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Abstract 

 Tibial stress fracture is a common injury in runners and military personnel. Elevated bone 

strain is believed to be associated with the development of stress fractures and is influenced by 

bone geometry and density. The purpose of this study was to characterize tibial-fibular geometry 

and density variations in young active adults, and to quantify the influence of these variations on 

finite element-predicted bone strain. A statistical appearance model characterising tibial-fibular 

geometry and density was developed from computed tomography scans of 48 young physically 

active adults. The model was perturbed ± 1 and 2 standard deviations along each of the first five 

principal components to create finite element models. Average male and female finite element 

models, controlled for scale, were also generated. Muscle and joint forces in running, calculated 

using inverse dynamics-based static optimization, were applied to the finite element models. The 

resulting 95th percentile pressure-modified von Mises strain (peak strain) and strained volume 

(volume of elements above 4000 με) were quantified. Geometry and density variations described 

by principal components resulted in up to 12.0% differences in peak strain and 95.4% differences 

in strained volume when compared to the average tibia-fibula model. The average female 

illustrated 5.5% and 41.3% larger peak strain and strained volume, respectively, when compared 

to the average male, suggesting that sexual dimorphism in bone geometry may indeed contribute 

to greater stress fracture risk in females. Our findings identified important features in subject-

specific geometry and density associated with elevated bone strain that may have implications for 

stress fracture risk.  

Keywords: statistical appearance model, finite element analysis, lower extremity, morphology, 

stress fracture 

 



 

1 Introduction 

Stress fracture is a common injury in runners and military recruits [1–3]. Stress fractures 

frequently occur at the tibia and females are at greater risk of fracture than males [1–3]. Mechanical 

fatigue, a phenomenon whereby submaximal repetitive loading leads to the accumulation of 

microdamage, has been associated with the development of stress fractures [4]. It is important to 

note that the rate of damage accumulation is strongly related to bone strain magnitude [5,6]. 

Bone geometry and density are two factors that influence bone strain magnitude. It has 

been hypothesized that differences in transverse cross-sectional size, cortical thickness, and 

condyle size between males and females contribute to the greater risk of stress fracture in females 

when compared to males [7–9]. In current literature, characterization of geometry, density, and 

estimates of bone strength within and between sex and injury status groups has largely relied on 

simple measures such as cortical area, cortical thickness, section modulus, polar strength-strain 

index, and bone mineral content measured at transverse cross-sections. [1,7,10]. Bone strain is a 

complex function of bone geometry and density distribution, and can be directly estimated using 

subject-specific finite element models [11]. However, as a numerical technique, it can be difficult 

to isolate the contributions of different model parameters and understand their relative impact on 

bone strain using finite element models alone.   

 This limitation could be overcome using statistical shape models (SSMs), which 

characterize geometry variation, and statistical appearance models (SAMs), which characterize 

bone geometry and density variations within a population. SSMs have been used to describe 

geometry variations in a variety of bones [12–16], characterize sexual dimorphism [8,9,13], and 

to explore the influence of geometry variations on spine and knee kinematics and joint contact 

mechanics [17–19]. SAMs have been developed for bones including the scapula, lumbar vertebrae, 



 

femur, and tibia [20–25]. Importantly, SAMs in combination with finite element analysis have 

enabled population-level investigations of knee and hip implant performance [24,25], proximal 

femur strength in a sideways fall [23], and vertebral stiffness [21]. The influence of tibia and fibula 

geometry and density variations on bone strain has yet to be investigated. 

The purpose of this study was to characterize tibial-fibular geometry and density variations 

using a SAM and to quantify the influence of these variations on finite element-predicted bone 

strain in young active adults. We expected that transverse cross-sectional dimensions and cortical 

thickness would demonstrate the largest influence on bone strain after controlling for scale and 

that sex-related geometry and density variations would result in higher bone strain in the average 

female when compared to the average male. 

