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Abstract 

 Health systems around the world depend on Health Technology Assessment (HTA) 

programs to provide policy guidance on many factors, including value-for-money. To ensure 

decisions are made with current information, methods of evidence synthesis and economic 

evaluation are used to inform a continuous process of evidence gathering and decision making. 

While computers are used in almost every part of this process, the act of updating an existing 

HTA often involves a duplication of the original effort. The experience of other scientific fields 

suggests this is attributable to a lack of reproducibility. This refers to the ability to obtain 

consistent computational results, using the same set of files and processes. The objective of this 

thesis was to explore how an emphasis on reproducibility can support the effective development 

and maintenance of HTAs.  

Satisfaction of this objective required the identification and implementation of computing 

strategies to enhance the reproducibility of HTAs. A literature review was used to identify 

techniques for reproducibility which had proven successful in other fields. The identified 

strategies encouraged the creation of an accurate and complete record of the research process in 

human and machine-readable formats. These findings were subsequently applied to a case study 

which redeveloped an existing appraisal of biologic treatment for psoriatic arthritis. The first part 

of the case study summarized the development and execution of an automated workflow. The 

second part explored how the computing strategies affected the programming of the economic 

model. Outcomes from the case study included improved quality control, more efficient 

updating, and the elimination of barriers to the characterization of uncertainty. With enough 

investment, enhancing the reproducibility of HTAs will enable improved transparency, better 

decision making, and ultimately population health gains.   
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Chapter 1 Introduction 

 Evidence-based decision making has been embraced by jurisdictions around the world as 

a mechanism to improve health system quality and efficiency. This is reflected in the design of 

Health Technology Assessment (HTA) programs which support the managed entry of new 

technologies (1–3). Prominent examples of institutions which administer these activities include 

Australia’s Medical Services Advisory Committee (MSAC), the United Kingdom’s National 

Institute for Health and Care Excellence (NICE), and the Canadian Agency for Drugs and 

Technology in Health (CADTH) (4,5). A distinguishing feature of the HTA process is the 

commissioning of technology appraisals which leverage methods of evidence synthesis to 

compile the information required by the decision maker. These reports and the guidelines used to 

prepare them tend to be publicly available to increase accountability and transparency in decision 

making (6–8).  

 A technology appraisal may be commissioned for any policy, product, or intervention 

which is meant to improve health. The purpose of this effort is to systematically evaluate the 

relevant evidence relating to the use of the technology. As a result, most works will include a 

comparison of the technology’s safety and clinical effectiveness against relevant alternatives. 

Pressures on health budgets have also forced policymakers to consider the effects of a health 

technology in the context of its costs. These trade-offs are estimated through methods of 

economic evaluation (1–8).  

1.1 Economic Evaluation 

 Economic evaluation provides a mechanism to compare mutually exclusive alternatives 

with respect to their resource use (costs) and expected outcomes (benefits) (4,6,7). Making an 
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informed decision on these grounds will require the identification, measurement, and valuation 

of both the benefits and costs associated with each alternative included in an appraisal.  

The approach used to measure the benefits of a health technology will inform the 

classification of an economic evaluation (4). For example, Cost-Benefit Analysis (CBA) is a type 

of economic evaluation where the benefits are measured in monetary terms. This approach is 

common in other sectors of the economy such as transportation or finance (4). While CBA is 

rarely applied in the health context, a measure of benefit can be estimated using stated preference 

methods like Discrete Choice Experiments (9,10). Another type of economic evaluation is a 

Cost-Effectiveness Analysis (CEA). This designation applies to situations where benefits are 

measured in terms of natural units like gains in life-expectancy and number of cases prevented, 

among others. The choice of which measure to use will depend on the objective of the analysis. 

A major limitation with this approach in decision-making is that it does not facilitate the 

comparison of benefits across programs. Such an analysis necessitates a generic measure of 

benefit which is relevant to all the interventions for which a decision maker is responsible (4).  

 Variants of CEA which use a generic measure of benefit are the most common form of 

economic evaluation in the HTA process. Often defined as a Cost-Utility Analysis (CUA), HTA-

commissioned studies tend to use the Quality Adjusted Life Year (QALY) as a standardized 

approach to promote comparability across interventions. (4,6,11,12). The QALY is a generic 

measure of disease burden in which the length of life for a specific health state is adjusted to 

reflect the quality of life for that state (11). As a measure of benefit, it is dependent on two 

underlying assumptions. First, that a major objective of decision makers is to maximize health 

across the population. Second, that health can be measured or valued based on the amount of 

time spent in various health states (11).  
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1.1.1 Decision Modelling as a Vehicle for Economic Evaluation 

 The recommended approach for assembling the costs and effects for an economic 

evaluation is known as decision modelling. The model itself will take the form of an explicit set 

of mathematical relationships between different clinical events and health states. Costs and 

effects are estimated from a series of pathways specific to each mutually exclusive alternative 

considered in the economic evaluation (4,13–15). While many model structures are available, the 

most popular tend to be decision trees and Markov models (4,13–15).   

Development of a decision model will require a comprehensive understanding of the 

decision problem and its context. One must determine the alternatives to be compared, the 

perspective of the analysis, which costs and outcomes to consider, the time horizon, and the 

target population (4,13–15). This information will aid in the identification of the full range of 

evidence using well-established methods of evidence synthesis. Drawing on current evidence to 

estimate such parameters allows the decision model to fulfill several requirements which cannot 

be accommodated in a single empirical study (4,14,16). In addition to evaluating all relevant 

alternatives, this includes the need to consider a standardized follow-up period and the ability to 

assess patient heterogeneity (4,14,16). Input parameters requiring compilation and synthesis will 

often include the relative effectiveness of alternative treatments, baseline risks for specific 

clinical events, resource use, unit costs, and estimates of health-related quality of life (4,13,14).  

1.1.1.1 Decision Rules 

 The expected costs and effects estimated by a decision model can be used to inform a 

decision regarding a technology’s widespread adoption. Pairwise comparisons are needed to 

determine the cost to gain an extra QALY by choosing a more effective alternative (4,13). This 

statistic is known as the incremental cost-effectiveness ratio (ICER; Equation 1) (4,13).  
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Equation 1. Incremental Cost-Effectiveness Ratio 

ICER =
Cost2 − Cost1

Effect2 − Effect1
=

ΔCost

ΔEffect
 

 Any assessment of cost-effectiveness will involve a determination of whether the 

incremental effects justify the incremental costs. This choice is clear when a technology is more 

effective and less costly than the next best option. Likewise, one may choose to reject a 

technology when it is less effective and more expensive (4). However, the decision becomes 

much harder to make when an alternative offers incremental benefits at some additional cost. In a 

resource constrained health system, this cost represents health loss borne by patients with 

competing claims on the same resources. Therefore, the maximum amount the decision maker is 

willing to pay for an additional unit of effect (QALY) represents the cost-effectiveness threshold 

(λ) (4,17). A decision to adopt an alternative will then be based on whether the ICER is less than 

the value of this threshold, expressed in the inequality in Equation 2.  

Equation 2. ICER Decision Rule 

ΔCost

ΔEffect
< λ  

 However, the ICER is not well suited for decision problems which include more than two 

mutually exclusive alternatives. While the decision rule can still be used in such circumstances, 

the calculation of each ICER will need to be made using appropriate pairwise comparisons. This 

will require the identification and exclusion of strongly and extendedly dominated alternatives. 

The complex procedures of conducting an incremental analysis can be avoided by placing the 

costs, effects, and cost-effectiveness threshold on a common scale (4,13,18,19). Direct 

comparisons of each alternative can be expressed in terms of Net Health Benefit (NHB; Equation 

3) or Net Monetary Benefit (NMB; Equation 4). Under a net-benefit framework, the adoption 
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decision will involve selecting the alternative which offers the maximum expected net-benefit 

(Equation 5). This will return the same conclusions about cost-effectiveness as the ICER 

decision rule following the exclusion of dominated alternatives.  

Equation 3. Net Health Benefit 

NHB𝑗 = Effect𝑗 −
Cost𝑗

λ
 

Equation 4. Net-Monetary Benefit 

NMB𝑗 = λ × Effect𝑗 − Cost𝑗  

Equation 5. Net-Benefit Decision Rule 

max𝑗{𝐸[𝑁𝐵(𝑗)]}  

where: 𝑗 = mutually exclusive alternative considered in decision model. 

NB = Net Benefit Statistic, either NMB or NHB 

1.1.2 Decision Making Under Conditions of Uncertainty 

 Any decision regarding the use of a technology will need to be made with expected costs 

and effects. Estimation of these values will be subject to two distinct sources of uncertainty. 

Parameter uncertainty refers to the fact that the model inputs represent imprecise estimates of the 

true parameter values. Meanwhile, structural uncertainty refers to the impact that different 

assumptions or scientific judgements can have on the model results (20–22). An adoption 

decision will be based on incomplete information if a decision model is evaluated using the 

expected (mean) parameter values and default structural assumptions. This will be especially true 

for model structures with non-linear relationships between inputs and outputs.  

Expected costs and effects can be estimated using data generated from the probabilistic 

evaluation of a decision model (13,21–23). Monte Carlo simulation is the most common 

approach to characterize uncertainty in this manner. It involves the repeated evaluation of the 
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decision model using randomly sampled parameter values (13,24). Assumptions regarding the 

type of distribution to assign to each parameter should be determined by its respective type 

(probabilities, relative risk, costs, and utilities) (13). In most situations, the impact of structural 

uncertainty will be explored through separate scenario analyses (20–22). By generating 

distributions of cost and effect for each specified alternative, the model results will reflect the 

full range of values each parameter will be likely to take (21,22,24). From this the ICER can be 

calculated from the expected (mean) costs and benefits for each alternative. Meanwhile, expected 

net-benefits must be calculated from distributions of net-benefit for each value of the cost-

effectiveness threshold.  

 While the uncertainty will affect how the decision model is evaluated, it has no impact on 

how the adoption decision should be made. Under Bayesian Decision Theory, the alternative 

which offers the maximum expected net benefit should be selected (18). However, the nature of 

the uncertainty implies there is a risk the adoption decision will be incorrect. If proven to be true, 

the opportunity cost from this decision uncertainty will be expressed as a health loss to current 

and future patients (18). Value of Information (VoI) methods offer a mechanism to determine if 

reducing future decision uncertainty through the acquisition of additional information could be a 

worthwhile activity (18,25–27). This suggests that there are two decisions to be made: i) whether 

current evidence supports adopting the technology; and ii) whether further evidence is required 

to support this decision in the future (13,18).  

1.1.2.1 Value of Information Methods 

 Value of Information (VoI) analysis is an approach to justify commissioning additional 

research for a specific decision problem (6,7). This methodology values the return on investment 

in future research to reduce decision uncertainty (19,25,26,28). The statistics used to inform a 
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research decision will be the expected value of perfect information (EVPI), the expected value of 

partial perfect information (EVPPI), the expected value of sample information (EVSI) and the 

expected net benefit of sampling (ENBS) (13,19,25,26,28).  

 Due to the different sources of uncertainty in the decision model, there will be some 

probability that the adoption decision is wrong. However, with perfect information there would 

be no decision uncertainty. As a result, there would also be no opportunity cost (in terms of 

health to current and future patients) from making the wrong decision. This expected loss from 

uncertainty represents the EVPI. It is equivalent to an expected gain from reducing the 

uncertainty. Detailed in Equation 6, the EVPI statistic can be calculated from the Monte Carlo 

simulation output which informed the adoption decision (19,25). To calculate the upper 

boundary for all research into a decision problem, the population-level statistic will be required 

(Equation 7) (19,25). Additional research will not be worthwhile if the population EVPI is 

greater than the cost of that research. In the event this inequality is reversed, it will be necessary 

to determine the parameter(s) for which more research would be worthwhile.  

Equation 6. Expected Value of Perfect Information 

EVPI = Eθ{max𝑗[𝑁𝐵(𝑗, θ)]} − max𝑗{Eθ[𝑁𝐵(𝑗, θ)]}  

where: 𝑗 = alternative 

θ = uncertain parameters 

Equation 7. Population EVPI 

Pop. EVPI = EVPI × ∑
𝐼𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=0

 

where: 𝑇 = effective lifetime of a technology 

𝐼𝑡 = disease incidence at time 𝑡 
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𝑟 = discount rate 

  The EVPPI, Equation 8, provides an upper boundary for research to reduce uncertainty 

for a specific (group) of parameter(s) (19,25,26). As with the EVPI, it is the difference between 

the expected value of a decision made with perfect and current information. Therefore, the EVPI 

can be viewed as a special case of the EVPPI where the parameters of interest are all the 

parameters in the model (19,25,26). However, the output of the original Monte Carlo simulation 

cannot be used to calculate EVPPI according to Equation 8. Capturing the effect of the 

parameter(s) of interest will typically involve a nested Monte Carlo simulation. For each random 

draw of the parameter(s) of interest (φ), the decision model will be repeatedly evaluated over 

many random draws for the remaining parameters (ψ) (19,25,26). Following calculation of 

EVPPI, the population EVPPI (Equation 9) can be used to determine if research for the 

parameter(s) of interest will be worthwhile (19,25,26). A major limitation of this approach to 

calculating EVPPI is the time-consuming nature of the nested Monte Carlo simulations. Recent 

developments in VoI methodology have introduced non-parametric regression-based approaches 

to evaluate the EVPPI without re-running the model (29,30). 

Equation 8. Expected Value of Partial Perfect Information 

EVPPIφ = Eφ{max𝑗[Eψ|φ𝑁𝐵(𝑗, φ, ψ)]} − max𝑗{Eθ[𝑁𝐵(𝑗, θ)]}  

where: φ = parameter(s) of interest;  

ψ = remaining uncertain parameters;  

θ = all uncertain parameters: 𝜓 and 𝜑 

Equation 9. Population EVPPI 

Pop.EVPPIφ = EVPIφ × ∑
𝐼𝑡

(1+𝑟)𝑡
𝑇
𝑡=0   
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 The EVSI represents the sufficient condition regarding the commissioning of a particular 

data collection exercise (19,26–28,31). As illustrated in Equation 10, the statistic measures the 

expected reduction in expected loss from information acquired in a study of sample size n. 

Generating distributions of cost and effect will require a different implementation of the nested 

Monte Carlo method described for EVPPI (27,28,32). For each random draw of the parameter(s) 

of interest (φ), a pre-posterior distribution will need to be defined which combines the predicted 

results of a trial with sample size n (D) with the prior value of the target parameter(s) (φ). 

Randomly sampled values from the pre-posterior distribution (D|φ) and the remaining uncertain 

parameters (ψ) will then be used in the repeated evaluation of the decision model. As with the 

EVPPI process, the simulation-based method for EVSI will be vulnerable to long execution 

times (30,33). In response, alternate approaches to the estimation of EVSI have been developed 

and published. Prominent examples include regression-based methods, importance sampling, 

Gaussian approximation, and moment matching (30,33). Web-based applications like the 

Sheffield Accelerated Value of Information tools have been developed to promote the 

implementation of these methods (29,30,34).  

Equation 10. Expected Value of Sample Information 

EVSI𝜑,𝑛 = 𝐸𝐷{max𝑗[𝐸𝜑|𝐷𝑁𝐵(𝑗, 𝜑)]} − max𝑗{𝐸𝜃[𝑁𝐵(𝑗, 𝜃)]}  

where: 𝜑 = single uncertain parameter 

𝜃 = all uncertain parameters 

𝐷 = 𝑠ampled value of 𝜃 from trial with sample size 𝑛 

Specific research will represent an efficient use of resources if the EVSI for a population 

of current and future patients is less than the expected costs of the research. In other words, a 

positive ENBS (Equation 11) indicates that the benefits of a proposed study outweigh its costs 
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(19,26–28,31). On the other hand, a negative ENBS will indicate that current evidence is 

insufficient for decision making. A thorough assessment of this criteria will therefore involve 

calculating the EVSI and ENBS for a range of study designs. In the event a positive ENBS is 

realized for multiple designs, the study which offers the maximum ENBS should be 

commissioned. The results from this research will then be used to update the decision model to 

consider new adoption and research decisions (22,27,28). 

Equation 11. Expected Net Benefit of Sampling 

ENBS𝜑,𝑛 = EVSI𝜑,𝑛 − TC𝜑,𝑛  

where: TC𝜑,𝑛 = total cost for research of parameter 𝜑 with sample size 𝑛.  

1.2 The HTA Cycle 

 Altogether, the use of economic evaluation within the process of HTA should reflect a 

continuous cycle of evidence gathering and decision making (19,31–33). As illustrated in Figure 

1-1, the specific decision problem will direct the assembly of current evidence as well as a 

decision model. Afterwards, Monte Carlo simulation will be used to determine if current 

evidence supports the adoption of the health technology. Subsequently, Value of Information 

analysis will inform whether the decision uncertainty warrants the commissioning of additional 

research. The process will end if new information is unlikely to change the adoption decision. If 

the opposite proves true, new research will be commissioned for the parameters which had the 

greatest impact on decision uncertainty. Once the commissioned research is complete, the 

findings will be incorporated into an updated systematic review and decision model and the 

process will be repeated (19,31–33).  
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Figure 1-1. Health Technology Assessment Cycle. Adapted from Wilson and Abrams (19) 

 New information identified from the VoI analysis will not hold its value forever. This can 

occur because of three different factors. First, there may be a change in the effective price of a 

technology. Second, a new technology may be introduced requiring an expansion of the mutually 

exclusive alternatives (and the supporting evidence) included in the decision model. Third, new 

information related to the model inputs or structure may be published in advance of, or shortly 

after, an adoption decision. These issues have raised concerns about assumptions relating to the 

effective lifetime of a technology in VoI analysis (34). In addition, policy frameworks have been 

proposed which use the decision uncertainty to consider coverage with evidence development 

schemes (21,35,36).  

