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ABSTRACT 

As physical imaging systems are imperfect, and as the conditions under which 

images are obtained are frequently less than ideal, recorded images often represents 

a degraded version of the original scenes. Image restoration is concerned with filter-

ing the recorded image to minimize the effect of such degradation. The majority of 

natural scenes consist of different features and edges. As such, most images cannot 

be considered to be statistically stationary. The application of spatially-invariant fil-

ters that assume, stationary image models to the restoration of nonstátionary images 

often produces unsatisfactory results. This thesis presents original image restoration 

techniques based on adaptive-neighborhood regions that are more stationary in na-

ture. It will be shown that filters that are based on stationary regions perform better 

than those based on fixed, nonstationary regions. A new iterative method for blind 

deconvolution which does not require either the original image or the blur function 

will also be presented. 



ACKNOWLEDGEMENTS 

I would like to acknowledge the guidance and encouragement of my supervisor, 

Dr. Raj Rangayyan, who provided a research topic which was of intellectual inter-

est. His continued enthusiasm and suggestions during the course of this work were 

instrumental in the results we have obtained. 

Other members of our research group were also of great assistance. In partic-

ular, Dr. Raman Paranjape has made substantial contributions to the adaptive-

neighborhood noise subtraction algorithm and the iterative blind deconvolution algo-

rithm described herein. 

iv 



Dedicated to 

my parents and mentors, 

for the talent, example, and knowledge 

V 



CONTENTS 

APPROVAL PAGE  

ABSTRACT  

ACKNOWLEDGEMENTS  iv 

DEDICATION  V 

TABLE OF CONTENTS  Vi 

LIST OF TABLES  ix . 

LIST OF FIGURES  x 

CHAPTERS 

1. INTRODUCTION   1 

1.1 Motivation for Research on Image Restoration   1 

1.2 Classical Image Restoration Techniques   3 

1.3 Thesis Layout   5 

2. IMAGE RESTORATION TECHNIQUES  7 

2.1 Introduction   7 

2.2 Restoration of Noisy Images   8 

2.2.1 Space Domain Filters   9 

2.2.2 Frequency Domain Filters   12 

2.3 Restoration of Blurred Images   15 

2.4 Discussion   21 

3. ADAPTIVE RESTORATION METHODS  23 

3.1 Introduction   23 

3.2 The Adaptive Two-dimensional LMS Algorithm   24 

3.2.1 Derivation of the ATD-LMS Filter   25 
vi 



3.2.2 Implementation of the ATD-LMS Filter  26 

3.3 The Adaptive Rectangular Window LMS Algorithm   27 

3.3.1 Derivation of the ARW-LMS "Filter   28 

33.2 Implementation of the ARW-LMS Filter   29 

3.4 Experimental Results and Discussion   33 

3.5 Summary   39 

4. ADAPTIVE-NEIGHBORHOOD NOISE SUBTRACTION  41 

4.1 Introduction   41 

4.2 Region Growing   42 

4.3 The Adaptive-Neighborhood Noise Subtraction Method   46 

4.3.1 Derivation of the ANNS filter   46 

4.3.2 Implementation of the ANNS filter   48 

4.4 Experimental Results and Discussion   50 

4.5 Summary   58 

5. SECTIONED IMAGE DEBLURRING  59 

5.1 Introduction   59 

5.2 Fixed-Neighborhood Sectioned Deblurring   62 

5.3 Experimental Results and Discussion ' 66 

5.4 Summary  " 75 

6. ADAPTIVE-NEIGHBORHOOD IMAGE DEBLURRING  76 

6.1 Introduction   76 

6.2 The Adaptive-Neighborhood Deblurring Method   77 

6.3 Experimental Results and Discussion   81 

6.4 Summary   88 

7. AN ITERATIVE METHOD FOR BLIND DECONVOLUTION. 89 

7.1 Introduction   89 

7.2 The Iterative Blind Deconvolution Method   91 

7.3 Experimental Results and Discussion'   95 

7.4 Summary   99 

8. DISCUSSION AND CONCLUSIONS 100 

vii 



REFERENCES  104 

VI" 



LIST OF TABLES 

3.1 Results of noise suppression on the synthesized, 128 x 128 pixel image with 
noise variance of 256  36 

3.2 Results of noise suppression on the Lena image for various sizes and noise 
levels.   39 

4.1 Results of noise suppression on the synthesized, 128 x 128 pixel image with 
noise variance of 256. Approximate computer processing time for the 
various filters using a SUN/Sparc-2 workstation are also listed  52 

4.2 Results of noise suppression on the Lena image for various sizes and noise 
levels.   55 

5.1 Results of fixed-neighborhood sectioned deblurring on the Lena and Cam-
era Man images of size 128 x 128 pixels and 256 gray, levels for various 
section sizes and two different blurring functions.   74 

6.1 Results of fixed- and adaptive-neighborhood deblurring on the Lena and 
Camera Man images of size 128 x 128 pixels and 256 gray levels for 
various neighborhood sizes and two different blurring functions. . . . 84 

ix 



LIST OF FIGURES 

2.1 A model of the image degradation process  7 

3.1 Noise Suppression with a synthesized image of size 128 x 128 pixels and 
a gray level range of 0 - 255. (a) original image, (b) noise corrupted 
image; an = 256, (c) ATD-LMS output image, (d) ARW-LMS output 
image.   34 

3.2 Noise Suppression with the Lena image of size 128 x 128 pixels and a gray 
level range of 0 - 255. (a) original image, (b) noise corrupted image; 
cr = 256, (c) ATD-LMS output image, (d) ARW-LMS output image. 37 

4.1 Adaptive-neighborhood (AN) region growing. (a) From a seed pixel inside 
an object or feature, an AN is formed. The first layer of the AN defines 
the object (foreground) and the second layer defines its background. 
(b) The foreground and background regions grown from a seed pixel 
at location (96,17) inside the image shown in figure 3.2(a)  45 

4.2 Noise Suppression with a synthesized image of size 128 x 128 pixels and 
a gray level range of 0 - 255, (a) original image, (b) noise corrupted 
image; an = 256, (c) ANNS output image, (d) ARW-LMS output 
image, (e) ATD-LMS output image  51 

4.3 Noise Suppression results obtained with the Lena image of size 128 x 128 
pixels and a gray level range of 0 - 255. (a) original image, (b) noise 
corrupted image; cr = 256, (c) ANNS output image, (d) ARW-LMS 
output image, (e) ATD-LMS output image.   54 

4.4 Noise Suppression with the synthesized image in figure 4.2(b) using. two 
passes through (a) the ANNS filter, and (b) the ARW-LMS filter. . . 57 

5.1 Sectioning of the Lena image of size 128 x 128 pixels and a gray level range 
of 0 - 255. (a) original image. (b) blurred image with a Gaussian-
shaped blur function; MSE = 607. (c), (d), and (e) show three 32 x 32 
sections mean-padded to 128 x 128 pixels created for sectioned deblur-
ring. (f) the windowed equivalent of the region in (e)  68 

x 



5.2 Sectioned deblurring results for the Lena image of size 128 x 128 pixels and 
a gray level range of 0-255. (a) deblurréd image using non-overlapping 
sections of size 32 x 32 pixels; MSE = 1255. (b) Wiener-deblurred 
image using overlapped sections of size 32 x 32 pixels; MSE = 501. 
(c) Wiener-deblurred image using overlapped sections of size 16 x 16 
pixels; MSE = 783. (d) Wiener- deblurred image using the full image 
frame; MSE = 634. The overlap in all cases is equal to half the section 
size in both the horizontal and vertical directions  

5.3 Sectioned deblurring results for the Camera Man image of size 128 x 128 
pixels and a gray level range of 0 - 255. (a) original image. (b) 9-
pixel horizontal motion blurred image; MSE = 1247. (c) a sectioned 
mean-padded region created for sectioned deblurring. (d) the win-
dowed equivalent of the region in (c). (e) Wiener-deblurred image us-
ing overlapped sections of size 32 x 32 pixels; MSE = 424. (f) Wiener-
deblurred image using overlapped sections of size 64 x 64 pixels; MSE 
= 463. (g) Wiener- deblurred image using overlapped sections of size 
16 x 16 pixels; MSE = 539. (h) Wiener-deblurred image using the full 
image frame; MSE = 217.   

69 

73 

6.1 Adaptive-neighborhood segmentation of the Lena image of size 128 x 128 
pixels and gray level range of 0 - 255. (a) original image. (b) blurred 
image with a Gaussian-shaped blur functioii and noise to 35 dB SNR; 
MSE = 607. (c), (d), and (e) show three AN mean-padded regions 
created for AND. (f) the windowed equivalent of the region in (e). . . 83 

6,2 Adaptive-neighborhood deblurring (AND) of the Lena image of size 128 x 
128 pixels and gray level range of 0 - 255. (a) deblurred image using 
the AND filter; MSE = 292. (b) deblurred image using FNSD with 
non-overlapping sections of size 32 x 32 pixels; MSE = 1255. (c) FNSD 
Wiener-deblurred image using overlapped sections of size 16 x 16 pix-
els; MSE = 783. (d) FNSD Wiener-deblurred image using overlapped 
sections of size 32 x 32 pixels; MSE = 501  

6.3 Adaptive-neighborhood deblurring (AND) of the Camera Man image of 
size 128 x 128 pixels and a gray level range of 0 - 255. (a) Original 
image. (b) Image blurred by 9-pixel horizontal motion and degraded by 
additive Gaussian noise to 35 dB SNR; MSE = 1247. (c) An AN mean-
padded region created for AND. (d) A windowed version of another 
stationary AN region. (e) Deblurred image using the AND filter; MSE 
= 181. (f) FNSD Wiener-deblurred image using overlapped sections of 
size 32 x 32 pixels; MSE = 424.   

85 

87 

xi 



7.1 Iterative blind deconvolution with the Lena image of size 128 x 128 pix-
els. (a) original image, (b) blurred image with Gaussian-shaped blur 
function of radial standard deviation o = 3 pixels; MSE = 606, (c) 
enhanced phase image, (d) initial estimate image; MSE = 877, (e) de-
blurred image after first iteration; MSE = 128, (f) deblurred image 
after 4 iterations; MSE = 110  

7.2 Iterative blind deconvolution results for the slightly blurred text image of 
size 64 x 64 pixels and 256 gray levels. (a) original image, (b) slightly 
blurred image with Gaussian-shaped blur function of radial standard 
deviation o-,. = 3 pixels;.MSE = 1041, (c) enhanced phase image, (d) 
initial estimate image; MSE = 385, (e) final restored image after 8 
iterations; MSE = 156  

97 

98 

7.3 Iterative blind deconvolution with severely blurred text image of size 64 x 
64 pixels and 256 gray levels. ( a) highly blurred image of figure 7.2(a) 
with Gaussian-shaped blur function of radial standard deviation o,. = 5 
pixels; MSE = 3275, (b) enhanced phase image, (c) initial estimate 
image; MSE = 690, (d) final restored image after one iteration; MSE 
= 618.   98 

xli 



CHAPTER 1 

INTRODUCTION 

1.1 Motivation for Research on Image Restoration 

Millions of images are created every day. Most of them are of very high quality. 

However, some images are of poorer quality. Of the images that are of lesser quality, 

a certain subset are of such importance, or are so unique, that it becomes necessary 

to consider techniques by which their quality may be enhanced. Image restoration 

represents the category of computer techniques by which the effects of image degra-

dation phenomena may be removed and the undegraded image estimated from the 

observed image. 

The areas of space imaging, biomedical imagery, industrial radiography, photo-

reconnaissance imaging, television, infrared imaging, radar, and several multispectral 

or other forms of mapping scenes or objects onto a two-dimensional image format 

are all likely candidates for digital image processing, due to the complexity of their 

acquisition systems and/or the volume of the associated data. 

Restoration techniques require some form of knowledge concerning the degradation 

phenomenon if an attempt at inversion of that phenomenon is to be made. This 

knowledge may come in the form of analytic models, or other a priori information 

coupled with the knowledge (or assumption) of the physical system that provided the 
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imaging process in the first place. Thus considerable emphasis must be placed on the 

sources of the images and their models of degradation. 

Digital computer techniques in image restoration and enhancement had their first 

fruitful application at the Jet Propulsion Laboratory (JPL) of the California Institute 

of Technology. As part of the program to land a man on the moon, it was decided to 

land an unmanned spacecraft initially, which would televise back images of the moon's 

surface and test the soil for later manned landings. Unfortunately, the limitations on 

weight and power supply made it impossible 'to launch a perfect TV camera system 

on the unmanned craft. Consequently, JPL measured the degradation properties of 

,the cameras before they were launched and then used computer processing to remove, 

to the extent possible, the degradations from the received lunar images [1]. Since that 

beginning, interest in digital image restoration has continued to grow. JPL's first work 

was conducted in the early 1960's. Today, digital image restoration is being applied 

in a number of areas, most of them bearing no relation at all to JPL's original work, 

except for the common desire to improve image quality or remove degradations from 

an image. 

Although the number of applications of digi1al image restoration may be large 

and diverse, the problem of restoration itself is not so nebulous. Image restoration 

in general can be understood in terms of the specific nature of the problem, that of 

reducing additive noise and/or finding the most appropriate filter for deblurring a 

blurred image, using the terminology of functional analysis from mathematics. Fur-

thermore, the mathematical procedures that govern image processing make it possible 

to describe restoration filters in specific detail. Thus, all image restoration methods, 

whether applied to images from medicine or aerial reconnaissance, can be discussed 

with a straightforward emphasis on mathematics and not upon specific applications. 
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1.2 Classical Image Restoration Techniques 

This section presents a sampling of the most commonly known image restoration 

methods that have received considerable attention in the literature [1,2,3,4,5,6,7]. One 

of the most basic of all image restoration filters is the inverse filter. The inverse filter 

was implemented as a solution to the problem of deconvolving two signals. It is a 

linear filter whose point spread function (PSF) is the inverse of the blurring function. 

This filter assumes no additive noise after convolution, and thus works only when the 

noise level is minimal, and fails if the blur function is of the form of an ideal lowpass 

filter or if the blur function is zero at some frequencies. Even when the blurring 

frequency response does not actually go to zero, there are usually problems caused by 

excessive noise amplification at high frequencies. This is because the power spectrum 

of the blurred image is typically highest at low frequencies and rolls off significantly for 

higher frequencies. The spectrum of the additive noise, on the other hand, typically 

contains more high-frequency components, especially if the noise is white. Thus, at 

high frequencies, the restored image is dominated by the inverse-filtered noise, which 

yields useless solutions. 

To overcome the noise sensitivity of the inverse filter, a number of restoration 

filters have been developed, which are collectively called least-squares filters. The 

Wiener filter is the most common of these least-squares filters. It is a linear space-

invariant filter which makes use of power spectrum models of both the image and 

the noise to prevent excessive noise amplification. The frequency response of this 

restoration filter is chosen such that the mean-squared error (MSE) between the 

original undegraded image and the restored image is minimum. The Wiener filter 

requires a priori knowledge of the degradation function and models of the power 

spectra of the noise and original undegraded image. The power spectrum of. the 
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additive noise is usually easy to estimate (it is equal to the noise variance for Gaussian 

white noise). To obtain an estimate of the power spectrum of the original image, an 

ensemble of many samples of the original image is required. Spatial averages (over 

prototype images) are often used in place of ensemble averages in implementation. 

When prototype images that closely resemble the original image are not available, as 

is the case in most practical situations, All the required a priori knowledge about the 

original image will have to be estimated from a single copy of the degraded image. 

Power spectral estimates so derived are far from accurate estimates of the original 

image. For these reasons, practical Wiener restoration filters may not be optimal. One 

other problem with the Wiener filter is that it is based on a (second-order) stationary 

image model. For most images that contain large fluctuations such as edges, the 

statistics will vary with pixel position and thus the image is nonstationary, or at best 

quasi-stationary. Image spectral estimates based on regional averages cannot follow 

rapid statistical changes within any given region. For such images, the Wiener filter, 

which uses a common estimate of the power spectrum for regions containing edges 

and flat regions, produces a noisy effect in flat intensity regions due to insufficient 

smoothing, and blurring around the edges and other information-bearing regions due 

to over-smoothing. 

Several attempts have been made [8,9,10,11,12] to use fixed or adaptive square 

windows to approximate locally-stationary regions; the original pixel values are esti-

mated by these methods inside each window using the local statistics. For the case of 

deblurring, more accurate power spectral estimates have been obtained by sectioning 

the given blurred image into square regions of some fixed size and averaging the power 

spectra calculated from the various regions. This procedure assumes that each region 

better represents a locally-stationary portion of the whole image. 
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Although the use of square or rectangular regions to approximate stationarity is 

a valid option, it still has limitations: regions cannot be reduced beyond a minimum 

size for accurate statistical estimation, and they should be larger than the region of 

support of the blurring PSF for proper deblurring. Another disadvantage' of using 

fixed regions is the fact that each region cannot distinguish between relative pixel-

to-pixel gray level differences, and thus, even small fixed regions are likely to contain 

flat as well as busy areas of the image, rendering the region nonstationary. 

This thesis presents various image restoration techniques using regions that have 

the ability to adapt to pixel variations and grow into such areas of the image where 

relative pixel gray level differences lie within specified limits of tolerance. Thus, the 

new adaptive-neighborhood regions are more stationary in nature, and, as will be 

shown later, filters based on adaptive regions perform better than those based on 

fixed or adaptive square or rectangular windows. The main part of this thesis is cen-

tered around using adaptive region-based techniques for image noise suppression and 

deblurring. A new iterative method for blind-deconvolution which requires neither 

the original image nor the blur function for restoration will also be presented. 

1.3 Thesis Layout 

This thesis is presented in 8 chapters. Chapters 2 to 7 present theoretical aspects 

and results, while the last chapter gives a discussion of the work presented and some 

concluding remarks. 

Chapter 2 surveys different image restoration techniques available in the litera-

ture, and gives a detailed. technical review of these methods. Restoration of images 

degraded by additive white noise is first described, and then restoration of blurred 

noisy images is discussed. Finally, a discussion which summarizes the methods avail-
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able and the relative contribution of this work is presented. 

Chapter 3 discusses some well known space domain adaptive restoration methods 

that have been used as a comparison with our adaptive region-based techniques. 