2 Material and Methods 

2.1 Statistical Appearance Model 

A statistical appearance model was constructed using computed tomography (CT) scans of 

the left tibia and fibula (GE Discovery scanner, General Electric Medical System, Milwaukee, WI; 

acquisition settings: 120 kVp, 200 mA, in-plane resolution of 0.48 x 0.48 mm, slice thickness of 

0.625 mm) obtained from forty-eight healthy adults (20 females and 28 males, age = 18-32 years, 

height = 1.49-1.87 m, mass = 48.3-86.0 kg). Age, height, and mass for males and females are 

presented in Table 1. Participants were recreationally active at least three times per week and had 

no musculoskeletal injuries that limited physical activity within the three months prior to scanning. 

All participants provided written, informed consent. Study protocol was approved by the 

university’s Conjoint Health Research Ethics Board. 

The tibia and fibula were semi-automatically segmented in the Mimics Innovation Suite 

(v21, Materialise, Leuven, Belgium) and triangular periosteal surface meshes were generated. 



 

Reference four-node tetrahedral volume meshes were created from average tibia and fibula 

geometries, obtained from a previously described SSM based on a subset of the data used in the 

present study [13].  The reference tibia and fibula meshes contained 270 002 and 41 077 elements, 

respectively. Surface node correspondence between the reference meshes and participant 

geometries were established using the Coherent Point Drift algorithm [26]. Displacements between 

corresponding surface nodes were calculated and used as boundary conditions to morph the 

reference mesh to match each participant’s surface geometry in Abaqus (v.2019, Dassault 

Systèmes Simulia Corp.; Providence, USA). The resulting meshes were then overlaid onto the 

participant’s CT data. A hydroxyapatite calibration phantom (QRM GmbH; Moehrendorf, 

Germany) was used to identify a linear relationship between Hounsfield units in the CT image and 

equivalent bone mineral density (ρHU) for each participant. Each element was assigned a density 

value based on a volume-weighted average of the underlying voxels. 

The resulting meshes were aligned to the reference mesh using the Procrustes algorithm, 

preserving scale. Principal components analysis (PCA) was applied to construct the SAM as 

outlined by Cootes and Taylor (2004): PCA was applied to the nodes to obtain a statistical shape 

model and to the density values to obtain a statistical intensity model. To account for correlations 

between shape and density, a further PCA was applied to a combined matrix containing shape and 

intensity parameters, weighted to normalize the total variance in each set, to obtain a SAM. 

2.2 SAM Perturbations 

The first five principal components, cumulatively accounting for 70.5% of the total 

variance in the model, were evaluated. The SAM was perturbed along each principal component 

by ± 1 and 2 standard deviations from the mean. Average principal component scores for males 

and females were calculated. The first principal component described isotropic scaling and related 



 

geometry and density variations, and was strongly correlated with height (r2=0.83). Meshes 

representing the average male and average female geometry and density distribution, controlled 

for scaling and related variations, were created by perturbing all principal components except the 

first by their respective average scores. Meshes isolating geometry and density variation for the 

average male and female were generated for a secondary analysis.  

2.3 Finite Element Models 

Following perturbations, mesh elements were converted to ten-node tetrahedral elements. 

Element densities were discretized into bins, where the width of each bin was 0.01 g/cm3 ρHU. Bin 

centers were used as the density value for each element. Orthotropic linear-elastic material 

properties were assigned to each element. The elastic modulus of bone in the axial direction was 

calculated as a function of element apparent bone mineral density (ρapp = ρHU/0.626) [28]: 

     𝐸𝐸3 = 6570 ∙ 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎1.37            (1) 

The other constants were obtained assuming constant anisotropy: E1 = 0.574 ⋅ E3, E2 = 0.577 ⋅ E3, 

G12 = 0.195 ⋅ E3, G23 = 0.265 ⋅ E3, G31 = 0.216 ⋅ E3, ν12 = 0.427, ν23 = 0.234, ν31 = 0.405, where 

subscripts 1-3 denote the medial-lateral, anterior-posterior, and axial directions, respectively [29]. 

This definition of material properties has demonstrated excellent agreement between cadaveric 

experimental measurements and finite element predictions of bone strain and fracture strength at 

the tibia [30,31]. 

A preliminary mesh convergence analysis (Supplementary Figure S6) was performed using 

the participant model with the largest volume. Increasing the number of elements by ~100% (tibia 

and fibula combined) from 132 740 and 20 241 elements to 270 002 and 41 077 elements changed 

95th percentile pressure-modified von Mises strain by less than 4% and strained volume by less 



 

than 2%, suggesting the mesh was adequately converged. We conservatively selected the finer 

mesh, as the added computational time was negligible. 

