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Abstract 

The Cox proportional hazards model usually assumes linearity of covariates on the 

log hazard function, which may be violated because linearity can not always be 

guaranteed. To deal with this issue, several previous researchers proposed a number 

of unstructured or structured nonparametric models. In this thesis, I will consider 

an alternative way to model covariate effects which could be linear or nonlinear on 

the log hazard in the proportional hazards model with a set of covariates. I propose 

a partially linear single-index proportional hazards regression model and apply a 

polynomial spline smoothing method to model the structured nonparametric single-

index component. This method can reduce the dimensionality of the covariates and 

more efficient estimates of the covariates' effects can be made. 

A two-step iterative algorithm to estimate the nonparametric component and 

the covariate effects is used which does not involve estimating the baseline hazard 

function. We employed the command 'coxph' from the R package 'survival' into our 

Newton Raphson iteration to get the same results in a much shorter period of time. 

The nonparametric component is estimated by B-splines, which is a nonparametric 

smoothing method. Asymptotic properties of the estimators are derived. Monte 

Carlo simulation studies are presented to compare the new method with the Cox lin-

ear proportional hazards model and some other comparable models. Application to 

the Veteran's Administration Lung Cancer survival data demonstrates the usefulness 

of our proposed method for gaining insight into the nonlinearity of covariates. 
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Chapter 1 

Introduction 

1.1 Introduction to Survival Analysis 

In recent years the statistical analysis of survival times has become a fruitful area 

both of practical application and of methodological research. The techniques of 

survival analysis are widely used in medical work, particularly in clinical trials and 

in follow-up studies, in social and economic sciences, including establishing social 

security benefits, job terminations and promotions, event-history analysis, duration 

analysis and stock market crashes, and in engineering for reliability and failure time 

analysis purposes. It is assumed that the outcome or response for each study subject 

or experimental unit may be viewed as a point event in time. Usually these events 

will not occur more than once to the same study subject. Examples include deaths of 

patients (in a clinical trial), the first recurrence of a disease (in a follow-up study of 

subjects treated for that disease), and the failure of a mechanical component under 

stress. For a uniform terminology we use the 'term' failure throughout, although in 

some applications, for example, in a study of the duration of period of unemployment, 

the outcome (securing a job) may be a desirable occurence. 

In this section, we will give some background on survival analysis, and also in-

troduce a popular classic model - the Cox proportional hazards model. 

:1 
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1.1.1 Background of the Statistical Analysis of Survival Times 

Often we are interested in the distribution of the times to failure, so-called survival 

times. Although there are many well-known methods for estimating unconditional 

survival distributions, examining the relationship between survival and one or more 

predictors, which are usually termed covariates or explanatory variables in the sur-

vival analysis literature, is often of greater interests. The covariates may be dummy 

variables, representing contrasts between treatment and control groups, or measure-

ments made on each individual upon entry into the study. Sometimes a covariate 

may itself take different values over time for the same study subject, for example 

blood pressure measured at repeated intervals during follow-up studies. In sum, 

covariates can be measured as binary, discrete or continuous, and fixed or varying. 

A distinctive feature of the survival times is that some may be censored, that 

is, some study subjects may not be observed for the full time to failure. The most 

common form is right-censoring: the period of observation ends, or an individual 

is removed from the study, before the event of interest occurs. For example, some 

individuals may still be alive at the end of a clinical trial, or may drop out of the 

study for various reasons other than death prior to its termination. The second form 

is left-censoring where the initial event time of a subject at risk is unknown. Lastly, 

we have the third form, which occurs when an observation is both right and left-

censored; hence, it is termed interval-censoring. Censoring complicates the likelihood 

function, and hence the estimation, of survival models. 

Moreover, since censoring is conditional on the value of any covariates in a sur-

vival model and on an individual's survival to a particular time, it is necessary to 
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evaluate whether censoring is independent of the future value of the hazard for the 

individual. If this condition is not met, then estimates of the survival distribution 

can be seriously biased. For example, if individuals tend to drop out of a clinical trial 

shortly before they die and, therefore, their deaths go unobserved, survival time will 

be over-estimated. Censoring that meets this requirement is termed non-informative. 

A common type of non-informative censoring occurs when a study terminates at a 

predetermined date. 

We may loosely distinguish three approaches to the statistical analysis of survival 

times: parametric, nonparametric and semi-parametric methods. 

The first approach is parametric. It is defined by its underlying distributional 

forms, which are specified parametrically, and include the exponential, Weibull, log 

normal, log logistic, Pareto, gamma, normal, exponential power, Gompertz or in-

verse Gaussian distributions. Maximum likelihood methods can be used to fit these 

models which relate the parameters of these distributions to the covariates. These 

parametric models can offer insight into the nature of the various parameters and 

functions discussed above, particularly, the hazard rate. For a detailed description 

of parametric models, see Lawless (2003). 

The second approach is nonparametric, which does not assume any functional 

form for the risk function and the distribution function. It stems from the product 

limit estimator of the survival distribution introduced by Kaplan & Meier (1958). 

Both the theories and the scope of these techniques are developing rapidly, for ex-

ample, see Nielsen and Linton (1995). 

A third battery of techniques, sometimes called semi-parametric method, can 

be used to synthesize the parametric and nonparametric methods. The effect of 
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primary interest, namely that of the explanatory variables on survival, is represented 

parametrically or semiparametrically (with parametric components or nonparametric 

components), but no specific form is assumed for the distribution of survival times. 

A seminal paper by Cox (1972) on survival regression models and life-tables has 

motivated much subsequent work in this area. It is also the main subject of this 

thesis. 

1.1.2 Cox Proportional Hazards Model 

This section describes the proportional-hazards regression model, which has played 

a pivotal role in survival analysis since Cox proposed it in 1972. This model assumes 

the hazard rate or intensity function is a product of an unspecified function of time 

common to all individuals and a known link function (usually exponential) of a linear 

combination of the covariates. 

Notation and Definitions 

For each of the n subjects, indexed by i, assume there is a given fixed covariate or 

explanatory function X,. For each individual i, this function may be independent of 

time, or a deterministic function of time. For notational simplicity, we take X, to 

be scalar for each individual, i, although in practice it will often be a vector. 

Define T as the survival time. Recall that the survival function 8(t), which is 

defined as 8(t) = P(T > t) = 1 - F(t), and the density 1(t) of a positive random 

variable with absolutely continuous distribution, can be expressed in terms of the 

hazard function 

(t) = ≤ t + LhT> t) = alog 8(t)  
Ah at 
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by the equations 

pt JO t 

S(t) = exp{— J A(u)du}, f(t) = A(t) exp{— A(u)du}, 
0  

respectively. 

In the absence of censoring, the conditional hazard function, Ai (t), which depends 

on covariate Xi(t) for the survival time T of the it" subject, is assumed to satisfy 

)t(tIX(t)) = AO(t) exp {fiX(t)}. 

Here A0 (t) is the unknown baseline hazard function corresponding to X = 0, so it 

is the same for all subjects and the unknown coefficient ,8 expresses the dependence 

of the distribution of T on the covariate X (t). An important assumption is that 

failures of different subjects occur independently, and that the value of the covariate 

function for one subject does not influence the survival time of any other subject. 

To include the possibility of censoring in the model, we suppose that for each 

studied subject there is a random censoring time C, which is generally unknown. 

We observe Zi = min(2i, C) together with an indicator of failure (Ti ≤ C) or 

censoring (T > Ci). A censoring indicator is defined as Ji = I{T ≤ C} for the i' 

subject. 

Partial Likelihood 

Now we will discuss about the likelihood function of this standard model first. 

Let D be the set of subjects observed to die and IDI is the size of set D. Thus, 

D = {i : Ti < C}. Let R(u), the risk set at time u, denote the set of subjects 

observed to survive until time u. Thus, R(u) = f  T ≥ u, Ci ≥ u}, let IR(u)I be 
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the size of this set at time u. We write Xfi = x (ti) for the j1h covariate value of the 

jth subject at their failure time, and R be the corresponding risk set R(t). 

The ordered observed failure times, t, will be denoted by T1 < < Tm with 

= 0. For notational simplicity we consider only the case where IR(m+) j = 0, that 

is where no subjects survive beyond the last observed failure. 

If Ao(t) were known, a full likelihood could be derived. A subject censored at 

Ci = cj would contribute a term 

Ci 

exp { - f o  

which is the probability of survival past c1, and a term for a subject who failed at t 

( f 
tj'Iexp -  A(u)e13xi()du I..  ) 

which is the probability of failure at t. 

The product of all such terms may be written as 

m ( r 
Lik = JJ exp{— f AO(U) c1a(u)du }A0(r ) e 3() P1./3XJi  

i=1 jER(u) jER(r) 3ER(ri) ) 

where J is the index of the subject who fails at r,. 

If )'o (t) is unknown, the terms in square brackets will provide little information 

about /3, and Cox's (1972) suggestion amounts to basing inferences about /3 on the 

remaining terms which together constitute the partial likelihood, 

.PartialLik =  Poxii  
> j iED jER 

The corresponding log likelihood is 

I = log(PartialLik) = 
iED iED 

log{ 
jERi 
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Cox (1975) indicates that under suitable regularity conditions, these results imply 

that PartialLik enjoys all the usual asymptotic properties of a likelihood function. 

Rigorous proofs appear however to have been derived only under rather restrictive 

conditions (Tsiatis, 1981; Liu and Crowley, 1978). 

Discussion 

An important assumption of the Cox model is that the covariate variables have a 

linear effect on the log-hazard function. However, this assumption could be violated 

and a misleading conclusion could be drawn. As a remedy, nonparametric function 

estimation has been proposed to estimate the conditional hazard function. Much 

research has been devoted to investigating this area, including O'Sullivan (1993), 

Gentleman and Crowley (1991), Tibshirani and Hastie (1987), Fan, Gijbels and 

King (1997), and Gu (1996), among others. These authors based their research on 

the following common form for the hazard function: 

.X(tlx) = )0(t) exp {co(x)}, 

where (x) is assumed to be a smooth function of x and is unknown. 

But unstructured nonparametric function estimation is subject to the 'curse of 

dimensionality' and, thus, is not practically useful when the covariate vector x has 

many components. The curse of dimensionality is a term coined by Bellman (1961) 

to describe the problem caused by the exponential increase in volume associated with 

adding extra dimensions to a mathematical space. For example, 100 evenly-spaced 

sample points suffice to sample a unit interval with no more than 0.01 distance 

between points; an equivalent sampling of a 10-dimensional unit hypercube with a 

lattice in spacing of 0.01 between adjacent points would require 1020 sample points. 
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Thus, in some sense, the 10-dimensional hypercube can be said to be a factor of 1018 

'larger' than the unit interval. 

