p: E — B be a space over B, and H : X x I — B a homotopy.
If there ezists a numerable covering {Vy}rer of X, and for every A € A real numbers

0=13 <t} <--- <t} =1 such that p has the CHP for H

VAx[t;‘,t;\_H] VA, 2, then p

has the CHP for H.

Proof: Lemma 4.7 shows that p has the CHP for H |v,xs forall A € A. Let ¢ = g4

where h : X — E is any map with ph(z) = H(z,0). Then, by Lemma4.6,¢q: R — X
has the SEP over each V), hence q itself has the SEP X, by the Section Extension
Theorem. By Lemma 4.6, p has the CHP for H. a

Theorem 4.9 Ifp: E — B has the CHP over every set V where {Vi}sea s either
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1) a numerable covering, or

%) an open covering

of B, then p has the CHP for all spaces X in case i), respectively for all paracompact

spaces X in case z).

Proof: We first deal with with case ?).

Let H : X x I — B be a homotopy. We can assume that {Vi}ea is given
by a locally finite partition of unity, say {mx : B — I}sep (cf. see the first para-
graph of the proof of the Section Extension Theorem, 2.37). So, Vi = =;(0,1],
for all A € A. For every ordered r-tuple A;,Az,---, A € A, define Ty ae 0 X —
I by 7y (z) = Oinf{myH(z,t) : t € [EL,1]}. Note that mH : X x
[, 4] — I is continuous. Since [=X, {] is compact Hausdorff, 8), : X — I given by
0x(z) = in fte[i';—’, :;]r,\,fl (z,t) is continuous. Now, T,,..a is the pointwise product
of 8y, --- 01, hence continuous. We claim that {W, = 7;1(0,1]},¢r is a numerable
covering of X. Here I' is the set of all finite tuples of elements from A; namely,
vyE€Tl & v = AX--- A for some r € N, A\; € A,1 < i < r. Note that for any
A1--- A in T, we will have 7y, (z) #0 & H(z x [SL, ) ) Cc V5, for 1 <i < r.

Let (z,t) € X x I, then there exists an open neighbourhood V{z+) C B of H(z,t)
such that V(z ;) C Vi for some A € A and V|, intersects only finitely many V). Thus,
every pair (z,t) € X x I has an open neighbourhood which is contained in one of the
sets {H~*(V3)}rea and which meets only a finite number of {H~1(V;)}sea. Hence,
by compactness of I, for any z € X, there exists an open neighbourhood U, C X of

z and a natural number r, depending on z, with the property

1. U x [, é] C H-Y(V,,) for some \; € A,1 <i <r,, and

Tz
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2. U: x I meets only finitely many H~1(V4).

From 1., we see that my,...5, (u) # 0 for every u € U,. In particular, Wj,...s,, D
Ur. It follows that U,erW, = X. For any given natural number r and an r-
tuple Aj,---, A, of elements from A, we have observed already that z € Wy, ..\,
&z x [ZL i c HY(W,) for 1 < i < r. Condition 2. guarantees that for any given
natural number r, the family {W, },¢r, is locally finite where T, is the set of r-tuples
of elements from A. However, I' = U,»1I'; and the family {W, },er may fail to be
locally finite. We will show, however, that {W,,}.¢cr is numerable. For any natural
number k£ and v = (Ay,---, Ax) € Ik, let us write ., for the function my,...5, : X — I.

Let R* = {t € R: t > 0}. For any r € N, we define a continuous function
g- : X — R¥U {0} as follows: q1(z) =0forallz € X. Ifr > 1, let A, = Ugc, Ik
and 4,(2) = Syen, 7(2).

For any (A1,--+,A;) €Iy, define 7} ., : X — I by 7}, (z)
= maz(0, .., (2) — r¢g-(z)) for any z € X and let W = {z € X : n/(z) > 0} for
v € I'.. We will show that {W)},¢r is a locally finite open covering of X. Clearly,
W, C W, = {z € X:x,(z) > 0}. Thus, {W/},er is a refinement of {W, },er-

To see that {W.},er cover X, let z € X. We know that X = U,erW,,. Choose
k € N minimal with respect to the property that z € W, for some x € I'x. This
means £ € W, for some p € T'x and z € Wj for any § € A = Uik I't. Then gi(z) =0
and hence 7, (z) = m,(z) > 0 showing that z € W),. Hence {W!} er cover X.