2.3 Finite Element Boundary Constraints  

Boundary constraints were similar to previous work from our group, with pinned 

constraints at the knee and ankle and complex proximal tibia-fibula joint constraints [32]. One 

point at the middle of the tibial plateau was fully constrained. Surface nodes on the tibial plateau 

within one centimeter of the fixed point in the axial direction were kinematically coupled to rotate 

about the fixed point. One point on the medial condyle was fixed in the anterior-posterior direction. 

The ankle center of rotation was estimated as the midpoint between the malleoli and used for the 

application of the joint contact force. This point was constrained in the anterior-posterior and 

medial-lateral directions. The ankle center of rotation was coupled to surface nodes near the tibia-

talus and fibula-talus interfaces, such that the coupled nodes remained free to rotate about the ankle 

center of rotation. The distal tibia-fibula joint was modeled with surface-based tied constraints. At 

the proximal tibia-fibula joint, spring elements with stiffness of 133 N/mm and 109 N/mm were 

used to model the anterior and posterior ligaments, respectively [33]. Nodes at the articulating 

surface of the proximal tibia-fibula joint were tied to prevent motion in the direction normal to the 

joint surface. 

2.4 Finite Element Loads 

Lower limb joint contact force and muscle forces were calculated based on motion capture 

and force data from one female participant (age = 24 years, mass = 59 kg, height = 170 cm). The 

participant ran at 3.3 m/s on an instrumented treadmill (Bertec, Columbus, OH) while motion and 

force data were collected at 200 Hz and 1000 Hz, respectively, using an eight-camera Vicon Nexus 

system (v. 1.8.4, Vicon Motion Systems Ltd, Oxford, UK). An inverse dynamics-based static 



 

optimization routine, detailed in our previous work, was used to calculate lower extremity muscle 

and joint contact forces [32]. Briefly, a musculoskeletal model of the pelvis and lower limb 

containing fourty-five muscles [34] was scaled to the participant’s segment lengths and body mass. 

Muscle forces were computed such that the sum of muscle moments at each joint was equal to the 

net joint moment computed from inverse dynamics. The following moments were used as 

constraints in the optimization: flexion-extension and abduction-adduction moments at the hip, 

flexion-extension moment at the knee, flexion-extension moment at the ankle, and the pronation-

supination sub-talar moment. The optimization minimized the sum of muscle stresses squared. 

Ankle joint contact force and muscle forces at the time of peak resultant ankle joint contact force 

were scaled to the SAM average finite element model by mass (i.e., FFE = 

Fparticipant*(maverage/mparticipant)). The same joint contact and muscle forces were applied to all 

models. Ankle joint contact force was applied at the ankle center of rotation. Insertion points of 

seventeen muscles attaching to the tibia or fibula (Supplemental Table S1) and the patellar 

ligament were identified by aligning the MSK model geometry and the SAM average finite 

element mesh using an iterative closest points algorithm and mapping each muscle point to the 

nearest surface node. A concentrated force was applied at each attachment point (Supplemental 

Table S1). A residual moment term about the sagittal and axial axes that accounts for other sources 

of torque (e.g., bi-articulating muscles such as the medial and lateral gastrocnemius) about the 

ankle was calculated for each perturbed geometry and applied at the ankle center of rotation [32]. 

2.5 Outcome Measures and Comparisons 

Finite element models were solved in Abaqus (v.2019, Dassault Systèmes Simulia Corp.; 

Providence, USA). Custom Matlab (r2019a, Mathworks, Natick, MA) scripts were used to 

calculate pressure-modified von Mises equivalent strain, which is a modification of the von Mises 



 

strain criterion that has previously been shown to predict failure in quasi-brittle materials that 

demonstrate compression-tension strength asymmetry [35,36]. Analysis was limited to elements 

containing bone (element density values ≥ 0.5 g/cm3) in the tibial diaphysis, defined as 20-80% of 

the length of the tibia [37]. The bone density threshold sensitivity was tested in the average model, 

and the average male and female models. Peak strain changed by less than 2.4% when thresholds 

of 0.5 and 1.0 g/cm3 were used. Strained volume changed by less than 0.7% and did not affect 

male vs. female comparisons. We conservatively selected the lower threshold. Elements within a 

