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Abstract

The objective of this research was to determine if there were more cases of
contamination in 2013 than in previous years. To determine private groundwater wells in
the Calgary Health Zone were impacted by the flood in June 2013, and finally determine
what environmental variables influence contamination during a flooding event. The
analysis utilizes, test results of total coliform and E.coli of private water wells were
obtained though Alberta Health Services’ Provincial Laboratory (ProvLab) for the period of
June 19" to September 30", 2013. The analysis was completed using ArcGIS 10.2 and R
3.0.2. The results of the regression indicate that total coliform contamination was not
impacted by the flood, however, E.coli contamination was impacted by floodways, flood

fringe, farms, and intermittent water (sloughs).
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Chapters One: Introduction

Problem Identification

Canadians are fortunate to have plentiful sources of clean and safe drinking water.
Most Canadians have access to this water through publically implemented and monitored
municipal water treatment systems. However, as Canada is the second largest country in
the world by landmass (9,984,670 km?), with varying distributions of settlements
throughout the country, in some regions citizens do not have access to these municipal
water resources. This is more common in rural areas. It is estimated that between three to
four million Canadian residents rely on private sources for drinking water, which are
usually sourced from groundwater systems (Charrois, 2010). Of those three to four
million, about six hundred thousand of them reside in Alberta (Alberta Health and
Wellness, 2004).

As most well water systems are not municipally regulated, it is more difficult to
ensure the quality of water coming from these private groundwater sources. It is the
responsibility of the well owner to ensure quality through testing, and if required,
treatment of the water as the integrity of the well water can become compromised
through pathways of both microbial and chemical contamination (Charrois, 2010). Alberta
Health Services (AHS) recommends that water wells deeper than 50 feet (15.24 meters)
should have a bacteriological test twice a year and water wells shallower than 50 feet
should have the bacteriological test four times a year. The guidelines also recommended
that a chemical analysis be performed once every two to five years (AHS, 2009). However,
as testing and treatment is left up to individual due diligence, the testing rates may be
much lower than what is recommended by AHS. Non-compliance increases the risk that a
greater number of individuals will be exposed to gastroenteric viruses, which can be
present in groundwater (Borchardt et al., 2004).

Surface water and groundwater are highly interconnected. Surface water infiltrates
into the ground, recharging the groundwater system, and then can be extracted from the

ground for the purpose of drinking water (though the borehole/ well). Due to this



interconnectedness, it is possible for groundwater sources to become contaminated via
surface water sources. This occurs when water recharging the groundwater source is
contaminated. The main mechanisms through which this can occur are if the soil that the
recharge water is filtering though is contaminated or if the water is contaminated prior to
entering the ground. It is also possible for groundwater to become contaminated when a
hazardous substance, such as a chemical leachate, infiltrates though the soil and into the
groundwater (EPA, 2011). The amount of time it takes for the recharge water to reach the
groundwater systems is dependent on many factors including soil type and surficial
geology (USGS, 2014). While there are many different mechanisms of groundwater
contamination, the means of contamination that will be focused on in this study will be
contamination as the result of overland flooding.

Globally, flooding is the most commonly occurring natural disaster, accounting for
40% of all natural disasters annually (Alderman et al., 2012). There can be notable issues
when overland floods occur, such as the increased velocity and volume of water changing
the topography of rivers and streams. Large magnitude flooding can change a riverbed,
decreasing the ability for the riverbed to filter out contaminated water as it infiltrates into
the ground. Additionally, as the magnitude of flooding increases, a greater volume of the
clogging layer along the riverbed is removed. This layer normally functions to slow down
the rate of water infiltration into the groundwater system. Resultantly, this allows an
above normal volume of water to infiltrate into the ground. The large water volumes
during floods also increase the risk of carrying point source, and non-point sources of
contamination into water wells (Hiscock and Grischeck, 2002).

In an urban setting, heavy rainfall that results in overland flooding has the
potential to over burden the sewer systems. When this occurs, a backflow of
contaminated water can spill into the city street. Adding this contaminated sewer water to
the already existent overland flooding increases the risk for potential for contamination
(Hiscock and Grischeck, 2002). This can cause negative repercussions in rural settings as
the water can move from the urban environment to a more rural setting where overland

flooding is more likely to increase the amount of runoff contaminated with animal faecal



matter. Additionally, the higher than normal river volume creates more turbid water
conditions in the rivers. This effect increases with the magnitude of the flood. The
increase in turbidity increases the risk that any microorganisms that have previously
settled out of water system for example in the rock bed of a river will become
resuspended to then be transported further downstream (Hofstra, 2011).

In June of 2013, Southern Alberta was the site of devastating flood that claimed
the title of Canada’s most costly natural disaster. It is expected that the cost to recover
from this flood will be roughly six billion dollars. The flood affected over 100,000 Albertans
in 30 different communities of which 40,000 people were evacuated from their homes.
Infrastructure including over 1000km of road, bridges and houses were destroyed by the
flood (Alberta Government, 2013).

Although the month of June is typically the wettest month in Southern Alberta, this
flood was a result of many factors. Contributing factors include a higher than normal
snowfalls in the mountains from October 2012 to March 2013, excess amount of
precipitation during the early spring where the Bow and Elbow River watershed received
more than 300mm of precipitation, and an already wet spring leaving soils saturated
having no room to absorb any additional precipitation (City of Calgary, 2013; Environment
Canada 2013a). Additionally, leading up to the flood, the mountains received an extended
period of rain caused by a slow moving low front. This accelerated the snow melt at a rate
25% faster than normal. As much of the ground in the mountains was still frozen, water
was forced to run off into the rivers instead of infiltrate into the ground (Environment
Canada, 2013a). At its peak discharge rate, it is estimated that the Bow River was flowing
around 1700m3/sec, 7.5 times greater than the mean discharge rate since 1911 (City of

Calgary, 2013).

Research Purpose

The objective of this research is to determine which environmental factors are
associated with the contamination of private drinking water wells and drinking water
quality and safety in the Calgary Health Zone in the time immediately following the June

2013 flood. It is important to determine which wells are at a higher risk of becoming



contaminated with bacteria and therefore which wells are more likely to pose a public
health risk to individuals living in rural areas. This information will be used to produce a
risk assessment map. This map will demonstrate areas where there is higher risk of
drinking water well contamination during a flood from total coliforms or E. coli bacteria in
the Calgary Health Zone. Ultimately this analysis will be used to facilitate the transfer of
knowledge so that homeowners who live in areas that are more prone to well water
contamination during a flood can be better prepared. This study can also be used as a
resource for public health investigators at AHS to plan for, and identify private drinking
water wells in high-risk areas. This knowledge will help to identify individuals who may

require more assistance with remediation of a contaminated drinking water well.

Research Objectives
The overarching objective of this research is to model factors that influence private
drinking water well contamination during a flood in the Calgary Health Zone. This will be
achieved through both descriptive and quantitative methods.
1. Historical Analysis
a. Historical analysis of test results from June 19”’, 2013-September 30th, 2014
compared to the same time period dating back to 2005.
2. Descriptive Analysis
a. Maps of the spatial distribution of positive and negative well test results and
well attributes.
3. Quantitative Analysis
b. Statistical model to determine what environmental attributes influence water
well contamination during a flood.
c. Based on the regression model produce, a risk map/ risk surface will be
created for the Calgary Health Zone, showing areas that are at low, moderate,

and high risk of drinking water well contamination.



Chapter Two: Background

Groundwater and Vulnerability in Alberta

Traditionally, water sources are categorized into surface and groundwater.
However, this descretization of a continuous system, the hydrologic cycle, detracts from
the notion that this cycle is continuous with water constantly moving. Rather, the
hydrologic cycle should be thought of as dynamic rather than static (Bear, 2012). Figure 2
demonstrates the interconnectedness between surface and ground water, as well as
various types of groundwater sources that are used as drinking water sources.

Generally, the term groundwater refers to any type of water in the ground. Surface
water from sources of precipitation, or surface water bodies such as lakes and stream will
infiltrate into the ground. Surface water serves as the recharge for ground water. This
water is then retained within the pore spaces of ground sediment or rock that allows for
water in varying quantities to be stored (EPA, 2012).

Groundwater can be structured very differently depending on the geology of the
region. Specifically in Alberta, the first layer of sediment subsurface is typically
unconsolidated sediment, which is comprised of unlithified till containing clay, silt, sand
and gravel. Under the surficial sediments, bedrock, which was deposited about 75 million
years ago, can be found in Alberta. The rock types typically found in this layer are
sedimentary rock, which includes shale, siltstone, sandstone, mudstone, claystone and in
some areas even coal (AARD, 2010). In some regions of the province, this sedimentary
rock can be exposed, whereas in others this rock is buried more than 100 meters below
the surface. In some areas, sand and gravel deposits are present between the surficial
layer of till and the bedrock. Bedrock can range from being highly fractured (e.g.
sandstone), which allows groundwater to flow more freely than unfractured bedrock (e.g.
shale). Highly fractured rock, where groundwater is able to flow more freely, can be
defined as an aquifer. Unfractured rock that is able to hold water in the porous spaces,
but cannot transmit the water at a fast enough rate to sustain a water supply, is

considered an aquiclude or aquitard. Aquifers have high hydraulic conductivity while,



aquiclude or aquitard are said to have low hydraulic conductivity (AARD, 2010; Bear,
2012).

The water table is found within the upper surface, closer to ground level. In
Alberta, the water table is typically within 5 meters of the surface (AARD, 2010). However,
as the topography of the land changes so can the depth of the water table. The properties
of the sediment under the water table and above the aquifer dictate how quickly water is
able to move through the system. Regions that have sediment with large connected pore
space will allow the water to flow more quickly between various regions within the
ground water system. Typically in Alberta, the sediment properties are in between that of
an aquifer and an aquiclude (AARD, 2010).

The susceptibility of groundwater to contamination from surface sources can vary
greatly from place to place and as mentioned above, all groundwater sources are not the
same. There are two main types of aquifers; these are confined and unconfined. Confine
aquifers, are aquifers that occur under geologic formations that have a very low hydraulic
conductivity, making it much more difficult for water, and contaminants to pass through.
Water in this type of aquifer has more protection from contaminants than others.
Conversely, unconfined aquifers are aquifers that are not overlaid with rock having low
permeability. Typically, these wells are shallower and occur closer to the surface. Not
having a protective layer with low permeability between the aquifer and the surface
makes these types of aquifers more susceptible to contamination from surface sources
(AARD, 2010).

Surficially, many factors can play a role in the vulnerability of groundwater. The
vulnerability of a groundwater sources are said to be independent of the pollutant and
instead relies upon environmental factors such as land use and soil variables (AARD,
2010). Surficial qualities in combination with the aquifer qualities are associated with the
risk of contamination of groundwater. In particular, unconfined shallow aquifers
comprised of sand/ gravel are at a higher risk of contamination groundwater
contamination due to the proximity to pollutants, lack of protection from an impermeable

rock layers, and quick recharge from the surface. Areas are at an even higher risk of



contamination if there are sources of pollution in the area, particularly agriculture. Due to
the high volume of farming in Alberta, this is a problem particularly in southern Alberta
(AARD, 2010). Groundwater analyses in Alberta for nitrate, E. coli, and total coliforms
reveal that contaminates can leach into the water table, which could affect the water
quality of wells for drinking water that are close to farming operations (McCallum et al.,
2008; Olson et al., 2008). Conversely, the safest aquifers are those that are confined with
a very thick (30m or greater) layer of unfractured clay or shale, due to the extremely low
permeability of these materials. In such groundwater systems, it can take 1000 years for
water to permeate the rock and travel through to the aquifer (AARD, 2010).

A common tool used to determine groundwater vulnerability is the DRASTIC
method which is an application designed by the National Water Well Association_(NWWA)
and the United States Environmental Protection Agency (USEPA). This index serves as a
relative evaluation tool. The assumptions of this model are that the contaminant is
introduced to the groundwater from the surface. The mobility is due to precipitation. The
pollutant is mobile in water and the area of the model is greater than 100 acres (0.41
km2). The acronym stands for: Depth to water, Net Recharge, Aquifer Media, Soils,
Topography, Impact of vadose zone, and Hydraulic Conductivity. This index is used by
introducing predetermined rankings (r) and weightings (w) to each of the variables. This
equation can be seen in Equation 1.

Drastic Index = D,.D,,+R.R,+AAw+S:Sy+T, T+l 1,+C,Cy Equation 1

The greater the depth (D) to the available groundwater, the longer it takes
contamination to reach the aquifer. This value is typically based on water well log data.
The net recharge (R) value is the amount of water that enters the aquifer. While an
increased amount of water recharge can dilute the pollutant, at the same time, recharge is
a major pathway for contamination transportation. The net recharge can be estimated
based on a mass water balance using precipitation, evaporation, and runoff values as
inputs and outputs. The aquifer media is rated based on the composition of each layer in
the media. The higher the permeability of all the media, the higher the risk of

contamination. The type of soil can affect the types of pollutants that can pass through.



