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ABSTRACT 36 

Mechanical strain plays an important role in skeletal health, and the ability to accurately 37 

and noninvasively quantify bone strain in vivo may be used to develop preventive 38 

measures that improve bone quality and decrease fracture risk. A non-invasive estimation 39 

of bone strain requires combined musculoskeletal – finite element modeling, for which 40 

the applied muscle forces are usually obtained from static optimization (SO) methods. In 41 

this study, we compared finite element predicted femoral strains in walking using muscle 42 

forces obtained from SO to those obtained from forward dynamics (FD) simulation. The 43 

general trends in strain distributions were similar between FD and SO derived conditions 44 

and both agreed well with previously reported in vivo strain gage measurements. On the 45 

other hand, differences in peak maximum (εmax) and minimum (εmin) principal strain 46 

magnitudes were as high as 32% between FD (εmax/εmin = 945/-1271 με) and SO (εmax/εmin 47 

= 752/-859 με). These large differences in strain magnitudes were observed during the 48 

first half of stance, where SO predicted lower gluteal muscle forces and virtually no co-49 

contraction of the hip adductors compared to FD. The importance of these results will 50 

likely depend on the purpose/application of the modeling procedure. If the goal is to 51 

obtain a generalized strain distribution for adaptive bone remodeling algorithms, then 52 

traditional SO is likely sufficient. In cases were strain magnitudes are critical, as is the 53 

case with fracture risk assessment, then bone strain estimation may benefit by including 54 

muscle activation and contractile dynamics in SO, or by using FD when practical. 55 

 56 

KEYWORDS: biomechanics, bone, finite element model, mechanical loading, 57 

musculoskeletal model 58 

59 
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INTRODUCTION 60 

 61 

Bone is a dynamic tissue that exhibits a strong structure-function relationship with 62 

its mechanical loading environment. Indeed, physically active individuals tend to accrue 63 

more bone mass during growth and development, and better maintain this bone mass 64 

throughout adulthood, than their more sedentary counterparts (Parfitt, 1994). 65 

Additionally, the loss of ambulation and habitual muscle loading associated with bed rest 66 

or paralysis leads to a rapid and profound loss of bone mineral (Edwards et al., 2013a). In 67 

the complete absence of mechanical loading bone reverts to its genetic template, normal 68 

in shape and size but lacking distinct characteristics in trabecular microarchitecture, the 69 

amount of ossification, and thickness and curvature of the cortical diaphysis (Chalmers 70 

and Ray, 1962). 71 

The process by which bone senses and responds to mechanical loading is known 72 

as functional adaptation, and the mechanical signal that drives this adaptive process is 73 

bone strain (Lanyon and Skerry, 2001), or some consequence thereof (i.e., strain energy 74 

density, fluid flow, microdamage). An accurate estimation of bone strain during activities 75 

of daily living such as walking is therefore integral to understanding the relationship 76 

between mechanical loading and skeletal health. In the physiological environment, bone 77 

strain is the end result of highly complex loading scenarios (i.e., combined axial, bending, 78 

shear, and torsional loading) caused by both gravitational and muscular forces. The 79 

resulting bone strain can be quantified in vivo using strain gages applied directly to the 80 

periosteal surface (Burr et al., 1996); however, the application of strain gages is highly 81 

invasive and measurements are limited to only a few, superficial locations. Owing to 82 

these limitations, researchers have turned to combined musculoskeletal – finite element 83 
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modeling techniques for a more non-invasive estimation of bone strain (Anderson and 84 

Madigan, 2013; Speirs et al., 2007; Vahdati et al., 2014; Viceconti et al., 2012; Wagner et 85 

al., 2010).  86 

The concurrent solving of musculoskeletal – finite element models is highly 87 

computationally intensive. Methods for estimating muscle forces from musculoskeletal 88 

models can require hundreds, thousands, or even millions of iterations within numerical 89 

optimization routines (Erdemir et al., 2007), and spending hours or even minutes within 90 

each iteration solving a finite element model would incur an impractical amount of 91 

computational time.  As such, it is most common to use a post-processing technique 92 

whereby muscle forces derived from a higher-level rigid multibody simulation are used 93 

as boundary conditions for a lower-level elastic model to quantify bone strain (Anderson 94 

and Madigan, 2013; Speirs et al., 2007; Vahdati et al., 2014; Viceconti et al., 2012; 95 