1.0 cm radius of the soleus force application and a 0.5 cm radius of other muscle force application 

points, including transcortical elements, were removed from the analysis due to artefactually high 

strains (over 10 000 με). The large force applied at the attachment point for the soleus necessitated 

a larger radius to remove all elements with artefactually high strains. Over 98% of the elements 

containing bone in the tibial diaphysis remained for analysis after artefacts were removed.  The 

95th percentile (peak) strain and strained volume, defined as the sum of the volume of elements 

experiencing strain greater than or equal to 4000 με, were quantified for each model. We 

previously demonstrated that strained volume, with a threshold of 4000 με, was a strong predictor 

of fatigue life for whole rabbit tibiae in uniaxial and biaxial (compression and torsion) modes of 

loading [36]. At the material level, O’Brien et al. [38] observed rapid microdamage accumulation 

and subsequent fracture in cyclically-loaded cortical bone at a stress range of 80 MPa, which would 

correspond to 4000 με for an assumed elastic modulus of 20 GPa; samples loaded at lower stress 

ranges accumulated damage but did not fracture [38]. Absolute and percentage differences in peak 

strain and strained volume between perturbed models and the average model were calculated. 

These measures were also compared between average male and female models.  

2.6 Statistical Analysis 



 

In addition to qualitative assessments of differences between average male and female 

geometry and density generated from the SAM, t-tests were performed to compare principal 

component scores between females and males. According to Shapiro-Wilk and Levene’s tests, 

principal component scores for male and female groups were normally distributed and had equal 

variances. A Sidak correction for multiple comparisons was applied such that the family-wise error 

rate was 0.05. Pearson product-moment correlations between scores of the first five principal 

components and age were also evaluated. Statistical tests were performed in SPSS (v27.0, IBM 

Corp., Armonk, NY). 

3 Results 

The first principal component, dominated by isotropic scaling, explained half (49.7%) of 

the total variance in the SAM. The first five principal components accounted for 70.5% of the total 

cumulative variance. The variance explained by the principal components are displayed in Figure 

1. Geometry and density variations described by the first five principal components were 

independent of age (p ≥ 0.310). 

3.1 PC Perturbations 

The first five principal components described tibial geometry and density variations 

including: isotropic scaling, axial length, cross-sectional size and geometry, curvature, and 

regional variations in cortical thickness and density (Table 2). The fibula varied to a lesser degree, 

typically displaying corresponding variations in dimensions and cortical density. Visualizations of 

geometry and density variations for each principal component are provided in supplementary 

Figures S1-S5. Perturbations of ± 1 standard deviation along these principal components resulted 

in 2.0-5.7% differences in peak strain and 11.5-44.6% differences in strained volume when 

compared to the average model (Table 2). Perturbations of ± 2 standard deviations along these 



 

principal components resulted in 3.9-12.0% differences in peak strain and 20.8-95.4% differences 

in strained volume when compared to the average model (Table 2).  

Perturbing principal components 1, 2, and 5 resulted in the largest changes in peak strain 

and strained volume. The first principal component was dominated by isotropic scaling. Lower 

density at the endocortical surface corresponded with increased size. Increasing size by one 

standard deviation reduced peak strain and strained volume by 5.3% and 38.7%, respectively. The 

second principal component explained 10.6% of the total variance and described variations in tibia 

and fibula length, tibial curvature, and cortical thickness (Figure 2). A longer, straighter tibia with 

increased cortical thickness reduced peak strain and strained volume (perturbing by plus one 

standard deviation = 5.3% and 36.5% reduction in peak strain and strained volume, respectively) 

when compared to the average model (Figure 3). The fifth principal component explained 2.8% of 

total variance, describing changes in diaphysis cross-sectional size and geometry, and variation in 

density distribution. Increased cross-sectional size, corresponding with decreased cortical density 

in the anterior diaphysis and regional variations in cortical thickness, resulted in 4.0% lower peak 

strain and 29.1% smaller strained volume when compared to the average model. 

