Tentunl Tnvage Compresslon '
(Fadentbont Abtoiedy

bt Wi
othy)
Mty Kl NHHN"HI'
Mk b it
e A !

We describe i mntid o toordewn compemton ol e ik cnie pesdominmty typed on typeset
fext - wecal v magey iy o sy lrmn I st dorimstin, whiere a typed page
is scuseed and oo waomi osge Anotied lg e Ilﬂllﬂ |CH firl Mmﬂh’ﬂllml I o nent ms biving.,
where documntowne s miined iy I TR [IHI Py ot dber petrbinnl O pogect was
motivated Dy s ban applivonblon: Dbl g II\ 'IMMM At el hg el 172 prinied
libwary catalogus onto dbde wd 10y IR IHMMlI i ol e el ghind o wment, puges we
being stored an aeanmd finges lie tlmuiulngum D) bl Dsgen nie aken o dus
catalogue tone tu alywos iy 1o ||l|||0’ b ey bedaltho [y ' Bl Hotmee e oot okl fnshioned
fook, and comtain w o b otiby ol syabids b owe .uu Ilﬂ B i dien Hie e st images we
uscd contann st et Eleneshe ©atho wnd it b |||||‘ i ‘ln e Hlhes i] caphials as well as
oman denters e catbopime abwconili b Al ullll I

Pl best fomabeon e oot wdts e ol e both s gl e lase thele comfligg on vonests”—a
symbolis codid s end et ones Howece (e ciitieats el 0 codbig testusaally cxiemd
aver sigilicanthy oven e b than these sl i hilplwal YT comipenmin (e Deat methods
ke predtv e b on g o e on o b f] ittt blnek whiie loages, e most
clective contenta iy il o e nbieond it i ikl [HR]

One posstliblify e ool Image eyl "4 TN ||H||l| Ol chtater pecogimion (OCR)
o the testmud inby et o st e ASEN Qg Hi MY b on D vl e, along with
sone idouatbon abnw o 1 |uMI|Iu|| TNII g H\m Hlk it il |cmhlrllln with thin Constderable
COMPUEIE P e bt b e gl =v e o e e unnrwllllu«uIllnnul«nuwlvhlynlluhh
paticulinly O wianand e {otedjh Inllullrlw'n] |||r|||||~||ml H|| Mmtrmﬂmln e bl s miwed Yok
systems ¢ eeulee featnbig to e wew it aid i Hpi-pibd iy firve 1oy s jut purieters such
as e contvast ol Wi s T esaiy that ciiog v HI||H‘H| nlM Al itk e emoved o the
page. Dioncally alfwmghohe gy oty fovk freder 1 s - ||l|||1 Hiteder b sne £ does ool taithially
represent e onglanl Dvage Wil u‘ " Inulh |a||||lnl CIRE Fte e |t|t||lln| with what the OCR
systenn b e e thenn s abber e D g e cQecn i ot JHede s interpee o i
o ik st w i lonog e ploen ulII'er [||||;u R ||:<|‘ e Lo Froen the b may ol he
reproduced acenrab by oalhoc g Hie lonk ol e din L] l: il “‘l""l Vapalvoss betberw, s sor ol "notse”
may beacceptable cven e pabde Ban o bk u‘lm e Bt ol e ewden ae nonknown,
(here 15w stong medbnbon b ok the dor el e hl‘lllllillq i sl)

Fhe comprestom et sttt e we duoifeng s s o0t dormmsat can be weproduced
exactly fion b compe o o Tt b done g 0 |4|n|0||||p b empongabe e Gent wnd potse e the
document The pwocomigaoni igbeare e omigieescod e |u|h|ll|lh Ut o el wpgopiiae or cach

MPhease et all oo o both 1o '
‘I)spnulnuulult it Towe b oy

ul su .l' r
ln|m|unuunu bt b Hnboe iy o lﬂl ’”‘(| ||||
Hquulnuulnlt ot b ety willi: NI