Avoiding the 'curse of dimensionality' is an issue that concerns many statisticians. 

Much research has been done using structured nonparameric models. Hastie and 

Tibshirani (1990) proposed the 'Generalized Additive Model' (GAM), which features 

an additive term of some unspecified smooth functions of the covariates in place of 

the usual linear predictor form of the covariates. They estimated the unspecified 

smooth function using scatterplot smoothers. Sleeper and Harrington (1990) also 

used additive models to model the nonlinear covariate effects in the Cox PH model. 

However, they modeled the log-hazard as an additive function of each covariate 

and then approximated each of the additive components using a polynomial spline. 

Similar research has been done by Huang (1999). Gray (1992) applied penalized 

splines to additive models and time-varying coefficient models of the log-hazard 

function. Using functional ANOVA decompositions, Huang et al. (2000) studied a 

general class of structured models for proportional hazards regression that includes 

additive models as a specific case; polynomial splines are used as the building blocks 

for fitting the functional ANOVA models. Other approaches have used a Single Index 

Model (SIM) to reduce dimension, in order to avoid the 'curse of dimensionality'. 

We will expand on this approach in the next section. 

1.2 Introduction to Single Index Model 

The popularity of modeling the covariates using a linear form in an empirical analysis 

is based on the ease with which the results can be easily interpreted. This tradition 
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influenced the modeling of various nonlinear regression relationships, where the mean 

response variable is assumed to be a nonlinear function of a weighted sum of the 

predictor variables (Härdle and Stoker, 1989; Powell, Stock and Stoker, 1989). This 

is the so called Single Index Model (SIM). As in linear modeling, this feature is 

attractive because the coefficients, or their weighted sum, gives a simple picture of 

the relative impacts of the individual predictor variables on the response variable. 

SIM summarizes the effects of the explanatory variables X1,.• , X, on the con-

ditional mean of Y within a single variable called the index through the mean re-

gression, 

E(YIX) = m(X) = g(/3'X). 

It generalizes linear regression by replacing the linear combination /3TX with a 

nonparametric component, g(/3TX), where g is an unknown univariate link function. 

Because a nonlinear link function is applied to the coefficient vector /3, interac-

tions between the covariates can be modeled. Thus, SIM is a useful alternative to 

the additive model, which also reduces dimensionality but can not incorporate inter-

actions. Applications of SIM lie in a variety of fields, such as discrete choice analysis 

in econometrics and dose-response models in biometrics, where high-dimensional re-

gression models are often employed (Härdle, Hall and Ichimura, 1993; Powell, Stock 

and Stoker, 1989; Carroll et al., 1997; Xia et al., 2002). For more examples which 

motivated the single index model, see Ichimura (1993). 

Over the last two decades, many authors had devised various clever estimators 

of the single-index coefficient vector /3 = (i3,•• , f3)T. Usually estimation for SIM 

is carried out in two steps. First, the coefficients vector /3 was estimated, and then 

second, the unknown link function g was estimated by ordinary univariate nonpara-
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metric regression of Y on /3TX using the index values for the observations. 

Discussed above is the single-index model applied to mean regression for uncen-

sored response variables. Some research has been conducted to apply Single Index 

Model (SIM) with hazard regression models (Nielsen et al., 1998; Gørgens, 2004; 

Wang, 2004; Lu et al., 2006). Recently, Huang and Liu (2006) proposed a model 

with the conditional hazard function specified as 

A(tlx) = )o(t) . exp{co(/3Tx)}, 

where is the link function, which is an unknown smooth function. Since çü(.) 

is not specified, the relative risk function has a flexible form. It can model possible 

departures from the standard Cox PH model that can not be captured by an additive, 

time-varying coefficient, or a more general functional ANOVA model. 

Huang and Liu (2006) used spline smoothing for the unknown link function. 

The greatest advantages of spline smoothing are its simplicity and fast computa-

tion, at least when equally spaced knots are used. Hence, the spline estimator of 

ço(.) possesses not only the usual strong consistency and /-rate convergency to an 

asymptotic normal distribution, but is also fast to compute for large sample size, n, 

and high dimension covariate vector. 

However, in their model, they created an inference procedure by incorporating 

all of the covariates into one single-index term, which may be arbitrary, since some 

of them could have linear effects on the response variable while others could have 

nonlinear effects. In this thesis, I separate the covariate vector into two groups, so 

that the model has one parametric component and one nonparametric component. 

The parametric component keeps the linear form of some covariates and simplicity 
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of the original Cox model, while the nonparametric component adds some flexibility 

to the model. We adopt the uniform B-spline smoothing on the nonparametric 

component. More details on our model will be given in Chapter 2. 

1.3 Introduction to B-splines 

In this section, we provide some basic concepts and several important theorems about 

J3-splines (Schumaker, 1981). 

Definition 1.3.1. Let ... ≤ < yo < y < 1/2 < 

numbers. Given integers i and rn> 0, we define 

Qr(x) = { - V) +m—i if 1/i <Yj+m 

be a sequence of real 

0 otherwise, 

for all real x. 

We call Q11 the mtl order B-spline associated with the knots yj,•• 

[Yi,••• ,yi+rn]f() 

Yi, ... ,Yi+m 

1,x rn—i ,...,x ,f 

Vi+m, where 

Theorem 1.3.2. (Recursion Formula) 

Let rn ≥ 2 and suppose 1/i < Yi+rn, then for all x E IR, 

Q(x) = (x - y)QTh'(x) + (Yi+m - x)Qj'(x) 

Yi+mYi 

This provides a recursion relation whereby 13-splines of order rn can be related 

to B-splines of order rn - 1. 
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Definition 1.3.3. (Normalized B-spline) 

Let Nr(x) = (yi+m — yi)Qr(x). We call Nim the normalized B-spline associated with 

the knots y, - , 

Theorem 1.3.4. (Recursion Formula for Normalized B-spline) 

The B-splines form a partition of the unit; that is, 

N(x)=1 for all Yj≤X<Yj+1, i= (j+1—m),•.. J. 

Also, we have 

Nr(x)= r1y N'(x)+ Yt+m X  N'(x). 
Vi+m—i - Vi Yi+m - Yi+1 

Theorem 1.3.5. (Derivatives) 

Let yj <Vi+m and suppose D+ is the right derivative operator. Then 

.D+Q _ 

r(x) - 1) - m ( [QT-l(x) - Q'(x)] 

- Vi) 

D+Nr(x) = (m - 1) (Yi+m— N'(x) N'(x) 
i - Vi Yi+m - Yi+i) 

The above-mentioned definitions and theorems are the general forms for any 

distribution of the knots. The following are the special case formulas for equally 

spaced knots, which are usually called uniform B-splines. 

Theorem 1.3.6. (Recursion Formula for Uniform B-spline) 

Let m ≥ 2, then for all x E IR, 

Qm(x) = xQm'(x) + (m— x)Qm'(x -  1) 

Since Nm(x) = mQm(x), 
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Nm(x) = xQm_l(x) + (m - x)Qm_l(x - 1) 

N M-I(x) rn—x 
-    N 
- rn—i rn-i m_l(x_i) 

Theorem 1.3.7. (Derivatives for Uniform B-spline) 

D+Nm(x) = Nm_l(x) - N'-'(x - 1). 

See the text by L. L. Schumaker (1981) 'Spline Functions: Basic Theory' for 

additional definitions and the theorem proofs. 



Chapter 2 

A Partially Linear Single-Index Proportional 

Hazards Regression Model 

2.1 Motivation 

Our motivation to consider a partially linear regression model with many covari-

ates has become at least some of them can have nonlinear effects on the response 

variable. In this situation, none of the traditional linear models, kernel smoothing 

methods (Nielsen, Linton and Bickel, 1998; Wang, 2004) and single-index models 

with spline smoothing (Huang and Liu, 2006) are able to incorporate both linear 

and nonlinear covariate effects. In addition, when a large number of covariates have 

nonlinear effects, the multivariate kernel smoothing method suffers from the 'curse 

of dimentionality'. 

We propose a model with log relative risk function or log-hazard function: 

aTV + cb(,8TX), 

which is referred to as the link function and where &(.) is an unknown function. 

We will use spline smoothing only for the nonlinear part including X but not the 

linear part including V. The covariate effects in this model are addressed in a 

semiparametric fashion, which offers improved flexibility over the existing methods 

in modeling the relationship between the failure time and the covariates. Unlike the 

models considered by Nielsen et at. (1998) and Lu et at. (2006), our model does 

14 
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not assume a parametric baseline hazard function. When p = 1 (p is the number of 

covariates in X), 0 is a scalar, the model becomes the partially linear model studied 

by Heller (2001); when p = 0, the nonparametric component disappears, and the 

model is the classical Cox PH model; and when q = 0 (q is the number of covariates 

in V), the linear parametric component disappears, and the model is just a single-

index model with an unknown link investigated by Huang and Liu (2006). Hence, 

the properties of this proposed model require a full investigation. The main focus of 

this paper is the estimation and inference of the parameters PO and a0 under random 

censoring. 

To apply this partially linear single-index model in practice, a practical issue 

arises: How to partition the covariates into the nonparametric component X and 

parametric component V? There are several strategies that can be applied to de-

termine the division of the available covariates. The first approach is to utilize 

subject-matter knowledge related to the data collected in the experiment (or study) 

and the underlying physical mechanism. In this model, the X vector serves primarily 

in the role of dimension reduction, while the V vector may contain the key covari-

ates of interest in the study. From this perspective, the selection of V and X can be 

readily made from the context of the study itself. For example, in a clinical study, 

the treatment effect of a medicine is of interest and could be coded as a categorical 

variable. It should be included in the V vector, whereas the other covariates such as 

patient's age and blood pressure can be included in the X vector. Although a cate-

gorical type V is defined here as a categorical variable, V can also be a continuous 

type variable or a mixture of the two types. In our case studies, we will rationalize 

this idea of selecting covariates. The second approach is to carry out some simple 
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analysis of all covariates, which can determine which covariates should be in the V 

or X component vector. For example, for each covariate, we perform a simple re-

gression analysis based on a kernel smoothing or a spline smoothing method such as 

a univariate nonparametric regression or partially linear models. If the fitted curve 

appears to be linear or approximately linear, we then assign this covariate to V, 

otherwise, we assign it to X. 

