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ABSTRACT 

In this thesis, the problem of one-dimensional coupled 

thermoelastic waves propagating in non-linear elastic materials under 

dynamic input at the boundary is examined. Along with the Gibbs free 

energy, continuum thermodynamics is applied for obtaining the equation 

of conservation of energy as well as a new model of the constitutive 

law. The investigation of the behavior of waves propagating in 

thermoelastic materials is considered from two different points of view 

namely waves in conductors and waves in non-conductors. 

For a conductor, the modified Fourier's law of heat conduction 

is employed to eliminate the infiniteness of the thermal wave speed 

which cannot be accepted on physical grounds. New approaches of the 

characteristic method and the finite element method are applied to 

study the features at the leading wavefront and to obtain the solutions 

of the unknowns in the disturbed region 

For a non-conductor, the system of governing equations is 

reduced by the absence of heat flux. Simple waves and shock waves 

involved in the problem are analysed by a graphical method. Three 

different numerical methods are employed for comparing the results: the 

first based on the method of characteristics, the second based on the 

finite element method and the third based on the group theoretic 

technique. The use of similarity coordinates in the location of the 

wavefront is also investigated. 

Finally, discussions on the dynamic response of thermoelastic 

materials under either mechanical impact or thermal impact are briefly 

given. 
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CHAPTER 1 

INTRODUCTION 

1.1 BASIC CONCEPTS OF WAVE PROPAGATION 

In recent years, the subject of wave propagation in elastic 

solids has seen a dramatic growth. The subject has attracted 

investigators who possess strong background in applied science, 

mathematics, and engineering. Besides the intricacy and challenge of 

the wave theory, the practical determination of the dynamic response of 

materials becomes more attractive due to its wide range of applications 

in connection with important problems arising from resource exploration, 

earthquake phenomena, artificial explosives, etc. 

The nature of wave propagation is best explained in a picture 

of an ocean with the rollers sweeping onto the beach from the open sea, 

or in terms of a simplest body such as a stretched elastic string. With 

a suddenly applied force or heat on a body, the initiation of 

displacement will travel outward from the point of application. It is 

said there is a propagating wave in the body [ 1.1]. 

1.2 EVOLUTION OF WAVE PROPAGATION IN A THERNOELASTIC MEDIUM 

The early work on elastic waves received its impetus from the 

view prevalent until the mid-nineteenth century, that light could be 

considered as a wave propagating in the elastic ether. 

With regard to the works especially dealing with the 

propagation of waves in elastic solids, a number of earlier references 

are given in thern book by Koisky [ 1.2]. Furthermore, a review article 

which contains most of the contributions to the field until 1964 was 



2 

given by Miklowitz [ 1.3]. 

The theory of stress waves in perfectly elastic solids is well 

developed as a mathematical consequence of Hooke's law and the equations 

of motion. A one-dimensional wave in linear elastic materials is 

generally governed by a simple partial differential equation whose 

solution can be determined by using different methods for the solution 

of linear partial differential equations. Several papers and monographs 

[1.4-1.7] have dealt with linear elastic waves. 

The problem of elastic wave becomes more complicated when a 

body is no longer a perfect elastic medium. Due to encumbrance of 

geometrical complications to display the essential aspects of motion of 

a continuum as well as to describe the governing system of non-linear 

equations, some authors have presented the characteristic features of 

wave motion in the body in one-dimensional geometry. The speed of 

non-linear waves is not constant but may vary from point to point in the 

medium; the shock occurs whenever its wavelets converge. 

About 300 years ago, the first non-linear law of elasticity 

was introduced by Leibnitz ( 1690) when observing the experimental data 

from a tensile test in a gut string. In 1695, Bernoulli proposed a 

parabolic law in contrast to the experiment of Hooke ( 1678) who 

suggested a linear law for the relationship between stress and strain in 

an elastic medium. In the nineteenth century, experimenters [ 1.8] also 

demonstrated that Hooke's law was only an approximation applied to many 

kinds of solids including metals. 

Several papers dealing with one-dimensional wave propagation 

in non-linear elastic medium were published recently. Frydrychowicz and 

Singh [ 1.9] have considered the propagation of disturbances along a thin 
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elastic rod whose constitutive law is in the form of a power law. 

Elzanowski and Epstein [ 1.10] have assumed a quadratic form for 

stress-strain relations to examine the decay and growth of the amplitude 

shock waves. 

Early experimental evidence concerning the phenomenon of 

deformation-induced heating was reported by .Joule ( 1859) [ 1.11] who 

studied thermal effects of tension on various solids. His results 

persuaded researchers to pay more attention to the deformation-induced 

heating of materials 

Thermoelasticity, as indicated by the name itself, concerns 

the effects of heat on stresses and deformations in an elastic medium 

and vice versa, the effects on temperature distribution caused by the 

elastic deformation. The internal energy, therefore, becomes a function 

of the deformation and the temperature. The thermoelastic processes are 

coupled and not totally reversible because of the dissipation of energy 

taking place during heat transfer, especially during heat conduction. 

Strictly speaking, the actual process of thermoelastic deformation of a 

body is a non-equilibrium process whose irreversibility is due to the 

temperature gradient. A medium which is characterized by a reversible 

elastic process and an irreversible thermal process will hereafter be 

called a thermoelastic medium [ 1.12]. 

After World War II, thermo-mechanical waves played a special 

role to fulfill the requirements of high technology for the design of 

steam and gas turbines, jet motors, rockets, high-speed aircraft, 

nuclear reactors and so on [ 1.13]. 

The earliest work regarding the effects of temperature in the 

formulation of elasticity problems is that of Duhamel-Newman on the 
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foundation of the constitutive equations of the linear theory of 

thermoelasticity valid for the general type of anisotropic materials 

[1.141. Even so, their simple theorem is insufficient in the presence 

of thermal gradients. A more rigorous and satisfactory analysis can be 

achieved only by applying the fundamental laws of thermodynamics since 

the relation of stress-strain--temperature can be explicitly established 

with the aid of thermodynamic laws. 

The literature on the, theory of thermoelastic waves is too 

vast to be reviewed here. One of the- recent works on this field is due 

to Boley [1.15] who successfully made a general review of the subject of 

thermal effects in solids and structures up to 1984. 

The stages involved in analyzing propagation of disturbances 

in a thermoelastic medium generally consist of the following categories: 

(1) uncoupled transient analysis, ( ii) coupled transient analysis, ( iii) 

classical heat conduction analysis, and ( iv) modified heat conduction 

analysis,. 

1.2.1 Uncoupled Transient Analysis 

In this category, effects of inertia have been taken into 

account in thermoelastic problems, however, the coupling between 

mechanical and thermal fields is neglected. The first attempt to examine 

inertia effects in a dynamic problem of thermoelasticity is apparently 

due to Danilovskaya [ 1.16] who reconsidered the Duhamel's hypothesis 

(1837), referred to as the conventional quasi-static approach. 

According to Duhamel, inertia terms could be neglected in the governing 

field equations when the time rate of temperature change was slow enough 

so that these terms would not be significant. Danilovskaya's 
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investigation showed that the stress distribution can be obtained in an 

elastic half space even though its boundary is subjected to a thermal 

impact. Since the appearance of her first paper, inertia terms became 

more meaningful in many thermoelastic problems. 

Later, Nowacki [ 1.17] was regarded as a particular contributor 

in this subject for his achievements of several close-to-exact solutions 

to the uncoupled dynamics of three-dimensional thermoelastic problems 

with a time-dependent heat source in the interior of a medium. 

Sternberg and Chakravorty [ 1.18] carried Danilovskaya's 

solution further by applying a ramp-type heating to the boundary. 

Meanwhile Michaels [ 1.19] determined the relation between heating rates 

and the magnitude of induced stresses in a slender rod subjected to 

thermal heating at one end. Various cases of the distribution of 

temperature and stress in a thin thermoelastic rod are also investigated 

by many other research workers [ 1.20, 1.21, 1.22,1.23]. 

1.2.2 Coupled Transient Analysis 

Unlike the uncoupled transient problem, the coupled transient 

problem takes into account the coupling term representing the 

interaction between thermal and mechanical fields in the governing 

equations. Uncoupled analysis is, of course, impossible if problems are 

examined in which the details of the propagation and decay of 

disturbances in solids are important. 

One of the first application of coupled theory is due to 

Sneddon [ 1.24] who attempted to calculate the distribution of 

temperature and stress in a linear thermoelastic thin rod suffered by 

mechanical or thermal disturbances at the boundary. 
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Dillon [ 1.25] obtained the solutions of dynamic response of a 

long slender thermoelastic bar subjected to three different kinds of 

boundary conditions: (1) a step function in temperature, ( ii) a step 

function in strain, and (iii) constant velocity impact. By assuming the 

coupling parameter as unity, he was able to convert directly the Laplace 

transformed solutions. The final solutions showed a remarkable 

deviation from the uncoupled solutions. 

Nickell and Sackman [ 1.26] applied the variational method for 

the approximated solution of fully coupled initial-boundary value 

problems in linear therxnoelasticity. As an illustration, they 

considered two types of boundary problem in one-dimension: (i) rapid 

heating of a half-space through a thermally conducting boundary layer, 

and ( ii) gradual heating of the boundary surface of the half-space. 

They also emphasized that the variational principles derived in their 

earlier paper [ 1.27] can even apply to complicated problems along with 

inhomogeneous, anisotropic continuum in any dimensions. 

By means of perturbation series in the coupling parameter, 

Soler and Brull [ 1.28] aimed to solve the governing equations through a 

simple set of perturbation techniques which is admissible ( sufficiently 

small coupling parameter) and approximated results were in excellent 

agreement with exact solutions. 

Recently, with the advance of modern computational facilities, 

Ting and Chen [ 1.29] adopted the finite element method to improve the 

sophisticated formulation of field theories and to obtain solutions of 

some boundary value problems. Three different types of temperature 

boundary condition were employed: (i) a sudden surface heating, ( ii) a 

convective surface heating, and (iii) a ramp-type surface heating. The 
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comparisons among uncoupled solutions, coupled solutions and analytical 

solutions were also illustrated. 

1.2.3 Classical Heat Conduction Analysis 

Problems which belong to this category have characteristic 

features as follows: 

(i) The conventional Fourier's law of heat conduction in solids 

remains valid. 

(ii) The set of basic equations of uncoupled or coupled 

thermoelasti city is composed of a mixed hyperbolic-parabolic 

type. 

(iii) The infinite speed of a thermal wave and the finite speed of 

mechanical wave can be predicted. 

Besides the aforementioned articles, numerous papers dealing 

with this subject are classified by: 

a. Neglecting the coupling effect: G3adysz [ 1.30] applied the 

same theory used by Sternberg and Chakravorty for a closed-

form solution to a plane wave propagation problem for a 

half-space whose boundary was subjected to uniform 

time-dependent heating. Fan et al [ 1.31] applied the finite 

element method to the uncoupled dynamic problem of 

thermoelasticity. The method was employed for the prediction 

of temperature and stress fields of an axi-symmetric object 

made of alloy steel. The analytical solutions obtained 

compared well with the experimentally measured data. 

b. Including the coupling effect: Hetnarski [ 1.32] considered 

the propagation of spherical stress and temperature waves. 



8 

The solutions were obtained by him in the form of a series of 

functions of the coupling parameter. 

With the help of Laplace transform technique, Achenbach 

[1.33] studied the wave motion in one and three-dimensional 

problems by subjecting the boundaries to stress and 

temperature impact. By the same method, Daimaruya and 

Ishikawa [ 1.34] discussed the coupled therinoelastic wave 

problems in one-dimension. They examined the problems under 

two types of boundary conditions: ( i) a constant velocity 

impact with adiabatic conditions over the boundary plane, and 

(ii) a sudden strain with constant temperature. The 

discontinuity at the wavefront was also determined in the 

above two papers. Further work can be observed in the 

one-dimensional problem of Dhaliwal and Shanker [ 1.35] who 

obtained the numerical solutions of the infinite thermoelastic 

cylindrical hole along with two types of boundary conditions, 

namely ( i) step input of stress and zero temperature, and ( ii) 

step input of temperature and zero stress, at one end of the 

cylinder. Many other articles [ 1.36,1.37] have also treated 

similar problems. 

1.2.4 Modified Heat Conduction Analysis 

In this case, the heat conduction equation based on the 

Fourier's law in the governing equations must be modified so that the 

infinite speed of thermal wave is no longer valid. Recent experiments 

performed on solid helium by Ackerman et al [ 1.38], Ackerman and Overton 

[1.39] and on sodium fluoride by Jackson and Walker [1.40] have 
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confirmed that the thermal wave (or second sound) with a finite velocity 

does indeed occur in solids. 

These observations have led to a strong agreement for 

modifying the heat conduction equation from the parabolic type to a 

hyperbolic one. The short time called the thermal relaxation time is 

taken into account to establish a steady-state heat conduction whenever 

a temperature gradient is suddenly generated in a solid. As a result, a 

wave-type equation for heat transport is obtained by the ad hoc addition 

of an adjusted term in the classical Fourier form. 

With a new form of the modified Fourier's law of heat 

equation, many papers relating to the problems of waves propagating in 

thermoelastic materials have been published. 

Nayfeh [ 1.41] was seeking the solutions of the wave motion in 

a two-dimensional homogeneous, isotropic elastic solid subjected to 

time-dependent temperature and temperature gradient line-load which are 

suddenly applied to the free surface of the half-space. The extensive 

work of studying the distribution of stress and temperature fields due 

to the application of an instantaneous heat source in an unbounded 

medium is also presented by the same author [ 1.42]. Further 

investigations can be found in Chandrasekharaiah's article [ 1.43]. In 

the context of the linearized Green-Lindsay thermoelastic theory [ 1.44], 

he considered one-dimensional disturbances in a thermoelastic half-space 

whose plane boundary is subjected to a step in strain or temperature. 

His recent work [ 1.45] which contains a bibliographical review of the 

relevant literature dealing with the existence of finite speed for the 

propagation of thermal waves during the past twenty years is also 

noticeable. 
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1.3 OBJECTIVES AND ORGANIZATION OF THE THESIS 

In the above discussion of thermoelastic waves, most of the 

authors have assumed that the stress-strain relation for the 

thermoelastic materials obeys Hooke's law, and the problems may be 

solved in a framework of linearized approximation. However, real solids 

may not be perfectly elastic as observed from experiments of stretching 

a rubber band or a thin copper wire. Thus, the 

to be unsuitable for these kinds of materials. 

the problem of non-linear elastic waves and 

linearized theory seems 

To fill the gap between 

the problem of linear 

thermoelastic waves, this thesis will study thermo-mechanical waves in 

non-linear elastic materials with the following assumptions: 

(i) The materials are assumed to be isotropic and homogeneous. 

(ii) The thermal strain is linear due to the effect of 

temperature field T which differs only slightly from the 

T-T 
0 

reference temperature T, i.e. 
T 
0 

mechanical properties are then kept constant throughout the 

investigation. 

Only the mechanical strain is a non-linear function of 

stress. 

The total strain, being the sum of thermal and mechanical 

strain, is very small as compared with unity. 

For the sake of analysis, this dissertation is organized into 

seven chapters whose salient features are summarized in the following: 

In Chapter 2, a general theory of non-linear thermoelasticity 

is developed on the basis of thermodynamic laws and the internal state 

variables. The equation of conservation of energy, as well as a new 

<< 1. The thermal and 
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model of the constitutive relation of stress-strain--temperature is 

constructed by the use of the Gibbs free energy. Approximated formulae 

for thermal relaxation time t are also given with a brief discussion. 

In Chapter 3, a semi-infinite non-linear thermoelastic 

material is examined in one-dimension. The governing basic equations 

along with the prescribed auxiliary conditions for a conductor and for 

a non-conductor are fully expressed. Simple waves and shock waves are 

examined in the case of non-conducting materials. A new set of equations 

used to obtain a path of the shockfront and unknowns along and across it 

is presented. Jump conditions are also determined in each kind of 

materials. 

In Chapter 4, the development of two computational algorithms 

for the numerical solutions to the system of equations describing the 

wave motion in conductors is presented. The first algorithm is based on 

the numerical method of characteristics while the second employs the 

generalized Galerkin scheme. A new kind of grid points namely 

combination grid points is proposed to study the features at the leading 

wavefront and to obtain the approximate solutions of unknowns in the 

disturbed region. 

Chapter 5 presents three methods of computation to obtain the 

solutions from the set of equations along with its auxiliary conditions 

given in Part B of Chapter 3. The first two methods, namely the 

characteristic method and the finite element method are similar to the 

ones discussed in Chapter 4. The third one is based on the similarity 

analysis. The application of the group theoretic technique in this case 

is considered as a new aspect of this method applying to a thernioelastic 

material . A new approach of treating shock waves is also introduced. 
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In Chapter 6, numerical representations of the wave 

propagating in non-linear thermoelastic solids are divided into two 

categories: 

(i) The dynamic response of elastic conducting materials such as 

steel, cast iron and copper. 

(ii) The dynamic response of elastic non-conducting materials such 

as rubber and leather. 

In chapter 7, the thesis is closed with discussions of the 

results. 

Conclusions and suggestions for further work are also 

presented. 
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CHAPTER 2 

THEORY OF NON-LINEAR THERNOELASTIC NA'1E1IALS 

This chapter is devoted to the theory of non-linear 

thermoelasticity based on the application of thermodynamic principles to 

the process of deformation. The examination makes use of the basic 

hypotheses which underline all investigations regarding continuous 

media, and concepts which arise from two different disciplines, namely 

mechanics and thermodynamics. Although the theory of linear 

thermoelasticity is well developed in the literature [ 2.1-2.6], it can 

not be properly applied to materials which have nonlinear stress-strain 

relations even when sustaining small deformations. Within the elastic 

range, the linearized theory is not applicable to highly non-linear 

materials. The purpose of this chapter is to develop a 

stress-strain-tàmperature relation for a non-linear thermoelastic 

material which is assumed to be homogeneous and isotropic 

Let coordinates be referred to a fixed rectangular Cartesian 

coordinate system. In general, X indicates a point in the material by 

giving its position vector in the reference configuration, while x in 

the function X (X,t) expresses the motion in its position vector at time 

t. For the sake of simplicity, we use the same system to describe both 

the original and the deformed configurations of the body. 

The particle displacement vector u is defined by: 

= X —x (2.1) 

With the assumption of infinitesimal deformation, the geometrically 

linear strain tensor c can be expressed as: 
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(2.2) 

2.1 EQUATION OF MOTION 

Based on the Newton's second law of motion which states that 

the material rate of change of the linear momentum of a body is equal to 

the resultant of applied forces acting on the body [ 1.141, the equation 

of motion is derived. Assuming that at an instant of time t, a 

* 
continuous medium R * bounded by a closed surface 8R contains the linear 

momentum: 

L = $R* pvdT 
(2.3) 

If the body is subjected to external forces which are now 

separated into the surface traction p and the body force per unit volume 

b the resultant force is: 

= LR *  pda + f * bdV (2.4) 

According to Cauchy's formula, the surface traction p is 

defined by: 

p  (2.5) 

where or is considered as the symmetric stress tensor [2.7], and 'h is the 

normal unit vector directed outward from the surface da which is 

* 

an element of the surface 8R 

Replacing p in equation (2.4) by the right-hand side of (2.5) 
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and transforming into a volume integral by Gauss's theorem, we have: 

= (div a + b) dr (2.6) 

According to Newton's second law: 

where 

(2.7) 

denotes material time derivative [ 1.14]. 
Dt 

Substituting equations ( 2.3) and ( 2.6) into equation (2.7), 

and applying the transport theorem to the left-hand side term, we have 

._ (p) + -. (pv.v)I dT = f , f (div C=F + b) dT . (2.8) at 

* 
Since this equation must hold for any arbitrary region of R , the 

integral on the two sides must be equal. Thus: 

(pv) + - (pv.v) = div a + b 

left-hand side of (2.9) can be written as: 

(2.9) 

+ ciiv()] + 'at + . radG)) . (2.10) at 

The first parenthesis vanishes on account of the equation of continuity: 

hence 

+ div(pv) = 0 

Dv = - 

P Dt = div or + b 

, 

31 

(2.11a) 

(2.11b) 
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where 

Dv 8v - - 
- + V . grad(v) 

Yt (2. 11c) 

The equation ( 2.11b) is recognized as the Eulerian equation of motion of 

the body, where p is mass per unit volume, and v is the particle 

velocity vector defined by: 

- au V = ut- (2.12) 

2.2 THERMODYNAMIC PRELIMINARIES 

2.2.1 Basic Concepts 

The theory of thermoelasticity is concerned with questions of 

equilibrium of bodies treated as thermodynamic systems whose interaction 

with the environment is confined to mechanical work, heat exchange or 

external forces. Thus, it forms a part of the thermodynamic field. 

Before discussing about the laws of thermodynamics a brief 

summary of the basic structure of the classical theory of thermodynamics 

is given here. 

A thermodynamic system is defined as a material body 

consisting of a large number of particles and interacting with the 

environment. The state of a thermodynamic system is composed of a 

number of macroscopic quantities known as the thermodynamic variables or 

the state variables, each of which describes a different property of the 

system. If a certain state variable can be expressed in terms of a set 

of other state variables, then the variable is called a state function 

and the relationship is considered as an equation of state. 

For a given system, if the values of the state variables are 
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independent of time, the system is said to be in thermodynamic 

equilibrium. Whereas if the state variables vary with time, the system 

is said to undergo a process. Furthermore, the system is said to be 

homogeneous if the state variables do not depend on space coordinates. 

Generally, thermodynamic processes are divided into two 

types. The first is known as thermodynamics of reversible process which 

is assumed to be in equilibrium with the surroundings without any change 

in the environment whereas the second is known as thermodynamics of 

irreversible process in which it is impossible for the thermodynamic 

system to go back to its initial state without some change taking place 

in the environment. 

Besides, the system is said to be adiabatic if there is no 

energy exchange with the surroundings in the form of heat. 

2.2.2 Continuum Thermodynamics 

The concept of internal variables was first introduced into 

thermodynamics by Onsager [ 2.8, 2.9]. The application to continuum 

thermodynamics was then focused on by Eckart [ 2.10], Biot [ 2.11, 2.12], 

Coleman and Mizel [ 2.13]. Based on the previous publications [2.11, 

2.12] in which the concept of generalized free energy was introduced, 

Biot [ 2.14] formulated the general laws of thermoelasticity in a 

variational form along with a minimum entropy production principle. 

Coleman and Mizel [2.13] derived a set of necessary and sufficient 

conditions for the validity of the Clausius-Duhem inequality in the 

continuum sufficiently closed to equilibrium. They assumed that in the 

constitutive equations, the basic independent variables are taken to be 

the temperature, the temperature gradient, the strain and the velocity 
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gradient. 

Further, Coleman and Gurtin [ 2.15] studied various types of 

dynamical stabilities of the thermodynamics of non-linear materials with 

internal state variables. The investigations of Coleman and his 

co-workers have had strong effects of the development of the models of 

constitutive relations for thermoelastic materials. This is because 

those models are easily correlated with the microstructural changes 

associated with the physical deformation mechanisms. 

In linearized theory, many authors {2.16-2.19] have 

adopted the stress-strain-temperature relation in the general form: 

or = 2p'c. . + 6.. [?' c - (3X' + 2p') aOl , (2.13) 
1.3 13 13 kk 

where a. . is a stress tensor and is obtained from derivation of 
13 

Helmholtz free energy ip with respect to strain tensor 

Helmholtz free energy p expressed as a function of independent 

internal variables c ij .. and V is given as follows [ 1.13,2.l]: 

p+c+p'cc -(3X'+2p') 
ii ii 

kk a (T-T) c + higher terms 

(2.14) 

where ip is the free energy at the reference state, X', p' are Lane 

elastic constants, a is the coefficient of linear thermal expansion, 0 

is the temperature excess over a reference absolute temperature T, and 

6.. is the Kronecker delta-symbol. 

In linear thermoelasti city, the higher terms in equation 

(2.14) are neglected. And even though these terms are included to 

define a non-linear stress-strain-temperature relation as such the 

relation cannot be widely used in application. This is because, in 
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equation (2.14), the elastic constants of order higher than the third 

are yet unknown (and the third order elastic constants are known only 

for some materials) [ 2.20]. 

The above correlation between stress and free energy is mainly 

developed from two basic laws of thermodynamics, namely the first law 

and the second law. 

2.2.3 Energy Equation 

According to the first law of thermodynamics which asserts 

that [ 2.21]: 

Dv PV • dT + pedT = W(R*) - Dt fR  J * .11 da + * prdTaR fn 

(2.15) 

in which the rate of work W(R * ) of the body R *at time t is defined by 

[2.7]: 

W(R*) = f* . d + fR . (diva + b) d? . (2.16) 

Substitution of equation (2.11b) into equation (2.16) gives: 

w(R*) JR* • dr + Dt .1' * dT 
R 

(2.17) 

Applying the Gauss's theorem, the second term on the right-hand side of 

equation (2.15) can be expressed as: 

J8R * . daJR * divdr (2.18) 

Substituting equations (2.17, 2.18) into equation (2.15) and 

simplifying, we obtain: 
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I De Dc 

fR1 DtDtP]} . (2.19) 

The above equation applies to any arbitrary small region of 

the medium. It follows that the integrand of ( 2.19) is identically zero 

at every point of the medium. Thus, the local equivalent of the first 

law of thermodynamics can be written as: 

De Dc - 

P Yt = Cr . Dt  - div q + pr (2.20) 

where e is the internal energy per unit mass, r is the internal heat 

supply per unit time per unit mass and q is the heat flux vector. 

2.2.4 Irreversible Process 

The actual process of thermoelastic deformation of a body 

subjected to the external forces and non-uniform heating can be 

expressed by the Clausius-Duhem inequality or the second law of 

thermodynamics which states that ( 2.211: 

D T f , pTdV -5 R Pr + *aR  q.i da 0 . (2.21) 
- I' R* T $  

Applying the Gauss's theorem to the last term of (2.21) yields: 

fR • Dt T(T)} (2.22) 

from which the following local version of the Clausius-Duhem inequality 

is expressed as: 

DY - Pr  + div[ ) 0 
Dt T 

(2.23a) 
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or 

where 

DS° 
pT ≥ pr - div + . g 

= grad T 

(2.23b) 

(2.24) 

and 5° is internal entropy production per unit mass. 

The second law of thermodynamics represented by the inequality 

(2.23b) explains that the rate of increase in the entropy stored in the 

* * 
body R exceeds the sum of entropy flux through the surface R and 

* 
entropy supply inside R . The Clausius-Duhem inequality also plays a 

dual role in inducing a priori restrictions on constitutive relations. 

2.2.5 Internal State Variables 

In an elastic and homogeneous material, it is usually assumed 

that the internal energy e, the Helmholtz free energy p, the stress 

the specific entropy 5° and the heat flux q are state functions of the 

state variables strain c, the temperature T and the temperature gradient 

g [ 2.4 ]. 

However, in this thesis, we take the strain c as a state 

function, the stress cr and temperature T as the independent variables, 

and employ the Gibbs free energy G instead of Helmholtz free energy 1p. 