"MI J 1 {im A, e
‘ unmm Pl 11 104 240 6t
; R renland Belophone oo Ve

ATRIGE u»lmllu

YOne of e witlins tus e b o bl i ‘\IIJIH" i, nlltllllHl H””“ ” ||1‘ I||4 EfeTe 1 e e ot
el nlning el iu..

anchaewd ws wic e Pl sonnie b ooty jiiil kit Vol o by e e the e

Method of compression

Before proceeding with a detailed description, we bricfly summarize the new compression method images
with reference to a particular example. Figure 1 shows a testimage. The actual library pages are formatted
intwo columns with a vertical separating line and a full-width header at the top. However, these structural
elements are detected in a pre-processing stage and our system is presented with bitmap files representing
single columns of text.

First, the image is segmented into individual groups of pixels, called ‘symbols.” As cach is identified
it is checked against a growing library of symbols that have been seen so far. This involves testing the
newly-segmented item against every member of the library. If no sufficiently close matches are found,
the new symbol is added to the library. The library of symbols that is created from the test image is
shown in Figure 3. Symbols occur in order of their appearance in the image.

The textual part of the image is the sequence of symbol numbers that have been encountered in
it. Symbols are quite similar to characters; however, characters with disconnected parts like ‘i’ and ‘j’
are represented by pairs of library elements, one for the body and the other for the dot on top. The
second column of Figure 2 shows the sequence of symbol numbers, and using the library in Figure 3 the
symbols can be identified and read off the original picture. The first column gives an approximation to
the corresponding library symbols, for easy reference.

It is also necessary to code the (z,y) coordinate offsets between one symbol and the next. These
inter-symbol gaps are recorded in the last two columns of Figure 2, which show the z- and y-offsets from
the right-hand bottom corner of one symbol to the left-hand bottom comer of the next. Occasionally the
z-offset will be small and negative (for example, following the body of a ‘i’ when returning to the dot on
top), or large and negative (when returning from the end of one line to the beginning of the next).

Using these symbol numbers, most of the original image can be reconstructed from the library. The
result is an approximation to the original image that we call the ‘reconstructed text’; it is shown in
Figure 4. It differs from the original image in three ways. First, small groups of pixels are rejected by
the segmentation process; these correspond to specks in the image and do not appear in the reconstructed
text. Second, because matching is approximate, a halo of pixels often appears around the edge of symbols
caused by a mismatch between the library element and the actual symbol in the image. Third, symbols
that only occur once are not entered into the library and so do not appear in the reconstructed text.

To complete the original picture, it is exclusive-OR’d with the reconstructed text image to form a
bitmap called the ‘residue,” shown in Figure 5. This is coded using image compression techniques. As
can be seen, much of the text can be made out from the residue, which indicates that the text itself should
be of considerable help in compressing it. In fact, the reconstructed text is used as part of the context
used to code the residue.

Details of the individual steps

Symbol extraction

The first stage in symbol extraction is to identify lines of text so that symbols can be detected in their
natural order. This is done in an ad hoc manner—the problem has already been addressed by numerous
optical character-recognition programs (though we were unable to locate detailed descriptions of the
algorithms they use). The rectangle of pixels that the program identifies as a line of text is called a
‘window.” To find the top of the first window we scan down the image seeking a connected group
of pixels, in any horizontal position, whose height exceeds some prespecified minimum (currently 15
pixels). The bottom of the window is essentially assumed to be the first point at which a clear white line
extends right across the image. However, this may be marred by a slight overlap (say, between subscripts
on one line and superscripts on the next) or by a speck of dust. To cope with this, the scan continues
until a full-width strip of a certain minimum height (again, 15 pixels) is encountered for which there is no
connected black line that extends from top to bottom. This means that there must be a connected white

line extending through this strip right across the image, and this is taken as the bottom of the window.

Next, the window is scanned in transposed raster order from bottom to top, moving one pixel rightward
after each scanline. This visits the symbols in left to right order, and in general finds a symbol before any
disconnected part that lies above it. For example, the body of an ‘i’ will be encountered before its dot;
the accent on an ‘€’ will come after the letter itself. As soon as a symbol is found, it is removed from the
window. Thus if ‘i’ is encountered, the ‘v’ is found first and removed, then the first dot, and finally the
second one. To cope with cases where a high superscript in the next line intrudes into the window, any
connected region that extends below the window is left in the image and dealt with as part of the next
window.