Then, our space domain adaptive neighborhood noise reduction method is presented 

in chapter 4, with a detailed description of the adaptive neighborhood region growing 

algorithm used to define stationary regions. The results of applying our new filter are 

presented, and a comparative analysis with the methods introduced in chapter 3 is 

provided. 

Chapter 5 presents fixed-neighborhood sectioned methods for image deblurring 

(deconvolution) with a detailed discussion of the methods used. Chapter 6 gives 

our new adaptive-neighborhood image deblurring method which is formulated in the 

frequency domain, and experimental results are then discussed using a comparative 

analysis with the fixed-neighborhood methods of chapter 5. 

Chapter 7 presents the second part of the thesis which deals with a new iterative 

algorithm for blind deconvolution. This method is different fom the other methods 

in the thesis that deal with image deblurring in that no knowledge of the blurring 

function is required, and the only information used is the blurred image. Restoration 

takes place using an iterative method that uses the information preserved in the phase 

of the blurred image to recover, as much as possible, the, high-frequency components 

that were lost due to blurring. The final part of this chapter gives some experimental 

results, and a discussion of the merits of this new technique. 

Chapter 8, the final chapter, gives a discussion on the methods presented in the 

thesis and draws conclusions based on the work completed. 



CHAPTER 2 

IMAGE RESTORATION TECHNIQUES 

2.1 Introduction 

Any image acquired by optical, electro-optical, or electronic means is likely to 

be degraded by the sensing environment. The degradation may be in the form of 

sensor noise, blur due to camera misfocus, relative object-camera motion, random 

atmospheric turbulence, and so on. Image restoration is concerned with filtering the 

observed image to minimize the effect of such degradation. This includes deblurring 

of images degraded by the limitations of a sensor or its environment, noise filtering, 

and correction of geometric distortion or nonlinearities due to sensors. Figure 2.1 

shows a typical image degradation model. The imaging system, having a degradation 

PSF h(lc, 1), is assumed to be linear and spatially invariant (LSI). For LSI systems, 

the observed image y(k, 1) can be expressed as 

y(k, 1) = x(k, 1) * h(k, 1) + n(k, 1), (2.1) 

X(M) h(k1) 

LSI Sytn 

No 
g(k,1)  

Figure 2.1 A model of the image degradation process. 
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where x(k, 1) is the original undegraded image which is unknown, and n(k, 1) is the 

additive noise function, which is assumed to be a zero-mean, white, Gaussian function 

of variance o throughout this thesis. A typical image restoration problem is to find an 

estimate of x(k, 1) given the PSF, the observed image, and some statistical properties 

of the noise process. 

The effectiveness of image restoration filters depends on the extent and the ac-

curacy of the knowledge of the degradation process as well as on the filter design 

criterion. A frequently used criterion is the MSE. Although the validity of the MSE 

as a global measure' of visual fidelity is questionable, it is a reasonable local measure 

and is mathematically tractable. Other criteria such as weighted mean-squared error 

and maximum entropy are also used, although lçss frequently. 

2.2 Restoration of Noisy Images 

In the absence of a blurring PSF (h(k, 1) = 5(k, 1)), the only degrading element 

is the additive noise n(k, 1), in which case the restoration problem becomes that of 

reducing the effects of noise as much as possible. From equation (2.1) the observed 

image y(lc, 1) is now expressed as 

y(lc, 1) = x(k, 1) + n(k, 1). (2.2) 

Many heuristic as well as mathematically optimal techniques have been proposed 

[1,2,4] for restoring noisy images. Noise reduction techniques can be mainly classified 

as space domain and frequency domain methods. 
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2.2.1 Space Domain Filters 

In space domain filtering, restoration takes place on a pixel-by-pixel basis. The 

most widely used filters are those which make use of statistics (mean, variance, etc.) 

derived from a certain neighborhood of every pixel in the given image. Such filters 

are sampled below: 

• Neighborhood Averaging In general, image data contain superimposed broad-

band noise (quantization errors, sensor noise, etc). In order to reduce these 

finely structured erroneous intensity fluctuations, spatial averaging operations 

are frequently performed on the distorted image signals [4]. Neighborhood aver-

aging is a straightforward space domain technique for image smoothing. Given 

an N x N noise-degraded image y(k, 1), the procedure is to generate a smoothed 

image (k, 1) which is an estimate of the original undegraded image x(k, 1), and 

whose gray level at every point ( k, 1) is obtained by averaging the gray-level 

values of the pixels of 11(k, 1) contained in a predefined neighborhood of (k, 1). 

In other words, the smoothed image is obtained by using the relation 

(k,l) = y(i,j), (2.3) 
(i,j)ES 

for Ic, 1 = 0, 1,. . . , N - 1. In this equation S is .the set of coordinates, of points 

in the neighborhood of the point (k, 1), including (k, 1) itself, and M is the total 

number of points in the neighborhood. The most commonly used neighborhoods 

are 3 x 3 windows, in which case M = 9 [2]. Of course, we are not limited to 

fixed neighborhoods in equation (2.3). ' Adaptive neighborhood algorithms that 

adjust the neighborhood size to local variations in the statistical properties of 

the data have been given considerable attention in the literature [8,9,10,11,13]. 
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To explain how the neighborhood averaging filter reduces noise effects, we use 

equation (2.2) in equation (2.3); 

(2.4) 
(i,j)ES 

where n(k, 1) is the local spatial average of n(k, 1) inside the neighborhood. 

Since the noise is assumed to have zero mean, then 7i(k, 1) has zero mean and 

variance 57,2, = o'/M, that is, the noise power is reduced by a factor equal to the 

number of pixels in the neighborhood. If the noiseless image x(k, 1) is constant 

over the neighborhood, then spatial averaging results in an improvement in 

the output signal-to-noise ratio (SNR) by a factor of M. In practice, the size 

of the square window is limited due to the fact that x(k, 1) is most probably 

nonstationary, and therefore cannot be constant over the window. Regardless, 

spatial averaging introduces distortion in the form of edge blurring [3]. 

• Directional Smoothing: To protect the edges from blurring while smoothing, 

a directional averaging filter can be useful. Spatial averages (k, 1 0) are 

calculated in several directions 0 as 

(k,l:0)=-. y(i,j), 
Me (id)S9 

(2.5) 

and a direction 0 is found such that Iy(k, 1) - (k, 1: 0*)I is minimum. Since 

replacing an edge pixel with the average of its neighborhood would blur the 

edge unless the neighborhood belongs to the same statistical ensemble as the 

edge pixel, this condition ensures that averaging across edges does not occur. 

Then 

th(k, 1) = (k, 1: 0*) (2.6) 

gives the desired result [3]. 
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• Median Filtering One of the principal difficulties of neighborhood averaging 

discussed above is that it blurs edges and other sharp details. An alternative 

approach is to use median filters, in which the input noisy pixel is replaced by 

the median of the pixels contained in a neighborhood window around the pixel, 

that is, 

median{y(i,j),(i,j) E S}, (2.7) 

where S is a suitably chosen window. The algorithm for median filtering requires 

arranging the pixel values in the window in increasing or decreasing order and 

picking the middle value. Generally, the window size is chosen so that the 

number of pixels M inside the window is odd. If M is even, then the median is 

taken as the average of the two values in the middle. Typical window sizes are 

3x3,5x5,or7x7[2,3]. 

The median filter has the following properties: 

1. It is a nonlinear filter. 

2. It is useful for removing isolated lines or pixels while preserving spatial 

resolution. It has been shown [2,3,4] that the median filter performs very 

well on images containing binary noise, but performs poorly when the noise 

is Gaussian. 

3. Its performance is poor when the number of noise pixels in the window is 

greater than half the number of pixels in the window. 

• Averaging of Multiple Images: If we had an ensemble of noisy images {y1(k, 1), i = 

1,2,...,M} such that 

y1(k, 1) = x(k,i) + n(k, 1), (2.8) 
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where v1(k, 1) = x(k, 1) for all i, and n(k, 1) satisfies the same assumptions 

as those stated for n(k, 1) above (i.e., n1(k, 1) are zero-mean, with variances 

o . = o for all i), then the objective of this procedure is to obtain a noise-free 

result by taking the ensemble average of the set of noisy images. Therefore, for 

a set of M different noisy images 

(k, 1) = Ml ME — y(k,l), 

and we have 

(2.9) 

(2.10) 

where ar2n.is the variance (power) of the noise in the restored image (k, 1), which 

has been reduced by a factor of M. This indicates that as M increases, the noise 

power in the restored image decreases, and (k, 1) approaches the original image 

x(k, 1). In practice, the principal difficulty in using this method lies in being 

able to register the images so that corresponding pixels line up correctly [2]. 

2.2.2 Frequency Domain Filters 

In frequency domain filtering, restoration takes place on the spectrum of the image. 

Several frequency domain methods for noise suppression have been considered in the 

literature [1,2,3,4,8,10,12], and are sampled below: 

• Lowpass Filtering Noise and other sharp transitions in the gray levels of an 

image contribute heavily to the high-frequency content of its Fourier transform. 

Lowpass filtering is sometimes used to smooth out the noise and other unwanted 

gradients. Taking the Fourier transform of equation (2.2), we have 

Y(u,v) = X(u,v) + N(u,v), (2.11) 
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where upper case letters denote the frequency domain equivalents of the space 

domain functions named with the corresponding lower case letters. Since the 

noise n(k, 1) is white (uncorrelated), has a zero mean, and has a variance of o-, 

its power spectral density P(u, v) is constant over all frequencies of interest and 

equal to an. From equation (2.11), the additive noise N(u, v) would thus result 

in raising the high-frequency components of the original image X(u, v). Lowpa.ss 

filtering reduces the noise level in the degraded image Y(u, v) by attenuating a 

specified range of high-frequency components in the transform of the degraded 

image. For a specified lowpass filter transfer function H11 (u, v) we obtain the 

noise-reduced image as 

k(u,v) = H, f(u,v). Y(u,v). (2.12) 

The inverse Fourier transform of .t(u, v) will yield the.desired smoothed image 

(k, 1). Clearly, this method will not produce the best results, because of the 

fact that a lowpass filter will not discriminate between high-frequency noise and 

important high-frequency image information such as edges. Also, the lowpass 

filter chosen will not make use of the information present in the noisy image, such 

as the noise power spectral density, which is easily determined from its variance. 

Thus, we would either have insufficient noise suppression due to a wide filter 

bandwidth, or. too much smoothing and edge blurring due to a narrow filter 

bandwidth. 

• Wiener Smoothing Filter- The Wiener filter is derived by minimizing the MSE 

between the original undegraded image r(k, 1) and the estimated image (k, 1) 

[1,2,3,4,5]. This would yield a filter having the transfer function 

P(u,v)  

P(u,v) + P(u,v)' 
(2.13) 
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where P,,(u, v) and P(u, v) are the power spectra of the original image and 

noise respectively. It is clear that the Wiener smoothing filter H(u,v) is a 

zero-phase filter that depends only on the SNR Snr For frequencies 

where Stir >> 1 ( i.e., high signal power), H(u, v) becomes nearly equal to unity, 

which means that all these frequency components are in the passband of the 

filter. When S,,,. << 1, H,, (u, v) = S; that is, all frequency components where 

Snr << 1 are attenuated in proportion to their SNR. For images, S,, is usually 

high at low spatial frequencies (fiat gray level regions). Therefore, the Wiener 

smoothing filter is one form of a lowpass filter. This fact attributes to the 

oversmoothing problem of the Wiener filter, where the edges suffer from too 

much smoothing due to the lowpass action of the filter. In return, the Wiener 

filter removes more noise than the power-spectrum equalization filter, described 

below. 

• Power-Spectrum Equalization (PSE) Filter The PSE filter transfer function 

is derived on the basis of a simple constraint, much less stringent than the 

minimum-MSE constraint of the Wiener 'filter. The filter is derived by seeking 

a linear estimate, X^ (k, 1), such that the power spectrum of the estimate is equal 

to the power spectrum of the original image. The resulting filter response is [5] 

1/2 
Pr(u,v)  

HPSE(U,V) = , (2.14) 
P(u,v)+P(u,v) 

and the restored image is 

5C(u,v) = HpsE(u,v) Y(u,v), (2.15) 

which gives the frequency-domain value of the noise-reduced image. Taking the 

inverse Fourier transform of k(u, v) would generate the actual space domain 

restored image. Like the Wiener filter, the PSE filter is a zero-phase filter that 
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also depends only on the SNR Snr =   For frequencies where >> 1 

(i.e., high signal power), HPSE(U, v) becomes nearly equal to unity, which means 

that all these frequency components are in the passband of the filter. When 

Sm. << 1, HPSE(U, v) = /; that is, all frequency components where Sn,. << 1, 

are attenuated in proportion to the square root of their SNR. However, the 

PSE filter differs from the Wiener filter in that in between these two extremes, 

the filter gain is greater than H(u, v) and less than unity. This is because of 

the square-root operation. This leads to more high frequencies passing through 

the PSE filter, which would have otherwise been cut off by the Wiener filter; 

thus images restored using PSE filtering tend to be visually sharper because of 

less edge blurring, at the expense of allowing more high-frequency noise to pass 

through the filter. Usually, this is not an issue of concern due to the fact that 

the PSE-filtered images are visually pleasing. 

2.3 Restoration of Blurred Images 

The objective of any system that forms an image is to obtain the best image 

possible, one that is sharp, clear, and free from degradations. This is not always pos-

sible. First, every real image formation system has inherent limitations; the impulse 

response of a real system is of finite width and causes an inevitable loss of resolution 

in the image. If important details of size comparable to the width of the impulse 

response are sought in the image, the loss of resolution becomes a matter of concern. 

The process of attempting to correct for degradations due to blurring is the problem 

of image deblurring. 

In the frequency domain, equation (2.1) becomes 

Y(u,v) = X(u,v) . H(u,v) + N(u,v). (2.16) 
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Several frequency domain methods for image deblurring have been considered in 

the literature [1,2,3,4,8,10,12], and are sampled below: 

• Inverse Filter. Inverse filtering is the process of recovering the input of a system 

from its output. For example, in the absence of noise (from Fig. 2.1) the inverse 

filter would be a system that recovers x(k, 1) from the observation y(k, 1). This 

requires that the inverse filter transfer function be the reciprocal of the blur 

modulation transfer function (MTF), that is 

IT (U = 

H(u,v)' 

1 

and the deblurred image becomes (in the presence of noise) 

(u, v) = H1(u,v) . Y(u,v) = X(u,v) + N(u,v)  
H(u,v) 

(2.17) 

(2.18) 

Inverse filters are useful for precdrrecting an input signal in anticipation of the 

degradations caused by the system, such as correcting the nonlinearity of a 

display [3]. Being the simplest approach, this is also the one fraught with the 

most difficulties: 

1. Many blur PSFs are such that their Fourier transforms have zeros. For 

example, the Fourier transform of a one-dimensional motion blur along 

the horizontal direction is given by 

sin(irau)  
H(u,v)= 

irau 
(2.19) 

where a is the blur distance in pixels, and u is the horizontal frequency, 

variable. If the blur is severe enough (a is large enough) so that zeros of the 

sinc function lie within the Nyquist frequency, the inverse filter would be 

singular. A similar problem is encountered with out-of-focus blur, which 
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convolves the aperture shape with the image. For most regular aperture 

shapes (circle, square, etc.), the corresponding Fourier transform has zeros, 

and the zeros will result in singularities if they lie within the Nyquist 

frequency. Unfortunately, this is usually the case. 

2. Even if the PSF is not singular, it is usually ill conditioned. That is, the 

magnitude of the MTF goes to zero so rapidly for some values of u and v 

(typically for high-frequency indexes, since blurring implies lowpass behav-

ior) that the noise term in equation (2.18) is drastically magnified, 

obliterating the restored image. 

• Wiener Filter: The sensitivity of the inverse filter to noise and its singularity 

is avoided by another deblurring technique, the Wiener filter. As discussed in 

section 2.2.2, the Wiener filter is derived by minimizing the MSE between the 

original undegraded image (k, 1) and the estimated image (k, 1) [1,2,3,4,5]. 

This would yield a filter having the transfer function 

H(u,v)=  H*(u,v) (2.20) 
H1u v 2 j. P(u,v) 
" ' I 

where the asterisk superscript indicates complex conjugation. The deblurred 

image is thus given by 

• .(u,v) = H(u,v) Y(u,v). (2.21) 

It is possible to observe the following properties of the Wiener filter from a quick 

inspection of equation (2.20): 

1. If the noise is very small or zero, so that P,, (u, v) -+ 0, the Wiener filter 

reduces to the inverse filter. Thus, in low-noise frequency regions (typically 
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the low-frequency regions of the image), the Wiener filter has inverse filter 

behavior. 

2. If the signal power becomes small, so that P(u, v) - 0, the Wiener fil-

ter has a very low gain. This solves the problem of singular ,behavior in 

the PSF, and also controls ill-conditioned behavior even in the absence of 

singularities'[3,5]. 

In general, the Wiener filter reduces the visual noise associated with the inverse 

filter, but usually at the expense of some detail and sharpness. This can be 

explained in two ways: 

1. The minimum MSE constraint is a very powerful requirement and could 

be relaxed (may not always be minimum); 

2. The nonlinear and adaptive properties of the human visual system may 

not be "matched" to the minimum MSE criterion. 

• Power-Spectrum Equalization and Blind Deblurring As discussed in section 

2.2.2, the PSE filter transfer function is derived by seeking a linear estimate, 

(k, 1), such that the power spectrum of the estimate is equal to the power 

spectrum of the original image. The resulting filter response is 

HpsE(u,v) = I jH(u,v) 2 + Pn(u,v) 
P(u,v) 

1 

and 

(2.22) 

$C(u,v) = HpsE(u,v) . Y(u,v) (2.23) 

gives the frequency domain values of the deblurred image, which are inverse 

Fourier transformed to generate the actual space domain restored image. 

The following properties of the PSE filter are to be noted: 
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1. For low noise, P,, (u, v) -+ 0, the filter reduces to the magnitude response 

of the inverse filter. 