The soil type can also affect the microbial, and breakdown processes of both chemical and

microbial contaminants. Table 1 is an example of the proposed ratings for different soil

types.
Table 1. Soil Type Rating System Proposed by Aller et al. (1987)
Range Rating
Thin or absent 10
Gravel 10
Sand 9
Peat 8
Shrinking and/or Aggregated Clay 7
Sandy Loam 4
Loam 5
Silty Loam 4
Clay Loam 3
Muck 2
Non-shrinking and non-aggregated clay 1

Topography (T) can also have an impact on groundwater quality. Particularly the
slope of the land can be associated with runoff, which can determine whether the
contaminant is more likely to be part of the runoff or more likely to infiltrate into the
ground. Low degrees of slope will have less runoff and therefore any contaminants would
be more likely to infiltrate into the ground. The vadose zone (V), also referred to as the
unsaturated zone, is associated with how water is able to more within the groundwater
system. Zones with a higher permeability are at a higher risk of contamination as
pollutants are able to move more freely between zones. Finally, hydraulic conductivity (C)
refers to the fractures of the aquifer, which is associated with the movement of water
within the ground. The higher the hydraulic conductivity, the higher the risk for
contamination is. Overall, the higher the final value of the DRASTIC index, the more
susceptible the aquifer is to becoming contaminated.

Although this method was developed over 35 years ago, this method is still widely
used today (Babiker et al., 2005; Panagopoulos et al., 2006; Rahman, 2008; Neshat et al.,
2013). It is particularly favoured in applications of geographic information systems (GIS) as

it allows for efficient analysis and capacity to handle large data sets that cover a wide



geographic area (Babiker et al., 2005). Additionally, GIS allows for visualization of the final
classification. Advancements to this model include using this method in conjunction with
statistics and geostatistical techniques to enhance the ratings and weightings in the model
(Panagopoulos, Antonakos, and Lambrakis, 2006). A study by Neshat et al.,, (2013)
demonstrated the DRASTIC model was an accurate method for determining the risk of
non-point source pollution especially in areas where agriculture was a major industry.

Alberta Agriculture and Rural Development have completed aquifer vulnerability
mapping for the province. Although the DRASTIC method was not used, a similar method
was utilized. The modified version of the Aquifer Vulnerability Index (AVI) developed by
Van Stempvoort et al. (1992 and 1993). This method uses inputs similar to those used in
the DRASTIC method, such as the permeability of geologic features, depth to aquifer, and
surrounding geologic material. After combining the various inputs, the vulnerability of the
aquifer in each region was ranked as high risk, medium risk and low risk. Here, high risk
means that it takes a short amount of time for surface water to percolate through the
ground material and into the aquifer. This type of contamination can take a few years to
occur, while low risk of contamination areas would take thousands of years for
contaminated water to percolate through the ground material to reach the aquifer (ARSD,
2005).

While it is recognized that the intent of this research is not to produce an aquifer
vulnerability assessment or specifically use the DRASTIC method. As mentioned above,
surface and groundwater do not function independent of each other and due to this it is
important to take into consideration all factors that may play a role in modeling water
well contamination. Therefore, factors that make an aquifer more vulnerable to
contamination such as variables used in the DRASTIC method will be taken into

consideration in this study.

Total Coliform
‘Total coliforms’ is the general classification for rod-shaped (bacilli) gram-negative
non-spore forming bacteria. Typically, these bacteria are aerobic but can also be

facultative anaerobic, having the capability to survive in both aerobic and anaerobic



environments (World Health Organization, 2004). A gram stain can be used to distinguish
gram-negative from gram-positive bacteria. Gram-negative bacteria show up as a red
colour as the crystal violet stain used in a gram stain is not able to fully penetrate the thick
multilayer the cell well (Maloy et al., 1994). It is important to distinguish the difference
between gram- negative and gram-positive bacterium as they have different structures
and internal processes, and therefore need different approaches for treatment.

Coliform bacteria are wide spread in the environment and include but are not
limited to the genera Escherichia, Citrobacter, Klebsiella, Enterobacter, Serritia, and
Hafnia. These genera can be found in faecal environments such as the intestines of warm-
blooded animals as well as the natural environment including in the structure of plants
and soil. While the presence of total coliforms does not necessarily indicate that a harmful
bacterium is present, it is a good indication of the cleanliness of an environment (World
Health Organization, 2004). Due to this, a total coliforms count is a widely used indicator
of potable water quality in North America. The total allowable limit for total coliforms in

drinking water is zero total coliforms per 100 millilitres (Weiner, 2012).

Faecal Coliforms

A subgroup of total coliforms, used to indicate faecal contamination, faecal
coliforms encompass bacteria that are of both faecal and non-faecal genera. For example,
Klebsiella coliforms are classified under the faecal sub-group, however the major source
for this genus is typically textile factories including pulp and paper mills. However, the
source of most faecal coliforms contamination comes from farms in the form of animal
waste or from septic beds in the form of human sewage. Faecal coliforms are another
indicator used to measure water quality (Wiener, 2012). In this thesis, the specific faecal

coliforms species that will be focused on is Escherichia coli (E. coli).

Escherichia coli

This bacterium is a subgroup of the faecal coliforms group, and is commonly found
in both human and animal faecal matter. It is very rare to find the presence of E. coli
without also finding faecal pollution. Presence or absence of E. coli is considered the most

reliable indicator of faecal contamination. As a result, testing for this bacterium is

10



regarded as the optimal choice for drinking water surveillance (World Health Organization,
2004). Certain strains of E. coli, for example E. coli 0157:H7, can cause gastroenteritis
related outbreaks and even deaths as occurred in Walkerton, Ontario in 2000 (Hrudey et
al., 2003). The maximum allowable limit of E. coli in drinking water is also zero colonies

per 100 millilitres as well (World Health Organization, 2004).

Environmental Variables

Many studies that have examined the contamination of surface waters with Total
Coliforms (TC), Escherichia coli (EC), and other microorganisms, as a result of
environmental conditions such as run-off, increased precipitation, and effects of
seasonality (Dorners et al., 2007; Hofstra, 2011). One of Canada’s recent incidents of well
water contamination that has happened in the recent past of Canada occurred in
Walkerton, Ontario. This incident can provide valuable information on how the
environment can impact the contamination of water wells that are sources of drinking
water. First, Walkerton is situated on a surface where the geologic conditions are
considered very poor. This means there is a large amount of highly fractured rock
surrounding the water wells allowing recharge between surface and ground water to
occur very quickly. In addition to the poor geologic conditions, one of the wells was very
shallow. Another factor in this occurrence of contamination was the distance between
water wells and proximity to farming operation. Also, these wells were located within a
close proximity to two different farms that served as a potential for point source faecal
contamination. In particular it was previously known that certain wells were susceptible to
surface water influence. These environmental factors, in addition to 70 mm of rain that
fell within a few days were enough to carry the E. coli into the drinking water well
supplying the town’s drinking water causing contamination. In this case, even though
groundwater was delivered to residents of the town through municipal facilities, the
chlorine treatment of the water was improperly managed leading the treatment method
ineffective (Hrudey et al., 2003).

A study conducted by Wallender et al., (2013) looked at factors that contribute to

contamination of untreated groundwater system and gastroenteric disease outbreaks.
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This study was completed by assessing disease outbreaks that were associated with the
untreated groundwater used for drinking and then examining the factors that contributed
to these outbreaks. Commonly, these wells were contaminated with either human waste
(from septic systems) or animal waste. This study found that most often the improper well
design, unsatisfactory upkeep of the well, and the improper location of the well
(inadequate setback from septic tanks, and waste site) were contributing factors to
contamination. A geologic factor found to be significant was lithology that allowed for the
rapid transport of water from the surface into the groundwater system. This was
measured using a groundwater vulnerability maps. The environmental factors found to be
significant were heavy periods of rainfall, which lead to flooding events. Additionally, wells
located in depressions or downhill were more likely to become contaminated.

Richardson et al., (2009) examined the relationship between climatic factors,
environmental factors, and the contamination of E. coli and TC in drinking water wells in
England. First, a univariate analysis was undertaken using a chi-squared test to determine
significance of each variable. Then only the variables that were significant at the 98%
confidence interval (Cl) were included in the multivariable logistic regression model.
Significant variables included region or sample, year of sample, month of sample, supply
type (domestic or commercial), treatment (treated or untreated), the reason for sampling,
water source, amount of rainfall on previous day, rurality (population density), density of
cattle and density of sheep per km2. Presence absence data was used as the dependent
variable in a logistic regression and the environmental variables listed above were used as
independent variables. The variables in the multivariate analysis were chosen based on a
backwards selection method, eliminating the insignificant (p>0.1) variables one at a time.
The multivariate model determined the year and month of the sample to be significant. To
account for the uneven number of samples taken at each individual water well, the
number of samples taken from the site inversely weighted the sampling locations. The
variables that proved to be significant in the regression model includes year and month,
classification, source, treatment, amount of rainfall on previous day, and sheep density

(km2). These results demonstrated seasonality to groundwater contamination where
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levels of contamination are highest in spring. Another interesting correlation is that sheep
were considered significant but cattle were not. The authors deduced this to the
relationship to an E. coli to manure ratio. While cattle do produce more manure, sheep
actually have two times the concentration of E. coli in their faeces than cattle.
Additionally, the amount of rainfall one day before the sample was the climatic factor with

the most significance.

Climate Change

The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental
body that reviews and synthesizes peer reviewed and non- peer review research
pertaining to climate change and climate monitoring. This organization produces
synthesized reports pertaining to the changing climate (IPCC, 2010). These reports state
that extreme weather events such as heavy rainfall events, and tropical cyclones are
increasing specifically in the North Atlantic Ocean (McMichael et al., 2006; Bouwer, 2011).
The scientific community attributes this increase in natural disasters to anthropogenic
drivers of climate change. Based on climate modeling, forecasters predict that by 2100,
global, temperature will rise between 1.4°C and 5.8°C. Higher latitudes will experience a
greater degree of climate change than central latitudes. This is an issue as temperatures
increase climate becomes more variable (McMichael et al., 2006).

Heavy rainfall events and resultant floods are increasing in frequency and
magnitude as the climate increases (McMichael et al.,, 2006). Flooding is the most
frequently occurring natural disaster, which at the local scale is affected by the amount of
rainfall received, topography and resulting run-off, water evaporation, and in coastal
regions, sea level. These local scale impacts can be mitigated through land use practices
including urbanization, and forestry methods, which will be elaborated on in the further in
this section. At a global scale, the driver of these types of events is predominantly the El
Nifio Southern Oscillation (ENSO). Driven by ocean temperatures, this cycle affects,
atmospheric pressure, trade wind patterns, and resultantly weather, particularly rainfall.
As the temperature rises, these ENSO episodes are lasting longer and are producing more

variable climatic conditions. Over last 30 years, the number of individuals who have been
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affected by this weather events related to the ENSO has greatly increased (McMichael et
al., 2006).

In some areas, local populations are able to adapt to the changing frequency and
magnitude of naturals disasters occurring through various adaption methods (McMichael
et al., 2006). However, in some regions the rate at which these natural disasters are
occurring is more frequent than risk reduction measures can be achieved. This can prove
to be disastrous when taking into account the economic burden that is incurred from
increased natural disasters (Bouwer, 2011). This can also lead to health implications when
a population is stressed beyond their ability to adapt to the changing environment

(McMichael et al., 2006).

Flooding and Urbanization

While this thesis focuses on flooding in rural areas and related water well
contamination, rural flooding cannot be considered independent of urban influences.
Urbanization is a growing trend globally with the population of urban residents increasing
by about 60 million people a year. It is estimated that six out of every 10 people will live in
an urban city by the year 2030, and seven of 10 in the year 2050 (WHO, 2014). With a
growing urban population, urban centers are growing due to urban sprawl to
accommodate the influx of people. The method by which urbanization and urban sprawl
occur is through the development of natural land into features of a built environment
containing many impervious surfaces (Lee et al., 2006; Sheng and Wilson, 2009). There is
evidence that increased urbanization alters the natural landscape of watersheds,
modifying the risk of flooding in certain areas. Studies show that urbanization on a
watershed can change the geomorphology of river channels, vegetation that serves
riparian functions along riverbanks, and stream flow characteristics. As well, increased
area of impervious surface increases the frequency and magnitude of flooding. By
changing the natural features, the relationship between the hydrologic cycle and the earth
is altered. Traditionally, precipitation will be absorbed into the surface of the earth,
however, if an impervious surface is constructed, water can no longer absorb into the

ground, and instead is forced to run off. This can cause increased pooling of water in low

14



laying areas as well as increase the amount of pollution that is carried downstream (White
and Greer, 2006; Sheng and Wilson, 2009). With evidence demonstrating that climate
change is increasing the frequency and magnitude of rainfall events associated with
flooding, and that urban sprawl is changing the dynamics of how the earth is able to
respond to increased rainfall, the impacts that these two influences have will only

continue to increase over time.