Symbols are segmented by boundary tracing (we use 8-connectivity), and the result is extracted from
the window as a candidate for inclusion in the library. Symbols comprising less than 15 connected pixels
are ignored. Other non-typographical symbols—specks of dust, annotations, coffee-stains, etc—are
segmented as usual but will be removed from the library unless they occur again.

This method of symbol extraction is not robust and can easily be fooled. We recognize that a full
system would have to address this issue but have not yet done so ourselves because, for us, these are not
the most interesting research questions.

Template matching

As symbols are extracted, they are matched against those already in the library. With each library member
a set is kept of all symbols that match it. If the current symbol matches an existing one, it is added to the
set of matches for that library symbol; if not, it is entered into the library as a new symbol.

The template matching procedure is critical to the successful identification of symbols. A number
of matching methods have been described in the literature. Holt [4] divides them into two categories
depending on whether they use global or local criteria. The former measure the overall mismatch between
the new symbol and a library template, while the latter seek local mismatches that comprise just a few
pixels. Both work on an error map which is the bitwise exclusive-OR between the new symbol and a
library member, and for this the two must be registered appropriately. On each symbol in the library,
the new one is superimposed by aligning the lower left comers. Nine different registrations are used,
corresponding to one-pixel displacements in the eight principal compass directions. In each registration
the exclusive-OR between old and new symbols is calculated to yield the error map, and the tests below
are repeated nine times. If the template is accepted in any of the registrations, the one with the best fit
(i.e. minimum Hamming distance) is chosen.

Template-matching methods that use global criteria are intended to be size-independent. However,
they must be trained on the fonts being used—if not, the results are unreliable. For example, the ‘combined
symbol matching’ method [9] computes a weighted sum of pixels in the error map, where error pixels are
weighted more highly if they occur in clusters. A match is rejected if this exceeds a threshold obtained
from a training process, which varies depending on the size of the symbol. Holt and Xydeas [3] describe
another global method that achieves slightly better performance.

Johnsen et al. [5] describe a template-matching method that uses local criteria, rejecting a match
if any position in the error map is found to have four or more neighbors set to 1. In order to detect
mismatches due to the presence of a thin stroke or gap in one image but not the other, another heuristic
is used. Noticing that this method often produced false matches on small characters, Holt [4] used two
different criteria to detect thin strokes or gaps—one for large characters and the other for small ones.

We began by simply rejecting the match if any square block of a certain size was found to be set in
the error map. A crude normalization for symbol size was performed by rejecting if a 3x3 block was
found, unless the height or width were less than 12 pixels in which case we rejected on the basis of a
2x2 block. However, this missed thin strokes—for example, ¢’s were confused with e’s. Consequently
we implemented Holt’s rule [4] to seek thin strokes in the error map. We had to modify this because our
test images are digitized at 400 dpi, twice the resolution he used.

Afier some experimentation we settled on three categories of symbol: large ones (most letters) whose

height and width both exceed 12 pixels; small ones (typically punctuation) where both are less; and the
rest (thin lowercase letters such as ‘i’ and ‘1’). For the first category a match is rejected only if two or more
3 %3 error blocks are found, while for the last a single 3 x 3 error suffices. In both cases, a thinline detector
is implemented based on [4] and with slightly different criteria for large and intermediate symbols. For
small symbols, a match is rejected if an error of 6 pixels is found (with no thin line detection). The reason
why one 33 error is tolerated in the case of large symbols is that ‘identical’ letter g’s often exhibit a
difference of this size—and indeed the results show that the present algorithm still has a tendency to
mismatch g’s.

Of course, whereas in optical character recognition mismatches are serious errors, in our application
they merely cause a small penalty in compression efficiency. The reproduced image will still be a faithful
copy of the original.