 One methodological issue which has not received much attention is the challenge of 

keeping a systematic review and economic evaluation up to date. This is particularly relevant 

given that much work in HTA happens when the evidence base for a technology is least mature 

(25). While the literature on this topic is scarce, there appears to be a consensus that most models 

are developed for a single analysis and are rarely updated. When updates do happen, they 
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typically involve a duplication of the original effort (37–44). This challenge has been 

acknowledged in the evidence synthesis literature as well. In response, organizations like the 

Cochrane Collaboration have been promoting living systematic reviews which attempt to 

incorporate new evidence as soon as it becomes available (45,46). While efforts have been made 

to automate some review tasks, the resulting efficiency gains have been poorly described (45,46). 

The persistence of this challenge suggests that the costs incurred to update an existing systematic 

review and decision model could be allocated to other activities. Moreover, the delayed decisions 

which result from inefficient iteration risk health losses to patients and increased system costs.  

1.3 Reproducibility 

 The duplicative and inefficient nature of HTA iteration can be attributed to a lack of 

emphasis on reproducibility in its initial development. When defined narrowly, reproducibility 

refers to an ability to obtain consistent computational results given the same set of files and 

processes (47,48). More broadly, it reflects a strategic approach to directly validate, repeat, 

improve, and potentially re-purpose part (or all) of a project (47,48). This conceptualization of 

reproducibiltiy is distinguished from replication in terms of the availability of the original 

computer files to generate the results. Furthermore, it treats reproducibility as a matter of degree 

– with a project’s level of reproducibility ranging from irreproducible to exactly reproducible 

(47,48). This suggests an HTA’s level of reproducibiltiy will be determined by the ability to re-

use a specific version of a decision model and the efficiency with which new information can be 

incorporated within the model’s structure or input parameters. Therefore, the consensus 

surrounding the duplicative and inefficient nature of HTA iteration may indicate that HTAs are 

consistently developed to sub-optimal levels of reproducibiltiy.  
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 The principle of reproducibility has been a long-standing component of science. 

However, interest in the practice of reproducibility only began to gain traction with the 

widespread use of computing in scientific research. In fact, the first documented use of the 

phrase “reproducible research” was in relation to the way a seismology lab used computer files 

to efficiently re-create scientific artifacts (tables and figures) for inclusion in thesis or journal 

manuscripts (47,48). Today, computers are used in almost every part of scientific research – data 

collection, data analyses of varying degrees of sophistication, and manuscript development. 

Despite this ubiquity, there has been a lack of training in the effective use of computing in the 

research process across many scientific fields (47,48). As a result, the production of research at 

sub-optimal levels of reproducibility is not exclusive to HTA.  

 Growing interest in reproducibility has led to the emergence of literature relevant to 

academics, policy makers, and trainees. Two of the most prominent examples of such efforts 

include a book of reproducible case studies (47) as well as a report commissioned by the United 

States’ National Academies of Science, Engineering, and Medicine (48). Together these works 

summarize the features, challenges, and opportunities associated with reproducibility (47,48). 

The experiences documented in both works confirm that enhancing the reproducibility of HTAs 

can reduce the marginal cost of iteration. An emphasis on reproducibility will also complement 

ongoing efforts to improve transparency, such as open-source modelling (38–43,49–52). Both 

outcomes will depend on the implementation of computing strategies which capture the 

provenance of the results in machine- and human-readable formats (47,48). Thus, efforts to 

improve transparency through reproducibility and open science can be distinguished in terms of 

the benefits offered to the original author.  
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 As of this writing, there are two primary barriers to the production of reproducible HTAs. 

First, the specific computing strategies which require implementation have not been well 

described for the HTA context. For example, the recommended strategies from the book of case 

studies were targeted to an audience with some expertise in programming and data management. 

Fortunately, descriptions of factors which can affect reproducibility can guide the classification 

of strategies applied in the reproducible research literature (47,48). Second, efforts to enhance 

the reproducibility of HTAs will represent a significant behavioural change in research practice. 

As a result, the impact of the identified strategies on the methods and process of HTA, including 

the characterization of uncertainty, will need to be explored.  

1.4 Objectives 

 The objective of this thesis project was to explore how an emphasis on reproducibility 

can support the effective development and maintenance of Health Technology Assessments. 

Specific research objectives included:  

1. To identify relevant computing strategies from the reproducible research literature which 

can be adopted to enhance the reproducibility of Health Technology Assessments. 

(Chapter 2) 

2. To explore the procedural and methodological impacts from the implementation of the 

reproducible research strategies using a case study of Biologic Treatment for Psoriatic 

Arthritis. (Chapter 3) 

3. To describe how an emphasis on reproducibility can enable the consistent and thorough 

characterizations of uncertainty in economic evaluations of Health Technologies.  

(Chapter 4) 
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Chapter 2  

Computing Strategies to Enhance the Reproducibility of Health 

Technology Assessments: A Systematized Review 

Background 

Health Technology Assessment (HTA) has been recognized as a continuous process requiring 

regular revision. However, updating previously commissioned work can be duplicative, leading 

to delayed decision-making. Experience in other fields has indicated that strategies for 

reproducible computing can reduce the cost of HTA iteration. This review identified computing 

strategies from the reproducible research literature which could be adopted in the HTA context.  

Methods 

Relevant literature was identified using snowball sampling and citation screening. The search 

strategy was initiated from two key reports that described the history, features, and challenges of 

reproducible research. Key quotes describing computing strategies were organized into specific 

domains known to influence reproducibility of a project. Qualitative content analysis was 

subsequently performed to generate the results.  

Results 

Twelve computing strategies were identified from 33 records representing a range of disciplines 

in the natural and social sciences. Collectively, they encouraged the preservation of data in a 

machine-readable format, which serve as a common reference point within an automated 

workflow. Recommendations included supplementing code and data with specific documentation 

and project organization strategies.  

Conclusions 

The reproducible research strategies identified in this review encourage the modification, rather 

than redevelopment of existing datasets and procedures. If implemented, the cost of updating 

HTA evaluations would be reduced, resulting in more effective use of resources to support health 

care decision-making. However, success will require individuals and groups to commit 

significant resources to develop the necessary computing skills.  
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2.1 Introduction 

Health Technology Assessment (HTA), and the use of economic evaluation to support it, 

has been recognized as a continuous process of evidence gathering and decision-making (1–3). 

Economic evaluation is used to determine comparative cost-effectiveness and can also be used to 

determine whether any uncertainty associated with the evidence base and cost-effectiveness 

results warrant commissioning of additional research (1–8). Triggers for updating an HTA 

include the emergence of a new competitive technology or information likely to affect the 

decision (1–3,9). However, the process of updating a previously commissioned HTA has been 

consistently described as a duplication of the original effort (10–16). In addition to incurring 

research costs which could be spent elsewhere, delayed decisions risk increased health losses for 

patients and healthcare costs.  

To improve the efficiency of HTA iteration, many have advocated for the release of 

computer files either on request or as open-source models (10–18). Given that these solutions 

seek to distribute rather than reduce labour costs, confidence in their effectiveness may be 

misplaced (19–21). For example, to update a previously commissioned HTA once new evidence 

becomes available, the original authors will need to commit resources to attract and retain new 

contributors (22,23). Such contributors will then familiarize themselves with the supplied 

computer files and choose whether to update them or redevelop the entire project – both time 

consuming tasks. In the event the new contributors abandon the update, the responsibility of 

completing the work will revert to the original authors.  

Computing plays an essential and ubiquitous role in systematic reviews, meta-analyses, 

and economic evaluations. Yet current standards and training have yet to expand its use beyond 

the preparation or execution of specific simulations and analyses (6,24). Other fields have 
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resolved similar challenges through an emphasis on reproducibility. This refers to the ability to 

obtain consistent computational results, including tables and figures, given the same set of files 

and processes (25,26). It is viewed as a strategic approach to directly validate, repeat, improve, 

and potentially repurpose projects. As such, it is conceptualized as a spectrum from 

irreproducible to exactly reproducible (25–27).  

In contrast, the HTA literature has treated reproducibility synonymously with 

replicability and as a means to promote or assess transparency (10–12,16–18,28–32). While they 

are strongly associated, transparency is about providing value to others while the primary 

beneficiary of reproducibility is one’s future self (25,26). The experience with reproducible 

research in other scientific fields may offer a window into the use of computing beyond specific 

analytical techniques, thereby lowering the cost of iteration. The objective of the present study is 

to identify relevant computing strategies from the reproducible research literature which can be 

adopted to promote the effective development and maintenance of HTA. 

2.2 Methods 

2.2.1 Search Strategy and Eligibility  

Relevant computing strategies from the reproducible research literature were identified 

using a systematized review. This method leveraged elements of the systematic review process to 

identify and organize included records. As a result, the systematized review is not meant to be as 

comprehensive as the systematic review (33). In the present study, record identification was 

facilitated by the development of a high-level conceptual framework using two key texts on 

reproducibility in science. These texts were selected because they both provided a 

comprehensive overview of the history, features, and impact of reproducible research (25,26). 

The purpose of the framework was to summarize the factors which can influence the 
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reproducibility of a project from the perspective of the original authors or an external audience. 

As detailed in Appendix A, the eight identified constructs included: (i) Provenance: Process; (ii) 

Provenance: Data; (iii) Provenance: Environment; (iv) Documentation; (v) Project Management; 

(vi) Open Reporting; (vii) Copyright; and (viii) Tool Selection (25,26).  

 Records which described at least one specific practice or strategy relevant to the 

conceptual framework were included in this review. Given the breadth of fields to which 

reproducibility may apply, potentially eligible records were identified using backwards and 

forwards citation screening of included records as part of a staged process. This bidirectional 

snowballing strategy offered a rigorous mechanism to identify a representative sample of the 

literature on reproducibility in science (33,34). A complementary database search was not 

considered due to the limited ability to define a search query with sufficient specificity and 

sensitivity. This is reflected by the findings of a review by McManus et al., which explored 

various definitions of replication, yet failed to identify its role as a form of reproducibility 

(30,33,34).  

 The search strategy began with the two records which informed the development of the 

conceptual framework (25,26). In each stage, candidate records were compiled from the 

reference lists (backward citation screening) and Google Scholar citations (forward citation 

screening) of items which satisfied the inclusion criteria from the preceding stage (33). Identified 

records were subsequently screened to exclude duplicates, items which had already been 

assessed, or those which were not relevant to this review. Record identification and eligibility 

assessment were conducted by a single investigator (D.W.) but were reviewed by three authors 

(D.W., G.H., and E.S.). Sampling continued until these same authors agreed that thematic 

saturation had been reached.  
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2.2.2 Data Extraction and Analysis 

 For each included record, every identified strategy was coded verbatim to one of the 

constructs listed in the analytic framework. To ensure consistency in the indexing process, 

specific definitions were created for each construct. Quotes that did not satisfy inclusion criteria 

were excluded.  

 A framework approach was used to conduct a qualitative content analysis of quotes 

indexed to a subset of factors influencing reproducibility (35). Construct selection for this 

activity was completed following data collection, but prior to the identification of key themes. 

Of the eight constructs available, qualitative analysis was restricted to quotes coded to 

Provenance: Process, Provenance: Data, Provenance: Environment, Documentation, and 

Project Management. The Tool Selection, Open Reporting, and Copyright constructs were 

beyond the scope of the present review.  

The quotes associated with the remaining five constructs were analyzed inductively to 

identify emergent strategies relevant to the original authors of an HTA (35). For each construct, 

the indexed quotes were organized into groups according to their perceived thematic overlap. 

The main points of each group were then summarized into a single narrative to facilitate 

reporting. Results were validated by contrasting the emergent strategies against those used in the 

concurrent redevelopment of an HTA case study (details not reported here).  

2.3 Results 

A total of 33 records satisfied the inclusion criteria for this review (25,26,36–66). A 

summary of the number of records identified at each stage of the search strategy is presented in 

Figure 2-1. Thirty-two were published between 2009 and 2020 (25,26,36–66). The identified 

records represented a broad range of fields of study; however, the two most common fields were 
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statistics (37,40,47,52,62,66) and the biological sciences (39,43,45,46,49,53,54,57,58,61,63–65). 

Results from the qualitative synthesis yielded twelve strategies which can be used to enhance the 

reproducibility of HTAs as summarized in Figure 2-2. Complete descriptions of each strategy, 

along with supporting quotations, are included in the sub-sections below. 

 
Figure 2-1. Details of identified reports and those selected for inclusion in this review. 
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Figure 2-2. Summary of Identified Reproducible Research Strategies. Panel A: Schematic of a basic reproducible workflow for a systematic review and 

economic evaluation; Panel B: Recommended Project Directory Structure; Panel C: Version control recommendations.  
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2.3.1 Provenance: Process  

2.3.1.1 Organize the Project Process into a Workflow 

 Reproducibility requires the re-execution of each procedure performed on a computer 

(i.e., “clicks” or commands) with minimal difficulty. This can be facilitated through the creation 

of a workflow, which refers to the sequence of steps required to obtain the desired outputs from a 

defined set of inputs (26,47). The intent of this strategy is to encourage the systematic, rather 

than ad hoc, record keeping of every operation performed to get from the starting point to the 

intended result (25,26,38,42,46,47,53,54,57–59,64).  

 One record recommended organizing each project task into a specific stage of a basic 

reproducible workflow (26). The data acquisition stage should capture each step needed to 

produce raw data, which could be acquired from primary or secondary sources or created from a 

simulation (26). The data processing stage should capture each step needed to prepare the raw 

data for simulation or analysis (26,41,48). Such wrangling or munging operations include, but 

are not limited to, sub-setting values, merging related tables, converting between “wide” and 

“long” layouts, and computing new columns (36,41,48,62). The analysis stage should capture all 

relevant statistical analyses and visualizations to prepare for another workflow operation or an 

answer to the research question (26) (Table 2-1). 

2.3.1.2 Write Scripts to Automate the Project Workflow 

 To enable reliable execution of all or part of a workflow, each step should be encoded in 

one or more scripts (26,40,47,50,57). A script is a plain text file containing the instructions that a 

computer can read to complete a data acquisition/creation, processing, or analysis task. As scripts 

require the explicit statement of all assumptions and procedural steps for machine execution, 

they represent an accurate and complete record of the tasks performed by a computer. Therefore, 
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a workflow will also represent an editable and auditable record of the project methods 

(25,26,36,40,42,45,46,48,50,54,57,63,64). (Table 2-1). 

2.3.1.3 Develop Scripts Through Iterative Revision 

 The benefits of scripts are maximized when they are written to consider two audiences: 

the computer and the human. For the computer, the syntax of the scripting language must be 

employed correctly so that the supplied instruction can be executed. For the human, the script 

must be written to allow a future collaborator who is familiar with the language, to read, 

navigate, and modify its contents. Following the development of an initial working script, two 

types of iterative revision were encouraged: (i) Elimination of Duplication and (ii) Minimize 

Human Intervention (39,41,48,54,63). (Table 2-1) 

Elimination of Duplication 

 Duplication in scripts is often a strategy for iterative computation or as an attempt to 

expand the scope of an operation to include multiple datasets or variables (45). This redundancy 

can distort the intent of the operation and increases the risk of error as each occurrence must be 

managed independently (42). Modularization and abstraction were recommended to revise 

scripts and eliminate duplication. Modularization refers to the re-organization of code within 

scripts into single purpose programs called functions. Script clarity is improved by replacing 

multiple instances of the same code with a single command which accepts and returns specific 

input and output (26,39,40,42,54,57,58,63–66). Abstraction refers to the process of re-writing a 

script, even after modularization, to remove any duplicate instructions (64). Through the single 

specification of a task or sub-task, the code will be easier to read and modify should new 

requirements be identified in the future (36,42,45) (Table 2-1). 
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Minimize Human Intervention 

 Where possible, new scripts or functions should be created to automate a manually 

executed task (26,42,47,54,56,63–65). However, the decision to expand the scope of operations 

for a workflow should be determined by its state of reproducibility (26). For example, rather than 

downloading life expectancy data from a specific webpage, a national statistics agency may 

publish a protocol enabling researchers to write programs which can acquire the data directly 

from the server. In most circumstances, the benefits of further automation will quickly outweigh 

the costs of investing in re-useable commands. Furthermore, it will confer time savings on the 

project team since the computer will be able to execute the workflow much faster than a person 

could (42) (Table 2-1). 

Table 2-1. Supporting Quotes for Strategies Relevant to Provenance: Process 

Organize the Project Process into a Workflow 

• “Design a workflow as a sequence of small steps that are glued together with intermediate 

outputs from one step feeding into the next step as inputs. Met through overall workflow 

design especially a clear conceptualization of the different operations that need to occur 

sequentially and how they support each other.” (26) 

Write Scripts to Automate the Workflow 

• “A script is a plain text file containing instructions composed in a programming language 

that direct a computer to accomplish a task. In a research context, researchers write scripts 

to do data ingest cleaning analysis visualization and reporting. By writing scripts a very 

high-resolution record of the research workflow is created and is preserved in a plain text 

file that can be reused and inspected by others.” (50) 

• “Automation of the Research Process. Means that the main steps in the project 

(transformations of data processing and calculations visualizations) are encoded in software 

and documented in such a way that they can reliably and mechanically be replicated. In 

other words the conclusions and illustrations that appear in the article are the result of a set 

of computational routines or scripts that can be examined by others and re-run to reproduce 

the results.” (26) 

Develop Scripts through Iterative Revision 

• “A happy medium often involves iterative improvement of scripts. An initial script is 

designed with minimal functionality and without the ability to restart in the middle of 

partially completed experiments. As the functionality of the script expands and the script is 

used more often it may need to be broken into several scripts.” (54) 

• “A program should not require its readers to hold more than a handful of facts in memory at 

once. So programs should limit the total number of items to be remembered to accomplish 
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a task. The primary way to accomplish this is to break programs up into easily understood 

functions each of which conducts a single easily understood task. This serves to make each 

piece of the program easier to understand in the same way that breaking up a scientific 

paper using sections and paragraphs makes it easier to read.” (63) 

• “Turning the specific instances of something into a general-purpose tool. [Abstraction] is 

essential to writing good code for at least two reasons. First it eliminates redundancy which 

reduces the scope for error and increases the value you can get from the code you write. 