Wagner et al., 2010). Inherent to a post-processing approach is the assumption that the 96 

underlying elastic deformation has no influence on the dynamics of the rigid multibody 97 

system. For the calculation of bone strain, this assumption is logical given that bone 98 

deformation (Burr et al., 1996) is orders of magnitude lower than that of the 99 

musculotendonous units (Fukunaga et al., 2001) and would theoretically have a negligible 100 

influence on whole-body motion. 101 

The redundancy of the musculoskeletal system allows for an infinite number of 102 

muscle force combinations capable of producing the observed joint motions during 103 

physical activity (Crowninshield and Brand, 1981). This so-called “force-distribution 104 

problem” is typically overcome using numerical optimization procedures (Erdemir et al., 105 

2007). For researchers using combined musculoskeletal – finite element modeling 106 
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techniques, muscle forces are most frequently predicted using inverse dynamics-based 107 

static optimization (Anderson and Madigan, 2013; Speirs et al., 2007; Vahdati et al., 108 

2014; Wagner et al., 2010). Static optimization is much less computationally intensive 109 

than dynamic optimization, which uses forward dynamics simulation to find optimal 110 

motions and controls for a given performance objective, such as tracking an experimental 111 

dataset and/or minimizing the metabolic energy expended. Although muscle forces from 112 

SO and FD have previously been deemed similar for walking (Anderson and Pandy, 113 

2001b), SO has been criticized for lacking explicit time-dependent aspects of muscle 114 

force production, and for predicting minimal levels of antagonistic muscle co-contraction 115 

(Brand et al., 1994; Collins, 1995), which could potentially have a large influence on 116 

overall bone deformation and corresponding strain predictions. 117 

The purpose of this study was to quantitatively evaluate finite element predicted 118 

periosteal strains at the femur during walking using muscle forces estimated from static 119 

and dynamic optimization. To this end, a previously described forward dynamics (FD) 120 

simulation of walking was performed using a 3D musculoskeletal model (Fig. 1), and 121 

intersegmental joint moments from FD were subsequently used in an inverse-dynamics-122 

based static optimization (SO) routine. The muscle forces obtained from FD and SO 123 

served as post-possessing inputs to a finite element (FE) model of a femur based on 124 

clinical computed tomography (CT) data, and the resulting periosteal strains were 125 

compared between FD and SO derived conditions.  126 

METHODS 127 

Musculoskeletal modeling 128 
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A 3D musculoskeletal model (Fig. 1c) parameterized to represent a young adult 129 

female (i.e., 20 to 35 years) with standing height of 1.65 m and body mass of 61.0 kg was 130 

used to simulate walking at 1.25 m/s. The model was conceptually similar to other 131 

models used to perform FD gait simulations (Allen and Neptune, 2012; Anderson and 132 

Pandy, 2001a) and has been previously described in detail (Miller et al., 2015).  Briefly, 133 

the model consisted of 10 rigid segments (pelvis, trunk, thighs, shanks, feet, toes) 134 

connected at nine joints actuated by 78 Hill-based muscle models (Fig. 1b), including 20 135 

muscles per leg that crossed the hip and/or physically connected to the femur.  Contact 136 

between the feet and the ground was modeled by an array of viscoelastic/Coulomb 137 

friction elements on the plantar surfaces of the feet and toe segments. Initial muscle 138 

parameters were referenced from a cadaver-based lower limb model (Arnold et al., 2010), 139 

which were then adjusted so that joint strength characteristics were similar to average 140 

dynamometry data for young adult females (Anderson et al., 2007). 141 

Forward dynamics simulation. A simulation of one stride of periodic, bilaterally 142 

symmetric walking was performed using a dynamic optimization routine described in our 143 

previous work (Miller et al., 2012; Miller et al., 2015) and by others (Allen and Neptune, 144 