Such a choice of strain as a function of stress and 

temperature is practically based on two reasons: 

(i) The constitutive relation obtained may be similar to those 

found from the experiments [ 1.8]. 
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(ii) In testing materials, the stresses are often easier to 

control than the strain and much of the published data for 

heat capacity are based on the constant stress tests. 

The above approach has been employed by Schapery [ 2.22] and 

Lubiner [ 2.231, and yields a constitutive equation which expresses 

strain in terms of stress and temperature histories. Chang and 

Cozzarelli [ 2.24] have also used it to develop the constitutive relation 

for a non-linear thermoviscoelastic material. 

In the light of above discussion, we assume the equations of 

state of a thermoelastic material as follows: 

=C [(x,t), T(x,t), (, t)] , (2.25a) 

e = e [G,t), T(x,t), G,t)] , (2.25b) 

G = G [G,t), T(x,t), (, t)] , (2.25c) 

= 9' [(-X,t), T(x,t), (, t)] , (2.25d) 

[a-(X-,t), T(x,t), (x,t)] , (2.25e). 

where G denotes the Gibbs free energy and is defined by [ 2.25]: 

G e _3T_a . (2.26) 

Rearranging the terms in equation ( 2.20) gives: 

= Dc - 

Cr . = div q + pe - pr 

Adding equation (2.27) to inequality (2.23b) yields: 

(2.27) 
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De 
p - pT . DY - . Dt T ;:5 0 

From equation (2.26): 

(2.28) 

eG+YT+ - . (2.29) 

Taking material derivative on both sides of equation (2.29) 

and then substituting the result into equation (2.28), we have: 

DG DT = = 
p+pY+ Da .c+ q .g≤O (2.30) 

Since the Gibbs free energy function is a state function, its material 

derivative is obtained from equation (2.25c) as: 

DG = ÔG Dc + ÔG DT + OG Dg 
Dt EffDt - Dt 

Oj ôg 
(2.31) 

Replacing DG T  in the inequality (2.30) by the right-hand side 

terms of the equation (2.31), we arrive at the following form: 
A 

L.] (L• + y] LT + P Dj + 

(2.32) 

By the same token, taking material derivative on both sides of Dt 

DG. 
equation (2.29) and substituting into equation (2.20) wherein - is 

eliminated by means of the equation ( 2.31), we obtain: 

Dor 

ag (TaT 

A F A 

Dt Dt 
IX? 

T + div q - pr 

= 0 . (2.33) 

The proceeding equations must retain their validity for all 

conceivable thermoelastic processes involving the constitutive relations 
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(2.25). Since the expressions appearing in the parentheses in equations 

r DT 
(2.32, 2.33) do not depend upon Tt , and Dg, theexpressions must 

7t Dt 

vanish identically. This leads to the consequent conditions: 

aG 
(2.34a) 

aG + 3, = 0 
aT 

= 0 
ôg 

(2.34b) 

(2.34c) 

Equation (2.34c) confirms that the Gibbs free energy function is 

independent of the temperature gradient g. Furthermore, the strain £ 

and the entropy Y are correlated to G in the terms of stress a and 

temperature T through equations ( 2.34a) and (2.34b). Without loss of any 

generality, strain c, internal energy e and entropy 3, can be expressed 

as functions which are independent of the temperature gradient g. 

Thus, in the internal state variables, the constitutive 

equations of a homogeneous, isotropic and non-linear thermoelastic 

materials can be represented by: 

e = e (, T) 

G = G (, T) 

(,T) 

= 

(2.35a) 

(2.35b) 

(2.35c) 

(2.35d) 

(2.35e) 
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The remaining terms in equations (2.32) and (2.33) are written as: 

pT + div q - pr = 0 
Dt 

(2.36a) 

(2.36b) 

The inequality (2.36a) tells us that heat cannot flow in the direction 

of increasing temperature. 

2.3 DYNAMIC COUPLED THERMODYNAMIC EQUATION 

Unlike the uncoupled theory, the coupled 

account the coupling effect between the stress and 

during the thermodynamic process. Even though the 

of certain types of materials are very small as 

[2.26], the disagreements between the two theories 

only because of their distinct formulae [ 2.1] but 

features at the wavefront [2.27, 2.28]. 

The distinctions between the coupled and 

theory takes into 

temperature fields 

coupling parameters 

compared with unity 

can be possible not 

also their physical 

uncoupled solutions 

of a linear thermoelastic material can be summarized in the following: 

(i) In both cases the velocity of the elastic wavefront is 

constant as the wave propagates in the medium. However, in 

coupled theory, the stress and strain discontinuities at the 

front decrease exponentially [2.29] as the wavefront 

propagates, whereas, the uncoupled theory predicts no change 

in those mechanical discontinuities at the wavefront. 

(ii) In the coupled theory, the mechanical state interacts with the 

thermal state, and the discontinuities of the first or second 

derivatives of the temperature may take place at the 
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wavefront. But in the uncoupled theory the temperature and 

its derivative are continuous everywhere since the temperature 

is explicitly calculated from the Fourier equation and is not 

influenced by the mechanical disturbance. 

Even though it seems practically admissible to ignore the 

effects of coupling, as compared with those of internal heat generation 

and heat exchange with the surrounding [ 2.6], we are still interested in 

the coupled theory because of its acceptable physical phenomenon which 

is concluded from the experiment [2.30], and having some attractive 

effects on problems of wave propagation. 

The coupled thermoelastic equation composed of both thermal 

term and mechanical term is deduced from the first law of 

thermodynamics. 

The equations (2.34a,b) can be rewritten as: 

= -p 

The material derivative of equation (2.38) is: 

DY (22DT82 

Dt 8T2 Dt 8T& IDt 

(2.37) 

(2.38) 

(2.39) 

Since the strain E is a function of stress Cr and temperature T, the 

partial derivative of both sides of equation (2.37) with respect to 

temperature T yields: 
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82G 
FT P (2.40) 

Introducing equation (2.40) into equation (2.39), making use of (2.36b) 

and rearranging the equation results in: 

[22 DT) = - c D 
divq-p T+T . yt -prO (2.41) 

By definition, the specific heat at constant stress C is given by 
a 

[2.311: 

C = T [c'TJ_ = - T [a G 

Ic (3] Replacing the term - in equation (2.41) by C leads to: 
a 

(2.42) 

DT ae Da 
. (2.43) 

The equation (2.43) is also called the equation of conservation of 

energy since it is derived from the first law of thermodynamics. 

It is mentioned that D denotes the material derivative 
Dt 

of a variable and is defined by [2.25]: 

D57t _& ( )-( )+. grad( at  (2.44a) 

which, under the approximation of small velocities, is the same as the 

partial derivative with respect to time t. Thus, we can assume that: 

D 
Dt' / ät 

(2.44b) 



28 

2.4 MODIFIED HEAT CONDUCTION EQUATION 

According to the classical Fourier's law ( 1822), the speed of 

thermal disturbances propagating in the body is infinity. However, this 

is an inadmissible physical phenomenon and the enormous speed of thermal 

waves cannot be achieved instantaneously since thermal energy is carried 

by molecular motions and proceeds with a finite speed [ 2.32]. An 

objection against Fourier's law can be made on the basis of general 

physical principles from which it is clear that neither heat nor 

temperature disturbances can propagate faster than the velocity of 

light. Such a paradox can be eliminated by an appropriate 

generalization of Fourier's law. 

From a mathematical point of view, the finite thermal wave 

speed would be attained if the classical Fourier's law which leads to a 

partial differential equation of parabolic type could be modified so 

that it becomes an equation of hyperbolic type without much change in 

the behaviour of its solutions so far as practical problems of 

thermoelasticity are concerned. 

For an isotropic medium, the Fourier's law is expressed by 

[2.33]: 

- We (2.45) 

where K is a positive constant , called the coefficient of thermal 

conductivity, VO is the temperature gradient and 0 denotes the change in 

the absolute basic temperature T. 

The modified form of the Fourier's law of heat conduction, 

usually referred to as the well-known Maxwell-Cattaneo equation, is of 

the form: 
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r0 Lq + = - K7O , (2.46) 

where r 0 is the thermal relaxation time, a constant which is measured in 

seconds and characterizes the second sound velocity. The physical 

meaning of x is interpreted as the time required to establish 

steady-state heat conduction in a volume element when a temperature 

difference is suddenly produced on the element. The term of in 
0 at 

equation (2.46) is the so-called thermal inertia [ 2.34]. 

Based on the above modified Fourier's equation (2.46), several 

aspects of thermoelastic waves in solids have been examined by numerous 

authors such as Norwood and Warren [ 2.35], Popov [ 2.36], Sawatzky and 

Moodie [ 2.37]. Also, Lebon and Lambermont [ 2.38] attempted to derive 

the generalized equation of heat conduction from the point of view of 

basic continuum thermodynamics. 

If it is agreed that the speed of heat propagation may not 

exceed the sound speed V , then a formula for the relaxation time r 
S 0 

can be assumed to be [ 2.6] 

K 
= 2 

v ' ° PC Vs 

(2.47) 

where C r is the specific heat at constant volume. The other term of 'r o 

that was defined by Chester [ 2.39] and Maurier [ 2.40] is: 

3K  
to - 

(2.48) 

Values of relaxation time for some materials can be found in the table 

from Francis [ 2.41] and, generally, x is in the range from 10 -14 second 

to 10o second [ 1.45]. Moreover, an experimental procedure for 
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investigating the influence of the magnitude of 'r has been proposed by 

Mengi and Turban [ 2.42] as well. 

2.5 STRESS-STRAIN-TEMPERATURE RELATION 

The development of constitutive law forms an important part of 

this thesis since it expresses the characteristic non-linearity of the 

materials which are brought into the investigation of wave propagation. 

The various models of the non-linear constitutive relations have been 

contributed by many authors. 

For a slightly non-linear isotropic material Dillon [ 2.43] 

expanded the Helmholtz free energy p into a power series in strain 

invariants and temperature increments: 

p = a211 + a3111 + aI + aI + aO + a810 + a91 II + a 0Ie + 

a11IIO + a1203 + a13120 + a1414 + a15II2 + a161 II , (2.49) 

where 

11= -(c..c..-c..c..) 
2 iijj 1313 

III = det (E1 ) 

(2.50a) 

(2.50b) 

(2.50c) 

are the invariants of strain tensor c.. in the Cartesian system and a 
13 k 

(k = 2,3,5...) are elastic constants. 

The stress is then defined as: 

alp  
äc.. 

13 

(2.51) 

By the same token, Jekot [ 2.44] introduced the free energy function p 
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accounting for the non-linear thermal effects in the form of: 

1P(TI(.)) a0 (T) + a1(T)I (1) + a2(T)I (2) + a3(T)I (3) + a4(T)I 1) + 

a5(T)I (1)I(2) + a6(T)I (1) + (2.52) 

where I(.) i = 1,2,3 are the Green tensor invariants and the 

coefficients ak(T), k = 0,1,2,...,6 depend on temperature. 

However, equations (2.49) and (2.52) are not widely used in 

practical computations since the numerical values of their higher 

elastic constants (third order and up) are as yet unknown. Because of 

that reason, most solutions of thermoelastic problems have been solved 

in the framework of linearized approximations of Hooke's law. 

In contrast to their work, here we expand the Gibbs free 

energy function G into a Taylor series in the neighborhood of its 

natural state ( i.e. when 3 = 0, T = T): 

) 8G(0,T ) [82(o,T) =2 
G(,T) G(0,T) + 30,T0 a + aT  + [ 2 a 

Cla 

8 0 2(oT ) = 82G(0,T) 2 
+2 -   aig +  2 + 

8a8T ÔT Cla 

83G(0,T) 
=3 
Cr 

83 (o ,T ° =2 83G(0,T 0 = 2 03G(O,T ) 
-2 .aO + 3 - .aO + 0 9  

8 8T a8T2 3 aT 

+ higher order terms , 

where 0 = T - T 0 is the temperature difference. 
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be zero. From the definition of strain given by equation ( 2.37) we 

have: 

- - OG(0,T ) 
= 0  

82G(O,T ) 

O 0 
ÔT 

+ 82G(0,T) 

+ 83G(o,T0) 

.0 
1 83G0,Tda  

+ 

.aO 

.0 + 

a3 o,r ) 
0  0 

2 aa'r2 

(2.54) 

From equation (2.42), the specific heat at constant stress yields: 

Ia2 (oT) G83(O,T8G(o 
C 3 ,T ) 

  + °  

a  8T2 + ZIT 
(2.55) 

The constant of specific heat which is assumed to be independent of the 

temperature 0 and stress tensor cr may be incorporated into the equation 

by taking: 

83G(o,T) a3c(O,T) 

8T3 &YaT2 
(2.56) 

Furthermore, the total strain c is simply composed of the mechanical 

strain CM and the thermal strain CT i.e.: 

CCM + CT 

in which CT can be approximated in the linear form [ 2.20]: 

CT = 

(2.57) 

(2.58) 

where a denotes the coefficient of linear thermal expansion for 

isotropic materials. Thus, without loss of generality, we may assume 
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that: 

a3G(0,T ) 
0  - o 

acr2aT 
(2.59) 

Following the constraints expressed by equations (2.56) and 

(2.59), the total strain c can be written as: 

(&,T) = 1 + a.a + y + e (2.60) 

where ai, i = 1,2,3 are elastic constant tensors and are defined by: 

= aG(o,T) 
a1 - p  = 

= &2G(O,T) 
a2 - p   

(2.61a) 

(2.61b) 

= 1 83G(0,T) 
= - p  . (2.61c) 

acr 

a20(o,T) 
-  . (2.61d) 

&T8T 

At the reference state, cr = 0 = c = 0 leads to a1 = 0. The equation 

(2.60) becomes: 

(,T) = a2 'or + aa + cr0 . (2.62) 

Because of this deliberate emphasis on the non-linear relation 

of stress and strain, we will consider only one-dimensional thin medium 

in which the primary stress is the axial one. Equation (2.62) is then 

expressible in one-dimension as: 



e(a,T) = a2a+a3cy2 +czO 
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(2.63) 

where c and or represent for normal strain and normal stress, 

respectively, a2 and a3 are elastic constant. 

The quadratic expression in equation (2.63) has an equivalent 

form such that: 

, 

a2a + a3a 2 Iai 
- tJ (2.64) 

Substituting the equivalence (2.64) into (2.63) yields: 

c(a,T) - , sfl 
- lj :iJ + cxO 

(2.65) 

where p is the modulus of elasticity and n is the parameter of 

non-linearity. When n equals unity, a linear relation is obtained as a 

result. 

2.6 EQUATIONS OF WAVE PROPAGATION IN NON-LINEAR THERNOELASTIC 

MATERIALS 

With the aid of the corresponding equation (2.44b), equation 

of motion ( 2.11b) 'Wherein the body force b is neglected, and equation of 

conservation of energy (2.43), are stated in one-dimension as: 

aq 8T &c&a 
- + PCa :E +T - pr = 0 

(2.66) 

(2.67) 

In order to remain in the realm of an elastic region, we may 

assume that the change of temperature 0 is small as compared with the 
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reference temperature T, i.e. 

we have: 

9 
T 
0 

<< 1, this leads to T = T [2.5]. 

Differentiating equation ( 2.65) with respect to temperature T, 

The equation (2.67) then yields: 

Oq ae o 
&x oat 

(2.68) 

(2.69) 

where the internal heat supply r is neglected. 

By taking derivative on both sides of equation (2.2) with 

respect to time t and on both sides of equation (2.12) with respect to x 

when these equations are in one-dimensional form, the compatibility 

equation is obtained as: 

ae - (2.70) 
at ax 

The equations (2.65) and (2.70) can be combined to yield: 

ôv_& 
- + o} . (2.71) 

In general, the system of equations being necessary to 

investigate one-dimensional wave motion in non-linear thermoelastic 

materials is summarized as follows: 

Equation of Motion: 

Constitutive relation: 

(2.72a) 

- 3 
- f  (11  

+ cxe} . (2.72b) 
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Modified heat conduction: 

Conservation of energy equation: 

i; + 10 q - K , (2.72c) 
o ax 

° +T O 
ax aat oat 

(2.72d) 

It is also mentioned that the presence of the last term in 

equation (2.72d) is regarded as a sign of coupling existing between 

thermal and mechanical fields. The existence of coupling implies that 

the solution of the system ( 2.72) must proceed simultaneously. The last 

term is neglected if the interaction of thermal and mechanical energy is 

ignored. 

In the above, the constitutive relation (2.65) is developed on 

the basis of principles of thermodynamics based on Gibbs free energy. 

This form is not seen by the author in the literature. The results, 

thus, are only compared by numerical solutions of the system (2.72) 

solved by different methods as seen in the following chapters. 
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CHAPTER 3 

CONDUCTOR AND NON-CONDUCTOR 

In this chapter we consider the behavior of one-dimensional 

waves propagating in elastic bodies which are divided into two types: 

(i) elastic conducting materials 

(ii) elastic non-conducting materials. 

In practice, solids are usually classified as metals or 

non-metals. From experiment, we conclude that the first kind of 

materials has much higher coefficients of thermal conductivities than 

the second one. Due to impurities, the real solids; commercial building 

materials, being conglomerates of various solid constituents of 

different conductivities, display variations of thermal conductivities. 

This depends on the thermal properties of the constituents as well as on 

the level of their porosity. However, to limit the scope of this 

thesis, the solids have been assumed to be homogeneous and isotropic. 

The thermal properties are, therefore, kept unchanged through the course 

of investigation. 

By definition, a solid is termed a non-conductor if its 

coefficient of thermal conductivity K = 0, and a definite conductor or 

conductor simply called for K 0 0. 

PART A: BASIC EQUATIONS AND JUMP CONDITIONS FOR CONDUCTING MATERIALS 

Most metallic materials are considered as conducting materials 

since they have high thermal conductivities and allow energy to 

transfer from hot to cold regions of substances easily by molecular 

interaction. The heat flux then always exists along with the wave 
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propagating in the medium. 

Considering a semi-infinite thin rod of non-linear 

thermoelastic material which is assumed to be initially at rest and at 

uniform temperature T, the system ( 2.72) can be written in the 

following form: 

8v - - 
p -€ - o 

n n-1 au + 30 3v = 
—a -- at at - -8x 

Lq + q + K Le ax 0 0 at 

xT 
o äx 

, 

, 

(3. la) 

(3. lb) 

(3. lc) 

(3.ld) 

3.1 SPEEDS OF WAVE PROPAGATION 

The equations ( 3.1) are recognized as a hyperbolic system of 

four quasi-linear partial differential equations for the set of unknowns 

{v, a, 0 q} and can be written in a general form as: 

[A1] U + [A2] Ux A3 , (3.2) 

in which: 

= [v a 

au 

T 
0 q]  

= = [v at O qjT 

OU 

U - 8x—=[v a 0 q] T 
x x x x x 

(3.3a) 

(3.3b) 

(3.3c) 
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P 0 0 0 

[A1 ] 

[A2] 

n n-i 
0 — a cx 0 

n 
11 

o 0 0 
0 

o cT o Cr PC 0 

o •-i o 0 

-1 0 0 0 

o 0 K 0 

o o 0 1 

A3 =[ 0 0 - q 

where the superscript ' T' denotes the transpose of a matrix. 

(3.3d) 

(3.3e) 

(3.3f) 

It is also noted that the matrix [A1] is non-singular since: 

det [A1] = pt 10C2To - n1 PC) 0 0 (3.4) 

After premultiplying the system (3.2) by [A1]1 , it is expressible in a 

new form as: 

where: 

+ [Ba] Ux = 

[B1] = [A1f 1 [A2] 

= [A11 ' 

(3.5) 

(3. 6a) 

(3.6b) 
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is the inverse of matrix [A1] and is obtained as: 

[A1 1 
1 

0 0 0 

0 pCU 7 0 - 

0 - cxT 01 0 PI0 0 1 - 0 

0 

The matrix [B1] and vector B 2 are found to be: 

[B1 

where: 

I 

0 - 0 0 

0 0 

aT 07 0 0 

0 0 0 
x 
0 

= [0 0 0 - 

q 
x 
0 

= n-i 

1 = 1 2 
PpC Cr - a T 

(3.7a) 

(3.7b) 

(3.7c) 

(3.8a) 

(3.8b) 

The characteristic curves along which the canonical equations 

are valid are governed by the characteristic equation [3.1]: 

det ([B1] - ?[ I]) = 0 (3.9) 
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in which X's are eigenvaliies and [ I] is the unit matrix (4x4). The 

matrix ([ B1] - X[I]) is given by: 

([B1] - x[i]) = 

-X - 0 0 

-X 0 - cry 

xT1 0 -X gX 

The determinant of ( 3.10) yields: 

Let: 

0 0 
K 

0 

-X 

(3.10) 

X4_X2I1+C) + Kj = 0 c aJ pr 

= 1 
ep' 

which is considered as the speed of purely elastic waves. 

Dividing both sides of equation (3.11) by 

simplifying, we have: 

(!_)4 

e li+Pi+1 J2 + 11=0 
The eigenvalues are then obtained as: 

X. ± V 
e 

where: 

± / (111+1) 2_41 1 

2 

(3.12) 

(V) 4 and 

(3.13) 

(3.14) 
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i = 1,2,3,4 

K 2 
= PP 

91 - a 2 T 

(3.15a) 

(3.15b) 

It is also apparent that the eigenvalues X's strongly depend 

on the stress a. Thus, we can write: 

(3.16) 

The above equation (3.13) has the same form as obtained by 

Achenbach [ 2.29] for a linear thermoelastic material. However, those 

parameters V, 11, are no longer constant but are functions of the 

unknown stress a in this case. 

For investigating the wave motion in particular materials, the 

eigenvalues represented by equation (3.14) are to be real. This leads 

to the conditions 

(1 1 +P1 + 1)2 - 

- /++i2 - 41i > 0 

We can prove without difficulty that the above inequalities are 

satisfied only when both values of 11 and p1 are positive. Since both 

71 and P, are functions of 7, equations ( 3.15), we have: 

1 
1= 2 > 0 

PPC Cr - a T 

(3.18) 
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Making use of the value of P from equation ( 3..8a), we obtain 

The above inequality gives: 

n n-i 2 
—a pC > cxT 
n a o 

la  > 
p%2T 

npC0 

(3.19) 

n0 1 . (3.20) 

The absolute stress a is employed here to confirm that the 

conditions (3.17) hold without taking the direction of stress into 

consideration. A sign convention from which a tensile stress 

propagating in the opposite direction of the rod is considered positive 

and a compressive stress propagating in the same direction as the rod is 

considered negative, is assumed to hold. It is also noted that when 

n = 1 , the condition (3.20) does not exist. 

For eigenvaiues X. to be real, the stress a can not be 

arbitrary but must be constrained by the inequality (3.20). 

The wave speed is defined by: 

1 
V. dx 
i ti dt 

(3.21) 

where dx' is a distance which the wave having speed V propagates in a 

time interval dt; and dt 
:1. 

dx 
is referred to as the slope of the 

characteristic curve C as shown in Figure 3.1. 

Thus, along the characteristic curve Cl? the wave has its own 

speed which is presented as follows: 
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C2 
+ 
C2 

FIG. 3.1 CHARACTERISTIC CURVES PASSING THROUGH POINT E - 

THE CASE OF CONDUCTING MATERIAL 

= (y1+p1+1) 

d = = 
t 1 e 

Similarly, 

- along the characteristic curve 

2 

V2 = = 2 V 

+ /(11+p1+1) 2 - 

2 

/i1+p1+12 -  
41 

- along the characteristic curve C2: 

2 

(3.22a) 

(3.22b) 
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3 
_dx_ - V 

3 dt "3 e 

(i1+P1+1) - / i+p1+1)2 - 

- along the characteristic curve C1: 

dx4 = -v 1(i+pi+1) 
v4 _:t-=x4 

2 

+ 2 41 

2 

, 

(3.22c) 

1/2 

(3.22d) 

Comparing the wave speeds given by the expressions on the right-hand 

side of equations (3.22), we have: 

V4 = -V1 , (3.23a) 

V3 =-V2 (3.23b) 

For an adiabatic process , i.e. when the material is considered as a 

non-conductor, only one positive wave propagates in the medium with a 

speed: 

= V  / 7P 1 
(3.24) 

This is because the term 11 in equations (3.22) no longer exists due to 

the negligible value of thermal conductivity K which is very close to 

zero at the reference state. A further study of wave motion in 

non-conductors will be, discussed later in this chapter. 

When P, = 0 (uncoupled case), the two positive wave speeds are 

given by: 
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V = V 
M e 

I (ii) - /(11+1) 2 - 41 

'T T e 

(l i+1) + / i+1)2 - 

2 

2 

I 

1/2 

(3.25a) 

(3.25b) 

where VM and VT denote the uncoupled mechanical wave speed and uncoupled 

thermal wave speed, respectively. 

The expressions under the roots in equations (3.25) lead to 

two following cases: 

(i) If the value of 1, is less than unity, the leading wave is 

essentially a mechanical wave whereas the lagging wave is 

essentially a thermal wave, i.e.: 

Vl>VM>VT>V2 . (3.26) 

Also, when yj < 1 , we have: 

V M V 

VVfjj 

and 

(3.27a) 

(3.27b) 

For a real root, y1 is always positive for which from 

equations (3.15) and ( 3.8b) 

- cx2T > 0 (3.28) 

Since the value of a is very small as compared to unity, we 

may assume that the amount of cc2T is insignificant in the 

inequality ( 3.28). The uncoupled thermal wave speed is then 

given by: 
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/K  
VT = I pcx0 (3.29) 

It is obvious that when the thermal relaxation time 'v 
0 

reaches zero as proposed by the classical Fourier's law, the 

speed of thermal wave is infinity. 

(ii) If the value of is greater than unity, the situation is 

reversed, i.e. 

VT = Vfl 

V = V 
M e 

(3.30a) 

(330b) 

which confirm that the leading wave must be thermal and the 

lagging wave must be mechanical. 

3.2 JUMP CONDITIONS AT THE WAVEFRONTS 

In quasi-linear equations, smooth solutions do not necessarily 

exist for all time. After a finite time, a smooth solution may cease to 

be smooth and later on tend to a discontinuity which behaves quite 

differently from the smooth wave. The location of the points having 

discontinuous solutions is called the wavefront. By definition, in x-t 

coordinates, the wavefront is a curve which separates the disturbed 

region from the undisturbed region or separates the disturbed region 

from the region having an additional disturbance [ 3.2]. 

+ + - - * 
Let R , 8R and R , äR denote the portions of a body R with 

* 

surface ÔR situated ahead and to the rear with respect to a singular 

surface D at time t as shown in Figure 3.2 . The unit normal N of the 

surface is pointing from R+ to R. The limit of f(x,t) across D(t) is 
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expressed by: 

UO - f * 0 . (3.31) 

The variable f(x,t) may be a scalar, vector, or tensor over 

the present configuration. If. HH is normal to the singular surface 

D(t) , the discontinuity is said to be longitudinal , whereas it is said 

to be transversal when OO is tangential to D(t). 

For a partial differential equation of the form: 

au 

x 
(3.32) 

öR* 

FIG. 3.2 PROPAGATING SURFACE OF DISCONTINUITY D(t) 
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the corresponding jump condition across a surface of discontinuity, 

according to Kosinski's theorem [ 3.3,3.4] is given by: 

Vf II?ll = 119 (3.33) 

where the bracket " " thereafter denotes the jump, and Vf is the 

intrinsic velocity of the wavefront. 