In the proportional hazards model framework with multi-dimensional covariates, 

this partially linear single-index model allows flexible modeling of the covariate effects 

and at the same time retains the feature of being parsimonious and easy to interpret 

like the Cox model and the single-index model. 

2.2 Model Description 

Suppose we have an i.i.d. sample with sample size n from a population with data 

vector of the form (V, X, T, C), where T1,••• , T, represent survival times, Ci,• ,Cn 

are the corresponding censoring times, and (V, X) the covariate vectors, as defined 

above. We assume the censoring is non-informative, in other words, T and C are 

independent given X and V. Suppose we observe for the th subject, an event time 

Zi = min(T, Ci), a censoring indicator öj = If Ti ≤ C}, as well as the q-variable 

covariate vector, V, and the p-variable auxiliary covariate vector, X,. We denote the 

observed data for i = 1,... , n as (Vi, X, Z, ö). 

We propose to approximate the derivative of the unknown function '&(.) as a 

spline function. Such an approximation can be represented by a basis expansion 
k 

= 

=1 

B(3Tx) = 7T]3(J3TX) 
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where B, j = 1,... , k are the B-spline basis functions (de Boor, 1978) and k is 

the degree of freedom for the B-spline.. Other choices of a basis function can be 

used here as well, but B-splines are preferable since they are numerically stable and 

computationally efficient. 

Since any constant in the link function can be absorbed into the baseline function 

) (.), the link function (aTV + (/3"X)) is not identifiable. Thus, we specify that 

when (V7 X) = 0, the link function is 0 for identifiability reasons and so 0(0) = 0. 

Then 
k fj=1 'yBj(t) dt > 'yj(6TX) = 3=1 

where .(u) = j' B(s)ds, j = 1,••• , k, are the integrals of the B-spline basis 

functions; .S(u) = (Bi(u),... ,Bk(.u))T; .(u) = (.51(U) '...,. k (u))T ; and y = 

(71,•" ,7k)T. 

The link function will then become 

aTV + tyT]3(/3TX). 

We use quadratic B-splines in the basis expansion of '(.) so that &(.) will be a 

cubic spline. 

Let T1 < <Tm  be m distinctive ordered event times and (V(), X()) be the ith 

covariate associated with the individual whose failure time is Ti. Define Di as the 

index set of units failing at time point r and, thus, Di = {j: Zj = Ti, 8j = 1}, and 

IDI denotes the size of D. The partial likelihood is defined as 

M 
PL = fl exp{va + yT ñ(x)/3)} 

ID1I' 
[EIIiRj exp{va + yT.(xT/3)}] 

(2.1) 
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where Rj={l: Z1≥Ti} is the risk set at event time r, i= 1, -  

Therefore, the log partial likelihood is 

1(,6, ,y, a) = log(PL) 

{vTa + 
i=1 jED1 

—lDllog 
i=1 LiERi 

exp{va + 

Denote &, ' and & as the values which maximize this partial likelihood. Then 

the spline estimate of the unknown function is (u) = 5T.(u) and the regression 

parameter estimates are 4 and &. When there exist ties among event times, standard 

procedures (Kalbfleisch and Prentice, 2002) for handling ties for the Cox PH model 

can be used. We use Breslow's approximation in our implementation. 

The joint score vector is given by S(pa) = (5', ST, S)T, while the full Hessian 

matrix is given by 

H(,,a) = 

/ H, Hp,.- Hp,,,, 

r-r 
.L.L9 1 .L2 u y.7 

\ uT nT H .L.LI3,c a,c 

It is quite straightforward to get the score function, See, and the Hessian matrix, 

Hçjj3, of log likelihood 1 with respect to : 

rn m/ 

= = ('fB(x)x) - Dl wiYTB(xfl)xt) 
i=1 \jED1 

and H,6,p= H1 - 112, where H1 = j€D (7TBf(x)xx) and 

H2 = Di WU {7TB'(x) + {TB (x)}2} xjx1 
i=1 LIERi 

- JD wjjyTB(xt/3)xj 
i=1 IIER, 1ERj 

T B( T x)x 1 ], 
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with 
exp {v 1'a + 7Tñ(x/9) }  

wli=  jERj exp f vJTa + 7TB- (x'/3)} 

and B(u) = (B(u),... , B(u)). 

Similarly, we can get the score function and the Hessian matrix for : 

s=-= (.(xo)_IDI 
i=1 jED 

821 

1ERj 

= - D4 wi (x )T(x /3) - wj(x/3) 

i=1 1ERj 1ER 1ERj 

and the score function, and the Hessian matrix of I with respect to a: 

S. al M Tce Vj — Pil E Wlivi) 
i=1 jEDj 1ERj 

T(XTL3) }, 

021 M = 0a0aT - IDl Wj Vj v?' - v' 

i=1 UERi 1ERj 1ER J 
Also we can easily get Hp, 321/018&y, H = 821/8/38a, and 

812 
- - 

5'y8a 

m 
IDI wi(x/3)v — wi.(x",B) 

It is easily seen that H and are negative semi-definite, which implies that 

the log partial likelihood 1 is a concave function of 'y for fixed /3 and a, also 1 is a 

concave function of a for fixed /3 and 'y. If we combine , a into one vector ('y, a), 

then 1 should be a concave function of (-y, a) for fixed /3. The joint score vector is 

S() = (S.f, S)T, and the joint Hessian matrix is given as follows: 
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We apply an iterative alternating optimization procedure to calculate the maxi-

mum partial likelihood estimate which adopts the specific structure of the problem 

and is numerically stable. Note that for fixed /3, the partial likelihood 1(13, 'y, a) is a 

concave function of ('y, a) whose maximum is uniquely defined, if it exists. We solve 

the maximization problem by iteratively maximizing 1(13, 'y, a) over /3 and (-y, a). 

More specifically, for the fixed current value /9 of 0, we update the estimate of 

by maximizing l(&,'y, a), and for the fixed current values of and &,, of 'y and 

a, we update the estimate of /3 by maximizing 1(13, %, Q. The process is iterated 

until some specified convergence criterion is met. We find that the proposed proce-

dure is easy to implement and the algorithm usually converged very quickly in our 

simulation studies. 

While it is possible to maximize the log-partial likelihood simultaneously with 

respect to /3, -y and a, we find the iterative alternating optimization more appealing. 

The iterative procedure is numerically more stable and computationally simpler, 

as there is no need to calculate a larger Hessian matrix as would do if simultaneous 

optimization were implemented with the Newton-Raphson algorithm. Also, when we 

fix /3 to update (7, a), the partial likelihood 1(13, y, a) is a concave function of ('y, a) 

whose maximum is uniquely defined, if it exists. We use the step-halving method 

to avoid downhill steps and guarantee that each step increases the likelihood. Also, 

during each step of the Newton-Raphson iteration, we will keep the norm of /3 the 

same as the norm of /30. Here we just use the standardized /3o, in other words, 

IIi3olI = 1, to ensure it is identifiable, where 11 . 11  denotes the Euclidean norm. The 

constraint 11/311 = 1 on the single-index coefficient parameters is then required for 

parameter identifiability. We also keep the direction of the first element of 6 in the 
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same direction of the first element of 6o during iteration. To further simplicity of 

the maximization process, we require the first component of 13o to be positive for 

identifiability purposes. 

2.3 Inference 

Since we used a constraint, II/:3D = 1, for identifiability purpose, in order to obtain the 

variance-covariance matrix of ( ', a), we reparameterize = ((1_Ilo.II2)h/2,  cyp_i)T 

with o = (01,... , 

Let G': (j3,'y,a) —* (o,'y,a), and then G:  

The observed Fisher information, I(cr, 7, a), of this reparametrization vector 

(o•, 'y, a) equals —H(o, 'y, a), the negative of the Hessian of (o•, , a). By a stan-

dard application of the martingale theory of partial likelihood (e.g. an extension 

of the arguments by Prentice and Self, 1983; also see Section 2.6 for the proof of 

asymptotic normality), we can show that (&, 'i', a) is asymptotically normal with an 

estimated asymptotic variance-covariance matrix {I(ô, 5', a)}'. 

By the delta method, (/, 5', &) are asymptotically normal with an estimated 

asymptotic variance-covariance matrix 

var(, P5', a) = var(G(&, 'i', a)) 

a)]", 

where G' denotes the derivative of C with respect to (a, ly, a) and has the estimated 
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form, 

= (41) 42) 4p7 â1," ,&q)' 

= (i) &i," , &p_i, 71," ,7k, &1,••• , 

L 01 01 0 
852 

2] 0 0 0 0 
0&1 

0  ü 0 0 

Therefore, 

0 

0 

/3i  

'p+k+q—1 

( 
) 

'p+k+q-1 

- 

(a...&0 ... O 

'p+k+q-1 

)T , 

where 'p+k+q—1 is the (p + k + q - 1) x (p + k + q - 1) identity matrix, and H(&,  

is the Hessian matrix of (&, 5', a). 

The Hessian matrix, H(,a), can be expressed as: 

/ U0.,7 Ho,a 

HT y H.yçy H7,a 
01 

HT HT 
\ o,a H j 
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where H, H and Ha, are the same as given in Section 2.2. 

Denote the covariate vector for individual i as = (x2,... , Using o to 

substitute for P, we have this new form of the log(PL) 

= log(PL) 

= •V jTa + + x(l - 11 2)1/2)  

i=1 jED 

D log exp f v a + + xzi(1 - IJuIl2)h/2)}. 
i=i lERj 

The score function of o' is as follows 

so. 
(91 

Ta 
x1o.  