2. For low signal, P(u, v) -+ 0, the filter gain goes to zero. 

3. In between these two extremes, the filter gain is greater than the Wiener 

filter gain H,,, (u, v) and less than the inverse filter gain v). This is 

because of the absence of the H* (u, v) term seen in the numerator of the 

Wiener filter equation (2.20) and the square root operation. It is, in fact, 

possible to show that the PSE filter is the geometric mean between the 

inverse filter and the Wiener filter [5]. 

Since the PSE filter has greater gain than the Wiener filter, but without the 

ill-conditioned behavior of the inverse filter, the result is a filter that admits 

into the deblurred image more of the detailed information associated with high 

frequency, such as spatial edges, which is where the Wiener filter usually cuts 

off. There is also an increase in visual noise, but the human eye is usually 

willing to accept the increased noise in return for the additional fine structure 

that is meaningful [5]. 

Although the transfer function in equation (2.22) is a magnitude-only response, 

for many known image degradations (e.g., motion blur and out-of-focus blur), 

the phase response of the blur is zero [5,14], and consequently the phase of 

the blurred image is very similar to that of the original undegraded image. In 

this case, only magnitude deblurring is required, and using equation (2.22) is 

sufficient for deblurring. 

The importance of the PSE method is manifested in the case where the blur-

ring PSF is unknown. In this case, the blurred image itself could be used to 
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estimate the parameters necessary to carry out the deblurring operation. The 

Wiener filter requires that values of P(u,v), P(u,v), and H(u,v) be known a 

priori, and a similar observation might be made about the PSE filter. Explicit 

concentration upon power spectrum relations in equation (2.22) leads to the re-

alization that the relevant information can be estimated from the blurred image 

y(k, 1). Consider dividing y(k, 1) into segments of size P x P, where P is large 

compared to the region of support of the blur PSF, but small compared to the 

actual image dimensions M x M; P = 32 is typical for M = 128. The sections 

need not be overlapping. Neglecting edge effects, each section of the image can 

be expressed as the convolution of the PSF with an equivalent section from the 

original undegraded image x(k, 1). Thus, from equation (2.1), 

y(k, 1) x(k, 1) * h(Ic, 1) + n(k, 1) (2.24) 

is the approximate description of the image formation law for each section 

(/c, 1). The power spectrum of each y(k, 1) can be computed as 

Pyi  lH(u,v)I2 P(u,v)+P(u,v), (2.25) 

where the superscripts denote the i' section. Assuming that the image and 

noise can be approximated by stationary random processes, P(u, V) and Pi, (u, v) 

are samples from the same power spectral functions of the original and noise 

processes respectively. Summing over a number of sections will, therefore, av-

erage out the statistical fluctuations in these power spectra that would be seen 

in any one section [3,5,6,12]. We thus have 

P(u,v) = H(u,v)I2 P(u,v) + P(u,v), (2.26) 

where the hats denote the averaged power spectra over all the sections. This 

quantity can be evaluated from the blurred image. Equation (2.22) may then 
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be rewritten as 

HPSE(U, v) 
- P(u,v)  

- IH(u,v)I2 P(u,v) + P 

[P-(Ulv) 1/2 

P(u,v) 
(2.27) 

The quantity in equation (2.26) gives the denominator in equation (2.27) for 

the PSE filter. Stockham et al. [15] argued that P--,(u, v) for the numerator in 

equation (2.27) could be approximated by an average power spectrum evaluated 

over a wide variety of images. Since this filter estimates most of the required 

information from the given blurred image itself, it is called a blind deconvolution 

filter. 

2.4 Discussion 

In this chapter, we discussed various image restoration techniques and their math-

ematical formulas. First we started by giving an account of the most commonly used 

methods for restoring images degraded by additive white Gaussian noise. We di-

vided noise reduction methods into space domain and frequency domain methods. 

Four space domain methods were discussed. These methods mainly smoothed out 

the noise in the degraded image, such as in neighborhood averaging, where square 

windows are used to approximate stationary regions and obtain estimates of the sig-

nal and noise statistics. One of the problems faced by most of the noise reducing 

techniques described above is the absence of information about the noise. The most 

common solution to this problem is to estimate the variance of a uniform section in 

the noisy image y(k, 1) that contains only noise. This variance would give a good 

approximation of the noise variance o in the image. We then discussed three very 

common frequency domain noise reduction filters, the most popular of which are the 
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Wiener smoothing filter and the PSE filter. These two filters make use of the power 

spectra of the original image and noise to control smoothing so that the problem 

of oversmoothing of information-bearing regions, encountered in the simple lowpass 

smoothing filter, is reduced. It was shown that the frequency response of the PSE 

filter has a gain that is higher than that of the Wiener filter, thus allowing for the 

passage of more information at the expense of allowing high-frequency noise as well. 

We next discussed three popular methods of image deblurring for restoring im-

ages degraded by both convolutional blur and additive noise. It was explained that 

the inverse filter, besides its simplicity, has many problems regarding singularity and 

ill-conditioned behavior at high frequencies. The Wiener filter and PSE filter solve 

the problems encountered in the inverse filter by cutting off at the singularities of the 

inverse filter. It Was again explained that the PSE filter produces visually pleasing 

restorations inspite of the increased noise level. Finally, the concept of blind decon-

volution was introduced, where it was shown how blurred images could be restored 

without the prior knowledge necessary for the other filters. 

From this discussion, it is clear that nearly all restoration techniques are based 

on the assumption that images are statistically stationary. For most images this is 

not true. Images are ai best locally stationary, and then only if the windows or 

neighborhoods used contain pixels that belong to the same statistical ensemble. For 

most fixed neighborhoods stationarity is a very crude approximation, which results in 

poor statistical estimates and hence poor restoration. In the next few chapters of the 

thesis, we will present some adaptive-neighborhood techniques, both old and original, 

that attempt to create neighborhoods that are better approximations to stationary 

regions. Results from the application of these methods to images are then evaluated. 



CHAPTER 3 

ADAPTIVE RESTORATION METHODS . 

3.1 Introduction 

Many heuristic as well as mathematically optimal techniques have been proposed 

[8-13,16-21] for restoring noisy images. Earlier approaches to image restoration mostly 

used linear filters based on the assumption of a stationary image model. Such an 

assumption leads to space-invariant filters which smooth out edges because of the 

unavoidable compromise between noise and resolution. Many adaptive restoration 

systems have been proposed recently to overcome this problem. Although adaptive 

systems are computationally more expensive in both design and implementation, 

they perform significantly better than nonadaptive methods. Some adaptive systems 

partition the image into regions or subimages in which different stationary models 

are assumed [16,17,18]. Others assume a simple image model and use a moving two-

dimensional window to continuously estimate the model parameters and adjust a 

nonlinear two-dimensional filter [19,20]. 

In this chapter we present two different examples of adaptive Wiener filtering 

for noise reduction which have been recently reported in the literature [8-10,19-21]. 

Some experimental results are then shown with a comparative discussion regarding 

filter performance. This chapter serves as the background for the development of our 

original adaptive-neighborhood filter, which will be introduced in chapter 4. 
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3.2 The Adaptive Two-dimensional LMS Algorithm 

Noise reduction is usually accomplished by a filtering procedure optimized with 

respect to some error measure. The most widely used error measure is the MSE. 

The Wiener filter is a classical solution to this problem. Unfortunately, the Wiener 

filter is designed under the assumption of stationary signal and noise models. While 

for additive white noise the noise model can very well be assumed to be station-

ary, it is unlikely to be true for the signal model, especially for signals that contain 

large fluctuations such as edges. The Wiener filter has been used for image restora-

tion with limited success because its lowpass characteristics give rise to unacceptable 

blurring of lines and edges in' the image. Recent methods of circumventing this prob-

lem have taken into account the nonstationarity of the given image. One example 

is the method developed by Chan and Lim [11] which takes into account the im-

age nonstationarity and varies the filter parameters according to changes in image 

characteristics /statistics. Another example is the adaptive two-dimensional least-

mean-squares (ATD-LMS) algorithm developed.by Hadhoud and Thomas [19], which 

will be described here. Again we use the same noise-corrupted image model with no 

blurring as in the previous chapter, that is 

y(k,l) = x(k, 1) + n(k,l), (3.1) 

where 

x(k, 1) is the original, noise-free image, 

n(lc, 1) is the additive white Gaussian noise, uncorrelated to the original image x(k, 1), 

and 

y(k, 1) is the noise-corrupted input image. 

The ATD-LMS method is an efficient and practical algorithm for noise reduction. 
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It is an example of a fixed-window Wiener filter in which the filter coefficient values 

change depending on the image characteristics. The algorithm is based on the method 

of steepest descent, and can track the variations in the local statistics of the given 

image, thus adapting to different image features. The advantage of this algorithm is 

that it does not require any a priori information about the image, the noise statistics, 

or their correlation properties. Also, it does not require any averaging, differentiation, 

or matrix operations. 

3.2.1 Derivation of the ATD-LMS Filter 

The ATD-LMS algorithm is derived by defining a causal finite impulse response 

(FIR) restoration filter W(i, j) whose region of support is N x N (N is typically 3) 

such that 
N-i N-i 

W(i,j) y(k - i, 1— j), (3.2) 
i=O j=O 

where 

(k, 1) is the estimate of the original pixel value x(lc, 1), 

y(k, 1) is the noise-corrupted input image, and 

p marks the current position of the filter in the image, which is given by 

p=k.M+1 (3.3) 

for the pixel position (k, 1) in an M x M image, and will take values from 0 to M 2 —1. 

The filter coefficients W +1 (i, j) are determined at the next pixel position, p+ 1, by 

minimizing the MSE between the desired pixel value x(k, 1) and the estimated, pixel 

value r,(k, 1) at the present pixel location, p, using the method of steepest descent. In 

this method, the next filter coefficients W +1 (i,j) are equal to the'present coefficients 

plus. a change proportional to the negative gradient of the error power (MSE). This 
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is expressed as 

W +1 (i,j) = W(i,j) - [e], (3.4) 

where 

is a scalar multiplier controlling the rate of convergence and filter stability, 

e is the error signal, which is the difference between the desired signal x(k, 1) and 

the estimate (k, 1), and 

v[] is a gradient operator applied to the error power, e, at p. 

Since the original image x(k, 1) is unknown, and the only image in hand is the noise-

corrupted image y(k, 1), an approximation to the original image is used, and the error 

becomes 

ep = d(k, 1) - i(k, 1), (3.5) 

where d(k, 1) is the approximation to x(k, 1). The technique used by Hadhoud and 

Thomas [19] to obtain d(k, 1) was to generate d(k, 1) from the input image y(k, 1) by 

decorrelation. The decorrelation operator used by Hadhoud and Thomas [19] and 

used here is a two-dimensional delay operator of ( 1, 1) samples. This would allow the 

correlation between d(k, 1) and y(k, 1) to be similar to the correlation between x(k, 1) 

and 1,(k, 1), and, in turn, would make d(k, 1) correlated to x(k, 1) to some extent. 

Evaluation of equation (3.4) using equation (3.2) and equation (3.5) gives 

W 1(i,j) = W(i,j) + 2j e, y(k - i, 1— j), (3.6) 

which is a recursive equation defining the filter coefficients at any pixel position p. 

3.2.2 Implementation of the ATD-LMS Filter 

Equation (3.2) and equation (3.6) give the ATD-LMS restoration filter and the 

filter weight updating algorithm respectively. The algorithm convergence does not 
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depend on the initial conditions; it will converge for any arbitrary initial value, and 

hence, provides good nonstationary performance. In comparing the ATD-LMS filter 

with the non-adaptive LMS algorithm, the second term of equation (3.6) would not be 

included in th& latter, and the filter coefficients would not change from pixel to pixel 

under the assumption that the image is stationary. This would put a constraint on 

the initial coefficient values since these would be the values used for the whole image, 

and thus, different initial values would result in different filtered outputs. Although 

the initial conditions do not affect the convergence of the ATD-LMS filter, the design' 

choice of the convergence factor i depends on the particular application, and involves 

a tradeoff between convergence speed, tracking ability, and steady-state MSE. 

In implementing equation (3.2) and equation (3.6), the initial weights of the filter, 

Wo(i, j), were estimated by processing 10 lines of the given image starting with zero 

weights. The weights obtained after processing these 10 lines were then used as initial 

conditions, and processing started again at the beginning of the image. The conver-

gence factor, p, was determined by trial and error for different images as suggested 

by Hadhoud and Thomas [19], and the region of support used for the filter was 3 x 3. 

3.3 The Adaptive Rectangular Window LMS Algorithm 

As discussed earlier, the general Wiener estimate makes use of the image power 

spectrum which is estimated over a combination of flat and rapidly changing regions of 

the image. When the Wiener filter is implemented in the space domain, the variance 

and mean of the data are used. These are calculated over the entire image, and 

the same mean and variance are used for the restoration operation. However, not 

all pixels in the image belong to the same statistical ensemble. Different ensembles 

have different means and variances. Thus there is a certain amount of error in the 
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evaluation of these quantities, leading to restored images that are noisy in fiat regions 

due to insufficient smoothing, and fuzzy around edge regions due to over-smoothing 

[8-13]. 

3.3.1 Derivation of the ARW-LMS Filter 

To overcome the problems due to image nonstationarity, Wiener filtering using 

an adaptive-size rectangular window (ARW) to estimate the filter coefficients was 

recently proposed by Song and Pearlman [8,9,211 and refined by Mahesh et al. [10]. 

In their method, the same noisy image model as that in equation (3.1) was used, 

where the noise n(k, 1) is of zero mean and variance o, and is uncorrelated to the 

original image x(k, 1), which is assumed to be of zero mean and variance o. The 

estimate is of the form 

(k, 1) = ce . y(k, 1), (3.7) 

and the problem reduces to that of finding the constant ce at each pixel location using 

the minimum MSE criterion of the standard Wiener filter. The error is given by 

e = x(k, 1) - (k, 1) = x(k, 1) - a - y(k, 1). (3.8) 

Minimization of the MSE requires the error signal e to be orthogonal to the data 

y(k, 1) [1,2,3,10]. That is 

E{[x(k, 1) - a - y(k) 1)] . y(k, l)} = 0, (3.9) 

where E{.} is the expectation operator. Solving for a we obtain 

a=  - 7 (3.10) 

which is the LMS estimator that reduces noise from y(k, 1). If the original image is 

not of zero mean, equation (3.7) can still be used by first subtracting the mean from 
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both the images x(k, 1) and y(k, 1). Since the noise is of zero mean for all pixels, the 

a posteriori mean m of the image i(k, 1) at pixel position (k, 1) is equal to the a 

priori mean m of the original image x(k, 1), and the estimate of equation (3.7) thus 

becomes 

=m+ a2 a [y(k,l)—m]. (3.11) 

The estimate (k, 1) given by equation (3.11) is considered to be the best estimate 

of the nonstationary image x(k, 1), if we are able to obtain accurate values for the 

estimator parameters m and o. 

3.3.2 Implementation of the ARW-LMS Filter 

In implementing equation (3.11), it is important to make the assumption that the 

signal values in the immediate neighborhood of a data point ( k, 1) are the samples 

from the same ensemble as x(k, 1). That is, globally nonstationary sequences can 

be considered to be locally stationary and ergodic over a small region. Thus, if we 

can accurately determine the size of an interval in which the signal values have the 

same statistical parameters, the sample statistics can approximate the a posteriori 

parameters needed for the estimate in equation (3.11). 

The view taken by Song and Pearlman [8,9,21] was to identify the size of a sta-

tionary square region for each pixel in the image and to calculate the local statistics 

of the image within that region. The size of the window changes according to a 

measure of signal activity; an effective algorithm was proposed for the window size 

that improved the performance of various point estimators. The manifestation of the 

improved performance was greater smoothing in the flat intensity regions and less 

smoothing across edges. This results in a sharp restoration, and the lack of noise 
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smoothing across edges is masked by the human visual system. 

In deriving the local (sample) statistics, r, and &, Mahesh et al. [10] make 

use of adaptive rectangular windows of length L, in the row direction and L in the 

column direction. Since the window is required to be centered about the pixel being 

evaluated, the ARW lengths will be odd. Except near the borders of the image, the 

ARW dimensions can be given by 

= 2N,. + 1, (3.12) 

and L=2N+1, (3.13) 

where N,. and N are the dimensions of the one-sided neighborhood. Within this 

window, the local mean and variance are calculated as 

and 

1 k+N,. 1+N 

MV  
-'--'c i=k-N,. j=1-N 

1 k+N,. l+N 
[y(i,j)—ni]2, 

LIrJJc i=k-Nr j=1-N 

where (k, 1) is the current pixel location. 

The local variance of the original signal &2 is thus given by 

{o - c if & > 
0 otherwise. 

(3.14) 

(3.15) 

(3.16) 

Using the local statistics, th and &, in place of the ensemble statistics, m and o, 

equation (3.11) becomes 

(k; l) = th+  [y(k,l)—th]. (3.17) 

It should be noted that the parameters L,., L, N,., N, rh11, ô, and ô, and the other 

parameters that follow depend on the point (k, 1), and should in fact be denoted by 
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Lr(k, 1) and so on. This has been suppressed for convenience of notation, but should 

not be forgotten. It should also be noted that although the noise variance, a, is not 

known a priori, it is easily estimated from a window in a flat area of the degraded 

image [11]. 

As mentioned earlier, if we are to be accurate in determining m and o, the pixels 

in the ARW have to belong to the same ensemble as the central pixel. If relatively 

large windows are used, the windows may cross over boundaries of different regions 

and include pixels from other ensembles when the sample statistics are generated. 

In such a case, some smoothing will occur across edges within the windows. On the 

other hand, if the windows are too small, then the lack of samples would result in poor 

estimates of the mean and variance, and consequently insufficient noise suppression 

would occur over flat regions. Thus we should use small windows where the image 

intensity changes rapidly, and large windows where the image contrast is relatively 

flat. 