In order to apply the Kosinski's theorem, the equation of 

motion (3.la), the modified equation of heat conduction (3.lc), and the 

coupled energy equation (3.ld) are written respectively in the form: 

äa_ 
- -- oax 

(r0q) + -. (Ko) + q = 0 Ft ax 

49 aq 
(uTa + PC + = 

01 

(3.34a) 

(3.34b) 

0 . (3.34c) 

Applying the jump condition (3.33) to the above equations yields: 

OaU = -PVf IN , (3.35a) 

HqH - ll°li ' (3.35b) 

= Vf ffuTa + PC OH . (3.35c) 

The equations (3.35) which are similar to those of Chang and Cozzarolli 

[2.24] and Achenbach [2.29] express the differences or jumps in 

variables along and across the wavefront. 

In a thermoelastic material, whenever both values of thermal 

conductivity K and thermal relaxation time x are not zero, there always 



50 

exist two wavefronts propagating in the body right after its boundary is 

suddenly hit by an external force. At the first point on the boundary 

(say the origin), part of the externally applied discontinuities will 

propagate in the medium with velocity V1 (equation (3.22a)), and part 

with velocity V2 ( equation (3.22b)). 

At the origin, thus, the jumps in unknowns are decomposed 

into: 

where 

H )) denotes the jump across the leading wavefront, 

II 112 denotes the jump across the lagging wavefront. 

(3.36a) 

(3.36b) 

(3.36c) 

(3.36d) 

Across the leading wavefront, the jump conditions can be directly 

obtained from equations ( 3.35) of which the wavefront speed V  is simply 

replaced by V1. then: 

= - p'?1 11v111 

Hqil K 
V 

JOJ I 

o  

OP 

, 

k))1 = V1uT M1 + VlpCa U0I1 . 

Similarly, across the lagging wavefront, we have: 

(3.36e) 

(3.36f) 

(3.36g) 
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IfrII = - 2 pV2 II'12 

IIH - •rK V 110112 
o2 

, 

= V2cT 11°112 + V2PC 110112 

(3.36h) 

(3.361) 

(3.36j) 

The system of ten simultaneous equations (3.36) are composed of twelve 

unknowns: 

Ilvil , JIvlI , 11v112; flail , 11CIV 1142; 11011 , II0II , IIII2' flqfl , ttqH , HII 

These twelve unknowns can be determined if and only if two of them are 

given by some other conditions. The remaining unknowns are then 

calculated through the system ( 3.36). The two unknowns among the twelve 

unknowns are usually given by boundary conditions of the problem. 

It is mentioned here that, in a quasi-linear hyperbolic 

system, the jump conditions are also used to numerically determine the 

values of unknowns in the disturbed medium. 

In this thesis, the problem of wave propagation in 

thermoelastic conducting materials is solved along with two sets of 

boundary conditions given by: 

(i) time-dependent velocity and a constant temperature impact: 

tv(0,t) = Vt ; t > 0, 6>0 (3.37a) 

9(0,t) = 0 0 ; t > 0 (3.37b) 

ii) time-dependent stress and a constant temperature impact: 



a(O,t) = at6 

0(o,t) = 00 t>O 
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(3.38a) 

(3.38b) 

In addition to the boundary conditions given above, the 

initial conditions are prescribed as: 

v (x > 0, t = 0) = 0 (3.39a) 

a (x > 0, t = 0) = .O (3.39b) 

0 (x > 0, t = 0) = 0 (3.39c) 

q(x>0,t0)0 . (3.39d) 

Along with the prescribed auxiliary conditions (3.37) (or 

(3.38)) and (3.39), the system of partial differential equations (3.1) 

which governs the wave motion in the continuous regions and the jump 

conditions across the wavefronts can be solved through numerical 

procedures. 

PART B: BASIC EQUATIONS AND JUMP CONDITIONS FOR NON-CONDUCTING 

MATERIALS 

In this part, we will consider the features of one-dimensional 

waves propagating in non-linear thermoelastic bodies which do not 

conduct heat. 

The concept of non-conducting elastic solids is 

thermodynamically inadmissible because it is impossible to heat or cool 

such solids reversibly. In these solids, values of thermal conductivity 

K equal zero. However, in practice, values of K can never be exactly 
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zero for a solid, because heat can only be transferred through heat 

conduction processes. Without heat conduction there would be no 

reversible path between two states of the solid which differs only in 

temperature. 

In a limiting sense, when values of K are very small, we can 

assume that there is no heat conduction taking place in the body. Based 

on this assumption, Bland [ 3.5] has shown that in such a material the 

heat flux is no longer existent, i.e: 

q0 . (3.40) 

The above equation leads us to conclude that the process of 

thermoelastic deformation now proceeds adiabatically. 

The relation between the entropy ,' and heat flux q previously 

given by equation (2.36b) now assumes the form: 

at 
(3.41) 

Depending on the situation of the waves propagating in the medium, we 

have two different cases: (i) Y = .'( x), in the case of shock waves. 

And ( ii) ? = 0 in the absence of shock waves. 

On the basis of equations (3.1) and equation (3.40), the 

fundamental equations for a non-conductor can be expressed as: 

8v - - 
:E - O 

0 
Ft f (16•) 191 - ax 

(3.42a) 

(3.42b) 
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cT + ae = 0or at 0 at (3.42c) 

The system ( 3.42) is now composed of three unknowns v, a and 0 and can 

be expressed in the form: 

where: 

[A'i]U2 + [A' JU = 2 ,.2x 

[A'2] = 

0 (3.43) 

U 2t = [v or t o] T , (3.44a) 

U = (v x x x a e 1T )I (3.44b) 

P 0 0 

o n n-i 
—a cx 
'in 

o cxT PC  

o -i 0 

-i 0 0 

o 0 0 

J. (3.44c) 

(3.44d) 

Multiplying both sides of equation ( 3.43) by the matrix 

we have: 

2t + [B'1] 2x = 0 

• where  matrices [A'1]' and [ B'1] are obtained as: 

(3.45) 
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= 

[B'1} = 

1 

P 

0 

0 0 

PC  
- u 

[Pc - a2T) (PPCa_ u2T) 

- aT 
0 

o (gPCor a2 To) 

0 

- P% 

PCa u2TJ 

aT 

(PPC Cr - u2T) 

1 

P 

p 

(OPC cr - a2T) 

0 

0 0 

0 0 

, (3.46a) 

(3.46b) 

The eigenvalues of the system (3.45) are determined similarly to those 

of conducting materials derived in part A. Computing the determinant of 

([B'1) - XE']) yields: 

XIX2  Ca  }= 
1 pC - a 0 

The equation (3.47) gives: = 0 

C I 
-I  a  

2 
PPCa a T 

(3.47) 

(3.48a) 

(3.48b) 
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IC 
=_ / a (3.48c) 

7 / p'a x2T 

We can directly prove that the eigenvalue A. (i = 6,7) are real if and 

only if the condition ( 3.20) holds. 

By definition, the wave speed along the characteristic curve 

C3 is expressible as: 

V5 A = 0 

Similarly, along the characteristic curve C 

dx 6 

6 dt 1 6 

and along the characteristic curve C4 

dx . 

7 dt A7 

7 

J. 

(3.49a) 

(3.49b) 

(3.49c) 

Therefore, one of the characteristic curves is straight line 

(parallel to the Ot-axis) and the remaining two are curvilinear (as in 

Figure 3.3) since characteristic speeds V6 and V7 are non-linear 

functions of the yet unknown stress Cr. 

It is clearly seen from equations (3.48b,c) that both V6 and 

V7 have their absolute values to be the same. Thus, we can write 

V6 = -V7 . (3.50) 

Because of the absence of the coupling parameter 11 as 

previously discussed in equation (3.24) only one wavefront propagating 

in the medium . The jump conditions, thus, are determined much more 

conveniently than those in the conducting materials. 

Applying the Kosinski's theorem to equation (3.42a) yields 
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and from (3.42c), 

hail = - pv6hlvll 

pC 

hail = - O°II 

(3.51) 

(3.52) 

It is noted that the equation (3.51) is admissible only in the absence 

of shock waves. If the body is disturbed by a shock, the velocity V6 in 

the above equation would be replaced by a shock velocity U, i.e.: 

hIhl = - PUilvil 

C3 

(3.53) 

FIG. 3.3 CHARACTERISTIC CURVES PASSING THROUGH POINT E - 

THE CASE OF NON-CONDUCTING MATERIALS 
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In linear elastic materials, there is usually no shock occurring, 

however, in non-linear thermoelastic solids, the shock is likely to 

occur under certain conditions. 

Most of non-linear elastic materials, stress-strain relations 

in an isothermal condition must have either a concave-up curve or a 

concave-down curve which respectively corresponds to the power n being 

either smaller or greater than unity. 

A graphical method which is similar to the ones applied to 

various wave problems by Cristescu [ 3.6], Bland [ 3.5], Eringen and 

Suhubi [ 3.7], De Juhasz [ 3.8], Hwang and Davids [ 3.9], etc. will be 

employed here to determine whether there exists a simple wave or a shock 

wave propagating in the medium. 

3.3 SIMPLE WAVES 

The first problem to be considered is that of an elastic 

one-dimensional body having its stress-strain diagram as shown in 

Figure 3.4. 

Assuming that the body is at rest in its natural state for 

t < 0 but is subjected to time-dependent stress impact on its boundary 

x = 0 for t > 0. Such a boundary condition is expressible as: 

a(0,t) = at6 (3.54) 

The stress is continuous and monotonically increasing along the Ot-axis. 

As a result, the slopes of the characteristic curves, which are the 

functions of the stress a ( equation ( 3.48b)), decline gradually. The 

wavelets diverge at the front as illustrated in Figure 3.5, and this 

type of wave is called a simple wave [3.10, 3.11]. 
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a. 

-00  

a. 

A 

n>1 

FIG. 3.4 STRESS-STRAIN DIAGRAM WITH n > 1 

DISTURBED REGION 

FIG. 3.5 CONFIGURATION OF A SIMPLE WAVE 

UNDISTURBED REGION 
am-

x 
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In the entire simple wave region, the numerical solution 

presents no difficulty, the set of unknowns {v, a, 0) can be found 

uniquely from the characteristic network. The wavefront must be one of 

the characteristic curves having a positive slope and passing through 

the first point on the boundary ( say the origin). 

•3.4 SHOCK WAVES 

The same boundary condition prescribed in ( 3.54) is applied to 

a material having a stress-strain diagram to be concave-up as shown in 

Figure 3.6. The increase of stress a along the Ot-axis leads to the 

decrease of slopes of the positive characteristics and the wavelets 

converge at the front. The unique solution breaks down when two 

characteristics intersect as in Figure 3.7 because this implies two 

different values of the unknown at the same point in space-time. In 

that case a shock wave is formed and is represented by a curve in the 

x-t plane commencing at the first point of characteristic intersection. 

For convenience we may assume that the shock occurs at the origin where 

the waves start propagating in the medium. 

It is noted that the speed of the shock U need not be the 

same as the speed of wavefront V6 in the case of simple waves. 

Therefore, the path of shockfront must be independent and 

distinguishable completely from the characteristic curves. 

3.4.1 Shock Velocity 

By definition, a shock wave is a motion containing a 

shockfront across which the strain c, the particle velocity v, and their 

derivatives are discontinuous [ 3.12]. 
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CT A 

n<1 

 mm-

FIG. 3.6 STRESS-STRAIN DIAGRAM WITH n < 1 

a. 

SHOCKFRONT 

FIG. 3.7 FORMATION OF A SHOCK WAVE 

x 
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If we define the discontinuity in a quantity f by: 

III = f - (3.55) 

where £ and f+ are the values of f immediately behind and just in front 

of the shockfront. 

The kinematical condition of compatibility is given by [ 3.12]: 

with f = u implies that 

Tt- ilfil = lIII + us ax 

Us PH  - IIvH 

It is clear from this result that either ilvil or hEll 

(3.56) 

(3.57) 

can be taken as a 

measure of the amplitude of the shock. 

On the basis of Kosinski's theorem, we obtain from the 

balance of linear momentum equation ( 3.42a) 

hail = - p Us hlvhl 

Combining ( 3.58) with ( 3.57) yields the well-known result: 

for the intrinsic velocity of the shockfront. 

(3.58) 

(3.59) 

3.4.2 Shock Amplitude Equations 

Here, we shall derive the equation which governs the amplitude 

of a shock wave in an elastic non-conductor. If the quantity £ is 

replaced by the strain c and the particle velocity v, respectively , the 

relation (3.56) implies that 
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and 

ãE ocil U5 llcII + OI1 

v=uHvll+UlJ 

Multiplying both sides of (3.60) by U and rearranging, we have: 

us JJØ = us llfl - U lldll 

Total differentiation of both sides of equation (3.57) gives: 

(3.60) 

(3.61) 

(3.62) 

dU 

- - lilt = licli - + U fl • U2 H it-  dt S X J (3.63) 

Furthermore, across the shockfront, the equation of motion ( 3.42a) 

yields [ 3.13]: 

Bill = 1 lIcll . (3.64) 

So does the compatibility relation: 

lJvxo = 114 (3.65) 

Replacing JI1J and if vif in equation ( 3.61) by the right-hand side of 

equations (3.64) and (3.65), we obtain: 

dt V - - HaI+U IItI P  
(3.66) 

Substituting equations (3.61) and (3.66) into equation (3.63), the 

amplitude of the shockfront is expressed by: 

dU 
2U dicli 
s dt + llcfld s x p x , (3.67) 
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which is similar to that of Chen [3.12] and Ting [ 3.14]. 

Thus, along the shockfront, the set of three unknowns 

{v,or,O) is determined from the three equations (3.52b), (3.58) and 

(3.67). In which the shock velocity U can be found from the formula 

(3.59) and the strain c may be eliminated from the jump condition based 

on the constitutive relation (2.65): 

Hell = I (I 
') nil + 

(3.68) 

In part A of this chapter, we did not mention that the shock 

waves could occur in the conducting materials subjected to the 

prescribed boundary conditions. This is because when the thermal 

conductivity K is taken into account, we can hardly conclude whether 

there exists a shock or not due to the influence of the lagging 

wavefront . For a non-linear thermoelastic material wherein the speeds 

of both wavefronts are functions in terms of the unknown stress a, the 

location of the lagging wavefront as well as the jumps in unknowns 

across it -are still an unsolved question for the investigators. 

Moreover, although some predictions of linear thermoelasticity 

have been extended, the influence of heat-conduction on wave propagation 

in non-linear elastic solids is not fully understood . Because of these 

reasons, shock wave experiments in non-linear elastic solids are 

interpreted by assuming the material to be a non-conductor of heat, 

[3.15]. 

It is to be noted that when there is a shock wave involved in 

conducting materials, the shock amplitude equation (3.67) can also be 
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applied for obtaining the unknowns along and across the shockfront 

[3.13]. 

For a non-conductor, the two equations ( 3.51,3.52) consisting 

of three unknowns v, a, 0 are not sufficient for solving the unknowns at 

the first point on the boundary (Ot-axis). To satisfy the requirement, 

one of the following types of boundary condition will be employed: 

(i) v(0,t) = Vt6 ;. t > 0 , 6 > 0 . (3.69) 

a(O,t) = at6 ; t > 0 , 6>0 (3.70) 

Furthermore, the material is assumed to be quiescent in the beginning, 

the initial conditions are then written as: 

v(x > 0,t = 0) = 0 , (3.71a) 

a(x > 0,t = 0) = 0 , (3.71b) 

0(x > 0,t = 0) = 0 . (3.71c) 

Together with the .jump conditions, the prescribed auxiliary conditions 

are combined with the system of equations ( 3.42) to form a complete set 

for investigating the wave motion in a non-conductor. 



66 

CHAPTER 4 

NUIIERICAL METHODS FOR CONDUCTING. MATERIALS 

There are some well known methods available which are used to 

solve the system of linear as well as non-linear equations in the 

hyperbolic form as partly mentioned in Chapter 1. 

Along with their auxiliary conditions, systems of hyperbolic 

equations are still the most challenging class of problems to solve. 

For a long time, the investigators have kept on searching for a general 

method or modifying the present method so that it is possible not only 

to obtain proper solutions but also to show clearly the jumps in 

unknowns at the wavefront ; especially when a problem consists of two 

surfaces of discontinuity or more. 

Even though Lopez [4.1] and Lee et al [ 4.2] have achieved good 

results by the method of characteristics, their solutions are referred 

to as special cases only. The difficulty of this approximate method is 

increased whenever non-linear problems are considered for solutions. 

To deal with the system of equations along with the auxiliary 

conditions given previously, in this chapter we will employ two methods, 

namely the characteristic method and the finite element method. 

4.1 THE METHOD OF CHARACTERISTICS 

So far, this method is still regarded as the most popular 

technique applied for treating the quasilinear hyperbolic equations. By 

this method, a system of partial differential equations is transformed 

to a system of ordinary equations along the characteristic curves. The 

method has been adequately developed in the monograph [ 4.3, 4.4, 4.5] as 
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well as extensively applied to practical problems [4.6, 4.7, 4.8 ]. 

However, when the method is carried out, there are some different 

approaches which are briefly summarized as follows. 

4.1.1 Diamond-Shaped Network 

In the first approach, the characteristic network has a 

diamond shape formed by the opposite families of characteristic lines as 

in Figure 4.1. Field solutions for unknowns are obtained by numerical 

integration of the ordinary equations along their own directions. Wood 

and Phillips [4.9] applied this approach to the problem of wave 

propagation in a plastic bar. Further, Lopez [4.1], and Mengi and 

Turhan [ 3.2], as well as Lee et al [4.2] used it for solving the 

t 

DISTURBED REGION 

At 

At 

At 

At 

0 

C (LAGGING 
2 WAVEFRONT) 

C (LEADING 
WAVEFRONT) 

UNDISTURBED REGION 

FIG. 4.1 DIAMOND-SHAPED MESHES 

X 
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problems of thermomechanical waves in linear thermoelastic materials, 

inhomogeneous thermoelastic media and non—linear thermoviscoelastic 

materials, respectively. 

The approach gives good features of the solutions of which not 

only the wavefronts are clearly located but also the jumps in unknowns 

along the wavefronts are properly determined. However, the satisfactory 

results are obtained only when characteristic curves are assumed to be 

straight lines leading to the uniform meshes throughout the disturbed 

region. The positions of grid points are then determined with no 

difficulty. 

The technique becomes more complicated when the slopes of the 

characteristic curves are not constant but changing from point to point 

t 

+ 
C2 

(LAGGING 
WAVEFRONT) 

+ 
Cl 

(LEADING 
WAVEFRONT) 

PIG. 4.2 IRREGULAR MESHES 

UNDISTURBED REGION 

0 x 
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in the medium. Non-uniform meshes, as illustrated in Figure 4.2, are 

formed as a result, and positions of grid points, thus, cannot be 

established as easily as those of diamond-shaped meshes. 

4.1.2 Rectangular-Shaped Network 

The second approach which was first proposed by Hartree ( 1953) 

is usually referred to as the Hartree's method [4.10] or the method of 

fixed time intervals. This approach has been used by numerous authors 

[4.8, 4.11] and recently applied by Orisamolu [4.12] to the system of 

equations of thermomechanical waves in inelastic solids. 

Following this approach, the x-t plane is divided into uniform 

rectangular meshes, as in Figure 4.3, and the unknowns at each grid 
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point are calculated by integrating the ordinary differential equations 

along the characteristic directions. The interpolating technique is 

also employed to obtain the quantities of intercepts at the feet of the 

characteristic curves which do not coincide with a grid point. 

In contrast to the first approach, the second one can neither 

give an accurate position of the wavefront nor reveal any jumps across 

it. Nevertheless, this approach has some advantages of being ( i) simple 

computing and programming, and ( ii) applicable to several non-linear 

problems. 

4.1.3 Combination Network 

Methodically developed from the above two approaches, the 

third one is similar to the first in which a leading wavefront is prior 

determined and serves as a second boundary. The investigated region is 

now bounded by the Ot-axis considered as the first boundary and by the 

precursor front. The combination net of lines to be superimposed on the 

disturbed region such that one family of lines is parallel to the 

Ox-axis and the other family of lines is parallel to the Ot-axis. The 

meshes are assumed equi-spaced with time interval M but a non-uniform 

length h1 between grid points as shown in Figure 4.4. 

The same as the second approach, unknowns at each grid point 

are obtained from the system of ordinary differential equations being 

integrated along the characteristic directions. 

Some advantages drawn from this point of view are given as 

follows: 

(i) Not only jumps in unknowns along and across the leading 

wavefront ( or the shockfront ) but also its location can 
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be determined as those in the first approach. 

(ii) Being applicable to either linear or non-linear hyperbolic 

systems. 

(iii) Reducing the complicated computation as seen in the article by 

Lopez [ 4.1] without losing much accuracy of the solution. 

(iv) Simple programming and high speed computation as being 

comparable to the other approaches. 

(v) For a problem with one single wavefront, the results obtained 

are as accurate as being expected. 

Yet, this approach is still not a fully accomplished one. For 

the problems of thermomechanical waves composed of thermal and 
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mechanical disturbances propagating simultaneously in the medium, the 

approach fails to locate exactly the lagging wavefront and uncertainly 

determines the jumps in unknowns along and across it. As a result, the 

oscillating solutions of those points close to the lagging wavefront 

cannot be controlled whenever high jumps suffered by strong 

discontinuity occurs there. 

4.2 Numerical Computation by the Characteristic Method 

Hereafter, the third approach is used to create combination 

meshes constrained by the two assigned boundaries for the application of 

the characteristic method and the finite element method. 

If we denote the left eigenvectors of [B1] corresponding to 

the four eigenvalues ? by four respectively, where i = 1,2,3,4, 

then: 

(4.1) 

Substituting the matrix [B1] given by ( 3.7b) into equation (4.1), 

eigenvectors are found to be: 

If 

1 

cxl'1 ( or i 
Cl -x) 

0 

Pt X. 

- x) 

S. I 

J. 

where X. is the eigenvalue and is given by equation (3.14) 

(4.2) 
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The characteristic conditions satisfied along the 

characteristic curves are determined as follows: 

or 

11 

4 

-Pxi 

1 

cxl (Cy -x) 
0 

Pt X. 

ICc  (cy - 

dU 

B 2 = 0 
dt 

T T 
. p •* -pX. 1 •' 

V t  

at 

< et > - 

1 

(4.3) 

, 0' 

0 

P (c y-x) .< 0 > = O. 
cxTy a 

0 

Pt '. 

 KcxT (Cal x) 
-. 

0 

) \ ) 

(4.4) 

Subsequently, the system of ordinary differential equations along their 

own characteristic curves are expressed by: 

- along the characteristic curve C with X = 

dv (c Pt 2 dB  oVl 
-PV WE U  + 1 aT y a 

0 0 

p1 (Cy-V2)q0 
KaT or 

0 

- along the characteristic curve C with X = 

(4.5a) 
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dv da p 2 dO Pt o V 2(12)d 
+ ãE cT 1 (Cl - v2) dt KcxT 

0 0 

PV  

KcxT I  
0 

- along the characteristic curve C2 with X = -V2: 

Pt V 
__ 2 - dq dv -& P (Ca1_v)_Tl (C v ) 

pV2 Tt + Tt  aT1 
0 0 

PV  
KccT 1 ( Cal 

0 

, 

- along the characteristic curve C1 with X4 = -V1 

(4. 5b) 

(4.5c) 

dv da p (c7-V) de - px O V 1(1_2)d_ 
PV  a- + •E aT a I dt KcxT 1 

0 0 

PV  

KcxT 1 (Cal 
0 

(45d) 

As illustrated in Figure 4.5, the grid points being divided into three 

different types for the sake of computation can be categorised as 

follows: 

- The first one is composed of those points along the precursor 

wavefront and denoted by 4, 4, ..., 4. The four unknowns 

are explicitly found from the characteristic curve having the 

largest positive slope, and the jump conditions previously 

defined in Chapter 3. 

- The second one governs the grid points along the Ot-axis and 

is represented by C, C,...,Cg. Only two unknowns instead 
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of four unknowns being necessarily determined due to two 

unknowns revealed from the given set of boundary conditions. 

The last one consists of any points as distinct from those 

above and is exhibited by E where I =1,2,..,J-1 and I ;4 O,J 

The set of ordinary differential equations (4.5) must be 

synchronously integrated along the characteristic directions 

to obtain the four unknowns at each grid point. Points which 

belong to this type are referred to as interior grid points. 

4.2.1 Grid Points ALong the Leading Wavefront 

LEADING WAVEFRONT 

5 
1 E E 

4 
E2 

4 
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2 

2 
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3 

4 

4 

A5 
5 

h 2. 3 4 

X 

FIG. 4.5 THREE DIFFERENT TYPES OF GRID POINTS IN THE DISTURBED REGION 
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By the assumption of the rod being initially at rest, just in 

front of the leading wavefront, the medium is still in a quiet state. 

Without loss of any generality, we can write: 

v+ a+ =O+ qO , (4.6a) 

and 

IItI = f - = f (4.6b) 

where £ and f+ denotes the value of f immediately behind and ahead of 

the leading wavefront, respectively. For convenience, the superscript 

() in equation (4.6b) may be dropped, then: 

III = (4.7) 

The unknowns correlated by the jump conditions ( 3.36) discussed in 

Chapter 3 are now simply expressed as: 

Cr = -PV 1v (4.8a) 

K 
q - e 

ol 
(4.8b) 

qVloT o a+VipC cr 9 . (4.8c) 

Together with the jump conditions (4.8), the equation (4.5a) is also 

taken into account to determine the unknowns. However, the direct 

integration of equation (4.5a) along its own characteristic direction 

seems to be impossible due to parameters V1 and y which strongly depend 

on the unknown stress a. The non-linear nature of the equation 

immediately suggests that an iterative procedure must be employed. 
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It is necessary at this stage to introduce the finite 

difference approximation of integrals. A first-order or linear 

approximation is defined by the relation: 

ti 

t 
0 

f(t)dt = f(t 0 )( tl o -t ) . (4.9) 

The second-order approximation is expressed by the trapezoidal 

rule formula as: 

ti 

t 
0 

f(t)dt = . [f(t) + f(t1)] (ti-t) (4.10) 

To illustrate the procedure, assuming that the unknowns at point A 3-1 3_1 

are revealed from the prior calculation, and those are being looked for 

J 
at a next point A3 along the wavefront. 

At the first, iterative step, values of two parameters V1 and 1 

can be obtained by setting 

then 

a * a(J-1, J-1) , (4.11) 

() * 
1 i(a) , 

where a(J-1,J-1) denotes the stress a at point A and- the superscript 

(1) means the first iteration. 