= E + xii(i - IIII2)h/2)( - (1'— IIII2)h/2)] 
i1 jEDj 

M 
—1'   

- I D4 > wj'yTB('cr + xji(1 - IIoiI2)h/2)(x (1 - IIoI)" 
1=1 1eR 

Let j = —x1o/(i - 110112)1/2 ± i" i = 1, , m. Then we will have 

81 
so.=— 50 

i=1 jED1 

yTB (x8) 
i1 ZERj 

wzjyTB(x'/3)j. 
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Then it is straightforward to derive H from the score function S, 

L9 S, 
- - 

aS 

+ so/(i - hail2)  
+ xjl  - 11u112)"2)xai ( - 115112 ) 

jED 

M 

+ fB'('a + x(1 - hlhI2)iT 
i=1 jED 

M 

— IDl 
i=1 lERj 

M 

- IDI E w 
i=1 

M 

[ Ip_i + so• '/(l - 115112) 11 ( 1 - h1cII )] 

- i IDl w [{ T T] B(xT )}2  
i=1 1ERj 

M 

+ E ID4 wjj'yTB(x8)j wi TB(x8)'. 
i=1 1Rj 1ERj 

Let A = (a 1) be a (p - 1) x (p - 1) matrix with entries aii = 1 + o/(1 - 115 112) 

and aij = o-o/(1 - 10112), i 54 j, i,j = 1,... ,p - 1, in other words, A = + 

- 115112). Then we will have 

M 

 )A-'-
= 'fB(x/3)( /1• hIsiI 

i=1 jEDi 
i=1 jED M 1 1 

—  >IDil>wu ITB(xe)(  '  )Al 
i=1 L v" - 115112 j 
M 

- I IDI E wj ['yTB'(x"fi)jff + {'yTB(x'/3)}2 "] 
i=1 IERj 

B'(x'fi)T 

+ IDl w1i^tTB(x1 w1TB(xfi)T}. 

i=1 iERj 
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Recall 

wli = 

and so we obtain 

as. 

exp {v?'a + 

jER exp {vTa + 

= 

i1 jED 

m 
- xp{v"a + ID4  e  

lER jGRj exp{vj'a + 

- JD exp{v'a + yT.(x?'18)} 
j1 iE& EJ exp{v + 7Tn(X)}TB(x)eiT(x8) 

+ D4  exp{v'a +  
1E [EjER,exp{v'a + 

= 

leRj 
m 

exp{'f.  (XT j3) + v?'a}. T (x8) 

BT (xT3) 
i=1 jEDj 

- D4 E  w1i f •,B T (XT ) + 'YT B(x )eT(xT/9) } 
i1 IERj 

i=1 

IDil { tER ICR1 

wT (XT 3) }, 
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as. 
o,a - 

5a 
m 

exp{vra + yT(x'I3)} 
1- 7- 1 

i=1 1ERj E jERj exp{va + yT .(x '13)} 

{v'a + 
+IDI exp 

IE [jE exp{va 

exp{va + 
IERj 

M 

i=1 1R 

wyTB (x@)v' 

w1.7TB (x8) 

The first p elements on the diagonal of matrix var(,8, '5', &) will give var(I), i = 

1,... ,p and the last q elements on the diagonal of matrix var(/,'5', &) will give 

var(c2), i = 1) .. , q. Thus, an approximate 95% confidence interval for Pi is ± 

1.96{var (/ j)}h/2 and, similarly, a 95% confidence interval for aj is c±1.96{var(c)}'/2. 

For a fixed u, the variance of the estimated function evaluated at u can be esti-

mated as var((u)) =(u)Tvar('5)(u), where var('5') is given by the appropri-

ate submatrix of var(j, 5', a). An approximate 95% confidence interval for (u) is 

(u) ± 1.96{var((u))}h12. 

2.4 Implementation 

The 3-step iterative Newton Raphson algorithm for this model are as follows: 

Step 1. Start with initial values for /(0) , 5'(0) and 

Step 2. Given the values of $(d), '51(d) and update the estimate of ,@ using 
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one iteration of the Newton-Raphson method, using this expression to get $(1), 

(d+1) = (d) - {H(d),1(d) ((d) , (d), a(d))}_1s,(d) ((d) , (d), â(d)). 

Then standardize (d+1), such that I (d1+1)  = 1 and ensure its first component 

is positive. 

Step 3. Given the values of $(d+1) , (d) and &(d), update the estimates of 'y and 

a simultaneously to obtain (1) and &(1), using one iteration of the Newton-

Raphson method with step-halving, as follows: 

(.5(d+1), &(+1)) 

= (.(d), &(d)) - 2—k{JI((d)(d))((d+1) (d), a(d))}_1s((d),a(d))(f.(1), ,1(d) &(d)), 

where k is the smallest nonnegative integer such that 

(d+1) &(d+1)) ≥ 1((d+1) , (d), &(d)). 

Repeat Steps 2 and 3 until some specified convergence criterion is met. 

We note here that the algorithm may not converge if the initial values are far 

from the maximum partial likelihood values, but it usually converges within a few 

steps for initial values reasonably close. In our simulation study, we ran the program 

using different random parameter values and the program converged for 95% initial 

values chosen. 

Since the coxph function in the R package 'Survival' uses essentially the same 

idea to get the regression coefficient estimates, we can employ this function in our 

iterative algorithm. By using the coxph function in place of Step 3, the algorithm is 

modified as follows: 
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Step 3 (alternative). 

ss - coxph(Surv(Z, 6) r'' B(XT/(1)) + V) 

((d+1), &('')) - coef(ss) 

After comparing these two methods for Step 3, we obtained identical results, but 

the second method, which combines the Cox PH and the Newton-Raphson method, 

takes half the time of the first method. Hence, we recommend the use of the second 

method for implementation of our approach. 

2.5 Number and knot position selection 

Since each set of knots determines an approximating model, information based cri-

teria are natural choices for selecting their number and position. In our implemen-

tation, we use uniform B-splines as smoothing functions. In other words, for a given 

number of knots, we put the knots at equally-spaced locations between the smallest 

and the largest values of ,CTX. In our algorithm, we chose to use the method pro-

posed by Akaike (1973) to select the knots. It is a decision-making strategy which 

uses a natural criterion for ordering alternative statistical models for the data. 

Denote the total number of parameters to be estimated as P = nknots + ds + 

p + q - 2, where nknots + ds - 2 is the degree of freedom of B-splines, we need to 

minimize this quantity: 

AIC = —2 log(PL(X 0)) + 2P, 

where PL(X 0) is the partial likelihood evaluated at the parameter 0 = 8, 'y, a), P 

is the total independent parameters in 0, nknots is the number of knots including 

two boundary points, ds is the degree of the spline, p is the number of X covariates, 
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and q is the number of V covariates. We can easily see the length of ,@ is p, the 

length of 'y, in other words, the degree of freedom of the B-spline, is mknots + ds - 2, 

and the length of a is q. 

Schwarz (1978) proposed an alternative to the AIC called the BIC which uses a 

Bayesian information criterion. It minimizes 

BIC = —2log((PL(X 0)) + log(n)P, 

where m is the number of subjects or objects in a study. 

To choose the number and position of the knots, we varied the number of knots in 

a relatively large range and choose the set which minimizes both the AIC and BIC. 

The differences between AIC and BIC was very minimal for sample sizes between 

200 and 300. Tighter control on the number of knots was obtained with the BIC 

when the sample size was very large. In addition, we checked the sensitivity of these 

results for different numbers of knots. The knot positions change in each iteration of 

the program since /3 is updated, and so ,13TX is updated as a consequence. However, 

results were stable if the program converged. 

2.6 Asymptotic Normality and Consistency 

We will adopt the standard counting process formulation for survival analysis (An-

dersen and Gill, 1982; Liu, 2004) to show asymptotic normality and consistency of 

our proposed estimators. The multivariate counting process N = (N1,... , N) is 

such that N counts failures on the i1h subject at times t E [0, 1] when the subject is 

under observation. 
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Defining the censoring process Y(t) = (3(1(t),... , Y" (t)) as 11(t) = I{Tj ≥ t, C1 ≥ 

so that 11(t) = 1 if the i1h subject is under observation at time t and 11(t) = 0 

otherwise. Most questions of interest concern the relationship between failure rate 

and the histories of some covariate process. Let X (t) = (X1 (t),... , X,,, (t))T denote 

the covariate processes such that XT(t) = {X11 (t),... , X1,(t)} denotes the counting 

process histories up to time t for subject i. 

The counting process formulation permits each Ni to be uniquely decomposed 

into the sum of its cumulative intensity process A1 and a local square integrable 

martingale M1, so that 

Ni (t) = Ai (t) + M1 (t), 

for all (t,i), i=1,.. ,n. 

The increasing process A1 is, for convenience, taken to be absolutely continuous, 

giving 

A1(t) = f A1(s)ds. 
The intensity process ) = (>i,'. , ))T, under some regularity (e.g. each .X1 

bounded by an integrable random variable, Aalen, 1978 ), in the manner of Cox 

(1972), can be written as 

= 11(t)A0(t) exp{g (Xi (t); O)}, i = 1, 2, , 

where g(.; Oo) is a function with known form g(X1(t); 9) = O'X1(t) and Oo is a vector 

of unknown parameters. In our context, we replace Xi (t) by {14 (t), Xi (t) } and obtain 

g(V(t),X1(t);O) = 
j=1 
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where XT = (X 1, VT = (T1,... ,V q), 0 = (13,7,a), 7 = ('yi, — )7k), 

B, j = 1,... , k, are B-spline basis functions. Since exp {g(V2(t), Xi (t); 0)} > 0 is 

always continuous and twice continuously differentiable, we can adopt the proof of 

Prentice and Self (1983) for the asymptotic distribution theory in our case. 

Note that we focus our attention on the interval [0, 1] for simplicity. As discussed 

in Andersen and Gill (1982), the argument can be easily extended to the interval 

[0,00). 

The log partial likelihood can be written as 

log L(0,t) = f9(Vt(s),xi(s);e)dNi(s) 
i=1 

- log (s) exp{g(V(s), X(s); 9)}] dN(s), 

where N = N. The maximum partial likelihood estimate solves the partial 

likelihood equation 51og L(0, 1)/0 = 0. By the Doob-Meyer decomposition, 

M(t) = N(t) - I \i(s)ds i = 1,2,... ,n, t E [0,1] 

are local martigales on the interval [0, 1]. 

For a column vector a, we denote a®2 for the matrix aaT, all = supi Jail, and 

al = (a'a)'/2. For a matrix A, denote I JAIl = sup, I aij 1. For a function g(v,x; 0), let 

4(v, x; 0) and (v, x; 9) denote the gradient and Hessian of g relative to 0. We define 

s(°) (o,t) = 

s(') (o, t) = as(°)(o, t) 1090 = 2:. 