2012; Umberger, 2010).  Briefly, the muscle excitations were parameterized as bimodal 145 

signals with two magnitude and four timing parameters per muscle (Fig. 1a). The 146 

excitation parameters were optimized to track human experimental gait data (Miller et al., 147 

2014).  Specific gait variables included in the tracking cost function were average time 148 

series for the pelvis (3D), lumbar (3D), hip (3D), knee (1D), and ankle (1D) angles, the 149 

ground reaction force (3D), and the knee adduction moment.  To discourage solutions 150 

that tracked these data with excessive energy expenditure, the metabolic energy per unit 151 



 7 

distance traveled was also calculated (Umberger et al., 2003) and added to the cost 152 

function (see Electronic Supplementary Material for details).  A parallel simulated 153 

annealing algorithm (SPAN; (Higginson et al., 2005) was used to systematically adjust 154 

muscle excitation parameters so that the cost function was minimized (Fig. 1d). Muscle 155 

excitation timings for larger muscles were constrained to be similar to normative human 156 

electromyogram timing (Sutherland, 2001).  157 

Inverse dynamics based static optimization. An inverse dynamics analysis was 158 

performed using data obtained from FD simulation to calculate the intersegmental joint 159 

forces and moments. The joint moments and muscle moment arms were used as inputs to 160 

a SO problem similar to our previous work (Edwards et al., 2010; Miller et al., 2014), 161 

which was solved using the interior-point algorithm in the Matlab Optimization Toolbox. 162 

At each time step of the simulated gait cycle, the muscle forces were determined such 163 

that (i) all joint moments from the inverse dynamics analysis were reproduced (equality 164 

constraint) and (ii) the sum of the squared muscle stresses was minimized (Glitsch and 165 

Baumann, 1997). This approach, which is conceptually similar to that of Anderson and 166 

Pandy (2001b), was chosen to eliminate differences between muscle forces from FD and 167 

SO associated with errors in the collection and processing of experimental data, and the 168 

estimation of segment anthropometry. All muscles were modeled as ideal force 169 

generators with no contractile or elastic properties because previous studies have 170 

suggested adjusting solution boundaries by activation dynamics has a negligible influence 171 

on muscle force predictions in walking (Anderson and Pandy, 2001b).  172 

Finite element modeling 173 
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A FE model of a full femur was obtained from the VAKHUM database 174 

(http://www.ulb.ac.be/project/vakhum/). The native geometry and material properties of 175 

the model were based on clinical CT data from a female cadaver (age: 99 yrs, height: 155 176 

cm, mass: 55 kg). The CT scan had acquisition setting of 120 kVp and 200 mAs, and 177 

images were reconstructed with a slice thickness of 2.7 mm and an in-plane pixel 178 

resolution of 0.840 mm. The FE model was comprised of 104,945 linear hexahedral 179 

elements with 115,835 degrees of freedom, corresponding to a nominal element edge 180 

length of 2.0 mm. Increasing element edge length from 2.0 to 3.0 mm changed femoral 181 

displacements, principal stresses, and principal strains by less than 3%, indicating 182 

adequate convergence at this refinement. 183 

The FE model was first scaled longitudinally to the femoral body of the 184 

musculoskeletal model, and then scaled radially assuming bone mass scales to body 185 

mass, or length·diameter
2
 ∝ body mass (McMahon, 1973), as further justified by the 186 

observed correlations between whole-body bone mineral content and body mass (Weiler 187 

et al., 2000). Elements were assigned to one of 283 linear-elastic material properties 188 

based on relationships between Hounsfield units and apparent density after the integral 189 

volumetric bone mineral density of the entire femur was increased by 26% to match that 190 

of a young adult female (Keaveny et al., 2010). The density-elasticity relationship was 191 

based on uniaxial mechanical testing data of femoral neck trabecular bone (Morgan et al., 192 