Health Effects of Flooding

There are both long-term and short-term health effects that result from flooding,
although the long-term effects are less well understood (Alderman et al., 2012). A study
conducted by Pitt (2008) post flood in the counties of Hull, Worcestershire, and
Gloucestershire, United Kingdom, reported that 64% of individuals affected by the flood
reported adverse health effects. The adverse mental health effects included anxiety,
heightened stress, and depression and adverse physical affects which included dermatitis,
chest infections, and heightened episodes of asthma and arthritis. In this study, 70% of
individuals who had to evacuate their residencies because of the flood reported adverse
effects on their mental and physical health. Long-term health issues resulting from the
flood were stress and anxiety related debt issues, anxiety due to the loss of security and
home (Gray, 2008).

Water associated with overland flooding serves as a vector to carry microbe-
causing illnesses from one location to another. There is also strong evidence to suggest a
link between heavy rainfall events and waterborne outbreaks of disease (Hrudy et al.,
2003; Hofstra, 2011). Examples of the link between heavy rainfall causing flooding and
contamination of drinking water sourced from a water well that have results in outbreaks
of disease and death can be seen below. One of the largest outbreaks in the United States
was in Milwaukee, Wisconsin in 1993, which resulted in 403,000 cases of gastroenteritis
and 54 deaths caused by the contamination of ineffectively treated municipal water after
a heavy rainfall (Auld et al., 2004). In Walkerton, Ontario in 2000 there was an outbreak of
over 2,300 cases of gastroenteritis of which 65 cases needed hospitalization, and seven

deaths occurred following a heavy rain event (Hrudey et al., 2003). Not only does
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contamination of drinking water well pose a risk of harm to individuals, but it also puts a
strain on the health care system with increased number individuals requiring
hospitalizations. As the frequency and magnitude of natural disasters such as flooding,
heavy rainfalls, and hurricanes increase due to global warming (Few, 2004; Hofstra, 2011),
it is important to examine water contamination as a results of these events and determine

risk factors that may contribute to the contamination of private drinking water wells.
Regression Modeling

Aspatial Regression Models

Regression modeling is a commonly used tool across many disciplines. The main
goal of such analysis is to model the relationship between a dependent variable and one
or more independent (also called explanatory) variables. Although there are many
different types of regression, the simplest multivariable linear regression can be seen
below in Equation 2.

Y=8+Bx+Bx,+....+€ Equation 2

In the above equation, Y (the dependent variable) is modeled based on the
equation for the line, wherein the beta values (B) are the estimated parameters, x is the
value for each independent variable, and € is an error term. The B parameters are
estimated using the ordinary least squares (OLS) method. This method optimizes the
equation of the line to minimize the sum of vertical squares between the known
observation and the line created. However, this type of regression can only be used if all
assumptions of the OLS method are met. The assumptions for this regression are as
follows. The relationship must be linear. The square matrix of the independent variables
must be invertible; therefore, there must be no multicolinearity between the independent
variables (high correlation is generally defined as correlation greater than 0.7). The error
term must be homoscedastic, meaning that the error terms must have a constant
variance. The error must also be independently distributed, meaning that there is no
(spatial) autocorrelation. If all these assumptions are met then the estimates are is

considered Best Linear Unbiased Estimators (BLUE) they have low variance, making the
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estimates more reliable. Here, unbiased means that the mean of the estimator equals the
true parameter that is, there is no systematic error, best means with minimal variance
(which implies spatial stationarity) and no spatial autocorrelation. The assumptions on the
spatial properties of the error will be addressed further in this section (Chatterjee and
Hadi, 2006).

When data is not normally distributed and does not meet the aspatial assumptions
of an OLS linear regression, an alternative method that is commonly used is a generalized
linear model (GLM). A non-normal distribution of data is seen in binary data and can be
seen in count data. A GLM method can be used with both continuous and discrete data.
This model uses less stringent regression assumptions so different data types can be
utilized. There are three parts to a GLM. The first is a random component, which is a
function of the response variable and probability distribution. The second is a systematic
component, which is the relationship between the explanatory variables. The third is the
link function, which is the relationship between the random and the systematic
components. It is the link function that allows the assumptions of a traditional regression
to be less stringent and the ability to model data and relationships that do not meet OLS
assumptions (Breslow, 1996). The general equation for a GLM can be seen below in
Equation 3.

YM=BX+E Equation 3

In this equation, Y is the value of the dependent variable, which is a function of the
beta value (B) multiplied by the value of the independent variable (X) as well as the error
term (E). The M term is unique to GLMs, and is the matrix of the coefficients that defines
the transformation of the dependent variable. This term is specific to the type of GLM
chosen, corresponding to the link function.

Although GLMs are a less stringent version of the traditional linear regression
model, there are still assumptions that must be met in order to produce the most accurate
and most interpretable model. The first, assumption, much like the linear regression, is
that the residuals must be homoscedastic, normally distributed, and independent of each

other. This is due to the method used to calculate the inferential statistics in the GLM
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models, the chi- squared test. This test has assumptions of its own. The chi-squared test
requires the distribution of the error to be independently, identically, and normally
distributed. If the error is distributed in a heteroscedastic fashion, rather than
homoscedastic, this produces a higher degree of variability in the error, which produces a
less reliable model. This also applied to the independence of the residuals (Dobson, 2002).
Mitigating the issues associated with data that exhibit properties of spatial dependence
and heteroscedasticity will be explored further on in this section.

There are many different types of GLMs available for use. One assumption of the
GLM pertains to choosing the correct identity of the GLM for the data that is being used.
This assumption states that the identity must be specified properly using the correct link
function. The type of data being used determines the link that should be used in the GLM.
For example if the data is count data and has a Poisson distribution, a log function should
be used but if the data is binary, then the logit link function should be used (Breslow,
1996).

Another assumption of the GLM is that the variance function, which relates the
mean to the variances, must be correctly specified. Examples of variance functions are log,
logit, probit. As well more specifically for a Poisson GLM, the data must be equidispersed,
meaning that the mean must equal the variance. If the data does not met the assumption
of equidispersion, the data could either be overdispersed where the variance is greater
than the mean, or underdispersed where the mean is greater than the variance
(McCullagh and Nelder, 1989). If the data is overdispersed a quasipoisson model, or a
negative binomial model should be used (Ver Hoef and Boveng, 2007), whereas if the data
is underdispersed a Conway Maxwell Poisson distribution can be used (Shmueli et al.,
2005).The equation used for a Poisson regression specified with a log link can be seen

below in Equation 4.

In(y)=4+Bx,+ X, +..+ BX, +€ Equation 4

Very similar to a simple multi-linear regression, the dependent and independent

variables are related linearly. However due to the non-normal distribution of the data, the
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dependent and independent variables are related through the log function (In). In this
equation it is the log of the dependent variables, and is the calculated as the exponent of
the natural logarithm (Euler—Mascheroni constant = 2.71828) for the independent
variables. Specific to Poisson models, an offset can also be added to the regression, which
enables the model to account for an uneven sample/count distribution that can be
present in the dependent variable. Poisson regression models are also referred to as log-
linear models as the offset must be logged when fitting the regression equation to

constrain the offset to one (Dobson, 2002).

Regression Modeling with Spatial Data

As mentioned above, there can be many problems associated with the statistical
reliance when using spatial data (Brunsdon et al., 1998; Brunsdon et al., 1999; Getis and
Aldstadt, 2010). Spatial data is known to commonly violate the previously mentioned
assumptions of a traditional regression model. In an aspatial OLS of GLM regression, the
assumption that the error be independently an identically distributed is commonly
violated by spatial data.

This can be informally described by the so- called Tobler’s first law of geography
that states, “[e]verything is related to everything else, but near things are more related
than distant things” (Tobler, 1970: 236). This spatial phenomenon often causes the error
in a regression utilizing spatial data to not have an independent distribution. As a result,
the model no longer has the smallest amount of variance. Therefore, the beta value is less
reliable as a result of the high variance. Methods of spatial autoregression (SAR) are
commonly used to properly address the issues associated with spatial autocorrelation.
These methods take into account the effect that neighbouring observations have on a
given observation. By taking into account the effect that neighbours have on any
observation, the model is able to better capture the underlying spatial processes that are
likely associated with the dependent variable, hence, with the observed spatial
autocorrelation (He et al., 2003). An autoregressive model can be described in Equation 5.

Y =pWY +¢ Equation 5
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In this equation, p (the Greek letter rho), denotes the autoregressive parameter of
the equation, and will range between negative one and positive one. W is the spatial
weights matrix, which can be defined based on proximity of neighbouring points, shared
borders, nearest neighbour, or contiguity matrices. Y is the dependent variable and ¢ is
the error (Plant, 2012). The basis of an autoregressive function is that the spatial
dependence is removed from the regression by multiplying the independent variables by
the inverse of the model’s spatial dependence. In doing so, the spatial dependence is
removed from the regression model, allowing for a reduction in the variance
(Fotheringham and Rogerson, 2008).

It is important to note that SAR does not use OLS to produce beta values, but
instead uses a maximum likelihood estimator (MLE). Due to autoregressive nature of the
model, where the regression is performed on itself (spatially lagged), and this model must
be estimated with a MLE or generalized least square. With these methods some of the
assumptions are released and the regression can be estimated, yielding estimates with
optimal properties. More commonly, MLE is used. This method predicts the beta values
based on the probability density function of the error to maximize the likelihood of the
function. However, MLE is only suitable for larger datasets, as the estimator can be biased
for small samples. As this method does not yield typical R?, the goodness of fit of a model
is frequently assessed using information criteria such as the corrected Akaike information
criterion (AlCc).

Another assumption that is commonly violated by spatial data is the error identical
distribution meaning that the event must be stationary over space. When a global
regression is applied to a study area, it assumes that the relationship between dependent
and independent variables is constant over the whole region. However, when the
relationship is non-stationary the regression will over predict the 8 coefficients in some
areas, and underestimate them in others (Brunsdon, 1998). Non-stationarity is strictly a
function of spatial data (Brunsdon et al., 1999). The requirements for stationarity are that
the data has a constant mean, constant variance, constant covariance, and no

directionality. These conditions ensure that the data has equal intensity and does not vary
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over space. When these conditions are not met, the non-stationarity creates a
heteroscedastic error (g), which will increase the variance of the error and weaken the
statistical inferential power of the model (Fotheringham et al., 2003).

Geographically weighted regression (GWR) is commonly used in order to deal with
this issue of non-stationarity in regression modeling and reduce the variance in the model.
A GWR is performed at a local level, and is able to address the issue of non-stationarity by
taking into consideration the changing relationships of the variable over space. In
contrast, a typical regression is performed at a global level. A general GWR equation can
be seen below in Equation 6.

Y, = f,(w) + B,(wx,, + B, (w)xy, + ..+ B, (W)x,, Equation 6

In a GWR the dependent variable (yi) is locally explained by Bi, which represents
the local coefficients of the independent variables at a given location (u). The GWR yields
many local regressions, typically the same number of regressions, as there are spatial
sample points. By decreasing the size from a global regression (simple linear regression) to
a local geographically weighted regression, this causes each regression that is performed
to be stationary, allowing the error to become identically distributed through the model.
This decreases the variance of the model, which increases the reliability of the beta
estimates. Model selection or geographically weighted regressions can include simple
linear regressions, Poisson regression models for assessing the geographic distribution of
rare event over a geographic region, and logistical regressions, which uses non-parametric
nominal data (Charlton et al., 2009). Bandwidths and kernels are used to determine the
range of the estimation for each local regression (Fotheringham et al., 2003).

The bandwidth of the kernel can either be fixed, where it is based on a certain
distance, or it can be adaptive, where it is based on a predetermined number of units
around each observation point. The latter is also referred to as nearest neighbour distance
(Getis and Aldstadt, 2010). This bandwidth can have a large impact on the matrix and the
resultant weighting function. If the kernel is too large than it will encompass most of the
study area, making it more comparable to a global estimate. This would defeat the

purpose of a local GWR. Conversely, if the bandwidth is too small, then this can result in
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having very few data points within each region. This would cause the degrees of freedom
to be small, creating a large standard error, which would render the model less
statistically significant. It can be difficult to choose the appropriate bandwidth. Often the
selection of a bandwidth is data led. As with all spatial weighted matrices, these created
bandwidths are arbitrary and are not present in nature. By creating these arbitrary breaks,
the relationship seen between dependent and independent variables, are significant
globally, but may not be significant locally. In part due to this issue, a GWR is better suited
to large dataset (Brunsdon et al., 1998).