Next, we prove that {W}.er is locally finite. With k having the same meaning
as above, let z € W, with u € Tx. Then 7,(z) > 0. Choose N a sufficiently

large integer greater than k to satisfy «,(z) > %. Since 7,(z) is one of the terms
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occurring in the expression gn(z) = Z,ea, ®+(z), We see that gn(z) > #. Since gn
is continuous, there exists an open set V in X with z € V and gn(y) > & for all
y € V. It follows that Ig(y) > 1 for all y € V whenever [ > N, hence 7 (y) =0
forally € V and v € I'; whenever [ > N. Hence, VN W, = ¢ for all v € I'; with
[ > N. Since W, C W, and {W,}reay = {W,}eru-ary_, is locally finite, we
see that {W},er is locally finite. Clearly 7y = z,,—,;!;‘_flv is a partition of unity with
W, ={z € X : «)(z) > 0} for every v € T.

Thus, {W,}.er is numerable. Now p has the CHP for # lerux,-x{-"-El 4] for any
(A1,-++, A7) €T, and 1 < ¢z < r. From Theorem 4.8, it follows that p has the CHP
for H. This completes the proof of case 7).

In case %), {Vi}aea is an open covering of B and H : X x I — B is a homotopy
with X paracompact. Using the compactness of I, for any z € X, we can find an
open set U of X with z € U, and a natural number r, satisfying the condition that
Uy x [%, r—’:-] C HY(Vj,) for some X; € A, 1 <i < r,. Then automatically {U;}.ex
is a covering of X which is numerable, because every open covering of a paracompact
space is numerable. Now p has the CHP for A Uax[i=L, ] forl1 <i: <r;. Theorem 4.8

rz 'Tp

implies that p has the CHP for H. a

Definition 4.10 We say thatp : E — B has the local CHP for CW-complexes
of dimension < m , if given any homotopy H : X x I — B with X a CW-complez
of dimension < m, we can find an open covering {Ux}rea of X such that p has the

CHP for H |y,xr : Ux x I — B for each A € A.

Definition 4.11 A space X is called a local CW-complex of dimension < m,

if for every point z of X, we can find a neighbourhood N, of z in X with N; a
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CW-complez of dimension < m.
Note that N, itself need not be open in X. All we require is that z € int(iV;)

where int(N;) is the interior of N, in X as a topological space.

With these definitions, we have the following result which is actually a modifica-

tion of Theorem 4.9 z).

Theorem 4.12 Let p: E — B have the local CHP for CW-complezes of dimension
< m. Then p has the CHP for all paracompact spaces X which are locally CW-

complezes of dimension < m.

Proof: Let X be a paracompact space which is locally a CW-complex of dimension

< mand H : X xI — B be any homotopy. For any z € X, we have a neighbourhood
N; of z in X with N, a CW-complex of dimension < m. By assumption,p: £ —+ B
has the local CHP for CW-complexes of dimension < m. Hence, we can find an
open set U, in N, with z € U, satisfying the condition that p has the CHP for
H lv.xr : Uz x I — B. Since N, is a neighbourhood of z in X, we can choose U, to
be open in X.

Thus for each z € X, there exists an open set U, in X satisfying the condition
that p has the CHP for H |u.xr- Since X is paracompact, {U:}zex is 2 numerable

covering of X. Hence, by Theorem 4.9, p has the CHP for H: X x I — B. i
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Appendix A

Categories and Functors

Definition A.1 A category C consists of

1. a class of objects, ob3C,

2. sets of morphisms, hom(X, Y )= hom¢(X,Y), for each pair X,Y € 0bjC,

and

3. a map hom(X,Y) x hom(Y,Z) — hom(X, Z), (f,g) — gf, called composi-

tion, for every triple X,Y,Z € 0bjC,
satisfying the following azioms:

1. the family of hom(X,Y)’s is pairwise disjoint,
2. composition is associative whenever defined, and

3. for each X € 0bjC, there ezists an identity 1x € hom(X,X) with 1xf = f
and glx = g for all f € hom(Y, X), forall g € hom(X,Z), where Y,Z €
ob;C.

Examples A.2 1. C = Sets with 0bjC consisting of all sets,
hom(X,Y) = {all functions X — Y},

and composition is the usual composition of functions.
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te

C = Top. with objC consisting of all pointed topological spaces,
hom(X,Y) = {all continuous functions X — Y},

and composition is the usual composition.

3. C = Grp with objC consisting of all groups,
hom(X,Y) = {all group homomorphisms X — Y},

and composition is the usual composition.

4. C = Ab with 0bjC consists of all abelian groups,
hom(X,Y) = {all group homomorphisms X — Y},

and composition is the usual composition. Notice that Ab is a subcategory of
grp.
3. 0bjC 1is the elements in a quasi-ordered set, and

¢ ifz Ly,

{iZ} fz<y.

hom(z,y) =

The composition is defined by tJ17 = i7. This is an ezample of an abstract cate-
gory in contrast with concrete categories (meaning subcategories of the category

of sets and functions) in the previous ezamples.