2003):  193 

E = 6850ρapp
1.49

  194 

where E is the elastic modulus in MPa, and ρapp is the apparent density in g/cm
3
; all 195 

materials were assigned a Poisson’s ratio of 0.3. These material property assignments 196 

http://www.ulb.ac.be/project/vakhum/
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have previously illustrated excellent agreement (r
2
=0.91, RMSE<10%) between197 

experimentally measured and FE-predicted principal strains for cadaveric proximal 198 

femora loaded in a stance configuration (Schileo et al., 2007). 199 

An affine iterative-closest-point registration procedure available from Matlab 200 

Central File Exchange (http://www.mathworks.com/matlabcentral/fileexchange/24301-201 

finite-iterative-closest-point) was used to align the FE and musculoskeletal model femur 202 

into a common local coordinate system. Femoral muscle insertion locations from the 203 

musculoskeletal model were then mapped to surface nodes of the FE model. Forces for 204 

each of the gluteal muscles (i.e., maximus, medius, and minimus) were equally 205 

distributed amongst three separate insertion locations, and the force for the adductor 206 

magnus muscle was equally distributed amongst four separate insertion locations (Arnold 207 

et al., 2010). The FE model was physiologically constrained at the lateral epicondyle, 208 

center of the patellar groove, and the femoral head contact point (Speirs et al., 2007). The 209 

hip joint contact force and muscle forces obtained from FD and SO at 10% increments of 210 

the gait cycle, from 0% to 100% of stance, as well as the instant of the 1
st
 and 2

nd
 peak211 

resultant hip joint contact force (JCF1 and JCF2) served as boundary conditions for an 212 

implicit FE analysis (Fig. 1e), which was solved using Abaqus/Standard v6.13 (Dassault 213 

Systèmes Simulia Corp., Providence, RI). All forces were applied as point loads and 214 

resulting strain concentrations were removed from further analysis by discarding nodes 215 

and elements in the immediate vicinity of load application (Polgar et al., 2003). 216 

Data reduction 217 

The strains occurring along the periosteal surface of the proximal lateral aspect of 218 

the femur (35 mm distal to the lateral eminence of the greater trochanter) were compared 219 

http://www.mathworks.com/matlabcentral/fileexchange/24301-finite-iterative-closest-point
http://www.mathworks.com/matlabcentral/fileexchange/24301-finite-iterative-closest-point
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between FD and SO derived conditions, simply because strains at this location have been 220 

directly measured in vivo (Aamodt et al., 1997). To replicate experimental measurement 221 

from a strain gage rosette, three-dimensional strains at this location were averaged over a 222 

3 x 3 mm region and then transformed into a local coordinate system with a unit normal 223 

to the model exterior surface. The longitudinal (εlong), transverse (εtrans), and shear (εshear) 224 

planar strains occurring at this surface were calculated, as well as the maximum (εmax) 225 

and minimum (εmin) principal strains, and principal tensile strain (i.e., εmax) angle. For a 226 

quantitative comparison of the global femoral strain distribution between FD and SO 227 

derived conditions, εmax and εmin occurring along four nodal paths at the anterior, lateral, 228 

posterior, and medial periosteal surface of the femoral shaft were quantified at the instant 229 

of JCF1 and JCF2. 230 

RESULTS 231 

The FD simulation walked at 1.25 m/s with a gross metabolic cost of 3.64 J/m/kg; 232 

kinematics and GRF were always within two standard deviations of the experimental 233 

means (Fig. 2). Differences in the hip joint contact forces were observed between FD and 234 