Second it makes code more readable. (42) 

• “Pushing the boundaries of automation pays big dividends. The costs tend to be lower than 

they appear and the benefits bigger. A rule of research is that you will end up running every 

step more times than you think. And the costs of repeated manual steps quickly accumulate 

beyond the costs of investing once in a reusable tool.” (42) 

• “…automation pays big dividends. The costs tend to be lower than they appear and the 

benefits bigger. A rule of research is that you will end up running every step more times 

than you think. And the costs of repeated manual steps quickly accumulate beyond the 

costs of investing once in a reusable tool.” (42) 

 

2.3.2 Provenance: Data 

2.3.2.1 Preserve the Raw Data 

A dataset refers to a collection of values (numbers or characters) about a subject (62). In 

the included records, raw data was used as a relative designation to represent an unprocessed, 

unmodified dataset which contains all original values and observations. Raw data serve as a 

common reference point to initiate the workflow and act as a single authoritative source where 

the most up-to-date information about a topic can be accessed (40). In contrast, data returned 

from the other workflow stages can always be re-generated and only need to be preserved for the 

purposes of reporting (53,57,64). In recognition of the key role that raw data play in 

reproducibility, it is recommended that such datasets are preserved and treated as read-only 

(44,48,58,62,66).  

 While the read-only recommendation will protect the raw data from accidental changes, 

specific strategies will be necessary to satisfy the requirement that the raw data remain up to 

date. Deliberate changes to a dataset may be necessary for one of five reasons: (i) to correct 
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errors in formatting or values; (ii) to reconcile or replace missing values; (iii) to modify the 

classification system of a categorical variable; (iv) to record new observations; and (v) to 

incorporate emergent information requirements (44,48,58,62,66). Recommended procedures for 

the preservation of raw data differed according to the unique updating, validation, and storage 

requirements of each dataset (46,53,59). For example, data extracted from a specific 

observational study which is infrequently updated will require less maintenance than a dataset 

created from an ongoing systematic review of randomized controlled trials. Different 

considerations may be necessary for automated data acquisition/creation processes like 

simulation (40,46,53,57–59,61,64). (Table 2-2) 

2.3.2.2 Store Data in a Machine-Readable Format 

 The integration of data into the workflow is enabled using text-based formats with open 

file specifications. Text-based formats are machine readable because the user can clearly 

describe the data and its formatting to a computer. In contrast, formats which supplement the 

data with information describing its display (colours, fonts, etc.) will make it more difficult to 

access and operate on potentially relevant information (25,26,46,51,58,61,64). Additionally, 

formats with open specifications (i.e., comma separated values; csv) are preferable since the data 

can be accessed without proprietary software or hardware. Therefore, storing data in text-based 

open formats can promote inter-operability across software and hardware systems. (Table 2-2). 

2.3.2.3 Create Datasets with Unambiguous Relationships Between Rows and Columns 

 To promote the reliable storage and organization of tabular datasets, three rules were 

consistently promoted. First, each column should represent a single variable containing values 

which measure the same attribute. Second, each row should represent a single observation. 

Third, there should be one table for each subject/topic of data. In other words, the variables must 
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be attributes of the table’s subject/topic. When multiple tables are required, an additional column 

is needed to uniquely identify each observation. Such values enable the creation intermediate 

tables for further processing or analysis. Examples which illustrate this approach to data 

organization are included in referenced works. The technical term for the application of these 

rules is “data normalization”, and their application has received considerable attention as “tidy 

data” (40,42,46,61,62). (Table 2-2). 

Table 2-2. Supporting Quotes for Strategies Relevant to Provenance: Data 

Preserve the Raw Data 

• “Consider the intrinsic value of the data. Observations of phenomena that cannot be 

repeated may need to be stored indefinitely. Data from easily repeatable experiments 

may only need to be stored for a short period. Simulations may only need to have the 

source code initial conditions and verification data stored.” (53) 

• “Keep raw data raw: Since the analytical and data processing procedures improve or 

otherwise change over time having access to the "raw" (unprocessed) data can facilitate 

future re-analysis and analytical reproducibility.” (46) 

• “Data errors and problems may include entry errors missing values duplicates outliers 

and data inconsistencies and discrepancies any of which may affect the validity 

reproducibility and thus the quality of studies.” (66) 

Store Datasets in a Machine-Readable Format 

• “Always encode every piece of information about the observations using text. For 

example, if storing data in a spreadsheet and a form of coloured text or cell background 

formatting to indicate information about an observation then this information will not 

be exported (and will be lost!) when the data is exported as raw text. Every piece of 

data should be encoded as actual text that can be exported.” (40) 

• “Data should be stored in a format that computers can use easily for processing. This is 

especially crucial as datasets become larger. Making data easily usable is best achieved 

by using standard data formats that have open specs or by using databases. These 

ensure interoperability facilitate re-use and reduce the chances of data loss or mistakes 

being introduced during conversion between formats.” (46) 

Create Datasets with Unambiguous Relationships between Rows and Columns 

• “Tidy Data. A standard way of mapping the meaning of a dataset to its structure. A 

dataset is messy or tidy depending on how rows columns and tables are matched up 

with observations variables and types. In tidy data: 1) Each variable forms a column; 2) 

Each observation forms a row; 3) Each type of observable unit forms a table.” (62) 

• “Useful for data to be structured in a way that makes use interpretation and analysis 

easy. Implemented through the use of "Codd's 3rd normal form" also known as tidy 

data. Duplication of information is reduced and it is easier to subset or summarize the 

dataset to include the variables or observations of interest.” (46) 
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2.3.3 Documentation 

2.3.3.1 Document the Data, Process, and Project 

 Documentation should communicate the purpose, behaviour, or content of the computer 

files created for a project. Intended exclusively for humans, it will be most useful when 

maintained in parallel with its machine-readable counterpart (26,39,42,43,49,53,54,63,64). The 

included records recommended comments for scripts and usage documentation for functions. A 

comment is a statement embedded in a script that the computer will ignore, which succinctly 

communicates the behaviour or purpose of a section of code (26,49,56,63). In contrast, usage 

documentation explains how a function can be used to return its output. It should describe what 

the function does, the inputs and their default values, the content and structure of the output, and 

provide a working example (49,54). A “data dictionary” was recommended for raw data not 

delivered by a program as such datasets will contain information which require further 

explanation (26,36,37,40,45,47,50,53,56,61,66). Lastly, the creation of a README file was 

recommended to serve as the project homepage. Suggested content included a summary of the 

project objectives, information to orient new collaborators, the expected level of reproducibility, 

and a list of active contributors (26,43,49,53,54,56,63). (Table 2-3).  

2.3.3.2 Use Short, But Meaningful Names for Files, Functions and Variables 

Naming is a form of documentation because it serves as a declarative statement of an 

object's meaning or function. Thus, choosing good names will make a script, program, dataset, or 

file easier to read and understand. The main principle is to choose names which are short, 

distinctive, and meaningful. This is reflected in four recommended practices. First, a name of an 

object should reflect its scope. For example, while naming a loop counter “i” or “j” is clear, the 

same cannot be said for a dataset or variable named "data1" or "x1". Second, special characters 
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should be avoided, except for hyphens and underscores which should be used as substitutes for 

spaces. Third, lengthy explanations are best suited for the relevant documentation. Lastly, a 

name should never include the word "final", as it will eventually be ignored (37,39,40,42,63,64). 

(Table 2-3). 

Table 2-3. Supporting Quotes for Strategies Relevant to Documentation 

Document the Project, Process, and Data 

• “Don't write documentation that you will not maintain. Because you don't have to keep 

documentation up to date for code to work or for results to be right internal consistency 

becomes a problem. It is tempting to make improvements to the code without making 

parallel improvements to the comments only to find later that your comments are 

confusing or misleading. To avoid this, you will need to keep your comments up to 

date. But if its not worth maintaining a piece of documentation up to that standard it 

probably isn't worth writing it in the first place.” (42) 

• “Data tables do not necessarily display all the variables needed to figure out what 

makes each row unique. For such information you sometimes need to look at the 

documentation of how the data were collected and what the variables mean.” (36) 

• “Write Comments as you code. Comments are the single most important aspect of 

software documentation. Although it may be perfectly obvious to you what your code 

does without comments other readers will likely not be so fortunate. Indeed, you 

yourself may not even be able to understand your own code after you've moved on to 

another project.” (49) 

• “Every script or program no matter how simple should be able to produce a fairly 

detailed usage statement that makes it clear what the inputs and outputs are and what 

options are available.” (54) 

• “Your README file acts like a homepage for your project…A good rule of thumb is 

to assume that the information contained within the README will be the only 

documentation your users read. For this reason, your README should include how to 

install and configure your software where to find its full documentation under what 

license it is released how to test it to ensure functionality and acknowledgements. You 

should include your quick start guide in your README.” (49) 

Use Short, but Meaningful Names for Files, Functions and Variables 

• “Give functions and variables meaningful names. Mechanism to document their 

purpose and to make the program easier to read. As a rule of thumb the greater the 

scope of a variable the more informative its name should be; while its acceptable to 

call the counter variable in a loop i or j things that are reused often like major data 

structures should not have 1-letter names.” (64) 

• “As a general rule, do not use spaces either in variable names or in file names. They 

make programming harder. Where you might use spaces use underscores or perhaps 

hyphens - whatever you choose pick one and be consistent. Avoid special characters 

expect for underscores and hyphens.” (37) 
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2.3.4 Project Management 

2.3.4.1 Organize Projects with a Consistent Directory Structure 

The included records recommended organizing all project files within a single project 

folder. Files within this folder should be accompanied by the README, as well as additional 

sub-directories to organize the files based on their content. Frequent examples included 

documents (“doc”), data (“data”), results (“results”), and scripts (“src”) to store text files which 

define and apply each function (26,42,54,56,57,64) (Table 2-4). 

2.3.4.2 Use an Effective Version Control Strategy 

Unlike the “track changes” feature of a word processor, version control is meant to 

manage revisions across multiple related files. Five common characteristics were identified from 

the manual and software-based version control strategies promoted in the included records. First, 

a “version” should be conceptualized as a group of edits to a file or group of files which can be 

instantly reverted (42,64). For example, a meaningful change may involve correcting an error in 

the source code or data. Second, a version should always allow for the correct execution of the 

workflow. Any change has the potential to distort, or interrupt workflow behaviour and failing to 

revise dependent operations risks undermining reproducibility in the event the error goes 

unnoticed (26,39,42,47,57,65). Third, a changelog should be maintained to serve as a historical 

record of the project’s development. Such documentation provides a centralized location to 

summarize the changes made for each version (48,49,64). Fourth, version control should always 

promote a single authoritative project directory. Revisions should be applied to existing files, 

rather than creating a copy of a file and then modifying its contents. In addition to populating a 

project directory with ambiguously named copies of the same file (i.e., “analysis_02” and 

“analysis_new”) the copy-and-modify approach will distort the provenance of the workflow 
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(47,63). Lastly, it should include a form of back-up which mirrors the project directory to a 

remote location and synchronizes the changes on a regular basis. Examples include an external 

hard drive, cloud storage, or a version control service (46,54,64) (Table 2-4). 

Table 2-4. Supporting Quotes for Strategies Relating to Project Organization 

Organize Projects with a Consistent Directory Structure 

• “Someone unfamiliar with your project should be able to look at your computer files 

and understand in detail what you did and why. This "someone" could be: i) someone 

who read your article and wants to try to reproduce your work ii) a collaborator who 

wants to understand the details of your experiments iii) a future student working in 

your lab who wants to extend your work after you have moved on to a new job; iv) 

your research advisor; v) Your future self!” (54) 

Use an Effect Version Control Strategy 

• “A general problem: anytime you have more than one representation of the same 

information you run the risk that the two will someday come into conflict. In the best-

case scenario, you will need to do some work to untangle the mess. In the worst case 

scenario, your results will be wrong or internally inconsistent.” (42) 

• “Use a Version Control System. A VCS stores snapshots of a project's files in a 

repository. Programmers can modify their working copy of the project at will then 

commit changes to the repository when they are satisfied with the results to share them 

with colleagues.” (63) 

 

2.4 Discussion 

 This review identified a series of computing strategies which can enhance the 

reproducibility of HTAs. Findings revealed that the duplicative nature of HTA iteration may be 

attributable to an over-reliance on human intervention for tasks which a computer could execute 

faster and more reliably. In contrast, the identified strategies encourage the preservation of raw 

data which serve as a common reference point in an automated workflow. Duplication is avoided 

by leveraging human intervention to modify rather than recreate each raw dataset or script.  

The benefits can be illustrated using the example of adding a new trial of an existing 

comparator to the sequence of systematic review, meta-analysis, and decision model. As 

presented in Figure 2-2 (Panel A), a workflow could begin in the data acquisition stage where the 
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existing trial data are updated to include values extracted manually from the new study. In the 

data processing stage, a query would be executed to isolate the specific observations and 

columns from the trial data required for the meta-analysis. Updated effectiveness values would 

then be collected with the other parameters to be passed into the probabilistic simulation of the 

decision model. The process of passing output from one function into the next as input would 

continue until estimates of cost-effectiveness are returned. If one were to make procedural 

changes, revisions could be applied to the relevant modular scripts. Following methodological 

and behavioural validation, generating updated results could be as simple as executing a “run all” 

command.  

 In practice, it may not be feasible to capture the provenance of the results from the rawest 

form of data. For example, workflow design will be impacted by confidentiality requirements 

when raw data contain personally identifiable information. Likewise, the division of 

responsibility in a particular project may result in the creation of independent workflows for 

systematic review and economic evaluation. Additional coordination will be needed to develop a 

single integrated workflow or to provide the economic evaluation with read-only access to a 

persistent location storing the most up-to-date results. The absence of such coordination will 

narrow the scope of operations captured by the workflow and restrict the extent to which 

reproducibility can reduce duplication in future iterations.  

Efficiency gains in HTA iteration will be further restricted to those who have read and 

write access to the files which constitute the reproducible workflow. Given that reporting 

standards have yet to mandate file sharing, it remains unlikely that independent investigators will 

be able to iterate a previous (reproducible) HTA more efficiently than the original authors 

(25,28,55). While investments in reproducibility will complement ongoing efforts to improve 
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transparency, file sharing may not be sufficient to extend the reproducible capability to a broader 

set of contributors with different interests, expertise, and skills (50,55,59). Strategies for 

reproducibility which apply to the Open Reporting, Copyright, and Tool Selection constructs of 

the conceptual framework remain an important area for future research.  

 Ultimately, enhancing the reproducibility of a project will depend on the development of 

computing skills which are not included in HTA training curricula (6,21,24). The contribution of 

the present review is therefore restricted to raising awareness towards a collection of strategies 

which could be adopted by interested readers (21,25,26,63,64,67). Self-directed skill 

development can be aided further using materials produced for Data Carpentry workshops (68). 

It is recommended that an incremental approach be applied to the adoption of each strategy, 

including the automation of a small but increasingly complex sequence of manually executed 

tasks. This exercise may help clarify the requirements considered in the selection of a computing 

tool to support HTA (21,69–71). Lastly, it would be unreasonable to expect all contributors to 

become experts in data management or programming. However, familiarity with the underlying 

concepts will foster more effective collaborations (45,67).  

2.4.1 Limitations 

 The findings of this review should not be treated as an exhaustive or complete 

characterization of all practices which may influence reproducibility. Strategies relating to the 

computing environment were not reported due to their technical complexity (25,26,40,50,56,57). 

Moreover, the Tool Selection, Open Reporting and Copyright constructs represent factors which 

can influence the independent reproduction previously published research. In addition, the 

comprehensive nature of the texts used to create the conceptual framework does not eliminate the 

possibility that some factors which can impact reproducibility were overlooked (25,26). The 
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creation of a comprehensive framework to summarize and critically appraise reproducible 

research strategies presents a unique inter-disciplinary research opportunity which deserves 

pursuit. Lastly, the authors acknowledge that reliance on a single reviewer for record 

identification, data extraction and analysis may be a risk to the validity of the results. The impact 

of this methodological choice was mitigated using deductive coding of quotes to constructs 

identified a priori and the maintenance of an audit trial to ensure all results were data driven.  

2.5 Conclusion 

 The process of HTA requires computing to generate and assemble evidence to inform 

health policy decisions. While the consideration of new information is an ongoing requirement, it 

often involves a duplication of the original effort. Findings from this review suggest that this 

may be a sign of poor digital record keeping by the original authors. A series of strategies were 

identified to better manage the provenance of the results through the deliberate preservation of 

data which serve as a common reference point in an automated workflow. Efficient iteration is 

enabled by encouraging the modification rather than redevelopment of existing datasets and 

procedures. While straightforward in principle, realization of the benefits from reproducibility 

will be restricted to individuals and groups who invest in the development of the requisite 

computing skills.  
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Chapter 3  

Impacts from Enhancing the Reproducibility of Health Technology 

Assessments: A Case Study in Psoriatic Arthritis 

Background 

The process of updating a previously commissioned Health Technology Assessment is widely 

acknowledged as inefficient. However, experiences from other scientific fields suggest that this 

may be a sign of sub-optimal reproducibility. To enhance this, it is necessary to change how 

computing is used to organize and manage HTAs. The objective of this study was to explore the 

procedural and methodological impacts from these insights in the HTA context.  

Methods 

In this case study, computing strategies known to support reproducibility guided the 

redevelopment of a previously commissioned HTA for Psoriatic Arthritis. A collection of 

modularized functions were used to create an automated workflow, organized into three distinct 

activities: i) the preparation of model parameters; ii) simulation for an adoption or research 

decision; and iii) the post-processing of simulation results. Once validated, the entire workflow 

was executed using the same analysis strategy as the original HTA. This involved the stochastic 

evaluation of 15 decision models across four distinct scenarios. To measure the impact of the 

redevelopment, the timing of each activity was recorded and summarized.  