The ARW lengths, L and L, are varied depending on a signal activity parameter 

defined by Mahesh et al. [10] and Song and Pearlman [21] as 

k+N,. l+N 

1 E [y.(i,j)flr]2 , 
LrLc ikNr j=1—N 

where ia, is the mean evaluated in the row direction as 

k+Nr 

rnr=Z_ y(z,l), 

(3.18) 

(3.19) 

and Sr is a measure of local roughness of the signal in the row direction, being equal to 

the variance of the original signal in the same direction. Analogously, the expression 

for the signal activity parameter in the column direction is 

k+Nr L+N 

sc= 1 
LL i=k—N j=1—N 

(3.20) 
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where ñi is the mean evaluated in the column direction as 

7flc E y(k,j). 
C j=1—N 

(3.21) 

If the signal activity parameter S in the row direction is large, indicating the 

presence of an edge or other information, then the window size in the row direction, 

N, is decremented so that points from other ensembles are not included. If S is small, 

indicating that the current pixel lies in á fiat contrast region, N is incremented so 

that a better estimate of the mean and variance will be obtained. In order to make 

this decision, the signal activity parameter in the row direction is compared with a 

threshold Tr, and that in the column direction with T. The rules are therefore 

and 

Nr*Nr1, ifSr≥Tr, 

or Nr(Nr+1, jfSr<Tr, 

N4— N-1, ifS6≥T, 

or N—N0+1,ifS<T. 

• (3.22) 

(3.23) 

(3.24) 

(3.25) 

User-specified minimum and maximum values for Nr and N are used such that 

if either N or N goes beyond these limits, it will be assigned the value of the 

corresponding limit. The threshold is defined by [8,10,21] 

T — r - L,. 

and 

(3.26) 

(3.27) 

where is a weighting constant that affects the rate at which the window size changes. 

The threshold is point-dependent and varies directly as the noise variance and in-

versely as the ARW dimension. Thus if the noise variance is high, the threshold will 
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be high, and the window length is more likely to be incremented than decremented. 

This will lead to a large window and effective smoothing of the noise. lithe win-

dow size is large, the threshold will be small. Thus the window size is likely to be 

decremented for the next pixel. This helps the ARW length to converge to a certain 

range. 

3.4 Experimental Results and Discussion 

In this section some experimental results which illustrate the performance of the 

preceding algorithms are presented. The results were evaluated by direct visual ex-

amination and by calculation of the MSE between the original and restored images. 

The ATD-LMS and the ARW-LMS algorithms were first applied to a synthesized 

image after it was corrupted with additive white Gaussian noise. Figure 3.1(a) shows 

the original image of size 128 x 128 pixels and having gray levels between 0 and 255. 

It is composed of a uniform background of gray level 60, and circles, squares and 

triangles of various gray levels placed at randomly selected positions. The original 

image was corrupted with additive white Gaussian noise of variance 256, as shown 

in figure 3.1(b). This synthesized image is very useful for observing the effects of the 

algorithms as it contains almost ideal edges. 

The ATD-LMS-restored image is shown in figure 3.1(c). The ATD-LMS algorithm 

was applied to the corrupted image with the convergence factor jt set to 0.4 x i0'. 

This value was arrived at after testing with values ranging between 1.0 x iO and 

0.7 x iO. The final value used is close to the value of 0.35 x 10 chosen by Hadhoud 

and Thomas [19] in their original paper for a similar type of image. The ATD-

LMS algorithm applies a gradually changing filter which tends to suppress noise in a 

relatively uniform way over the image. Although this typically results in lower values 
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(a) 

(c) 

Figure 3.1 

(b) 

(d) 

Noise Suppression with a synthesized image of size 128 x 
128 pixels and a gray level range of 0 - 255. (a) original 
image, (b) noise corrupted image; a = 256, (c) ATD-
LMS output image, (d) ARW-LMS output image. 
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of the MSE, it also tends to smooth or blur edges and other structured features in the 

image, and to leave excessive noise in uniform regions of the image. One explanation 

to this could be the fact that the adaptive weights of the filter, W,(i,j), depend on 

the model of the original image which is approximated in the above algorithm by 

the decorrelated image d(k, 1). Since d(k, 1) is far from an accurate approximation of 

the original image x(k, 1), the updated filter weights are far from optimal, and thus 

the algorithm does not give optimum MSE values. The ATD-LMS algorithm did not 

perform particularly well on the synthesized image. The final output image of figure 

3.1(c) appears significantly blurred with the additive noise largely intact. 

The ARW-LMS-restored image is presented in figure 3.1(d). The ARW-LMS 

algorithm is designed to attempt to reduce the visually disturbing attributes of the 

ATD-LMS algorithm by tuning the filter more closely to the characteristics of the 

image. As such, it is a highly non-linear filter. For the synthesized image, the ARW 

size was restricted to be a minimum of 1 x 1 and a maximum of 5 x 5. This maximum' 

size was chosen because of the relatively small size of the synthesized image. In their 

original work, Song and Pearlman [8,21], and Mahesh et al. [10] use a maximum size 

of 11 x 11 for a 256 x 256 pixel input image. This upper limit on the ARW was 

used since beyond a certain limit it would be unreasonable to believe that all the 

pixels within the window are from the same ensemble. As the image in our example 

is smaller, a smaller ARW size is appropriate. For our examples, the value of the 

weighting constant, i, was fixed to be 7, which is the same as that used by Song 

and Pearlman [8,21], and Mahesh et al. [10]. The ARW-LMS algorithm typically 

produces much less smoothing at the edges than in uniform regions. As a result, 

a layer of noise remains in the restored image surrounding each of the structures. 

Although this is clearly objectionable in the synthesized images, as seen in figure 
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3.1(d), this effect is not as pronounced in more natural scenes since ideal edges are 

not common in natural scenes. The ARW-LMS output image appears clearer and 

sharper than the ATD-LMS restored image, because the ARW-LMS algorithm tends 

to concentrate the error around the edges where the human visual system masks it. 

On the other hand, the ATD-LMS algorithm tends to reduce the error uniformly, 

which also leads to smoothing across the edges. The decreased sharpness of the edges 

makes the pictures less pleasing to the viewer. 

Table 3.1 presents MSE values between the original and restored images for the 

synthesized imag. Both methods suppress the noise in the corrupted image. The 

ARW-LMS algorithm, however, removes more of the noise as depicted by an MSE 

value of 58 compared to an MSE value of 237 for the image restored using the ATD-

LMS algorithm. 

Image / Filter 
Test + Noise 

ATD-LMS (IL) 
ARW-LMS (max.. window size) 

MSE 
256 
237 (IL = 0.4 x 10) 
58 (5 x 5) 

Table 3.1 Results of noise suppression on the synthesized, 128 x 128 
pixel image with noise variance of 256. 

Figure 3.2 presents results using the Lena image. The original image, shown in 

figure 3.2(a), is of size 128 x 128 pixels with 256 gray levels. Figure 3.2(b) presents 

the Lena image after it has been corrupted with additive white Gaussian noise of 

variance 256 and some added impulse noise. The ATD-LMS restored image is pre-

sented in figure 3.2(c) and the ARW-LMS restored image is presented in figure 3.2(d). 

The convergence factor, p, used to minimize the MSE for the ATD-LMS algorithm 
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(a) 

(c) 

Figure 3.2 

(b) 

(d) 

Noise Suppression with the Lena image of size 128 x 128 
pixels and a gray level range of 0 - 255. (a) original 
image, (b) noise corrupted image; = 256, (c) ATD-
LMS output image, (d) ARW-LMS output image. 
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was 1.0 x 10_8. The ATD-LMS algorithm uniformly suppressed the noise (both the 

Gaussian and the impulse noise), but still blurred the edges in the image. As a result, 

the ATD-LMS output image is only marginally better than the input image from a 

visual perspective. 

For the A RW- LMS- restored image, the ARW size was restricted to a lower limit 

of 1 x 1 pixel, and an upper limit of 5 x 5 pixels as before. It is very clear that the 

ARW-LMS restoration is visually better than the ATD-LMS-restored image, although 

it was unable to suppress the impulse noise. The ARW-LMS algorithm reduces the 

noise significantly in flat regions while leaving edge regions (including impulse noise 

effects which are regarded as edges) virtually unchanged. This accounts for the layer 

of noise apparent around very distinct edges in the image. Noise is particularly visible 

as a halo around the girl's hat. In addition, for areas in which there are rapid spatial 

variations in the image., such as near the girl's mouth and nose, the noise is' not 

significantly reduced. The masking by the human visual system of noise near edges 

accounts for the visually pleasing effect produced by the ARW-LMS restorations as 

compared to the blurred results produced by the ATD-LMS restorations shown in 

figures 3.1(c) and 3.2(c). 

Table 3.2 presents the MSE values between the original and restored images for 

the Lena image corrupted with two levels of noise and for two sizes of the image. 

Both the ATD-LMS and ARW-LMS methods suppress the noise in the corrupted 

image in a mean-squared sense, except the ATD-LMS algorithm with the 128 < 128 

image. This failure may be due to the small size of the image, resulting in the filter 

not being able to converge and track the variations in the image rapidly enough. For 

the larger Lena image, the ATD-LMS algorithm was successful in bringing the MSE 

values down and significant noise suppression has been achieved. The ARW-LMS 
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algorithm again produced better results for both the small and the large image sizes 

as depicted by the MSE values, which are much lower than the values produced using 

the ATD-LMS algorithm. For the 512 x 512 size images, an upper limit of 11 x 11 

was used for the ARW size. This window size was used by Song and Pearlman [8,21], 

and Mahesh et al. [10] for similar image sizes. 

Image / Filter MSE for various image sizes 
128 x 128 512 x 512 512 x 512 

Lena + Noise 
ATD-LMS (i) 
ARW-LMS (max. window size) 

256 
476 (1.0 x 10 8) 

135 (5 x 5) 

256 
118 (0.3 x 10_8) 

80 ( 11 x 11) 

438 
158 (0.3 x 10-8) 

131 ( 11 x 11) 

Table 3.2 Results of noise suppression on the Lena image for various 
sizes and noise levels. 

The overall impression after visually examining the restored images is that the 

ARW-LMS algorithm produces restorations that are visually more pleasing than those 

produced by the ATD-LMS algorithm. Yet both algorithms have shortcomings that 

are manifested in noise left unsuppressed (by the ARW-LMS algorithm) around edges 

(including spike noise) due to the reduction in window size near edges, and blurring 

of information-bearing regions by the ATD-LMS algorithm as explained above. The 

next chapter describes a new algorithm that attempts to overcome the shortcomings 

in the algorithms discussed here. 

3.5 Summary 

In this chapter, two different types of adaptive noise-reduction filters were pre-

sented. Mathematical derivations and implementation of both filters were discussed 

in detail, and experimental results were then presented with a comparative analysis of 
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the performance and shortcomings of these adaptive filters. In the next chapter, the 

new Adaptive-Neighborhood Noise Subtraction filter will be presented in full detail, 

including experimental results. Its performance will be evaluated in comparison with 

that of the adaptive filters discussed in this chapter. 



CHAPTER 4 

ADAPTIVE-NEIGHBORHOOD NOISE SUBTRACTION 

4.1 Introduction 

Statistical characteristics of images are of fundamental importance in many ar-

eas of image processing. Incorporation of a priori statistical knowledge of spatial 

correlation in an image, in essence, can lead to considerable improvement in many 

image processing algorithms. In image restoration, the well-known Wiener filter for 

minimum mean-squared error (MMSE) estimation is derived from a measure or an 

estimate of the power spectrum of the image, as well as the MTF of the spatial 

degradation phenomenon and the noise power spectrum. Unfortunately, the Wiener 

filter is designed under the assumption of wide-sense stationary (WSS) signal and 

noise. Although the stationarity, assumption for additive, zero-mean, white Gaus-

sian noise is valid for most cases, it is not reasonable for most realistic images, apart 

from the uninteresting case of uniformly gray image fields. What this means in the 

case of the Wiener filter is that we will experience uniform filtering throughout the 

image, with no allowance for changes between edges and fiat regions, resulting in 

unacceptable blurring of high-frequency detail across edges and inadequate filtering 

of noise in relatively fiat areas. Recent methods of circumventing this problem have 

taken into account the nonstationarity of image signals, resulting in the development 

of signal-dependent, space-variant algorithms [8-13,16-26]. Two of these algorithms 
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were discussed in the previous chapter. 

In this chapter, we propose a new region-based noise-reduction filter that incor-

porates adaptive neighborhoods to isolate statistically stationary regions with similar 

gray levels. For each pixel in the image, a new region is grown. Each region grows 

froth a seed pixel (the current pixel being processed) and includes neighboring pix-

els having gray-level values that lie within a specified tolerance limit. The shape 

of the region closely approximates a stationary area, and thus the statistics calcu-

lated inside each region will more accurately represent the local feature than those 

calculated using fixed or adaptive square or rectangular windows, as discussed in pre-

vious chapters. Another important advantage of using this type of region growing is 

that regions are now comparably large on the average (they do not decrease as they 

approach edges as in the ARW-LMS method described in chapter 3), and contain 

minimal features. It would thus be logical to estimate the noise using the adaptive 

neighborhood and subtract it from the region for restoration. Doing this for all re-

gions of the noisy image would result in a restored image. We call this algorithm 

Adaptive-Neighborhood Noise Subtraction (ANNS). The method is a new algorithm 

in the adaptive-neighborhood image processing paradigm which was first proposed 

by Gordon and Rangayyan in 1984 [28] and which was developed and expanded upon 

over the past decade [13,29-34]. 

Before we get into the derivation of the ANNS filter, details of the adaptive region 

growing method will be discussed in the next section. 

4.2 Region Growing 

In fixed-neighborhood image processing (FNIP), the fixed neighborhood is nor-

mally defined as an arbitrary (usually square) region which is centered about the 
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pixel of interest (or the seed pixel). On the other hand, in adaptive-neighborhood 

image processing (ANIP), the following approach is adopted. The image is treated 

as being made up of a collection of regions (features or objects) of relatively uniform 

gray levels. An adaptive neighborhood (AN) is determined for each pixel in the im-

age, being defined as the set of pixels 8-connected to the seed pixel, and having a 

difference in gray level from that of the seed which is within some limits of tolerance. 

The tolerance can be set as an additive factor t1 or a multiplicative factor t2, as 

jy(i,j) - y(k, 1)1 

or 

(4.1) 

Iy(i,j)—y(k,l)I < 
y(k, 1) - t2 (4.2) 

where y(k, 1) is the seed pixel, and y(i,j) represents pixels 8-connected to the seed 

pixel. Thus t1 or t2 determines the maximum allowed deviation in the gray level from 

the seed pixel value within each AN, and any deviation less than this is considered to 

be an intrinsic property of the AN region. The number of pixels in any AN is limited 

by a pre-determined number Q. The tolerance used for growing regions in this thesis 

is the additive tolerance t, and is made adaptive depending on the signal activity in 

the region and the features surrounding it. 

From the definition above, it should be clear that an AN is formed for each pixel 

y(k, 1) in the degraded image. Furthermore, the various ANs over an image field are 

allowed to overlap. Ideally, therefore, ANs within a distinct uniform object in an 

image will totally overlap for all seed pixels which lie within that object, and will be 

identical in the absence of noise above the threshold t1. On the other hand, the ANs 

for all seed pixels which do not lie directly within the object will exclude the object. 

A second region is grown molded to the outline of the 8-connected first layer of 
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the AN with a predefined width, and is called the background layer. 

The program developed to grow the AN [29,30,31] also calculates the number of 

pixels making the foreground and background of each AN region, and stores them 

together with their values in the variables fgCount(k,l), bgCount(k,l), fgValue(, and 

bg Value (j), where i = 0,1,2,... ,fgCount— 1, and j = 0,1,2,..., bgCount— 1. Thus, 

a fgCount and a bgCount exist for every seed pixel. This makes it easy to calculate 

statistics inside the neighborhood, as will be shown later. Figure 4.1(a) shows a 

schematic of the region growing procedure, and figure 4.1(b) shows an actual AN 

region grown from the seed pixel at location (96,17) inside the Lena image shown in 

figure 3.2(a). 

In developing the ANNS algorithm, we used a background layer which was three 

pixels wide. The advantage of growing a background is to aid in removing spikes that 

may appear in the noisy image. If the seed pixel is a spike with a large value that does 

not lie within the tolerance level specified, the foreground will only be that seed pixel 

and will not grow further, but in any case a background layer will grow around the 

spike and will aid in removal of the spike. This,can be accomplished by replacing the 

seed value (the spike) with the mean of the background layer. Alternatively, we may 

replace the seed value with the total mean of both the foreground and the background 

layers combined as one region. It should be noted that the background is only used 

when the foreground is a single pixel representing a spike. 

Now that a foreground is defined for each seed pixel, the restoration problem 

reduces to one of estimating the noise in the foreground region and then subtracting 

it from the region to obtain an estimate of the undegraded image. 
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(a) 

SEED PIXEL 

FOREGROUND 

BACKGROUND 

(b) 

Figure 4.1 Adaptive-neighborhood (AN) region growing. (a) From 
a seed pixel inside an object or feature, an AN is formed. 

The first layer of the AN defines the object (foreground) 
and the second layer defines its background. (b) The 
foreground and background regions grown from a seed 
pixel at location (96,17) inside the image shown in figure 
3.2(a). 
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4.3 The Adaptive-Neighborhood Noise Subtraction Method 

The main theme of this restoration algorithm is to estimate the noise in the seed 

pixel y(k, 1) which lies inside the AN region, and then to subtract the noise from the 

seed pixel to obtain an estimate of the original undegraded seed pixel x(k, 1). 

4.3.1 Derivation of the ANNS filter 

The strategy used in deriving the ANNS filter is based on the same principles as 

those of the ARW-LMS algorithm; that of a zero-mean random variable x of variance 

o in the presence of additive white Gaussian noise. The degraded random variable 

is y = x + n, where the noise ii is of zero mean, of variance o, and is uncorrelated 

to x. The variables (k, 1) have been suppressed for convenience of notation. It can 

easily be shown that 

(4.3) 

An estimate of the additive noise within an AN can be computed from the cor-

rupted image as 

y(k, 1), (4.4) 

where a is a scale factor which depends on the characteristics of the AN region grown. 

The estimate of x(k, 1) is thus, 

i(k, 1) = y(k, 1) - ñ(k, 1), (4.5) 

which reduces to 

(k, 1) = /3. y(k, 1), (4.6) 

where 0 = 1 - a. 
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As described in chapter 3 for the ARW-LMS algorithm, if the images used are of 

non-zero mean, the estimate of equation (4.6) can be used by first subtracting the 

mean of each image from both sides of the equation; thus 

1(k, 1) = m + (1 - a) [y(k, 1) - m], (4.7) 

where m is the a posteriori mean of the degraded image y(k, 1), which is also equal 

to the a priori mean m of the original image x(k, 1) for zero-mean noise. 