Substituting the defined values of 1 and V1 given by (4.12a,b) 

into equation (4.5a) the integrating from point A3_1 to point A3, we 
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have: 

_v1) I v 1) (JJ) - v(J_lJ_l)} + f,(l)(J,J) - a(J_1J_1)} 

+ aT1 [Cai ' - [vi')]] {e(')(j,j) - e(JiJ_i)} 

+  pt0v (C'T ') - iv 1)2 {q(1) (jj) -  (ExT1) J_1J_1)} 

(1) 
pV 

  (C,-i 

0 
KaT 0 1( 1) 

which leads to: 

[v1)}] {q(l)(J,J) + q(J-1,J-l)  
2 Et =0 

(4.13) 

I -pV v(J,J) + l)(J,J) + p c a 1(1)_[ v (1)]2) (1)(,)01 

where 

10 q 0, J) = cl cxT 1  (0,1 - [v 1 (1)1) 1t+ (1)+ K   

0 

(4.14) 

Cl = _ v1) v(J-1,J-1) + a(J-1,J--l) 

+  P  KIM  - [v(1)] O(J-i,J-i) + cxT(1) T1 

01  0 

Ic - [v(1)}) 1 x - rj q(J-1,J-1) . (4.15) 
CF 1 
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The jump conditions (4.8) applied to point A give: 

a(JJ) = -pv' v 0, J) 

q (l) (jj) -  K  o(1)(J,J) 

ol 

q(l)(jj) = V M cTa(1)(J,J) + V 1)pCaO 1) (JJ) . (4.16c) 

The system of equations (4.14) and (4.16), consisting of four unknowns, 

namely ( 1) (,), 0 (1) (,), (1)(,), and q(i)(jj) and q(1)(j,j) can 

be solved by an elimination technique. 

Next iterations are also proceeded in a similar manner. After 

the first one, however, the value of a expressed by (4.11) is replaced 

as: 

or * = 1 a(J-1,J-1) + a(k-1) (JJ)} (4.17) 

where k = 2,3,...,N. 

It is reminded that the unknowns at the origin ( say) being the 

first point suffered by the force impact and separating the waves into 

two types of disturbances propagating in the medium cannot be similarly 

found by this procedure but by the other way as discussed in Chapter 3. 

The length h between two points and A denoting the 

distance which the leading wavefront is moving in a small time interval 

At is approximately computed by: 

h (4.18) 

where V1his the converged value of the wavefront speed V1 at the kth 
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iteration. 

Also, it should be mentioned that the spatial increment h1 

(I l,2,3,...,J), of course, is not necessarily the same. 

4.2.2 Grid Points Along the Ot-Axis 

Treatment of the unknowns at these points is primarily based 

on the given boundary conditions and the two characteristic curves 

having the negative slopes as shown in Figure 4.6. 

In the case of the boundary grid points, there are only two 

characteristic equations involved since there are only two 

characteristic curves C1 and C2 that pass through the point 

( J= l,2,...,N) and lie within the solution domain. The positive 

characteristic curves C and C pass through the same point but lie 

outside the solution domain. Therefore, the equations along these curves 

are temporarily neglected under the circumstances. 

In the characteristic equations (45c,d), the presence of 

three unknowns parameters y, V and V2 which are functions of stress a, 

causes a great deal of difficulty in the integrations. To make the 

numerical computation become simpler, the iterative technique formerly 

applied to those points along the leading wavefront is employed here. 

Assuming that the values of parameters are given by: 

= ;1(a) 

V1) = "2 

(l). ( i) * 

}1 7G1 7(a) 

(4.19a) 

(4.19b) 

(4.19c) 
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LEADING WAVEFRONT 

x 

FIG. 4.6 CHARACTERISTIC CURVES PASSING THROUGH BOUNDARY GRID POINTS - 

where 

THE CASE OF CONDUCTING MATERIALS 

* 
a = c(O,J-1) . (4.20) 

Also, assuming that the characteristic curves having the 

negative slopes and _V2) pass through the point C and intersect 

the horizontal line drawn from the point C0 at H1 and G1, respectively. 

The intermediate unknowns at these two points are found by either linear 

or quadratic interpolation whichever is suitable 

Integrating the equation ( 4.5c) and (4.5d) along the 

characteristic curves C H1 and CgGil. respectively, and taking into 

account the prescribed boundary conditions, we have the two following 

cases: 



82 

Case ( i): v(O,t) and O(O,t) prescribed: 

- along C J 

PV(1) 2 

KcT (1) ( - [v'] I + J q(ó,J) C2 Cr J to 
o H1 

- along C J 

a(1)(OJ) - 

KcxT .( l) [C' ) - 

07 G1 

2 

J ('r- +) [v' 

where C2 and C3 are constant and given by: 

C2 -PV {V(O 'J) - v 1)} + a -H 1  aT ^ (1) (C a I H 
ON 

(1) ( (1) 

fo 
o - 9H } - IT (1) - [v1)]) o - rj H1 

o H1 

(4.21a) 

q('l)(oJ) = C3 

(4.21b) 

(4.21c) 

(i)l 
C3 -pV •V(O'J) - VG + G - (1) (C a I G 

PVM 

fe G 1 - o1)} - KcxT ( ° G - [v1)}2} (TO - (1) 2) G1 
o G1 

(4.21d) 

The two equations (4.21a) and (4.21b) contain two unknowns a(1)(o,J) and 

q(1)(oJ) which are determined by the elimination method. 
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Case ( ii): a(O,t) and O(O,t) prescribed: 

- along C0 J 111 

V(1)(o ,  v 1) 2 
PVM J) 

- K 1  (C 7(l) - [v' aT ] I 1 o • j 2 
o H1 

- along C J 0C1 

q (1) (Øj) = C4 

(4.22a) 

pv 1)V(1)(o ,J)  T [C01 ' - [v 1) I) (ro + q(1)(ØJ) C5 

o 

where C4 and C5 are defined by: 

C4 = pv 1)v 1) 
- 119 (0 1 J) 

(1))  p 2 
- aH J - T (c - [v 1) ]) 

0  
1 

(4.22b) 

X {e(O"J) - e1)} - KcxT  (c(1 cr1) - {v 1) ]] 1 At - 2 ) (') 

o H1 

C5 = pv'v' - (1)1 fa (0,J) - a  J - p  ( i - [v]) 

oG1 

x fe (0, J) 

(4.22c) 

-   [C1') - [v( 1)11 ( 1t (1) 

KczT 
2 Ø 2) 1 

o 

(4.22d) 

The two unknowns V(1)(o,J) and q(1)(o,J) in equations (4.22a,b) are then 

obtained by the elimination method, as before. 

The next iteration is performed similar to the first one 
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* 
except that the stress a previously defined by (4.20) is changed to 

* 
a,. 

= . {Cpo + 41)} 

1 
2 {Cr (1)(0,J) + 

, (4.23a) 

(4.23b) 

From which values of parameters being in terms of the stress or are 

expressible as 

... * 
/ V (a1, ) 

1  
1 

(a* ) 

1 

(2); (ç*) 

H1 H1 

(2) •' * 
v,.. , ' (a,. " ) 

1 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

At point CO , the procedure for determining the values of unknowns is 

the same as that applied to other points along the Ot-axis. However, in 

this case, two points H1 and G are now the intersections of the 

characteristic curves and C2 passing through C and the leading 

At 
wavefront, respectively. The term T  in equations (4.21) and (4.22) is 

ttH r ttG then replaced by 1 and 1 , where t  and t  are the time 
2 2 1 1 

coordinates of H 1 1 and G . H1 The values of t and t are found as: 

tv 1)(a*) 

t  = [Vf + v1)(a*)} 
(4.25a) 
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At 

tG - [Vf + VM 
(4.25b) 

where V  is the speed of the leading wavefront and is computed from the 

origin to point 4 

4.2.3 Interior Grid Points 

With the purpose of determining the unknowns at these grid 

points, four characteristic equations (4.5) are taken into account and 

numerically integrated along their own characteristic directions. A 

typical interior grid point, is illustrated in Figure 4.7 wherein 

I, J1, G1 and H1 are the feet of the characteristic curves C, C, 

and Cl. respectively. The solution at point B is to be computed with 

J-1 J-1 J-1 
the knowledge of the solutions at points E1_1, E1 and E1+1 . 

The procedure performed here is similar to that applied to the 

grid points along the boundaries. At the first iteration, we may assume 

that the parameters existing in the set of ordinary differential 

equations (4.5) are in the following form: 

vi V1(a*) 

V2 V(a) 

(1) ( 1) -. * 

1 1 
11 1H i1(a) 

* 

7G1 

(4.26a) 

(4.26b) 

(4.26c) 

(4.26d) 
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FIG. 4.7 CHARACTERISTIC CURVES PASSING THROUGH INTERIOR GRID POINTS - 

THE CASE OF CONDUCTING MATERIALS 

* 
in which, or is defined as: 

Cr a(I,J-l) (4.27) 

After the positions of the points I, J1, G1 and H are approximately 

found by a geometric method, intermediate unknowns at these points are 

simply determined by the technique of interpolation among the points at 

level (J-l). 

The four differential equations (4.5) can now be integrated 

J J J  along E111, E1J1, E1G1 and E1H1 using the trapezoidal i ntegration rule 

given by equation (4.10) with the priorly calculated intermediate 

unknowns. 

J 
- Along the characteristic curve.E111: 
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- Pv 1)V(1)(I ,J) + (1)(I J) +  p.  [c - [V(1) 3 2 e'(I,J) + 
aT  Cr 

Oh 

PVM 
- 

  (C' (i)KcxT ( 1)  1 

0 I 

[v')]J (ro 

- along the characteristic curve 

C6 
+ rJ q 

(4.28a) 

- p'c4'v'(h,J) + a'(hJ) + p aT [ aJ1 - 

0 J1 

VM 

KaT0yjl) (C (1), 
- [v1)]) (To 

- along the characteristic curve 

e( 1)(I ,J) + 

+ q M (1)(IJ) = C7 rJ  

(4.28b) 

VM p  v(I,J) + a(IJ) + T ( 1) tc,i ) - 

0 

[v1)]) (1)() 

(,vo +- q 
- KaT0y1 (C'IJ - [v1)]) itJ (1)() C8 2 

(4.28c) 

- along the characteristic curve 

v 1) V(1)(I ,J) + O (1)(IJ) +  p  
aT (ci ) - 

oIl 

'i   

- KxT1 (aI1 
0 I 

[v11]) (To 
At (1)(IJ) C9 

+ rJ q 

(4.28d) 
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unknowns 

where: 

C6 v 1) ( 1) 
-- V11 + +  p  I1'- 

a I 
0 I 

pv 1) 

+   c KaT  

0 I 

C7 - PV(l) v1) V (1) 
- 1 

C8 = 

+ T 7 

1) [c 1) - 

0 

(1) + a 1 + 
G1 

+ T 1) (COr,j 

0 

C9 = pv1) ( 1) 

[v1)1J (ro - 

At 
2) 

P  
uT [c1 1) - 

0 

[v1)]) (Ir - 

At 
2 

At 
[v 1 0T] )(Ir J 

(1) 

1 

+ a' + cxT (1) [C Cr .I - 

0 

(1) 
q1 , (4.29a) 

[v1)]) 1) 

(1) 
(4.29b) 

pi4' ) - [vJ] (ro At (1) 
--I q 

KcxT ( l)  a I 2 j H1 

oIl 

(4.2%) 

(4.29d) 

The set of four simultaneous equations (4.28) consisting of four 

0 (i,J) and q (i,J) is a linear V(1)(I ,J) , O(1)(IJ) 

system and can be solved by the method of Gauss elimination. 

Further iteration can be performed similarly to the first one, 
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* 
one, but the new values of stress a are now defined as: 

+ 

+ 

2 2 

(k-i),,. _(k-i) 
H1 

a(k- 1) ( I'jf - i)(IJ) (k-1) 

2 

The parameters are then given by: 

(4.30a) 

a (i,J) + or 

2 11 

* 
/ = V1 (a1) 

1 

* 
/ = V., (a1) 

1 
, 

(k) (k)_ * 

7H 1 = - (or 1 ) 

(k) = (k) * 

1 
YJ 1 2 °J 

(4.30b) 

(4.31a) 

(4. 3ib) 

(4.31c) 

(4.31d) 

J At. 
However, to compute the unknowns at point E 1 , the term y  in 

equations (4.28c,4.29c) and (4.28d,4.29d) must be replaced by At tG 

(AttH . 2 
and ii respectively, where t  and t  are determined from the 

equations (4.25a,4.25b) in which Vf is now the speed of the leading 

J-i . J  wavefront computed from point A31 to point A3 as shown in Fig.4.7. 

The above procedures for computing the unknowns in the 
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disturbed region which consists of three different types of grid points 

as discussed can be generally summarized in the flow diagrams as shown 

in Figures 4.8,4.9 and 4.10. 

4.3 FINITE ELEMENT METHOD 

Recently the rapid evolution of the finite element method is 

noteworthy. The use of finite elements is an alternative approach to 

that of finite differences and its considerable advantages and 

relatively simple logic make it ideally suited for digital computation. 

In contrast to the finite difference schemes in which the domain of 

interest is replaced by a set of discrete points, in the finite element 

schemes the domain is divided into subdomains commonly referred to as 

finite elements. The finite element method employs piecewise continuous 

polynomials to interpolate between node points whereas the finite 

difference method can be presented using Taylor series in a rather 

straightforward manner. 

The application of finite element method is very vast and 

successful in various branches. In the field of wave propagation, 

however, it has not yielded satisfactory solutions yet. Therefore, a 

refinement of the method is still within the investigations. 

In the treatment of hyperbolic system of PDEs logically 

derived for a wave phenomenon, there are considerable difficulties 

involved especially in the presence of jump discontinuities. These 

difficulties require the modification of finite element techniques to 

achieve acceptable convergence properties. 

By .using the finite element method Li et al [4.131 have solved 

the problem of coupled dynamical thermoelasti city in a long hollow 
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FIG. 4.8 A FLOW DIAGRAM FOR COMPUTING UNKNOWNS AT POINT A3 ALONG 
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(START) 

ITERATION COUNT k = 1 

Or = a(0, J-1) 

(1) (1) (1) 
COMPUTE V1 (a*) v2 (a* ), 0 (*) C1) ((7*) 

COMPUTE INTERMEDIATE UNKNOWNS AT G1 AND H1 

SOLVE THE SYSTEM OF EQUATIONS (4.21o,b) FOR a(1) (o,J) AND q(1)(OJ) 

k = 2, N 

COMPUTE Oj AND FROM EQUATIONS (4.25a,b) 

(k) * (k) * (k) * (k) * 

COMPUTE V1 Ec7H]PV2 [crc], 7H1 1H1' " 1 (as] 

COMPUTE INTERMEDIATE UNKNOWNS AT G AND H1 

SOLVE THE SYSTEM OF EQUATIONS (4.21a,b) FOR a(O,J) AND 

(END) 

FIG. 4.9 A FLOW DIAGRAM FOR COMPUTING UNKNOWNS AT POINT C ALONG 

THE Ot-AXIS WITH v(O,t) AND O(O,t) PRESCRIBED 
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(START ) 

ITERATION COUNT k = 

= a(i1J—i) 

(1) () COMPUTE V1 (a*) V (Oc)1 (y*) 7 (1) (Q.*) 

COMPUTE INTERMEDIATE UNKNOWNS AT I, J 

SOLVE THE SYSTEM OF EQUATIONS (4.27) FOR U ( 1) 
I-

= 2, N 

COMPUTE Cy ll AND Cyj. FROM EQUATIONS (4.290,b) 

(k) (k) * (k) (k) 
COMPUTE V (& I 1c] V2 (01], VIi [a*] 

i Ii Ji •J 

COMPUTE INTERMEDIATE UNKNOWNS AT I, J1, C 

SOLVE THE SYSTEM OF EQUATIONS (4.27) FOR U (k) 

( END ) 

NO 

FIG. 4.10 A FLOW DIAGRAM FOR COMPUTING UNKNOWNS AT AN INTERIOR 

GRID POINT E 
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cylinder. Post et al [4.14] combined it with the Lax-Wendroff method 

for analyzing the non-linear wave phenomena in hyper-elastic bodies. 

Prevost and Tao [4.15] employed the method along with the predictor and 

corrector method to investigate the transient phenomena in thermoelastic 

solids including the second sound effect. Besides, many published 

papers [ 4.16,4.17] relating to the area of fluid mechanics are also 

found in the similar manner. 

In this section, a new approach of the finite element method 

is introduced for suitably treating strong discontinuities at the 

fronts. This approach is a synthesis of the method of characteristics, 

the finite difference method and the finite element method having the 

functions which are briefly stated as follows. 

(1) The method of characteristics is used to determine the second 

boundary formed by. the leading wavefront as well as the jump 

in unknowns along and across it. 

(ii) The finite difference method is implied for solving the 

unknowns at those points along the Ot-axis (first boundary) 

and at the points next to the leading wavefront. 

(iii) The finite element method being the main purpose of this part, 

is employed to obtain the solutions of unknowns at interior 

grid points in the disturbed region 

For the sake of analysis, the system of basic equations of a 

one-dimensional non-linear thermoelastic material is rewritten from the 

equations (2.72a,b,c,d) as: 

: 
ôv äa E - - O 

ax - (4.32a) 
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a ao 
TT t b)   + aO-  --O 

cxT aa + PC aea at •aq0 
0 at 

(4.32b) 

(4.32c) 

(4.32d) 

4.3.1 Interior Grid Points 

According to the Galerkin finite element method, functions of 

dependent variables can be expressed in finite element notations as: 

N 
v(x,t) N v(x,t) = V(t) 4.(x) 

i=1 

N 

(x,t) PS O(x,t) S(t) pi(x) 
i=1 

N 
O(x,t) N O(x,t) = A(t) 4.(x) 

i=1 

N 
q(x,t) q(x,t) Q(t) q.(x) 

i=1 

(4.33a) 

(4.33b) 

(433c) 

(4.33d) 

In addition to the above approximation, the power term aTl in equation 

(4.32b) is given by [cf.4.18,4.19]: 

N 
an (x t)2, a" (xt) = ST1(t) q.(x) 

i1 
(4.33e) 

where 4.(x) is usually called the shape function or trial function which 

has a linear form as illustrated in Figure 4.11 and is defined as 

follows: 
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(4.34a) 

(4.34b) 

where h1 is the length of the element consisting of two nodes ( I-i) and 

I. Values of h1 ts as previously mentioned in the method of 

characteristics ( section 4.2) need not be constant. 

Substituting equation (4.33) into the system (4.32), we have: 

R1(x,t) = p äv 80 , (4.35a) 

a (o1''  0 19V 
R2(x,t) _ - Tt  + cx 

h1 

I 

x 

(4.35b) 

FIG. 4.11 LINEAR BASIC FUNCTION OF THE FINITE ELEMENT METHOD 
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R3(x,t) = äq + K + q 
o ax 

R4(x,t) = aT - pC 
08t Cr at 8x 

(4.35c) 

(4.35d) 

In which R.(x,t), (i = 1,2,3,4) are referred to as the residual errors 

and made orthogonal to each of the N basic functions appearing in 

equations (4.33). 

The set of (4 x N) equations in (4 x N) unknowns is generally 

represented by: 

$ R.(x,t) w.(x) dx = 0 (4.36) 

i = 1,2,3,4 and j = 1,2 

where w.(x) denotes the test function [4.20]. One of the forms of test 

functions introduced in this thesis is given by [4.21]: 

W1(X) = + 1 f2(2-3ed - 6(1_22) 1h; } , (4.37a) 

w2(x) = (l-) "2 (4.37b) 

for 0 ≤ x ≤ h1 

The two parameters el and E2 called damping factors help to 

reduce the oscillations occurring during the numerical computation. 

When equals zero, the equation (4.36) is reduced to: 
1 

$ R.(x,t) q.(x) dx = 0 , (4.38) 

where i = 1,2,3,4 and 3 = 1,2 
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The equation (4.38) is familiarly realized as the conventional Galerkin 

formulation whereas the equations (4.36) are considered as the 

generalized Galerkin formulation. 

Indeed, the generalized Galerkin finite elements are 

distinguished from the classical Galerkin finite elements by the fact 

that they allow the test functions to differ from the trial functions 

which are used to represent the actual numerical solution. The 

theoretical background of the generalized Galerkin method is extensively 

developed in the literature [4.20, 4.21, 4.22] and widely applied to the 

fluid dynamic problems [4.23, 4.24, 4.25] so far. 

Taking derivatives of equation (4.33a) with respect to t, and 

equation (4.33b) with respect to x, we have: 

{dv(t)} 'Pi(x) 
i=l dt 

N. 
3 (d4. (x) 

E s(t)  dx 
i=1 

Substituting equations (4.39a,b) into (4.35a) yields: 

N N3 fd4, (x)1 
(dv(t) 

R1(x,t) = p I dt } q.(x) - E s(t)  dx J 
i=1 i=1 

(4.39a) 

(4.39b) 

(4.40) 

Substituting the expressions of R1(x,t) and w  given by 

equations (4.35) and (4.37), respectively, into equation (4.36a), then 

integrating, a general equation can be written as: 

dV 

p[K1] - - E'2 S(t) = 0 
dt 

, (4.41) 
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where [K1] and [1(2] denote the mass and stiffness matrices of the 

equation of motion (4.32a), respectively, and are defined by: 

in which: 

fh 
0 

fh 
0 

t 
{ 

[Kr] = E [K1]. 
i=1 

[K2] = •E [K2]. 
i-i 

, 

W1(x) • 

W2(x) f [.(x) ' 2J 

W1(x) } [ 0 1WW2(x)  dx 

(4.42a) 

(4.42b) 

dx (4.43a) 

dx . (4.43b) 

By the same token, other general equations can be expressed as: 

dS dA 

-[K2]v(t) + !L s 1[K + a[K1] - = 0 
1 dt dt 

, (4.44a) 

corresponding with equation (4.32b). 

dQ 

t ° [K} - + [K1]Q(t) + K[K2 ]A(t) = 0 (4.44b) 
dt 

corresponding with equation (4.32c). 

dS 

aT [K1] - + [K2]Q(t) +pC Cr [K1] (t) = 0 , (4.44c) 
dt - - 

corresponding with equation (4.32d). 

The system of general equations consisting of (4.41) and 

(4.44) and corresponding with the system (4.32) is totally formulated 
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by: 

where: 

[M1] = 

(4N3x4N3) 

dUi 

NO a + NO U, = 0 

Yl = {v {s} (Q) {A)} 

(4xN3) N3 N3 N3 N3 

T 

(4.45) 

(4.46a) 

p[K1] [0] [01 [0] 

[0] !!- S" 1 [K1] [0] cx[K1] 

p 

[0] [0] x o l [K 1 [0] 

[0] aT o l [K ] [0] pC[K1] 

[C1] 

(4N3x4N3) = 

[0] -[K2] [0] [0] 

-[K2] [0] [0] [0] 

[0] [0] [K1] K[K2] 

[0] [0] [K2] [0] 

(4.46b) 

. (4.46c) 

Applying the general implicit method [4.13, 4.26] to equation 

(4.45), the following two-point recurrence scheme yields: 

EM1] 
At 

+ [C1] I2 + (i_ 2)u 1} = 0 (4.47a) 
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or 

1 3-i 1 
[M]u + 2[c1]u = [M1jU1 - (1- 2)[c1]u , (4.47b) 

where N3 denotes the number of elements considered at the level J. 

It should be noted that values of N3 are not constant but 

changing from time to time. Comparing with other approaches [ 4.14, 

4.27] wherein N3 is assumed to be constant throughout the numerical 

calculation, this one gives faster computation due to smaller sizes of 

matrices [M1] and [C1]. 

As illustrated in Figure 4.5, at the interior, grid points 

represented by E (I = 1,2,...,J-1), the unknowns are obtained by 

solving the system of simultaneous equations (4.47b). 

4.3.2 Grid Points Along the Ot-Axis and Next to the Leading Wavefront 

The unknowns at these points can be treated by the help of 

finite difference method. 

(i) At a point denoted by C along the Ot-axis 

the assumption of v(0,t) and O(0,t) prescribed the 

unknowns are found from the forward finite difference 

4.29] applied to equations (4.32b,e): 

together with 

remaining two 

scheme [ 4.28, 

1t 
n [v(l,J-1)-v(O,J-I)l -a[e(O,J)-(e(O 'j-l)11 

",(l)(0J) a(0, J-1) + 1 1  
(n J [a(0,J) + c7(O,J_i)]nl 

2 

(4.48a) 
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Ir q (l) (Øj) =  1  
IV- - 0.5) q(0,J-l) - _ [O(J,J-J) -  e(oJ_i)J} 

+ 0.51 

(4.48b) 

The values of stress a and heat flux q given by (4.48) are 

considered as the first approximation. Next iterations will be 

performed after the unknowns at the interior grid points are obtained. 

The backward finite difference scheme is applied to equations (4.32a) 

and (4.32d) which yield: 

= IY(k1)(1,J) h1 fv(O,J) - p  - v(0J_l)} , (4.49a) 

h 
q (k) (0j) - (k1)(1) + .J 1,(;- - e(oJ_1)] + 

ocT 
0 

[a (k-1) (01j) - a(0J-1)]} (4.49b) 

(ii) At those points next to the leading wavefront such as 

E_1, the unknowns are also determined by the finite difference method. 

The reason why we employ this method here is to eliminate the difficulty 

caused by the discontinuous elements due to the feature of combination 

meshes as shown in Figure 4.5. 

Applying the backward finite difference scheme to the system 

(4.32), we have: 

pV(1)(J_l,J) = pv(J-1,J-1) +  At h1 fr(J-1 ,J-1) - a(J_2J_l)} 

(4.50a) 
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h_1 

(1) (J-1 (J-i,J) + a  n-i (J-1,J-1)} a(1)(J,J_1) + cxO( 1)(J_1 ,J) = 
2 

$.1 n [ 

1) 
[a ( (J-1,J) + a(J-1,J-1)] 1  

n 2 
p 

,t I 
- v(J-1,J-1) - v(J_2J_i)} 

+ 

(4.50b) At 

+ -i (x t) q(i)(J...1J) - q(J-i,J-i) - K o 2) o 2) h_1 {e(J_1J-1) - 
I  

o(J-2,J-1) I (4.50c) 

xT0a(1)(J_1,J) + pCaO(1) (J_1J) cxTa(J-1,J-i) + pCO(J-1,J-l) + 

At 
q(J-1,J-1) - (J_2J_1)} . (4.50d) 

The system (4.50) consisting of four unknowns v (.3-1,3), 

e1)(J_1,J) and q(1)(J_1,J) can be solved by Gauss 

elimination method together with an iterative technique. 

Next approximations of the unknowns can be computed by the 

centered finite difference scheme. The unknowns, at this stage, are 

obtained from the following system of  equations:At 

pV(Ji,J) = pv(J-1,J-1) + (h_1+h3) for(j ,j)  - a (k_l) (J2,J)} 

(4.51a) 
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n 
n 
p 

+ a(J-1,J-1)  
n-i 

Cr (k) ( J-1, J) + ce(j-i,J) = 

n fa (k) (J-i,J) + a(J-iJ1)]1 (J-i,J-1) + e(-i,j-l) + 

p 2 

At  
(h 1-fh) 
fv(J 'J) - v ( k_i) (J.2,J)} (4.51b) 

At) (k) i,) At K  (Ir + —( q - = lx - —1 q(J-1,J-1) (h_1+h3) fe (JJ) - o 2, 2j 

o (k_1) (J.2,J)} 
(4.51c) 

xTa'(J-1,J) + pCçO(Ji,J) = cTa(J-1,J-1) + pCaO(JiJi) - 

At 
{q(J) 

,J) (k_i) (J_2,J)} . (4.51d) (h 1+h - q 

4.3.3 Grid Points Along the Leading Wavefront 

Determination of the locations of points forming the leading 

wavefront as well as the jumps in unknowns is similar to the one 

performed by the method of characteristics. Thus, a repeated procedure 

is not necessary here. 