SO conditions, especially during the first 50% of stance (Fig. 3). While the resultant hip 235 

joint contact force at JCF1 was greater in FD than in SO (1824 vs. 1113 N, respectively), 236 

the resultant force at JCF2 was quite similar between conditions (1410 vs. 1406 N, 237 

respectively).  238 

Examination of individual muscle forces suggested that the large differences in 239 

hip joint contact force during the first half of stance was primarily due to gluteal muscle 240 

force predictions, which were considerably lower for SO (Fig. 3).  Despite these 241 

relatively large differences, the hip joint contact and muscle forces from FD and SO both 242 
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produced femoral bending about an anteriomedial axis with the largest εmax values 243 

observed along the lateral surface of the femoral shaft followed by the anterior surface, 244 

and the largest εmin values observed along the medial surface followed by the posterior 245 

surface (Fig. 4). The unbalanced moments at the patellar groove associated with the 246 

physiologic constraints as well as error in the muscle mapping procedure were small and 247 

differed only slightly between FD and SO conditions (Fig. 5).    248 

The strain predictions at the proximal lateral femur for both FD and SO illustrated 249 

a bimodal curve associated with the weight acceptance and push off phases of gait (Fig. 250 

6). The largest differences in planar strains were observed at 30% of stance, near the 251 

instant of JCF1. At this point in the gait cycle, absolute values of εlong and εtrans, were 252 

approximate 37% greater for FD, corresponding to a difference of 278 and 85 με, 253 

respectively. The absolute difference in εshear at this instant was 7 με, whereas εmax and 254 

εmin, differed by approximate 36%, corresponding to 275 and 84 με, respectively.  255 

Differences in principal strain angle were never greater than 5˚.  256 

The largest differences in the strain distribution across the length of the femur 257 

were observed at JCF1 along the lateral and medial boarders of the femoral shaft (Fig. 7). 258 

Peak εmax at JCF1 differed by approximately 250 με along the lateral surface and peak 259 

εmin by 412 με along the medial surface; differences in peak εmax and εmin along the 260 

anterior and posterior surfaces were relatively small (≤ 113 με). Peak εmax at JCF2 261 

differed by approximately 100 με along the lateral surface and peak εmin by 119 με along 262 

the medial surface. The difference in peak εmax along the anterior surface was 42 με, while 263 

that for peak εmin along the posterior surface was 171 με. 264 

DISCUSSION 265 
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Mechanical strain plays an important role in skeletal health, and the ability to 266 

accurately and non-invasively quantify bone strain in vivo may be used to develop 267 

preventive measures that improve bone quality and decrease fracture risk. Our purpose 268 

was to compare FE predicted femoral strains during the stance phase of walking using 269 

muscles forces obtained from FD simulation and inverse-dynamics-based SO. Despite 270 

having identical joint kinematics and intersegmental reaction forces and moments, 271 

differences as high as 32% were observed in peak femoral principal strains between FD 272 

and SO derived conditions (-1271 με vs. -859 με, respectively). The importance of these 273 

differences will likely depend on the purpose/application of the combined 274 

musculoskeletal – finite element modeling procedure.  275 

The muscle force predictions generated by both FD and SO produced femoral 276 

bending about an anteriomedial axis with the highest principal tensile strains along the 277 

lateral and anterior surface of the femur, and the highest principal compressive strains 278 

along the medial and posterior surface of the femur. These global strain distributions are 279 

quite similar to those previously reported for FE models loaded with physiological 280 

boundary conditions simulating gait (Anderson and Madigan, 2013; Duda et al., 1998; 281 

Polgar et al., 2003; Speirs et al., 2007; Wagner et al., 2010). Both FD and SO muscle 282 

forces generated peak principal tensile strains and peak principal compressive strains on 283 

the order of 500 to 1000 με, and -1000 to -1500 με, respectively. These strain magnitudes 284 

agree well with previous literature (Duda et al., 1998; Polgar et al., 2003), but in some 285 

circumstances are 2-3 times lower (Anderson and Madigan, 2013; Speirs et al., 2007; 286 

Wagner et al., 2010). Although some of the discrepancy in strain magnitudes may be 287 

associated with specific details of the musculoskeletal model geometry and procedures, 288 
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they could just as easily be explained by differences in the calculated/assumed bone 289 

mineral density distribution of the femur or material property assignment for the FE 290 

model. Near twofold differences in predicted strain magnitudes have been reported 291 

between some of the most commonly utilized density-elasticity relationships for FE 292 

models of bone (Schileo et al., 2007). Nevertheless, it is important to note that the strain 293 

magnitudes observed herein are directly in line with previous in vivo measurements 294 