The problem now is to find the noise estimator a, based on the criterion that the 

estimated noise variance o be equal to the original noise variance o. The solution 

is given as follows: 

= 

= E{(cx. [y(k,l) _ my])2}. 

Now, an can be expressed as 

a2 

and from equation (4.3) we have 

or = a2.(o+o). 

Then, the noise, estimator a becomes 

Thus, the estimate of equation (4.7) becomes 

=m ± (i -  +) [y(k,l) — m 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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The estimate (k,l) given by equation (4.12) can be considered to be an approx-

imation to the original image x(k, 1) if we are able to obtain accurate values for the 

statistical parameters m and o. The noise variance, a, is obtained in a similar 

manner as that given in chapter 3. 

4.3.2 Implementation of the ANNS filter 

In implementing equation (4.12), we must first derive the local (sample) statistics, 

th, and .&, from each AN region grown at every seed pixel location (k, 1) in the 

degraded image. Since the AN regions grow into areas with similar gray levels, there. 

should be no problem with assuming that the sample statistics in the regions are 

stationary and ergodic. 

The local mean and variance of the AN foreground region grown for the seed pixel 

y(k, 1) are calculated as 

and 

m = 
fgCount 

1 fgCount-1 

E 
i=O 

f.gValue(i), (4.13) 

2 fgCount-1 

- fgCount [fgValue(i) — (4.14) 

The local variance of the original signal is thus given by 

= {b — a2 if &2 > t:T 
0 otherwise. (4.15) 

Using the local statistics, th and b, in place of the ensemble statistics, m and o, 

equation (4.12) thus becomes 

\ 
+ (1_  +): {(k, l) (4.16) 
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It should be noted that the parameters fgCount, th,, ô, and ô-, depend on the 

point (k, 1), and should in fact be denoted by fgCount(k, 1) and so on. This has been 

suppressed for convenience of notation, but should not be forgotten. 

As mentioned in section 4.2 above, the tolerance used for giowing regions is the 

additive tolerance t1, and is made adaptive depending on the signal activity in the 

region and the features surrounding it. The AN is first grown with the tolerance set 

to the full dynamic range of the input image (i.e., initially t1 = 256). This results in a 

square region of size Q pixels initially being formed, where Q is defined in section 4.2 

above. Using the foreground pixels in the AN, a measure of the uncorrupted signal 

activity in the AN of the seed pixel is given by the local signal variance &. This 

signal variance in the current AN is then compared with the noise variance o, and if 

ô > 2o, it is assumed that the AN has identified a region in the original image with 

significant structural characteristics such as an edge, or other distinct objects. This 

is contrary to the desired characteristics of an AN. An AN '1s to be formed such that 

it includes relatively uniform structures in the original image, so that the primary 

source of variance in the AN is the additive noise. Therefore, the gray level tolerance 

used to define the AN is modified to t = 2&, with the idea that the signal standard 

deviation & be used to define the new AN. The AN is grown again using this new 

tolerance. As the tolerance has been reduced, the new AN developed presumably will 

not contain edges or structural features in the image, but will rather grow up to but 

not including these features. Using this approach to define the AN, the statistics of 

the AN, th and ô, are used in equation (4.16) to estimate the uncorrupted image 

at each pixel location. In the special situation that the foreground is only one pixel, 

the AN is enlarged to include the background layer of the pixels. This approach is 

particularly useful in the presence of impulse noise in the corrupted image. 
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The advantage of the ANNS method is the fact that in flat or slowly-varying 

regions, the signal variance will be small compared to 2o, and the AN foreground 

will grow to the maximum foreground bound Q. On the other hand, in busy regions 

where the signal variance is high compared to 2o, the tolerance will be reduced and 

the foreground will grow right up to any edge present but not across it. This will have 

the effect of removing the noise in the foreground region, and will, therefore, remove 

noise that is very close to edges, which the ARW-LMS filter discussed in chapter 3 

fails to do. 

4.4 Experimental Results and Discussion 

We applied the ANNS algorithm to the same corrupted images as those used 

for the ATD-LMS and ARW-LMS algorithms given in chapter 3. The results were 

evaluated by direct visual examination and by comparing the MSE values obtained 

from the results of the ANNS algorithm to those obtained by using the ATD-LMS 

and ARW-LMS algorithms. 

The ANNS algorithm was first applied to the synthesized image after it was cor-

rupted with additive white Gaussian noise. Figure 4.2(a) shows the original image, 

which was shown previously in figure 3.1(a). The noise-corrupted image is shown in 

figure 4.2(b) (same as that in figure 3.1(b)). The same noise variance of 256 used 

in section 3.4 was also used here to degrade the original image. The ANNS-restored 

image is shown in figure 4.2(c), and looks similar to the ARW-LMS output image 

of figure 3.1(d) shown again in figure 4.2(d) for convenience. The ATD-LMS output 

image of figure 3.1(c) is also shown again in figure 4.2(e) for comparison. 

For the ANNS filter, the maximum AN size Q was assigned a value of 25 pixels. 

This allows us to directly compare the performance of the ANNS method against 
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(d) 

Figure 4.2 

(b) 

(c) 

Ce) 

Noise Suppression with a synthesized image of size 128 x 
128 pixels and a gray level range of 0 - 255. ( a) original 
image, (b) noise corrupted image; i7 = 256, (c) ANNS 
output image, (d) ARW-LMS output image, (e) ATD-
LMS output image. 
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Image /Filter Time MSE 
Test + Noise - 256 
ATD-LMS (ii) 1 min 237 (y = 0.4 x 10-i) 
ARW-LMS (max. ,window size) 2 min 58 (5 x 5) 
ANNS (AN size) 3 min 44 (Q = 25) 
Two-pass ARW-LMS (max. window size) 4 min 50 (5 x 5) 
Two-pass ANNS (AN size) 6 min 25 (Q = 25) 

Table 4.1 Results of noise suppression on the synthesized, 128 x 
128 pixel image with noise variance of 256. Approximate 
computer processing time for the various filters using a 
SUN/Sparc-2 workstation are also listed.. 

the ARW-LMS method for equal-sized regions of support. However, the ANNS al-

gorithm uses a variable-shape window (adaptive neighborhood) in order to compute 

the restored image. Unlike the ARW-LMS filter window, the size of the AN is not 

compromised near edges in the image; rather, its shape changes according to the con-

textual details in the image. This allows better estimation of the noise near edges, 

and thus permits greater noise suppression in such areas. Although a very small layer 

of noise pixels is still visible around the objects in the ANNS image of figure 4.2(c), 

the noise is at a much lower level than that observed in the ARW-LMS output image 

of figure 4.2(d). Both the ANNS and ARW-LMS methods appear to reduce the noise 

equally well in relatively uniform regions of the image. However, there does appear to 

be some patchiness in the uniforth regions of both these output images. The ANNS-

restored image is clearly the best of the three restoration methods based on direët 

visual examination of the three output images. 

Table 4.1 presents the approximate computer processing time for each algorithm, 

and MSE values between the original and restored images for the synthesized image. 

The ARW-LMS and ANNS methods have significantly reduced the noise in the cor-
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rupted image. The ANNS algorithm, however, has the lowest MSE (44), followed 

by the ARW-LMS algorithm (58), and the largest MSE is in the ATD-LMS output 

image (237). Thus, both qualitatively and quantitatively, the ANNS method is the 

best of the three methods tried. 

Figure 4.3 presents results using the Lena image. The original image is shown 

in figure 4.3(a), and the noise corrupted, image is shown in figure 4.3(b). The same 

noise variance of 256 used in section 3.4 was used here again. However, we added 

some impulse noise to the noisy image to demonstrate the ability of the ANNS filter 

to suppress spikes as well as Gaussian noise. The ANNS-restored image is shown 

in figure 4.3(c); the ARW-LMS-restored image of figure 3.2(d) is shown again in 

figure 4.3(d), and the ATD-LMS-restored image of figure 3.2(c) is shown again in 

figure 4.3(e). For the ANNS filter, the maximum AN size Q was assigned a value 

of 25 pixels, allowing us to directly compare the ANNS method and the ARW-LMS 

method. The ANNS and the ARW-LMS output image appear to be quite similar, 

and both are significantly better than the ATD-LMS-restored image. However, by 

inspection of figure 4.3(d), it is clear that the ARW-LMS method failed to suppress 

the spikes in the noisy image. This is because spikes appear as edges to the ARW-

LMS algorithm, and thus the window size is reduced as it approaches a spike pixel 

such that when the pixel being filtered is the spike, the window is too small and 

insufficient smoothing of the spike occurs. On the other. hand, the ANNS filter was 

successful in filtering out all the spikes as explained in section 4.2 above. As discussed 

previously in section 3.4, closer examination of the ARW-LMS output image shows a 

layer of noise that is apparent around edges in the image. Again, the ANNS-restored 

image is clearly the best output image based on direct visual examination of the three 

images. 
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(a) 

Figure 4.3 

(b) 

(c) 

Noise Suppression results obtained with the Lena image 
of size 128 x 128 pixels and a gray level range of 0 - 255. 
(a) original image, (b) noise corrupted image; o = 256, 

(c) ANNS output image, (d) ARW-LMS output image, 
(e) ATD-LMS output image. 
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Image / Filter MSE for various image sizes 
128 x 128 512 x 512 512 x 512 

Lena + Noise 256 256 438 
ATD-LMS (.t) 476 ( 1.0 x 10-8) 118 (0.3 x 10-8) 158 (0.3 x 10 8) 

ARW-LMS (max. window, size) 135 (5 x 5) 80 ( 11 x 11) 131 ( 11 x 11) 
ANNS (AN size) 122 (Q = 25) 66 (Q = 121) 87 (Q = 121) 

Table 4.2 Results of noise suppression on the Lena image for various 
sizes and noise levels. 

Table 4.2 presents the MSE values between the original and restored images for 

the Lena image corrupted with two levels of noise and for two sizes of the image. All 

three methods suppress the noise in the corrupted image in a mean-squared sense, 

except the ATD-LMS algorithm with the 128 x 128 image as discussed in section' 

3.4. For the images presented in figure 4.3, the ANNS algorithm again has the lowest 

MSE (122), followed by the ARW-LMS algorithm ( 135), and the largest MSE is in 

the ATD-LMS output image (476). The next two columns of table 4.2 present results 

using the Lena image of size 512 x 512 pixels and noise levels of 256 and 438. For the 

ARW-LMS and the ANNS methods, window limits of 11 x 11 and Q = 121 were used 

respectively. This is the same window size used by Song and Pearlman [8,21], and 

Mahesh et al. [10] for similar image sizes. The ANNS method consistently produces 

output images with lower MSE than those for the other two algorithms. The ARW-

LMS and the ANNS images are visually very similar, and the only difference between 

them is apparently the layer of noise that is left unsuppressed in the ARW-LMS 

output image, ,as compared to less overall noise, even around edges, in the ANNS 

output image. 

In figure 4.4, we present results from the repeated application of the ANNS and 

ARW-LMS algorithms to the synthesized image in figure 4.2(b). Repeated applica-
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tion is a very powerful and useful attribute of these adaptive-window methods. Figure 

4.4(a) shows the output image obtained after passing the noise-corrupted image in 

figure 4.2(b) twice through the ANNS filter. Figure 4.4(b) is the output image ob-

tained by passing the image in figure 4.2(b) twice through the ARW-LMS filter. For 

both of these algorithms, knowledge of the additive noise variance is required for the 

second pass through the filter. The second-pass noise variance was estimated by cal-

culating the variance of the output image after the first pass, and subtracting from it 

an estimate of the variance of the noise-free image x(k, 1). Thus, no additional infor-

mation is required for multiple passes through the ANNS or ARW-LMS algorithms. 

The output images show significant improvement over the results from a single 'pass 

through the algorithms. The major artifact after the first pass through the algorithm 

was the retention of noise around distinct edges in the image. For both algorithms, 

this layer of noise is greatly reduced by the second application; however, the noise is 

much more reduced by the ANNS method than by the ARW-LMS method. A second 

artifact was the patchy appearance of the background region in the image as demon-

strated in figures 4.2(c) and 4.2(d). This patchy appearance too is reduced after the 

second pass for both algorithms. 

The MSE between the images in figure 4.4 and the original image are presented 

in table 4.1 on the bottom two rows. The ANNS-restored image is seen to have a 

lower MSE (25) than the ARW-LMS-restored image (50). Thus, the ANNS-restored 

image is again qualitatively and quantitatively superior. While the two-pass method 

was successful with the synthesized image, it produced too much smoothing when 

applied to the natural Lena image scene. Further work will be required in order to 

investigate the practical use of repeated application of these adaptive region-based 

algorithms to natural scenes. 



57 

(a) 

Figure 4.4 

(b) 

Noise Suppression with the synthesized image in figure 
4.2(b) using two passes through (a) the AN'NS filter, and 
(b) the ARW-LMS filter. 
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4.5 Summary 

In this chapter, the new ANNS filter was presented. This new algorithm uses 

adaptive neighborhoods to define stationary regions, and obtains an estimate of the 

noise in each region as a function of the input image region. This noise is then 

subtracted from the seed pixel of the corresponding region to obtain the restored 

seed pixel. Growing AN regions for all the pixels in the input image and applying the 

adaptive filter, we eventually obtain the restored output image. Experimental results 

were then presented, with a comparative analysis between the performance of the 

ANNS algorithm and the performance of the ARW-LMS and ATD-LMS algorithms 

discussed in chapter 3. The ANNS algorithm was shown to produce better output 

images than the other two algorithms in terms of both visual quality and MSE. 

The adaptive window techniques (ANNS and ARW-LMS) were further applied in a 

two-pass procedure, and the ANNS method was again shown to be superior with 

extremely low MSE values. The ANNS method is capable of noise filtering without 

blurring and without leaving noise around edges and sharp features in the given 

image. The method is also adaptive, and takes into account nonstationarities across 

the image field. 



CHAPTER 5 

SECTIONED IMAGE DEBLURRING 

5.1 Introduction 

In a number of different applied problems in signal processing (e.g., speech, data 

acquisition, and image restoration) it becomes necessary to carry out deconvolution. 

Deconvolution is the process of removing the effects of the impulse response of a linear 

system from a signal which passed through the system. This problem is commonly 

made difficult by the ill-conditioned or singular behavior of the impulse 'response of 

the linear system, coupled with the noise inherent in any real-world system. 

Many methods have been proposed for image deconvolution in the presence of 

noise [1-7,12,15,17,18,26,35-45]. In many cases the restoration techniques (such as 

the Wiener and PSE filters) are based on the assumption that the image can be mod-

eled by a stationary random field, and restoration is achieved by filtering the degraded 

image with a linear space-invariant restoration filter, the frequency response of which 

is a function of the ideal image power spectral density. There are at least two diffi-

ciilties in this approach. For a typical image, any given part of the image generally , 

differs sufficiently from the other parts so that the stationarity assumption over the 

entire image is not generally valid. The second difficulty is that, in practice, the image 

power spectral density is not given and has to be estimated. A common procedure to 

estimate the power spectral density of a signal involves sectioning the one-dimensional 
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signal into smaller (presumably) stationary segments, taking modified periodograms 

of these sections, and averaging these modified periodograms [46,47,48] in an attempt 

to reduce the variance in the power spectral estimate and thus create a more ac-

curate spectral estimate. This basic technique has been applied to two-dimensional 

signals (images) [1,3,4,5,6,12,15,35] by dividing the available image into a number of 

subimages and then averaging the log of their spectral magnitudes. In order for the 

subdivision to be valid, the blurring PSF must have a region of support much smaller 

than the size of the subimages. As a result, the size of the subimages cannot be made 

arbitrarily small. Thus, the number of subimages used to form the ensemble average 

is limited, and consequently the variance of the spectral estimate from the subimages 

can be relatively high. This leads to a poor estimate of the original power spectral 

density. 

Another consequence of the stationarity assumption and the use of space-invariant 

filtering is the fact that deblurred images suffer froni edge-effects at the boundaries of 

the image [5]. Since the original image is, theoretically, of indefinite extent compared 

to the PSF of the blurring system, the edges. of a finite extent blurred image have 

contributions from outside the image boundaries convolved into the image by the 

PSF. The effects at the edges from deconvolution with incomplete information (scene 

information beyond the image's boundary) causes different contributions from outside 

the image boundaries during deblurring than those contributions that were convolved 

into the image boundaries during blurring. This leads to a layer of boundary pixels 

taking incorrect values during deblurring, and consequently, edge artifacts at the 

image boundaries become a source of degradation, especially if boundary information 

is of importance. 
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Recent attempts to overcome the problems caused by-the inherent nonstationarity 

of images have resulted in various adaptive techniques based on sectioning the given 

image into smaller subsections and assuming different stationary models for each sec-

tion [12,17,18,26]. Other techniques enhance the performance of nonadaptive filters 

by using radiometric and geometric transforms to generate nearly stationary (block 

stationary) irhages in the first and second moments [16]. The radiometric transform 

generates stationary mean and variance, while the geometric transform gives station-

ary autocorrelation. 

One method that has not been fully exploited is sectioned deconvolution. In the 

iterative sectioned maximum a posteriori (MAP) restoration technique proposed by 

Trussell and Hunt [17,18], the input image is broken into smaller P x P sections and 

the MAP estimate of the original image section is developed (in the space domain 

using computationally expensive matrix operations) and theff iterated upon for refine-

ment. This procedure is carried out on each section using an overlap-save technique 

to reduce edge effects. 