Yj (t) exp{g (Vi (t), Xi (t); 0)}, 

.r (Vi (t), Xi (t); 0) Yj (t) exp{g (Vi (t), Xi (t); 9)}, 



32 

n 

S(2) (0, t) = i(V(t), Xj(t); O)T(14(t), Xj(t); O)(t) exp{g(V(t), X i (t); O)}, 
i=1 

S() (O, t) = a2s(°) (o, t)/002 

= EO(Vi(t), +(t),X(t);O)f(14(t),X(t);O)} 
i=1 

•(t) exp{g (Vi (t),X1(t); 0)), 

S(4) (e,t) = !{g(V(t),Xj(t);O) —g(V2(t),X(t);Oo)}(t)exp{g(Vj(t),X(t);Oo)}, 

= .- E(Vt(t),Xj(t); O)Y(t) exp{g(V(t),Xi(t); Oo)}, 

n 

S(65) (0, t) = a2S(4 (O, t)/502 = ! (V(t), X(t); O)1'(t) exp{g(V(t), X(t); O)}, 
j=1 

and further 

E(O,t) 

Var(0,t) = S2) (O,t)/S(°) (0,t) - E(0,t)02. 

Note that E(00, t) and Var(Oo, t) can be thought of as the expected covariate 

vector at time t and corresponding covariace matrix for a study subject failing at t. 

We assume the following conditions: 

(1). (Finite integral). j' )o(t)dt < 00. 
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(2). (Asymptotic stability). There exists a compact neighborhood e of Oo and 

functions k = 0, 1,... , 6, defined on e x [0, 1] such that for k = 0, 1,... , 6 

sup IIS(0,t) - s(0,t)II - 0. 
tE[0,1],OEO 

(3). (Lindeberg condition). Let W(t) = (VT(t) , X'(t))T, 

fn' [(W (t); oo) - E(00, t)]2 (t) exp{g(W(t); 

I{n 1/2 I,'(W(t); 0) - E(00, t)I > e}) o(t)dt - 0, 

for any >0 andj = l,2,•.. ,q+p. 

(4). (Asymptotic regularity conditions). Let e = s(')/s(0) and var = (2)/(0) - 

e®2. For each k = 0, 1,... , 6, t) are continuous functions of 9 E e, uniformly 

in t E [0, 1]. Also, (l), k = 0,... , 6, are bounded on 0 x [0, 1], .(°) is bounded away 

from zero and the matrix 

pl 

= / var(0o,t)s °) (0o,t)Ao(t)dt, 
Jo 

is positive definite. Also, (°) (0, t) and S(4) (0, t) are assumed to be twice differentiable 

with respect to 0 on 0 >< [0, 1]. 

(5). (Wjj  is locally bounded for i = 1,... ,n, j 1,.•• ,q+p. 

(6). 

sup fO —2 IJ(T(t), X, (t); 0)!!2Yi(s) 
OEe  i=1 

exp{g (Vi (t), Xi (t); 0o)}) o(s)ds - 0. 

Remark 2.6.1. In the special case of the standard Cox model, g(X; oo) = XTO0, 

these conditions reduce precisely to those given by Andersen and Gill (1982). In 
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view of the term n 2, condition(6) is rather weak. It vanishes when g(X; O) = XTO0 

since (X;6) =0. 

We need the following lemma in our proofs of the asymptotic results. 

Lemma 2.6.2. (Lenglart Inequality). 

Let N be a umivariate counting process with continuous compensator A, let M = 

N - A, and let H be a locally bounded, predictable process. Them, for all 5, p > 0, 

t 

P{ sup I H(x)dM(x)I ≥ p} ≤ + P{ I H2(x)dA(x) ≥ S}. 
0:5t:51 Jo P Jo 

Proof: See Fleming and Harrington (1991), p.291. 

Now we will show the consistency of 0, 4 00 in the following content. 

Theorem 2.6.3. There exists a sequence of roots On of the partial likelihood equation 

such that O, — 00-

Proof: 

Let 

and 

Z(0, t) = ..[log L(O, t) - log L(00, t)] 

n pt 

= IJ {g(V(s),X(s);O) —g(V(s),X(s);Oo)}dN(s) 
j=1 

1 pt S(°) (O, s) 
f  8(0)(0)dN(s) 

A(O,t) = 

t 

O) —g(V2(s),X(s);Oo)}A(s)ds 
i=1 

1 tt S(°)(G,$)  

—; J log S(°)(0) 
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where 3 = )j. Then the process 

Z(O,t) —A(9,t) = 

L {g(Vj(s),X(s);O) —g (Vi (s),X(s);Oo) _log  (0S(o)(oO8) }dMi(s)] I  

is a locally square integrable martingale for each 0, with predictable variation process 

at t given by 

(Z(0, .) - A(0, .), Z(0,.) - A(0,.)) (t) 

1  S(°)(O,$)ft >{g(Vj(s),Xj(s); 0) —g(Vj(s),X(s);0o) _lo (0)(008) }Ai(3)ds 
i=1 

= 1 -j X(s); 0) - g(V(s), X(s); 9)}2() 
i=1 

exp{g(V(s), X(s); 9o)})o(s)ds 

-- ftn {g (Vi (s), Xi (S); 9) - g(V2(s), Xi (S); oo)} 

log '  (s) exp{g(vj(s), X (s); 0) }o(s)ds 
S0 (007 s) 

1 ' S(°)(0,$)  
+— I {log S(°) (0, s) }28(o) (oo, s)Ao(s)ds 
n J0 

By conditions (1), (2) and (4), the third term in the above equation, I, converges 

to zero in probability. The second term 12 will also converge to zero in probability 

by the Cauchy-Schwarz inequality if we can show that the first term I converges to 

zero in probability. It remains to be shown that the first integral in the expression 

above converges to zero. 
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B the Taylor expansion of g (Vi (s), Xi (s); 0) at 0o, we have 

g (Vi (s), Xi (S); 0) - g (Vi (s), Xi (5); 0) 

= (0— 0o)'(V(s),X(s);0o) + (0 - 0o)/(Vj(s),Xj(s);0*)(0 - 

where 0* is bounded between 0 and 00. Hence, 

I1=T1+T2+T3, 

where 

= t (O - - 0o)1(s) 
i=1 

exp{g(V(s),X(s); 0o)}) o(s)ds, 

T2 = - it (o - 0o)'  (Vi (s),X(s);0o)(0 - 0o)'f(Vj(s),X(s);0o)(0 - 00) Yi (s) 
i=1 

• exp{g(V(s),X(s); 00)}Ao(s)ds, 

T3 = 4n2LtEf(O - 00)'j (V(S)'X(s);00)(0 - 00)"Y'(s) 

exp{g(V(s), X(s); 00)}Ao(s)ds. 

By conditions (1), (2) and (4), T1 converges to zero in probability. Note that for 

any vector a and matrix A, we have aTAa ≤ IIalI2IIAII. We observe that 

T3 ≤ f't jjO _ OO jj4p4jj•(V (s), X(s); 0*) 11 2y exp{g(V(s), Xi (s); 00)}\o(s)ds. 

So by condition (6), 1'3 converges to zero in probability. Using the Cauchy-

Schwarz inequality, T2 converges to zero in probability. Hence, Ij converges to zero 
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in probability. We conclude that (Z(0,.) - A(9, .), Z(0,.) - A(0, •)) converges to 

zero in probability. Thus, by Lemma 1, 

lim{Z(0, t) - A(0, t)} = 0, 

in probability for all 0 E E). Since e is a compact set, we have that Z(0, t) converges 

to A(0, t) in probability uniformly for 0 E G. 

On the other hand, from conditions (1), (2) and (4) 

A(e,t = 1) = f IS @(O,$) - log s(o)(0 s(°) (O, s) )s()(eos)] 0ds 

r 1 S(0) (0,  p 
-+ / [s(4) (0,$)—log S(0)(00)3) s(eo, s)]Ao(s)ds 

= A(0,1). 

Note that 

A(0, 1.) t 

50 =L [s(5)(0,$) s(°)(0,$) 

which equals zero at 0 = 00 since s(5)(00, s) = s(1)(00, s). Furthermore, 

= f [s(0 ,$) - 

which equals to —E at 0 = 00 since (6)(0, s) - S(3) (00, s) = s(2)(00, .). By condition 

(5), this is a negative definite matrix. Since S(0), (1) , (3) and (6) are continuous for 

0 E 0 uniformly for t E [0, 1], by condition(4) there exists a compact neighborhood 

81 c 0 such that the formula above is negative definite for 0 E 01. Thus 00 is a 

local maximizer of A(0, 1). Note that lim,{Z(0, 1) - A(0, 1)} = 0 in probability 

uniformly for 0 E 81, thus the maximizer O of Z(0, 1) on 01 will converge to 0o• 

Since 0 should lie in the interior of 0 for larger n, it solves the partial likelihood 
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equation. Thus, we have shown the existence of a sequence of consistent roots of the 

partial likelihood equation. The proof is completed. 

Theorem 2.6.4. (Asymptotic normality of O). 

There exists a sequence of roots On of the partial likelihood equation such that 

mh/2(O - 0) _* N(O, _1) 

Proof: 

Recall that the score function of 0 is 

fos(') (0 , t)U(0,t) = [ t (Vj(s),Xj(s);0)dN(s)  S(°)(0,t) 
By the Taylor expansion about 0o, 

u(0, 1) - u(00, 1) = _H(o*, 1)(0 - 

where 0* lies between 0 and 00 and 

tn 
S(3)(0, S /S(1) (0, .$)\ 021 

H(0, t) I { —(Vi(s),X(s);0) + S(°)(0,$) S(0)(0,$)) j dN(s). 
i=1 

Hence 

We will show that 

and 

Recall that 

n lH(0*, 1)\/(Ô - 0) = n'I2U(00, 1). 

n'/2U(Oo, 1) - N(O, E) 

n_1H(0*, 1) E. 

n'12U(00,t) = 
n 

i=1 

{ (Vi (s),X(s);0o) - E(0o,$)}dM(s). 
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Denote H1 (t) = n'/2 {.i( W j; O) - E(O0, .$)} and Hi (t) = (H1,... ) Hi(p+q))T. 

Then by conditions (2) and (5), Hi(s) is a predictable and locally bounded process 

and 
t 

n'/2U(Oo, t) = 10 n-1/2 > H(s)dM(s). 

Therefore, by condition (2), 

(n'/2U(Oo, •),n'/2U(Go, •)) (t) = ft m_h/2 H(s)02Y(s) 

i=1 

•exp{g(V(s),X1(s); e0)}A0(s)ds 

)®2 ft {s2e, s(1)(00, s - S(°)(Oo s) 

= ft Var(OO, s)S(°) (Oo,$)Ao(s)ds 

P fot 
clef 

- var(Oo,$)s(°) (9o,$)) o (s)ds = 

By condition (3) and Theorem 5.3.5 of Fleming and Harrington (1991), the local 

square integrable martingale n'/2U(Go, t) converges to a Gaussian process with mean 

zero and covariance function E. As a consequence, n'/2U(Oo, 1) - N(O, E), since 

the limiting variance function Et = fol var(Oo, s)s(°) (Os, s).\o(s)ds evaluated at t = 1 

is just E. 