A popular model selection for a GWR is the use of a Gaussian kernel with a
distance decay function. Here the further away a point is from the central event in the
kernel, the less influence it has on the model (Brunsdon et al., 1998). This kernel is used to
determine the weighting function produced through the matrix. Higher weight is placed
on events that have a greater influence. The weighting function always had a sum of one.
Any point outside the bandwidth would be weighted as zero. The weighing function for

the coefficients (R) can be seen below in Equation 7.
ﬁ= X'wx)y'X'wy Equation 7

In this equation, a matrix weighting function determines the estimated R
coefficient. In this equation Wi refers to a series of weighting functions determined by the
chosen kernel, which is used to derive the diagonal of a created square matrix. The whole
term (X'W;X)? is the inverse of the variance-covariance matrix. The XTWiy term is the
weighted variance covariance matrix of the dependent variable (Charlton et al., 2009).
GWR has applications in different types of regression modeling and can also be applied to
GLM models where a geographically weighted generalized linear model (GWGLM) is
created. This model is an integration of the GLM and GWR equations above.

While a GWR can adequately address the issues of non-stationarity, which can
weaken the statistical power, there are some issues to be cognizant of when using this
model. This method does not address the other regression assumptions frequently
violated by spatial data; that the error be independently distributed. As previously

discussed, non-independent error distribution is generally associated with spatial
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autocorrelation. While not all spatial data is spatially autocorrelated, most of this time this
is the case (Brunsdon et al., 1999). The GWR model fails to take the potential for spatial
autocorrelation into consideration, and can sometimes even aggravate it. This is due to
the small regions created by the GWR. The events within that each local area may have
increased similarity compared to the global area, therefore inducing spatial
autocorrelation. Therefore, the model produced by in a GWR may not be completely BLUE
and it may be possible that the statistics are still weakened by spatial autocorrelation.
Furthermore, when there is spatial autocorrelation of the model’s error terms,
this can cause problems of undersmoothing which can affect the weighting function of the
kernel, ultimately altering the number of events that are taken into consideration for each
local regression. This can cause inaccurate estimations of the 8 coefficients, which creates
a higher variance of the error terms in the model (Brunsdon et al., 1999). Due to these
potential issues, it is important to also assess the spatial autocorrelation that is produced
in the error terms before and after modeling. Prior to modeling a test for global spatial
autocorrelation can be completed. The global spatial autocorrelation used the Moran’s |
(Spatial Analyst Toolbox) analysis. The formula for this analysis can be seen below in

Equation 8.
N Z,Zj w.'j(X,_X)(Xj_Y)

_ - Equation 8
> Ew, (X, - X)

1

The Moran’s | index is calculated based on a number of spatial units in the index
(N) determined by the number of nearest neighbours. The spatial units are determined
based on the sum of a spatial weights matrix (wj;), the variable of interest at each
individual point (X;), and the mean of all X variables (Xbar). The conceptualization of
spatial relationships was set as fixed distance band and the distance method was set as
Euclidian distance. The output for this analysis is a report, as the analysis is a global
analysis, it produces one value for the entire area.

Local method of spatial autocorrelation detection such as Getis and Ord’s G
statistic (Ord and Getis, 1995) can be completed after the GWR is completed to assess the

spatial autocorrelation of the residuals. Local indicators of spatial association (LISA) were
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used to determine the local spatial autocorrelation; a cluster analysis utilizing Getis and
Ord’s G*. The formula for this analysis can be seen below in Equation 9.

?=1Z?=1 Wi jXiXj Equation 9

n n
=12 ]=1%iX

G =

In Equation 9, the G statistic is calculated based on the sum of the weighted
distances between attributes at two different points (x; and x;). This is completed for all
spatial variables (n), added together, and then divided by summed values without the
weighting to produce the G statistic. These tests can give some indication as to whether
there are any spatially autocorrelated variables and where the spatial autocorrelation
occurs. Resultantly, identified areas of spatial autocorrelation can also indicate where the
statistics of the model may be more deficient due to the violation of regression
assumptions (Fotheringham et al., 2002).

Another area where error could occur in a GWR (Charlton et al., 2009) is that the
parameters that are run in the local regressions are decided at the global level instead of
at the local level. Due to this, it is possible that some of the variables decided at the global
level hold no statistical significance at the local level or variables excluded at the global

level are actually significant at the local level.

Applications of Spatial Regressions in Environmental Modeling

GWR is a common method being used in environmental modeling due to the non-
stationary processes of environmental. Additionally a GWR can be useful for policy as it
allows interventions to be tailored to a focused area where it is most needed or will be
most beneficial (Auchincloss et al., 2012). Below examples within the literature will be
highlighted.

Due to variability in pollution distribution, a GWR is well suited to such studies.
Mennis and Jordan (2005) used a multi variable GWR to assess environmental equality
based on air pollutants and various socioeconomic factors. For the GWR model, a
Gaussian model was selected. Although the authors experimented with different
bandwidths, selection was ultimately data led, as this method produced the lowest cross

validation score. They noted that smaller bandwidths were usually indicative of higher

24



spatial variability that occurred in the independent variables. Additionally, they pointed
out that it is important to ensure that bandwidth is not smaller than the size of the local
geographic regions being studied. These authors highlight the usefulness of combining the
technique of GWR with chloropleth mapping to reveal the area of non-stationarity of the
model. However, the authors refer to the GWR technique as an exploratory tool used to
show relations of non-stationarity. Using these methods, they were able to demonstrate
areas where the air pollution had a greater influence on poverty, for example. The local R®
values ranged from 0.05 to 0.97. While this article made a clear distinction between
spatial autocorrelation and non-stationarity, spatial autocorrelation in the GWR model
was not discussed.

Hu et al., (2012) used a geographically weighted regression to estimate ground
level particulate matter smaller than 2.5 micrometers (PM 2.5) concentrations as PM 2.5
likely emitted from anthropogenic sources has a demonstrated correlation with heart
related illnesses. First, a Pearson’s correlation analysis was performed to ensure there was
no multicolinearity among the independent variables. Variables with high multicolinearity
(>0.7) were removed from the model. This study used an adaptive bandwidth to
accommodate for the uneven distribution among the data points in study area. To choose
the best model of the GWR, the Akaike Information Criterion (AIC) was used. The model
with the lowest AIC value was accepted as the best model. The GWR model was compared
to an OLS regression and it was demonstrated that GWR produced a better r-squared
value and had the largest relative accuracy after an accuracy assessment of the predicted
values was completed. By modeling PM 2.5 using a GWR, this study demonstrated that
meteorological variables that influence the distribution of PM 2.5 vary over space. This
article addressed issues of spatial autocorrelation produced by the GWR model by
completing a test for spatial autocorrelation among the residuals. This test demonstrated
that were was no significant autocorrelation among the residuals. This confirmed that the
GWR was able to incorporate any of the error potentially associated with spatial

autocorrelation into the parameters of the GWR.
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Another area where spatial regressions are commonly used is in ecological
modeling due to the spatial autocorrelation and spatial non-stationarity within the
environmental data. Kupfer and Farris (2007) evaluated the use of an OLS global
regression model and the use of a GWR to predict patterns of montane ponderosa basal
areas in Sguaro National Park, Arizona. In the model, environmental variables were
included such as elements of topography (slope, elevation, steepness, and aspect), as well
as frequency of wildfire in each area and vegetation. The authors noticed that between
the aspatial OLS regression and GWR, there were changes in the both the significance of
variables and the direction of the relationship. This gives evidence that there are local
controls, which act upon patterns of montane ponderosa basal areas that are different
from what is seen in the global model. They conclude by saying the GWR model is a
superior method, as it is able to provide information on the fine scale relationships that
the global model used over large areas missed. The authors found that overall the GWR
model was able to reduce the residuals, reduce the spatial autocorrelation of the
residuals, as well as create a model that was able to show the variation is relationships at
a local level.

It is also possible to integrate non-parametric data sources with a GWR utilizing a
geographically weighted generalized linear model (GWGLM). Erener and Diizgiin (2010)
compare both aspatial and spatial methods of regression modeling to determine what
method is best when assessing the relationship between landslide occurrence (binary
variable) and various environment factors such as topography, geological parameters,
land cover, and triggering factors such as rainfall. The methods compared were a logistic
regression, a spatial regression, and a geographically weighted regression. The data was
prepared from various sources and data types; remotely sensed imagery (Landsat TM) was
used for the topological variables, methods of interpolation were utilized to achieve a
continuous surface of rainfall values and GIS layers. After the environmental variables
were prepared, they were then converted from vector data to a grid that had 30x30m
cells for the analysis. Once the regressions were completed, the probability was

reclassified into low, medium, and high categories using natural breaks. The authors

726



conclude that the spatial autoregressive model has better predictive power than the non-
spatial logistic model. The GWR was used on both the spatial and non-spatial regression to
assess how the variable coefficients differ at the local level. Overall, the authors found
that the combined spatial methods enhanced the overall predictability of the
environmental landslide susceptibility modeling.

Although the method of a geographically weighted regression does present with
some problems, the above studies demonstrates the ability of this method to mitigate
spatial non-stationarity. This method is most appropriate for datasets that have little
spatial autocorrelation but exhibit non-stationary processes. In order to create models
with minimal variance, it is essential that the processes that occur in spatial data are
corrected to decrease the variance in model. Many studies, which utilized environmental
data, favour the use of a GWR due to its ability to handle non-stationary data. The studies
above discussed the different methods that were used for model selection, and kernel
bandwidth selection. As well, these studies draw attention to two other attractive GWR
applications for visualization using geographic information systems (GIS) and for policy

strategy.
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Chapter Three: Methodology

Research Design

Within geography, there tends to be a divide between physical geography and
human geography and, although contained within the same discipline, very different
methods are used in these two sub disciplines (Pitman, 2005). Physical geography, like
many other hard sciences, typically uses quantitative methodology. Physical geography
also views the environment as a large system comprised of complex relationships (Egner
and Elverfeldt, 2008). This approach to physical geography is viewed as deductive and
confirmatory. The well-accepted research design of science uses methods of classical
statistics to validate models. This takes a traditional deductive hypothetical reasoning
approach to research (Haines-Young and Petch, 1986). Conversely, human geography
typically uses qualitative methodology. This approach is more inductive and exploratory in
nature (Johnson and Christensen, 2008; Pitman, 2005).

The field of geographic information systems (GIS) has grown and is a method that
many geographers are starting to utilize in research. Traditionally GIS comes from
geographic information science. Coming from a deductive epistemology the methodology
in GIS is traditionally also rooted in positivism, as there is heavy reliance on calculations,
mathematical formulas, and statistical models. Traditionally, this falls into a reductionist
framework, which is the philosophical position that believes a complex system to be
nothing but the sum of its parts. However, one of the issues with this philosophical
position is that model systems in nature can be very complex, for example, well water
contamination. Modeling in a reductionist manor, often is not able to capture the complex
relationships that are seen within system (Wilson and Poore, 2009).

Ludwig von Bertalanffy first introduced systems theory in the 1940’s. Contrary to
traditional reductionism in systems theory, a system can be defined as “a set of
interconnected parts which function as a complex whole” (Philips, 1992:195). Typically,
environmental systems are open as energy is transient, and outputs of one system can
feed into the input of another system (Egner and Elverfeldt, 2008). However, one of the

issues when using systems theory especially in a GIS, is that decisions must be made on

78



which variables to include in the system that one is trying to represent. Geographers use
general systems theory in order to make representations of the complex world within a
GIS. Specifically, systems theory is an interdisciplinary method that uses mathematical
models to organize, and describe complex environments. Due to the abilities of this
methodology and the ability to use this method within a GIS, the design of this research
will be based in systems theory. Particularly what makes this method well suited for a GIS
is that every part of the system is seen as an information system and GIS allows for the
easy integration of all these information systems (inputs) into the larger system
(Goodchild, 2004). Within systems theory, the system is always greater than the sum of its
parts. Due to the complex interrelationships of the system, this method attempts to look
at the system as a whole, rather than just one aspect of the system. However, with saying
that, systems can be modeled as part of subsystems, where each part of the system can
be placed within other systems. Here the output from one system will be the input to

another system (Strahler, 1980).

Area of Study

The study area is located in Southern Alberta. Specifically, the area of interest is
the Calgary Health Zone, which is depicted below in Figure 1 This zone contains one of
Alberta’s two metropolitan centers, the city of Calgary, as well as smaller municipalities
such as Canmore, Banff, and High River. As of 2011, this health zone had a population just
over 1.4 million people, which is the most populous health zone in Alberta. The Spray
River, Elbow River, and Bow River are the major rivers in the Calgary Health Zone. The
study area is approximately 205 km in length and approximately 206 km in width. The

study area is just under 40 000 km?.
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Study Area: Calgary Health Zone and Surrounding Areas
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Figure 1. Map of study area, the Calgary Health Zone
Data
Historical Data

Results of private drinking water well sample for total coliforms and Escherichia
coli (E. coli) were obtained dating back to June 19th, 2005. This data was obtained from
Alberta’s Provincial Laboratory for Public Health (ProvLab). The total coliforms and E. coli
results for untreated drinking water wells from private rural residences are based on
voluntary samples submitted to ProvLab. The method of analysis the laboratory uses is a
Colilert Enzyme Substrate. This produces a binary positive or negative result for both total

coliforms and E. coli.