Since sectioning the image presumably causes each individual section to better 

approximate a stationary section of the whole image, a simpler approach to sectioned 

deblurring would be to use a conventional, space-invariant, frequency domain filter 

to deblur each section individually and then to combine the deblurred sections to 

form the final deblurred image. This method is discussed in the next section, and its 

shortcomings are analyzed. In chapter 6, a new adaptive-neighborhood deblurring 

(AND) method is introduced, which attempts to solve the problems of the fixed-

neighborhood sectioned deblurring (FNSD) technique described in the next section, 

and its performance is evaluated in comparison with the FNSD method. 
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5.2 Fixed-Neighborhood Sectioned Deblurring 

The problem which we consider is to restore an image degraded by a blur PSF 

and additive noise. The degradation model was shown in figure 2.1, and can be 

represented by 

y(k, 1) = x(k, 1) * h(k, 1) + n(k, 1), (5.1) 

where x(k, 1) is the original undegraded image which is unknown, and n(k, 1) is the 

additive noise component, which is assumed to be a zero-mean, white, Gaussian func-

tion of variance an. The restoration problem to be considered is to find an estimate 

of x(k, 1) given the PSF h(k, 1), the observed image y(k, 1), and some statistical prop-

erties of the noise process. In the frequency domain, equation (5.1) becomes 

Y(u, v) = X(u, i.') H(u, v) + N(u, v). (5.2) 

A typical solution is to deblur using a standard filter such as the Wiener (MMSE) 

filter or the PSE filter. The Wiener solution is given by 

H*(u,v).P 
H (u,v) 53 
WV) - IH(u,v)I2P(u,v)+P(u,v)' 

where the asterisk superscript indicates complex conjugation, P(u, v) represents the 

power spectrum of the original image, and P(u, v) represents the power spectrum of 

the noise process. The deblurred image is thus given by 

5((u,v) = H(u,v) . Y(u,v). (5.4) 

The PSE solution is given by 

and 

HpsE(u,v)= I P(u,v) ]1/2 

IH(u,v)12. P(u,v) + P(u,v) (5.5) 

5C(u,v) = HpsE(u,v) . Y(u;v), .(5.6) 
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gives the frequency domain values of the deblurred image, which are inverse Fourier 

transformed to generate the actual space domain restored image. 

It is important to note that the solutions given by equation (5.3) and equation (5.5) 

are based on the assumption that y(k, 1) can be approximately modeled by a station-

ary random field. For a typical image, this stationarity assumption is not valid, as 

explained in section 5.1 above. To reduce the effects of the nonstationarity, a reason-

able approach is to implement the deblurring systems on a short-space basis in which 

the degraded image is sectioned into many subimages, each subimage is deblurred 

separately, and then the subimages are combined. Assuming that each section (or 

subimage) now approximates a stationary random field, one technique that would 

theoretically suppress edge effects and obtain more accurate power spectral estimates 

is to center each subimage in a square region of size comparable to that of the input 

image, and then pad the region surrounding the centered subimage with its mean 

value. If the subimage were really stationary, then its mean value would be very close 

to its pixel values. This argument Js a direct result of the definition of stationarity: 

the statistics of a stationary region are independent of pixel position. Mean-padding 

would thus cause the larger square region to also be stationary. Therefore, when 

deblurring each section, contributions from outside the section boundaries that are 

convolved into the section are not so different from the pixel values inside that sec-

tion, thus (theoretically) the edge effects are suppressed. Another advantage of mean-

padding is that more accurate power spectral estimates (used in the Wiener and PSE 

equations) are now possible because of the stationarity of the whole region, and this 

would improve the performance of the Wiener and PSE filters. To further reduce 

edge effects and obtain a more accurate frequency domain representation, the whole 

mean-padded region is multiplied in the space domain with a smooth window func-
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tion of the same size. A good choice for a smooth window function is the Hamming 

window, because of its small frequency domain side lobes and narrow bandwidth. It 

is important to note that due to the finite extent of the regions, not using a window 

is equivalent to multiplying the region, in the space domain, with a unity-amplitude 

rectangular window, which has relatively large frequency domain side lobes. This 

causes the frequency domain representation of the region to exhibit large under- and 

overshoots, thus giving an incorrect frequency domain approximation [49]. 

Using the above argument and assuming that each section (of size P x P pixels) 

is large compared to the region of support of the blur PSF, but small compared to 

the actual image dimensions M x M (P = 32 is typical for M = 128), each section of 

the image can be expressed as the convolution of the PSF with an equivalent section 

from the original undegraded image x(k, 1). Thus, from equation (5. 1), 

y(1c, 1) = x(k, 1) * h(k, 1) + n(k, 1), (5.7) 

is the approximate description of the image formation law for each mean-padded 

region y1(k, 1). In the frequency domain, equation (5.7) becomes 

Y2(u, v) = X(u, v) H(u, v) + N(u, v). (5.8) 

Now, applying the two-dimensional Hamming window of size M x M, given by 

/2 • ir I\1 
WH(k,l) = 10.54 — 0.46 - M - 1)j• [0.54 — 0.46 -cos (M— i)j' (5.9) 

to each region we obtain 

y(k, 1) . wH(k, 1) = [x(k, 1) * h(k, 1)] wH(k, 1) + n1(k, 1) WH(k, 1), (5.10) 

or 

1) 1) * h(k, 1) + 1), (5.11) 
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where the tilde (.') represents the corresponding windowed regions. The power spec-

trum of each region y(k, 1) can be derived from equation (5.11) as 

PVi (u,v) H(u,v) 2.P(u,v)+P,!j(u,v), (5.12) 

where the superscripts denote the jth region. The power spectral densityP(u, v) is 

computed from the Fourier transform of the windowed region 1(k, 1) using [46] 

2 

)Yt  = M-1 'k1:.1 1  2 (5.13) 
i=O =O WHi,3) 

The Wiener filter of equation (5.3) is then applied to each region given by equa-

tion (5.8) to recover X1(u,v) from Y1(u,v). This is expressed as 

X(u,v) = H*(u,v).P(u,v) 
1(u,v) H(u,v)I2 . P(u,v)+P(u,v)' (5.14) 

where Pi, ,(u, v) = P,, (u, v) = o for Gaussian white noise. A similar solution can be 

obtained using the PSE filter by applying equation (5.5) to each region as 

P(u  1/2 ,v)  1 
(u, v) = Y(u,v) [H(U,V)I2.P(U,V)+P(U,V)J (5.15) 

and the space domain deblurred region, 1), is obtained from the inverse Fourier 

transform of k(u,v). 

The quantity in equation (5.12) gives the denominator in equation (5.14) and 

equation (5.15) for the Wiener and PSE filters respectively. Stockham et al. [15] 

argued that P(u,v) for the numerator in equation (5.14) and equation (5.15) could 

be approximated by an average power spectrum evaluated over a wide variety of 

similar regions. 

The final restored image (k, 1) is obtained by translating the individual restored 

sections from the center of the corresponding restored mean-padded regions 1) 

to their original locations, thus filling the whole image space of M x M pixels. 
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It will be shown experimentally in the next section that the stationarit' assump-

tion for the square sections used above is not really an accurate assumption because 

of the inability of square sections to discriminate between flat and busy regions of any 

given image. Furthermore, because of the limitations on section size (each section of 

size P x P pixels must be large compared to the region of support of the blur PSF), 

sections cannot be made arbitrarily small. Thus, the mean value of a section is quite 

different from its pixel values, and consequently, edge artifacts at section boundaries 

do occur. To partially solve the problem of edge artifacts, the sections could be over-

lapped by one-half the section size in each dimension. This, however, does not reduce 

the edge effects at the image boundaries. 

5.3 Experimental Results and Discussion 

In this section, some experimental results which illustrate the performance of 

the preceding algorithm are presented. The results are evaluated by direct visual 

examination and by calculation of the MSE between the known original and deblurred 

images. 

The FNSD method was first applied to the 128 x 128 piel, 256 gray level "Lena" 

image after it was degraded by a Gaussian-shaped blur PSF with a radial standard 

deviation a,. = 3 pixels and noise to 35 dB signal-to-noise ratio (SNR). The original 

image is shown in figure 5.1(a) and its blurred noisy version is shown in figure 5.1(b). 

Figures 5.1(c,d,e) represent three different fixed-neighborhood sections of the blurred 

image in figure 5.1(b). Each section of size 32 x 32 pixels is centered in a square 

region of the same size as the full image ( 128 x 128) and the surrounding area is 

padded with the mean value of the section. It is very clear from figures 5.1(c,d,e) 

that the stationarity assumption for each section is not really an accurate assumption 



67 

because of the fact that each section still contains various image features such as 

high-variance edges. This is also obvious from the values of the mean-padded areas 

which are very much different from the pixel values of the corresponding centered 

sections. Figure 5.1(f) shows the windowed version of the region in figure 5.1(e) 

where a Hamming window was used as described in the previous section. All the 

regions that were created for FNSD were windowed in the same manner as that of 

figure 5.1(f) in an attempt to reduce to some extent the edge effects between the 

borders of the centered sections and their mean-padded surroundings. It is clear from 

figure 5.1(f) that windowing does not do a good job of reducing the edges, mainly 

because the sections are not as stationary as theoretically required. 

Figure 5.2(a) shows the restored image after using the FNSD algorithm with the 

sectioned Wiener filter of equation (5.14) and no overlapping of the sections. It is clear 

that severe edge artifacts have occurred at the four borders of each section due to the 

nonstationarity of the sections and the large difference between their mean values and 

pixel values. To partially overcome the edge. effect problems, adjacent sections were 

overlapped by one-half the section size in both dimensions. The deblurred image us-

ing overlapping sections of size 32 x 32 pixels and the sectioned Wiener filter is shown 

in figure 5.2(b). Overlapping by half the section size effectively suppresses the edge 

artifacts associated with the inner sections of the image. It does not, however, reduce 

edge effects at the boundaries of the image because of the lack of information beyond 

the image boundaries. The image in figure 5.2(b) is, however, a significant improve-

ment over the deblurred image in figure 5.2(a). Figure 5.2(c) shows the deblurred 

image obtained by using smaller overlapping sections of size 16 x 16 pixels and the 

same Wiener filter. It would be expected that the smaller the section size the more 

stationary it would become. This is very true, and is obvious from the fact that more 
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(c) 

(e) 

(b) 

Cr) 

Figure 5.1 Sectioning of the Lena image of size 128 x 128 pixels 
and a gray level range of 0 - 255. (a) original image. 

(b) blurred image with a Gaussian-shaped blur function; 
MSE = 607. (c), (d), and (e) show three 32 x 32 sections • 
mean-padded to 128 x 128 pixels created for sectioned 

deblurring. (f) the windowed equivalent of the region in 
(e). 



69 

F11riiJFi1 
I 4 

F'1 
I U: 11f 
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Figure 5.2 

(a) (h) 

(d) 

Sectioned deblurring results for the Lena image of size 
128 x 128 pixels and a gray level range of 0 - 255. (a) 
deblurred image using non-overlapping sections of size 
32 x 32 pixels; MSE = 1255. (b) Wiener- deblurred image 
using overlapped sections of size 32 x 32 pixels; MSE = 

501. (c) Wiener- deblurred image using overlapped sec-
tions of size 16 >< 16 pixels; MSE = 783. (d) Wiener-
deblurred image using the full image frame; MSE = 634. 
The overlap in all cases is equal to half the section size 
in both the horizontal and vertical directions. 
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noise smoothing has occurred inside each section (see figure 5.2(c)). This is explained 

as follows: since the smaller regions are more stationary, their power spectral density 

estimates (required by the Wiener filter) are more accurate than those obtained from 

larger, less stationary sections, thereby leading to a more optimal Wiener filter. This, 

however, does not compensate for the edge artifacts that still exist after overlapping. 

The edge artifacts that degrade this version of the deblurred image are mainly due to 

the small size of the sections relative to the size of the region of support of the blur-

ring PSF, which is a circular blur of 'diameter 7 pixels; i.e., the PSF is only 9 pixels 

smaller than the section size. This small section size means that most of the pixels in 

the section have contributions from outside the section convolved into the section by 

the PSF. Thus, deconvolving with incomplete information causes edge artifacts in a 

larger layer of border pixels, and even overlapping the sections cannot suppress them. 

Figure 5.2(d) shows the image deconvolved using the full image frame (i.e., one 

section of size 128 x 128 pixels) and the Wiener filter. It is clear that edge effects do 

not exist inside the image boundaries because of the use of one large section (the full 

frame) having a size much larger than the region of support of the PSF. They do, 

however, exist at the boundary pixels for the same reasons as discussed above. By 

inspection of the restored image in figure 5.2(d), it is' clear that less noise smoothing 

has occurred as compared to the restored image using 32 x 32 or 16 x 16 section 

sizes. This is because of the nonstationarity of the full frame image used to calculate 

the power spectral density required in the Wiener filter equation. Thus, the power 

spectral .estimates are fax from accurate and do not correctly represent the various 

image features, thereby causing the Wiener filter to deviate from optimality. 

The FNSD method was also applied to the 128 x 128 pixel, 256 gray level "Camera 

Man" image after it was degraded by a 9-pixel horizontal motion blur PSF and noise 
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to 35 dB SNR. The original image is shown in figure 5.3(a) and its blurred noisy 

version in figure 5.3(b). Figure 5.3(c) shows one of the regions created by centering 

a 32 x 32 section of the blurred noisy image in a mean-padded region of the same 

size as the input image. Figure 5.3(d) is the windowed region corresponding to the 

section in figure 5.3(c). Figure 5.3(e) shows the restored image after using the FNSD 

algorithm with the sectioned Wiener filter of equation (5.14) and overlapping of the 

32 x 32 sections by one-half the section size in each, direction. Edge artifacts are 

apparent in this deblurred image. They are more pronounced around the vertical 

boundaries of the image than around the horizontal boundaries. This is due to the 

shape of the blur PSF, which is a one-dimensional function along the horizontal axis. 

Thus, convolution occurs in the horizontal direction only and the blurred image only 

has contributions from outside the vertical boundaries of the image, causing vertical 

edge artifacts during restoration. Edge artifacts are also more pronounced near edges 

than in flat regions of the image. This may be due to the small size of the sections 

and the large error due to the nonstationarity of the sections near edges. 

The use of larger 64 x 64 overlapping sections was found to give slightly better 

visual results with less edge artifacts inside the image, as shown in figure 5.3(f). It is, 

however, clear that less noise smoothing is taking place due to the inaccurate power 

spectral estimates obtained when larger, less stationary sections are involved. Figure 

5.3(g) shows the deblurred image obtained by using smaller overlapping sections of 

size 16 x 16 pixels and the same Wiener filter. The edge artifacts near the image edges 

are now more severe. This is directly related to the small size of the sections used 

with respect to the size of the PSF region of support, and the explanation given for 

the image in figure 5.2(c) also holds for this image. However, more noise smoothing 

in flat regions of the image is achieved with the 16 x 16 sections as compared to the 
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results with 32 x 32 and 64'x 64 sections. This is due to a more accurate stationary 

model obtained in flat regions when the section size is small enough to exclude sharp 

edges. Consequently, the power spectral estimates obtained in fiat regions are more 

accurate and the Wiener filter performance is thus enhanced. Another explanation 

for the severe edge artifacts near sharp edges is the fact that at sharp edges even 

the smaller sections would include the edges, which would render the section less 

stationary and also cause the section pixels to have large differences with their mean 

value. 

Figure 5.3(h) shows the image deconvolved using the full image frame and the 

Wiener filter. It is clear that edge effects do not exist inside the image boundaries 

because of the use of one large. section (the full frame) having a size much larger than 

the region of support of the PSF. They do, however, exist at the boundary pixels 

for the same reasons discussed above. It is also clear that less noise smoothing has 

occurred as compared to the restored image using 32 x 32 or 16 x 16 section sizes, and 

the same explanation provided for the image in figure 5.2(d) holds for this image. 

Similar results were obtained when using the FNSD algorithm with the sectioned 

PSE filter of equation (5.15) in place of the sectioned Wiener filter. Table 5.1 presents 

the MSE values between the original and deblurred images for both the Lena image 

and the Camera Man image and for various section sizes. The first column of the 

table gives the section size used and the next two columns give the MSE results for 

the Lena and Camera Man images deblurred using both the Wiener and the PSE 

filters. The MSE values are quite consistent with the visual results seen in the figures 

and discussed above. For the Lena image, which is blurred by the 7-pixel Gaussian 

blur PSF, using the full image frame for deblurring resulted in the highest MSE values 

(634 and 605), disregarding the results of the 16 x 16 sectioned case. This is mainly 
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(d) 

Pr. 

(d) 

(g) 

Figure 5.3 

(h) 

(e) 

(c) 

(1) 

(b) 

Sectioned deblurring results for the Camera Man image 
of size 128 x 128 pixels and a gray level range of 0 - 255. 
(a) original image. (b) 9-pixel horizontal motion blurred 
image; MSE = 1247. (c) a sectioned mean-padded region 
created for sectioned deblurring. (d) the windowed equiv-
alent of the region in ( c). (e) Wiener- deblurred image us-
ing overlapped sections of size 32 x 32 pixels; MSE = 424. 
(f) Wiener- deblurred image using overlapped sections of 
size 64 x 64 pixels; MSE = 463. (g) Wiener-deblurred 
image using overlapped sections of size 16 x 16 pixels; 
MSE = 539. (h) Wiener- deblurred image using the full 
image frame; MSE = 217. 
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Section Size 
Used in 
Deblurring 

MSE 
Lena 

Gaussian Blurred: 607 
Camera Man 

Motion Blurred: 1247 
Wiener PSE Wiener PSE 

16 x 16 783 751 539 538 
32 x 32 501 513 424 425 
64 x 64 483 488 463 460 
Full Frame 634 605 217 220 

Table 5.1 Results of fixed-neighborhood sectioned deblurring on 
the Lena and Camera Man images of size 128 x 128 pix-
els and 256 gray levels for various section sizes and two 
different blurring functions. 

due to the large errors in estimating the spectral density from the nonstationary full 

frame image, thereby causing less noise smoothing than the other smaller sections 

used. This situation is, however, reversed for the Camera Man image blurred by 

a 9-pixel horizontal motion blur PSF. The MSE values, when using the full frame 

image for deblurring, were the lowest (217 and 220). This is because of the severe 

vertical edge artifacts that accompany deblurring a 9-pixel horizontal, motion blurred 

image, using small sections. When using the full image frame for deblurring, no edge 

artifacts exist inside the image boundaries (they exist only around the outer image 

boundaries) as discussed earlier, and this compensates for the increased noise due to 

insufficient noise smoothing, which is caused by the nonstationarity of the full frame 

image. For this reason, deblurring horizontal motion blurs using the full image frame 

gives lower MSE values and visually better restored images although less noise is 

removed. 
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5.4 Summary 

In this chapter, the fixed-neighborhood sectioned deblurring (FNSD) method was 

presented. Mathematical derivations and implementation of the algorithm with both 

the Wiener and the PSE filters were discussed in detail, and experimental results 

were presented with a comparative analysis of the performance and shortcomings of 

the sectioned filters. In the next chapter, the new adaptive-neighborhood deblurring 

(AND) filter will be presented in full detail, including experimental results. The per-

formance of the AND filter will be evaluated in comparison with that of the sectioned 

filters discussed in this chapter. 