Results 

Simulation ready model parameters were generated from raw data in four seconds. Unlike the 

original HTA, computational intensity did not restrict the use of stochastic simulation methods. 

For the adoption decision, it took 128 hours to generate results for the 15 models, using Monte 

Carlo simulation with 20,000 iterations. Lastly, the post-processing of simulation results was 

completed in minutes.  

Conclusions 

Meaningful procedural and methodological consequences were realized from the application of 

computing strategies which enhanced the reproducibiltiy of the PsA HTA. The editable, 

auditable, and authoritative nature of the automated workflow offered a mechanism for greater 

quality control. In addition, the re-usable nature of the workflow and its components meant 
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duplicate effort in iteration could be avoided. Lastly, the redevelopment revealed how 

computational efficiency can affect the characterization of uncertainty in decision making. While 

the investment in the underlying computing skills was significant, payoffs will include greater 

transparency, better decision making, and more efficient iteration. 
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3.1 Introduction 

 In the process of Health Technology Assessment (HTA), economic evaluation is used to 

inform the efficient allocation of scarce resources (1–3). To determine if an intervention or 

programme represents value for money, decision modelling is used to generate estimates of cost-

effectiveness. This single framework is used to conduct an evidence synthesis of data from 

multiple sources (4–6). For example, following model conceptualization relevant evidence must 

be synthesized to inform the relevant input parameters. As much of this evidence is uncertain, 

generating unbiased estimates of expected costs and effects will require the probabilistic 

evaluation of the decision model (2,3). Additionally, consensus exists that ongoing iteration of an 

HTA is necessary to ensure decisions are made with current information (7–9). Prior to a given 

deadline, a new estimate of effectiveness may need to be incorporated into a systematic review. 

Iteration may also be necessary following the emergence of a new technology (7–9).  

 Satisfying these requirements will depend on the nature of the decision model and the 

time constraints of the appraisal process. Fidelity to the probabilistic requirement will be 

influenced by the computation time of a Monte Carlo simulation. This involves the repeated 

evaluation of a decision model using randomly sampled parameter values (10,11). The time-

consuming nature is reflected by the need to generate a distribution of costs and effects for each 

alternative. However, computation times can also be affected by the complexity of the model 

structure and the number of scenario and sub-group combinations (3,10,12). Meanwhile, 

satisfaction of the iterative requirement will be influenced by the efficiency with which a new 

decision can be made with current information. However, updating an existing HTA with new 

information has been consistently cited as a duplicative activity (13–18). This may be indicative 

of development strategies which lead to sub-optimal levels of reproducibility. Narrowly, this 
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refers to the ability to obtain consistent computational results using the same set of files and 

processes. More broadly, reproducibility represents a strategic approach to directly validate, 

repeat, and potentially repurpose scientific work (19,20). 

 A systematic review was recently conducted to identify computing strategies applied in 

other scientific fields to support reproducible research. Findings revealed that enhancements to 

reproducibility require changes to the way in which computing is used to organize and manage 

HTAs (21). Recommended strategies encouraged the preservation of raw data in a machine-

readable format to serve as a common reference point in an automated workflow. Reductions in 

the marginal cost of HTA iteration are expected to be realized from the revision or expansion of 

the scripts and data which comprise the workflow (21). However, the magnitude of the expected 

efficiency gains remains unspecified. Furthermore, the impact of the identified strategies on the 

efficiency of a Monte-Carlo simulation are unknown, especially in the context of complex model 

structures which consider multiple scenarios and sub-groups. Given the considerable time 

requirements involved with developing the necessary computing skills, implementation will be 

constrained until the return on investment can be clearly understood and justified.  

This paper sought to understand the procedural and methodological impacts of using 

previously identified strategies for reproducible research in the HTA context. The most recent 

NICE Multiple Technology Appraisal (MTA) of Biologic Treatment for Psoriatic Arthritis (PsA) 

was selected as the case study because i) it had been subject to iterative revision; and ii) it 

considered a complex model structure with multiple sub-groups and scenarios which had 

previously limited the use of probabilistic methods owing to computational intensity (22–24).  
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3.2 Methods 

 A previously published HTA, originally commissioned by NICE, was redeveloped using 

the identified computing strategies to support reproducibility (21,24). The methods of the 

reference project were applied to be consistent with what was originally reported and are 

summarized in relation to the present study. For complete details on the methods for economic 

modelling and the estimation for each parameter, see Corbett et al. (24). Attention is given to the 

implementation of the identified computing strategies to support reproducibility.  

3.2.1 Case Study: Biologic Treatment for Psoriatic Arthritis 

 The case study for this redevelopment was a Multiple Technology Appraisal of Biologic 

Treatment for Psoriatic Arthritis published by Corbett et al. in 2017 (24). The aim was to 

determine the clinical- and cost-effectiveness of two new biologic therapies, Secukinumab (SEC) 

and Certolizumab Pegol (CZP), relative to existing products among adults with PsA following 

ineffective treatment with a conventional Disease Modifying Anti-Rheumatic Drug (cDMARD). 

To determine clinical effectiveness, a systematic review of randomized controlled trials was first 

conducted. Eligible studies involved the treatment of adult PsA with one of the following 

interventions: SEC, CZP, Etanercept (ETN), Infliximab (INF), Adalimumab (ADA), Golimumab 

(GOL), Ustekinumab (UST), Apremilast (APR), or Placebo. Estimates of clinical effectiveness 

were synthesized using Bayesian Network Meta-Analysis (NMA) of four outcomes: i) Psoriatic 

Arthritis Response Criteria (PsARC); ii) Change in Health Assessment Questionnaire – 

Disability Index (HAQ-DI) conditional on PsARC Response; iii) Psoriasis Area Severity Index 

(PASI) Response; and iv) American College of Rheumatology Improvement Criteria (24).  

 A decision analytic model was used to compare the cost-effectiveness of alternative 

sequences of biologic treatments which were licensed for use in adult PsA. To reflect the 
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different stages of the treatment pathway for adult PsA, three sub-populations were specified: i) 

biologic naïve, 1 prior cDMARD; ii) biologic naïve, at least 2 prior cDMARDs; and iii) biologic 

experienced. Additionally, three sub-groups were considered within each sub-population to 

explore the impact of baseline Psoriasis severity (None, Mild, and Severe). Each model adopted 

an NHS and Personal Social Services perspective to evaluate costs and outcomes, expressed as 

Quality Adjusted Life Years (QALYs), over a time horizon of 40 years using a cycle length of 3 

months (13 weeks). A price year of 2016 was assumed, and a 3.5% discount rate was applied to 

both costs and QALYs. Parameters for the decision model were obtained from published 

literature, manufacturers’ reported data, and the results from three NMAs (PsARC, HAQ, and 

PASI) (24).  

 The decision analytic model used a Semi-Markov structure to track a cohort with a 

homogeneous baseline population across each cycle and health state. Markov states were defined 

as a sequence of biologic treatments, followed by best-supportive care (BSC) and death. Three 

distinct model structures were conceptualized to accommodate differences in the length of the 

treatment sequence by sub-population (Figure 3-1). In addition to the treatment, the model 

tracked arthritis (as measured by HAQ-DI) and psoriasis (as measured by PASI) severity across 

each cycle and Markov state. These estimates of symptom severity were used to calculate health 

utilities (EQ5D) as well as the health service costs of arthritis and psoriasis care. Treatment costs 

were estimated as the sum of drug acquisition, administration, and monitoring costs (24).  
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Figure 3-1. Semi-Markov structures required in the economic evaluation 
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3.2.2 Summary of Redevelopment 

 The Psoriatic Arthritis HTA was redeveloped as if it was commissioned de novo. The 

intent was to create a machine-executable record which captured the provenance of an adoption 

or research decision generated as part of the HTA process. To accomplish this, an automated 

workflow was designed to capture the procedures for the economic evaluation as well as those 

used to estimate each parameter of the decision model. Each identified computing strategy was 

used to achieve a level of reproducibility that would allow for the reliable regeneration of 

computational results, including intermediate datasets. Details summarizing the implementation 

of each strategy are reported under the following sub-headings, which match their description in 

the preceding systematic review (21). 

3.2.2.1 Provenance: Process/Code 

 The R language and environment for statistical computing was used to program each step 

of the workflow (25). Before any code was written, pencil-and-paper were used to define the 

dependent relationships between the distinct methodological processes. The required tasks and 

datasets were subsequently organized into one of the acquisition, processing, and analysis stages 

of the basic reproducible workflow (19,21). An iterative development process was then used to 

create a collection of functions representing each distinct task of the workflow. The re-usable 

nature of each function was critical to this process for two reasons. First, separating function 

definitions from applications enabled safe prototyping of new tasks as well as instant 

propagation of changes to the source code. Second, the ability to call one function from the body 

of another saved the user from remembering the exact order of execution. Instead, higher level 

functions were created to capture and collect the output from each sequence of tasks. This led to 

the re-organization of the workflow into three distinct activities: i) the estimation of model 
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parameters directly from raw data; ii) simulation to inform the adoption or research decision; and 

iii) the estimation and preparation of simulation results.  

 The objective of the first activity was to generate the parameter values which could be 

fed directly into the simulation without additional modifications. To accomplish this, the relevant 

data acquisition, processing, or analysis steps were defined to prepare each parameter set 

(reflecting a declared currency and price year) from its raw data. Candidates for raw data were 

identified by tracing the provenance of each parameter in Corbett et al. to its publicly available 

origin (24). However, a candidate was only incorporated as raw data if the identified data 

processing or analysis steps could be reverse engineered and validated. When such attempts were 

unsuccessful, the output of the process of interest was used as raw data instead. The acquisition 

of raw data was primarily a manual process, apart from datasets containing life tables and values 

from the OECD used for inflation or currency conversions (26–28). Due to their serial nature, 

functionality was included to automatically update each dataset if the local version was more 

than one-year old.  

 Functions developed for the second activity were designed to return deterministic or 

probabilistic simulation output from the decision model. Modularization facilitated the 

satisfaction of the sub-group requirement by returning the model output for each sub-group from 

a single iteration of the decision model. This was permissible because the baseline PASI scores 

for each sub-group (None = 0; Mild = 7.3; Severe = 12.5) were not assumed to be uncertain 

parameters (24). Meanwhile, abstraction was used to iteratively revise the code for the decision 

model to accept a treatment sequence of any length (21). To achieve this, a multi-dimensional 

array was used to implement the Semi-Markov model in an approach similar to that described by 

Hawkins et al. (29). This data structure was well-suited to support this approach because it 
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offered the ability to independently subset the cycle, Markov state, and time-in-state dimensions. 

The resulting function leveraged this feature to define the Markov states dynamically to match 

the requirements defined in Figure 3-1.  

 For the third activity, functions were created to capture the standard post-processing of 

simulation output. This included the calculation of net-benefit statistics, expected values, 

incremental cost-effectiveness ratios, and Value-of-Information analyses. In addition, code was 

developed to summarize the results in tabular and graphical form (30). 

3.2.2.2 Provenance: Data 

 Strategies for data management differed for raw and generated data. Raw data values 

were preserved in a machine-readable format (comma separated values) and treated as read-only 

by the automated workflow. This approach to data management eliminated the need to preserve 

datasets generated from downstream operations, as such values could always be re-generated. 

Therefore, the decision to preserve workflow generated datasets was left to user discretion.  

 All values were organized using the identified rules for creating “tidy” or “normalized” 

data. Each collection of related values was stored in a distinct table (and plain text file) where the 

rows and columns represented the observations and variables of the dataset (31). Fidelity to these 

rules offered a disciplined approach to data organization which made it easier to manage and 

access the data of interest. The most complex implementation was the data from the systematic 

review of the eligible treatments. Data from the 19 trials identified in the original systematic 

review were re-compiled from published sources following Cochrane guidance on data 

collection (32–72). Further details regarding the re-compiled data are presented in Appendix B. 

Complexities emerged from the need to organize data representing many different levels of 

observation across multiple tables. For example, information about risk of bias was represented 
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at the trial level while the trial results were collected for each outcome, event (week), sub-

population, and arm within each trial. This exercise exposed the need for more sophisticated 

technologies to overcome the limitations of plain text formats and spreadsheets when managing 

complex datasets (73).  

3.2.2.3 Documentation 

 Project level documentation was restricted to a minimal README which summarized 

the objective of the project and its ownership. Attempts were made to use meaningful names for 

all functions, files, and datasets. Duplicate names were avoided, as were terms such as “final” 

and “data”. Data documentation included a summary of the dataset, a description of each 

variable, and a reference stating its original source. Usage documentation was prepared for each 

function summarizing its purpose, argument definitions, methodology, and included example 

code. Comments were used in each script file to provide context to each code segment (21).  

3.2.2.4 Project Management 

 Following identified guidance, all project files were organized under a common root 

directory (21). A consistent sub-directory structure was then used to separate scripts, data, 

documents, and results. Further sub-directories were created to separate the different types of 

files applicable to each parent directory. Changes across the project files were managed using the 

git version control system and mirrored to a private repository on GitHub (74–76).  

3.2.3 Analysis Strategy 

 Following validation of the collection of functions and data created from the 

redevelopment, the workflow was executed in its entirety. To measure the impact of the 

reproducible strategies on the HTA process, the timing of each activity was recorded and 

summarized. A total of fifteen decision models were specified across each sub-population, 
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psoriasis sub-group, and eligible combination of effectiveness data. The treatment sequences and 

evidence synthesis combinations were unchanged from Corbett et al. and are presented in Table 

3-1 (24).  

Table 3-1. Available Comparators and Network Meta-Analyses for Each Decision Model 

Treatment Sequences by Sub-Population 

Sub-Population 1: 

Biologic Naïve 

(1 Prior cDMARD) 

Sub-Population 2: 

Biologic Naïve 

(2+ Prior cDMARDs) 

Sub-Population 3: 

Biologic Experienced 

SEC300-ETN-UST SEC300-UST GOL-UST SEC300 

SEC150-ETN-UST SEC150-UST ETN-UST UST 

CZP-ETN-UST CZP-UST INF-UST BSC 

BSC ADA-UST BSC  

Network Meta-Analysis Combinations 

Strategy PsARC Model1 HAQ Model2 PASI Model3 

Independent Analysis A1 E1 F1 

Meta-Regression4 D2 E2 G1 

Notes:  

1. See Table B-2 

2. See Table B-5 

3. See Table B-8 

4. Restricted to biologic naïve sub-populations.  

 

Each decision model was evaluated stochastically using Monte Carlo simulation. Normal 

distributions were used to characterize the uncertainty in most uncertain parameters, except for 

the HAQ change off treatment and excess mortality risk parameters which were assigned gamma 

and log-normal distributions (24). All simulations were executed in parallel on a high-

performance compute cluster. For the adoption decision, simulations of 20,000 iterations were 

executed for the base case and three scenarios described in Corbett et al. (24). Optimal treatment 

sequences were identified at thresholds of £20,000 and £30,000, and incremental cost-

effectiveness ratios were calculated from mean costs and QALYs. For the research decision, the 

expected value of perfect information (EVPI) was estimated from the adoption decision output. 

Additionally, expected value of partial parameter information (EVPPI) was estimated from a 
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nested Monte Carlo simulation of 1,000 inner and 1,000 outer-loop iterations. As this process 

was included for demonstration, EVPPI for the HAQ and PsARC NMA parameter sets was 

estimated for a single sub-population, using the independent analysis combination of NMA 

estimates. For cost-effectiveness results, see Corbett et al. (24).  

3.3 Results 

 Execution of the entire workflow from a blank workspace is summarized in Figure 3-2. 

The process began by calling a single function to prepare the model parameters from raw data. 

The code within this function executed additional commands to carry out the relevant data 

processing or analysis steps needed to return the baseline trial characteristics, Gompertz 

coefficients, and inflated costing parameters. These values were then combined with the 

parameter sets designated as raw data to return the values reported in Table 3-2 in 4 seconds. 

Over 1,000 calls, identical results were returned in an average of 2.90 seconds (SD = 0.49).  