Constructing the library

The result of template-matching is a provisional library which stores the first-encountered variant of each
symbol, along with the set of all symbols that matched it. From this are discarded ‘singletons,’ that
is, symbols that have occurred just once. This removes almost all the noise symbols (and also genuine
characters that occur only once). Then each template in the library is replaced by an averaged version in
which a pixel is set if it appears in more than half the symbols that matched. This removes the arbitrariness
of storing the first-encountered variant, and minimizes the number of bits set in the residue.

Identifying white space

The symbol-extraction process does not recognize white space as a symbol in its own right—any space
following a symbol will manifest itself merely as an unusually large z-offset. However, experiments with
ordinary text files show that compression performance can deteriorate by up to 5% if space characters are
removed. Therefore we experimented with inserting a special code, known in advance to encoder and
decoder, into the text between words and at the end of lines. What distinguishes spaces from tabs from
newlines is the size of the z (and y) offset associated with the symbol.

Coding the symbol numbers

The symbol numbers illustrated in the second column of Figure 2 are not conventional character codes.
For one thing symbols are ordered in the sequence in which they happen to appear in the image, rather
than alphabetically; for another, some characters (like ‘i”) generate more than one symbol. However, this
does not affect text compression methods that begin with no preconceptions about the kind of information
being coded, and any such ‘adaptive’ scheme is suitable. We use the well-known PPMC technique [1,
2, 7]. Its performance will depend on the success of the symbol extraction method. If, for example,
two variants of a certain character find their way into in the library, (up to) one extra bit will be needed
whenever the character occurs to distinguish them.

Coding the offsets

The z- and y-offsets are compressed by conditioning them on the symbol with which they are associated,
and using adaptive coding. For every symbol, all offset values associated with it so far are stored, along
with their frequency counts. If the present value has followed the symbol before, it is coded (using
arithmetic coding) according to this frequency distribution. If not, an escape code is sent and the offset is
coded according to the frequency distribution of all values that have occurred so far (regardless of what
symbol they followed). If that particular offset value has never occurred before, a further escape is sent
and the value is coded according to a precomputed, fixed, probability distribution that corresponds to
Elias’s v variable-length coding of the integers (see Appendix A of [1]).

Component Coding method | Single | Average | Fifth image
image | over five | using model
images | from other 4

library of symbols 2-level coding 1466 2149 134
the symbol sequence PPMC 760 1336 660
z- and y-offsets order-1 1972 2536 1601
residue see text 21798 27452 21297
Total: 25996 33473 23692
original image 2-level coding 34176 43556 33614

original 39001120 image | uncompressed | 546000 | 546000 | 546000

Table 1: Size (in bytes) of each component of the representation for the test images

Coding the library

The library of symbols is coded using normal image compression techniques. It is represented as an
image from which members are extracted by the decoder using the same process that the encoder uses to
extract symbols from text. Experiments show that the two-level coding scheme devised by Moffat [8],
with the 22/10 bit context in his Figure 5, gives the best performance for sample library images.

Coding the residue

The residue is the bitwise exclusive-OR of the original image and the reconstructed text. Because of
the success of the character extraction process, far fewer bits are set in it than in the original image.
This would seem to indicate that the residue can easily be coded much more efficiently than the original.
However, this is not so. When good compression methods are applied, there is little difference in their
compressed size. In fact, with the best two-level coding scheme of [8], the compressed residue was
slightly larger than the compressed form of the original image!

We found this result disappointing, although with hindsight it is perhaps not surprising. The original
image is far more compressible than the residue precisely because most of the black pixels it contains form
predictable parts of characters. When the symbols are extracted, what is left is the noise—the irregularities
around the edges that are caused by deficiencies in the printing and scanning processes—and this is very
difficult to compress.

Fortunately, the residue can be coded more efficiently. There is clearly considerable overlap in
information content between it and the reconstructed text image—many of the characters can be discerned
from the residue alone. Advantage can be taken of this by conditioning the coding of the residue on
the reconstructed text image, as well as on that part of the residue coded so far. This is particularly
effective because the entire reconstructed text is known before any of the residue is coded. Thus Moffat’s
‘clairvoyant’ templates can be used [8], which assume that all pixel values surrounding the current one
are known. We use as context both a regular template on the residue coded so far, and a clairvoyant
template on the reconstructed text image.