Dependent Variables: Coliform Data
For the regression modeling the start and end date of samples that was used are

June 19th and September 30th, 2013. The resolution of this data is reported at the quarter
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section (1600m2). A summary of the ProvLab sample results can be seen below in Table 2.
Although there are 1266 sample results, only 839 (66.3%) of the tested samples are

geolocated and are usable in a geographic information system (GIS).

Table 2. Summary of Public Untreated Drinking Water Well Results

Result | Total Samples Percentage Geocoded Samples Percentage
TCEC | 856 67.5% 540 64.4%
TC'EC" | 92 7.3% 65 7.7%
TCEC | 320 25.2% 234 27.9%
Total 1268 100% 850 100%

When preparing data set for analysis, first the meridian, range, township, section,
and quarter section values were truncated into a unique quarter section identification
number (PID) that would be used to join the quarter section shapefile to the ProvLab data.
However, there were 79 sets of duplicate records where two or more samples had been
reported in the same quarter section. This occurs since many quarter sections have more
than one water well located within it. In order to create a join between the quarter
section shapefile and the data, the data had to be reclassified so the attribute ID was
unique. This involved summing the number of positive sample results occurring at all wells
and the total number of samples taken at all wells in each quarter section. This data was
all recorded to the unique PID of each quarter section. This method aggregated the
individual results of each well up to a quarter section.

After the data was reclassified, there were 530 quarter sections with data available
to be used in the analysis. However, only 470 samples could be joined to the unique PID
quarter section file in ArcGIS 10.2 (ArcGIS © ver 10.2, Environmental Systems Research
Institute, Redlands, CA, USA). This is likely due to reporting errors in the land location of

the water wells when the homeowners were submitting samples.

Independent Variables: Environmental Data

The environmental variables that were used in this analysis were collected from
various sources. Table 3 provides a summary of the data files, the source, and the datum
and projection of all data files that were obtained for use. The majority of the files were

obtained in the format of a shapefile (.sph). Shapefiles are the file type used in ESRI’s
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ArcGIS. The datum of the shapefile refers to which reference method is used to model the
shape of the earth, also known as the reference ellipsoid. The projection of the shapefile
refers to the coordinate system used to represent the three dimensional earth on a two
dimensional surface. It can be seen below that the datum and projection for most
shapefiles are Geographic Coordinate System (GCS) 1980 North American 1983 using a
North American Datum (NAD) 1983.

The water variables used were obtained through DMTI Spatial. Only polygons and
polyline shapefiles were obtained for analysis. The obtained layers included major water
regions, minor water regions, minor water lines, and minor intermittent/ slough regions.
The metadata indicates the accuracy of these layers are National Topographic Data Base
(NTDB) standard and are accurate down to sub-meter. These layers were last updated
2012.

The digital elevation model (DEM) was obtained from DMTI Spatial. The layer
metadata indicates the DEM is based on the Canadian National Topographic System (NTS)
and has a resolution of 30 meter pixels (1:50,000). The raster layer is current as of 2011.

Aquifer depth, obtained from IHS Energy, however no metadata is available for this
layer, and therefore the resolution and age of the layer are unknown.

Hydraulic Connectivity was obtained from Alberta Agriculture and Rural
Development (AGRASID) and as indicated by layer metadata, has a resolution of
1:100,000. Changes to the data were last made in 2001, but has been regularly maintained
since then.

Through the Flood Hazard lIdentification Program, Alberta Environment and
Sustainable Resource Development identifies areas of the province that are in flood
hazard zones. The flood hazard mapping identifies areas that would experience flooding
based on a 100 year flood. The delineation is broken down into 4 different classification.
Floodway is considered part of the river channel. In this region, the water has the fastest
flow of all zones, the water is the deepest, and resultantly, the most destructive. The flood
fringe is an area that occurs outside of the floodway. During a flood this region will

experience overland flood, however, the water moves at a slower pace, and usually less
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than one meter deep. Within the dataset flood fringe and overland flooding are classified
separately, as overland flooding is considered to be a special case of flood fringe by the
developers. Additionally, regions that are under review are available, but were not
included in this research. These layers were last updated August 9th, 2013 (AESRD, 2013).

The farming variables obtained from the 2006 Agricultural Census and is reported
by Soil Land Survey of Canada Polygons for both hectares of farm land, as well as number
of farms within each polygon.

The land cover data was obtained from Alberta Biodiversity Monitoring Institute
and is reported as square kilometers of each land category based on the classification of
remotely sensed images. Included in this classification is land annually cultivated for crops,
orchards, vineyards, bare agricultural soil, and grazing land for cattle. The accuracy of the
land cover classification was 75% when there were 11 classifications and 88% when the
classes were reduced into 5 general groups (ABMI, 2010).

More information on all layers used in the analysis can be found below in Table 3.

Table 3. Data Sources, Datum and Projection

and major streams,
rivers, and water bodies)

[shp]

SANDS

Shapefile Source Datum Projection
Well Test Results [Data  |Alberta Health N/A N/A

Eilel Services- Provlab

Calgary Health Zone Alberta Health GCS North UTM (10TM)
Boundary [shp] Services American 1983

Township and Range AltalLlS Through GCS North Unprojected
Quarter Sections [shpl [SANDS* merican 1983

City of Calgary City City of Calgary Data  |WGS 1894 UTM (3TM)
Boundaries [shp] Catalogue

Water (Including minor [DMTI 2013 though GCS WGS 1984  [NAD 1983

DEM [raster] GeoBase GCS North Unprojected
Aquifer Depth [shp] IHS Through SANDS  |GCS North Unprojected
Hydraulic Conductivity  |Alberta Agriculture  [GCS North UTM (10TM)
[shp] and Rural American 1983

Development

(AGRASID)
Precipitation June 2013 [Environment Canada |Geographic Lat, Long
[data file] Coordinate
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Flood Impacted Zone Environment Canada |GCS North Unprojected

[shol merican 1983

Abandoned Wells [Data |Alberta Energy N/A N/A

File] Regulators

Farms [shp] 2006 Agricultural GCS North 10TM AEP Forest
Census merican 1983

Land Cover Data [shp] Alberta Biodiversity  |GCS North 10TM AEP Forest
Monitoring Institute |American 1983

Population and 2011 Census GCS North Unprojected

Dwelling Densitv merican 1983

*SANDS= Spatial and Numeric Data Services

Data Preprocessing

First, all files were converted to from the existing datum and projection to NAD
1983 CSRS UTM Zone 11N. This was completed using the Projections and Transformations
tool (Data Management Toolbox). Vector files were converted using the Feature Project
tool and raster layers were converted using the Raster Convert Coordinate Notation tool.
To avoid reference errors, it is important that all used layers have the same datum and
projection. The files were then added to a geodatabase using appropriate feature datasets
and corresponding feature classes. The advantage to using a geodatabase is that it
ensures that all layers have the same datum and projection. It also enforces data integrity
of all layers in that no data is accidently deleted or altered, which would affect the

integrity of the layer and resultantly the accuracy of the analysis (Longley et al., 2010).

Variable Creation

Interpolated Rainfall Surface

Data was obtained from Environment Canada in the form of a CSV file. This file was
then imported in ArcGIS 10.2. To produce the most accurate interpolated surface,
weather station values for the entire province were used; there are 242 stations recording
total rainfall (millimeters) in June 2013. All weather stations that had a record of zero
millimeters of rain were removed to ensure that only active stations were included in the
interpolation; there were 229 remaining weather stations with 24 of the 229 weather
stations residing within the Calgary Health Zone. The latitude and longitude coordinates of

each weather station (geographic coordinate system WGS 1984) were converted to NAD
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1983 CSRS UTM Zone 11N. Then, the interpolation method of universal Kriging
(Geostatistical Wizard) was used to remove any surface trends present to allow for the
most accurate predictions. This created a continuous surface of estimated rainfall values

for the month of June between the measured locations.

Elevation Derived Variables

Digital Elevation Models (DEM), which are specialized raster tiles used for
elevation, were downloaded from GeoBase. Tiles were extracted from regions 83A, 83B,
83C, 82N, 820, 82P, 82I, and 82J. The tiles where then converted from individual tiles into
one continuous, mosaic image using the Mosaic tool (Data Management Toolbox). The
pixels located between different images were averaged to create a seamless mosaic
image. After, the mosaic image was clipped to match the size of the Calgary Health Zone
by using the Extract by Mask Tool (Spatial Analyst), the raster was then converted to NAD
1983 CSRS UTM Zone 11N. Next, the slope of the Calgary Health Zone was derived using
the DEM as the input in the Slope Calculator (3D Analyst toolbox). Lastly, using the DEM of
the Calgary Health Zone, the aspect was created. The aspect, also known as the
directionality of the surface, has pixel values of negative one to indicate a flat surface and
values between zero and 360 degrees to indicate the direction of the slope. This variable

was calculated using the Aspect tool (Spatial Analyst toolbox).

Data Files

All of the remaining data files had the legal land description (LLD), based on the
Alberta Township Survey, included. The text data files were imported into Excel 2013
(Microsoft Excel© ver 2013, Microsoft Corporation, Redmond, WA, USA). In excel the LLD
were rearranged to match the PID (meridian, township, range, section, and quarter). The
guarter section value was then convert to the numerical equivalents; NE=80, NW=70, SE=
50, SW=60. These values were then concatenated to form the unique PID. This allowed
the information to be joined to the quarter section shapefile. The abandoned wells data
from the Alberta Energy Regulators also included information pertaining to lot, block, and
plan numbers. This is finer resolution than the quarter section. To have the same

resolution of all other data, the LLD was aggregated up to the quarter section. The
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aggregation process can be seen below in Figure 2. After the unique PID was created, the
files could then be added into ArcGIS and joined based on the PID. The shapefile was then

exported to a new shapefile for use in the analysis.

Quarter Section

Local Land Description
NW 1/4 NE 1/4
13 14 15 16
- 70 80
12 11 10 4
5 6 7 8 '
60 50
4 3 2 1
SW 1/4 SE 1/4

Figure 2. Aggregation of Dominion Land Survey Land Locations.

Data Extraction

First, the quarter sections with data were converted from polygon features to
point features using the Feature to Point (Data Management Toolbox) which produced a
center point (centroid) in each quarter section. Then, buffers (Analysis Toolbox) were
created around these points. The first buffer had a radius of 400m. This first buffer has the
same diameter of a quarter section. Other buffers used have radii of 800 meters, 1600
meters, 3200 meters, and 6400 meters.

The geoprocessing intersect tool was used to find all variable elements within each
qguarter section. For example, the quarter section layer was intersected with minor water
lines (a polyline feature). As some quarter sections included different segments of minor
water lines, the sum of the length of these segments was calculated using the summarize
function. This tool added the total length of the minor water lines in each quarter section,
which was organized by PID of each quarter section (e.g. 5070281980). If the layer that
was being summarized was a polygon, instead of having the total length calculated, the
total area was calculated (e.g. Major Water Regions). The summarized data was saved as a

text file.
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To find the distance from the quarter section to the nearest feature, for example,
distance to the nearest major waterway, the Near tool (Analysis Toolbox) was used to
calculate this distance. The calculated distances were saved as a text file. As the intersect
tool is not compatible with raster data sets, data from the DEM, slope, aspect, and rainfall
raster data sets were extracted using the Feature to Point (Data Management Toolbox)
tool. This tool placed a point in the center of each quarter section so raster data could be
extracted to this point. There were a total of 60, 811 quarter sections in the Calgary Health
Zone. Then, the Extract Values to Points (Spatial Analyst Toolbox) tool where the
underlying feature values were extracted to the point file. This was then saved as a text
file.

After data extraction, all text files were added to ArcGIS 10.2 and using the
centroid shapefile that contained the PID for all quarter sections, all of the text files were
joined using the joining feature of the unique PID. All records were kept (opposed to only
keeping matching records). This enabled null values, which would later be converted to
zero values, to be placed in the column where there was no data. No data would occur if
the feature in question, for example major water regions, were not present within the
buffered area (e.g. 400 meter buffer). The newly created table containing all created and
calculated variables was then exported to a text file, which was then imported into Excel
2013 for further analysis. This file serves as the master sheet to be used in the regression

modeling.

Historical Analysis Methodology

First, a visual representation of the percentage of positive test results for total
coliforms and E. coli that occurred during the study period, June 19th to September 30th
for the previous eight years (2005-2013) were graphed in Excel 2013. To determine if the
percentage of positive samples that occurred during the study period, was statistically
different from the same time period in previous years, a Wilcoxon Rank Sum Test (z-test)
was used in S+ 8.2 (S+® 8.2, ver 8.2, TIBCO Spotfire, Palo Alto, CA, USA).