 Parameter sets which were treated as raw or generated data by the workflow are 

distinguished in the “Raw Data” column of Table 3-2. Unfortunately, attempts to reverse 

engineer the methodological process for every candidate parameter were unsuccessful. Time 

constraints prevented the re-use of previously reported code and data needed to estimate the 

treatment withdrawal parameter (23,24). Additionally, confidentially requirements prevented the 

replication of the original NMAs using the re-compiled trial data (Appendix B) (24). As a result, 

the output from these methodological processes were designated as raw data for the purposes of 

this study. Differences between the values reported in Table 3-2 and the original parameter 

values were attributed to data management, potentially undocumented procedures, and the serial 

nature of datasets needed to calculate inflation or currency statistics.  
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Figure 3-2. Time to event summary of the distinct stages in the reproducible workflow 
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Table 3-2. Workflow Generated Simulation Parameters 

Parameters Estimated from Trial Data Mean SE Raw Data1 

Baseline Age 42.40 --2 ❌ 

Baseline HAQ Score 1.22 --2 ❌ 

Baseline Weight (kg) 86.96 --2 ❌ 

Probability of PsARC Response See Table B-2 ✔ 

ΔHAQ Given PsARC Response Status See Table B-5 ✔ 

Probability of PASI50/75/90 Response See Table B-8 ✔ 

Life Tables Mean SE Raw Data1 

Age (Male, Female) -10.6, -11.4 0.05, 0.0689 
❌ 

Intercept (Male, Female) 0.096, 0.103 0.0007, 0.0009 

Excess Mortality Risk Hazard Ratio 95% CI Raw Data1 

Overall 1.36 1.12 – 1.64 

✔ Male 1.25 0.95 – 1.65 

Female 1.47 1.13 – 1.91 

Treatment Withdrawal Mean SE Raw Data1 

Log Annual Withdrawal Rate -1.82 0.204 ✔ 

Long Term HAQ Change Mean SE Raw Data1 

ΔHAQ on Treatment Per Cycle 0.00 0.002 ✔ 

ΔHAQ after withdrawal (rebound) 0.00 0.5 ✔ 

ΔHAQ off Treatment Per Cycle 0.0192 0.008 ❌ 

EQ5D Utilities – Wyeth Coefficients Mean SE Raw Data1 

Intercept (β0) 0.895 0.007 

✔ 
HAQ (βHAQ) -0.295 0.008 

PASI (βPASI) -0.004 0.00 

HAQ x PASI (βHAQ x PASI) 0.00 0.00 

PsARC-PASI Correlation 0.4 0.1 ✔ 

HAQ Costs – Kobelt Coefficients2 Mean SE Raw Data1 

Intercept (β0) 1862 655 
❌ 

HAQ Mid-Point (βMid-Point) 563 364 

HAQ Costs – Poole Coefficients2 Mean SE Raw Data1 

Intercept (β0) 4.09 0.010 

❌ 
HAQ (βHAQ) 2.37 0.006 

Age (βAge) 0.03 0.000 

HAQ x Age (βHAQ x Age) -0.014 0.000 

Psoriasis Costs (Sub-Group)2 Mean SE Raw Data1 

PASI75 Response/Non-Response (None) £0.00, £0.00 £0.00, £0.00 

❌ PASI75 Response/Non-Response (Mild) £23.30, £423.98 £1.00, £9.00 

PASI75 Response/Non-Response (Severe) £23.30, £423.98 £1.00, 9.00 

Total Treatment Costs (2016) Cycle 1 Cycle 2-1603 Raw Data1 

ETN £2698 £2331 

❌ 

INF £7025 £3641 

ADA £2836 £2292 

GOL £3422 £2480 

UST £4665 £2327 

SEC150/SEC300 £4029/£7685 £1988/£3969 

CZP £3946 £2327 

Notes:  

1. Raw data: values which were not modified for the economic evaluation.  

2. Not applicable. Baseline values were not treated as uncertain parameters.  

3. Mean estimated treatment costs per cycle from cycle 2 to 160.  
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 Once the model parameters were loaded into memory, independent simulations were 

initiated to generate data to inform an adoption or research decision. Simulations were executed 

at the sub-population level and scripts were organized by scenario. A summary of the conditions 

and execution time for each simulation is presented in Table 3-3. Output from each adoption 

decision scenario were generated in 34 hours, with one scenario finishing in 24 hours. 

Meanwhile, the EVPPI simulation which considered one sub-population and one set of NMA 

values took 4.6 days to complete. Due to the time intensive nature of each simulation, the 

generated output was preserved within the project’s data sub-directory.  

The workflow concluded by reading the preserved simulation data into memory, 

generating estimates of cost-effectiveness, and depositing the relevant tables/figures into the 

results directory. For the adoption decision, each scenario was completed in 6 to 7 minutes. For 

the research decision, results were returned in 3 minutes. An example of the generated results is 

presented in Figure 3-3.  
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Table 3-3. Summary of the Execution Times for Each Decision Model Simulation 

Adoption Decision 

Sub-Population Comparators 

NMA 

Combinations Iterations Cores 

Execution 

Time 

Base Case 

 Naïve 1 4 2 500 4 2 hours1 

 Naïve 1 4 2 20,000 10 10.26 hours 

 Naïve 2 8 2 20,000 10 19.55 hours 

 Experienced 3 1 20,000 10 3.37 hours 

Scenario 1 

 Naïve 1 4 2 20,000 10 8.23 hours 

 Naïve 2 8 2 20,000 10 15.41 hours 

 Experienced 3 1 20,000 10 2.86 hours 

Scenario 2 

 Naïve 1 4 2 20,000 10 10.91 hours 

 Naïve 2 8 2 20,000 10 19.49 hours 

 Experienced 3 1 20,000 10 3.56 hours 

Scenario 3 

 Naïve 1 4 2 20,000 10 10.48 hours 

 Naïve 2 8 2 20,000 10 20.30 hours 

 Experienced 3 1 20,000 10 3.40 hours 

Research Decision 

Sub-Population Comparators 

NMA 

Combinations Iterations Cores 

Execution 

Time 

Base Case 

 Naïve 1 4 1 1,000,000 20 4.64 days 

Notes: 

1. Included for demonstration. Estimated that 20,000 iterations would take at least 80 hours.  
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Figure 3-3. Base case results for a single sub-group, sub-population, and combination of effectiveness values.  
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3.4 Discussion 

 This paper summarized the execution of an automated workflow which was developed to 

enhance the reproducibility of a previously published HTA. Fidelity to the computing strategies 

for reproducibility may lead to greater transparency, better decision making, and population 

health gains. Broader realization of these outcomes will require a significant time commitment to 

learn the relevant computing skills along with new approaches to data and project management 

(21). In the present study, this investment was quickly recovered through the creation of robust 

code which can be used repeatedly at low cost. In other words, expanding the use of computing 

in HTA can have important procedural and methodological consequences.  

3.4.1 Procedural Consequences 

 The primary difference between the reference project and the redevelopment was the 

approach used to track and manage the provenance of the results. Ad hoc processes reliant on 

independently managed computer files were replaced with an automated approach which 

mirrored the desired methodological sequence. One consequence from this process shift was 

superior quality control. Despite their potential to appear harmless, any programming or 

transcription error can undermine the objectives of the HTA process. For example, transcription 

errors in the parameter values can shift the simulated distributions of cost and effect, leading to 

the adoption of the wrong technology. Designing the project for reproducibility improved the 

feasibility of error detection as the behaviour and methodology of each function could be directly 

verified (77). This allowed each identified error to be traced to its origin and corrected. Lastly, 

the risk of transcription error was mitigated as human intervention was not required to pass 

output from one step as input to the next.     
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 Another procedural consequence was a significant reduction in the marginal cost of 

iteration. To avoid duplication of effort, it was necessary to expand the scope of the workflow to 

include the generation of model parameters from raw data. In other words, efficiency gains were 

attributable to the implementation of a workflow design which minimized the accumulation of 

technical debt. This refers to the cost of additional work caused by choosing an easy solution to a 

problem rather than a better approach that would take longer (78). The exclusion of the code to 

execute each NMA is an example of technical debt which must be serviced in a future iteration. 

However, integrating the code for each NMA into the existing collection of functions will be 

much less expensive than redeveloping every parameter value from scratch. Once all the changes 

are incorporated one would be minutes away from initiating new simulations for an adoption or 

research decision (Figure 3-2). In the long run, integrating the generation of model parameters in 

the same automated workflow as the simulation is likely to yield significant savings for the 

research budget.  

3.4.2 Methodological Consequences 

 Neither the complex model structure or the sub-population, sub-group, and NMA 

combinations constrained the use of Monte Carlo simulation in the present study. This deviation 

from the method used in Corbett et al. (24) was attributable to a relative improvement in 

computational efficiency – the speed with which a computer can execute a task given a particular 

piece of code (79). With any programming tool, there will be many ways to arrive at the same 

solution and some will be faster than others. In the present study, adherence to the identified 

computing strategies made the procedures easier to read and execute. For example, strategies for 

data organization encouraged the use of data structures in R which were fit-for-purpose and 

memory efficient. In addition to the use of multi-dimensional arrays to track the treatment and 
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symptom severity (29), parameter values were stored in a list to accommodate the heterogeneous 

dimensions of each dataset (Table 3-2). Furthermore, faster computations were achieved from 

eliminating duplication in code. In the process of developing each function, repeated operations 

in for-loops were replaced with vectorized commands which executed the same operation on a 

collection of values all at once. The relationship between memory usage and speed is illustrated 

in Table 3-3. Execution time was directly influenced by the number of Markov states (Figure 

3-1), NMA strategies considered, and the number of comparators. 

 Further reductions in the execution time of each simulation were achieved using parallel 

computation. This refers to the simultaneous execution of a task across multiple Central 

Processing Units (CPU; the brain of a computer responsible for numeric calculations). To use 

this method, one requires access to a personal computer with multiple CPUs (cores) integrated 

on a single chip (i.e., most modern computers) or a network of computers maintained by a third 

party (i.e., high performance cluster). Monte Carlo simulation is well-suited for parallelization 

because each iteration represents an independent realization of the decision model (80). 

Compared to executing a simulation on a single CPU (the default), the performance gains can be 

substantial. However, constraints will emerge from the available compute power and memory. 

This is reflected by the simulation in Table 3-3 which was parallelized over four cores on a 

personal computer. It is estimated that it would have taken at least 80 hours to complete 20,000 

iterations – which is inefficient relative to the 128 hours it took to execute all 15 simulations 

when parallelized over 10 cores on a high-performance cluster.  

 Lastly, computational efficiency will impact the characterization of uncertainty by 

making it feasible to consider a large number of comparators. In Corbett et al., the explicit 

acknowledgement of computational challenges suggest it may have played a small role in the 
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number of comparators considered (24,81). For example, the treatment sequences for Sub-

Population 1 (Table 3-1) represent a small subset of the total possible sequence combinations. 

The performance improvements realized from the redevelopment would have allowed a larger 

subset of alternatives to be considered. Methods for optimizing computational efficiency and its 

impact on the characterization of uncertainty remain an important area for future research. 

3.5 Conclusions 

 Economic evaluation plays a critical role in the HTA process by informing decisions 

regarding the efficient allocation of scarce resources. Fulfillment of this mandate will require the 

characterization of all relevant sources of uncertainty and the ability to incorporate new evidence 

efficiently. Findings from this study revealed that enhancing the reproducibility of an HTA can 

aid in satisfying both requirements. In the long run, development of the computing skills to 

create a reproducible workflow will lead to a drastic reduction in the marginal cost of iteration, 

greater transparency, and better decisions.  
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Chapter 4  

Overcoming Barriers to the Characterization of Uncertainty 

Through Investments in Reproducibility 

The characterization of all relevant sources of uncertainty in a decision model 

necessitates the use of probabilistic methods. Despite the widespread use of computing to 

facilitate this task, probabilistic analysis is often abandoned when simulations take too long to 

complete. While this computing challenge is often attributed to the nature of a model’s structure, 

it may instead be an outcome of the model’s programming. This paper sought to describe how 

these computing challenges may be addressed as a by-product of good computing practices 

focused on improved reproducibility. To achieve this, the paper summarizes how an emphasis on 

reproducibility influenced the programming of a complex decision model in a redevelopment of 

an existing technology appraisal. Strategies which made it simple to reproduce the results also 

enabled the joint characterization of structural and parameter uncertainty. In addition, the model 

was programmed to make effective use of the available computational resources. Ultimately, the 

paper argues how, in the context of reproducible computing practices, the performance of a 

Monte Carlo simulation becomes more constrained by the capacity limits of the computer 

hardware rather than the model’s structure.  
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4.1 Introduction 

 Health Technology Assessment (HTA) leverages well established methods of evidence 

synthesis to support policy making on many factors, including value for money (1,2). When an 

economic evaluation is commissioned, methods for decision modelling are used to combine 

evidence from a range of sources to generate information on relative cost-effectiveness (1,3). 

Given that such evidence is uncertain, methodological literature and guidance documents 

unambiguously endorse the probabilistic evaluation of decision models (4–6). In this context, the 

decision model can be used as a vehicle to inform two decisions: i) adoption of a technology; and 

ii) the commissioning of additional research. The general use of a Bayesian framework reflects a 

consensus that HTA should represent a continuous process of evidence gathering and decision 

making (7–9). However, there is a serious risk that computing challenges can interfere with 

efforts to fully characterize decision uncertainty.  

 As with other areas of science, computing has become essential for the economic 

evaluation of health technologies. Unfortunately, the widespread adoption of computing has yet 

to be accompanied by sufficient training in the effective use of this technology. One way this is 

reflected in practice is when the inability to stochastically evaluate a decision model is attributed 

to computational intensity, burden, or expense (5,6,10,11). While these terms have not been 

explicitly defined in the HTA literature, their usage implies that it is appropraite to abandon 

probabilistic methods when some threshold level of “intensity” is reached. This is inconsistent 

with the consensus that the characterization of uncertainty is necessary to explore its 

consequences and to return unbiased estimates of cost-effectiveness (6,10,11).  

 Regardless of how computational intensity is defined or measured, it will always reflect 

the way the decision model was programmed. The relative nature of this designation therefore 
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challenges the notion that decision models with complex structures will always be 

computationally expensive. This is evidenced by a case study which re-developed a NICE 

commissioned economic evaluation of biologic treatment for Psoriatic Arthritis (PsA) (12,13). 

The goal of this effort was to enhance the reproducibility of the original study using a series of 

computing strategies synthesized from the broader scientific literature (12,14). Both projects 

used the R programming language to compare sequences of biologic treatments with a Semi-

Markov structure. Further complexity was reflected by the need to consider multiple sub-groups, 

sub-populations, and scenarios. Despite these similarities, efforts to characterize uncertainty in 

the case study were not burdened by any of the challenges documented in the original appraisal 

by Corbett et al. (12,13).  

 Critically, the scope of the case study was restricted to summarizing the development and 

execution of a reproducible workflow (12). This left little room to explain how the emphasis on 

reproducibility influenced the programming of the economic evaluation. While this led to an 

improvement in computational efficiency, the impact on different components of the computer 

hardware was only briefly described (12). As a result, a detailed overview of the techniques used 

to overcome common computing challenges in economic evaluation is required.  

 The objective of this paper is to describe how an emphasis on reproducibility can enable 

more consistent and thorough explorations of uncertainty in economic evaluations of health 

technologies. Following a brief summary of the case study, the paper will begin with an 

overview of the reproducible design of the decision model. Afterwards, it will illustrate how this 

design can be leveraged to overcome two limitations to the characterization of uncertainty in the 

case study. The paper will then conclude with a summary of the techniques used to overcome 

computing challenges in the characterization of uncertainty.  
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4.2 Summary: Reproducible Case Study 

A previously published HTA was redeveloped with the intent to achieve a level of 

reproducibility that would allow for the reliable re-generation of results (12,13). To guide this 

effort, the case study implemented a series of computing strategies known to support 

reproducible research efforts in other scientific fields (12,14). This involved automating each 

step in the methodological sequence using the R programming language (15). An iterative 

development strategy was used to modularize the code for each distinct task into single purpose 

programs called functions (12). These re-useable commands could be executed independently or 

within the body of another, higher-level function. This allowed the project process to be 

organized into three distinct activities: i) the estimation of simulation ready model parameters; ii) 

evaluation of the decision model(s) for an adoption or research decision; and iii) preparation of 

adoption/research decision results (12). The focus of this paper is on the design of the code used 

for the second activity.  

4.2.1 Economic Evaluation 

The economic evaluation in Corbett et al., sought to determine the cost-effectiveness of 

two biologic therapies, Secukinumab (SEC) and Certolizumab Pegol (CZP) in treating adult PsA 

(12,13). Alternative treatments were restricted to those licensed to treat PsA at the time of the 

evaluation: Etanercept (ETN), Infliximab (INF), Adalimumab (ADA), Golimumab (GOL), 

Ustekinumab (UST), Apremilast (APR), and Placebo (12,13). A key feature in this economic 

model was the ability for patients to switch between treatments. As a result, estimates of cost-

effectiveness were generated for alternative sequences of biologics whose length differed by sub-

population. Patients were eligible to receive a maximum of 3 biologics (Biologic Naïve, 1 Prior 

cDMARD), 2 biologics (Biologic Naïve, at least 2 prior cDMARDs), or 1 biologic (Biologic 
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Experienced) (12,13). To explore the impact of baseline psoriasis severity, three sub-groups were 

considered within each sub-population (None, Mild, Severe). In addition, two distinct 

combinations of model inputs from three distinct evidence syntheses were considered (12,13).  

 Each decision analytic model adopted a Semi-Markov structure to track a cohort with a 

homogeneous baseline population. Markov states were defined as the sequence of biologic 

treatments, followed by best-supportive care (BSC) and Death. In addition to treatment, the 

model also tracked arthritis and psoriasis severity across each cycle and Markov state. These 

estimates of symptom severity were used to calculate health utilities (EQ5D) as well as the 

health service costs of arthritis and psoriasis treatment. Alternate assumptions to the base case 

were explored using three scenario analyses. Every specified decision model was evaluated using 

Monte Carlo simulations of 20,000 iterations. Incremental cost-effectiveness ratios were 

calculated from mean costs and QALYs, and optimal treatment sequences were identified at 

thresholds of £20,000 and £30,000 (12).  

4.3 Programming the Decision Models 

 A diagrammatic representation of the code used for each Monte Carlo simulation in the 

case study is presented in Figure 4-1. Distributions of costs and QALYs (SimOutput) were 

generated from the repeated execution of an inner loop (which evaluated a decision model) 

within an outer loop (which performed each Monte Carlo draw). Upon initiation of a simulation, 

the outer loop used a single function (Draw Parameter Values) to return a random draw of the 

model parameters (Param_i) according to their assigned distributions (12). This triggered the 

initiation of the inner loop, which involved the repeated execution of a function that calculated 

the costs and QALYs for a single comparator (Result_i_j). Each pass of the inner loop supplied a 

different value to the TxSeq argument, while holding every other argument constant. The total 
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number of inner loop repetitions was determined by comparing the value of the loop counter, j, 

with the collection of comparators specified for a given sub-population (boSeq). In other words, 

the inner loop for sub-populations 1, 2, and 3 would stop when the value of j was equal to 5, 9, 

and 4. This reflected a value of j which was a single increment greater than the total number of 

treatment sequences specified for each sub-population. Upon return to the outer loop, a new 

Monte Carlo draw would be performed for all parameters, and the process would be repeated 

until the target number of outer loop repetitions was reached (MAX = 20,000).  