Experimental results

Table 1 summarizes the overall result. The five test images from the Trinity College Library catalogue
are each 3900 1120 pixels (they actually represent single columns from two-column pages). Using the
best conventional compression method we could find, the two-level coding scheme [8] with a 22/10 bit
context, the first image is reduced to only 6.2% (34,176 bytes). The new method reduces it to 4.8%
(25,996 bytes). The average over the five test images is also shown: Moffat’s method compresses them
t0 8.0% and the new method to 6.1%. The reason why better results are achieved on the first image is

that it is a short column containing a large stretch of white space after the text.

These figures are for the situation where single images are coded in isolation. If several images
are processed and then a further one is coded, significant economy is achieved because the overheads
are reduced. The extra information needed to code the fifth image (chosen to be the one used for the
single-image tests, and that of Figure 1) once the other four have been processed is shown in the final
column of Table 1. The total is nearly 10% smaller than that for coding the image in isolation. If a
conventional compression technique such as Moffat’s is used, the gain from pre-adapting to the other
four images is much smaller (1.6%).

We now review the success of the individual processes.

Coding the residue

The residue is by far the largest component of the compressed image. Different combinations of Moffat’s
regular (Figure 3 of [8]) and clairvoyant (Figure 6 of [8]) templates were evaluated (although in the latter
we include the center pixel as well). The 4-bit regular template combined with a 13-bit clairvoyant one
works best.

As can be seen from Figure 5, some unidentified symbols—singletons—appear in the residue. In
order to determine whether these affect its compression significantly, we removed all symbols and re-
coded it using the same technique. The size reduced to 20,871 bytes, down by only 4% from the figure
in Table 1. It seems that most of the space occupied by the coded residue is inherent in the fact that it is
a noisy image—it will be difficult to reduce its size much further.

Symbol extraction and library coding

For the five test images, 359 symbols were initially placed in the library, and this was reduced to 204 by
the consolidation process (eliminating singletons). Of these, 123 were valid typographical symbols; 52
were duplicate copies of symbols; five were ‘false ligatures,” which are double characters formed by two
separate ones that have run together in the printing process (a ‘true’ ligature is a pair of letters such as
“ff* or ‘fi’ that are normally printed as a single symbol); 24 were fragments of characters where a printing
imperfection has omitted part of a symbol or broken it in two. Of course, all of these imperfections must
have occurred twice in order to form part of the final library.

Of the 155 discarded singleton symbols, most were imperfectly formed variants of symbols that had
already occurred. Although 52 of these appeared in the library, a further 59 occurred only once and
hence were ignored. The next largest category is 55 fragments of characters that were broken up in the
printing process; again, some of these appeared two or more times and hence made it into the library.
Our connectivity criterion could easily be weakened in an attempt to rejoin such fragments; however, this
would inevitably increase the false ligatures—of which there are a lot already.

The final library for the five images together is shown in Figure 6. The reconstructed text is more
complete when the library is built from several images. Of the 42 symbols from the first image that were
left in the residue (of which Figure 5 shows a part), and are therefore absent from the reconstructed text
(of which Figure 4 shows a part), 23 occur again in the remaining four images and so find their way into
the library (for example, the ‘LOUIS’ that can be seen prominently in Figure 5).

With regard to actually coding the library—the image of Figure 3—the best method found was two-
level technique with a 22/10 bit context [8]. The average over all five images, coded individually, was
22.1 bytes per symbol in the library.

Coding the symbols and offsets

For the image of Figure 1 the symbol sequence itself, which contains 1800 symbols, is compressed by
PPMC into 760 bytes, or 3.38 bit/symbol. Representing the 65-member alphabet directly would require
just over 6 bit/symbol, and so appreciable use is made of regularities present in the sequence—even for
this rather short stretch of text. The average figure over the five images, coded individually, is 4.28

bit/symbol using PPMC as against 6.60 bit/symbol if the alphabet were represented directly. Extracting
the characters in the correct sequence was difficult for some pages that were set with very little leading
between the lines of type, and so the efficiency of the text coding might be improved if a better extraction
method was used.