Now we show that the scaled observed information matrix n_1H(O*, 1) converges 

to E in probability. Write 

02\ t n{ S (3) (0 (S(l)(Os)'\ I 
n'H(O,t) 10  —(Vj(s),X(s);G) + 8 0 (O ,$) S(°)(O,$)) j dN(s) 

i1 

= f {w(e, s) - (V(s), X1(s); O)} dN(s), 

where W(O, s) = S(3) (O,$)/S(°)(O, s) —(S(')(O, s)/S(°)(O, .$))®2. 
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Define 

C(O' t) = JO n '{W(O,$) - 

Then, n'H(O, t) - c(O, t) is a local square integrable martingale with 

(n'H(O, .) - C(O, .), n'II(6, .) - C(O, 

= —2 f t {W(O, s) - (s), X i (S); O)}2 A(s)ds 
i=1 

fn—IW(0'3)02S(0)(0' =  s))o(s)ds 

- f 2n'W(O, s)S(6) (O, s)Ao(s)ds 

+ ft n (V(s), Xe(s); O)02 1(s) exp{g(Vj(s), Xi (s); 90)}Ao(s)ds 

= B1+B2+B3. 

P P P By condrtions(1), (2) and (4), B1 —+ 0, B2 - 0, while B3 — 0 follows from 

condition (6). So we have 

urn {rr'H(O, 1) — C(O, 1)} - 0. 
n—*oo 

It follows from conditions (1), (2) and (4) that, 

C(O' 1) 
P 1 1s(Os)3O(003) — (s(1)(O,$) 02 

s(°)(O, s) s(°)(O, )) s° (Oo, s) - (6)(9, s)} o(s)ds 

02 
1 s(2)(O, ) (S(l)(0 s° (o,$)) o(s)ds. 

s(°)(0,$) s(°) (O,$)) 

Thus, consistency of O implies that 0* - 00 and by conditions (1) and (4), we 

have 

1 S (2) (00,  (S(l)(00,$) Pr .9 C(0*,1) + j 
j0 ls(0)(0o,) s(0)(0os))} s° (0o,$)Ao(s)ds = E. 
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Hence, n_1H(O*, 1) - E. The proof of Theorem 2.6.4 is complete. 



Chapter 3 

Simulation Study 

To evaluate the iterative Newton-Raphson algorithm and to assess the finite sample 

performance of the estimators for the proposed model, we conducted two simulation 

studies which both employed a constant baseline. 

The observed data are Z = min{T, C}, where T and C are chosen to ensure 

a specified percentage of censored observations, but in a way which preserves the 

conditional independence between T and Ci given Xi and V. In order to compare 

our partially linear single-index model with the standard Cox linear model, two 

simulation studies were conducted: 

1. A sine curve was adopted for the true nonparametric function &: 

3g'X) = 5sin{f3'X/2}. 

2. A linear line was adopted for the true nonparametric function '&: 

3'X) = /3X. 

We used the angle between the true direction and the estimated direction of the 

parameter vectors to measure the performance of the models. Specifically, the angle 

between I3o and is 

(11 )3011.11411) 
w(fio,) = arccos  (00A  

and the angle between a0 and & is 

w(ao, a) = arccos 

42 

(  (ao,&)  ) 
JlaoII . II&II 
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here (a, b) denotes the inner product of a and b. 

3.1 Experiment I (Sine curve model) 

In this example, the true log-relative risk function is 

aV + fi'X) = ag'V +5 sin(f3X/2), 

where X is comprised of five covariates, X .-.' N(l, 4), i = 1,2,3; X Uniform(-2, 

2), i = 4,5; V is comprised of three covariates, V1 r'-' Uniform(-2,2), V 

Binomial (n= 1,p= 0.5), i = 2,3; Po = (1,_1,1,_1,1)T/iJ andao = (o.5,_l ,2)T. 

The distribution of the censoring variable, C, is exponential with hazard function 

A(tIX = x, V = v) = exp( + xTp1 + vTp2). 

Here Pi = (0.5, —0.5, 0.5, —0.5, o.5)T, P2 = (1, 1, 1)T, and /.z is a constant, taking 

values -2 and 0, so that censoring rate er is about 12% and 37%, respectively. The 

sample size, n, was chosen to be 200 and 300, respectively. The number of simulations 

was 500. 

For this simulation experiment, using both the AIC and BIC criteria, we found 

that the maximum partial likelihood estimates are not very sensitive to the number 

of knots used. However, the more knots we used, the longer the program needed to 

run until the algorithm converged. So we decided to use splines with four equally 

spaced knots to approximate the ) in our estimation procedure. 

We compared the performance of the proposed method with b unknown with that 

of the standard Cox model and with that of the model with 0 known, respectively. 
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Table 3.1: Sine curve model: summary statistics for angles between 60 and /9. The 
regression estimates are obtained by using maximum partial likelihood method based 
on the identity link, the true known link, and the proposed semi-unknown link. 

cr = 12%; n=300 
mean StDev 

cr = 37%; n=300 
mean StDev 

Identity 5.510 2.283 5.251 2.159 
Known 2.314 0.944 2.748 1.094 

Unknown 2.443 0.925 2.870 1.102 

Table 3.2: Sine curve model: summary statistics for angles between a0 and a. The 
regression estimates are obtained by using maximum partial likelihood method based 
on the identity link, the true known link, and the proposed semi-unknown link. 

00 
cr=12%; n=300 
mean StDev 

cr=37%; n=300 
mean StDev 

Identity 
Known 

Unknown 

6.141 
3.079 
3.235 

3.755 
1.800 
1.907 

5.825 3.508 
3.683 2.173 
3.734 2.264 

We note that the true functional form is generally not known in real applications. 

Here it is used as a benchmark to gauge the performance of our proposed estimators. 

Summary statistics for the angles between the true and the estimated directions 

are reported in Table 3.1 and Table 3.2, for /3 and a, respectively, when the sample 

size is 300. These results indicate that when the relative risk form is misspecified, 

the estimate based on the wrong form, in other words, the Cox identity link in this 

case, will give a substantially biased estimate with a large standard deviation. On 

the other hand, the proposed estimate of /9 with the unknown relative risk form is 

close to the estimate based on the known true link functional form. 

Results for assessing the accuracy of the standard error formula are given in 
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Table 3.3: Sine curve model: results for /3 in a simulation study using the proposed 
method. Avg.: sample average; StDev: sample standard deviation; 95% coy. prob.: 
empirical coverage probability of the 95% confidence interval. Based on 500 Monte 
Carlo simulations. 

n=200, cr=12% i-3i /92 /93 64 /35 

True /9 0.4472 -0.4472 0.4472 -0.4472 0.4472 
Avg. O) 0.4474 -0.4474 0.4461 -0.4474 0.4477 
Bias 0.0002 -0.0002 -0.0011 -0.0002 0.0005 
StDev(/) 0.0202 0.0210 0.0211 0.0306 0.0293 
Avg.{SE()} 0.0189 0.0202 0.0190 0.0286 0.0286 

StDev{SE($)} 0.0019 0.0023 0.0020 0.0027 0.0029 
95% coy. prob. 0.9315 0.9435 0.9254 0.9254 0.9476 
n=200, cr=37% j3 /2 /3 
True /3 0.4472 -0.4472 0.4472 -0.4472 0.4472 
Avg.(/) 0.4482 -0.4468 0.4471 -0.4473 0.4466 
Bias 0.0010 0.0004 -0.0001 -0.0001 -0.0006 
StDev(/) 0.0239 0.0249 0.0247 0.0371 0.0365 
Avg. {SE( 0.0221 0.0234 0.0222 0.0334 0.0335 
StDev{SE(/)} 0.0025 0.0029 0.0026 0.0038 0.0036 
95% coy. prob. 0.9360 0.9360 0.9200 0.9300 0.9240 
n=300, cr=12% /92 03 04 05 
True /3 0.4472 -0.4472 0.4472 -0.4472 0.4472 
Avg.() 0.4467 -0.4484 0.4456 -0.4475 0.4479 
Bias -0.0005 -0.0012 -0.0016 -0.0003 0.0007 
StDev() 0.0175 0.0164 0.0164 0.0247 0.0249 
Avg.{SE()} 0.0154 0.0162 0.0153 0.0232 0.0231 

StDev{SE()} 0.0014 0.0015 0.0013 0.0019 0.0019 
95% coy. prob. 0.9240 0.9400 0.9200 0.9400 0.9400 
n=300, cr=37% /3 /92 63 84 135 
True /3 0.4472 -0.4472 0.4472 -0.4472 0.4472 

Avg. ($) 0.4470 -0.4485 0.4458 -0.4469 0.4478 
Bias -0.0002 -0.0013 -0.0014 0.0004 0.0006 
StDev(ã) 0.0202 0.0193 0.0196 0.0296 0.0290 
Avg.{SE()} 0.0179 0.0187 0.0179 0.0270 0.0269 
StDev{SE(/)} 0.0018 0.0018 0.0017 0.0024 0.0025 
95% coy. prob. 0.9060 0.9400 0.9200 0.9320 0.9300 
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Table 3.4: Sine curve model: results for a in a simulation study using the proposed 
method. Avg.: sample average; StDev: sample standard deviation; 95% coy. prob.: 
empirical coverage probability of the 95% confidence interval. Based on 500 Monte 
Carlo simulations. 

n=200, cr=12% a, a2 a3 
True a 0.500 -1.000 2.000 
Avg.(&) 0.519 -1.046 2.074 
Bias 0.019 -0.046 0.074 
StDev(&) 0.083 0.179 0.217 
Avg.{SE(â)} 0.080 0.177 0.207 
StDev {SE(&)} 0.004 0.006 0.010 
95% coy. prob. 0.940 0.944 0.936 
n=200. cr=87% al a2 a3 

True a 0.500 -1.000 2.000 
Avg. (&) 0.527 -1.049 2.081 
Bias 0.027 -0.049 0.081 
StDev(&) 0.103 0.214 0.254 
Avg.{SE(&)} 0.098 0.209 0.240 
StDev {SE(&)} 0.006 0.010 0.014 
95% coy. prob. 0.938 0.948 0.936 
n=300 cr=12% a1 a2 a3 
True a 0.500 -1.000 2.000 
Avg.(&) 0.516 -1.023 2.055 
Bias 0.016 -0.023 0.055 
StDev(â) 0.066 0.148 0.166 
Avg.{SE(a)} 0.064 0.140 0.164 
StDev {SE(&)} 0.003 0.004 0.006 
95% coy. prob. 0.948 0.942 0.934 
n=300, cr=37% a1 a2 a3 
True a 0.500 -1.000 2.000 
Avg. (&) 0.518 -1.021 2.064 
Bias 0.018 -0.021 0.064 
StDev(&) 0.077 0.174 0.198 
Avg.{SE(&)} 0.078 0.166 0.191 
StDev {SE(&)} 0.004 0.006 0.009 
95% coy. prob. 0.956 0.938 0.934 
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Table 3.3 and Table 3.4, for fi and a, when n = 300 or 200, and the censoring rate 

is approximately 12% or 37%, respectively. These results are based on 500 Monte 

Carlo simulation runs per setting. We find that the proposed method works well: the 

bias between the true parameter and the estimated parameter are really small, less 

than 0.2% of the true value; the estimated standard deviations of the estimates are 

reasonably close to the Monte Carlo standard deviations of the estimates; and the 

Monte Carlo coverage probabilities of the 95% confidence intervals are reasonably 

close to the nominal level. 