The process of defining unknowns in the disturbed region by 

the finite element method discussed above can be partially outlined in 

the following flow diagram (Figure 4.12). 
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(START AT LEVEL  

COMPUTE U ALONG THE LEADING WAVEFRONT 
ad 

ITERATION COUNT k = 1 

COMPUTE U (1) AT A POINT ALONG Ct—AXIS 

- THE EQUATIONS (4.48c,b) - 

COMPUTE U 1 AT A POINT NEXT TO THE 

LEADING WAVEFRONT - THE SYSTEM (4.50) - 

SOLVE THE SYSTEM (4.47b) FOR U 1 

AT INTERIOR GRID POINTS 

kk+ 1 

4 

COMPUTE u (k) AT A POINT ALONG Ot—AXIS 
— THE EQUATIONS (4.49a,b) — 

COMPUTE U AT A POINT NEXT TO THE 

LEADING WAVEFRONT — THE SYSTEM (4.51) — 

J=J+1 

FIG. 4.12 A FLOW DIAGRAM FOR THE NUMERICAL COMPUTATION BASED ON 

THE FINITE ELEMENT METHOD 
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CHAPfI≤R 5 

NUMERICAL METHOD FOR NON-CONDUCTING MATERIALS 

In this chapter, numerical procedures are developed for 

seeking the solutions of waves propagating in non-conductors through the 

system of equations along with its auxiliary conditions discussed in 

Chapter 3. 

Three methods will be presented here, namely the 

characteristic method, the finite element method and the similarity 

method. The concepts of the first two methods are introduced and 

discussed in detail in Chapter 4 for the quasi-linear hyperbolic 

equations expressing the wave motion in conductors. The last method, 

which is widely applied to various problems in science and engineering, 

consists in searching for a solution which is invariant under a group of 

transformations. 

Considering a semi-infinite thermally elastic non-conducting 

medium that is initially at rest and has a uniform temperature, for a 

one-dimensional case, the fundamental equations are recalled from 

Chapter 3: 

aT0 ae + PC - 0 
at or at 
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5.1 THE METHOD OF CHARACTERISTICS 

After the transformation, the system of equations (5.1) can be 

written in a general form as follows: 

2t + [B} 2x = 0 (5.2) 

where u2 2x and (B1) are given by (3.44a), (344b) and (3.46b), 

respectively. The eigenvalues of equation (5.2) have been found to be: 

C3: X, = 0 , 

/ C 
C: "6 /  a  

1 I3PC,- u2T0 

C4: 77 = / C a 
PPca" x2T 

(5.3a) 

(5.3b) 

(5.3c) 

where P is defined by equation (3.8a). 

The left eigenvectors associated with the matrix [B] are 

given by: 

0 

1 
= ; corresponding to . = 0 , (5.4a) 

PCç 

uT 
o 

(6) = 

Ir 

corresponding to 
- dx 6 

dt 
(54b) 
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-p?'7 

= corresponding to X7 

The equation along the characteristic C3 with X5 0 is: 

da C dO 
+Tt-  p = 0 

(5.4c) 

(5.5a) 

Equation ( 5.5a) is merely a restatement of equation ( 5.lc) 

along C3. Similarly, the characteristic equations along C and C4 are, 

respectively: 

- PX 
dv da_ 

+ - 0 

dv da_ 
+ - 0 

(5.5b) 

(5.5c) 

As in the case of conducting materials (Chapter 4), the 

combination meshes are distributed in the disturbed region bounded by 

the Ot-axis and the wavefront . The unknowns at grid points which are 

categorized into three types are then determined in a similar manner. 

5.1.1 Grid Points Along the Front Path 

As mentioned in part B of Chapter 3, the wave path may be 

traced by either the wavefront as one of the characteristic curves or by 

the shockfront mainly developed from the Rankine-Hugoniot conditions. 

There are two cases that must be considered 

(i) Case 1: Simple Waves  
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In this case, the wavefront is determined from the 

characteristic curve having a positive slope and passing through the 

first point along the boundary. As the medium is quiescent at the 

initial state, the jump conditions across the front are written as: 

a = -PV fV (5.6a) 

pC 
e 

cxT 
0 

(5.6b) 

where V  denotes the velocity of the wavefront and is defined by: 

C 
a  

= V6 = / 
pC - 

a 0 

(5.7) 

It is obvious that the value V6 is a function of a yet unknown stress a. 

To eliminate the difficulty caused by the non-linear term f3 at this 

juncture, the iterative method which is aforementioned in Chapter 4 is 

employed. Let 

a a(J-1,J-1) , 

where a(J-1,J-1) is the computed stress at the grid point 

wavefront. The value of V6 is then given by: 

VM = V •V6 (a*) 

(5.8) 

along the 

(5.9) 

Integrating characteristic equation ( 5.5b) from point A to point A, 

we have: 

_v 1) v(1)(J ,J) + a(1)(J,J) = ,(l) v(J-1,J-1) + a(J-1,J-1) 

(5. l0a) 



110 

At point A, the jump conditions ( 5.6) imply that: 

a(1)(JJ) -PV(l) v (1) (J,.j) 

a(1)(JJ) - -P" Or 
aT 

0 

The above system ( 5.10) consisting of three unknowns 

a1)(J,J) and e1)(J,J) is solvable by an elimination method. 

(5. 10b) 

(5. 10c) 

V(1)(J ,J) , 

By the same token, next iterations are carried out, however, 

* 
the stress a is now defined by: 

*_i I (k-i) 
Cr - a(J-1,J-1) + a (JJ)} 

where k2 

(5.11) 

The distance which the wavefront is travelling in a time interval At is 

also determined as: 

J -'- 

(5.12) 

It is noted that the distances are not necessarily to be 

the same. 

(ii) Case 2: Shock Waves 

The problem becomes more complicated when there are shock 

waves involved. In reality, the shock wave is not a discontinuity at 

all but a narrow zone, a few mean free paths in thickness through which 

the variables change continuously, even though very steeply. However, 

seeking the smooth solution of the problem containing shocks is still an 

important point for investigations. By employing ad hoc procedures, 
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many workers [ 5.1-5.4] neglected the existence of shock and smeared out 

the solutions at the shockfronts. 

With the aid of artificial dissipative terms first introduced 

by von Neumann and Richtmyer [ 5.5], the shock is treated not as a 

discontinuity but as a confined region across which the dependent 

variables vary rapidly but continuously. The successful calculations by 

this method was reported by Brode [ 5.6] who considered the determination 

of blast waves and explosions in the presence of cylindrical and 

spherical symmetry. Even so, this technique may lead to the inaccurate 

results since the viscosity term tends to smear the entire solution. 

The stability solutions can also be obtained by the two-step finite 

difference schemes [ 5.7] automatically treating the shocks, whenever and 

wherever they may occur, without necessity of the tedious application of 

the jump conditions at each time step of the solution process. 

Bailey and Chen [ 5.8] have recently suggested "a shock 

fitting" method that keeps track of the location of the shock. By this 

method, they not only acquired the solution variables along the front 

but also defined the location of the shockfront of the disturbance 

propagating in a non-linear elastic material. 

Analogously, the shock fitting method will be employed in this 

chapter to determine the salient features at the front. 

It is recalled that the amplitude of the shock derived in 

Chapter 3 is expressible as: 

2U dc dU 

sdt s 7x T Tx 

where 

(5.13) 
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The brackets "u ii It 

Us =:/I E P C (5.14) 

in equations (3.59) and (3.67) are dropped in 

equations (5.14) and (5.13) respectively, due to the medium assumed to 

be initially at rest. 

Referring to Figure 5.1, the finite difference method is 

applied to equation ( 5.13) yields 

rs 

2U3  - c(J_1J_1)} + e(J,J) s  
s IC At  

(U3) IcJ-',J_') - c(J_2J_1)} - 1 Icr(J-1,J-1) - a(J_2J_1)} 
h3_1 

Across the shockfront, the jump conditions imply that: 

, 

F 

Substituting equation ( 5.16b) into (5.16c), we have: 

2 
n 

PCa  Cr 

(5.15) 

(5.16a) 

(5.17) 

Eliminating the strain c in equation ( 5.15) by the right-hand 

side of equation (5.17), the stress at the point A3 is defined by: 
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or 

where 

t 

J 

At 

'i-i 

At 

J-2 

A SHOCK FRONT 

x 

FIG. 5.1 TREATMENT OF POINTS ALONG THE SHOCKFRONT 

Zi + Z2 + Z3 (5.18) 

PCa 

a2 T 
[a(JJ)]1} 

0,in 
1-

a(J,J) = a(Z1, Z2, Z3, a) , (5.19) 

n-i) 12j + At (ui)' 

1UJ1{1 PC 

a __ zi =   __ 
- - 2 n [a(J-1J-l) J s h 1 S J 
S UTS2 

a(J-1,J-1) , (5.20a) 

-(U3) At PC n-i' 
Z2 

h 13U - U' cx To a p [or 
(J_1J_2)] I 2 n 

J-iI S S J 
(5.20b) 
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AtC J a a(J-1,J-l) -  a(J-2,J-1) Z3 -   

h3U - u') cX2TØ 
j_1(  

(5.20c) 

and U denoting the speed of shockfront at point is given as: 

U 

or 

= 1 a(J,J)  

n 2 
la(J,J)1 0 (JJ)} I ii I PC a 

a 
I 

UJ = U (a(J,J)) 
S S 

1/2 

(5.21) 

(5.22) 

The speeds of shockfront at other points are also found in the similar 

manner. 

The first iteration is done by setting: 

= a(J-1,J-1) . (5.23) 

The values of U3 and a(J,J) are respectively estimated as: 

(1) 

Ui = ; (a*) 
S S 

a' '(3,3) = a (Zi' i '' , Z2' i '' , Z3' 1 ', a* ) 

in which zi 1) , Z2', Z3 1 are determined from equations ( 5.21). 

Next iterations are analogously performed. However, the 

* 
stress a is assumed to be: 

a = a(11)(J ,J) 

with k2 

(5.24) 

(5.25) 

(5.26) 
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The distance between two points A J.-1_ 1 and A J is approximately computed 

as: 

(k) 

= t u' . (5.27) 
S 

5.1.2 Grid Points Along the Ot-Axis 

With the help of iterative methods, let: 

* 
a = a(O,J-1) . (5.28) 

The wave speed V6 is evaluated by: 

(1) = V6(a) (5.29) 

Integrating the characteristic equation ( 5.5c) along the path 

- 

C0 J G1, where G1 is the intersection 

line passing through the point C J-1 0 (as in Figure 5.2): 

pV 1)v(1)(o,J) + O(1)(0J) pV6(1) V (1) + ' 

in which the values of v and cF are determined by the interpolating 
1 1 

technique. 

Together with the prescribed boundary condition, the equation 

(5.30) consisting of two unknowns V(1)(o,J) and a1)(0,J) can be solved 

without any difficulty. 

The procedure is repeated until the values of unknowns to be 

* 

converged. It is noted that from the second iteration, the stress or is 

assumed to be: 

* 1 ' (k_1) (ØJ) (k-l) 
a +aG 

1 
(5.31) 
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ti WAVEFRONT 

x 

FIG. 5.2 CHARACTERISTIC CURVES PASSING THROUGH THE BOUNDARY GRID 

POINTS - THE CASE OF NON-CONDUCTING MATERIALS 

The temperature e is determined by: 

aT 
e(o,J) - 

--- PC  a 
(5.32) 

5.1.3 Interior Grid Points 

The unknowns at each interior grid point can be determined by 

integrating each of the characteristic equation ( 5.5) along its own 

direction. 

As usual, we set: 

* 

a = Cr(I,J-1) , (5.33) 
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= \T6 (cr) (5.34) 

As illustrated in Figure 5.3, 1 and J1 are the feet of the 

characteristic curves C and C4 respectively. Values of immediate 

unknowns v and or at points 1 and J1 are computed by either linear or 

quadratic interpolation based on the known values of the variables which 

are prior calculated at the level (J-i). 

Integration of equation ( 5.56) along EI 1 leads to 

-  PVM  (l) ( i,J) + a 1)(I ,J) = - v(1) ( 1) 6 v1 + a1) , (5.35a) 

and integration of equation ( 5.5c) along EJ1 gives 

pv1 v(1) ( 1,3) + a 1) v (1)(I ,J) = v j + a1) . (5.35b) 

After the unknowns V(1)(I,J) and a(1)(I,J) included in equations ( 5.35) 

are obtained, next steps of the computation can be processed by assuming 

that: 

* - 1 ( (k-1) (13) (k-1) 
a _ ta + GTI 

1 
(5.36) 

The unknown 0 is determined from the characteristic equation 

(5.5a) integrated along the characteristic line C3 which is parallel to 

the Ot-axis. The result is obtained as: 

aT 
- - a (1 I,J) 
--a 

(5.37) 

It should be noted that the algorithm of the characteristic 
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h h h I 
I J-1 J•1 

PIG. 5.3 CHARACTERISTIC CURVES PASSING THROUGH INTERIOR GRID 

POINTS - THE CASE OF NON-CONDUCTING MATERIALS 

method developed above yields smooth solutions for the case of simple 

waves or weak shock waves only. When there is a strong shock involved 

in the problem, the solutions of unknowns at the points adjacent to the 

shockfront are unstable due to the explicit application of this method. 

To improve the numerical results, a finite difference scheme is applied 

to such points 

At the point J 11 the unknowns are determined by the 

following system of equations obtained from the basic equations ( 5.1): 

pv(J-1,J) - h At +h {c(3,J) - a(J-2,J)} + pv(J-1,J-l) 
J-1 J 

(5.38a) 
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jj r (J-1 ,J)  + a(J-1,J-1)]1 {a(J-1,J)] + O(J-1,J) 
2 

n [or(J-1,,T) + a(J-1,J-1)] 1  

2 
1 

At  {v(J,J) - v(J-2,J)} (5.38b) 

aT a(J-1,J) + PCa e(J-1,J) = czTa(J-1,J-1) + pC0O(J-1,J-1) 

(5.38c) 

The above system composed of three unknowns v(J-1,J), a(J-1,J) and 

o(J-i,J) can be solved by an iterative method. 

5.2  THE FINITE ELEMENT METHOD 

Based on the analysis of finite element method discussed in 

detail in Chapter 4, the results are now summarized in the following. 

5.2.1 Interior Grid Points 

Applying the generalized Galerkin method to the system of 

equations ( 5.1) yields: 

where: 

dU3 

[M2] - + [C2]U-3 = 0 

U3 = f'V1 {s} {A}3 

(315) (Ni) (N3) (N3) 

, (5.39) 

(5.40a) 
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[M2} = 

(31% x 31%) 

[C 21 = 

(31% x 31%) 

p[K1] [0] [0] 

[0] s'1 [K1] cx[K1} 

p 

[0] exT 0 [K1] pCa [K1J 

- [0] —[K2] [ 0 :1 

—[K2] [0] [0] 

- [0] [0] [0] - 

(5.40b) 

(5.40c) 

Under the implicit finite difference scheme, equation ( 5.39) is 

expressible as: 

[MET a] + 2 [ 02] U = [M2] - [C2] U' 

(5.41) 

5.2.2 Grid Points Along the Ot-Axis and Next to the Front Path 

With the help of the finite difference method the unknowns at 

those points can be treated as follows: 

(i) Grid Points Along the Ot-Axis  

Assuming that the boundary of the medium is subjected to the 

time-dependent velocity impact. Values of the stress a and the 

temperature 0 are computed by: 

- the predictor step: wherein the forward finite difference scheme is 

employed, the equations ( 5.lb,c) are respectively expressible as: 
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(i)(OJ) + a ( n-i OJ_i)] [(1)2 a (oJ) + cxO( 1)(O ,J) 

,n-1 

119 (i) + a(O,J-i)IAt +! {v(1,J-1) - v(O,J-i)} n 2II  j a(O,J-1) 

+ xO(OJ-1) , (5.42a) 

cxT a(1)(O,J) + pc0e1)(o,J) = uT a(O,J-1) + pCaO(OJi) 

(5.42b) 

The two unknowns a(1)(O,J) and e(1(o,J) contained in the above 

equations can be obtained by simultanuos solution of the two equations. 

- the corrector step: using the backward finite difference scheme, 

equation ( 5.la) is written as: 

At h1 } 
fv(O,J) 

- v(O,J-i)1 Ia(O,J) - a (i_J) 0 

which yields: 

(5.43) 

a 1 (O ,J) = p {v(O,J) - v(O,J-i)} + a 1)(1 ,J) . (5.44a) 
At 

Similarly, the equation ( 5.lc) implies that: 

aT 
= e(o,J-i) 0 for k(OJ) - a(OJ_i)} , (5.44b) 

-- 
PC 
a 

where k ≥ 2. 

(ii) Grid Points Next to the Front Path 

By the same procedure, as above, the computation of unknowns 

at these points are also divided into two steps: 
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- the predictor step: the backward finite difference scheme is applied 

to the system ( 5.1) yields: 

V1)(J_1,J) = v(J-1,J-1) + At 
ph 1  

(5.45a) 

n-i 
[(1) 

2 
p 

n-i 

[or a(J-i,J-i)]  
- 2 
p  

At 
+ h {"(ji,jl) - v(J-2,J-1)} 

J-i 
(545b) 

0cT0a(1)(J_1,J) + pco(1)(J_1,J)= cgT0o(J-1,J-1) + pcO(J-1,J-1) 

(5.45c) 

from which the three unknowns v 1 )(J_1 ,J) , a(11(J_1,J) and 0111(J_1,J) 

are determined. 

- the corrector step: with the aid of the centered finite difference 

scheme, we have: 

v(1(J_i,J) = v(J-1,J-1) + At p(h_1+h) {4JM a (k_I)(J_2,J)} - 

(5.46a ) 
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[U (k) (j_,,j) n  + c7(J-1Jl)} 

2 

I (k)  n-i+  

I 
ft 2 

P 

At  )fv(J,J) - a(k_1)(J_2,J)} 

[CF (k) (j-1'j )] + czO(k)(J_1 ,J) = 

[a(J-1,J-i)] + uO(J-1,J--1) + 

(5.46b) 

aT0a 1 (J_i ,J) + pCa6(1 (J_lJ) = off a(J-i,J-i) + pCe(J-i,J-l) 

(5.46c) 

5.2.3 Grid Points ALong the Front Path 

The front path (wavefront or shockfront) as well as the 

unknowns along and across it are determined similarly to the case of the 

characteristic method which is previously analyzed in this chapter. 

5.3 THE SIMILARITY METHOD 

In recent times, the theory of similarity has been extensively 

developed in the literature [ 5.9-5.12]. The mathematical interpretation 

of the, term similarity is a transformation of variables, so carried out, 

that a reduction in the number of independent variables is achieved. A 

similarity transformation will reduce a partial differential equation in 

two independent variables and the associated auxiliary conditions, to an 

ordinary differential equation and appropriate boundary conditions. 

The application of the similarity method has been widely 

extended in various fields such as fluid mechanics, heat transfer, wave 

propagation, etc. Generally, the method of similarity analysis can 
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be divided into three main categories [ 5.13]: 

(i) Direct method 

(ii) Dimensional analysis 

(iii) Group theoretic technique. 

As a part of this thesis, we do not go through all the above 

categories but merely employ the group theoretic technique to solve the 

system (5.1). In addition, the theory of this technique is also omitted 

here since it is beyond the scope of this chapter. 

One of the first to use the group theory for obtaining a 

similarity representation is probably Birkhoff [ 5.14]. The work was 

further extended by Moran and Gaggioli [ 5.15] who developed a systematic 

formalism which takes into account the auxiliary conditions as a part of 

the analysis. Moreover, Moran and Marshek [ 5.16] have extended the 

analysis for a dimensional matrix by making use of the matrix of 

exponent of the parameters of a group of transformations. Under the 

transformation, a given set of governing equations along with their 

auxiliary conditions are invariant in form. 

Following the theory of Moran and his co-workers, 

Frydrychowicz and Singh extend it to the problems of wave motion in a 

non-linear elastic rod [ 1.9] and in a non-linear viscoelastic rod 

[5.171. Both are subjected to time dependent velocity impact. 

In this section, the analogous technique based on the work of 

Frydrychowicz and Singh is employed to solve the system ( 5.1) 

representing the propagation of disturbances in a non-conductor. Along 

with the governing equations, the auxiliary conditions are given as 

follows: 

- Boundary condition: 



- Initial conditions: 

v(x = O,t) = V 
0 

v(x,t = 0) 0 

a(x,t = 0) = 0 

O(x,t = 0) = 0 

t>0 
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(5.47a) 

(5.47b) 

(5.47c) 

(5.47d) 

5.3.1 Construction of the Group of Transformations 

In order that the given system of equations ( 5.1) together 

with the auxiliary conditions ( 5.47) are invariant under a group, a 

12-parameter group of transformations is constructed as follows : 

A_ 
G12 

'S 

A 
S9 

= Ax t = At ; Independent variables 

p = Ap 

C A 
Cr Ca 

V A. V 
0 V 0 

0 

=A  
V 

= Aa 

= A00 

, 

nAn 
-n 

T = 0 AT  T 0 
0 

Physical parameters 

Dependent variables 

(5.48) 

where A, At , A,2 A, Ac , A, A, Aa and A0 are twelve 

nondimensional parameters introduced to characterize the eight parameter 
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dimensional group of transformations. 

The group GA. may be expanded by including the following 
12 

transformations defined by: 

av - a; - A' A av 
at tv8t 

aV - A' A av 
ax - x vax ax 

8a - aa 
- A' A aa 

at t aat at 

8a - a - A' A aV 
ax - x aäx 

ax 

at a eat 

, 

An 

- - -hal a (a 1 a (. na a At (A'n w 1IJ at P 

(5.49a) 

(5.49b) 

(5.49c) 

(5.49d) 

(5.49e) 

(5.49f) 

Substituting the transformations ( 5.49) into the system of equations 

(5.1), respectively, yields: 

A'A I 
x a lax) = APA 'A (P J 

An 
p fl 

A 1!) = A' I A) a n 
x v lax) 
1A + At'AAe 

(,ij 

(5.50a) 

, (5.50b) 
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AATA'A [aT ) + AAcA'Aeor 

Under the group of transformations 

(5.1) implies that: 

GA 

From ( 5.50a): A'A = A A'A 
X a P t V 

From ( 5.50b): 

From ( 5.50e): 

(PC, UU 8t) 
= 0 . (5.50c) 

the invariance of the system 

An 
n 

A 1A A' t0I - -1 
- - A AA0 

x  t A t cr I J 
A 
n 

Ak..A 1A = AA A 1A 
altO PC0 t 0 

(5.51a) 

(5. 51b) 

(5.51c) 

(5.51d) 

The relations of the nondimensional parameters can then be 

established as: 

(1+n' (1+n n n 
A =A _1) 

At1hhu) A '' , (5.52a) 

2 2 1 n 

A0 = A At  A ni (5.52b) 

2n 2n n n 

A0 = A ' At  A A' A' , (5.52c) 

AC = A2 A 2 A2 AT 
x t a 

or 0 

(5.52d) 

By the same token, the boundary condition (5.57a) leads to: 
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(i+n) .!_ n n 

- ljll) A 1 A ni A' AV = A . (5.52e) 
0 

As a result, the expressions ( 5.52) form a system of five 

equations among the twelve parameters. It is obvious that at the most 

six of the parameters can be considered to be independent. Therefore, 

the six-parameter group of transformations is assumed in the form: 

I. 

A 
4 

xA x x , tA t t 

0 10 
0 

Independent variables 

aAa 

Physical parameters 

A A 2 A2 AT Ca 
a x t (X 

(1+n) .!±-& n n 

= A 1ij A nl A A'' V 
x t P , 

0 

- (1+n) 1+n n n 

A At  A ' A' V 

2 2 1 n 

Cr A '' At A - ' A a 31 P 
_2n 2n n n 

= A iii A'' A "' A'' A' 0 

Dependent variables 

(5.53) 

where S denotes a six-parameter subgroup of G. 

The dimensional matrices corresponding to the dimensional 
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group of transformations GA are expressed by: 

[A] = 

[B] = 

[c] = 

(i+n) (;;_Ji+n) - n n 
n-i n-i 

_2 2 _ 1 n 
n-1 n-i n-i n-i 

2n 2n - n n 
n-i n-i n-i n-i 

0 0 0 0 0 

1 0 0 0 0 

o 0 1 0 0 0 

o 0 0 1 0 0 

o 0 0 0 1 0 

o 0 0 0 0 1 

2 -2 0 0 2 i 

1i+n (i+n & - n n 
(,n-i J n-i n-i 

0 0 

(5.54a) 

(5.54b) 

(5.54c) 

Augmenting matrix [B] with matrix [C], the matrix [BC] is represented 

by: 
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[BC] = 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

2 -2 0 0 2 1 

- (i+n) - - ..1L _!L 
(,n-1J (n-1 ) n-i n-i 

0 0 

(5.55) 

Obviously, the supplemented matrix [BC] has the rank rBC = 6, moreover, 

the number of independent parameters of group G is also the same. 

According to Moren and Marshek [ 5.16], a similarity transformation 

exists if, and only if the rank r of matrix [C] is smaller than the 

rank TBC of matrix [BC], i.e.: 

< rBC (5.56) 

Since [c] is the square matrix (6x6), the condition of r C < 6 is 

satisfied only when: 

which leads to the restriction: 

det [c] = 0 (5.57) 

6 = 0 (5.58) 

5.3.2 Independent Absolute Invariants of Group GA 

Based on the theorem 3 of reference [ 5.16], the set of 
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independent absolute invariants of G has [m1 "2 + - rBC] = 

[3 + 2 + 6 - 6] = 5 elements, where m1 is a number of dependent 

variables, in2 of independent variables, and p of physical parameters. 

The similarity variable is expressible as [ 5.18]: 

r 
= x(t)  12 hi '12 113 (T )114 (V 0) 715 (P) (IA) (a) 0 

(5.59) 

where F12 and j = 1,2,3,4,5 are the linearly independent solutions 

of the following system of equations: 

0 

1 

r12 0 

0 

0 

0 

+ 111 

0 

0 

1 

0 

0 

0 

+ 112 

0 

0 

0 

1 

0 

0 

+ 113 

0 

0 

0 

0 

1 

0 

+ 114 

Solving the above system ( 5.60) yields: 

F12 = -1 

n 
112 

113 = 0 , 

0 

0 

0 

0 

0 

1 

J. 