For the single test image, the 2- and y-offsets are coded in 1972 bytes, or 4.38 bit/offset. The average
value over the five images, coded individually, is 4.06 bit/offset.

Identifying white space

The idea behind the identification of white space was to improve the coding of both symbol sequence
and character offsets: the former because representing spaces as symbols provides a word-boundary cue
that is helpful for predicting character sequences; and the latter by making the set of offsets that follow a
particular symbol more consistent, removing the exceptional condition that corresponds to word endings.
In fact, this was only marginally successful.

Spaces are inserted fairly consistently, except of course in the above-mentioned case where symbols
were extracted in the wrong order, which not surprisingly causes the space-insertion module considerable
confusion. Some difficulty was encountered with punctuation, particularly the ‘.” symbol which serves
double duty as a period and as the dot over ‘i’, ‘j°, %;’, and ‘:’.

The final result was that the text, after compression, is about 7% to 10% larger after spaces have been
inserted than it is without spaces. Considering that over 20% of the characters are spaces, this is not too
bad. The offsets are about 2.5% smaller. These take more code space than the text, and the combined
result just about breaks even—the space-insertion process causes the total compressed size to grow by
about 0.5%. Probably if the characters had all been assigned to their correct lines of text (as they would
be if the leading was greater), space-insertion would have proven just beneficial.

System considerations

Our research was motivated by the Trinity College Library catalogue problem, and it is instructive to
consider the overall needs of that and similar applications. A typical catalogue will contain approximately
1,000 to 1,000,000 images. Users access it in various different ways: by browsing from page to page,
giving a page number, or specifying other information such as a book title or author name (in which case
all matching pages must be retrieved). We assume that all access is through bit-mapped display screens.

For most queries an approximate image is sufficient, and for this our proposed compression regime
is particularly useful. To display a page in full, the symbol library must be decoded, then the list of
symbols and (z, y) offsets, and finally the residue. The residue is an order of magnitude larger than the
other components, and, although necessary to obtain a faithful reproduction, is not generally needed for
an overview of the page. In the reconstructed image of Figure 4, the original text can be read without
difficulty, certainly enough for a casual browser to decide whether it is of interest, and in most cases
enough for a user to find the shelf location of a book being sought. Only by express command, or a
request for a faithful printed copy, would the residual bitmap be retrieved and decompressed.

Although access will normally be to a single catalogue page, compression can be improved by
building the symbol library for several pages and coding the symbols as a longer sequence. Decoding
the residual image is the most intensive part of accessing the database, in terms of both bandwidth and
processor time. Batching of the remainder of the information into blocks of pages has little impact upon
retrieval performance, but improves the quality of the reconstructed text image (by gathering a more
complete library) and yields a small compression saving (Table 1). The separation allows different media
to be used for the different components. The symbol library and symbol list might be retained on fast
magnetic disk, while the residual image could be held on a bulk storage device such as an optical disk
or jukebox. This two-level structure caters particularly well to casual browsers, who tend to flick rapidly
from one page to the next after a scan of just a few seconds.

We believe our compression techniques to be applicable to more general tasks of document archiving.
Despite the phenomenal capacity of WORM optical disks, the huge space requirements of raw images
make compression even more essential than for textual databases. Compared to decompression, the
compression phase is relatively time consuming, which is unfortunate because this is the most frequent
operation in a document archiving environment. We suggest that compression should be carried out as
a background process, with new documents spooled to some temporary holding area until they can be
added to the permanent collection.

Conclusion

We have described a mechanism for compressing textual images, based upon identifying any repeated
symbols appearing in the image, encoding these symbols and their locations, and encoding a residual
bitmap to allow faithful reproduction of the original image. Previous image compression algorithms
were general purpose, in that they applied to any binary images; here, by exploiting knowledge of the
contents, improved compression has been obtained. Experiments with pages of the Trinity College library
catalogue show the technique to be effective, particularly when the two-stage progressive nature of the
decompression process is taken into account.