3.2 Sexual Dimorphism 

The female tibia was narrower along both anterior-posterior and medial-lateral axes and 

had smaller condyles. Cortical density was greater and cortical thickness in the distal ¼ of the 

diaphysis was smaller in the average female when compared to the average male (Figure 4). Scores 

for the third principal component were different between males and females (p < 0.001), where 

females had more positive scores. Principal component three illustrated similar geometry and 

density variations (Table 2, Supplemental Figure S3) to the observed variations between sexes. 

These differences resulted in 5.5% (198 με) higher peak strain and 41.3% (830 mm3) higher 



 

strained volume in the average female when compared to the average male. When isolated, 

geometry differences resulted in 9.7% (345 με) higher peak strain and 99.5% (1678 mm3) larger 

strained volume in the average female. In contrast, density differences alone resulted in 3.9% (146 

με) lower peak strain and 30.6% (832 mm3) smaller strained volume in the average female when 

compared to the average male. 

4 Discussion 

The aims of this study were to characterize tibial-fibular geometry and density variations 

and to quantify the influence of these variations on finite element-predicted bone strain in young 

active adults. Finite element-predicted bone strain was sensitive to geometry and density variations 

present in a young active adult population. Isotropic scaling, tibial curvature, cortical thickness, 

and diaphyseal dimensions in the transverse plane had the largest effects on bone strain. Sex 

differences in geometry were subtle yet resulted in greater bone strain in the average female than 

the average male when controlled for scale.  

The average female model illustrated 5.5% greater 95th percentile pressure-modified von 

Mises strain and 41.3% greater strained volume than the average male model when controlled for 

scaling and related variations. At the material level, strain magnitude is associated with fatigue life 

and the accumulation of microdamage, where higher strain results in greater damage accumulation 

and a shorter fatigue life [5,6]. Strained volume examines the entire strain distribution and captures 

the amount of bone experiencing strain above a specific threshold; in theory, a larger volume 

experiencing high strain has a greater probability of loading a site of localized microstructural 

weakness, which accelerates fatigue failure [39]. Indeed, uniaxial and biaxial mechanical tests of 

whole rabbit tibiae revealed strong relationships (r2 = 0.73 and 0.59, respectively) between 

pressure-modified von Mises-based strained volume and fatigue life, where greater strained 



 

volume was associated with fewer loading cycles to fracture [36]. Furthermore, our finite element 

results are in line with clinical data. The largest area of strained volume and the highest strains, in 

all models, occurred on the posterior surface of the tibial diaphysis, consistent with Kijowski et 

al.’s [40] observations of the most frequent tibial stress fracture location. Thus, the fact that the 

average female illustrated greater peak strain and strained volume suggests that sexual dimorphism 

in the tibia and fibula, independent of applied load and scale, may indeed contribute to the greater 

risk of stress fracture observed in females when compared to males in a young physically active 

population [1–3]. 

The larger strains and strained volume observed in the average female when compared to 

the average male were explained by geometric rather than density variations. The average female 

tibia was smaller in the transverse plane when compared to the average male tibia; cortical area 

and second moment of area (i.e., resistance to bending) were also smaller through the diaphysis, 

leading to higher strain. In contrast, cortical density in the diaphysis was slightly greater (up to 

approximately 0.05 g/cm3 greater) in the average female when compared to the average male, 

leading to lower strain. Specifically, when isolated, density variations resulted in 3.9% smaller 

peak strain and 30.6% smaller strained volume. However, the small increase in cortical density 

was not sufficient to offset the effects of reduced transverse cross-sectional size.  

As expected, finite element-predicted strain was sensitive to scaling, geometry, and density 

variations among young active adults. Isotropic scaling, tibia and fibula axial length, tibial 

curvature, cortical thickness, and transverse cross-sectional size were the most prominent 

variations characterized by the SAM and resulted in substantial differences in bone strain when 

perturbed by ± 2 standard deviations. Increases in isotropic scaling, cortical thickness, and 

transverse cross-sectional dimensions are associated with increased cortical area, second moment 



 

of area, and polar moment of area, which result in reduced stresses and strains in response to axial, 

bending, and torsional loads. An increase in axial length would increase the moment arm of forces 

applied at the joints relative to the middle of the diaphysis and would result in a greater bending 

moment and higher strain. However, the expected effect of length on strain was not observed when 

evaluating the influence of the second principal component due to the greater and opposing 

influence of concomitant increases in cortical thickness and reduced sagittal plane curvature. In 

long bones, less curvature decreases bending resulting from axial loads, leading to smaller peak 

stresses and strains [41].  