+ 115 

(l+ni 

In-i) 
1+n 
n-i 

n 
n-i 

n 
n-i 

0 

0 

1 

0 

= 0 

0 

0 

0 

(5.60) 

(5.61a) 

(5.61b) 

(5.61c) 

(5.61d) 
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- n-i 
'15 iI 

Substituting equations ( 5.61) into equation ( 5.59), we obtain: 

n n-i 
n+i n+i 

T = [J (v) 
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(5.61e) 

(5.61f) 

(5.62) 

Other independent absolute invariants which are related to the 

dependent variables v, or and 0 are also expressible in the following 

forms: 

= v(t) Al2 (p) (ii) (cc) 11 'i2 (T ) 14 (V ) 15 

F2 (TO = a(t)22 (,) 2i () 22 (cc)23 T0 '24 (V) 25 

F3() = e(t) 32 (p) 31 (p) 32 (cr) 33 (T 0 0 ) 34 (v ) 35 

(5.63) 

(5.64) 

(5.65) 

where those parameters A. 2 and X ij (i 1,2,3, and j = 1,2,3,4,5) 

provide linearly independent solutions to: 
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A. 
x2 

0 

1 

0 

0 

0 

0 

+ )I.. 
ii 

0 

0 

1 

0 

0 

0 

+ x. 
i2 

0 

0 

0 

1 

0 

0 

with i = 1 corresponding to 

+ x. 
13 

0 

0 

0 

0 

1 

0 

+ x. 
'4 

0 

0 

0 

0 

1 

+ ,_. 
15 

(i+n) 
n-1J 

1+n 
n-i 

n 
n-i 

n 
n-i 

0 

0 

a. 
ii 

i2 

a. 
'3 

a. 
'4 

a. 
'5 

a. 

(5.66) 

T T (1+n) 1+n n n 
{a ii. a12 813 a14 a15 a16} {_ ii'j - j o o} 

(5.67) 

, 

Substituting ( 5.67) into the right-hand column of the system ( 5.66) and 

solving for the unknowns, we obtain from equation (5.63): 

or 

F1 (17) = v , (5.68a) 

v(x,t) = vF1() . (568b) 

Analogously, i = 2,3, respectively, corresponding to: 

{a21 a22 a23 a24 a25 a26}T = {_ _ .j j - T n-i o} 

(5.69) 
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T T 
2n 2n n n 

{a31 a32 a33 a34 a35 a36} •- =_l — j - 3i=ll n-1  -1 o} 

(5.70) 

Substituting ( 5.69) in the system ( 5.66) and solving for the unknowns, 

the invariant F2() assumes the form: 

or 

1 _n 2 

(p) (P/ n+1 n+1 (V ) n+1 = a  

1 

a(x,t) = (pn pV2c)ii F2() 

(5.71a) 

(5.71b) 

Solving the system ( 5.66) with the last column expressed by ( 5.70), the 

unknowns are determined and substituted into equation ( 5.65) to obtain: 

or 

P3(e) = e 

O(x,t) = 

n 
pV02 n-i 

p 
cx 

F3 (i1) 

(5.72a) 

(5.72b) 

It should be noted that the rank of matrix [ C] (r 5) is smaller than 

the number of physical parameters (p = 6), hence, the last absolute 

invariant Z determined solely from the physical variables [ 5.17] is 

given by: 

Z = C 61 62 (cx) 63 (T) 64 (V) 65 
0 or 

, (5.73) 

where 8 6j = 1,2,3,4,5) is the solution of the following system: 
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661 

0 

0 

1 

0 

0 

0 

+ 662 

0 

0 

0 

1 

0 

0 

+ 663 

0 

0 

0 

0 

1 

0 

+ 864 

0 

0 

0 

0 

0 

1 

+ 665 
n 
n-i 

n 
n-i 

0 

0 

2 

-2 

0 

0 

2 

1 

(5.74) 

Solving the system ( 5.74) for the unknowns, then substituting into 

equation ( 5.73) leads to: 

2n (n-1 

-.2 T - 1 u V 
0 Gj1J o 0 

(5.75) 

In summary, the set of five independent absolute invariants of group G 

composed of r, F1(ri), F2(), F3() and Z is written as: 

Ti = L1 

Z L 
0 2 C a 

v(x,t) = VF1(i7) 

a(x,t) = L3F2() 

0(x,t) = L4P3(Ti) 

(5.76a) 

(5. 76b) 

(5.76c) 

(5.76d) 

(5.76e) 
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where: 

L1 

L2 

n 
(pi n+1 

-  
UI) 

1n-1' 

T 
-2 - 1 V 2(iIJ 
a  

1 

I n 2i L3 = 111 Pv n+1 oJ 

0 0 

n 

_I ol 1 
L4 - 

(5.76f) 

(5.76g) 

(5.76h) 

5.3.3 Similarity Representation for Basic Equations 

Making use of the similarity transformations ( 5.76), the 

system of equations ( 5.1) and auxiliary conditions ( 5.47) can be reduced 

to an ordinary boundary value problem. Partial derivatives appearing in 

the system ( 5.1) can be expressed in terms of similarity transformations 

(5.76) as: 

äv - - 

= L1L3F(r) 

av 
= VL1F'1(fl) 

, 

, 

(5.77a) 

(5.7Th) 

(5.77c) 
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80 - -.! L4P(rat t ) 

Substituting ( 5.77a,b) into (5.la) leads to: 

Since: 

p {- TiVPhi(Ti)} 
1 
t 
L1L3F() = 0 

(5.77e) 

(5.78) 

n 1 
fl_1} i 

V pV = pV . (5.79) 
L1L3 (PM-) 0) J. 0 IV 2  

Introducing (5.79) in (5.78) and simplifying, the equation of motion 

(5.la) is then written in terms of similarity transformations as: 

10,07) + F() = 0 . (580) 

The constitutive law (5.lb) and the conservation of energy 

equation (Sic), taking into account (5.77), are respectively 

expressible as 

and 

-T1 In [2&}' p) + F(t1)} , (5.81) 

+ zP(r1) = 0 . (5.82) 

The equations (5.80) and ( 5.82) yield: 

F'1 (T1) = - 1 P(r1) 

1 
= - r P(17) 

0 

(5.83) 

(5.84) 

Substituting equations (5.83) and (5.84) into equation (5.81), 
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we obtain: 

2I' IF 2 (TI )] 

n-i 
1 
z 
0 

- P(r1) = 0 

which leads to a question being that of either: 

or 

n-i E F2(fl)] 
ol 

= 0 

(5.85) 

(5.86) 

(5.87) 

5.3.4 Similarity Analysis of the Wavefront 

The application of similarity transformation to the analysis 

of the location of the front in the transformed space is well developed 

in the articles [ 5.17, 5.18, 5.19]. It is reminded that depending upon 

the type of materials as well as the type of boundary conditions used, 

there may exist either the simple wavefront or the shock wavefront as 

previously discussed in Chapter 3. 

However, the zero value of 6 being constrained by the 

condition of the invariant group implies that waves propagating in the 

elastic non-conducting materials must be simple waves. This is because 

when the boundary of the medium is subjected to constant velocity 

impact, the energy produced is held constant throughout the disturbed 

region due to the absence of heat flux q. Therefore, the stress or is 

also unchanged along the boundary. The wavelets, which have the 

velocities representing functions in terms of stress a, construct a 

family of parallel lines in the x-t plane. And by definition, the 
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simple waves are formed as a special case. 

The simple wavefront or the wavefront simply called, has the 

speed given by (equation ( 5.3b)): 

dx / 

a  

Vf - dt -- fipC - cx2T a 0 

(5.88) 

where X is the location of wavefront in x-t plane. Along the 

wavefront, the equation ( 5.76a) implies that: 

which yields: 

t 
X - 17 
w Lw , (5.89) 

dX 
w_ 1 

çT1w . (5.90) 

Substituting equation ( 5.90) into equation ( 5.88) and taking 

into account equations ( 5.76), the location of the wavefront is written 

in terms of similarity transformations as: 

1 

I in-1 1 

- .2; 

(5.91) 

It is obvious that the equation ( 5.91) is only a special form 

of ( 5.86) when 17 = Furthermore, q < 17w leads to: 

1  1  

4'I -' - 1 n[ 2(n)j 
in-i - 1 

0 

or 



140 

[F2()] ' < IF 2(r' )] n-1 (5.92) 

By mathematical analysis, the condition (5.86) does not hold 

when rl = 0. Moreover, along with the inequality ( 5.92), the condition 

(5.86) seems to be invalid with n = 1. In terms of physical meaning, 

the inequality (5.92) leads to the energy changing from point to point 

in the disturbed region. This situation is not acceptable in the case 

of an elastic non-conductor subjected to a constant velocity impact 

since the energy is supposed to be unalternated through the course of 

wave propagating. 

Based on the above arguments, we can conclude that the 

condition ( 5.86) is inadmissible to fulfill the requirement of equation 

(5.85). As a result, the equation ( 5.87) is logically considered as a 

necessary and sufficient condition for the equation ( 5.85). 

5.4.4 Similarity and Jump Conditions 

Assuming that the initial conditions prescribe a quiescent 

state ahead of the front, the jump conditions are recalled as: 

a = Vf fV 

pC a 
xT 
0 

, (5.93) 

(5.94) 

Applying the similarity transformations ( 5.76) to equations ( 5.93) and 

(5.94), respectively, yield: 
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and 

1/2 { i 
n[F2 

n-i 1 

(TI)j  - oj 

(5.95) 

F2 (TI w )+ Z o F ) 3 w(rO . (5.96) 

Under the necessary and sufficient condition = 0 (equation 

(5.87)), the relations ( 5.83) and ( 5.84) imply that: 

= 0 (5.97) 

From which we obtain: 

= 0 (5.98) 

= do 

P2(r) = Cli 

F3(ri) = 012 

(5.99a) 

(5.99b) 

(5.99c) 

where CIO, Cii, C12 are constants. 

The boundary condition (5.47a) can also be transformed to the 

similarity space as 

P1(o) = 1 

The combination of ( 5.100) with (5.99a) yields 

(5.100) 

F 101) = 1 (5. 101a) 

F 10r,) = 1 . (5. 101b) 
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Substituting the value of F i'w into equation ( 5.93) gives: 

1/2 

F2(r)) = - 

Along with ( 5.99b), equation ( 5.102a) can be written as: 

F2() = - 

1 

I in-i - 

L2]  

Analogously, equation ( 5.96) leads to: 

and implies that: 

(5.102a) 

(5.102b) 

r F2 ? (5.103a) 
0 

F3() = - .- P2 
0 

(5.103b) 

since F3 (i7) is constant throughout the interval [ 0,17 w  The value of 

F2(r) can be determined by performing the iterative method or by 

approximating the calculation as follows: 

n-i 1 n-i 

4'I - 1• . (5.104) 
0 

Since Z depends on parameters V, n, material constant p, p, 

C, a and reference temperature T, the equation (5.75) reveals that the 

value Z is very large as compared with the unity. 

Substituting the equivalent term ( 5.104) into equation 

(5.102b) gives: 
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1 
n+l 

F2 (r1) fl 
From equation ( 5.103b), we obtain: 

1 

1 ( 1 
F3() - I i; )n+l 

(5.105) 

(5.106) 

The location of the wavefront is, thus, determined by substituting the 

approximate term ( 5.104) into equation ( 5.91). The formula of rl is 

then written in a simple form as: 

(5.107) 

The above analysis of similarity representation leads us to 

conclude that: 

(i) The results are obtained quickly without any great deal of 

calculation involved. 

(ii) The results are as reliable as those obtained by the 

characteristic method and the finite element method. 

(iii) The location of the front can be instantly determined whenever 

the power "n" is given. 

(iv) The features of the wave propagating in the medium can be 

seen more clearly than when they are examined by the other 

methods. 

However, there are also some disadvantages: 

This method requires a long interpretation and argument. (i) 

(ii) The boundary conditions are restricted to fulfill the 

requirement of the invariant transformations. 
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CHAPTER 6 

NUMERICAL SIMULATIONS 

6.1 SOME REMARKS OF NUMERICAL SIMULATIONS 

6.1.1 Stability Condition 

Not only is the characteristic method but also the finite 

element method required to satisfy the conditions of consistency, 

stability and convergence. In general, a convergence solution which 

leads to the true solution of the partial differential equation is 

usually linked by: 

convergence = consistency + stability . (6.1) 

Thus, in addition to the consistency, the stability is also an 

important factor that has a strong effect on the numerical solution, as 

Richtmyer and Morton [ 6.1] stated that stability is the necessary and 

sufficient condition for convergence. 

In equation ( 6.1), each element on the right-hand side also 

has a different function. The consistency implies that the truncation 

errors approach zero when the meshes formed in the disturbed region are 

refined, and the stability controls the oscillation caused by strong 

discontinuities at the fronts. 

Rigorous stability analysis of the above properties is not 

available for non-linear problems. However, from the linearized forms 

of hyperbolic systems, stability and convergence have been proven 

provided the slope of any characteristic curve nowhere exceeds a value 
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of Ax . Thus, the stability criterion is written as: 
At 

max IX. <— 
1 AAxt (6.2) 

where Ax and At respectively denote the spatial increment and time 

interval being kept constant in both. The inequality ( 6.2) is 

well-known as the Courant-Friedrichs-Lewy condition or CFL condition as 

it is usually called. The condition can be extended to the non-linear 

hyperbolic system given in this thesis such that: 

max Ix (E mm (h1, h11) .  
1 At 

(6.3) 

As previously mentioned, h1 and h1+1 are the meshed lengths on both 

sides of node I. The term max stands for the numerically 

largest eigenvalue of the matrix [B1] ( or [Bk]) computed at point B. 

The CFL number, P , is then defined by: 

V = max X. (E)1 (ht ip h) . (6.4) 
C I mm 

By the new approach of combination meshes, the CFL condition 

is definitely satisfied in the case of simple waves since the meshed 

lengths h1 ts are determined from the wavefront speed which has the 

greatest value in the family of wavelets. However, when the shock is 

involved in the problem, the condition fails due to the minimum speed of 

the wavefront. Such an occurrence can be treated by adding an 

intermediate step as shown in Figure 6.1. The procedures of calculating 

the unknowns at those intermediate grid points are similar to the ones 

performed at the main grid points. 
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I 
IAt 

 J+1 

tt/2 

t/2 

ii! 
J 

K1 K1+1 

I-' 

h1 

• KNOWNS 

o INTERMEDIATE UNKNOWNS 

x UNKNOWNS 

FIG. 6.1 INTERMEDIATE GRID POINTS 

6.1.2 Computer Implementation 

Four computer programs are coded in the Fortran 77 language 

and are classified as follows: 

(i) Two programs are based on the characteristic method. One is 

used to treat the waves in conducting materials and the other 
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is applied to deal with the waves in non-conducting materials. 

(ii) The last two programs are based on the finite element method 

• and have the same purposes as those above. 

Because of the large size of matrices included in the program 

of finite element methods, the CYB 860 (or Nov/ye) system is employed 

for faster computation whereas the program of the characteristic method 

can be executed on the Sun Unix system since the unknowns in the 

disturbed region are explicitly computed at each grid point. The time 

intervals At used for the investigation of wave motion in conductors and 

non-conductors are io13 and 10 second, respectively. 

The details of the programs are very complicated. Therefore, 

we only present simplified flow diagrams of the main computer programs 

instead of going over all steps of computation. The features of each 

diagram can be briefly explained as follows: 

(i) As illustrated in Figure 6.2, the procedure is used for both 

methods. By the method of characteristics, the unknowns at the 

first point on the boundary and the next two points along the 

wavefront are determined. The distance which the wavefront 

is travelling in a time interval At is also estimated. 

(ii) In Figure 6.3, the procedure shows how the values of unknowns 

are computed at each grid point by the characteristic method. 

Since the method attempts to obtain the solutions from point 

to point, the CPU time required for running this program is 

much less than the one needed by the program based on the 

finite element method. 
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( START ) 

/ SUPPLY VALUES OF ALL 
/ MATERIAL PROPERTIES 

/ SUPPLY BOUNDARY CONDITIONS/ 

COMPUTE U(O,O) OR U2(O,o) 

I 

COMPUTE U(1,1) OR U2(1,1 

COMPUTE U(2,2) OR U (2,2) 
Pli 'uP 

I 

= V; At 

CHARACTERISTIC METHOD FINITE ELEMENT METHOD 

FIG. 6.2 FLOW DIAGRAM OF THE CHARACTERISTIC AND FINITE ELEMENT 

SCHEMES AT THE FIRST STEP OF COMPUTATION 



149 

COMPUTE U(O,1) OR U(O,1) f1w 

J = 2,M 

I = O1J-1 

COMPUTE U(O,J) OR U (O,J) 

COMPUTE U(I.J) OR ,td2 (1,J) 

COMPUTE U(J+1,J+1) ORU(J+i,J+i) 

I+1 
h = V M 
tJ+1 f 

( END) 

FIG. 6.3 FLOW DIAGRAM OF THE CHARACTERISTIC SCHEME 
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COMPUTE U(0,1) OR U2 (0.1) BY FDMOV 
1%0 

J=2 

I = 0,1 

COMPUTE U(I,J) OR U2(I,J) BY FDM 

J = 3,M 

3 
COMPUTE U(O,J) OR U2(J,J) BY XTIC METHOD 

h = vj At 

COMPUTE U(O,J), U(J-1,J) OR U2(O,J), 2(J_1,J) BY FDM 

I = 1.,J-2 

DEFINE MATRICES [M] &[c] OR [M2] &[c21 FROM F.E SCHEME 

SOLVE THE SYSTEM OF EQUATIONS BY GAUSS ELIMINATION 

( END ) 

FIG. 6.4 FLOW DIAGRAM OF THE FINITE ELEMENT SCHEME 
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(iii) Extra caution should be taken into account when the finite 

element programs are written. As shown in Figure 6.4, the 

unknowns at points along the wavefront are obtained by the 

characteristic method. At the points along the Ot-axis as 

well as the ones next to the wavefront, a finite difference 

scheme can be employed to determine the unknowns. Finally, 

the finite element method is applied for solving the unknowns 

at interior grid points - the simultaneous equations formed by 

the implicit scheme can then be solved by Gauss elimination 

method. 

6.2 BOUNDARY CONDITIONS 

Two types of time-dependent inputs applied to the ends of the 

semi infinite thin rods are expressed as follows: 

(i) Step Input 

Stress impact: a(O,t) = aH(t) , (6.5a) 

Velocity impact: v(O,t) = VH(t) , (6.5b) 

Temperature impact: 9(O,t) = OH(t) , (6.5c) 

where H(t) is referred to as the Heaviside unit step function and 

defined by: 

0 t < O 

H(t) = { (6.6) 
1 t > O 

(ii) Time-Dependent Input 

The time-dependent inputs in stress and velocity are given as: 



a(0,t) = Cr 0 0 T (t) 

v(0,t) = V 0 0 T (t) 

where the function T(t) has a form 

0 ; t<0 
T(t) = 

t>0 and 6>0 
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(6.7a) 

(6.7b) 

(6.8) 

6.3 DATA OF THERNOELASTIC MATERIAL PROPERTIES 

By notation, the tensile stress is assumed to be positive. In 

addition, the material properties used in the numerical computation are 

taken from many sources and listed in Tables 6.1 and 6.2. 

Except those marked by asterisks, the rest of the data is 

based on tables from Sucec ( 6.2] and White [ 6.3]. Other data are also 

recorded as follows: (*) is basically computed and taken from the 

sources surveyed by Bell [ 1.8]. (**) is calculated from the formula 

(2.42) in which we assumed that C v Pj Ca and the velocity of sound 

V 
5 

where E is the Young's modulus. (***) is adopted from 

Timosenko and Gere's table [ 6.4]. (****) and (*****) are extracted from 

the hand book by Bolz and Tuve [ 6.5] and the paper by Weir [ 6.6], 

respectively. 

6.4 RESULT REPRESENTATION 

The results obtained from the numerical computation are 

presented in Figures 6.5 - 6.31d. The prescribed boundary conditions 

(6.5a,b,c) and ( 6.7a,b) are also given in the titles of the Figures. 



TABLE 6.1 PROPERTIES OF THREE DIFFERENT CONDUCTING MATERIALS: 

STEEL, CAST IRON AND COPPER AT ROOM TEMPERATURE (20°c) 

Materials 

(*) 

n 

(*) 

I1(GPa) p(kg/m3) K(W/m°K) Cç (J/kg°K) 

(**) 

x(sec) 

(***) 

a(°K 1) 

Steel 1.012 176.6 7801 43 473 i.4xi0 12 12xlO 6 

Cast Iron 1.2074 18.1 7272 52 420 3.83X1O 12 10x10 6 

Copper 1.047 78.35 8954 386 383.1 2.7X10 1' 16.6X10 6 

Copper I 1.0 

(***) 

110  

Copper II 1.0 

(***) 

120  



TABLE 6.2 PROPERTIES OF TWO DIFFERENT NON-CONDUCTING MATERIALS: 

RUBBER AND LEATHER AT ROOM TEMPERATURE (20°c) 

Material 

(*) 

n 

(*) 

i.t(GPa) p(kg/m3) K(W/m°K) C(J/kg°K) a(°K 1) 

Rubber 1.6 O.978057X10 3 1170 0.16 2000 

(***) 

130X10 6 

Leather 0.7545 12.6 860 0.1675 

(****) 

1503.72 

(*****) 

22X106 
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50 

STRESS-STRAIN RELATIONS 

(FOR A COPPER ROD) 

4O 

30 

LI-

'I) 
v-I 
w 

20 

10-

NON- LINEAR CASE (r1.O47) 

LINEAR CASE (ii = 1,E=11O CPa) 

- - - LINEAR CASE (ri = 1,E=120 CPa) 

.0001 . 0002 . 0003 . 0004 . 0005 . 0006 

STRAIN ( rn/rn) 

FIG. 6.5 STRESS-STRAIN DIAGRAM OF A COPPER ROD AT ROOM TEMPERATURE 
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PIG. 6.6a STRESS RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = -- 0-5 m/s AND O(O,t) = 0. (BY THE XTIC METHOD) 

0 .0.  

> 

.05 .1 

—.6-

-.8-

Ij5 . 2 .25 .3 . 35 

f = 4x10 2 s 

A- A- A 

n = 1, E = 120 CPa 

n = 1 E = 110 CPa 

n = 1.047,jz = 78.35 CPa 

METHOD OF CHARACTERISTICS 

FIG. 6.6b VELOCITY RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(0t) = - 0.5 m/s AND O(O,t) = 0. (BY THE XTIC METHOD) 
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FIG. 6.6c TEMPERATURE RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(Ot) = - 0.5 m/s AND O(0,t) = 0. (BY THE XTIC METHOD) 

FIG. 6.6d HEAT FLUX RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. (BY THE XTIC METHOD) 
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FIG. 6.7a STRESS RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = - 0.5 m/s AND e(O,t) = 0. (BY THE F.E METHOD) 

FIG. 6.7b VELOCITY RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = - 0.5 m/s AND e(O,t) = 0. (BY THE F.E METHOD) 



159 

FIG. 6.7c TEMPERATURE RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. (BY THE F.E METHOD) 

FIG. 6.7d HEAT FLUX RESPONSE OF THREE TYPES OF COPPER RODS TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. (BY THE F.E METHOD) 
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FIG. 6.8a STRESS RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 

FIG. 6.8b VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 
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FIG. 6.8e TEMPERATURE RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 

FIG. 6.8d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 
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FIG., 6.9a STRESS RESPONSE OF A CAST IRON ROD (ii = 1.2074) TO 

v(O,t) = - 0.5 rn/s AND O(O,t) = 0. 

FIG. 6.9b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 
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FIG. 6.9c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 

FIG. 6.9d HEAT FLUX RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 0.5 m/s AND e(O,t) = 0. 
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FIG. 6.lOa STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 

FIG. 6.lOb VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 0.5 m/s AND e(o,t) = 0. 
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PIG. 6.lOc TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 0.5 m/s AND O(O,t) = 0. 

.2-

-.1 

'05 15 .2 .25 .3 . 35 

t = 2 t = 4x10 12 S 

£ £ FINITE ELEMENT 

  CHARACTERISTICS 

COPPER ROD ( n=1.047) 

FIG. 6.lod HEAT FLUX RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(0,t) = - 0.5 m/s AND e(o,t) = 0. 
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FIG. 6lla STRESS RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 120 x t 0 .2 m/s AND O(O,t) = 0. 

FIG. 6.11b VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 120 x t°2 m/s AND e(o,t) = 0. 
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FIG. 6.11c TEMPERATURE RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 120 x t 0 .2 m/s AND O(O,t) = 0. 

FIG. 6.11d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = - 120 x t°2 m/s AND 9(O,t) = 0. 
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FIG. 6.12a STRESS RESPONSE OF A CAST IRON ROD (n 1.2074) TO 

v(O,t) = - 120 x t°'2 m/s AND O(O,t) = 0. 

FIG. 6.12b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 120 x t°2 m/s AND e(o,t) = 0. 
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FIG. 6.12c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 120 x t 0 .2 m/s AND O(O,t) = 0. 

FIG. 6.12d HEAT FLUX RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = - 120 x t 0 .2 m/s AND 9(O,t) = 0. 
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FIG. 6.13a STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 120 x t°2 m/s AND O(O,t) = 0. 

FIG. 6.13b VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(0,t) - 120 x t°2 m/s AND O(O,t) = 0. 
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FIG. 6.13c TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 120 xt0'2 m/s AND O(Ot) = 0. 

FIG. 6.13d HEAT FLUX RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = - 120 x t02 m/s AND 9(O,t) = 0. 
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FIG. 6.14a STRESS RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 20 MPa AND e(o,t) = 0. 

FIG. 6.14b VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 20 MPa AND 9(O,t) = 0. 
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FIG. 6.14c TEMPERATURE RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 20 MPa AND e(o,t) = 0. 

FIG. 6.14d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 20 MPa AND e(O,t) = o. 
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FIG. 6.15a STRESS RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

cT(O,t) = 20 MPa AND e(o,t) = 0. 

PIG. 6.15b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

o(O,t) = 20 MPa AND e(o,t) = 0. 
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FIG. 6.15c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

cr(O,t) = 20 MPa AND O(O,t) = 0. 

FIG. 6.15d HEAT FLUX RESPONSE OF A CAST IRON ROD (ri = 1.2074) TO 

a(O,t) = 20 MPa AND O(O,t) = 0. 
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PIG. 6.16a STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 20 MPa AND O(0,t) = 0. 

PIG. 6.16b VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 20 MPa AND O(O,t) = 0. 
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FIG. 6.16c TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

o(O,t) = 20 MPa AND e(o,t) = 0. 

FIG. 6.16d HEAT FLUX RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 20 MPa AND O(O,t) = 0. 
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FIG. 6.17a STRESS RESPONSE OF A STEEL ROD (n 1.012) TO 

a(O,t) = 5 x t 0 .2 GPa AND O(O,t) = 0. 

FIG. 6..17b VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 5 x t02 GPa AND O(O,t) = 0. 
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FIG. 6.17c TEMPERATURE RESPONSE OF A STEEL ROD (ii = 1.012) TO 

a(O,t) = 5 x t 0 .2 GPa AND O(Ot) = 0. 

FIG. 6.17d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 5 x t°2 GPa AND e(o,t) = 0. 
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FIG. 6.18a STRESS RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

a(O,t) = 5 x t°2 GPa AND O(O,t) = 0. 

PIG. 6.18b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

a(O,t) = 5 x t°2 GPa AND O(O.,t) = 0. 
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FIG. 6.18c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

o(O,t) = 5 x t02 GPa AND O(O,t) = 0. 

FIG. 6.18d HEAT FLUX RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

a(O,t) = 5 x t Q .2 (Wa AND O(O,t) = 0. 
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FIG. 6.19a STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 5 x t 0 .2 GPa AND e(O,t) = 0. 