The techniques we have described might also be applied to other families of source documents. For
example, printed sheet music could be parsed into sequences of notes, which, together with the location
of the staves, would give a crude representation of the image. Detailed information would be again coded
as a residue image, so that an exact reproduction of any particular page would be obtainable.

Acknowledgements

We are most grateful to David Abrahamson of Trinity College, Dublin, for telling us about this problem
and kindly supplying us with test images. This work is supported by the Natural Sciences and Engineering
Council of Canada and the Australian Research Council.

References

[1] Bell, T.C., Cleary, J.G. and Witten, L.H. (1990) Text compression. Prentice Hall, Englewood Cliffs, NJ.

[2] Cleary, J.G. and Witten, I.H. (1984) ‘Data compression using adaptive coding and partial string matching,’
IEEE Trans Communications COM-32(4): 396—402; April.

[3] Holt,M.J.J. and Xydeas, C.S. (1986) ‘Recent developments in image data compression for digital facsimile,’
ICL Technical Journal: 123-146; May.

[4] Holt, M.J. (1988) ‘A fast binary template matching algorithm for document image data compression,” in
Pattern Recognition, J. Kittler (ed.) (Proc. Int. Conf., Cambridge). Springer Verlag, Berlin.

[5] Johnsen, O., Segen, J. and Cash, G.L. (1983) ‘Coding of two-level pictures by pattern matching and substi-
tution,’ Bell System Technical J 62(8): 2513-2545; May.

[6] Langdon, G.G. and Rissanen, J. (1981) ‘Compression of black-white images with arithmetic coding,’ JEEE
Trans Communications COM-29(6): 858-867; June.

[7]1 Moffat, A. (1990) ‘Implementing the PPM data compression scheme,’ IEEE Trans Communications COM-
38(11): 1917-1921; November.

[81 Moffat, A. (1991) “Two level context based compression of binary images,’ in Proc. DCC’91, J.A. Storer
and J.H. Reif (eds.), pp. 382-391. IEEE Computer Society Press, Los Alamitos, CA.

[9]1 Pratt, W.K., Capitant, PJ., Chen, W.H., Hamilton, E.R. and Wallis, R.H. (1980) ‘Combined symbol matching
facsimile data compression system,” Proc IEEE 68(7): 786-796; July.

— Resolutie van de staten generael der Vereenighde
Nederlanden, dienende tot antwoort op de memo-
rie by de ambassadeurs van sijne majesteyt van
Vranckrijck.

's Graven-hage, 1678. 4°. Fag. H. 2. 80. N°, 10,
Fag. H. 2. 85. N° 17. Fag.H. 3. 42. N 4.

— Tractaet van vrede gemaeckt tot Nimwegen op
den 10 Augusty, 1678, tusschen de ambassadeurs
van [Louts XIV.] ende de ambassadeurs vande
staten generael der Vereenighde Nederlanden.

Fag. H. 2. 85. N°. 21,

— Nederlantsche absolutie op de Fransche bely-
denis.
Amsterdam, 1684, 4°. Fag. H. 2. 50. N°. 22.

— Redenen dienende om aan te wijsen dat haar
ho. mog. [niet] konnen verhindert werden een
vredige afkomst te maken op de conditien by
memorien van den grave d' Avaux van de 5 en 7
Juny, 1684, aangeboden.

[s. 2] 1684. 4° Fag. H. 2. 86. N°. 3.
Fag. H. 2. g6. N°. 8. Fag. H. 3. 44. N°, 52,

— Redenen om aante wijsen dat de bewuste werving
van 16000 man niet kan gesustineert werden te
zullen hebben konnen strekken tot het bevorderen
van een accommodement tusschen Vrankrijk en
Spaigne. .

(5. 4] 1684. 4° Fag. H. 2. 86. N°, 4.
Fag. H. 2. 96. N°. 2,

— D’ oude mode van den nieuwen staat van oor-
logh.

[s. 2 1684]. 4° Fag. H. 2. 86. N°. 12,
Fag. H. 2. 96. N°. 3.

— Aenmerkingen over de althans swevende ver-
schillen onder de leden van den staat van ons
vaderlant.