Also, from Table 3.3 and Table 3.4, we can see that for a fixed censoring rate, 

the standard errors and biases of the estimates are decreasing, and the coverage 

probability is closer to the nominal level 95%, when the sample size is increasing. 

For a fixed sample size, the standard errors and biases of the estimates are increasing, 

and the coverage probability is getting further from the nominal level 95%, when the 

censoring rate is increasing. 

Figure 3.1 and Figure 3.2 show that the estimated link function and 95% confi-

dence interval based on one random simulation with a sample size 300 and a censoring 

rate 37% and a sample size 300 and a censoring rate 12%, respectively. Moreover, the 

fitted function (the dotted curve) in Figure 3.1 captures the true function (the solid 

curve) closely, indicating the proposed method works quite well even the censoring 

rate is relatively high. 

Figure 3.3 shows that the estimated link function and 95% confidence interval 

based on one random simulation with a sample size 200 and a censoring rate 12%. 

The fitted function (the dotted curve) captures the true function (the solid curve) 

closely. Also, compared to Figure 3.2, which is based on a single simulation with the 
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xbet 

Figure 3.1: A single random simulation for Sine curve model with its corresponding 
95% confidence interval using a sample size 300 and a censoring rate of 37%. The 
solid curve is the true function, the dotted curve is the estimated function, the dashed 
line is the upper limit of the 95% confidence interval while the dot-dashed line is the 
lower limit of the 95% confidence interval. 
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2 4 

,cbeta 

Figure 3.2: A single random simulation for Sine curve model with its corresponding 
95% confidence interval using a sample size 300 and a censoring rate of 12%. The 
solid curve is the true function, the dotted curve is the estimated function, the dashed 
line is the upper limit of the 95% confidence interval while the dot-dashed line is the 
lower limit of the 95% confidence interval. 
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Figure 3.3: A single random simulation for Sine curve model with its corresponding 
95% confidence interval using a sample size 200 and a censoring rate of 12%. The 
solid curve is the true function, the dotted curve is the estimated function, the dashed 
line is the upper limit of the 95% confidence interval while the dot-dashed line is the 
lower limit of the 95% confidence interval. 
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-6 

xbeta 

Figure 3.4: 5 random simulations for Sine curve model at sample size 300 and cen-
soring rate 12%. The solid curve is the true function, while other five dotted curves 
are the estimated functions of five random simulations. 
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same censoring rate 12% but a sample size 300, the estimated curve in Figure 3.3 is 

not as close to the true curve as the one in Figure 3.2 with a larger sample size 300. 

In other words, for a fixed censoring rate, the performance of the proposed model is 

getting better, when the sample size is increasing. 

Figure 3.4 shows that the fitted function based on five random simulations, from 

which we can tell the estimated function is generally very close to the true function, 

even just based on a single simulation. 

3.2 Experiment II (linear model) 

In this example, the true log-relative risk function used is 

c'V + 3X) = c'V + I3g'X, 

in other words, it is linear. We want to evaluate, when the underlying log relative 

risk function is linear, how much efficiency is lost if our method is used instead of 

the standard Cox model. We generated covariates V and X, censoring variable C, 

as in the previous simulation experiment. The number of simulation runs is still 500. 

Based on both the AIC and BIC criteria, we again found that the estimates were 

not very sensitive to the number of knots, but the more knots we used, the longer 

the program took to run. So once again we used splines with four equally spaced 

knots to approximate the &(.) in our estimation procedure. 

We compared the performance of the proposed method with the standard Cox 

model to estimate the linear relative risk function, which is, indeed, the link function 

of the standard Cox model. 



53 

Summary statistics for the angles between the true and the estimated directions 

are reported in Table 3.5 and Table 3.6, for ,6 and a, respectively. When the censoring 

rate is low, the results indicate that our proposed method works almost equally as 

good as the Cox linear model, which is reflected by the proximity of the estimates 

obtained from these two models. Hence, efficiency loss is negligible in our example. 

When the censoring rate is high, the estimates of /3 are worse than that of a. 

Results for comparing the standard error and the 95% coverage probability of the 

standard Cox model with those of our proposed model are given in Table 3.7 and 

Table 3.8, for /3 or a, respectively. The sample size is 300 or 200, and the censoring 

rate is about 10% or 40%, respectively. They are all based on 500 Monte Carlo 

simulation runs. We find that: the estimated standard errors of 9 of the proposed 

model are generally even smaller than those of the Cox model, the standard errors 

of & of the proposed model are slightly larger than those of the Cox model, and the 

Monte Carlo coverage probabilities of the 95% confidence intervals in the Cox model 

are reasonably closer to the nominal level than those in the proposed model. Since 

the differences between these two models are relatively small, we conclude that the 

resultant efficiency loss by using the proposed method is negligible if the underlying 

model is in fact the standard Cox linear PH model. 
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Table 3.5: Linear model: summary statistics for angles between fio and /. The 
regression estimates are obtained by using maximum partial likelihood method based 
on the identity link, and the proposed semi-unknown link. ARE: Asymptotic Relative 
Efficiency. 

cr=10%; n=300 cr=40%; n=300 cr=10%; n=200 cr=40%; n=200 
mean StDev mean StDev mean StDev mean StDev 

Identity 
Unknown 

4.702 
4.873 

1.804 
1.862 

5.672 
6.119 

2.313 
3.446 

5.688 
5.979 

2.358 
2.476 

6.976 
8.272 

2.891 
9.309 

ARE 93.9% 45.1% 90.7% 9.6% 

Table 3.6: Linear model: summary statistics for angles between ao and &. The 
regression estimates are obtained by using maximum partial likelihood method based 
on the identity link, and the proposed semi-unknown link. ARE: Asymptotic Relative 
Efficiency. 

(') 

cr=10%; n=300 cr=40%; n=300 cr=10%; n=200 cr=40%; n=200 
mean StDev mean StDev mean StDev mean StDev 

Identity 
Unknown 

3.148 
3.190 

1.871 
1.877 

3.798 
3.836 

2.274 
2.329 

3.852 
3.942 

2.329 
2.348 

4.763 
4.975 

2.906 
3.018 

ARE 99.4% 95.3% 98.4% 92.7% 
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Table 3.7: Linear model: results for 3 in a simulation study using the proposed 
method. Avg.: sample average; 95% coy. prob.: empirical coverage probability of 
the 95% confidence interval. Based on 500 Monte Carlo simulations. 

n=200, cr=10% /3i 82 133 13i 13s 
Avg.{SE(/o0 )} 0.0491 0.0493 0.0493 0.0746 0.0747 
Avg.{SE()} 0.0384 0.0383 0.0384 0.0575 0.0573 
95% coy. prob. (Cox) 0.9420 0.9400 0.9320 0.9440 0.9260 
95% coy. prob. (new) 0.9420 0.9200 0.9340 0.9260 0.9360 
n=200, cr=40% 131 P2 P3 A 85 
Avg.{S1(c0 )} 0.0616 0.0617 0.0614 0.0928 0.0928 
Avg.{SE(f nw)} 0.0472 0.0477 0.0487 0.0713 0.0717 
95% coy. prob. (Cox) 0.9260 0.9300 0.9580 0.9440 0.9340 
95% coy. prob. (new) 0.9360 0.9020 0.9080 0.9200 0.9380 
n=300, cr=10% PI 132 /33 

Avg.{SE($c0)} 0.0394 0.0394 0.0393 0.0598 0.0597 
Avg.{SE(&)} 0.0311 0.0309 0.0311 0.0464 0.0463 
95% coy. prob. (Cox) 0.9360 0.9480 0.9560 0.9480 0.9460 
95% coy. prob. (new) 0.9200 0.9220 0.9420 0.9340 0.9200 
n=300, cr=40% P, 132 63 04 65 
Avg. {SE(äc0 )} 0.0489 0.0487 0.0490 0.0739 0.0738 
Avg.{SE(/9 w)} 0.0385 0.0389 0.0393 0.0576 0.0578 
95% coy. prob. (Cox) 0.9400 0.9520 0.9520 0.9480 0.9340 
95% coy. prob. (new) 0.9197 0.9197 0.9438 0.9217 0.9277 
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Table 3.8: Linear model: results for a in a simulation study using the proposed 
method. Avg.: sample average; 95% coy. prob.: empirical coverage probability of 
the 95% confidence interval. Based on 500 Monte Carlo simulations. 

n=200, ór=10% al a2 a3 
Avg.{SE(âc0 )} 0.077 0.171 0.200 
Avg.{SE(ô)} 0.079 0.174 0.204 
95% coy. prob. (Cox) 0.948 0.948 0.926 
95% coy. prob. (new) 0.944 0.932 0.948 
n=200. cr=40% a1 a2 a3 
Avg.{SE(&o0 )} 0.102 0.211 0.239 
Avg.{SE(â)} 0.104 0.216 0.245 
95% coy. prob. (Cox) 0.926 0.948 0.928 
95% coy. prob. (new) 0.938 0.928 0.926 
n=300, cr=10% a1 a2 a3 
Avg.{SE(&a0 )} 0.062 0.137 0.160 
Avg.{SE(&)} 0.063 0.138 0.162 
95% coy. prob. (Cox) 0.950 0.956 0.942 
95% coy. prob. (new) 0.928 0.940 0.946 
n=300, cr=40% a1 a2 o 
Avg.{SE(&cj0 )} 0.081 0.169 0.191 
Avg.{SE(anw)} 0.082 0.171 0.194 
95% coy. prob. (Cox) 0.944 0.960 0.952 
95% coy. prob. (new) 0.952 0.936 0.946 



Chapter 4 

Case Study - Veteran's Administration Lung 

Cancer Data 

4.1 Description of the Data 

In this chapter we present results from applying our partially linear single-index 

model to a dataset from the Veteran's Administration Lung Cancer Study Clinical 

Trial (Kalbfieisch and Prentice, 2002). 