Our findings highlight the importance of obtaining subject-specific geometry and density 

for finite element simulations when comparing bone strain between individuals or groups, 

supporting previous work comparing generic and subject-specific modelling approaches [11]. 

When clinical computed tomography scans of the tibia and fibula are not available, statistical 

appearance models may serve as a tool to estimate subject-specific geometry and density from 

more accessible imaging methods and/or anatomical measures. For example, Väänänen et al. [42] 

reconstructed 3-dimensional proximal femur geometry and density from 2-dimensional clinical 

dual-energy x-ray absorptiometry (DXA) images using a SAM. The mean point to surface and 

volumetric bone mineral density errors were 1.41 mm and 0.19 g/cm3, respectively, and this 

resulted in a strong correlation (r2 = 0.85) between finite element predictions from DXA- and 

computed tomography-based models. Perhaps a similar approach could be developed to generate 

subject-specific finite element models of the tibia and fibula based on DXA, peripheral computed 

tomography, and/or skin-based markers. We found that tibia sagittal-plane curvature, diaphysis 

cortical thickness, and diaphysis transverse cross-sectional dimensions had the greatest influence 

on tibial bone strain. As such, obtaining measures of these factors from less intensive imaging 



 

methods may be most important for SAM-based reconstruction to minimize bone strain 

inaccuracies due to geometry or density prediction errors. 

A limitation of our analysis was that we only modeled a single loading configuration. We 

chose to apply the same joint contact and muscle forces to all models to isolate the effects of 

geometry and density perturbations. However, contact force magnitude and direction, and the 

distribution of muscle forces may vary between individuals, sexes, running conditions, and other 

movements. For example, Meardon et al. (2021) observed smaller axial force, larger medial-lateral 

force, and smaller anterior-posterior bending moment at the tibia in females when compared to 

males during running. These factors would interact with bone geometry to determine the strain 

environment of the tibia and fibula. To examine the sensitivity of our results for sexual dimorphism 

to the applied loads, we performed a post-hoc sensitivity analysis where loads calculated based on 

data from a male (age = 36, height = 1.73 m, mass = 76.8 kg, running speed = 3.3 m/s; see 

Supplemental Table S2 for muscle and ankle contact forces) were applied to the average male and 

female models. Our interpretations did not change; peak strain and strained volume were greater 

(by 161 με and 419 mm3) in the average female when compared to the average male, controlled 

for scale and applied load. Still, future work evaluating the interaction between sex differences in 

loads and bone morphology is warranted. A second limitation of our analysis was that the training 

set used to build the SAM in our study was composed of only young physically active adults. The 

inclusion criteria for our training set limits the applicability of our SAM to other populations (e.g., 

clinical, pediatric, or geriatric); however, young active adults are perhaps the most studied 

population in biomechanics and running research.  



 

5 Conclusions 

 Principal components characterising tibial curvature, cortical thickness, and cross-sectional 

dimensions had the greatest influence on bone strain. On average, females illustrated narrower 

tibiae when controlled for scale, resulting in larger strains when compared to the average male. 

Our findings identify key morphological parameters associated with elevated bone strain that may 

have implications for stress fracture risk. 
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Table 1: Mean (standard deviation) participant age, height, and body mass of females and males 
included in the SAM. 
Sex n Age (years) Height (m) Mass (kg) 
F 20 19.9 (1.3) 1.65 (0.08) 60.1 (5.8) 
M 28 22.4 (4.4) 1.76 (0.07) 71.5 (7.2) 
p-value  0.006 <0.001 <0.001 
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Table 2: Geometry and density variations described by the first five principal components and their influence on 95th percentile pressure 
modified von Mises strain (peak ε) and strained volume (εvol) compared to the average model. Data are presented as absolute difference 
(percent difference). 