(Aamodt et al., 1997; Burr et al., 1996).   295 

Strain gage measurements during walking have been recorded at the proximal 296 

lateral femur in a 49-year-old female undergoing surgery for “snapping hip syndrome” 297 

(Aamodt et al., 1997). The strain gage recordings demonstrated that the proximal lateral 298 

femur was undergoing tension during the stance phase of gait. The axial strain along the 299 

longitudinal axes of the femur reached 1,133 με, with an εmax to εmin ratio of -3.05 (1,198/-300 

393 με), and an average principal tensile strain angle 12˚ from the longitudinal axis of the 301 

femur. The axial strains along the longitudinal axes of the femur for FD reached 745 με 302 

near JCF1, and displayed an εmax to εmin ratio of -3.25 (747/-230 με); corresponding 303 

values for SO near JCF1 were: axial strain = 467 με, and εmax to εmin ratio=-3.22 (471/-304 

146 με). The average principal tensile strain angle from the longitudinal axis of the femur 305 

during stance was 6.5˚ (range: -6.0 to 20.6˚) for FD and 5.7˚ (range: -7.3 to 18.8˚) for SO. 306 

Use of these strain gage data for a rigorous validation of the two modeling procedures 307 

employed herein would be a futile exercise, as there are simply too many differences 308 

(e.g., age, femoral geometry) and unknowns (e.g., normalcy of gait mechanics following 309 

surgery, walking speed, exact location of strain gage) associated with the experimental 310 

data. In fact, changing the simulated strain gage location only a few millimeters anterior 311 
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or inferior increased strain magnitudes by 100 to 200 με. What is important to note is that 312 

the general trends in strain for both methods, such as the tension-compression ratio and 313 

orientation of the principal axis, seem to correspond with the experimental data.  314 

The largest differences in femoral strains between FD and SO were observed 315 

during the first half of stance, where SO predicted much lower gluteal muscle forces and 316 

virtually no co-contraction of the hip adductors compared to FD. This reduction in 317 

muscle co-contraction of the frontal plane hip agonists and antagonist has recently been 318 

suggested as a potential cause of lower hip contact force predictions using static 319 

optimization when compared to computed muscle control for FD simulation (Wesseling 320 

et al., 2015). In this study, differences in muscle forces produced strains that were some 321 

30% lower along the lateral and medial surface using SO. On the other hand, peak strain 322 

along the anterior surface at JCF1 was higher using SO by nearly 113 με. Although joint 323 

contact forces were similar between conditions at JCF2, differences in strain distributions 324 

up to 171 με were still observed, demonstrating that the relationship between applied load 325 

and resulting bone strain is quite complex. A general limitation of this study is that we 326 

cannot affirm which method of muscle force estimation is more accurate.  Confirmation 327 

of accuracy would require in vivo measurements of muscle forces thereby negating a 328 

musculoskeletal modeling exercise all together. However, practical non-invasive 329 

measurements of in vivo muscle forces is unlikely to be realized in the near future, and 330 

there remains a need to grow the knowledge base of “best practices” for modeling these 331 

aspects of human movement (Hicks et al., 2015). Although FD does not necessarily 332 

predict more realistic muscle forces than SO, it does allow for the prediction of forces 333 

that are associated with physiologically-motivated objectives (e.g. the propensity to 334 
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minimize metabolic cost; Srinivasan, 2009) that cannot be included explicitly in SO, and 335 

can assess how modeling methods and assumptions may affect the outcomes of 336 

simulation studies (Anderson and Pandy, 2001b; Morrow et al., 2014). 337 

This study has several limitations that should be borne in mind for the general 338 

interpretation and future investigation of combined musculoskeletal – finite element 339 

modeling for the non-invasive assessment of bone strain. Although the FE model was 340 