 The ability to repeat a single function call under slightly different conditions played a 

critical role in the realization of the benefits from reproducibility. Most importantly, it offered a 

reliable and transparent mechanism to define and evaluate each Semi-Markov model for each 

sub-population. This was facilitated by the function arguments which were responsible for i) 

supplying the data required for the various computations inside the function; or ii) controlling the 

details of how the costs and QALYs were calculated. The only input responsible for both tasks 

was the treatment sequence (TxSeq). This was necessary to accommodate sub-population 

specific differences in the assumed sequence length without introducing any duplicate code. As 

described elsewhere, duplication in code can undermine reproducibility by increasing the risk of 

error and distorting the provenance of the results (14). A technique called abstraction was used to 

program each relevant task via generalized patterns rather than literal statements (14). This 

allowed for the reliable and consistent implementation of two key tasks, regardless of sequence 

length. First, each function call began by using this input to subset and re-arrange the treatment 

specific values within the sampled parameters (Params). Second, it also allowed the Markov 

states to be defined dynamically by combining the supplied values with “BSC” and “Death”.  
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Figure 4-1. Programming Logic for the Monte Carlo simulation, using the Base Case configuration. The function in the inner loop was designed to calculate costs 

and QALYs for each supplied parameter set (Param_i) according to a declared set of logical pathways.  
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 To illustrate how the code responded to the value of the treatment sequence, the process 

to define and evaluate a Semi-Markov model is summarized in Figure 4-2. Each row depicts this 

process under conditions specific to the first treatment sequence from each sub-population 

included in the case study (see boSeq in Figure 4-1). The process began by populating the 

transition matrices using the pre-defined Markov States and treatment specific parameter values. 

Consistent with Hawkins et al., time-dependent transition probabilities were stored in an array 

with three dimensions: current state, future state, and time (16). In Figure 4-2, this data structure 

is represented as a cube to reflect the fact that the third dimension was used to distinguish a 

series of matrices. Subsequent function calls returned separate arrays which tracked the cohort’s 

treatment, disease severity, costs, and utilities across the cycle, Markov state, and time-in-state 

dimensions. While differences in the length of each treatment sequence affected the size of each 

array in each sub-population, it had no impact on the methods used to calculate the results. Once 

the arrays storing costs and utilities were reduced to matrices, discounted values were summed 

across columns and rows to return the costs and QALYs corresponding to Result_i_j in Figure 

4-1.  

 Returning to Figure 4-1, the conditions used to build and evaluate the arrays depicted in 

Figure 4-2 were controlled by twelve distinct inputs. Unlike the treatment sequence, the 

remaining eleven inputs served a single purpose. The sampled parameters (Params), baseline 

values (HAQ0, PASI0, Age0), cycle count (nCycles), and discount rate (DR) inputs were 

required for the series of computations depicted in Figure 4-2. Meanwhile the inputs representing 

each independent structural assumption (Gender, Withdrawal, HAQalgo, NMA, and rebound) 

were used to control the flow of execution. This capability was implemented by placing each 

relevant code segment inside of an if/else statement. To avoid the introduction of duplicate code, 
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these conditional statements were inserted within the relevant functions used to build one of the 

arrays in Figure 4-2. The explicit parameterization of each structural assumption offered a simple 

mechanism to switch between alternative scenarios. For example, switching from the base case 

to a scenario analysis in Figure 4-1 involved substituting the value supplied to the relevant input 

with a permissible alternative. The parameterized structural assumptions were also used to 

communicate meaningful information about the methods. For example, the rebound input only 

considered one assumption regarding the change in arthritis severity immediately following 

withdrawal. However, its inclusion helped avoid methodological ambiguity from assumptions 

used in prior evaluations (13,17). 

 To summarize, an emphasis on reproducibility led to the development of a generalized 

function which calculated costs and QALYs according to a defined set of logical pathways. 

However, the function itself did not reflect any specific model from the case study. Instead, it 

represented an abstraction of the instructions to build and evaluate a Semi-Markov model 

according to the conditions specified by its inputs. This implementation might correspond to the 

idea of a common Meta-Model described by Claxton (10).  
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Figure 4-2. Illustration of sub-population specific conditions to calculate costs and QALYs for a single treatment sequence.  



Chapter 4: Overcoming Barriers to Uncertainty 

 

Daniel J. Wagner 86 

4.3.1 A Thorough Characterization of Uncertainty 

 The characterization of uncertainty in the case study was constrained by two distinct 

factors. First, assumptions relating to treatment sequence composition may have restricted the 

assessment of parameter uncertainty. While treatment switching was a key feature of the model, 

the alternatives considered in some sub-populations (Figure 4-1) reflected a small subset of the 

possible combinations (10). Second, the analysis strategy did not incorporate all relevant sources 

of uncertainty. This would have required the joint characterization of parameter and structural 

uncertainty. In this context, structural uncertainty refers to the impact that different assumptions 

or scientific judgements in the decision model can have on expected costs and effects (10,18,19). 

Reliance on probabilistic scenario analyses meant that the characterization of uncertainty across 

scenarios would be left to the implicit judgement of the decision maker (10,18,19).  

 The design of the function to calculate costs and QALYs offered the ability to overcome 

both limitations, enabling a more thorough characterization of uncertainty. As illustrated in 

Figure 4-1, parameterization of the treatment sequence enabled the evaluation of any number of 

alternatives (of varying length). Therefore, concerns regarding the characterization of parameter 

uncertainty could be resolved by specifying a more comprehensive set of alternatives. 

Meanwhile, the independent parameterization of each structural assumption could be used to 

jointly characterize parameter and structural uncertainty. One way to do this would involve 

conducting an independent scenario analysis for all 24 possible scenario configurations. Under 

this approach, expected values would need to be calculated as a weighted average across the 

merged data from each simulation (10,18,19). An equivalent alternative would be to incorporate 

the scenario configuration into a single Monte Carlo simulation. Illustrated in Figure 4-3, the 
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permissible values for each assumption could be sampled with replacement (according to defined 

probabilities) at each iteration of the simulation.  

 To demonstrate this capability, a Monte Carlo simulation was used to evaluate a modified 

decision model for Sub-Population 1. This sub-population was selected because it had the 

longest treatment sequence (3 biologics) and considered the smallest subset of sequence 

combinations in the case study. The purpose of this exercise was to highlight how an emphasis 

on reproducibility led to programmed behaviours which could enable a more thorough 

characterization of uncertainty. While this necessitated a larger number of comparator sequences 

from the case study, the identification of an optimal sequence was beyond the scope of this 

paper. Such a task would require the incorporation of additional evidence on degradation effects 

from switching between biologics (13).  

A conservative rule set was used to expand the number of alternatives from four to 

twenty-one sequences of biologic treatments (Appendix C). The joint characterization of 

parameter and structural uncertainty was achieved using the procedures outlined in Figure 4-3. 

As with the case study, the model assumed a price year of 2016 and a discount rate of 3.5%. 

Applying this approach in a formal decision-context will require a meaningful number of Monte 

Carlo draws for each scenario configuration. As this exercise was conducted as a demonstration, 

only 20,000 iterations were considered – equivalent to approximately 833 iterations for each of 

the 24 scenario configurations.  

 The Cost-Effectiveness Acceptability Curves (CEAC) in Figure 4-4 offer a comparison 

of the characterization of uncertainty with the original case study. In every CEAC, the coloured 

lines represent the probability that a treatment sequence is cost-effective across a range of values 

for the cost-effectiveness threshold (λ). Panel A represents the characterization of uncertainty 
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from the case study. Each column represents a scenario, whereas rows represent the psoriasis 

sub-group stratified by the evidence synthesis strategy. Meanwhile, the CEACs presented in 

Panel B reflect the results from the joint characterization of uncertainty using the expanded set of 

treatment sequences for each psoriasis sub-group. While 21 alternatives were specified, many 

had to be excluded (Pλ = 0.00) due to sub-group specific dosing restrictions. Nevertheless, the 

flexibility of the code used to generate this information further supports the notion that the 

characterization of uncertainty will be much more dependent on the decision model’s 

programming than its structure.  
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Figure 4-3. Programming logic for a Monte Carlo simulation which jointly characterizes parameter and structural uncertainty. At each iteration of the outer loop, 

a random sample of parameter values are drawn from assigned distributions (Param_i) and values for each structural assumption (sParam_i) are sampled with 

replacement.  
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Figure 4-4. Comparison of CEACs for the Biologic Naïve Sub-Population with 1 Prior cDMARD. Panel A 

represents the CEACs generated from the case study (Chapter 3) with columns reflecting each scenario and rows 

reflecting the Psoriasis sub-groups stratified by NMA combination (IA: Independent Analysis; MR: Meta-

Regression). Panel B represents the CEACs using an expanded set of comparators generated from a Monte Carlo 

simulation which incorporates structural uncertainty. Additional iterations are required to fully characterize the 

uncertainty between the alternatives in Panel B.  



Chapter 4: Overcoming Barriers to Uncertainty 

 

Daniel J. Wagner 91 

4.4 Overcoming Computing Challenges 

 Monte Carlo simulation is the most common method used to characterize decision 

uncertainty or explore its consequences. As highlighted above, it relies on the repeated 

evaluation of a decision model using randomly sampled parameters to generate distributions of 

cost and effect for each specified alternative (10,19,20). Many repetitions will be required for 

this output to reflect the range of values each parameter is likely to take. Given the considerable 

amount of computation involved, using Monte Carlo simulation can be a time-consuming effort 

for even the simplest of decision models (10,19,20). However, the exact amount of time will 

depend on the complexity of the model, the number of repetitions involved, how the methods are 

programmed (some approaches are faster than others), and the specific computer used to 

complete the simulation (some computers are faster than others). This suggests that the 

programming of a decision model must satisfy two distinct objectives. First, the instructions 

must reflect a correct implementation of the methods to calculate costs and QALYs. Second, the 

implementation must also be fast enough to allow a computer to generate the dataset of interest 

in a reasonable amount of time.  

 Achieving reasonable execution times for each Monte Carlo simulation required the 

effective use of available computational resources. Given that this project was developed in R, 

this involved the component responsible for performing calculations (Central Processing Unit; 

CPU); and the memory component used to store information (Random Access Memory; RAM) 

(21). As described elsewhere, meaningful improvements in computational efficiency were 

realized from programming choices which affected calculation speed (vectorization) and 

memory efficiency (data structures) (12,22,23). Another factor which affected memory 

efficiency was modularization. Organizing code into functions meant that an intermediate 
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collection of values was only preserved if it was required. For example, the collections of values 

included in Figure 4-2 were discarded as soon as the function to calculate costs and QALYs 

(Figure 4-1 and Figure 4-3) returned its output.  

 Ultimately, the ability to complete a simulation and the resulting execution time will 

depend on the physical computer hardware. It is critical to ensure one will have enough memory 

(RAM) to complete a simulation. While the incremental generation of results will slow the 

simulation down, one must ensure there will be enough memory to store the generated data as 

well as any intermediate values. Eventually, any task will fail when the amount of available 

memory is exceeded. One can anticipate the size of the output dataset as a function of the 

number of comparators and Monte Carlo draws. For example, each pass of the inner loop in 

Figure 4-1 returned costs and QALYs for all three psoriasis sub-groups. At 20,000 iterations, the 

model with four comparators required 80,000 function calls to generate 240,000 rows of output. 

Memory requirements will be even larger when conducting simulations for Value of Information 

analysis. In the case study, this effort required 1,000,000 function calls to generate 12,000,000 

rows of output (12). This was managed by reformatting the output data frame requiring 1.2 

Gigabytes of memory to an array which required 187 Megabytes to store the same information.  

 Another way to improve execution time without making the code more efficient is to use 

parallel computation. Instead of executing a Monte Carlo simulation sequentially on one CPU 

(the default), each independent iteration (the outer loop in Figure 4-1) can be distributed across 

multiple CPUs of a multi-cored personal computer or a high-performance cluster (22,24). Due to 

the reproducible design, implementation only required an appropriate looping construct, like 

those offered by the parallel and foreach packages (15,25).  
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4.4.1 Recommendations 

 Given the many factors which can affect the execution time of a Monte Carlo simulation, 

it can be difficult to know which to prioritize. The most productive approach will be to start with 

the development of a reproducible decision model. Concerns about the generalizability of the 

strategies to do so should be mitigated from their use across many scientific fields (12,14,26,27). 

More advanced techniques, like performance optimization and parallel computation should be 

considered following the validation of a working prototype (22). Understanding how to use these 

techniques across different model structures, such as patient level simulation, remains an 

important area for future research.  

4.5 Conclusion 

 To provide unbiased estimates of relative cost-effectiveness, the stochastic evaluation of 

a decision model must incorporate all relevant sources of uncertainty. Unfortunately, such efforts 

are often abandoned when simulations take too long to complete. This barrier is a result of the 

way the methods were communicated to the computer. Enhancing the reproducibility of an 

economic evaluation led to the elimination of this barrier in three unique ways. First, the 

programming techniques intended to make it simple for a human to reproduce the results also 

enabled the joint characterization of parameter and structural uncertainty. Second, the design of 

the code encouraged a more efficient use of computational resources. Third, it revealed the 

impact that the hardware itself can have on completing a simulation in a reasonable timeframe. 

As such techniques are model agnostic, reproducibility offers a pathway to the consistent and 

thorough characterization of uncertainty in HTA.   
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Chapter 5 Discussion 

This thesis explored how an emphasis on reproducibility can support the effective 

development and maintenance of Health Technology Assessments. At the time of this writing, 

the use of economic evaluation within a continuous process of evidence gathering and decision 

making has been constrained by two distinct issues. First, the cost of generating evidence 

identified from a Value of Information analysis (within a reasonable timeframe for decision 

making) can often be prohibitive. Second, commissioned appraisals have been developed at sub-

optimal levels of reproducibility. As a result, authors will be limited in their ability to update 

previous efforts with new information which may affect a model’s structure or parameters. This 

latter issue will limit any decision-making process, including those which do not formally require 

VoI methods, probabilistic analyses for adoption decisions, or those which have explicit 

timelines for considering new information. Implementation has been constrained by the 

widespread, yet ineffective, use of computing in the research process. As a result, most projects 

lack a complete record of the specific steps taken to collect, transform, and analyze data in each 

part of the methodological sequence. Without this information, the risk of error will increase, an 

author’s ability to detect errors will fall, and HTA iteration will require a duplication of the 

original effort. These outcomes can undermine the efficient allocation of health system resources 

in two distinct ways. First, the high marginal cost of iteration will commit resources which could 

be allocated to other appraisals or health system activities. Second, delayed and incorrect 

decisions may impose a health loss on current and future patients as well as increased health 

system costs. 

Findings from this thesis revealed that these opportunity costs can be avoided by 

enhancing the standard level of reproducibility for HTAs. However, there was no single source 
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of guidance to direct how a computer could be used to achieve this goal. To address this gap, 

Chapter 2 used factors known to affect reproducibility to identify and organize strategies that had 

proven successful in other scientific fields (1,2). The results reflected two broad requirements for 

reproducibility. First, one must maintain an accurate and complete record of the process used to 

create each reportable result. The automated workflow fulfills this role as an editable, auditable, 

and authoritative record of the project methods. Second, additional contextual information 

should supplement the code and data to make it meaningful over the long run. Strategies for 

project management and documentation allow authors to return and re-use projects after a period 

of dormancy. 

Results from the systematic review in Chapter 2 revealed that a significant investment in 

computing skills would be required to enhance the reproducibility of HTAs. The payoffs from 

this investment were explored in a case study which redeveloped a NICE commissioned 

systematic review and economic evaluation of biologic treatment for psoriatic arthritis (3). This 

appraisal was selected because it had been subjected to iterative revision and it considered a 

complex model structure which limited efforts to characterize uncertainty (3). Each identified 

computing strategy informed the creation of an automated workflow, with the modularized 

commands organized into three distinct activities: i) estimation of model parameters from raw 

data; ii) simulation for an adoption or research decision; and iii) post-processing of simulation 

results. Due to the multi-level effects from efforts to enhance the reproducibility of this HTA, 

findings were separated into two distinct chapters.  

Chapter 3 explored the impacts of the reproducible computing strategies at the project 

level. This paper documented the development and execution of the workflow using the same 

decision models and parameter inputs from the original technology appraisal. Procedural 
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outcomes reflected the benefits of using a computer, rather than a human, to execute a collection 

of tasks. The modularized nature of the automated workflow offered a reliable mechanism to 

detect for and mitigate the risk of error. In addition, capturing the estimation of the input 

parameters within the scope of the workflow served to drastically reduce the marginal cost of 

iteration. Meanwhile, the redevelopment did not face any of the original appraisal’s constraints 

in the characterization of uncertainty. This methodological outcome was primarily attributable to 

improvements in computational efficiency.  

Chapter 4 explored the impact of the reproducible computing strategies on the 

programming of the decision models in the case study. Adherence to the reproducible research 

strategies necessitated the elimination of all duplicate code across fifteen decision models. This 

led to the development of a function which could define and evaluate a cohort model according 

to the conditions specified by its inputs. The mechanics of this function were subsequently used 

to argue that most barriers to the characterization of uncertainty reflect a model’s programming 

rather than structure. This point was illustrated in two distinct ways. First, the flexible behaviour 

of the function was used to demonstrate the ease with which parameter and structural uncertainty 

could be jointly characterized. Second, a discussion of the different factors that can affect the 

execution time of a simulation highlighted how the function consumed different computational 

resources.  

The research presented in this thesis confirmed that enhancements to current 

reproducibility standards can support the policy objectives of HTA. However, it would be 

unrealistic to expect the practice of reproducible research to be instantly embraced by researchers 

involved in the preparation of technology appraisals. Widespread implementation will require 

significant behaviour changes to the ways computers are used to organize, manage, and execute 
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research projects. While the primary responsibility for reproducibility lies with individual 

researchers, external parties such as research institutions and HTA agencies will also have a role 

to play (1,2). Future research leveraging knowledge from implementation science may prove 

useful in understanding the barriers and facilitators to this objective (4). It remains to be seen if 

the required programming and data management skills will be embraced by individuals or groups 

of collaborators. In the long run, these efforts will inform the way projects are managed and 

direct opportunities for future research.  