The Veteran's Administration lung cancer data were used by Kalbfieisch and 

Prentice (2002) to illustrate the Cox PH model. In this clinical trial, males with ad-

vanced inoperable lung cancer were randomized to either a standard or test chemother-

apy. The primary end point for therapy comparison was time to death (variable 

'Status' is 1 for dead and 0 for censored). Only nine out of the 137 survival times 

were censored. The censoring rate here is 6.6%. The data set includes six covariates: 

treatment, age at diagnosis, Karnofsky score, diagnosis time, cell type and prior the-

orapy. Descriptions are as follows: 

1. Treatment: the standard (0) or test (1) chemotherapy given to the patient, 

2. Age: age in years, 

3. Karnofsky score: a subjective measure of how well the patient is doing reported 

by experienced nurses. It is useful to track it over time, to see the ups and downs in 

the disease process, as defined below: 
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99: Normal, no complaints or evidence of disease 

90: Able to perform normal activity; minor signs and symptoms of disease 

80: Able to perform normal activity with effort; some symptoms of disease 

70: Cares for self, unable to perform normal activity or to do active work 

60: Requires occasional assistance but is able to care for most of own needs 

50: Requires considerable assistance and frequent medical care 

40: Requires special care and assistance; disabled 

30: Hospitalization indicated, although death not imminent; severely disabled 

20: Hospitalization necessary; active supportive treatment required, very sick 

10: Fatal processes progressing rapidly; moribund 

00: Dead 

4. Diagnosis time: months from Diagnosis, 

5. Cell type: 1=squamous, 2=sma11 cell, 3=adenocarcinoma, 4=large, 

6. Prior therapy: O=no, 1=yes. 

4.2 Comparison of the Partially Linear Single-Index Model 

and the Cox Model using the VA Lung Cancer Data 

Huang and Liu (2006) used this same dataset to fit a single-index model in which 

they specified the hazard function as 

A(tlx) = )0(t) exp {3'x)}, 

where (.), referred to as the link function, is an unknown smooth function, and all 

of the covariates were assigned to X. In their analysis, suppose x = (x1, a4)T, where 
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= 0 or 1 is a treatment indicator and x2 represents the other covariates. Then 

the treatment effect in terms of the log hazard at x2 is 

lQg A(t1, X2) - log .\(tlo, x2) = 0(601 + t3x2) - 

which does not depend on t, but in general depends on the value of x2. 

However, Figure 3 in their paper indicates that the log-hazard ratio for treat-

ment effect may not depend on the value of X2 either for this dataset. Thus, it might 

be better to model the treatment effect parametrically and other covariates non-

parametrically. Therefore, we applied our proposed method to fit a partially linear 

single-index model with the 'treatment' covariate assigned to the parametric part 

V, and other covariates assigned to the nonparametric part X. Then the treatment 

effect in terms of log hazard at X = x is 

log A(tll, x) - log A(ilo, x) = a 1 + cb(13Tx) - {CI. 0 + j,(/3T)} = a, 

which is a constant. 

On the other hand, the primary purpose of this clinical trial was to investigate 

whether the test chemotherapy works better or worse than the standard chemother-

apy, so putting variable 'treatment' into V makes the treatment effect easy to inter-

pret. 

We also included 'Karnofsky score', 'Diagnosis time' and the other covariates, 

which we think should be related to the risk of failure, into vector V, along with 

treatment. However, none of them were statistically significant. There is a possibility 

that they do have nonnegligible effects after being combined with each other in a 

specific way, but none of them has a simple linear relationship with the risk directly. 
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So we decided to still keep them, but include them in the nonparametric covariate 

part, X. 

The unknown function (.) of the logarithm of the relative risk form is fitted as a 

spline function with 4 knots, which was the number of knots which minimized both 

the AIC and BIC criteria. The estimated parameters and corresponding standard 

errors are presented in Table 4.1. To compare the results of the standard Cox model, 

the single-index model of Huang and Liu (2006) (referred as 'HL' in what follows) 

and our proposed model, we resealed the estimates of the model with unknown , 

such that the coefficient vector has the same norm as that for the Cox model with 

identity 0. These results are shown in the last column of Table 4.1. The results from 

Huang and Liu (2006) are presented in the second column. 

Table 4.1: The VA lung cancer data regression. The parameter estimates and cor-
responding standard errors (in the parentheses) for the standard Cox model, the 
single-index model of Huang and Liu (2006), and the proposed model and the pro-
posed model after resealing. 

Identity 0 HL 0 Unknown & Unknown 
(Cox) (resealed) (proposed) (resealed) 

Treatment 0.290 (0.207) 0.592 (0.140) 0485 (0.203)' 0.504 (0.211) 
Age -0.009 (0.009) -0.021 (0.007) -0.012 (0.001) -0.012 (0.001) 
Karnofsky score -0.033 (0.006) -0.050 (0.009) 0.000 (0.001) 0.000 (0.001) 
Diagnosis time -0.000 (0.009) 0.013 (0.003) -0.004 (0.002) -0.004 (0.002) 
Cell Type 
Squamous vs large -0.400 (0.283) -0.742 (0.121) 0.808 (0.006) 0.840 (0.006) 
Small vs large 0.457 (0.266) -0.387 (0.124) 0.469 (0.016) 0.488 (0.017) 
Adeno vs large 0.789 (0.303) -0.145 (0.191) 0.356 (0.025) 0.370 (0.026) 

Prior therapy 0.072 (0.230) -0.011 (0.011) 0.039 (0.026) 0.041 (0.027) 

The results of the standard Cox model, which agree very closely with those re-
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ported in Kalbfieisch and Prentice (2002, p.120), are quite different from those of the 

proposed unknown model. The angle between the vectors of regression coefficients 

of X from the two models is 79.91°. By comparing the first and fourth column of 

Table 4.1, we also find the standard errors of the estimates for the proposed model 

are generally smaller than those for the Cox model, except for the standard errors for 

the Treatment variable, which are still reasonably close to each other. All of these 

results indicate that the Cox model may give biased estimates. 

Table 4.2 shows the p-values obtained from the standard Cox model, the single-

index HL model and the proposed partially linear single-index model. If we use 5% 

as the default significance level, we can see that Treatment, Age, Diagnosis time, 

Squamous vs Large and Small vs Large are all statistically significant based on the 

proposed model while the standard Cox model suggests they are not. In contrast 

to these results, the Karnofsky score is not statistically significant based on the 

proposed model while the standard Cox PH model suggests it is. This table agrees 

with the conclusions we presented in Table 4.1. 

In our partially linear single index model with link function aTV+b(/3TX), the V 

vector only includes one covariate 'Treatment', so we can assess the treatment effect 

based on the sign of the coefficient a. From Table 4.1, we see that & is 0.485, which 

is a positive value. This indicates that the test treatment (Treatment = 1) increases 

the log-hazard by 0.485, compared to the standard chemotherapy (Treatment = 0). 

The exponential of the link function is increased by a factor exp(&) = 1.624> 1, or 

in other words, the risk of death will increase on the new chemotherapy treatment. 

Hence, we can conclude that overall the test treatment is worse than the standard 

treatment for the population sampled from, which is in agreement with the results 
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Table 4.2: The VA lung cancer data. The p-value of the estmates for the standard 
Cox model, the single-index model and the proposed model. 

P-value 
'Beatment 
Age 
Karnofsky score 
Diagnosis time 
Cell Type 
Squamous vs large 
Small vs large 
Adeno vs large 

Prior therapy 
* p-value < 0.05  

Identity ' 
(Cox) 
0.160 
0.360 
0.000* 

0.990 

0.160 
0.086 
0.009* 

0.760 

Unknown 
(HL) 
0.000* 
0.000* 
Q.000* 
0.000* 

0.000* 
0.000* 

0.437 
0.271 

Unknown '/' 
(proposed) 
0.019* 
0.000* 

0.783 
0.020* 

0.000* 
0.000* 
0.000* 

0.224 

obtained by Huang and Liu (2006) from their single-index model. 



Chapter 5 

Discussion and Future Work 

In the preceding chapters, the use of a partially linear single-index model was pro-

posed as a useful tool to model covariates which can have possibly linear and non-

linear effects on the log hazard in the proportional hazards model. This approach 

can reduce the dimensionality of the covariates and obtain efficient estimates of the 

covariates' effects at the same time. 

As in every model which uses B-spline, the question of knot selection is raised. 

Uniform B-splines are a special case which use a smoothing function for the nonpara-

metric single-index component. In our simulation studies and real example, uniform 

B-splines with equally spaced knots worked well. In practice, fixed knots are a sim-

ple and convenient solution for small to medium-sized datasets, but in general it 

is also desirable to have a data-dependent method for optimal knot selection and 

placement. Different adaptive knot selection methods and a bootstrapping method 

have been investigated by several researchers. As we discussed in Section 2.5, the 

AIC and BIG criteria can be used to decide the number of knots needed. In practice, 

we should also consider time efficiency to implement this method, because the more 

knots used in the spline, the longer the program will take to run. In order to take 

all of these aspects into consideration, developing a spline knot selection method is 

thus part of future work I will undertake. 

The proposed partially linear single-index model can be widely used for several 

kinds of datasets in addition to clinical trial survival data. In mathematical finance 
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applications, our proposed model can be used to quantify what factors influence the 

duration of the life time of a hedge fund, which exhibits time-to-event features (Baba 

and Goko, 2006). The idea of treating hedge funds as survival data is still new and 

rarely investigated. In the future, we will explore the suitability and the performance 

of our model applied to other datasets besides clinical trial survival data. It is also 

possible to extend our proposed modelling techniques for survival data to handle 

other types of censored data such as doubly censored data or interval censored data, 

which is part of our future work as well. 
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