This test determines if the median percentage of positive test results that occurs in

2013 for total coliforms, and E. coli were greater than in previous years. As well this test
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can indicate whether the study period (2013) has a greater number of positive test results
than occurred in previous years. For this analysis the one-tailed version of the test was
used and was tested at the 95% CI. This analysis was also completed for the number of

samples submitted during the study period, compared to the previous eight years.

Descriptive Methodology

Spatial Distribution of Samples

To evaluate both the spatial distribution of the sample results for total coliforms
and E. coli graphical and cartographic representations were created. Histograms were
created in Excel 2013 to represent the number of sample processed each day between
June 19th and September 30th. The first histogram comprises all samples. The next two
histograms produced were total coliforms samples, and total E. coli samples. These
histograms separated the positive and negative sample results. These three graphs
demonstrated the temporal distribution of samples during the study period.

The pattern of all sample locations was also evaluated to assess the distribution of
the locations. In ArcGIS 10.2 the nearest neighbour was calculated using Average Nearest
Neighbour (Spatial Statistics Toolbox). As the input feature, the centroids of sample
quarter section were used. For this analysis, the null hypothesis for the nearest neighbour
analysis is that the sample locations are randomly distributed. This null hypothesis is
either accepted or rejected based on the statistical significance of the z-score. If the z-
score is not statistically significant, then the null was accepted, and could be concluded
that samples are not clustered.

The spatial distributions of sample results were evaluated both globally and locally.
In these analyses, total coliforms, and E. coli were evaluated separately. Spatial
autocorrelation was calculated in ArcGIS 10.2 utilizing Moran’s |, and Getis and Ord’s G
(Spatial Analyst Toolbox) was used to demonstrate hot spots (local clusters of positive test
results), and cold spots (local clusters of negative test results).

For this analysis, the conceptualization of spatial relationships (weighting function)

was set as fixed distance band and the distance method was set as Euclidian distance as
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well. The output for this analysis is a cartographic representation depicting the clusters of

positive (hot spot) and negative (cold spot) test results.

Analytical Methodology

Analytical Regression Modeling

The analytical regression modeling utilized the methods typically seen in Land Use
Regression (LUR) modeling and other environmentally based regression models (Sliva and
Dudley Williams, 2001; Wheeler et al., 2008), where buffers were created around the
centroids of each quarter section that had sample results. The area or length of each
feature contained within each buffer was calculated utilized in the methods outlined in
the Data Extraction section.

To determine which buffered value would be included in the regression, a
correlation analysis was performed between the number of positive test results and each
of the independent variables, for the 400m, 800m, 1600, 3200m, 6400m buffers, as well
as the distance to each feature calculations. For the correlation analysis, Spearman’s
correlation was used, as the data is non-parametric. For each variable, only the variable
with the highest correlation coefficient was chosen to be included in the initial regression.
There were 17 independent variables in this initial stage of the regression.

Total coliforms and E. coli were outcomes in two separate regression models. For
both models, an offset of total number of samples submitted in each quarter section to
account for the uneven sampling distribution. The offset was included as the log function
of the number of samples to include the offset as an additive feature of the regression
equation. Due to the assumed non-normal distribution, count nature of the data, and
many zero values, a Poisson regression model was decided upon for both the total
coliforms and the E. coli model. Additionally, due to the assumption of equidispersion
among the dependent variables, a dispersion test was used (AER library) to determine if
the Poisson regression was either overdispersed or underdispersed, and thus in violation
of the assumption of equidispersion. If the data was underdispersed then a Conway—
Maxwell Poisson distribution was used and if the data was over dispersed then a

guasipoisson regression was used.
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After the initial Poisson general linear regression model was run R 3.0.0 (R: A
Language and Environment for Statistical Computing©, ver 3.0.0, R Core Team, Vienna,
Austria). The correlation of the coefficients computed to ensure there was no
multicolinearity between the independent variables. The correlation of the coefficients
was used rather than a traditional correlation analysis due to the count nature of the data
and the assumptions that surround the traditional correlation analysis methods, the
assumption of normality. A conservative threshold was used and all variables that had a
correlation of coefficient greater than 0.65 were removed. After highly cross-correlated
variables were removed, a backwards stepwise method was use to select variables for the
final model. This was conducted by removing the variables that were not significant at the
95% confidence interval, proceeding from least significant. After a variable was removed,
the model was re- run to determine which variable would be removed next. This process
was completed until all variables were statistically significant. Near the end of the variable
selection methods, the threshold of a 95% Cl was modified to be more flexible and
included variables that have been deemed important in the literature review but did not
meet the 95% Cl criteria (Richardson et al., 2009).

To determine the quality of the model the residual deviance was used, as the
guasi- poison regression model does not compute an AIC. As well, McFadden’s pseudo R?
was used to indicate the goodness-of-fit, which can be seen in Equation 10.

ln(LM>)

Equation 10
In(Z,)

R’yer =1—(

The heteroscedasticity of the residuals of the aspatial models were judged based
on the Breusch-Pagan test (Imtest package). If there is heteroscedasticity of the residuals,
this may be indicative of spatial clustering. However, this test statistic is based on a
normal distribution, in which this data does not have, therefore this test is cautiously
used. If the Breusch-Pagan test indicates heteroscedastic errors, then spatial methods are
introduced. The method of a geographically weighted regression (GWR) was used if there
was statistically significant spatial clustering.

Utilizing a Moran’s | test, the spatial autocorrelation of the residuals at the global

level was also assessed. This was to ensure that the assumptions of the model are not
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being violated inducing added variance. If there was statistically significant spatial
autocorrelation as detected by the Moran’s | statistic then a spatial autoregression (SAR)

was used to reduce the variance.

Risk Map Generation

To produce the risk map, the equation of the line that was created based on the
results of the regression model, was used to predict the environmental risk of
contamination in all quarter sections where results were not available. Using the
significant variables from the regression models, first, the values for the variables
extracted in ArcGIS 10.2. These values for all variables were then attached to each quarter
section based on the PID. The values were extracted to an Excel spreadsheet. The
extracted values and the beta values were entered into the equation seen below in
Equation 11.

Y = exp(Bl"l*BZXZ """ BiXi) Equation 11

In this equation, the predicted values in quarter section (Y) are derived from
multiplying the beta (B) values with the value for the variable (X). Then all the variables
are added together and raised to the power of the natural logarithm (e=2.718). The
predicted value for each quarter section was calculated in Excel 2013, and then is
imported into ArcGIS 10.2. This unique PID was used to join the spreadsheet with the
quarter section shapefile. To create the symbology of low medium and high risk, quartile
breaks of the collected sample values are used; the first quartile is low environmental risk,
the second and third quartiles are medium environmental risk, and the fourth quartile is

high environmental risk.
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Chapter Four: Results

Historical Comparison

Figure 3 demonstrates the number of samples submitted historically during the
same study period of this research. This graph demonstrates that there were more
samples submitted in 2013 than in the years 2006 through 2012. However, the number of
samples seen in 2005 surpasses the number seen in 2013. Statistically, what is visually
seen on the graph is confirmed using Wilcoxon Rank Sum test. The results from this test

can be seen below in Table 4.

Historical Number of Water Samples Submitted During
Study Period
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Figure 3. Number of water samples submitted for analysis during the study period (June 19"
September 30™) 2005-2013.

This analysis reveals that for the years 2006-2012, the median number of samples
that were analyzed is statistically greater than 2013. However, in the year 2005, the
number of samples that were analyzed is statistically greater than the number analyzed in

2013 (z = 3.888, p-value = 0.0001).
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Table 4. Number of Samples: One tailed (greater than) Wilcoxon Rank Sum Test (Z-
test)

Year Mean T-value P-value
2005 19.82 -3.88 0.999
2006 5.664 3.522 0.0003
2007 5.346 3.803 0.0001
2008 5.923 3.298 0.0006
2009 5.087 3.940 0.0001
2010 5.041 3.942 0.0001
2011 5.606 3.726 0.0003
2012 4.74 4.322 0

Figure 4 compares the percentage of positive total coliforms results and the
percentage of positive E. coli results for each day in the study period (June 19th to
September 30th) inclusive of the years 2005 to 2013. This graph demonstrates that there
is an increased number or drinking water wells that tested positive for total coliforms in
2013, seen in dark blue, compared to the seven previous years. Also notable is the high

number of positive results in 2005. A similar pattern can be seen for the percentage of
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Figure 4. Percentage of Positive total coliform and E.coli results during the study period (June
19"- September 30", 2005-2013
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positive E. coli samples, seen in red, which is also larger in 2013 than it is in the previous
seven years. Similar to total coliforms results, in 2005, the E. coli results also have a larger
number of positive results compared to 2013, and the rest of the data set.

Statistically, the Wilcoxon Rank Sum Test (z-test) indicates that the percent of
positive total coliforms results that occurs in 2013 is statistically different from years
2006-2012. Table 5 shows the results of the Wilcoxon Rank Sum Test (z-test) through a
comparison of the median during the same time period (June 19" to September 30") for
the previous eight years. In this table, the p-values indicate that the median in 2013 is
statistically larger than the median of all years, except 2005. In 2005, the p-value indicates
that the percentage of positive total coliforms results seen in 2013 are not statistically
larger than the results from 2005. However, the median of the total coliforms results in
2013 is not smaller than the percentage of total coliforms results seen in 2005 (z = 1.393,
p-value = 0.08) at the 95% Cl. Therefore it is concluded that the percentage of positive

total coliforms results in 2005 is not statistically different from the results in 2013.

Table 5. Total Coliform: One tailed (greater than) Wilcoxon Rank Sum Test (z-test)
results

Year Z-score P-value
2005 -1.395 0.919
2006 4.484 0

2007 3.812 0.0001
2008 3.391 0.0002
2009 4.652 0

2010 5.379 0

2011 3.760 0.0001
2012 3.3472 0.0004

Using a Wilcoxon Rank Sum Test (z-test), Table 6 demonstrates that the median
percentage of positive E. coli test results that occurred during the study period in 2013 is
statistically larger than the median percentage of positive E. coli results that occurred
2006-2012. However, this pattern did not hold true for the percentage of positive E. coli
results that occurred in 2005. As indicated by the p-value, the percentage of positive E.
coli results that occurred during the study period in 2013 was not statistically larger than

the number that occurred in 2005. Rather, the median percentage that occurred in 2005 is
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statistically larger (z = 3.434, p-value = 0.0003), than the median percentage of positive E.

coli results that occurred in 2013.

Table 6. E.coli: One tailed (greater than) Wilcoxon Rank Sum Test (z-test) results
Year Z-score P-value

2005 -3.46 0.997

2006 4.416 0

2007 4.525 0

2008 5.372 0

2009 5.004 0

2010 5.458 0

2011 4.591 0

2012 4.812 0

Descriptive Results

The purpose of the descriptive section is to obtain a better understanding of the
total coliforms and E. coli test results for the study time period of this study, June 19th,
2013 to September 30th, 2013. Below in Figure 5 is a graph of samples by date. The

highest volume of samples was seen in the first few weeks after the flood. This was then
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30th, 2013
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Figure 5. Total number of samples submitted each day for the study period.
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followed by a decline of sample intake until August 29th where there was another small
spike in sample intake. These volumes remained steady through the rest of the study
period. The highest number of sample intake of 52 samples occurred June 28th, 2013.
After the samples are analyzed, the samples can then be separated by date as well
as test result. Figure 6 and Figure 7 show the number samples that test positive and
negative total coliforms and E. coli respectively. The graph in Figure 6, shows the number
of positive test results for total coliforms seen in the weeks following the flood. After
about two weeks the number of positive samples decreased from the high 20s to around
10 positive samples a day. The negative samples follows the same pattern that the

positive samples take, for the most part having peaks and falls in the same places.
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Figure 6. Total coliforms test results by date.

In Figure 7 the E. coli results during the study period. Generally, there is fewer than
five samples per day that test positive through the study period; however, it is notable
that in the two weeks following the flood, there were a higher number of samples testing

positive. During this time, the highest number of positive samples was 12. The equal
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distance between peaks suggests that there is a week effect with sample submission,

where there are routinely more samples take and submitted at a certain time of the week.

Daily Number of E coli Samples June 20th-September 30th,
2013
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Figure 7. Total E.coli test result by date.

The nearest neighbour analysis, which assessed the distribution of all samples,
indicated the observed mean distance was 4150.93 meters. This means that on average
the sample locations are slightly more than 4 km apart. With a nearest neighbour ratio
value of 0.43 and a z=-14.82, which was statistically significant (p=0.00), with confidence
the null hypothesis can be rejected. Therefore, based on this analysis, it is concluded that
the sample locations in this study are clustered. There is less than a one percent chance
that the clustered pattern exhibited by the sample locations could be due to random
chance.