CHAPTER 6 

ADAPTIVE-NEIGHBORHOOD IMAGE DEBLURRING 

6.1 Introduction 

The main problems that face conventional, linear, space-invariant, deblurring tech-

niques [1-5,38] such as the Wiener and PSE filters are the inherent nonstationarity 

of natural images, and edge effects that accompany the deblurring process. In an 

attempt to solve these problems, a fixed-neighborhood sectioned deblurring (FNSD) 

algorithm was presented in chapter 5. The algorithm was implemented by sectioning 

the input blurred noisy image into square sections of a fixed size P x P pixels and 

assuming the sections to be more accurate approximations to stationary sections of 

the image. This assumption allowed us to carry out the deblurring process using the 

standard, space-invariant, frequency domain Wiener and PSE filters. Each section 

was deblurred individually, and all restored sections were combined to form the fi-

nal deblurred image. It was shown experimentally that the stationarity assumption 

for square sections is not really a reasonable assumption due to the fact that fixed-

neighborhood sections are unable to distinguish between different image features, 

and thus tend to include edges as well as flat areas, which renders them effectively 

nonstationary. 

In this chapter, we present a new approach to sectioned deblurring in which the 

relative pixel-to-pixel difference is used to grow relatively stationary regions in the 
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given image. Each region grows from a seed pixel (the current pixel being processed) 

and includes neighboring pixels having gray-level values that lie within a specified 

tolerance limit. The same region growing technique described in chapter 4 is also 

used here, with the same definition for the additive tolerance t1 given by 

i ≥ Jy(i,j) - y(k,l)I, (6.1) 

where y(k, 1) is the seed pixel, and y(i,j) represents pixels 8-connected to the seed 

pixel. 

A new adaptive filter is derived in the next section, which is well suited to this 

type of region growing. The filter is applied separately to each input pixel using 

power spectral estimates calculated from the adaptive-neighborhood (AN) region 

grown from the seed pixel in an attempt to deblur that pixel. We call this new 

technique adaptive-neighborhood deblurring (AND). 

To directly compare our new method with the FNSD method discussed in the 

previou8 chapter, we adopt the same technique of centering the ANs in the middle 

of a square region having the same size as that of the input image (M x M), and 

padding the area surrounding the AN with its mean value. This helps reduce edge 

effects at the AN boundaries, and allows us to apply the two-dimensional fast Fourier 

transform (TDFFT) algorithm to these variable-shape, variable-size ANs. 

6.2 The Adaptive-Neighborhood Deblurring Method 

As discussed above, the AND algorithm which we introduce in this work is based 

on an AN region which is determined for each pixel in the input image. The degra-

dation model for the input image y(k, 1) that was used in chapter 5 and is also used 
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here can be expressed as 

y(k, 1) = x(k, 1) * h(k, 1) + n(k, 1), (6.2) 

where x(k, 1) is. the original undegraded image which is unknown, and n(k, 1) is the 

additive noise process, which is assumed to be a zero-mean, white, Gaussian function 

of variance c. The restoration problem to be considered is to find an estimate of 

x(k, 1) given the PSF h(k, 1), the observed image y(k, 1), and the statistical properties 

of the noise process. In the frequency domain, equation (6.2) becomes 

Y(u, v) = X(u, v) H(u, v) + N(u, v). (6.3) 

Assuming that each AN region grown is large compared to the region of support 

of the PSF, each AN region can be expressed as the convolution of the PSF with an 

equivalent AN region grown inside the original undegraded image x(k, 1). Thus, from 

equation (6.2), 

ykl(i,j) Xk1(i,j) * h(i,j) + nkl(i,j), (6.4) 

where k and 1 are the seed pixel coordinates, and (i, j) give the locations of pixels 

that lie inside the current AN region. Equation (6.4) is the approximate description 

of the image formation law for each AN region yk,(i, j). 

We now center each AN, ykl(i,j), inside a square region of the same size as the 

input image (M x M), and pad the area surrounding the AN with its mean value to 

reduce edge effects and to enable us to use the TDFFT on each AN region grown. 

Thus, in the frequency domain, equation (6.4) becomes 

Yja(u,v)= Xkl(u,v) H(u,v) + Nkl(u,v),  

where Yk1(u, v) gives the Fourier transform of the AN region grown from the seed 

pixel at location ( k, 1) in the degraded image y(k, 1). 
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Then, applying the same two-dimensional Hamming window function WH(i, j) 

used with the FNSD method of chapter 5 to each mean-padded AN region, we obtain 

Ykl(i,j) • wH(i,j) = [xkl(i,j) * h(i,j)} wH(i,j) + nkl(i,j) • wH(i,j), (6.6) 

or 

Yki(i,j) xkl(i,j) * h(i,j) + flkl(i,j), (6.7) 

where the tilde ( e") represents the corresponding windowed regions. The power spec-

trum of each region ykl(i, j) can be derived from equation (6.7) as 

Pk' (u,v) IH(u,v)I2 .Pa'V) + P11(u,v), (6.8) 

where the superscripts k1 denote the AN region grown from the seed pixel at ( Ic, 1). 

This power spectral density P'(u, i) is computed from the Fourier transform of the 

windowed region gkl(i,j) using [46] 

Pk' (u, - —  M-1 - M-1 2 

ICkl I. .\ I2 

(6.9) 

In deriving the AND filter, we take into account the stationarity of the AN regions 

grown, and estimate the Fourier transform of the noise Nkl(u, v), within the current 

AN region grown from the seed pixel at (Ic, 1), as a function of the Fourier transform 

of the AN region Ykl(u, v) as 

Nk1(u,V) = Ak1(u,v) Ykl(u,v), (6.10) 

where Ak1(u, v) is a frequency-domain, magnitude-only scale factor which depends 

on the spectral characteristics of the AN region grown. The estimate of Xkl(u, v) is 

obtained from equation (6.5) by using the spectral estimate of the noise, JJk,(U, v), in 

place of Nk1(u., v). We thus have 

Yk1(u,v) -  Nkl(u,V)  

H(u,v) 
(6.11) 
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which reduces to 

5k1(u,v) Ykl(u,v)  
- H(u,v) [1 - Ak1(u,v)]. 
-  

(6.12) 

The problem now is to find the spectral noise estimator Ak1(u, v), based on the 

criterion that the power spectral density of the estimated noise P 1(u, v) be equal to 

the original noise power spectral density P, 1(u, v) for the current frequency-domain 

AN region Yk1(u, v). The solution is derived from equation (6.10) as 

Pk' (u, = A 1(u,v) P'(u,v). (6.13) 

From equation (6.8) and equation (6.13), the spectral noise estimator Ak1(u, v) is thus 

given by 

- Ak1(u,v) - (IH(u,V) P(u,v) 
I2. P 1(u,v)+P(u,v) ) 

1/2 

(6.14) 
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xkl(i, j), by replacing (i, i) with the seed pixel location (Ic, 1)), and running the above 

algorithm for every pixel in the input image, we will eventually obtain a deblurred 

image based on stationary AN regions. 

The only disadvantage of the above algorithm is the fact that it requires three 

128 x 128 TDFFT operations per pixel, which is about 10 seconds per pixel on the 

fast SUN/Sparc-2 workstations that were used for processing the images in this work. 

For 128 x 128 pixel images, at 10 seconds per pixel, we require about 45.5 hours 

to process a single image, which is impractical. A solution to this problem is made 

possible by the nature of the AN regions grown: Since most of the pixels inside an AN 

region will have similar regions when they become seed pixels (because they lie within 

similar limits of tolerance), instead of growing AN regions for every single pixel in the 

input image, we grow AN regions only from those pixels that do not already belong 

to a previously grown region. Note that the AN regions so grown would overlap in 

an unspecified manner. This method reduces the processing time to about 10 to 15 

minutes per image (of size 128 x 128 pixels). 

6.3 Experimental Results and Discussion 

In this section, some experimental results which illustrate the performance of the 

AND algorithm are presented. The results are evaluated by direct visual examination 

and by calculation of the MSE between the known original and deblurred images. 

The AND algorithm was first applied to the 128 x 128 pixel, 256 gray level Lena 

image after it was degraded by a Gaussian-shaped blur PSF with a radial standard 

deviation oS,. = 3 pixels and noise to 35 dB SNR. The original image is shown in 

figure 6.1(a) and its blurred, noisy version is shown in figure 6.1(b). Figures 6.1(c,d,e) 

show three different AN foreground regions of the blurred image in figure 6.1(b). Each 
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AN region was allowed to grow to any size as long as the pixel values were within the 

limits of the tolerance t1 defined in equation (6.1). This means that the value of the 

foreground bound, Q, (described in chapter 4) was set to the total number of pixels 

in the given image (i.e., Q = 16384 for a 128 x 128 image). The tolerance used to 

grow AN regions for the AND algorithm was set to where o', is an estimate of 

the standard deviation of the noise-free blurred image g(k, 1) = x(k, 1) * h(k, 1). This 

value was arrived at using trial-and-error, and gave optimum results. Each AN region 

was centered in a square region of the same size as the full image ( 128 x 128) and 

the surrounding area was padded with its mean value as before. It is very clear from 

figures 6.1(c,d,e) that the stationarity assumption holds for the mean-padded regions. 

Also, the mean value is very similar to the AN region pixel values, and thus the mean 

also lies within the same limits of the tolerance used to grow the AN regions. 

A closer look at figures 6.1(c) and 6.1(d) will indicate that overlapping of the two 

AN regions has occurred although the AN region in figure 6.1(c) was grown with the 

seed pixel at location (0,16) in the input image and the AN region in figure 6.1(d) 

was grown with the seed pixel at (0,106). Such overlap between AN regions will aid 

in suppressing edge artifacts which may arise at AN region borders. Figure 6.1(f) is 

the windowed version of the region in figure 6.1(e) where a Hamming window was 

used as described in the previous section. All the regions that were created for AND 

were windowed in the same manner as that of figure 6.1(f). 

Figure 6.2(a) shows the restored image after applying the AND filter of equa-

tion (6.15) to the blurred noisy image of figure 6.1(b). The FNSD-restored image of 

figure 5.2(a) using non-overlapping sections of size 32 x 32 pixels is shown again in 

figure 6.2(b); the FNSD-restored image of figure 5.2(c) using overlapping sections of 

size 16 x 16 pixels is shown again in figure 6.2(c); and the FNSD-restored image of 
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(a) 

(c) 

(e) 

Figure 6.1 

(b) 

(d) 

y 

(F) 

Adaptive-neighborhood segmentation of the Lena image 
of size 128 x 128 pixels and gray level range of 0 - 255. 

(a) original image. (b) blurred image with a Gaussian-
shaped blur function and noise to 35 dB SNR; MSE = 

607. (c), (d), and (e) show three AN mean-padded re-
gions created for AND. (f) the windowed equivalent of 
the region in (e). 
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Filter Neighborhood 
Size Used 

Time MSE 
Lena, SNR = 35dB 

Gaussian Blurred: 607 
Camera Man, SNR = 350 

Motion Blurred: 1247 
Wiener 16 x 16 25 min 783 539 
PSE 16 x 16 751 538 
Wiener 32 x32 10 min 501 424 
PSE 32 x 32 513 425 
Wiener 64 x 64 5 min 483 463 
PSE 64 x 64 488 460 
Wiener Full Frame 2 min 634 217 
PSE Full Frame 605 220 
AND Q = 16384 15 min 292 181 

Table 6.1 Results of fixed- and adaptive-neighborhood deblurring 
on the Lena and Camera Man images of size 128 x 128 
pixels and 256 gray levels for various neighborhood sizes 
and two different blurring functions. 

figure 5.2(b) using overlapping sections of size 32 x 32 pixels is shown again in figure 

6.2(d) for comparison. From the AND-restored image shown in figure 6.2(a), we can 

see that almost no edge artifacts have occurred. This is directly related to the AN 

regions being used, and is also aided by the inherent overlapping of the AN regions 

grown inside the input image. Comparing the AND-restored image of figure 6.2(a) 

with the FNSD-restored images of figures 6.2(b,c,d) shows the superiority of the AND 

restoration technique to the FNSD technique. Also, by inspection of the MSE values 

(shown in table 6.1) between the original undegraded image of figure 6.1(a) and the 

restored images, we find that the AND-restored image has an MSE value of only 292, 

which is much lower than the MSE values of the FNSD-restored images (483, 501, 

634, 783). 

The AND filter was also applied to the 128 x 128 pixel, 256 gray level Camera 

Man image after it was degraded by a 9-pixel horizontal motion blur PSF and noise 

to 35 dB SNR. The original image is shown in figure 6.3(a) and its blurred noisy 
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(d) 

(c) 

(b) 

(d) 

Figure 6.2 Adaptive-neighborhood deblurring (AND) of the Lena 

image of size 128 x 128 pixels and gray level range of 
o - 255. (a) deblurred image using the AND filter; 

MSE = 292. (b) deblurred image using FNSD with non-
overlapping sections of size 32 x 32 pixels; MSE = 1255. 

(c) FNSD Wiener-deblurred image using overlapped sec-
tions of size 16 x 16 pixels; MSE = 783. (d) FNSD 

Wiener-deblurred image using overlapped sections of size 
32 x 32 pixels; MSE = 501. 
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version isshown in figure 6.3(b). Figure 6.3(c) shows one of the regions created by 

centering an AN region (grown from a seed pixel in the blurred noisy image) in a 

mean-padded region of the same size as that of the input image. It is very clear that 

the AN region approximates a stationary region in the blurred image. It is also clear 

that the mean value is similar to the pixel values in the AN region, thus causing the 

whole region to be stationary. Figure 6.3(d) is the Hamming-windowed version of 

another AN region grown from a seed'Pixel outside the AN region of figure 6.3(c). 

Figure 6.3(e) shows the image restored by applying the AND filter of equation (6.15) 

to the blurred noisy image of figure 6.3(b). The FNSD-restored image of figure 5.3(e) 

using overlapping sections of size 32 x 32 pixels is shown again in figure 6.3(f) for. 

comparison. By inspection of the AND-restored image shown in figure 6.3(e), it is 

evident that practically no edge artifacts have occurred during deblurring with the 

AN regions. The image is very sharp and visually more pleasing as compared to the 

FNSD-restored image shown in figure 6.3(f). The same explanation used for the Lena 

AND-restored image of figure 6.2(a) also holds for the Camera Man image. Also, by 

inspection of the MSE values shown in table 6.1, we find that the Camera Man AND-

restored image has an MSE value of only 181, which is significantly lower than the 

MSE values of the FNSD-restored images (217, 424, 463, 539). 
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(a) 

(e) 

Figure 6.3 

(c) 

(h) 

(d) 

(F) 

Adaptive-neighborhood deblurring (AND) of the Camera 
Man image of size 128 x 128 pixels and a gray level range 
of 0 - 255. ( a) Original image. (b) Image blurred by 9-
pixel horizontal motion and degraded by additive Gaus-

sian noise to 35 dB SNR; MSE = 1247. (c) An AN mean-

padded region created for AND. (d) A windowed version 
of another stationary AN region. (e) Deblurred image 
using the AND filter; MSE = 181. (f) FNSD Wiener-
deblurred image using overlapped sections of size 32 x 32 

pixels; MSE = 424. 
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6.4 Summary 

In this chapter, the new AND filter was presented. This new algorithm uses ANs 

to define stationary regions in the input image and obtains a spectral estimate of the 

noise in the AN region. This estimate is then used to obtain a spectral estimate of 

the original undegraded AN region, which is inverse Fourier transformed to obtain 

the space-domain deblurred AN region. The regions are then combined to form the 

final restored image. Mathematical derivation and implementation of the AND filter 

were discussed, and experimental results were presented with an analysis of the per-

formance of the AND filter as compared to that of the FNSD Wiener and PSE filters 

discussed previously in chapter 5. Using the AND algorithm for image deblurring, we 

were able to create fairly stationary regions. This improved the restoration process 

and produced results that were superior to those obtained using the FNSD method 

both in terms of qualitative (visual) and quantitative (MSE) measures. 



CHAPTER 7 

AN ITERATIVE METHOD FOR BLIND 

DECONVOLUTION 

7.1 Introduction 

The problem of separating two signals that have been convolved has received 

considerable attention in the literature [1-7,12,15,17,18,26,35-45,50]. It is important 

to distinguish between the two different forms of this problem. The first and simpler 

of these forms assumes that one of the two signals is known. The problem then 

reduces to estimating the other signal by some form of inverse filtering. The second, 

and more complex problem, considers that both signals are unknown, and that the 

only data available are those from the convolution itself. The task of estimating the 

unknown signals in the second case is called blind deconvolution. 

A problem frequently encountered in image processing is the restoration of an im-

age after it has beed degraded by a linear, shift-invariant (LSI) system, without any 

knowledge about the degrading phenomenon. LSI blurring can occur in many ways 

in an actual image acquisition system, including defocused camera lenses, relative 

motion between the object and the recording plane, and imaging through turbu-

lent media. Previous attempts to address this problem [1,5,15,35] estimate the blur 

function by first attempting to ascertain some statistical properties of the image by 

averaging over an ensemble of images. Since, however, only one blurred image is 
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usually available, an artificial ensemble must be created by subdividing the available 

image into a number of subimages and then averaging the log of their spectral mag-

nitudes in an attempt to reinforce the shift-invariant property of the blur PSF, while 

averaging out the nonstationary frequency content of the original image. In order for 

the subdivision to be valid, the blur PSF must have a region of support much smaller 

than the size of the subimages. As a result, the size of the subimages cannot be made 

arbitrarily small. Thus, the number of subimages used to form the ensemble average 

is limited, and consequently the variance of the spectral estimate from the subimages 

can be relatively high. This leads to a poor estimate of the original image. 