modified to have similar size and density to that of a young adult female, the gross 341 

morphology and mineral distribution of the model was based on a 99 year-old cadaver. In 342 

aging, there is a progressive thinning of the cortical shell (Thompson, 1980) and a 343 

reduction in femoral neck shaft angle (Rickels et al., 2011). In fact, the femoral neck shaft 344 

angle was approximately 5˚ lower for the FE model compared to the musculoskeletal 345 

model. While these differences may have influenced the absolute values of strain, we 346 

have no reason to think that the relative differences between conditions, and thus the 347 

interpretation of our findings, would change. This study design allowed for a direct 348 

comparison of FD and SO in the absence of experimental error (Anderson and Pandy, 349 

2001b). The FD simulation represented only one ensemble average stride of walking, and 350 

we can say nothing of the variability of bone strain between strides or different levels of 351 

co-contraction. Future work may examine the importance of this variability through 352 

stochastic representation of neuromuscular control (Martelli et al., 2015; Viceconti et al., 353 

2012).   354 

The FE method is perhaps the most accurate of all current biomechanical 355 

modeling approaches because their outputs can be directly compared to in vitro 356 

experiments (Edwards et al., 2013b; Schileo et al., 2007). Although notably difficult, 357 
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more work is needed to validate muscle outputs from musculoskeletal models, 358 

recognizing that until such time, bone strain predictions based on combined 359 

musculoskeletal – finite element modeling may lead to erroneous conclusions regarding 360 

bone factor of safety and remodeling stimuli. If the goal of the modeling procedure is to 361 

obtain a generalized strain distribution for adaptive bone remodeling algorithms (Vahdati 362 

et al., 2014) both static and dynamic methods should produce analogous results, provided 363 

that stimulus thresholds are adjusted accordingly. In circumstances were strain 364 

magnitudes are critical, as is the case with fracture risk assessment (Viceconti et al., 365 

2012), it is possible that these two methods may lead to conflicting conclusions; fatigue-366 

life predictions could potentially differ by one to two orders of magnitude (Carter and 367 

Caler, 1985). Performing FD will not always be practical due to the level of modeling and 368 

computational effort required, but in these situations, SO routines may benefit by 369 

including aspects of muscle force estimation from FD, as is done with methods like 370 

computed muscle control (Thelen and Anderson, 2006). 371 
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FIGURE CAPTIONS 

Figure 1. Diagram of the combined musculoskeletal – finite element modeling approach 

for FD simulation. (a) Muscle excitations are defined by six parameters per muscle: two 

values each for Mi, Ti
on

, and Ti
off

. (b) Each of the 78 muscles receives an excitation

defined by its six muscle-specific parameters, and develops force in response. (c) Joint 

moments resulting from muscle forces are applied to the skeleton to cause motion. (d) 

Excitations are adjusted through optimization to minimize a cost function J. (e) 

Following optimization, the hip joint contact force and forces for muscles attaching to the 

femur are used as boundary conditions for a finite element model. 

Figure 2. Lumbar, pelvis, and lower limb joint angles and ground reaction forces (GRF) 

for the FD simulation of walking. Shaded areas are ±2 standard deviations around the 

mean for 14 human subjects walking in a “normal and comfortable” fashion (Miller et al., 

2014). The stride begins and ends at heel-strike. Vertical dashed lines indicate toe-off. 

The GRF are scaled by bodyweight (BW). 

Figure 3. The resultant hip joint contact force and select muscle forces acting at the 

femur during the stance phase of gait (GMAX=gluteus maximus, GMED=gluteus 

medius, GMIN=gluteus minimus, ADDMAG=adductor magnus, RECFEM=rectus 

femoris, VAS = vasti muscles, HAM=hamstring muscles, GAS = gastrocnemius). The 

hip joint contact force was calculated as the vector sum of the resultant joint reaction 

force and the forces from muscles spanning the hip. 

Figure Legends



Figure 4. The minimum principal strain (εmin) distribution on the medial surface (left) 

and maximum principal strain (εmax) distribution on the lateral surface (right) at JCF1. 