Global Moran’s | for total coliforms based on an euclidian fixed band distance of
428.83 km produced a non-statistically significant global Moran’s | (index=0.000263,
p=0.55). Similar results were produced for the E. coli test results. The global Moran’s |,
which was based on an euclidian fixed band distance of 428.83 km, similarly produced a

non- statistically significant global Moran’s | (index=0.0036, p=0.144). Obtaining non-
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statistically significant results indicates that at the global level, there is no spatial

autocorrelation Getis and Ord’s G* was used to assess the local indicators of spatial

association (LISA). The two maps below show the locations of the clusters, where the

green and blue colours indicate clusters of negative test results, and the yellow, orange,

and red indicate clusters of positive test results. The colour corresponds to the confidence

interval the quarter section belongs to for each clustered group. The light grey indicates

the statistically insignificant quarter sections. The first of the two maps, Figure 8, shows

that there is a cluster of negative total coliforms sample results in the central northern

region of Calgary Health Zone. As well, there is a cluster of positive total coliforms results

in the southern central region of the Calgary Health Zone. For total coliforms negative the

cluster is much larger than the positive cluster.
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Figure 8. Getis and Ord's G* cluster analysis for total coliform.

Figure 9, is the second of the two cluster analysis maps depicting E. coli and it is

notably very different from the total coliforms cluster map. In the map below, there are
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only positive clusters of the E. coli. The first is located west of the Calgary city limits north
of Highway 1, the TransCanada Highway. The cluster extends to a portion south of
Highway 1; however, this part of the cluster is less statistically significant than the region
north of the highway. There is also a small cluster of positive E. coli test results in the

southeastern part of the Calgary Health Zone.
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Figure 9. Getis and Ord's G* cluster analysis for E.coli.

Analytical Results

Environmental Variables

The environmental variables that were created are demonstrated in Figures 13-16.
All of these created layers serve as input for the regression model. The modeled surface
rainfall surface was completed using Kriging interpolation in Figure 10. During the month

of June, 2013, the total amount of rainfall ranges from 29.9 mm of rain in the eastern part
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of the health region to 265.2 mm of rain west of the city of Calgary extending into the
Rocky Mountain Range.

Interpolated Rainfall Volumes for June 2013
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Figure 10. Interpolated rainfall values for June 2013 using Kriging.

The mosaic of the individual DEM tiles produces an elevation map of the Calgary

Health Zone, which can be seen in Figure 11. In this area, the highest elevation is 3543

Elevation of the Calgary Health Zone
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Figure 11. Elevation map extracted from the DEM
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meters located in the Rocky Mountain Range and the lowest elevation is 660m located in
the eastern part of the health zone.

Figure 12 is a map of the slope in the Calgary Health Zone. This was derived from
the elevation map seen in Figure 11. The greatest slope is 86.8 degrees and is found within
the Rocky Mountain Range. The flattest land, which has no slope, is predominantly found
in the eastern region of the health zone. Also note it is possible to see the sloped

riverbanks of the Bow and Elbow River.
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Figure 12. Varying slope present in the study area.

The aspect, also derived from the DEM, can be seen in Figure 13. Aspect refers to
the direction that the slope is facing. This is a cyclical variable, which can be interpreted in
degree that the slope is facing (0-360°) or by direction the slope is facing (North,
Northeast, East, etc.)

From these maps of the study area, it is evident how geographically diverse the
study region is with the mountains to the west and prairie to the east. Within the created

elevation related values, there is a gradient from West to East.
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Aspect of the Calagary Health Zone

Legend

o

.___._} City of Calgary

D Calgary Health Zone
Aspect (in Degrees)
[ Fat 1)

B north (0-22.5)

[ Northeast (22.5.67.5)
[ East(67.5-1125)
[ soutneast (112.5-157.5)
[ south (157.5-202.5)
B southwest (202.5-247.5)
B vest (2475292 5)
I Northwest (292.5-337.5)
B north (337.5-360)

Author: Kristin Eccles

Data Source: GeoBase
Datum and Projection: NAD83 UTM Zone 11N
- meters

0 12525 50 75 100

Figure 13. Aspect of the Calgary Health Zone derived from the DEM.

Regression Modeling
The variables selected for initial inclusion after the completion of Spearman’s

correlation analysis in each regression model can be seen below in Table 7.

Table 7. Independent Variables used in the Regression Modeling
TC Independent Variables EC Independent Variables
Variable Spearman’s Variable Spearman’s
Correlation Correlation

Rainfall 0.012 Rainfall 0.057
Elevation 0.087 Elevation 0.056
Slope 0.019 Slope -0.062
Aspect -0.05 Aspect 0.014
Water Lines 6400M 0.08 Water Lines 800M 0.087
Overland Flooding 1600M 0.109 Overland Flooding 1600M 0.15
Minor Water 3200M 0.129 Minor Water 800M 0.100
Major Water 400M 0.145 Major Water 400M 0.313
Intermittent Water 3200M -0.193 Intermittent Water 3200M -0.139
Floodway 400M 0.229 Floodway 800M 0.25
Flood Fringe 400M 0.230 Flood Fringe 400M 0.23
Developed Land 400M 0.086 Developed Land 800M 0.099
Agricultural Land 800M -0.148 Agricultural Land 800M -0.131
Forested Land 400M 0.096 Forested Land 400M 0.156
Near Abandoned Wells -0.074 Near Abandoned Wells -0.072
Population Density 400M 0.081 Population Density 400M 0.081
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Dwelling Density 400M 0.169 Dwelling Density 400M 0.169
HA of Farm Land -0.015 HA of Farm Land -0.06
Number of Farms 0.018 Number of Farms 0.03

Based on the variables in Table 7, the regression models for total coliforms and E. coli
were developed. The script that was used for the regression analysis can be found in

Appendix A.

Total Coliform Regression Model

First, the correlation of the coefficients was calculated in a global Poisson GLM.
The results of this showed that while rainfall and elevation were highly correlated (-0.84)
in the Spearman’s correlation matrix, the correlation of the coefficients of these two
variables were not highly correlated (-0.51), therefore none of the variables were
removed from the regression. However, the correlation of the coefficients for farms and
HA of harms were highly correlated (-0.85). Therefore, for the total coliforms regression
HA of farms was removed, as number of farms had a slightly higher correlation with the
dependent variable. Next, a dispersion test was utilized to ensure the assumption of
equidispersion was satisfied. For the total coliforms outcome, this test revealed that the
dependent variable was underdispersed. Therefore a modified version of the Poisson
regression model was used; the Conway-Maxell Poisson distribution is used specifically for
underdispersed data as addressed in the background section. The other assumption of a
GLM noted in the background section, were also met as the correct link was chosen, the
log link for a Poisson regression, and the variance function is automatically set to match

the log link. The aspatial model can be seen in Table 8.

Table 8. Total Coliform Conway-Maxwell Poisson Distribution Regression

Estimate Std. Error Zvalue Pr(>|z|)
Intercept -5.134e-01 2.550e-01 -2.013 0.0441
Rainfall -2.479e-03 1.528e-03 -1.623 0.1047
X800M_Agri -2.367e-07 1.172e-07 -2.019 0.0435
Residual Deviance | 555.03 Pseudo R’ 0.013
AlCc 561.09 DoF 467
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In this regression only rainfall received in the month of June and the area of
agricultural land within 800M were found to be significant. However, agricultural land
within 800M is only significant at the 89% CI. When this variable was removed rainfall also
became insignificant (p=0.52). This occurrence in conjunction with the McFadden pseudo
R? that was 0.0132, indicates that aspatially the environmental variables were not able to
the model the occurrence of total coliform positive well water samples. As can be seen in
Figure 14, the model predicts that most of the quarter sections will not test positive for
total coliform. There are one a few a quarter sections west of Calgary at the start of the
Elbow River, and south of Calgary that will have one or more positive tests as predicted by
the aspatial Conway-Maxwell Poisson regression.

In this model, only rainfall received in the month of June and the area of
agricultural land within 800M were found to be significant. However, agricultural land
within 800M is only significant at the 89% CI. When this variable was removed rainfall also
became insignificant (p=0.52). Additionally, in the aspatial regression, the McFadden
pseudo R? (R°=0.0132) is very low. As can be seen in Figure 14, the model predicts that
most of the quarter sections will not test positive for total coliforms. There are only a few
a quarter sections west of Calgary at the start of the Elbow River, and south of Calgary
that will have one or more positive tests as predicted by the aspatial Conway-Maxwell

Poisson regression.
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Conway-Maxwell Poisson Regression: Total Coliform Predicted Results
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Figure 14. Predicted number of positive water samples for total coliform using a aspatial

Poisson GLM.

Figure 15 visually demonstrates the residuals of the aspatial model. The red
indicates where the model over predicts the most and the blue represents where the
model under predicts the number of positive samples in each quarter section. Here it can
be seen that the model over-predicts, more than the model under-predicts. In this map, a
cluster of moderate under-predictions can be seen on the west end of the Elbow River.
Other than this cluster, no distinct pattern can be seen. The residuals of this aspatial

model are not spatially autocorrelated (1=0.003 p=0.516).
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Conway-Maxwell Poisson Regression: Total Coliform Residuals
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Figure 15. Aspatial GLM total coliform model residuals.

Upon testing the heteroscedasticity of the residuals in this regression, the test
revealed that the data does not exhibit non-stationarity (bp=5.33, p=0.06). However, since
the significance of the Breusch—Pagan test narrowly missed the 95% confidence interval of
significance a geographically weighted regression was completed, this test was originally

intended for linear models and was used only as a proxy for this non-linear model.
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Table 9. Total Coliform: Spatial Poisson Regression with COM Distribution.

Min. 1st Qu. Median 3rd Qu. Max. Range
Intercept -7.96E-01 3.28E-01 5.98E-01 | 1.23E+00 2.87E+00 -3.67E+00
Rainfall -2.34E-02 -2.65E-03 | 6.63E-04 | 3.21E-03 6.47E-03 -2.98E-02
X800M Agri -7.82E-07 -4.23E-07 | -3.05E-07 | -1.19E-07 2.17E-07 -9.99E-07
Residual 337.68 Quasi- 0.11
Deviance Global R?
AlCc 344.68 DoF 467

Using an optimized fixed Gaussian bandwidth of 24266.59 meters the GWR-
Poisson model can be seen above in Table 9. The varying coefficients seen in Table 9 that
show the relationship between the dependent and independent variables vary over space.
The intercept of the model varies the most, followed by the amount of rain that fell within
the month of June 2013, and finally, the amount of agricultural land within 800M.
Interestingly, the geographically weighted regression also changed the significance of the
agricultural variable in the regression. While in the aspatial global model, the agricultural
variable was not significant at the 90% ClI, in the geographically weighted model, this
variable is significant at the 95% Cl in 242 (of 470) of the regressions (quarter sections)
and is significant at the 90% Cl in all the local regressions. The smallest t-value was -1.78.

The predicted outcome of water well contamination by total coliforms produced
by the geographically weighted regression can be seen below in Figure 16. In comparison
with the map of the aspatial regression, there are a greater number of quarter sections
that this model predicts will have one positive test results for total coliforms. However,

this model does not predict that there will be greater than one positive test sample
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Geographically Weighted Conway-Maxwell Regression:Total Coliform Predicted Results
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Figure 16. Predicted number of water well samples positive for total coliform using a
geographically weighted regression.

The residuals for this model can be seen in Figure 17. Over most of the study

region, the predicted values are close to the actual value of number of water samples

positive for total coliforms in each quarter section. This is represented by the yellow and

green coloured quarter sections. Yellow indicates where the model slightly over-predicted

and the green indicates where the model slightly under-predicted. The model under-

predicts more than it over-predicts.
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Geographically Weighted Conway-Maxwell Regression: Total Coliform Residuals
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Figure 17. Residuals of the geographically weighted regression for total coliform.

Compared to the aspatial regression, the geographically weighted regression
performed better as indicated by the AICc, the deviance of the residuals, and the quasi-
global R% The deviance of the residuals decreased to 555.03 from 337.68. This smaller
deviance in the geographically weighted model indicates that the predicted values deviate
less from the measured values. This indicates the geographically weighted model that is
more accurate in predicting the correct outcome. Additionally, the AlCc also decreased
from 561.09 to 344.68 indicating that the geographically weighted model is statistically a
better fit than the aspatial model. Lastly, the quasi-global R? increases. As this measure is
an average of all the local R? values, there are local R? values that are above and below
this average. The lowest local R? is 0.018 and the highest value is 0.27.

The variation of local R® can be seen in Figure 18. The variation of the local R?
demonstrates that the highest values occur in the southeast corner of the Calgary Health

Zone. In this area the model can explain between 15% and 27% of the variance of the
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dependent variable by the independent variables, rainfall and agriculture. The highest
local R is represented by quarter sections with the colour red. The central region of the
health zone extending from the northern region to the city of Calgary is not able to explain
the variance of the dependent variable well. This is represented by the colour yellow in
the figure. East of the city of Calgary, the ability to explain the variance is in the mid- range

between 0.07 and 0.14. This is indicated by the light and dark orange colour.
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Figure 18. Local R? of the geographically weighted Conway-Maxwell regression for total coliform.