5.1 Project Management 

 One topic which was under-represented in the thesis was the impact the project 

management strategy had on reproducibility. The initial plan was to place every file created for 

the case study in a single directory which was structured in accordance with the approach 

described in Chapter 2. This meant that executing a specific task would require the user to know 

each specific dependency for that process. However, it became difficult to keep track of the 

inter-dependent files which not only defined the workflow but also the various scripts and 

outputs created from its execution. Furthermore, this approach to file management made the 

project challenging to maintain. The implementation of simple changes would often cause a task 

to fail and would require hours of work to identify and resolve the issue. As a result, the project 

was at risk of becoming too difficult to re-use.  

 In response, the collection of computer files which defined the workflow were converted 

into an R package (5,6). Details on the acquisition and use of the code and data for this package 

are reported in Appendix D. Separating the specification and execution of the workflow into 

distinct directories made the package re-usable, while also protecting the source code and raw 

data from accidental changes. This strategy proved useful for several additional reasons. First, 
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the quality control mechanisms in R package creation helped to ensure that the iterative 

development of the workflow always produced code that worked. Second, development of the 

package allowed for safe prototyping of new functions or features. Changes to the source code or 

data would not affect the working code until a new package version was “installed”. Third, the R 

package structure allowed for functions and datasets to be bundled together. This allowed the 

raw data for the workflow to be included in the package, saving configuration time for the user. 

Fourth, project versioning promoted the ability to re-use code from any point in the project’s 

development. Fifth, the code to execute the workflow was no longer confined to a specific folder 

on a specific computer. While the package was intended for personal use, it could be shared with 

any R user on any computer (5,6).  

 While the creation of this R package was omitted from Chapter 3, much of the methods 

section described its development. This was an attempt to avoid the impression that the 

production of reproducible research requires the use of the R language or the creation of an R 

package. As indicated in Chapter 2, enhancing the reproducibility of an HTA will require the 

creation of a human and machine-readable record which captures the provenance of the results. 

Apart from spreadsheets, there are lots of alternative scripting tools and programming languages 

which could be used to achieve this goal (2,7,8). Emphasizing reproducibility will force 

researchers to consider a tool which can accommodate the procedural and methodological 

requirements of every distinct task in a project workflow (2,9).  

 A commitment to reproducibility will also promote tool specific conventions for the 

development of HTAs. One idea which will be explored further is the production of project-

specific R packages, like the one created for this case study. Given the high degree of procedural 

overlap between projects, the ability to re-use code or module designs might improve the 
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efficiency of new project development. For example, the parameterization of the treatment 

sequence highlighted in Chapter 4 is a design feature which could be applied to other projects 

which require treatment switching. In addition, the code developed to support the post-

processing of simulation results could also be re-used with little modification. To eliminate 

duplication between projects, a separate package could be created to bundle functions which 

calculate ICERs, Net-Benefit and Value of Information (VoI) statistics, as well as tables and 

figures for reporting. This approach would require the consistent formatting of datasets 

containing distributions of costs and effects for each mutually exclusive alternative in any 

decision model. In a group context, creation of a style guide could serve as a centralized location 

to document these standards as they evolve. Therefore, a commitment to reproducibility may 

also aid in promoting a community of practice and eventually more open science. 

5.2 Future Research 

 Enhancing the reproducibility of Health Technology Assessments will also present new 

opportunities for future research. One topic which emerged from the development of this thesis 

was the absence of a decision rule for updating an evidence synthesis. In a context of uncertainty, 

it may be necessary to revise an adoption or research decision using information acquired from a 

primary study or an updated evidence synthesis (10–13). Both forms of research will impose 

independent opportunity costs on the health budget, reducing the pot of resources available to 

other activities. Given that market access is often sought when an evidence base is least mature, 

the timing of a literature search (and the resulting decision uncertainty) may affect the outcome 

of a research decision. This suggests it might be a good idea to update a literature search prior to 

committing resources to a primary study (13). However, the research decision does not explicitly 

consider this possibility. In other words, there is no mechanism to determine if updating an 
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evidence synthesis alone will be an efficient use of research resources. As a result, the research 

decision fails to consider the possibility that updating an evidence synthesis may be a more 

efficient use of resources compared to a primary study. 

 The above research gap was exposed from the efficiency gains realized from investments 

in reproducibility. Development of an automated workflow offered the capability to incorporate 

new information at a much lower cost compared to current standards. With enough investment, 

further cost reductions could be achieved by automating additional project tasks. Therefore, a 

decision to update an evidence synthesis could be justified if the marginal cost of iteration is less 

than the value of the remaining project budget. Like a traditional research decision, this approach 

would capture the opportunity cost imposed by this type of research. However, it might imply 

that an adoption decision should be revised every time relevant information is released into the 

public domain. To avoid the risk of decision reversal, standards for pre-registration could be used 

to delay a decision until the anticipated release of new information. Careful consideration will 

need to be given to the trade-offs faced by current and future patients from such deferrals. Unlike 

waiting for the emergence of an “ideal” evidence base, planning for the release of relevant 

information may be an appropriate approach to managing the entry of new technologies (14,15).  
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Conclusion 

 This thesis identified and implemented a series of computing strategies to enhance the 

reproducibility of Health Technology Assessments. In principle, this will require the provenance 

of the results to be captured in human and machine-readable formats. In practice, it involved 

significant changes to the way computers are used to organize, manage, and execute systematic 

reviews and economic evaluations. Although the case study presented in this thesis is restricted 

to a single decision problem, the identified strategies for reproducibility will be generalizable to 

other contexts. However, developing the necessary programming and data management skills 

will be an exercise in patience and deliberate practice. Committing to a practice of reproducible 

research will allow researchers (or teams) to improve their productivity, mitigate the risk of 

error, and consider more ambitious analyses. This will translate to better decision making, 

improved transparency, more efficient updating, and ultimately population health gains.  
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Appendix A  

Analytic Framework for Review of Reproducible Research Practices 

General Classification Domains 

Recode 

 Definition:  

  Statements which should be re-coded to a new or unlisted domain.  

 Inclusion Criteria:  

 Include statements which do not satisfy the inclusion criteria for any other domain but are 

deemed important to be included in the qualitative synthesis.  

 Exclusion Criteria:  

 Exclude statements which satisfy the inclusion criteria for at least one of the alternative 

domains in the framework.  

Definition  

 Definition:  

 A statement which describes the meaning of a specific term.  

 Inclusion Criteria:  

 Include statements which define a specific term in the context of reproducibility  or scientific 

computing.  

 Exclusion Criteria:  

 Exclude statements which do not offer an explicit definition of a specific term in the context of 

reproducibility or scientific computing.  

Background 

 Definition:  

 A statement which provides contextual information for reproducible research including the 

origins of the movements, recent advances, and rationales for its adoption.  

 Inclusion Criteria:  

 Include statements which offer background information on reproducibility, scientific 

computing, or open science.  

 Exclusion Criteria:  

 Exclude statements which do not offer contextual information for reproducible research, 

scientific computing or open science.  

Domains for Qualitative Synthesis 

Open Reporting 

 Definition:  

 Refers to the availability of information about a project to those who were not involved in 

developing the original research. This may include the publication of results in journal articles or 

conference abstracts. It may also include references to the availability of additional artifacts like reports, 

lab notebooks, and repositories for the project or specific collections of data.  

 Inclusion Criteria:  

 Include statements which provide explicit recommendations regarding strategies to promote 

reproducibility via open reporting.  

 Exclusion Criteria:  

 Exclude statements which do not provide recommendations to support open reporting.   

Copyright 

 Definition:  

 Refers to rules regarding the protection of intellectual property. Relates to reproducibility as 

creative work, such as research, is protected by copyright laws which can interfere with the distribution 

and verification of work. This domain therefore refers to the licensing of research, as such works are 

protected even if no license is applied.  

 Inclusion Criteria:  

 Include statements which offer guidance or descriptions regarding the impact of specific 

licensing strategies on reproducibility.  
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 Exclusion Criteria:  

 Exclude statements which do not offer guidance or descriptions of the impact of licensing on 

reproducibility.  

Provenance: Data 

 Definition:  

 Refers to the original input data used to execute the methods of a project as well as the 

corresponding output. If some steps cannot be reproduced, it can be helpful to incorporate intermediate 

data as well.  

 Inclusion Criteria:  

 Include statements which offer guidance or descriptions of data considerations in the 

reproducibility of a scientific effort. This mainly involves data organization/structure, data management 

practices, and factors to influence preservation decisions.  

 Exclusion Criteria:  

 Exclude statements which do not offer guidance to support managing the provenance of data to 

promote the reproducibility of a scientific effort. Further, statements regarding the process of creating, 

acquiring, or generating a dataset should be recorded in the process domain.  

Provenance: Process 

 Definition:  

 Refers to the specific steps used to execute the methods and procedures of a given project. 

These steps can be captured in computer files (code or spreadsheets) or in a describable form.  

 Inclusion Criteria:  

 Include statements which offer guidance or descriptions to manage the provenance of the 

process (or series of steps) used to execute the methods and procedures of a research project.  

 Exclusion Criteria:  

 Exclude statements which do not offer guidance or descriptions to manage the provenance of 

the process used to execute the methods and procedures of a research project.  

Provenance: Environment 

 Definition:  

 Refers to the assets belonging to the computational environment where the project’s methods 

and procedures were executed. Covers information about the operating system, hardware architecture 

and software dependencies.  

 Inclusion Criteria:  

 Include statements which offer guidance or strategies relevant to managing the provenance of 

the computing environment and its impact on reproducibility.  

 Exclusion Criteria:  

 Exclude statements which do not describe practices to manage the provenance of the computing 

environment.  

Documentation 

 Definition:  

 Refers to descriptions of the project or computational artifact which serves to communicate to 

another person the detail one needs to know to reproduce or interpret the research.  

 Inclusion Criteria:  

 Include statements which offer guidance regarding the documentation of a project, process, 

dataset, or environment. This is capturing the describable provenance of a project.  

 Exclusion Criteria:  

 Exclude statements which do not offer specific recommendations regarding how one should 

leverage documentation to support the reproducibiltiy of a given project.  

Project Management 

 Definition:  

 Refers to the practices or strategies which are applied to organize and manage the various files 

and processes applied on one’s computer.  

 Inclusion Criteria:  

 Include statements which offer strategies to support the organization and management of 

computer files on one’s machine to promote reproducibility.  

 Exclusion Criteria:  
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 Exclude statements which offer no specific guidance to support the management and 

organization of the various files created as part of a research project.  

Tool Selection 

 Definition:  

 Refers to statements which discuss the factors or considerations in choosing a computing tool 

(software or hardware) to support the pursuit of reproducible research. 

 Inclusion Criteria:  

 Include statements which offer insight into the types of considerations or arguments which are 

considered in the selection of computing tools to promote reproducible research.  

 Exclusion Criteria:  

 Exclude statements which do not describe the assessment of requirements to inform tool 

selection. Additionally, exclude statements which detail how a specific computing tool should be used to 

support reproducibility. 
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Appendix B  

Network Meta-Analysis Data Availability 

The redevelopment of the Psoriatic Arthritis HTA included attempts to generate model 

parameters from their original sources, including three Network Meta-Analyses (NMA). The 

first NMA estimated the probability of PsARC response for each treatment. In the economic 

model, it was used to determine treatment continuation following the first cycle on any biologic. 

The second NMA estimated the expected change in HAQ-DI conditional on PsARC response. 

Estimated values from this analysis were used to model changes in arthritis severity. The third 

NMA estimated the probability of a PASI50, PASI75, and a PASI90 response for each treatment. 

Generated estimates were supplied to the decision model to capture the changes in psoriasis 

severity.  

As described in the methods of the corresponding paper to this document (Chapter 3), 

data from the 19 trials identified in the original systematic review were re-compiled from 

publicly available sources. Data extraction followed the guidance available in the Cochrane 

Handbook. Information of interest included article meta-data, funding information, trial design, 

and results. With respect to the results, data were collected for each outcome, event (week), sub-

population, and arm within each trial. To support reproducibility, the extracted data were 

organized using the rules for creating “tidy” or “normalized” data. This approach ensured that 

the collection of tables which was created could serve as a single source where the most up-to-

date information about the included trials could be accessed.  

Inclusion of each NMA in the redevelopment was dependent on the successful replication 

of the methods as originally implemented in the reference project. While the code used to 
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estimate each NMA was included in the appendices of Corbett et al., the decision to implement 

was dependent on the availability of each dataset compiled from the systematic review.  

The objective of this appendix is to summarize the data availability for the evidence synthesis of 

all three outcomes. The re-compiled trial data were queried to return the available values needed 

to implement each meta-analysis. This information was supplemented with a visualization of 

data availability by week of each trial. Each section concludes with a description of how the 

NMA values were incorporated into the decision model. 

Psoriatic Arthritis Response Criteria 

 Figure B-1 illustrates the availability of PsARC response data from Weeks 10 to 24 in 

each trial stratified by sub-population. At the time of this writing, many values included in the 

2017 MTA but were redacted had yet to be publicly released or identified. The available PsARC 

response data for Network Meta-Analysis are reported in Table B-1. Incomplete reporting 

prevented the implementation of the relevant Network Meta-Analyses as described in the 

original HTA. While it was possible to consider implementing the NMAs using the available 

data, this was not pursued as it would have limited the ability to implement the same 

comparators in the decision models. To incorporate each PsARC NMA in the decision model, 

the original model results for the Naïve and Experienced sub-populations were transcribed and 

treated as the data source for this parameter. These values are reproduced in Table B-2. In the 

event the unpublished data are made available in the future, then it may be possible to implement 

the original NMA code.  
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Figure B-1. Data Availability for PsARC Response 
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Table B-1. Inputs to Network Meta-Analysis of PsARC Response 

  Biologic Naive Biologic Experienced 

 Arm 

(Dose) Week n1 R2 Week n1 R2 

ADEPT 
ADA (40) 12 151 94 – – – 

Placebo 12 162 42 – – – 

FUTURE 2 

SEC (150) 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

SEC (300) 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

Placebo 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

Genovese 

2007 

ADA (40) 12 51 26 – – – 

Placebo 12 49 12 – – – 

GO-

REVEAL 

GOL (50) 14 146 107 – – – 

GOL (150) 14 146 105 – – – 

Placebo 14 113 24 – – – 

IMPACT 
INF (5) 16 52 39 – – – 

Placebo 16 52 11 – – – 

IMPACT 2 
INF (5) 14 100 77 – – – 

Placebo 14 100 27 – – – 

Mease 2000 
ETN (25) 12 30 26 – – – 

Placebo 12 30 7 – – – 

Mease 2004 
ETN (25) 12 101 73 – – – 

Placebo 12 104 32 – – – 

PALACE 1 

APR (20) 16 168 65 – – – 

APR (30) 16 168 78 – – – 

Placebo 16 168 50 – – – 

PALACE 2 

APR (20) 16 163 78 – – – 

APR (30) 16 162 78 – – – 

Placebo 16 159 53 – – – 

PALACE 3 

APR (20) 16 169 64 – – – 

APR (30) 16 167 88 – – – 

Placebo 16 169 46 – – – 

PSUMMIT 1 

UST (45) 24 205 115 – – – 

UST (90) 24 204 132 – – – 

Placebo 24 205 77 – – – 

PSUMMIT 2 

UST (45) 24 43 24 24 60 33 

UST (90) 24 47 27 24 58 27 

Placebo 24 42 16 24 62 16 

RAPID-PsA 

CZP (200) 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

CZP (400) 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

Placebo 12 Redacted3 Redacted3 12 Redacted3 Redacted3 

SPIRIT-P1 
ADA (40) 12 – – – – – 

Placebo 12 – – – – – 

1. Number Randomized 

2. Number of PsARC Responders 

3. Redacted values remain unpublished. Trial registry data updated in June 2020 with week 24 values.  
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Table B-2. Network Meta-Analysis Results - PsARC Response 

Placebo Response Models1 

Sub-Population Mean Median 95% CrI 

Naïve3 -0.81 -0.81 -1.02 – -0.61 

Experienced4 -1.00 -1.01 -1.48 – -0.58 

Treatment Effects Models2 

Tx Mean Median 95% CrI 

Model A1, Biologic Naïve5 

SEC300 1.18 1.18 0.44 – 1.93 

SEC150 1.18 1.18 0.43 – 1.94 

UST 0.76 0.76 0.40 – 1.12 

CZP 1.10 1.09 0.63 – 1.57 

GOL 2.34 2.34 1.77 – 2.94 

ADA 1.40 1.40 0.99 – 1.83 

INF 2.30 2.30 1.78 – 2.84 

ETN 2.05 2.04 1.51 – 2.61 

APR 0.81 0.81 0.55 – 1.08 

Model A1, Biologic Experienced6 

SEC300 1.73 1.80 0.77 – 2.91 

UST 1.25 1.28 0.53 – 2.07 

Model D2, Biologic Naïve7 

SEC300 1.84 1.83 1.15 – 2.59 

SEC150 1.83 1.82 1.13 – 1.59 

UST 1.18 1.17 0.81 – 1.58 

CZP 1.72 1.72 1.28 – 2.21 

GOL 1.71 1.71 1.17 – 2.20 

ADA 1.20 1.20 0.83 – 1.55 

INF 1.87 1.88 1.43 – 2.31 

ETN 1.87 1.87 1.48 – 2.29 

APR 0.77 0.77 0.57 – 0.97 

Notes:  

1. Values reported on log-odds scale.  

2. Values reported as log-odds ratios.  

3. Data acquired from Table 126 in Corbett et al. (24).  

4. Data acquired from Table 45 in Corbett et al. (24). 

5. Data acquired from Table 127 in Corbett et al. (24). 

6. Data acquired from Table 45 in Corbett et al. (24). 

7. Data acquired from Table 133 in Corbett et al. (24). 
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HAQ-DI Change Conditional on PsARC Response 

 Figure B-2 and Figure B-3 illustrate the availability of trial data relevant to the HAQ 

NMA from Weeks 10 to 24. The data are stratified by PsARC response status. Values included 

in the 2017 MTA, but redacted in the published report, remain unpublished at the time of this 

writing (FUTURE 2, RAPID-PsA). Furthermore, the provenance of many values included in the 

2017 MTA could not be established. For example, while the 2017 MTA reported the combined 

results from the PSUMMIT 1 and 2 trials at week 24 – the individual results from each trial was 

not reported. The aim of the figures is to view the reporting inventory as represented in the 

underlying dataset. The available data which could have been used in an NMA is reported in 

Table B-3 and Table B-4. As with PsARC, implementing the NMAs with the available data was 

not pursued as it would have constrained the evaluation of comparators in the decision model. 