Principal 
Component 

 Perturbation (σ) Geometry and density variation in positive 
direction 

-2 -1 1 2 
1 Peak ε (με) 446 (12.0) 205 (5.5) -197 (-5.3) -380 (-10.2) Increased size 

Decreased density at the endocortical surface 
εvol (mm3) 1395 (59.1) 793 (33.6) -914 (-38.7) -1726 (-73.2) 

2 Peak ε (με) 428 (11.5) 212 (5.7) -195 (-5.3) -375 (-10.1) Longer tibia and fibula 
Less curvature in sagittal plane 
Increased density at the endocortical surface εvol (mm3) 2250 (95.4) 1052 (44.6) -861 (-36.5) -1491 (-63.2) 

3 Peak ε (με) -160 (-4.3) -81 (-2.2) 75 (2.0) 146 (3.9) Decreased cross-sectional size in proximal 2/3 
of tibia 
Smaller proximal tibial condyles 
More triangular cross-section at mid-diaphysis 
Increased density in middle 1/3 and decreased 
density in proximal and distal 1/3 near the 
endocortical surface 

εvol (mm3) -616 (-26.1) -294 (-12.5) 272 (11.5) 491 (20.8) 

4 Peak ε (με) 207 (5.6) 103 (2.8) -100 (-2.7) -198 (-5.3) Larger tibia and fibula cross-sectional size 
Increased density in distal half, decreased 
density in proximal half at the endocortical 
surface 

εvol (mm3) 916 (38.9) 456 (19.3) -471 (-20.0) -928 (-39.3) 

5 Peak ε (με) 330 (8.9) 159 (4.3) -150 (-4.0) -291 (-7.8) Larger tibia and fibula cross-sectional size, 
especially along the A/P axis 
Regional variations in cortical thickness 
Decreased cortical density in anterior diaphysis 
 

εvol (mm3) 1568 (66.5) 751 (31.9) -686 (-29.1) -1308 (-55.5) 
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Figure 1: Percent variation (solid line) and cumulative variation (dashed line) captured by principal 
components of the SAM.  
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Figure 2: Geometry and density variations characterised by the second principal component. (A) Surface 
geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and the average 
geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia illustrating differences 
in internal density distribution between +2 SD and average, where red indicates greater density in the 
model perturbed by +2 SD. (C) Axial cross-sections of the tibial diaphysis at 50% of total axial length.  

 
         
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Pressure-modified von Mises strain distribution across the posterior surface of the tibial 
diaphysis for perturbations of ± 2 standard deviations (SD) along the second principal component 
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compared to the average. Elements coloured black (≥ 4000 με) contributed to the strained volume 
measure. 

 
 
 
 
 
 
 
Figure 4: Comparisons between the average female and male tibia and fibula, controlled for scaling. (A) 
Average female (red) and male (blue) periosteal geometry. (B) Sagittal cross-section of the tibia 
displaying differences in density between the average female and average male, controlled for bone size. 
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Red indicates higher density in the female model. (C) pressure-modified von Mises strain distribution 
across the posterior surface of the tibial diaphysis. Elements coloured black (≥ 4000 με) contributed to 
the strained volume measure. 
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Supplemental Tables and Figures 

Figure S1: Geometry and density variations characterised by the first principal component. (A) 
Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 
the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 
illustrating differences in internal density distribution between +2 SD and average, where red 
indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 
diaphysis at 50% of total axial length. 
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B 

Figure S2: Geometry and density variations characterised by the second principal component 
(Presented in main article, Figure 1). Surface geometry of the tibia and fibula perturbed by +2 
standard deviations (SD) (purple) and the average geometries (grey). (B) Frontal (left) and 
sagittal (right) cross-sections of the tibia illustrating differences in internal density distribution 
between +2 SD and average, where red indicates greater density in the model perturbed by +2 
SD. (C) Axial cross-sections of the tibial diaphysis at 50% of total axial length. 
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Figure S3: Geometry and density variations characterised by the third principal component. 
Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 
the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 
illustrating differences in internal density distribution between +2 SD and average, where red 
indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 
diaphysis at 50% of total axial length. 
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Figure S4: Geometry and density variations characterised by the fourth principal component. 
Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 
the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 
illustrating differences in internal density distribution between +2 SD and average, where red 
indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 
diaphysis at 50% of total axial length. 
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Figure S5: Geometry and density variations characterised by the fifth principal component. 
Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 
the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 
illustrating differences in internal density distribution between +2 SD and average, where red 
indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 
diaphysis at 50% of total axial length. 
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Figure S6: Mesh convergence analysis results. Blue dots show the peak strain (A) or strained 
volume (B) resulting from each mesh. Orange dots show the percentage change in peak strain or 
strained volume when compared to the previous (coarser) mesh. Strained volume resulting from 
the mesh with 42 413 elements was zero. As a result, the % change in strained volume between 
the 78 749 element mesh and the 42 413 element mesh was infinite and therefore not plotted. 
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Table S1: Muscles included in the musculoskeletal model attaching to the tibia or fibula* and the 
forces applied to the finite element model, calculated from one female participant at the time of 
peak resultant ankle joint contact force. The ankle joint contact force applied at the ankle center 
of rotation is also shown. +: medial, anterior, proximal 