Figure 5. The unbalanced moments, or reaction moments, at the distal patellar groove 

associated with the physiological constraints as well as error in the muscle mapping 

procedure. 

Figure 6. The longitudinal (εlong), transverse (εtrans), and shear (εshear) planar strains, as 

well as the maximum (εmax) and minimum (εmin) principal strains, and principal tensile 

strain (i.e., εmax) angle occurring at the proximal lateral femur (35 mm distal to the lateral 

eminence of the greater trochanter) as a function of stance. 

Figure 7. The maximum principal strains (εmax) along nodal paths of the lateral and 

anterior surfaces, and minimum principal strains (εmin) along nodal paths of the medial 

and posterior surfaces at JCF1 (top) and JCF2 (bottom). 
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Cost Function for Forward Dynamics Simulation 

The cost function for the forward dynamics simulation was (Miller et al., 2015): 

J = Jtrack +w1Jmetcost + w2Jexc 

where Jtrack is the mean squared deviation from the target data, Jmetcost is the square of the gross 

metabolic cost of transport (Tucker, 1975), Jexc is deviations in the on/off timing of the model’s 

muscle excitations relative to normal human electromyograms (EMG), and w1 and w2 are 

weighting coefficients. The specific form of the tracking function was: 

Jtrack=
1

15T
��� �

xi
mod(t)− xi

tar(t)
wi

tar(𝑡𝑡)
�

2

dt
T

0
�

15

𝑖𝑖=1

 

where xi
mod(t) is the value of variable i at time t from the model, xi

tar(t) is the value of the 

analogous tracking target variable, wi
tar(𝑡𝑡) is a weighting factor, and T is the step duration. We 

used means and between-subjects standard deviations for “normal” human walking data from 

mailto:wbedward@ucalgary.ca


Miller et al. (2014) to define xi
tar(t) and wi

tar(𝑡𝑡), respectively. The 15 tracking targets included 

the 3D pelvis angles, the 3D lumbar joint angles, the 3D hip angles, the knee flexion angle, the 

ankle plantarflexion angle, the 3D ground reaction force, and the knee adduction moment.  

The specific form of the metabolic cost function was:  

Jmetcost=�
∫ �Ėrest+∑ Ėm

78
m=1 �dtT

0
vavgTM �

2

 

where Ėrest is the resting metabolic rate, chosen to be 1.0 W/kg body mass (Waters & Mulroy, 

1999), Ėm is the gross metabolic rate of muscle m, calculated using the Umberger et al. (2003) 

model of human muscle energy expenditure for Hill-based muscle models, vavg is the average 

horizontal speed of the model’s center of mass during t ∈ [0,T], and M is the total body mass.  

The value of the weighting coefficient w1 = 0.2 was chosen so that a realistic metabolic cost for 

normal human walking (~ 3.5 J/m/kg at ~ 1.3 m/s; Srinivasan, 2009) had the same weight in the 

cost function as a reasonably realistic average tracking error for these types of simulations (under 

~ two standard deviations on average, e.g. Allen & Neptune, 2012; Miller, 2014). 

The specific form of the muscle excitations function was: 

 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 = 1
2∙78

∑ �(𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜 − 𝜏𝜏𝑖𝑖𝑜𝑜𝑜𝑜)2 + �𝑇𝑇𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜏𝜏𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜�
2
�78

𝑚𝑚=1  

where 𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜 is the normalized time within the gait cycle (0-100%) when the excitation for muscle 

i turns on, 𝑇𝑇𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 is the time when this muscle’s excitation turns off, and 𝜏𝜏𝑖𝑖𝑜𝑜𝑜𝑜 and 𝜏𝜏𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 are mean 

on/off off times from indwelling EMG data during healthy adult gait (Sutherland, 2001).  The 

weighting coefficient w2 = 50 increased the cost function score by 0.125 (a very light penalty), 

0.5, and 2.0 (a very heavy penalty) for average deviations of 5, 10, and 20% from the normative 

timing data. 
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