Definition A.3 Let C,D be categories. A covariant functor T : C — D is a
function on the objects and morphisms of C into (respectively) objects and morphisms

of D as follows.
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1. X € 0bjC = TX € 0byD, and
2. f€home(X,Y)=>Tf € homp(TX,TY)

such that T(gf) = T(g)T(f) for any morphisms of C whenever gf is defined, and
T(lx) = 1rx, for all X € o0bjC.

Definition A.4 LetC,D be categories. A contravariant functor T :C — D is a
function on the objects and morphisms of C into (respectively) objects and morphisms

of D as follows.
1. X € 0bjC = TX € 0bjD, and
2. f€home(X,Y)=>Tf€homp(TY,TX)

such that T(gf) = T(f)T(g) for any morphisms of C whenever gf is defined, and
T(lx) = lrx, for al X € Objc.

Examples A.5 1. The forgetful functor F : Top. — Sets assigns to each pointed
topological space its underlying set and to each continuous function itself, i.e.

"forgetting” the base point and continuity.

2. Let X be fized in a categoryC, then hom(X, ) : C — Sets is a covariant functor
assigning to each object Y € 0bjC the set hom(X,Y) and to each morphism
f € hom(Y,Y’) the induced map f. = hom(X, f) : hom(X,Y) — hom(X,Y”)
defined by h — fh.

3. Similarly, for Y € C fized, hom( ,Y) : C — Sets is a contravariant functor
assigning to each object X € 0bjC the set hom(X,Y) and to each morphism
g € hom(X, X') the induced map g* = hom(g,Y) : hom(X',Y) — hom(X,Y)
defined by h — hg.
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4. Let n be an integer greater than 0. The covariant functor 7, : Top. — Grp is
defined by mo(X,z0) = [(S™, ™), (X, z0)] for each X € objTop. and =,(f) =
fe 2 [(87,8™), (X, z0)] — [(S™,5™), (Y, y0)] for f € hom(X,Y"), where z¢ is the
base point of X, yo is the base point of Y € objTop., s™ = (1,0,---,0) € R*!
is the base point of S™, and [(S™,s"),(X,zo)] denotes the family of homotopy
classes of all base point preserving maps from S™ to X. For the composition

of the equivalence classes, we need the following definition.

Definition A.6 Let (X, zo) be a pointed space and define Ay : (X,z9) —
(X, z0) X (X, z0) by Az(z) = (z,2). Leti: (X, z0)V(X, zo) — (X, zo) X (X, z0)
be the inclusion, where (X,zq) V (X,20) = X X {zo} U {z0} x X. A pointed
space (X, zo) is called a co-Hspace if there ezists a continuous function, called

a co-multiplication ¢ : (X, zo) — (X, z0) V (X, z0) with ic ~ A,.

Since S™ is a co-Hspace forn > 1 (cf. [8], p.8381), we define the composition by
[f1x[g] = [Vx(fVg)cl, where f,g € ma(X, z0), Vx: (X, Zo)V (X, z0) — (X, o)
is the folding map defined by Vx(z,z0) = ¢ and Vx(zo,z) = z.



affine linear, 27
attaching map, 26

barycentre, 28
barycentric subdivision, 28

boundary operator, 27

category C, 80

characteristic map, 26
co-Hspace, 83
co-multiplication, 83
composition, 80

cone construction, 28
contravariant functor, 82
covariant functor, 81
covering homotopy property, 67
CW-complex, 26
CW-decomposition of X, 25

CW-space, see CW-complex

diameter, 28
dimension, 26
dimension of e, 26

dominated by p’, 7

Index

fibre homotopy equivalence, 8
fibre-homotopically trivial, 8
folding map, 83

halo around A, 16

has the local CHP for CW-complexes
of dimension < m, 77

has the property P locally, 14

has the property P over A C B, 14

HLP, see homotopy lifting property

homotopy lifting property, 1

homotopy over B, see vertical homo-

topy

Hurewicz fibration, 1

identity, 80
induced map, 13

induced space, 12

lifting problem, 1
linear simplex, 27

local CW-complex, 77
locally finite, 17
locally trivial bundle, 2



map over B, 4

normal, 16
numerable, 18

numeration of {Vi}aea, 18

paracompact, 17
partition of unity, 18
pull-back diagram, 12

refinement of {A4,}ae, 17

Section Extension Property (SEP), 23
Serre fibration, 1

shrinkable, 10

singular g-simplex, 27

space over B, 4

standard g¢-simplex, 27

supp(f), see support of f

support of f, 17

trivial, 4
trivial fibration, 2
vertical homotopy, 5

vertically homotopic, 5

vertices of A, 27
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