 

Muscle Muscle force applied to the tibia (N) 
 Medial/Lateral Anterior/Posterior Axial 

Semimembranosus -0.24 -2.16 2.14 
Semitendinosus 0.22 -0.82 0.71 
Biceps femoris long 
head 

 
0.05 

 
-0.69 

 
0.69 

Biceps femoris short 
head 

 
-0.54 

 
-6.17 

 
11.48 

Sartorius 24.03 -31.38 25.60 
TFL -32.83 -5.76 275.95 
Gracilis 0.00 -0.36 0.49 
Soleus 238.08 -272.39 -1930.42 
Tibialis posterior 17.84 -5.28 -83.25 
Flexor digitorum 4.28 -2.68 -27.56 
Flexor hallucis 68.25 9.22 -242.60 
Tibialis anterior 0.19 0.19 -1.19 
Peroneus brevis 25.34 -20.92 -261.79 
Peroneus longus 51.63 -25.42 -453.93 
Peroneus tertius 0.99 2.00 -10.98 
Extensor digitorum 2.29 2.01 -17.45 
Extensor hallucis 0.79 0.96 -6.71 
Patellar ligament 220.47 1679.08 3392.13 
Ankle contact force 714.20 -1087.17 6241.07 

 

* Mucles included in the musculoskeletal model that do not attach to the tibia or fibula were: 
gluteus maximus, gluteus medius, gluteus minimus, adductor longus, adductor brevis, adductor 
magnus, pectineus, iliacus, psoas, quadratus femoris, gemellus, piriformis, rectus femoris, vastus 
lateralis, vastus medialis, vastus intermedius, medial gastrocnemius, lateral gastrocnemius. 

Musculoskeletal model: 
E.M. Arnold, S.R. Ward, R.L. Lieber, S.L. Delp, A model of the lower limb for analysis of 
human movement, Ann. Biomed. Eng. (2010). https://doi.org/10.1007/s10439-009-9852-5. 

https://doi.org/10.1007/s10439-009-9852-5
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Table S2: Muscle and joint contact forces applied to the tibia and fibula calculated 
from one male participant at the time of peak resultant ankle joint contact force. +: 
medial, anterior, proximal 

 

Muscle Muscle force applied to the tibia (N) 
 Medial/Lateral Anterior/Posterior Axial 

Semimembranosus 1.03 -6.67 10.78 
Semitendinosus 2.88 -5.35 3.96 
Biceps femoris long 
head 

2.65 -6.64 10.53 

Biceps femoris short 
head 

1.48 -4.63 13.25 

Sartorius 6.46 -6.12 3.86 
TFL 14.33 -47.43 169.35 
Gracilis 0.66 -1.84 4.03 
Soleus -97.87 -207.19 -1664.85 
Tibialis posterior 0.04 -0.27 -13.79 
Flexor digitorum -0.00 0.01 -0.04 
Flexor hallucis 173.05 775.55 1881.25 
Tibialis anterior -0.13 -0.14 -2.46 
Peroneus brevis 8.27 11.97 -144.89 
Peroneus longus -60.14 -27.05 -542.45 
Peroneus tertius -74.92 -18.52 -773.04 
Extensor digitorum -4.51 6.83 -31.85 
Extensor hallucis -9.19 14.22 -95.53 
Patellar ligament -0.88 1.33 -7.50 
Ankle contact force 820.00 -952.08 6482.52 
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