Instead, the original NMA results for the Naïve and Experienced sub-populations, which are 

presented in Table B-5, were treated as the data source for this parameter set.  
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Figure B-2. Data Availability for ΔHAQ for Biologic Naive Sub-Population 
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Figure B-3. Data Availability for ΔHAQ for the Biologic Experienced Sub-Population 
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Table B-3. Inputs to Network Meta-Analysis of ΔHAQ Conditional on PsARC Response 

(Biologic Naive) 

   PsARC Response PsARC Non-Response 

Trial Arm (Dose) Week Mean SE Mean SE 

ADEPT 
ADA (40) 12 -0.500 0.050 -0.120 0.050 

Placebo 12 -0.313 0.080 0.026 0.040 

FUTURE 2 

SEC (150) 12 Redacted1 Redacted1 Redacted1 Redacted1 

SEC (300) 12 Redacted1 Redacted1 Redacted1 Redacted1 

Placebo 12 Redacted1 Redacted1 Redacted1 Redacted1 

Genovese 

2007 

ADA (4) 12 -0.423 0.080 -0.150 0.090 

Placebo 12 -0.177 0.060 -0.057 0.050 

GO-

REVEAL 

GOL (50) 14 -0.424 0.070 -0.049 0.060 

Placebo 14 -0.286 0.050 0.023 0.020 

IMPACT 
INF (5) 14 -0.6502 0.0902 -0.2002 0.0902 

Placebo 14 -0.2702 0.1402 0.0202 0.0502 

IMPACT 2 
INF (5) 14 -0.580 0.060 -0.110 0.060 

Placebo 14 -0.160 0.100 0.070 0.040 

Mease 2004 
ETN (25) 12 -0.635 0.060 -0.196 0.070 

Placebo 12 -0.258 0.010 -0.002 0.040 

PALACE 1 

APR (20) 12 – – – – 

APR (30) 12 -0.4602 0.0502 -0.0702 0.0502 

Placebo 12 -0.3202 0.0702 0.0002 0.0402 

PALACE 2 
APR (30) 12 -0.3302 0.0602 -0.1202 0.0502 

Placebo 12 -0.2202 0.0702 0.0102 0.0402 

PALACE 3 
APR (30) 12 -0.2902 0.0502 -0.0802 0.0502 

Placebo 12 -0.2502 0.0602 0.0002 0.0302 

PSUMMIT 1 

UST (45) 24 –3 –3 –3 –3 

UST (90) 24 –3 –3 –3 –3 

Placebo 24 –3 –3 –3 –3 

PSUMMIT 2 

UST (45) 24 –3 –3 –3 –3 

UST (90) 24 –3 –3 –3 –3 

Placebo 24 –3 –3 –3 –3 

PSUMMIT 

1+2 

UST (45) 24 -0.487 0.050 -0.097 0.050 

Placebo 24 -0.260 0.040 -0.001 0.030 

RAPID-PsA 

CZP (200) 12 – – – – 

CZP (400) 12 Redacted1 Redacted1 Redacted1 Redacted1 

Placebo 12 Redacted1 Redacted1 Redacted1 Redacted1 

1. Redacted values remain unpublished. Trial registry data updated in June 2020 with week 24 values.  

2. Values reported in Corbett et al. (2017). Original source unclear.  

3. Data from individual trials not available.  
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Table B-4. Inputs to Network Meta-Analysis of ΔHAQ Conditional on PsARC Response 

(Biologic Experienced) 

   PsARC Response PsARC Non-Response 

Trial Arm (Dose) Week Mean SE Mean SE 

FUTURE 2 

SEC (150) 12 – – – – 

SEC (300) 12 Redacted1 Redacted1 Redacted1 Redacted1 

Placebo 12 Redacted1 Redacted1 Redacted1 Redacted1 

PSUMMIT 2 

UST (45) 24 -0.315 0.110 0.007 0.130 

UST (90) 24 – – – – 

Placebo 24 -0.146 0.090 0.010 0.050 

RAPID-PsA 

CZP (200) 12 – – – – 

CZP (400) 12 – – – – 

Placebo 12 – – – – 

1. Redacted values remain unpublished. Trial registry data updated in June 2020 with week 24 values.   
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Table B-5. Network Meta-Analysis Results for ΔHAQ Conditional on PsARC Response 

 PsARC Response PsARC Non-Response 

Tx Mean Median 95% CrI Mean Median 95% CrI 

Model E1, Biologic Naive1 

Placebo -0.26 -0.26 -0.30 – -0.22 --- --- --- 

SEC150 -0.39 -0.40 -0.55 – -0.24 -0.08 -0.08 -0.39 – 0.22 

SEC300 -0.55 -0.55 -0.72 – -0.37 -0.05 -0.05 -0.29 – 0.18 

UST -0.49 -0.49 -0.60 – -0.38 -0.10 -0.10 -0.21 – 0.01 

CZP -0.43 -0.43 -0.53 – -0.33 -0.07 -0.07 -0.19 – 0.06 

GOL -0.44 -0.44 -0.59 – -0.29 -0.06 -0.06 -0.18 – 0.06 

ADA -0.49 -0.49 -0.58 – -0.40 -0.14 -0.13 -0.24 – -0.03 

INF -0.66 -0.66 -0.77 – -0.55 -0.20 -0.20 -0.31 – -0.08 

ETN -0.64 -0.64 -0.77 – -0.52 -0.20 -0.20 -0.35 – -0.05 

APR -0.36 -0.36 -0.43 – -0.29 -0.09 -0.09 -0.16 – -0.02 

Model E1, Biologic Experienced2 

Placebo -0.13 -0.13 -0.29 – 0.02 --- --- --- 

SEC300 -0.39 -0.39 -0.62 – -0.15 -0.43 -0.43 -0.88 – 0.01 

UST -0.32 -0.32 -0.55 – -0.09 0.00 0.00 -0.27 – 0.27 

Model E2, Biologic Naïve3 

Placebo -0.26 -0.26 -0.30 – -0.22  --- --- --- 

SEC150 -0.43 -0.44 -0.56 – -0.29 -0.09 -0.09 -0.23 – 0.06 

SEC300 -0.51 -0.51 -0.66 – -0.38 -0.08 -0.08 -0.21 – 0.06 

UST -0.48 -0.48 -0.58 – -0.38  -0.09 -0.09 -0.19 – 0.01 

CZP -0.47 -0.47 -0.56 – -0.37 -0.12 -0.12 -0.20 – -0.02 

GOL -0.48 -0.49 -0.59 – -0.35 -0.11 -0.11 -0.19 – -0.01 

ADA -0.50 -0.50 -0.58 – -0.41 -0.13 -0.13 -0.21 – -0.06 

INF -0.61 -0.60 -0.72 – -0.50 -0.15 -0.14 -0.24 – -0.07 

ETN -0.59 -0.59 -0.72 – -0.49 -0.15 -0.14 -0.26 – -0.06 

APR -0.36 -0.36 -0.43 – -0.29 -0.09 -0.09 -0.16 – -0.02 

Notes:  

1. Data acquired from Table 147 in Corbett et al.  

2. Data acquired from Table 49 in Corbett et al.  

3. Data acquired from Table 148 in Corbett et al.  
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PASI50/PASI75/PASI90 Response 

 The reporting from PsARC and HAQ was repeated for PASI, as illustrated in Figure B-4 

and Figure B-5. While there was interest in capturing PASI50, PASI75, and PASI90 results – 

these thresholds were not included in all trials. As before, the many redacted values and unclear 

provenance of some required values served as barriers to including the relevant NMAs within the 

reproducible workflow. The available data for the NMA of PASI response is reported in Table 

B-6 and Table B-7. As with the other two outcomes, implementing the PASI NMAs using the 

available data was not considered as it would have constrained the evaluation of comparators in 

the decision model. Instead, the original NMA results for both sub-populations, which are 

presented in Table B-8, were treated as the data source for this parameter set.  
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Figure B-4. PASI Response Availability for the Biologic Naive Sub-Population 
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Figure B-5. PASI Response Availability for the Biologic Experienced Sub-Population 
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Table B-6. Inputs to Network Meta-Analysis of PASI Response (Biologic Naive) 

Trial Arm (Dose) Week N1 PASI502 PASI752 PASI902 

ADEPT 
ADA (40) 12 69 50 34 21 

Placebo 12 69 10 3 0 

FUTURE 2 

SEC (150) 12 36 Redacted3 Redacted3 Redacted3 

SEC (300) 12 30 Redacted3 Redacted3 Redacted3 

Placebo 12 31 Redacted3 Redacted3 Redacted3 

GO-

REVEAL 

GOL (50) 14 109 63 44 22 

GOL (100) 14 108 83 63 26 

Placebo 14 79 7 2 0 

IMPACT 
INF (5) 16 22 22 15 8 

Placebo 16 16 0 0 0 

IMPACT 2 
INF (5) 14 83 68 53 34 

Placebo 14 87 8 2 0 

Mease 2000 
ETN (25) 12 19 8 5 –4 

Placebo 12 19 4 0 –4 

PALACE 1 

APR (20) 16 82 36 18 –4 

APR (30) 16 74 –4 –4 –4 

Placebo 16 68 11 3 –4 

PALACE 2 

APR (20) 16 80 27 15 –4 

APR (30) 16 77 32 17 –4 

Placebo 16 74 10 2 –4 

PALACE 3 

APR (20) 16 91 31 19 –4 

APR (30) 16 90 38 20 –4 

Placebo 16 89 22 7 –4 

PSUMMIT 1 

UST (45) 24 145 89 56 28 

UST (90) 24 – –4 –4 –4 

Placebo 24 146 31 13 6 

PSUMMIT 2 

UST (45) 24 36 –4 17 –4 

UST (90) 24 36 –4 17 –4 

Placebo 24 30 –4 1 –4 

RAPID-PsA 

CZP (200) 12 – Redacted3 Redacted3 Redacted3 

CZP (400) 12 – Redacted3 Redacted3 Redacted3 

Placebo 12 66 18 11 3 

SPIRIT-P1 
ADA (40) 12 68 –4 23 15 

Placebo 12 67 –4 5 1 

1. Number randomized.  

2. Number of responders at the specified threshold level.  

3. Redacted values remain unpublished. Trial registry data updated in June 2020 with week 24 values.  

4. Response at threshold level not reported.  
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Table B-7. Inputs to Network Meta-Analysis of PASI Response (Biologic Experienced) 

Trial Arm (Dose) Week N1 PASI502 PASI752 PASI902 

FUTURE 2 

SEC (150) 12 22 Redacted3 Redacted3 Redacted3 

SEC (300) 12 11 Redacted3 Redacted3 Redacted3 

Placebo 12 12 Redacted3 Redacted3 Redacted3 

PSUMMIT 2 

UST (45) 24 44 –4 14 –4 

UST (90) 24 44 –4 14 –4 

Placebo 24 50 –4 1 –4 

RAPID-PsA 

CZP (200) 12 – Redacted3 Redacted3 Redacted3 

CZP (400) 12 – Redacted3 Redacted3 Redacted3 

Placebo 12 20 5 1 1 

1. Number randomized.  

2. Number of responders at the specified threshold level.  

3. Redacted values remain unpublished. Trial registry data updated in June 2020 with week 24 values.  

4. Response at threshold level not reported.  
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Table B-8. Network Meta-Analysis Results for PASI Response 

Tx Mean Median 95% CrI 

Model F1, Biologic Naive1 

Placebo 1.02 1.02 0.90 – 1.15 

SEC300 -1.94 -1.94 -2.63 – -1.28 

SEC150 -1.88 -1.87 -2.54 – -1.24 

UST -1.14 -1.13 -1.41 – -0.87 

CZP -0.88 -0.88 -1.24 – -0.52 

GOL -1.65 -1.64 -2.10 – -1.21 

ADA -1.48 -1.48 -1.83 – -1.14 

INF -2.41 -2.41 -2.84 – -2.01 

ETN -0.80 -0.80 -1.64 – 0.03 

APR -0.75 -0.75 -0.99 – -0.51 

PASI Threshold (zj)    

zPASI50 0.00 0.00 0.00 – 0.00 

zPASI75 0.59 0.59 0.52 – 0.65 

zPASI90 1.15 1.15 1.06 – 1.25 

Model F1, Biologic Experienced2 

Placebo 1.35 1.35 0.59 – 2.19 

SEC300 -2.51 -2.51 -4.01 – -1.23 

UST -1.66 -1.66 -2.73 – -0.83 

PASI Threshold (zj)    

zPASI50 0.00 0.00 0.00 – 0.00 

zPASI75 0.87 0.87 0.28 – 1.84 

zPASI90 1.48 1.48 0.70 – 2.56 

Model G2, Biologic Naïve3 

Placebo 1.02 1.01 0.89 – 1.15 

SEC300 -1.86 -1.86 -2.33 – -1.36 

SEC150 -1.79 -1.80 -2.23 – -1.32 

UST -1.35 -1.34 -1.60 – -1.12 

CZP -1.43 -1.42 -1.89 – -1.04 

GOL -1.13 -1.14 -1.50 – -0.67 

ADA -1.42 -1.42 -1.67 – -1.17 

INF -1.79 -1.80 -2.17 – -1.31 

ETN -0.85 -0.85 -1.48 – -0.20 

APR -0.82 -0.82 -1.00 – -0.64 

PASI Threshold (zj)    

zPASI50 0.00 0.00 0.00 – 0.00 

zPASI75 0.58 0.58 0.52 – 0.65 

zPASI90 1.14 1.14 1.04 – 1.24 

Notes:  

1. Data acquired from Table 155 in Corbett et al.  

2. Data acquired from Table 55 in Corbett et al.  

3. Data acquired from Table 157 in Corbett et al.  
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Appendix C  

Constructing Treatment Sequences for Uncertainty Demonstration 

The expanded set of comparator sequences and the source treatments are presented in 

Table C-1. As the objective of the corresponding simulation was to demonstrate specific 

programming features, the constructed sequences were not intended to reflect clinical reality. 

Consistent with Corbett et al., candidate treatments had to be approved for use in adult Psoriatic 

Arthritis (PsA) at the time of the original appraisal. This led to the exclusion of APR and 

restriction of SEC dosing by sub-group. Treatment eligibility was further constrained by the 

available evidence synthesis data for three outcomes (PsARC, HAQ, PASI) based on biologic 

experience. In first- and second- line therapy, patients were assumed to be biologic naïve. Those 

who transitioned to a third-line biologic were assumed to be experienced. To simplify the 

comparators, it was assumed that a treatment could only be trialled once, and subsequent lines of 

treatment had to belong to a different class from the preceding biologic (anti-TNF vs anti-IL).  
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Table C-1. Comparator Treatment Sequences for Uncertainty Demonstration 

Eligible Treatments 

 Class Biologics 

Positions 1 and 2 (Biologic Naïve) 

Anti-TNF ETN, INF, ADA, GOL, CZP 

Anti-IL UST, SEC150, SEC300 

Position 3 (Biologic Experienced) 

Anti-TNF --1 

Anti-IL UST, SEC150, SEC300 

Included Comparators2 
SEC150_ETN_UST3 SEC300_ETN_UST3 SEC150_INF_UST SEC300_INF_UST 

SEC150 ADA UST SEC300 ADA UST SEC150 GOL UST SEC300 GOL UST 

SEC150 CZP UST SEC300 CZP UST UST ETN SEC300 SEC150 ETN SEC300 

UST INF SEC300 SEC150 INF SEC300 UST ADA SEC300 SEC150 ADA SEC300 

UST GOL SEC300 SEC150 GOL SEC300 UST CZP SEC300 SEC150 CZP SEC300 

Notes:  

1. Biologic Experienced data not available for treatments in the Anti-TNF class. 

2. Not shown: BSC was included as a comparator.   

3. Original treatment sequence. The third original sequence, CZP-ETN-UST, was excluded 

because CZP/ETN are both Anti-TNF.  
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Appendix D  

Availability of Code and Data 

The implementation of strategies to enhance the reproducibility of Health Technology 

Assessments for this thesis is reflected through the development of the `HTATools4PsA` R 

package. This R package represents a collection of functions and data sets which were used for 

the economic evaluation of biologic treatment for patients with Psoriatic Arthritis. The version of 

the package used for this thesis has been preserved in a Zenodo repository, as per the below 

citation.  

Wagner, DJ. (2021). HTATools4PsA: Tools for the Economic Evaluation of Biologic 

Treatment for Psoriatic Arthritis (Version 0.8.3). https://doi.org/10.5281/zenodo.5784367  

Installation of the package will follow a simple process: 

• Make sure the following R packages are already installed: `devtools`, `fs`, `tidyverse`, 

and `RefManageR`.  

• Download the package ZIP file from Zenodo using the above supplied Digital Object 

Identifier.  

• Install the package using the `install_local()` function from the devtools R package.  

o This function will require the path for the downloaded ZIP file.  

o Once the installation is successful, the original ZIP file can be deleted.    

https://doi.org/10.5281/zenodo.5784367