FIG. 6.19b VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 5 x t02 GPa AND e(O,t) = 0. 
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FIG. 6.19c TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 5 x t 0 .2 GPa AND e(o,t) = 0. 

FIG. 6..19d HEAT FLUX RESPONSE OF A COPPER ROD (n = 1.047) TO 

o(O,t) = 5 x t 0 .2 GPa AND O(O,t) = 0. 
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FIG. 6.20a STRESS RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(Ot) = 0 AND O(O,t) = - 5 °K 

FIG. 6.2Ob VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 
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PIG. 620c TEMPERATURE RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(Ot) = 0 AND O(O,t) = - 5 °K 

FIG. 6.20d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 
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FIG. 6.21a STRESS RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 

FIG. 6.21b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = 0 AND e(o,t) = - 5 °K 
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FIG. 6.21c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 

FIG. 6.21d HEAT FLUX RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

v(O,t) = 0 AND e(o,t) = - 5 °K 
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20 

COPPER ROD ( n=1.047) 

15-

5 

= 2 t = 4X10 12 S 

  CHARACTERISTICS 

  FINITE ELEMENT 

.05 . 1 . 15 .2 .25 .3 . 35 

x ( 10 7 m) 

FIG. 6.22a STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = 0 AND O(O,t) = - 5 OK 

FIG. 6.22b VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 



189 

FIG. 6.21c TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 

PIG. 6.22d HEAT FLUX RESPONSE OF A COPPER ROD (n = 1.047) TO 

v(O,t) = 0 AND O(O,t) = - 5 °K 
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10 

STEEL ROD ( ril.012) 

a 

b 

a 

6 

4 

2 

  CHARACTERISTICS 

FINITE ELEMENT 

f = 2 t = 4X1O 1 S 

'S 

0. . .15 .2 .25 .3 . 35 

x ( 10 7m) 

PIG. 6.23a STRESS RESPONSE OF A STEEL ROD (n 1.012) TO 

a(O,t) = 1 Pa AND O(O,t) = - 5 °K 

FIG. 6.23b VELOCITY RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 1 Pa AND O(O,t) = - 5 °K 
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FIG. 6.23c TEMPERATURE RESPONSE OF A STEEL ROD (n = 1.012) TO 

o(O,t) = 1 Pa AND e(o,t) = - 5 °K 

FIG. 6.23d HEAT FLUX RESPONSE OF A STEEL ROD (n = 1.012) TO 

a(O,t) = 1 Pa AND e(O,t) = - 5 °K 
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FIG. 6.24a STRESS RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

o(O,t) = 1 Pa AND O(O,t) = - 5 °K 

FIG. 6.24b VELOCITY RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

a(O,t) = 1 Pa AND e(O,t) = - 5 °K 
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FIG. 6.24c TEMPERATURE RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

a(0,t) = 1 Pa AND O(0,t) = - S °K 

PIG. 6.24d HEAT FLUX RESPONSE OF A CAST IRON ROD (n = 1.2074) TO 

o(0,t) = 1 Pa AND O(O,t) = - 5 °K 
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FIG. 6.25a STRESS RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 1 Pa AND O(O,t) = - 5 °K 

FIG. 6.25b VELOCITY RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 1 Pa AND O(O,t) = - 5 °K 
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FIG. 6.25c TEMPERATURE RESPONSE OF A COPPER ROD (n = 1.047) TO 

a(O,t) = 1 Pa AND e(o,t) = - 5 °K 

FIG. 6.25d HEAT FLUX RESPONSE OF  COPPER ROD (n = 1.047) TO 

o(O,t) = 1 Pa AND O(O,t) = - 5 °K 
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FIG. 6.26a STRESS RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 0.5 m/s 

FIG. 6.26b VELOCITY RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 0.5 m/s 
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FIG. 6.26c STRAIN RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 0.5 m/s 

FIG. 6.26d TEMPERATURE RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 0.5 m/s 
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FIG. 6.27a STRESS RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 5 x t°2 m/s 

FIG. 6.27b VELOCITY RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO v(O,t) = - 5 x t°2 m/s 
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FIG. 6.27c STRAIN RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n=1.6) TO v(O,t)-5xt02 m/s 

FIG. 6.27d TEMPERATURE RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n=1.6)TO v(O,t)-5xt02m/s 
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FIG. 6.28a STRESS RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO c(O,t) = 0.5 x t 0 .2 NPa 

FIG. 6.28b VELOCITY RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO o(O,t) 0.5 x t 0.2 MPa 
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FIG. 6.28c STRAIN RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO a(O,t) = 0.5 x t 0 .2 MPa 

PIG. 6.28d TEMPERATURE RESPONSE OF A STRING OF A RUBBER-LIKE 

MATERIAL (n = 1.6) TO o(O,t) = 0.5 x t 0.2 MPa 



202 

FIG. 6.29a STRESS RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 0.5 m/s 

FIG. 6.29b VELOCITY RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 0.5 m/s 
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FIG. 6.29c STRAIN RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 0.5 m/s 

FIG. 6.29d TEMPERATURE RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 0.5 m/s 
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FIG. 6.30a STRESS RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (ii = 0.7545) TO v(O,t) - 5 x t 0 .2 m/s 

FIG. 6.30b VELOCITY RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO a(O,t) = - 5 x t°2 m/s 
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FIG. 6.30c STRAIN RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 5 x t 0 .2 m/s 

FIG. 6.30d TEMPERATURE RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO v(O,t) = - 5 x t°2 m/s 
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FIG. 6.31a STRESS RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO o(O,t) = 0.5 x t 0 .2 MPa 

FIG. 6.31b VELOCITY RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO a(O,t) = 0.5 x t 0.2 MPa 
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FIG. 6.31c STRAIN RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO a(O,t) = 0.5 x t 0 .2 MPa 

FIG. 6.31d TEMPERATURE RESPONSE OF A STRING OF A LEATHER-LIKE 

MATERIAL (n = 0.7545) TO a(O,t) = 0.5 x t 0.2 MPa 
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CHAPTER 7 

DISCUSSIONS AND CONCLUSION 

7.1 DISCUSSIONS OF RESULTS 

7.1.1 For Conducting Materials 

Before examining or discussing the dynamic response of 

non-linear thernioelastic materials, a physical property of linear and 

non-linear thermoelastic materials is compared on the basis of numerical 

calculation. 

For illustration, copper is selected as a sample and has the 

stress-strain relation in an isothermal condition as shown in Figure 

6.5. The three curves of stress vs strain represent three different 

cases of the material such as: ( i) linear relation with B = 110 GPa, 

(ii) non-linear relation with n = 1.047 and p = 78.35 GPa, and 

(iii) linear relation with E = 120 GPa. As illustrated in the figure, 

within the range of stress (0-50 MPa), the non-linear curve of 

stress-strain relation lies between two linear ones. 

In Figures 6.6 (a,b,c,d) and Figures 6.7 (a,b,c,d), we can see 

the discrepancies of the unknowns v, a, 0 and q for the above three 

cases along the rod whose free end is subjected to constant velocity 

impact and its temperature is kept at the initial value T. As expected 

that the dynamic response of the non-linear copper rod lies between the 

other linear ones. Not only by the characteristic method but also by 

the finite element method, the results obtained indicate that the 

non-linear relation has a good agreement with the one having the lower 

Young's modulus. Should the deviation be neglected among the curves, 

the model of non-linear thermoelasticity can be approximated by a linear 
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one when the value of power n is very close to unity. 

Figures 6.8a-d to Figures 6.25a-d present the distributions 

of dependent variables along the thin rods made of steel, cast iron or 

copper. Under the two types of boundary conditions such as mechanical 

impact and thermal impact, the propagation of waves in the medium is 

examined at the two time intervals of 2 x i0 12 second and 4 x i0 12 

second 

a. Mechanical Impact 

(i) With identical boundary conditions of which either constant or 

time dependent velocity impact and the unchanged temperature are 

suddenly applied to the end of the rod, it is apparent that the stress 

response in the steel rod gives the largest magnitudes as shown in 

Figures 6.8a to 6.13a. Whereas the temperature produced in the copper 

rod is generally higher than that produced in steel or cast iron. The 

results are plotted in Figures 6.8c,6.9c and 6.10c or 6.11c,6.12c and 

6.13c for easy comparisons. 

It may be noted that, the heat flux in the steel rod gives the 

highest magnitude when its end is subjected to constant velocity impact 

as illustrated in Figure 6.8d. On the other hand, the largest heat flux 

is obtained in the copper rod when the time-dependent velocity is 

applied to the boundary (x = 0). 

It is also to be noted that under the constant velocity 

impact, the heat flux is decreasing along the boundaries of three rods 

as shown in Figures 6.8d, 6.9d and 6.lod. However, the increase of heat 

flux can be seen in the case of cast iron and copper whose ends are 

subjected to time-dependent velocity impact. 

(ii) The second type of mechanical impact , the constant stress 
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impact (or time-dependent stress impact) and zero temperature are 

applied to the boundary, the results are represented in Figures 6.14a-d 

to 6.19a-d 

As expected, velocity response of cast iron yields the largest 

magnitudes - compare, for example, Figures 6.14b, 6.15b and 6.16b or 

Figures 6.17b, 6.18b and 6.19b. Whereas the temperature and heat flux 

produced in the copper rod give the highest values as seen in 

Figures 6.16c,d and 6.19c,d. 

Together with the mechanical disturbances applied to the 

boundary, the negative values of difference temperature 0 as shown in 

Figures 6.8(c) to 6.19(c) lead us to conclude that the elastic rods are 

"cooled" under a tensile load [ 6.7]. Moreover, the applied tensile 

force at the end of the rod also causes the temperature having the 

tendency to drop at the boundary, and thus heat must be continuously 

added at x = 0 to maintain 0 at zero. 

b. Thermal Impact  

The medium is, in turn, subjected to the thermal disturbances, 

namely the negative applied step temperature and either the zero 

velocity input or the zero stress input. The dynamic response of 

dependent variables distributing along the rods is illustrated in 

Figures 6.20a-d to 6.25a-d. 

(1) Zero velocity and constant temperature impact : As 

illustrated in Figures 6.20a,b to 6.22a,b, the results obtained reveal 

that the stress and velocity distributed along the steel rod yield the 

largest magnitudes. On the other hand, the heat flux response gives the 

lowest values at the boundary of the copper rod. 

Under this type of boundary conditions, the stresses are 
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positive along the rods and changing with time at the boundaries (x0). 

Since the constant temperature impact is negative, the heat flux must 

take place in the direction from the rod to the boundary. As seen in 

Figures 6.20d, 6.21d.and 6.22d, the heat flux has a negative value and 

is increasing with time at x = 0. 

(ii) Zero stress and constant temperature impact : Similar to case 

(i), the response of steel rod yields the largest stress and velocity at 

the leading wavefront. However, unlike the case ( i), the stress response 

is negative at those points close to the boundary; two regions are 

clearly separated between the boundary and the leading wavefront such as 

compression and tension as shown in Figures 6.23a, 6.24a and 6.25a. 

Also, it should be mentioned that the power term n of stress 

in the constitutive law causes much trouble in numerical computation 

whenever values of stress vanish. Because of that reason, we have 

applied a small value of stress at the boundary instead of zero as 

assumed theoretically . In calculation, the non-zero value of stress is 

taken as 1 Pa applied at x = 0. 

General observation, under either the mechanical impact or 

thermal impact, we can say that : 

The mechanical wave propagates fastest in the steel rod. 

The .jumps in dependent variables at the leading wavefront as well 

as its location in the rods are clearly shown in each figure. 

(iii) The values of stress along the leading wavefront at two different 

examing time t = 2x10 12 second and t = 4x10'2 second are almost the 

same in each rod. Thus, the assumption of the leading wavefront 

propagating along the characteristic curve C having a positive slope 

seems to be valid when the numerical computation is performed. 
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7.1.2 For Non-Conducting Materials 

In order to illustrate the phenomena of wave motion in this 

kind of material, leather and rubber are chosen as specimens in 

numerical computation. Regardless of the complexities of their 

microstructures, these materials are assumed to be homogeneous and 

isotropic. Furthermore, under a small load applied, the extension of 

rubber is considered to be an infinitesimal deformation whenever strain 

€ is very small as compared with unity. Their mechanical properties 

given in Table 6.2 are, thus, kept constant through the course of 

investigation. 

The results of dynamic response in these two materials is 

recorded in Figures 6.26a-d to 6.31a-d wherein the examing time has the 

values of 2 ps and 4 2s. 

As mentioned in Chapter 3 and Chapter 5, the wave behaviors 

may be simple waves or shock waves depending upon the prescribed 

boundary conditions or the stress-strain diagrams represented by the 

power n. 

Under a constant velocity impact, only simple waves 

propagating in the medium irrespective of the value of power n . The 

results of this type of impact applied at the end of a string of a 

rubber-like or leather-like material are shown in Figures 6.26(a,b,c,d) 

or Figures 6.29(a,b,c,d). The response of dependent variables 

distributed along the string is maintained as constant . This is 

because the entropy 3' is constant throughout the disturbed region 

bounded by a single wavefront and the Ot-axis. 

The adiabatic process occurs in each part of the body, 

consequently, the energy is conserved and with no heat loss or gain, 
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kept unchanged in the region of a simple wave. 

The extensive solutions of simple waves are also illustrated 

in Figures 6.27(a,b,c,d) and 6.28(a,b,c,d) where a string of a 

rubber-like material is subjected to time-dependent velocity impact and 

time-dependent stress impact, respectively. Carefully examining these 

curves, the results reveal that the jumps in stress at the wavefront 

separately located at two elapsed times are the same. Other velocity, 

strain and temperature jumps are observed in a similar manner as well. 

The characteristics in the direction of wave propagation, therefore, are 

straight lines because the conditions along them are constant [ 6.8]. 

The above situation will be different when shock waves are 

involved in the problem. The two identical boundary conditions 

prescribed above are now applied to the string of leather-like material 

which, as expected, contains a shock since its value of power n is less 

than unity (Table 6.2). The jump in stress and strain are increasing 

along the shockfront whereas the jumps in velocity and temperature 

difference are decreasing as shown in Figures 6.30(a,b,c,d) and 

6.31(a,b,c,d). This can be explained as follows. Under a tensile load, 

the elastic energy e  acquired by the material is numerically equal to 

the area under the stress-strain curve and expressible as 

(7.1) 

Because the strain c is a function of stress, the equation.(7.1) can be 

written in an equivalent form: 

eM - ac $ ccia (7.2) 
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The total internal energy e, according to Chen [ 3.12], consisting of the 

thermal energy, eT, of the material subjected to a shock is given by: 

hell = 1 (a- + ç+ ) hlchl (7.3) 

With the assumption that the medium is initially at rest, the equation 

(7.3) yields: 

1 
e=ac (7.4) 

It can be shown that e,> e  whenever the power n is less than 

unity. Therefore, the material is always heated by a shock wave and its 

entropy increases. The stress is then increasing along the shockfront 

as a result. 

7.2 CONCLUSION 

In this thesis, the problem of combined thermal and mechanical 

effects on non-linear elastic wave propagation has been considered from 

two different points of view: 

(i) a mathematical model of constitutive law is developed from 

the basics of continuum thermodynamics. 

(ii) numerical computation taking into account the real materials 

is performed on the new meshes, namely combination meshes 

systematically constructed in the disturbed region. 

It is evident from the analysis given in the preceding 

chapters that the non-linear thermoelastic theory contains mathematical 

development which tends to clarify the main features of the wave motion. 

It appears, that non-linear effects will become important whenever the 

linearized mechanics of constitutive relations of materials are invalid, 
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and for many purposes non-linear thermoelastic theory should provide an 

adequate model of wave propagating in the medium. 

The numerical results obtained have shown good agreement among 

the methods especially when applying them to the problems of 

non-conductors. One of the weaknesses of the method of characteristics 

as conventionally applied to the combination meshes is that the unstable 

values of unknowns at points close to the lagging wavefront cannot be 

controlled. The inability of the method, thus, has strongly affected 

the entire solution of the problem since the unknowns are determined 

from point to point throughout the disturbed region. 

The finite element method, in contrast, has yielded smooth 

solutions in general. The main advantage of this method that it is 

unnecessary to employ an artificial viscosity term as in the case of 

finite difference method . However, the program of finite element 

method usually requires much more time on the computer. 

With the use of combination meshes, the location of the 

leading wavefront (or single wavefront) and the jumps in unknowns across 

it have been fully determined. Another advantage is that the 

undisturbed region is not involved in numerical computation, and as a 

result, the time needed for executing the program would be reduced. 

Besides, the technique of similarity representation has also 

given the results as exact as those obtained by the other methods. The 

results are specified in simple forms which can be computed by a pocket 

calculator. In spite of that this technique has not been extensively 

applied yet. The limitation of the material used as well as the 

boundary conditions prescribed has resulted in the weakness of 

similarity analysis. As shown in chapter 5, the solutions of the system 
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of equations expressing the wave motion in a non-conducting material in 

terms of invariant variables are valid only when 8 must have a value of 

zero. Moreover, the similarity method is restricted in the wave problem 

which contains only one wavefront. The extending similarity solutions of 

the problems having more than one wavefront such as wave motion in 

conducting materials are still within the investigation. 

7.3 SUGGESTIONS FOR FURTHER WORK 

Since the numerical computation based on the non-linear model 

of constitutive law is limited by the published data, supplementary 

experiments on other real materials for obtaining stress-strain 

relations within the elastic range are strongly recommended. 

Even though the results obtained in the case of wave motion in 

conducting materials are fairly acceptable, apparently locating the 

lagging wavefront as well as exactly determining the jumps in unknowns 

across it would be an interesting area of research. 

In this thesis, only one particular case of simple waves 

involved in the problem of non-conductors whose boundary is subjected to 

constant velocity impact is analyzed by the group theoretic technique. 

The extensive solutions of shock waves in terms of similarity 

transformations appear to be open for investigation. 

In sun!nary, the author believes that the model of constitutive 

law developed in this dissertation would be an additional step for 

searching the behavior of non-linear therinoelastic materials. Moreover, 

the modified method of numerical computation as developed in chapters 4 

and 5 may be an appropriate numerical technique for solving the problems 

of wave propagation. 



217 

REFERENCES 

1.1 Housner, G.W. and Vreeland, T, Jr., The Analysis of Stress and 
Deformation, The Macmillan Company, New York, 1966. 

1.2 Kolsky, H., Stress Wave in Solids, Dover Publication, Inc., New 
York, 1963. 

1.3 Miklowitz, 3., Elastic Wave Propagation, Applied Mechanic Surveys, 
Spartan Books, 1966. 

1.4 Mindlin, R.D. and Herrman, G., "A One-Dimensional Theory of 
Compressional Waves in an Elastic Rod", Proceeding of the First 
U.S. National Congress of Applied Mechanics, Chicago, pp. 187-191, 
1951. 

1.5 Wasley, R.J., Stress Wave Propagation in Solids, North-Holland, 
Amsterdam, 1973. 

1.6 Achenbach, J.D., Wave Propagation in Elastic Solids, 
North-Holland, Amsterdam, 1973. 

1.7 Johnson, W., Impact Strength of Materials, Edward Arnold, London, 
1972. 

1.8 Bell, J., "The Experimental Foundation of Solid Mechanics", in 

Encyclopedia of Physics, S. Flugge, Ed., Vol. VIa/i, Springer-
Verlag, Berlin, 1973. 

1.9 Frydrychowicz, W. and Singh, M.C., "Group Theoretic Technique for 
the Similarity Solution of a Non-Linear Elastic Rod Subjected to 
Velocity Impact", Theoretical Mechanics, Warsaw, Vol. 23, 
pp. 19-37, 1985 

1.10 Elzanowski, M. and Epstein, M., "Decay of Strong Shocks in 
Non-Linear Elasticity", J. Sound and Vibration, Vol. 103, 
pp. 371-378. 

1.11 Joule, J.P., "On Some Thermo-Dynamic Properties of Solids", Phil. 

Trans. Roy. Soc. London, Vol. 149, pp. 91-131, 1859. 

1.12 Nowacki, W., Dynamic problems of Thermoelasticity, PWN-Polish 
Scientidic Publishers, Warszawa, 1975. 

1.13 Kovalenko, A.D., Thermoelasticity, Wolters & Noordhoff, Growingen, 
1969. 

1.14 Fung, P.C., Foundations of Solid Mechanics, Prentice-Hall, Inc., 
New Jersey, 1965. 



218 

1.15 Boley, B.A., "Thermal Stress Today", Proceedings of the Seventh 
U.S. National Congress of Applied Mechanics, Chicago, PP. 99-102, 
1974. 

1.16 Danilovskaya, V.1., "Thermal Stresses in an Elastic Half-Space Due 
to a Sudden Heating of Its Boundary", Prikl. Mat. Mekh., Vol. 14, 
pp. 316-318, 1950. 

1.17 Nowacki, W., "Some Three Dimensional Problems of Thermo-
elasticity", J. Applied Math. and Mech., Vol. 23, pp. 456-467, 
1959. 

1.18 Sternberg, E. and Chakravorty, J.G., "On Inertia Effects in a 
Transient Thermoelastic Problem", J. Appl. Mech., Vol. 26, 
pp. 503-509, 1959 

1.19 Michael, J.E., "Thermally Induced Elastic Wave Propagation in 

Slender Bars", Proceedings Third U.S. National Congress on Applied 
Mechanics, Brown University, pp. 209-213, 1958. 

1.20 Das, B.R., "Note on Thermoelastic Stresses in a Thin Semi-Infinite 
Rod Due to Some Time Dependent Temperature Applied to Its Free 
End", Indian J. Theoretical Physics, Vol. 9, No. 3, pp. 49-55, 
1961. 

1.21 Chattopadhyay, N.C., "Note on Thermoelastic Stresses in a Thin 
Semi-Infinite Rod Due to Some Time-Dependent Temperature Applied 
to Its Free End", Indian J. Theoretical Physics, Vol. 15, No. 2, 
pp. 49-55, 1961. 

1.22 Roy Choudhuri, S.K., "Note on the Thermoelastic Stress in a Thin 
Rod of Finite Length Due to Some Constant Temperature Applied to 
Its Free End, the Other End Being Fixed and Insulated", Indian J. 
Theoretical Physics, Vol. 19, No. 3, pp. 99-106, 1968. 

1.23 Roy Choudhuri, S.K., "Thermoelastic Stress in a Rod Due to 
Distributed Time-Dependent Heat Sources", J. Appl. Mech., Vol. 10, 
pp. 531-533, 1972. 

1.24 Sneddon, I.N., "The Propagation of Thermal Stresses in Thin 
Metallic Rods", Proceeding of the Royal Society of Edinburgh, 
Series A, Vol. 35, pp. 121-143, 1958. 

1.25 Dillon, O.W., Jr., "Thermoelasticity When the Material Coupling 

Parameter Equals Unity", J. Appl. Mech., 32, pp. 378-382, 1965. 

1.26 Nickell, R.E. and Sackman, J.L., "Approximate Solution in Linear 

Coupled Thermoelasticity", J. Appl. Mech., Vol. 26, pp. 255-256, 
1968. 

1.27 Nickell, R.E. and Sackman, J.L., "Variational Principles for 
Linear Coupled Thermoelasticity", Quart. Appl. Math., Vol. 26, 

pp. 11-26, 1968. 



219 

1.28 Soler, A.J. and Chen, H.C., "On the Solution to Transient Coupled 
Thermoelastic Problems by Perturbation Techniques", J. Appl. 
Mech., Vol. 23, pp. 389-399, 1965. 

1.29 Ting, B.C. and Chen, H.C, "A Unified Numerical Approach for 
Thermal Stress Waves", Computers and Structures, Vol. 5, 
pp. 165-175, 1982. 

1.30 Gladysz, J., "Propagation of a Plane Wave in a Thermoelastic 
Half-Space Under Smooth Heating of Its Boundary", J. Thermal 
Stresses, Vol. 8, pp. 227-234, 1985. 

1.31 Fan, H.T., Chen, K.K. and Sun, N.S., "Numerical Analysis of 
Uncoupled Dynamic Problem of Thermoelasticity", J. Thermal 
Stresses, Vol. 7, pp. 149-161, 1984. 

1.32 Hetnarski, R., "Solution of the Coupled Problem of 
Thermoelasticity in the Form of Series of Functions", Arch. Mech. 
Stos., Vol. 16, pp. 919-940, 1964. 

1.33 Achenbach, J.D., "Approximate Transient Solutions for the Coupled 
Equations of Thermoelasticity", J. Acoustical Soc. Am., Vol. 36, 
pp. 10-18, 1964. 

1.34 Daimaruya, M. and Ishikawa, H., "On the Propagation of 
Thermoelastic Waves According to the Coupled Thermoelastic 
Theory", Bulletin of the JSME, Vol. 17, pp. 991-999, 1974. 

1.35 Dhaliwal, R.S. and Shanker, M.U., "Coupled Thermoelastic Problem 

for an Infinite Medium with a Cylindrical Hole", Arch. Mech. 
Stos., Vol. 5, pp. 531-546, 1970. 

1.36 Wilms, E.V., "On Coupling Effects in Transient Thermoelastic 
Problems", J. Appl. Mech, Vol. 31 pp. 719-722, 1964. 

1.37 Rogge, T., "A Coupled Thermoelastic Problem", SIAM Review, 

Vol. 11, pp. 277-282, 1969. 

1.38 Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A., "Second 
Sound in Solid Helium", Phys. Rev. Letters, Vol. 16, pp. 789-791, 
1966. 

1.39 Ackerman, C.C., Overton, W.C. Jr., "Second Sound in Solid 
Helium-3", Phys, Rev. Letters, Vol. 22, pp. 764-766, 1969. 

1.40 Jackson, H. and Walker, C., "Second Sound in NaP", Phys. Rev. 
Letters, Vol. 25, pp. 26-28, 1970. 

1.41 Nayfeh, A.H., "Transient Thermo-Elastic Waves in a Half-Space 
with Thermal Relaxation", J. Appl. Math. Phys. (ZANP), Vol. 23, 
pp. 50-68, 1972. 

1.42 Nayfeh, A.H., "Propagation of Thermoelastic Disturbances in 
Non-Fourier Solids", AIAA Journal, Vol. 15, pp. 957-960, 1977. 



220 

1.43 Chardrasekharaiah, D.S., "Wave Propagation in a Thermoelastic 

Half-Space", Indian J. Pure Appl. Math., Vol. 12, pp. 266-241, 
1981. 

1.44 Green, A.E. and Lindsay, K.A., "Thermoelasticity", J. Elasticity, 
Vol. 2, pp. 1-7, 1972. 

1.45 Chandrasekharaiah, D.S., "Thermoelasticity with Second Sound: A 
Review", Appl. Mech. Rev., Vol. 39, pp. 355-376, 1986. 

2.1 Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, John 
Wiley and Sons, New York, 1960. 