[s. 2] 1684, 4° Fag. H. 2. 92, N°% 1.
Fag. H. 2. ¢8. N°% 16. Fag. H.3. 1. N 18,

— Missive van de staten generael der Vereenighde
Nederlanden, . .. 14 Maert, 1684.

's Graven-hage, 1684. 4°. Fag. H. 2. 92. N° 10,

— Missive van de staaten generael der Vereenigde
Nederlanden, ... 11 July, 1684.

[stn. it 1684]. 4°. Fag. H. 2. 96. N° 13,

Fag. H. 3. 44. N°, 69.

— Resolutie vande staten generael der Vereenighde
Nederlanden, . . . 2 Maart, 1684.

's Gravenhage, 1684. 4°. Fag. H. 2. 92, N° 11.

Fag. H. 3. 44. ¥°% g.

— Extract uyt de resolutien van de staten gene-

rael, ... 31 Maert, 1684.

[s. 2] 1684. 4° Fag. H. 2. 92. X% 13.

Fag. H. 2. g6. N°. 25. Fag. H. 3. 44. N 11.

. Fag. H. 3. 44. N°. 15.

— Antwoort van de staten generael der Vereenighde

Nederlanden op de propositie van wegen sijne

churf. doorl. van Ceulen, Maert 23, 1684, gedaen,
's Gravenhage, 1684. 4°. Fag. H. 2. 92. N° 12.

Figure 1 A test image

symbol

symbol x-offset y-offset
number

start-of-page

'_""‘:"—‘OV)OWI

"'300"‘C°<"’“’O-’—‘OS“HO=®(N:O—'wnmno‘:m<o.

oo Zo o oo -

0 19 62
1 23 7
2 1 -1
3 2 0
4 3 -1
5 1 0
6 2 0
7 1 0
8 2 0
9 -9 -25
10 5 25
3 15 0
11 2 -1
12 2 0
13 16 0
14 2 0
3 24 -1
4 3 0
8 2 0
12 1 0
8 2 0
3 2 -1
13 22 10
15 2 -10
3 2 -1
13 2 1
3 2 -1
16 3 0
12 2 0
3 1 -1
6 17 0
14 2 0
3 3 -1
16 17 0
17 1 0
3 1 -1
16 2 0
3 2 1
3 2 -1
13 2 -1
9 -8 -24
10 4 35
15 1 -11
18 2 0
14 2 0
3 -1012 53
19 1 -1
3 3 0
14 1 0

Figure 2 Symbols and x- and y-offsets
created from the test image

—ResoutI'vandgryhN’wWpm-hy ICk’S Gy 8ven £ 6784°FH2
NSBA[J7#rFXJIIMAG G AEOTSEY

Figurc 3 Library of symbols created from the test image

— Resolutie van de staten generael der Vereenighde

Nederlanden, dienende tot antwoort op de memo-

‘e by de ambassadeurs van sijne majesteyt van
Vranckrijck.

's Graven-hage, 1678. - 4°. Fag. H. 2. 80. N°. 20.

Fa *. H. 2. 85. N°. 17. Fag. H. 3. 42. N°. 4.

— ractaet van vrede gemaeckt tot Nimwegen o
den 10 Augusty, 1678, tusschen de ambassadeurs
van [V.] ende de ambassadeurs vande
staten generael der Vereenighde Nederlanden.

Figure 4 The ‘reconstructed text’ image, recreated from the information in Figures 2 and 3

Figure 5 The ‘residue’ image, which is the difference between the original and reconstructed text

—royectvandIu|sgmp; Jy’684kh[s/ FH29N3R VENaven 4
£5hAVUBENMWE G?I'rtDt/S Lud Bf AMTTT —UGruryo
& DQ—®Emu B 7GNCMEHX Pl WBOXODL&PSTIVJIIC
MFUXLAZItra NGo b LZ-IAYYVSD- AFMWE Yd YR fue
M- TMTIXEE)0 FRSA[toAFeIGrZd gl

Figure 6 Library of symbols created from the 5 test images together