In this chapter, we present a new technique for blind deconvolution under the as-

sumption that the MTF of the LSI system is zero-phase and its magnitude is smooth. 

This assumption is valid for many types of degradation, such as motion blur and 

out-of-focus blur [5,14]. As discussed, in the literature [14,51-58], the spectral magni-

tude in the Fourier representation of a signal is affected by the blur function, while 

many of the important features of the signal, such as edge locations, are preserved 

in the phase. For example, it has been shown that the intelligibility of a sentence is 

retained if the phase of the Fourier transform of a long segment of the speech signal 

is combined with unity magnitude [14]. In our work, we make use of the image char-

acteristics (edge information) preserved in the phase of the blurred image, and try to 

recover the original magnitude spectruth that was altered by the blur, function. 

The blind deconvolution algorithm presented here differs from earlier work [5,15,35] 

in that the averaging is achieved by smoothing in the frequency plane using the entire 

image, which relaxes the assumption on the region of support of the PSF. Another 

key feature of our algorithm is that further enhancement on the initial estimate of 

the image is achieved through. an iterative approach. 
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In the next section, we present an iterative method for recovering the magnitude 

spectrum of a blurred image using an enhanced phase-based estimate. Next, we 

present experimental results from the application of this technique to different types 

of images. Finally, we evaluate these results and the different implications of this new 

technique. 

7.2 The Iterative Blind Deconvolution Method 

A commonly used model for image degradation is 

y(k, 1) = x(lc, 1) * h(k, 1) + n(k, 1), (7.1) 

where x(k, 1) represents the (unknown) original image, h(k, 1) represents the PSF 

(unknown in the situation considered here), n(k, 1) represents the additive noise com-

ponent, and y(k, 1) is the given blurred image. 

In this work, we neglect the additive noise component. Therefore, in the frequency 

domain, equation (7.1) can be expressed as 

Y(u, v) = X(u, v) . H(u, v). (7.2) 

Representing equation (7.2) in the form of a magnitude and phase function, and taking 

into account that H(u, v) is assumed to be zero-phase, we can write equation (7.2) as 

and 

M(u)v) = M(u,v) . Mh(u,v), (7.3) 

O(u,v) = 9(u,v), (7.4) 

where M(u, v) represents ,the spectral magnitude of the original image, Mh(u, v) 

represents the degradation MTF and has the property that it is a smooth magnitude 

function, and O(u, v) represents the spectral phase of the image i. 
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The blur model is thus defined in terms of magnitude and phase. The original 

image spectral magnitude M1,(u, v) can be recovered from the blurred image spectral 

magnitude My (u, v) as follows. The initial estimate of M(u, v) is based on smoothing 

the spectral magnitude of the blurred image, My (u, v), and using the assumption 

that Mh(u, v) is smooth. If we let S[.] denote a two-dimensional linear, separable, 

smoothing operator, then a smoothed My (u, v) is given by 

S[M(u,v)] = S[M(u,v) M,(u,v)]. (7.5) 

Since Mh(u, v) is a smooth function, and S[] is separable, S[Ma,(, v) . Mh(u, v)] may 

be approximated by S[M(u,v)]. Mh(u, v) [14,50], and therefore 

S[M(u,v)] S[M(u,v)] Mh(u, v). (7.6) 

Combining equation (7.3) and equation (7.6), we obtain 

M(u,v) M,(u,v) S[M(u, v)]  
SIMY(U, VA 

(7.7) 

Equation (7.7) suggests that if we can obtain an initial approximation to M(u, v) 

we can rewrite equation (7.7) in an iterative form and use it to refine the initial 

magnitude estimate. Equation (7.7) can thus be written in an iterative form as 

M. -  

- '1Y '1ij 1 
UI yJ 

where i is the iteration number, and (u, v) have been dropped for compact notation. 

The initial estimate M. is derived from the phase of the blurred image ejOy(u4 

which retains most of the high-frequency information (spatial edges) in the image. 

The initial estimate of the original image is defined in the frequency domain to be 

the sum of the phase of the blurred image and the Fourier transform of the blurred 

image itself. We thus have 

M. 0 e0 + ejoy 7 (7.9) 
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and in terms of magnitudes, 

= M + 1. (7.10) 

As we can see from equation (7.10), we are only adding a unity constant to the spectral 

magnitude at all frequencies, which would only raise the whole spectral magnitude 

response by the amount of that constant. This is equivalent to adding a high-pass 

filtered version of the image to the blurred image, which would have the effect of 

amplifying the high-frequency , components in the image. This would, however, pro-

duce a noisy initial approximation to M due to some added high-frequency noise. 

Rather than simply adding a unity magnitude to recover high frequencies, it would 

•be more appropriate to add those high-frequency components in M that were lost 

due to blurring. Although we do not have M, we do have a ratio between M and 

its smooth version derived from equation (7.7), giving 

M M (711 
S[M] -  SIMYY 

Adding this ratio to the blurred magnitude spectrum gives 

= M + M (7.12) 

We can expect this estimate to be a more accurate approximation to M since we 

are now adding the ratio Mx which contains more information about the original SIMXI 

spectral magnitude than a simple constant (1 in equation (7.10)). 

The advantages of adding S[MX] to the blurred magnitude spectrum are: 

• At low frequencies, M S[M]. Therefore, A M + 1, which would not 

affect the low-frequency magnitude response much. 

• At higher frequencies, S[MX] < M at high amplitudes of M, because any 

variance in M would be averaged out in S[MXI. Thus s[M] > 1 at those high-
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frequency components representing spatial edges. Adding this to the blurred 

magnitude would have the effect of amplifying the high-frequency edges more 

than the high-frequency noise. Therefore, the high-frequency components of 

the phase signal ejoy are emphasized in sf which we call the enhanced 

phase image. Thus the operation in equation (7.12) tends to add to M the 

(normalized) high-frequency components that were lost because of blurring. 

Using equation (7.12) as the initial estimate of M and iterating using equa-

tion (7.8) to improve this estimate until the MSE between the nth estimate and the 

(n + 1)1h estimate is less than a certain error e, we would eventually recover most of 

the original spectral magnitude of M. 

From equation (7.4), we can now combine the best estimate of M(u, v) with the 

given phase function Ox' (u, v) = O(u, v) so that the Fourier transform of the restored 

image .(u,v)is 

S(u,v) = iI(u,v) . (7.13) 

Taking the inverse Fourier transform of equation (7.13) we obtain the deblurred image 

Although the method described above neglects noise, it can still be used for de-

blurring images corrupted by blur and additive noise after first reducing the noise in 

the blurred image [12,50] using a noise reduction filter such as the Wiener smooth-

ing filter. Further work will be required in order to investigate the most effective 

approach to noise reduction before applying the iterative procedure. 
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7.3 Experimental Results and Discussion 

In this section we present some experimental results which illustrate the perfor-

mance of the new iterative blind deblurring method described above. The results will 

be evaluated by direct visual examination and by calculation of the MSE between the 

original image (known in the experiments) and the restored images. 

Figure 7.1 presents results using a natural scene. Figure 7.1(a) shows a 128 x 128, 

256 gray level image of the original Lena face. Figure 7.1(b) is the image in figure 

7.1(a) blurred by a Gaussian-shaped PSF with a radial standard deviation r = 3 

pixels'. The MSE between the original image and the blurred image is 606. After 

applying the iterative method to the blurred image of figure 7.1(b), the images in 

figures 1(c,d,e,f) were generated. Figure 7.1(c) shows the magnitude of the inverse 

Fourier transform of the enhanced phase s[M] It is very clear that this enhanced 

phase image retains most of the edges in the original image that were destroyed by 

blurring. Figure 7.1(d) is the initial estimate of (k, 1) used in the iterative algorithm. 

This image was formed by addition of the image in figure 7.1(b) to the image in 

figure 7.1(c) as described in equation (7.12). The addition emphasizes the edges of 

the blurred image thus giving a sharper image (the MSE of this initial estimate, at 

877, is however higher than that of the blurred image). One can also notice from 

figure 7.1(d) that the dynamic range of the image is different from that of the original 

image in figure 7.1(a), and that it could be improved by iteration. Figure l.1(e) 

shows the image generated by combining the first estimate M ' obtained by using 

equation (7.8) with the phase of the blurred image ejoy. It is very clear that even 

after just - one iteration, the deblurred image closely resembles the original without 

any blurring of the edges. The MSE for the image in figure 7.1(e) is only 128, which 

is a significant improvement over the previous estimate. After only four iterations 
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through the filter, we obtain the image in figure 7.1(f), with an MSE of 110. Further 

iterations did not improve the quality of the restored image beyond that in figure 

7.1(f). The restored image in figure 7.1(f) is very sharp, with most of the high-

frequency components recovered by only using the information in the blurred image 

and its phase, and applying the iterative algorithm described in the previous section. 

Figure 7.2 is a different set of images used to experiment with the restoration of 

blurred text. The images are of size 64 x 64 pixels with 256 gray levels. Figure 7.2(a) 

is the original image representing a portion of an address. The text is bright on a 

dark background. Figure 7.2(b) is the image in figure 7.2(a) blurred by the same blur 

function used in figure 7.1. The MSE between the original image and the blurred 

image is 1041, which gives an indication of how much the blurring has altered the 

original image. It is clear from figure 7.2(b) that all of the sharp edges in figure 7.2(a) 

have been smoothed out, corresponding to a loss of some of the high frequencies from 

the Fourier transform of the original image. Figure 7.2(c) shows the magnitude of 

the inverseFourier transform of the enhanced phase, described above, which shows 

most of the important information, namely the edges. Adding the images in figures 

7.2(c) and 7.2(b) produces the initial estimate shown in figure 7.2(d) with an MSE 

of 385. Figure 7.2(e) is the final restored image reached after 8 iterations, with the 

initial estimate as shown in figure 7.2(d). The MSE between the restored image and 

the original further dropped to only 156, and by visual examination, it is clear that 

most of the lost information (including edges) has been recovered. 

In figure 7.3 we show a set of images similar to those in figure 7.2, but with the 

original image more severely blurred by a Gaussian-shaped PSF of radial standard 

deviation 0 r = 5 pixels, as shown in figure 7.3(a), and as indicated by the much 

higher MSE of 3275. Clearly, this blurred image is totally illegible with all the words 
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(a) 

(d) 

Figure 7.1 

(b) 

(e) 

(c) 

(F) 

Iterative blind deconvolution with the Lena image of size 
128 x 128 pixels. (a) original image, (b) blurred image 
with Gaussian-shaped blur function of radial standard 
deviation 0r = 3 pixels; MSE = 606, ( c) enhanced phase 
image, (d) initial estimate image; MSE = 877, (e) de-
blurred image after first iteration; MSE = 128, (f) de-

blurred image after 4 iterations; MSE = 110. 
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Figure 7.2 Iterative blind deconvolution results for the slightly 
blurred text image of size 64 x 64 pixels and 256 gray 
levels. ( a) original image, (b) slightly blurred image with 
Gaussian-shaped blur function of radial standard devi-

ation o = 3 pixels; MSE = 1041, (c) enhanced phase 
image, (d) initial estimate image; MSE = 385, (e) final 
restored image after 8 iterations; MSE = 156. 

(a) 

Figure 7.3 
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(c) (d) 

Iterative blind deconvolution with severely blurred text 
image of size 64 x 64 pixels and 256 gray levels. (a) highly 
blurred image of figure 7.2(a) with Gaussian-shaped blur 
function of radial standard deviation a• = 5 pixels; MSE 
= 3275, (b) enhanced phase image, (c) initial estimate 

image; MSE = 690, (d) final restored image after one 

iteration; MSE = 618. 
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extremely blurred. Figure 7.3(b) is the corresponding space domain enhanced phase 

image, and figure 7.3(c) is the initial estimate image, which is much more legible than 

the blurred image in figure 7.3(a). The MSE between the original image and the 

initial estimate is 690. Finally, after only one iteration, the restored image shown in 

figure 7.3(d) was obtained with an MSE of 618. Although the MSE value of the final 

restored image has not decreased much from that of the initial estimate, the image is 

satisfactory, and very legible compared to the blurred image in figure 7.3(a). 

It is very clear from the results shown that this iterative method does not cause 

edge-effects during deconvolution, as did the other methods described in previous 

chapters. This is mainly because deconvolution is carried out by detecting the high-

frequency information lost due to blurring, and adding it back to the spectrum of 

the blurred image. In essence, we 'are not deblurring by convolving the image (or 

subimages as in the previous chapters) with the inverse of the blur PSF, but instead, 

we are refining the initial estimate through iteration over the whole image. 

7.4 Summary 

In this chapter, a new blind deconvolution algorithm was presented. The new 

method creates an initial estimate using an enhanced phase signal, and an iterative 

algorithm is used to refine the initial estimate making use of the fact that for zero-

phase blur functions, the edge information is preserved in the phase of the blurred 

image and only the magnitude of the original image is altered. Finally, we presented 

some experimental results by applying our new technique to successfully deblur two 

types of images degraded by Gaussian-shaped blur functions. 



CHAPTER 8 

DISCUSSION AND CONCLUSIONS 

This thesis presented various image restoration techniques, both conventional and 

original, that deal with the restoration of nonstationary images. It 'first started by 

giving an account of the most commonly used methods for restoring images degraded 

by additive white Gaussian noise. Noise reduction methods were divided into space 

domain and frequency domain methods. Four space domain methods were discussed. 

These methods mainly smooth out the noise in the degraded image, such as in neigh-

borhood averaging discussed in chapter 2, where square windows are used to approx-

imate stationary regions and obtain estimates of the signal and noise statistics. It 

was concluded from chapter 2 that using fixed neighborhoods to approximate sta-

tionary statistics does not give accurate statistical estimates, and causes smoothing 

of high-frequency information in the degraded image. 

Images are at best locally stationary, and then only if the windows or neighbor-

hoods used contain pixels that belong to the same statistical ensemble. For most fixed 

neighborhoods stationarity is still a very crude approximation, which results in poor 

statistical estimates and hence poor restoration. Based on these observations, we 

presented three different adaptive noise-reduction filters in an attempt to overcome 

problems due to the inherent nonstationarity of images. In chapter 3, two adaptive 

noise-reduction filters (ATD-LMS and ARW-LMS) were presented, and mathematical 
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derivations and implementation of both filters were discussed in detail. The ATD-

LMS filter has the problem of too much edge smoothing causing the restored images 

to appear blurred. The ARW-LMS filter performs much better from a visual perspec-

tive because flat regions are smoothed more than edge regions, thus reserving the 

sharpness of the image. This however, leaves much of the noise unsuppressed near 

edges. Experimental results were also presented with a comparative analysis of the 

performance and shortcomings of these adaptive filters. 

In chapter 4, the new ANNS filter was presented in an I attempt to overcome the 

problems of the previous two filters discussed in chapter 3. This new algorithm uses 

adaptive neighborhoods (ANs) to define stationary regions, and obtains an estimate 

of the noise in each region as a function of the input image region. This noise is then 

subtracted to obtain the restored image. The advantage of using these variable-shape, 

variable-size ANs over the adaptive rectangular windows (ARWs) is the fact that the 

AN size is not compromised near edges; thus a more accurate statistical estimate is 

possible, and more noise reduction takes place. Experimental results were presented 

with a comparative analysis between the performance of the ANNS algorithm and 

the performance of the ARW-LMS and ATD-LMS algorithms. The ANNS algorithm 

was shown to produce better output images than the other two algorithms in terms 

of both visual quality and MSE. The adaptive window techniques (ANNS and ARW-

LMS) were further applied in a two-pass procedure, and the ANNS method was again 

shown to be superior with extremely low MSE values. The ANNS method is capable 

of noise filtering without blurring and without leaving noise around edges and sharp 

features in the given image. The method is also adaptive, and takes into account 

nonstationarities across the image field. 
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The thesis then shifted the focus to restoring images degraded by both a linear 

shift-invariant blur PSF, and additive, white Gaussian noise. Chapter 5 discussed 

conventional deblurring techniques, and then a fixed-neighborhood sectioned deblur-

ring (FNSD) algorithm was derived and implemented. In this method, the input 

image is sectioned into square subimages, and each subimage is deblurred individu-

ally. In doing so, we make the assumption that each section is presumably stationary. 

We later showed, however, that this is not an accurate assumption, and consequently, 

the spectral estimates of the sections are inaccurate; the deblurred images using this 

method suffered from edge effects as shown by the experimental results. To solve this 

problem, we presented a new adaptive-neighborhood deblurring (AND) algorithm 

in chapter 6. This method uses AN region growing techniques to define stationary 

regions in the input image, and obtains a spectral estimate of the noise in the AN 

region. This estimate is then used to obtain a spectral estimate of the original unde-

graded AN region, which is inverse Fourier transformed to obtain the space-domain 

deblurred AN region. The regions are then combined to form the final restored image. 

Mathematical derivation and implementation of the AND filter were discussed, and 

experimental results showed an improvement over the FNSD method from a visual 

perspective, as well as in MSE. 

The last part of this thesis was presented in chapter 7, and dealt with a new itera-

tive algorithm for blind deconvolution. The new filter uses the information preserved 

in the phase of the blurred image to recover, as much as possible, the high-frequency 

components that were lost due to blurring. Experimental results of applying this 

new technique to two types of images degraded by Gaussian-shaped blur PSFs were 

presented. 
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From this discussion, one can conclude that image stationarity plays an important 

role in the overall performance of restoration filters. It was shown that the use of 

stationary parameters computed from AN regions improved the filter performance and 

produced output results that were superior to those obtained using fixed or adaptive 

square neighborhoods. Although this thesis gave an extensive analysis of AN image 

restoration techniques, and showed their relative merit as compared to other methods, 

one cannot boldly say that the problems of image restoration are over. The area of 

AN image restoration is still open for further research. The application of AN region 

growing techniques to adaptive; as well as iterative, image restoration methods that 

were implemented to improve the performance of conventional filters still needs to 

be investigated. Since image stationarity is an important issue in image restoration, 

the use of AN methods can be advantageous to most image restoration techniques as 

discussed in this thesis. 
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