2.2 Nowacki, W., Thermoelasticity, Pergamon Press, Warszawa, 1962 

2.3 Parkus, H., Thermoelasticity, Blaisdell Publishing Co., Waltham, 
Mass., 1968. 

2.4 Carlson, D.E., "Linear Thermoelasticity", in Encyclopedia of 
Physics, S. Flugge, Ed., Vol. VIa/2, Springer-Verlag, Berlin, 1972 

2.5 Nowacki, W. and Sneddon, I.N., Thermomechanics in Solids, 
Springer-Verlag, New York, 1977. 

2.6 Nowinski, J.L., Theory of Thermoelasticity with Applications, 
Sijthoff & Noordhoff, Alphen Ain Den Rijn, 1978. 

2.7 Gurtin, M.E., "The Linear Theory of Elasticity" in Encyclopedia of 
Physics, S. Flugge, Ed., Vol. VIa/2, Springer-Verlag, Berlin, 1972 

2.8 Onsager, L., "Reciprocal Relation in Irreversible Processes I", 
Phys. Rev., Vol. 37, pp. 405-426, 1931. 

2.9 Onsager, L., "Reciprocal Relation in Irreversible II", Phys. Rev., 
Vol. 38, pp. 2265-2279, 1931. 

2.10 Eckart, C., "Thermodynamics of Irreversible Processes IV, Theory 
of Elasticity and Anelasticity", Phys. Rev., Vol. 73, pp. 373-382, 
1948. 

2.11 Biot, M.A., "Theory of Stress-Strain Relations in Anisotropic 
Viscoelasticity and Relaxation Phenomena", J. Appl. Phys., 
Vol. 25, pp. 1385-1391, 1953. 

2.12 Biot, M.A., "Variational Principles in Irreversible Thermodynamics 
with Application to Viscoelasticity", Phys. Rev., Vol. 97, 
pp. 1463-1469, 1955. 

2.13 Coleman, B.D. and Mizel, V.J., "Existence of Caloric Equations of 

State in Thermodynamics", J. Chemical Physics, Vol. 40, 
pp. 1116-1125, 1964. 

2.14 Biot, M.A., "Thermoelasticity and Irreversible Thermodynamics", J. 
Appl. Phys., Vol 27, pp. 240-253, 1956. 



221 

2.15 Coleman, B.D. and Gurtin, M.E., "Thermodynamics with Internal 
State Variables", J. Chemical Phys., Vol. 47, pp. 597-613, 1967. 

2.16 Gol'denblat, 1.1., 'Some Problems of the Mechanics of Deformable 
Media, Noordhoff, Groningen, 1962. 

2.17 Lord, H.W. and Shulman, Y., "A Generalized Dynamical Theory of 
Thermoelasticity", J. Mech. Phys. Solid, Vol. 15, pp. 299-309, 
1967. 

2.18 Takeuti, Y., "Foundations for Coupled Thermoelasticity", J. 
Thermal Stress, Vol. 2, pp. 323-339, 1979. 

2.19 Lebon, 0., "A Generalized Theory of Elasticity", J. Tech. Phys., 

Vol. 23, pp. 37-46, 1982.' 

2.20 Stojanovitch, R., "On the Stress Relation in Non-Linear 
Thermoelasticity", mt. J. Non-Linear Mechanics, Vol. 4, 
pp. 217-233, 1969. 

2.21 Gurtin, M.E., "Thermodynamics and the Possibility of Spatial 
Interaction in Elastic Materials", Arch. Rational Mech. Anal., 
Vol. 19, pp. 339-351, 1965. 

2.22 Schappery, R.A. "Further Development of a Thermodynamic 
Constitutive Theory: Stress Formulation", Purdue University 
Report AA & ES 69-2, 1969. 

2.23 Lubiner, 3., "On the Thermodynamic Foundations of Non-Linear Solid 
Mechanics", mt. J. Non-Linear Mechanics, Vol. 7, pp. 237-245, 
1972. 

2.24 Chang, W.P. and Cozzarelli, F.A., "On the Thermodynamics of 
Non-linear Single Integral Representations for Thermoviscoelastic 
Materials with Applications to One-Dimensional Wave Propagation", 
Acta Mechanica, Vol. 25, pp. 187-206, 1977. 

2.25 Malvern, L.P., Introduction to the Mechanics of a Continuous 
Medium, Prentice Hall, New Jersey, 1969. 

2.26 Bargmann, H., "Recent Developments in the Field of Thermally 
Induced Waves and Vibrations", Nuclear Engineering and Design, 
Vol. 27,pp. 372-385, 1984. 

2.27 Dillon, O.W., Jr., "Coupled Thermoelasticity of Bars", J. Appl. 
Mech., Vol. 34, pp. 137-145, 1967. 

2.28 Boley, B.A. and Tolins, I.S., "Transient Coupled Thermoelastic 
Boundary Value Problems in the Half-Space", J. of Appl. Mech., 
Vol. 29, pp. 637-646, 1962. 

2.29 Achenbach, J.D., "The Influence of Heat Conduction on Propagating 
Stress Jumps", J. Mech. Phys. Solids, Vol. 16, pp. 273-282, 1968. 



222 

2.30 Dillon, O.W. Jr. and Tauchert, 
for Observing the Temperatures 
Effect", mt. J. of Solids and 
1966. 

2.31 

2.32 

2.33 

2.34 

T.R., "The Experimental Technique 
Due to the Coupled Thermoelastic 
Structures, Vol. 2, pp. 385-391, 

Thurston, R.N., "Wave in Solids", in Encyclopedia of Physics, 
Flugge, Ed., Vol. VIa/4, Springer-Verlag, Berlin, 1974. 

Nettleton, R.E., "Relaxation Theory 

Liquids", Phys. Fluids, Vol. 3, pp. 
of Thermal Conduction in 
216-225, 1960. 

Gibbings, J.C., Thermomechanics: The Governing Equations, 
Pergamon Press, London, 1970. 

Lord, H.W. and Lopez, A.A., "Wave Propagation in Thermoelastic 
Solids at Very Low Temperature", Acta Mechanica, Vol. 10, 
pp. 85-97, 1970. 

S. 

2.35 Norwood, P.R. and Warren, W.E., "Wave Propagation in the 
Generalized Dynamical Theory of Thermoelasticity", Quart. J. Mech. 
and Appl. Math., Vol. 22, pp. 283-290, 1969. 

2.36 Popov, E.B., "Dynamic Coupled Problem of Thermoelasticity for a 
Half-Space Taking Account of the Finiteness of the Heat 
Propagation Velocity", J. Appl. Math. Mech., (PMN), Vol. 31, 

pp. 349-355, 1967. 

2.37 Sawatzky, R.P. and Moodie, T.B., "On Thermoelastic Transients in a 
General Theory of Heat Conduction with Finite Wave Speeds", Acta 
Mechanica, Vol. 56, pp. 165-187, 1985. 

2.38 Lebon, G. and Lambermont, 3., "A Consistent Thermodynamic 
Formulation of the Field Equations for Elastic Bodies Removing the 
Paradox of Infinite Speed of Propagation of Thermal Signals", 
Journal de Mechanique, Vol. 15, pp. 579-594, 1976. 

2.39 Chester, M., "Second Sound in Solids", Phys. Rev., Vol. 131, 
pp. 2013-2015, 1963. 

2.40 Manner, M.J., "Relaxation Model for Heat Conduction in Metals", 
J. Appl. Phys., Vol. 40, pp. 5123-5130, 1969. 

2.41 Francis, P.H., "Thermo-Mechanical Effects in Elastic Wave 
Propagation: A Survey", J. Sound and Vibration, Vol. 21, 

pp. 181-192, 1972. 

2.42 Mengi, Y. and Turhan, D., "The Influence of the Retardation Time 
of the Heat Flux on Pulse Propagation", J. Appl. Mech., Vol. 45, 

pp. 433-435, 1978. 

2.43 Dillon, 0.W., Jr., "A Nonlinear Thermoelasticity Theory", J. Mech. 
Phys. Solids, Vol. 10, pp. 123-131, 1962. 



223 

2.44 Jekot, T., "Nonlinear Thermoelastic Problems of Homogeneous and 
Isotropic Media Under Great Temperature Gradients", Arch. Mech. 
Stos., Vol. 36, pp. 33-47, 1984. 

3.1 John, F., Partial Differential Equations, Springer-Verlag, New 
York, 3rd Ed., 1978. 

3.2 Mengi, Y. and Turhan, D., "Transient Response of Inhomogeneous 
Thermoelastic Media to a Dynamic Input", J. Appl. Math. and Phys., 
(ZANP), Vol. 29, pp. 561-576, 1978. 

3.3 Kosinski, W., "Behaviour of the Acceleration and Shock Waves in 
Materials with Internal State Variables", mt. J. Non-Linear 
Mech., Vol. 9, pp. 481-499, 1974. 

3.4 Kosinski, W., "One-Dimensional Shock Waves in Solids with Internal 
State Variables", Arch. of Mechanics, Vol. 27, pp. 445-458, 1975. 

3.5 Bland, D.R., Nonlinear Dynamic Elasticity, Blaisdell, Waltham, 
Mass., 1969. 

3.6 Cristescu, N., Dynamic Plasticity, North-Holland, Amsterdam, 1967. 

3.7 Eringen, A.C. and Suhubi, E.S., Elastodynamics, Vol. 1, Academic 
Press, New York, 1974. 

3.8 De.juhasz, K.J., "Graphical Analysis of Impact of Bars Stress Above 
the Elastic Range", J. of Franklin Institute, Vol. 248, Part I, 
pp. 15-48; Part II, pp. 113-142, 1949. 

3.9 Hwang, S.H. and Davis, N., "Graphical Analysis of the Formation of 
Shock Fronts in Materials", J. Mech. Phys. Solids, Vol. 8, 
pp. 52-65, 1960. 

3.10 Whiteman, G.B., Linear and Nonlinear Waves, Wiley-Interscience, 
New York, 1974. 

3.11 Courant, R. and Friedricks, K.O., Supersonic Flow and Shock Waves, 
Springer-Verlag, New York, 1974. 

3.12 Chen, P.J., "One-Dimensional Shock Waves in Elastic Non-
Conductors", Arch. Rational Mech. Anal., Vol. 43, pp. 350-361, 
1971. 

3.13 Chen, P.J.-and Gurtin, M.E., "On the Growth of One-Dimensional 
Shock Waves in Materials with Memory", Arch. Rational Mech. Anal., 

Vol. 36, pp. 33-46, 1970. 

3.14 Ting, T.C.T., "Further Study on One-Dimensional Shock Waves in 
Non-linear Elastic Media", Quart. J. Applied Math., Vol. 37, 
pp. 421-429, 1980. 

3.15 Johnson, A.F., "Pulse Propagation in Heat-Conducting Elastic 
Materials", J. Mech. Phys. Solids, Vol. 23, pp. 55-75, 1975. 



224 

4.1 Lopez, A.A., "A Study of Therinoelastic Waves by the Method of 
Characteristics", Development in Theoretical and Applied Mech., 
Vol. 5, pp. 417-447, 1971. 

4.2 Lee, C., Chang, W.P. and Cozzarelli, F.A., "Some Results on the 
One-Dimensional Coupled Nonlinear Thermoviscoelastic Wave 

Propagation Problem with Second Sound", Acta Mechanica, Vol. 37, 
pp. 111-120, 1980. 

4.3 Jeffrey, A., Quasilinear Hyperbolic Systems and Waves, Pitman 
Publishing, London, 1976. 

4.4 Jeffrey, A. and Tanuiti, T., Non-Linear Wave Propagation, Academic 
Press, New York, 1964. 

4.5 Ames, W.F., Numerical Methods for Partial Differential Equations, 
Academic Press, New York, 1977. 

4.6 Chou, P.C. and Mortimer, R.W., "Solution of One-Dimensional 
Elastic Wave Problem by the Method of Characteristics", J. Appl. 
Mech., Vol. 34, pp. 745-750, 1967. 

4.7 Francis, P.H., "The Response of a Thin Elastic Rod to Combined 
Thermal and Mechanical Impulse", J. Appl. Math. Phys., ( ZANP), 
Vol. 19, pp. 113-127, 1968. 

4.8 Campbell, J.D. and Taylor, D.B., "On the Numerical Solution of a 

Wave Propagation Problem in the Theory of Dislocation Notion", in 
Stress Waves in Anelastic Solids, Koisky, H. and Prager, W., 
(Eds .), pp. 54-68, IUTAN Symposium Providence 1963, 
Springer-Verlag, Berlin, 1964. 

4.9 Wood, E.R. and Phillips, A., "On the Theory of Plastic Wave 
Propagation in a Bar", J. Mech. Phys. Solids, Vol. 15, 
pp. 241-254, 1967. 

4.10 Fox, L., Numerical Solution of Ordinary and Partial Differential 
Equations, Pergamon Press, Mass., 1968. 

4.11 Lister, M., "The Numerical Solution of Hyperbolic Partial 
Differential Equations by the Method of Characteristics", in 
Mathematical Methods for Digital Computers, Ralston, A. and Wilf, 
H.S. (Eds.), pp. 165-179, John Wiley & Sons, New York, 1960. 

4.12 Orisamolu, I.R., Continuum Thermodynamics Formulation on Numerical 
Simulation of the Propagation of Coupled Thermomechanical Waves in 

Inelastic Solids, Ph.D. Dissertation, University of Calgary, 1988. 

4.13 Li, Y.Y, Ghoneim, H. and Chen, Y., "A Numerical Method in Solving 
a Coupled Thermoelastic Equation and Some Results", J. Thermal 
Stresses, Vol. 6, pp. 253-280, 1983. 



225 

4.14 Post, R.B., Wellford, L.C., Jr. and Oden, J.T., "A Finite Element 
Analysis of Shocks and Finite Amplitude Waves in One-Dimensional 
Hyperelastic Bodies at Finite Strain", mt. J. Solids Structures, 
Vol. 11, pp. 377-401, 1975. 

4.15 Prevost, J.H. and Tao, D., "Finite Element Analysis of Dynamic 
Coupled Thermoelasticity Problems with Relaxation Times", J. Appl. 
Mech., Vol. 50, pp. 817-822, 1983. 

4.16 Huyakorn, P.S., "Solution of Steady-State, Convective Transport 
Equation Using an Upwind Finite Element Scheme", Appl. Math. 
Modelling, Vol. 1, pp. 187-195, 1977. 

4.17 Gray, W. and Pinder, G.F., "An Analysis of the Numerical Solution 
of the Transport Equation", Water Resources Research, Vol. 12, 
pp. 547-555, 1976. 

4.18 Fletcher, C.A.J., "The Group Finite Element Formulation", Comp. 
Method Appl. Mech. Engg., Vol. 37, pp. 225-243, 1982. 

4.19 Lucchi, W.C., "Improvement of Mac Coruiack's Scheme for Burgers' 
Equation Using a Finite Element Method", mt. J. Num. Meth. Engg., 
Vol. 15, pp. 537-555, 1980. 

4.20 Fletcher, C.A.J., Computational Galerkin Methods, Springer-Verlag, 
New York, 1984. 

4.21 Morton, K.W., "Generalized Galerkin Methods for Hyperbolic 
Problems", Comp. Meth. Appl. Mech. Engg., Vol. 52, pp. 847-871, 
1985. 

4.22 Morton, K.W., "Finite Element Methods for Hyperbolic Equations", 
Comp. Physics Reports, Vol. 6, pp. 189-207, 1987. 

4.23 Morton, K.W. and Griffiths, D.F., "Generalized Galerkin Methods 
for First-Order Hyperbolic Equations", J. Computational Physics 
Reports, Vol. 36, pp. 249-270, 1980. 

4.24 Duncan, D.B. and Griffiths, D.F., "The Study ofa Petrov-Galerkin 
Method for First-Order Hyperbolic Equations", Comp. Meth. Appl. 
Mech. Engg., Vol. 45, pp. 147-166, 1984. 

4.25 Sanz-Serna, J.M. and Christie, I., "Petrov-Galerkin Methods for 
Non-linear Dispersive Waves", J. Computational Physics, Vol. 39, 
pp. 94-102, 1981. 

4.26 Lapidus, L. and Pinder, G.F., Numerical Solution of Partial 
Differential Equations in Science and Engineering, John Wiley & 
Sons, New York, 1982. 

4.27 Oden, J.T., "Finite Element Analysis of Nonlinear Problems in the 
Dynamical Theory of Coupled Therrnoelasticity", Nuclear Engg. and 
Design, Vol. 10, pp. 465-475, 1969. 



226 

4.28 Gottlieb, D. and Turkey, E., "Boundary Conditions in Finite 
Difference Methods for Time Dependent Equations", J. Comp. Phys., 
Vol. 26, pp. 181-196, 1974. 

• 4.29 Chu, C.K. and Sereny, A., "Boundary Conditions in Finite 
Difference Fluid Dynamic Codes", J. Comp. Phys., Vol. 15, 
pp. 476-491, 1974 

5.1 Aboudi, J. and Yako, B., "One-Dimensional Amplitude Wave 
Propagation in a Compressible Elastic Half-Space", mt. J. Solids 
Structures, Vol 9, pp. 363-378, 1973. 

5.2 Fost, R.B., Weliford, L.C. and Oden, J.T., "A Finite Element 
Analysis of Shocks and Finite-Amplitude Waves in One-Dimensional 
Hyperelastic Bodies at Finite Strain", mt. J. Solids Structures, 
Vol. 11, pp. 377-401, 1975. 

5.3 Hanegud, S.V. and Abhyankar, N.S., "A Numerical Scheme for the 
Study of Poynting Effect in Wave Propagation Problems with Finite 
Boundaries", mt. J. Non-Linear Mechanics, Vol. 19, pp. 507-524, 

1984. 

5.4 Lapidus, A., "A Detached Shock Calculation by Second-Order Finite 
Differences", J. Computational Physics, Vol. 2, pp. 154-177, 1967. 

5.5 Von-Newman and Richtmyer, R.D., "A Method for Numerical 
Calculation of Hydrodynamic Shocks", J. of Appl. Physics, Vol. 21, 

pp. 232-237, 1950. 

5.6 Brode, H.L., "Numerical Solutions of Spherical Blast Waves" 

J. Applied Physics, Vol. 26, pp. 766-775, 1955. 

5.7 Sod, G.A., "A Survey of Several Finite Difference Methods for 
Systems of Nonlinear Hyperbolic Conservation Laws", J. 
Computational Physics, Vol. 27, pp. 1-31, 1978. 

5.8 Bailey, P.B. and Chen, J., "An Accurate Implicit Finite Difference 
Algorithm for shocks in Non-Linear Wave Propagation - One 
Dimension", Wave Motion, Vol. 6, pp. 279-287, 1984. 

5.9 Sedov, L.I., Similarity and Dimensional Method in Mechanics, 
Academic Press, 1959. 

5.10 Ames, W.F., Nonlinear Partial Differential Equations in 
Engineering, Vol. 2, Academic Press, New York, 1972. 

5.11 Hansen, A.G., Similarity Analysis of Boundary Value Problems in 
Engineering, Prentice-Hall, New jersey, 1964. 

5.12 Seshadri, R. and Na, T.Y., Group Invariance in Engineering 
Boundary Value Problems, Springer-Verlag, New York, 1985. 



227 

5.13 Seshadri, R., Group Theoretic Methods of 
Applied to Nonlinear Impact Problems, Ph. 
Calgary, Alberta, Canada, 1973. 

Similarity Analysis 
D. Thesis, University of 

5.14 Birkhoff, C., Hydrodynamics, 2nd Edition, Princeton University 
Press, Princeton, New Jersey, 1960. 

5.15 Moran, M.J. and Gaggioli, R.A., "Reduction of the Number of 
Variables in Systems of Partial Differential Equations with 

Auxiliary Conditions", SIAM J. Appl. Math., Vol. 16, pp. 202-215, 
1968. 

5.16 Moran, M.J. and Marshek, K.M., "Some Matrix Aspects of Generalized 
Dimensional Analysis", J. of Engg. Mathematics, Vol. 6, 
pp. 291-303, 1972. 

5.17 Frydrychowicz, W. and Singh, M.C., "Similarity Representation of 
Wave Propagation in a Non-Linear Viscoelastic Rod on a Group 
Theoretic Basis", Appl. Math. Modelling, Vol. 10, pp. 284-293, 
1986. 

5.18 Frydrychowicz, W. and Singh, M.C., "Group Theoretic and Similarity 
Analysis of Hyperbolic Partial Differential Equations", J. Math. 
Anal. Appl., Vol. 114, pp. 75-99, 1986. 

5.19 Seshadri, R. and Singh, M.C., "Similarity Analysis of Wave 

Propagation in Nonlinear Rods", Arch. Mech., Vol. 32, pp. 933-945, 
1980. 

6.1 Richtmyer, R. and Morton, K.W., Difference Methods for Initial-
Value Problems, Wiley, New York, 2nd Ed., 1967. 

6.2 Sucec, J., Heat Transfer, WCB, Iowa, 1985. 

6.3 White, P.M., Heat Transfer, Addison-Wesley, 1984. 

6.4 Gere, J.M. and Tiomshenko, S.P., Mechanics of Materials, 
Brooks/Cole Engineering Division, California, 2nd Ed., 1984. 

6.5 Bolz, R.E. and Tuve, G.L., Handbook of Tables for Applied 
Engineering Science, The Chemical Rubber Co., Cleveland, 1970. 

6.6 Weir, C.E., "Expansivity of Leather and Collagen", Am. Leather 

Chemist Association, Vol. 44, pp. 79-90, 1949. 

6.7 Swalin, R.A., Thermodynamics of Solids, John Wiley & Sons, New 
York, 2nd Ed., 1972. 

6.8 Lee, E.H., "Some Recently Developed Aspects of Plastic Wave 
Analysis", in Wave Propagation in Solids, The American Society of 

Mechanical Engineers, New York, pp. 115-128, 1969. 



228 

APPENDIX A 

DETERMINING THE UNKNOWNS AT THE ORIGIN FOR THE CASE OF 

CONDUCTING MATERIALS 

Generally, assuming that the end of the rod is subjected to a 

set of prescribed boundary conditions as follows: 

Case ( i)  

a(O,t) = at'5 ; t > 0 

O(O,t) = 00 ;. t > 0 

Recalling the jump conditions discussed in part A of Chapter 3: 

viplivili = 

v2p11v112 = - UaH2 

VlzoHqHl = K110111 

V2xq2 = K11 002 ' 

PV1(3aH0 fli + V1cKTJJaIJ1 

pVCO + V2cxTffa 2 

The equations (A.2c,d) imply that: 

llqfJ - V 110°,I1l11 
lto 

- V K t II°112 
2o 

= HqHl 

= llO 

(A. la) 

(A. lb) 

(A. 2a) 

(A. 2b) 

(A.2c) 

(A. 2d) 

(A. 2e) 

(A.2f) 

(A. 3a) 

(A. 3b) 



229 

Substituting equation (A.3a) into equation (A.2e) and simplifying, we 

obtain: 

aT V2 

110111 - 0 1x 2) II°iI 1 
(K-pc' t V 

ao 

(A. 4a) 

Similarly, substituting equation (A.3b) into equation (A.2f) yields 

2 
aT V x 

- o2o 
N 2 

Adding (A.4a) to (A.4b) 

(K-pc r V2) II°112 
ao2 

(A. 4b) 

aT V2 aT 

11011 1 + 110112 = 0(0,0) - (K_PCatoV) IIaII (K-pc v2) 11°i12 
ao2 

which leads to 

ao2 oo K-pc r V2 fe oo aT l  
ilali2 = 2 - aT V (K-pCxV) iiaiii} 

o2o 

Also, from chapter 3 

(A.5) 

(A.6) 

a(0,0) = Ila11 + IIaII2 . (A.7) 

Substituting equation (A.6) in equation (A.7) and manipulating, we 

have 

- V(PCa1 V••K) (PC v V2_K)(pcaxv_K) 
  a(0,0) + a 0 1 ) 0(0,0) 

- K(V-V) aT x K(V -v 
00 

(A.8) 

After determining the jump in stress across the leading 
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wavefront, other unknowns can be found as follows: 

Finally, 

Case ( ii) 

IfrII2 = a(0,O) - UaIl 

IlvIl 1 = - Hall 

INIl2 = - 1 11a112 

(A. 9a) 

(A. 9b) 

(A. 9c) 

and 110112 are calculated from (A.4a,b), respectively. 

and qfJ2 are then found from (A.3a,b). 

v(0,0) = + I1vH2 , (A.9d) 

q(0,0) = IfqII1 + IIqfl2 (A. 9e) 

Jv(0,t) = Vt ; t > 0 , 

O(0,t) = 0 0 . (A.lOb) 

The procedure is performed as above, however, the value of stress a(0,0) 

in this case is defined by 

K(V-V)V1V2 
a(0,0) =   

v(K-pc + v3(PC x v2-K) 
ao2 2 aol 

(pCatV_K)(PC a o 2 9(0,0) 

IQxTx(V -V) 

- pv(0,0) + Ii 1 

2 1 

(A.11) 
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APPENDIX B 

DETERMINING THE MASS MATRIX AND STIFFNESS MATRIX 

FOR A FINITE ELEMENT SCHEME 

Recalling the trial function for one element: 

4,,(x) = x 
L. 

And, the test functions are defined by: 

O≤x≤h1 

O≤x≤h1 

(B. la) 

(B. lb) 

wi(x) = i( 1 i) [2(2_3 2) - 6(122) d , (B.2a) 

w2(x) = '' ci) 2 31 (B. 2b) 

where O≤x≤h1 

The coefficients of the submatrix of elemental mass matrix {K1 }. are 

given as: 

a11 

h I 
= jh qbiwidx 

1 

= :' + l[22-3 2 - 6(1_22) h, J, 

= I (l+2) 12] h1 

dx 

(B. 3a) 
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a12 = j 2w1dx 
0 

f h I 

0 

1 
1 
[6 + l2] h1 

a21 = j 4'1w2dx 
0 

= JI O 0102 

a22 = j 42w2dx 
0 

dx 

J(1-el) ' 2'2 dx 
0 

23 2) - 6(1_22) k] '2 dx 

For one element, the matrix [K1]. is written as: 

(B. 3b) 

(B. 3c) 

(B. 3d) 
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(i+2) - 12}h1 { (1-El) + 
[K1]. = 

. (1- 1)h • (1-)h 

(B.4) 

When Ni = 2, where N is number of elements at the level J on the 

Ot-axis. The mass matrix [K1] is then assembled as: 

{4 l+21_12}h1 •79 l_1+12 }h1 

[K1]= .(1- 1)h1 (1- 1)h1+ { 1+21_12}h2 {'- 1+12 }h2 

0 •( 1- )h 

(B.5) 

The stiffness matrix [K2] is also constructed in the similar 

manner. The coefficients of the submatrix of elemental stiffness matrix 

[IC2]• are 

1h1 CIO 1 

b11J TX—  w1dx 

0 

- 1 th, fol (l_e l) 

+ l[2(2-3 2) - 6(12 2) dx 

(B. 6a) 
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b12 = w dx 

h1 

b21 J w2 d-

0 

• 
0 

h1 dO 2 

b22 T_w2dx 

0 

+ 1[22_3 2 - 6(122) J} dx 

dx 

= Jo h  I1 (1-i) 2 dx 

(B. 6b) 

(B. 6c) 

(B. 6d) 
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The element matrix [K2 ]. is written as: 

[K2 ]. 

and the stiffness matrix [K2], when NJ = 2, is 

[K2] = 

0 

, (B.7) 

(B.8) 