The smallest beta values for all variables are negative indicating in some regions,
there is a negative relationship between the rainfall in June 2013, and agriculture within
800M and the occurrence of water well samples positive for total coliforms. However at
the high end of the beta values, the maximum values are all positive, indicating a positive
relationship between the independent variables and the occurrence of water well samples
positive for total coliforms. This changing relationship can be seen below in Figure 19. In

this figure, the red indicates where the amount of rain that fell in the month of June is
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significant in the regression at the 95% Cl. The orange indicates quarter sections where
rainfall is significant at the 90% Cl. Yellow is insignificant. Quarter sections that exhibit a

negative relationship between rainfall and total coliforms contamination of wells can be

Geographically Weighted Regression: Total Coliform T-value of Rainfall
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Figure 19. T-value and corresponding significance and relationship of rainfall in the
geographically weighted total coliform regression model.

seen in light blue significant at the 90% Cl and dark blue which are significant at the 95%
Cl. The same colour scheme and scale are used in Figure 20 where the t-values and
corresponding significance are represented for the other significant variable in the

regression, agricultural land within 800m.
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Geographically Weighted Regression: Total Coliform T-value of Agricultural Land
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Figure 20. T-value and corresponding significance and relationship of agricultural land in the
geographically weighted total coliform regression model.

In both of these figures representing the regression t-values and variable
significance it is evidence that west of the city there is a positive relationship between the
number of positive total coliforms well water results, the amount of rainfall that fell in
June 2013, and the amount of agricultural land. However, south of the city of Calgary, city
there is a negative relationship between the number of positive total coliforms well water
results, the amount of rainfall that fell in June 2013, and the amount of agricultural land.
As a result of the varying, and contradictory relationship as both directions (negative and
positive relationship) are statistically significant at the 95% Cl within the geographically

weighted regression. Therefore, a risk map was not created.
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E.coli Regression Model

First, the correlation of the coefficients were calculated. The results of this were
the same as the total coliforms regression and showed that when using the Spearman’s
correlation coefficient, rainfall and elevation were highly correlated (-0.84). However,
when the correlation of the coefficients was calculated, the two variables did not have a
high enough correlation to warrant one to be removed (-0.51), therefore both the
variables remained in the regression. Again, the correlation of the coefficients for farms
and HA of harms were highly correlated (-.85), therefore for the total coliforms regression,
HA of farms was removed, as number of farms had a slightly higher correlation with the
dependent variable.

After the correlation assumption was satisfied, a dispersion test was utilized to
ensure the assumption of equidispersion was satisfied. For the dependent variable, E. coli,
this test revealed that this variable was neither underdispersed nor overdispersed. The
dispersion of this data was calculated to be 1.0141, a normal Poisson distribution
regression was used. As the link and the variance function are already pre-specified, all
other assumptions for using a Poisson GLM were satisfied. The aspatial model for E. coli

can be seen in Table 10.

Table 10. E.coli Poisson Distribution Regression

Estimate Std. Error Z value Pr(>|z])
Intercept -2.918e+00 2.852e-01 -10.231 < 2e-16
X3200M_INwater | -7.585e-07 3.810e-07 -1.991 0.04646
X800M_Floodway | 6.375e-07 2.573e-07 2.478 0.01322
X400M_Flood_FR | 5.629e-06 2.179e-06 2.584 0.00978
Farms 1.423e-03 8.177e-04 1.740 0.08185
Residual 272.37 Pseudo R? 0.0991
Deviance
AlCc 282.49

In the aspatial E. coli regression, two flood variables, floodway within 800 meters, and
flood fringe within 400 meters, were significant. Both of these variables had a positive
correlation with the number of positive E. coli water samples. As the amount of flood and

flood fringe land around a well increases, the more likely a well is to become
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contaminated during a flood in the Calgary Health Zone. Intermittent water is another
feature of water that appeared significant in the regression model. However, unlike the
flood variables, the relationship between positive E. coli samples and intermittent water
within 3200 meters is a negative relationship. As the area of intermittent water increases
the number of wells that test positive for E. coli decreases. Lastly, the number of farms
around each of the sampled well also was significant in the regression model, although
this variable was only significant at the 91% Cl and was retained due to significance in the
literature discussed above. This farm variable also exhibits a positive relationship with the

number of wells positive for E. coli.

GLM Poisson Regression: E.coli Predicted Results
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Figure 21. Aspatial Poisson GLM Regression: E.coli Predicted Results.

Figure 21 is a visual representation of the predicted number of positive samples in
each quarter section. Of all quarter section included in the regression model, this model

predicts that only a few quarter sections will have one positive test results for E. coli. This
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is represented by the red quarter sections below. The predicted positive quarter sections

are located on the Elbow River west of Calgary, as well as south of Calgary.

GLM Poisson Regression: E.coli Residual
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Figure 22. Map of Residuals for the aspatial Poisson GLM regression model.

Figure 22 shows the residuals of the aspatial E. coli regression model. The quarter
sections that are red represent where the model over-predicts the number of positive E.
coli water samples. Conversely, the blue indicates where the model under-predicts. This
map demonstrates that most of the predictions in the model are slightly lower than the
number of positive samples results in each quarter section. The residuals of the global
model are not spatially autocorrelated (1=0.003, p=0.6499).

Upon testing the heteroscedasticity of the residuals of this regression model, the
test revealed that the E. coli model does exhibit non-stationarity (bp=78.41, p=3.792e-16).
As mentioned above, although the Breush-Pagan test is intended for linear data, and can

only be used as a proxy for non-stationarity, the significance of the test indicates that a
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geographically weighted regression would be an important improvement to the model.
Using an optimized fixed Gaussian bandwidth of 39805.55 meters the GWR-Poisson model

can be seen below in Table 11.

Table 11. E.coli Spatial Poisson Regression

Min. 1st Qu. Median 3rd Qu. Max. Range
Intercept 8.16E-03 | 7.10E-02 | 8.09E-02 | 8.84E-02 1.11E-01 1.03E-01
3200M -1.29€E-07 | -5.65E-08 | -3.97E-08 | -3.12E-08 | -9.88E-09 | 1.19E-07
Intermittent Water
800M Floodway 1.93E-07 | 2.39E-07 | 2.86E-07 | 3.38E-07 | 3.95E-07 | 2.02E-07
400M Flood Fringe | 2.74E-07 | 5.06E-06 | 6.83E-06 | 8.60E-06 1.02E-05 | 9.92E-06
Farms -5.33E-05 | 6.90E-05 1.20E-04 | 2.02E-04 | 6.11E-04 | 6.64E-04
Residual Deviance | 188.82 Quasi- 0.155

Global R

AlCc 199.07

All variables in the geographically weighted Poisson regression vary over space,
with the intercept having the greatest range over space. This is followed by the number of
farms that surround the well. The water related variables vary less than the other
aforementioned variables. All variables retain the original sign, and therefore the original
relationship between the dependent and independent variable. All variables have a
positive relationship with the number of E. coli positive well samples except for
intermittent water that retains a negative relationship.

The geographically weighted regression also changed the significance of the farm
variable in the regression. In the aspatial global model, this variable was not significant at
the 90% CI, however in the geographically weighted model, this variable is significant at
the 95% Cl in 27 (of 470) of the regressions and is significant at the 90% Cl in 32 more
regression models. The significance of the remaining variables are below the 90% Cl (411
of 470).

Compared to the aspatial regression, the geographically weighted regression
performed better as indicated by the AlCc decrease from 282.49 to 199.07, the deviance
of the residuals, and the quasi-global R%. The deviance of the residuals decreased from
272.37 to 188.82. This smaller deviance in the geographically weighted model indicates

that the predicted values deviate less from the measured values than in the aspatial
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model, indicating the more accurate predictive model. Additionally, the decrease in the
AlCc indicates that the geographically weighted model is statistically better fit than the
aspatial model. Lastly, the quasi-global R” increases. While the R? is reported to be 0.15,
this is an average of all of the local R%. Therefore, the local R range from 0.065 to 0.198
indicates that in this model, between 6.5% and 19.8% of the variance in the dependent
variable can be explained by the independent variables. Below in Figure 23 are the results

from the geographically weighted regression.

Geographically Weighted Poisson GLM: E.Coli Predicted Results
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Figure 23. Predicted results for the geographically weighted regression for E.
Compared to the aspatial regression, the geographically weighted regression
predicts additional quarter sections that will have at least one water sample positive for E.
coli. In addition, unlike the aspatial regression model, the geographically weighted
regression model also predicts quarter sections that two positive water results that will be

positive for E. coli.
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Geographically Weighted Poisson GLM: E.Coli Residuals
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Figure 24. Residuals of the geographically weighted E.coli regression model.

The residuals of this model indicate that for the most part, the model slightly
under predicts the actual value, which can be seen in Figure 24, as most of the quarter
sections are a light green colour. There are also a few quarter sections that over predict
the number of positive E. coli positive water well results. After the geographically
weighted regression was performed, the residuals exhibited homoscedasticity, as well,
had an insignificant global Moran’s 1=-0.03 (p=0.0012). This indicates that using the
geographically weighted regression was able to reduce the heteroscedasticity of the
residuals, while not inducing spatial autocorrelation.

Figure 25 shows the local R? of the geographically weighted E. coli model. In this
figure, as the colour progresses from yellow to red as the more the variance in the
dependent variables can be explained by the independent variables. More variance can be

explained by the independent variables west of the city of Calgary and less of the variance
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can be explained decreasing concentrically the further south, north and east of the city of

Calgary the quarter section is.

Geographically Weighted Poisson GLM: E.coli Local R2
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Figure 25. Local R2 of the geographically weighted E.coli regression model.

In the figures below it is possible to see how each of the variables contribute to the
regression model by assessing the direction and the strength of the t-value. Additionally,
as this is a geographically weighted regression it is possible to assess how the relationship
changes over space. In Figure 26, the t-values of the intermittent water variables can be
seen. Over the entire study areas there are no quarter sections that have a positive
relationship between the area of intermittent water and number of positive E. coli
samples. The region where this variable is most significant is around the Elbow and Bow
Rivers west of the city of Calgary. This is the only variable that has a negative relationship

with the dependent variable.
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Geographically Weighted Poisson GLM: E.coli T-Value Intermittent Water

3 ]

Legend A
B 2583--196
B 195--165

-1.64-0.00
DEM
Elevation (m)
High : 3543

S Low 1 660

I msjor Rivers Author: Kristin Eccles
: Data Source: ProvLab
Major.Roads Datum and Projection: NAD 83
- City of Calgary UTM Zone 11N \
e s Kilometers
- Calgary Health Zone 0 10 20 40 60 80

Figure 26. Intermittent water t-values of quarter sections in the geographically weighted

regression model for E.coli.

The remaining variables in the regression all exhibit a positive relationship

between the dependent variable and independent variable. The second variable, flood

fringe can be seen below in Figure 27. The flood fringe has the most significance of all

variables in the regression as demonstrated by the red quarter sections in the figure. The

red represents quarter sections where the flood fringe variable is significant at the 95% Cl.

There are only a few quarter sections that are not significant in the regression.
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Geographically Weighted Poisson GLM: E.coli T-Value Flood Fringe
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Figure 27. Flood fringe t-values of quarter sections in the geographically weighted regression
model for E.coli.

The independent variable floodway, seen in Figure 28 also has a large proportion of
the quarter sections exhibiting statistical significance at the 95% CI. It is evident that the
significance of the variable decreases towards the northwest section of the health zone.
The variable is most significant around the city of Calgary and to the south and southeast

of the city of Calgary.
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Geographically Weighted Poisson GLM: E.coli T-Value Floodway
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Figure 28. Intermittent water t-values of quarter sections in the geographically weighted
regression model for E.coli.

The final independent variable in the regression is the number of farms. The
varying significance can be seen in Figure 29. This variable is most significant around the
western section of the Bow River and in the western end of the Elbow River. While the
geographically weighted regression was able to demonstrate a region where the farm
variable was statistically significant at the 95% Cl, there are still many quarter sections

that remain insignificant in this regression model.
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Geographically Weighted Poisson GLM: E.coli T-Value Farms
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Figure 29. Farm t-values of quarter sections in the geographically weighted regression model for
E.coli.

Finally the interpolated beta values were used to create a risk surface for each
qguarter section in the Calgary Health Zone. The result was the environmental risk map
below in Figure 30. The yellow indicates areas where the environmental risk is low, as
model by the geographically weighted generalized linear model. The light orange colour
that covers most of the Calgary Health Zone indicates a moderate environmental risk of
drinking water well contamination during a flood, and finally the dark orange colour
indicates a higher environmental risk of contamination during a flood. In this map there is
also an overlay of the relief to demonstrate how the risk changes as the elevation also
changes. The model predicts the risk of contamination to be highest in the center of the
Calgary Health Zone. The lower risk is predominately seen in eastern region of the health

zone.
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Predicted Risk Surface for E.coli
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Figure 30. Risk surface produced from the geographically weighted Poisson generalized linear
model.



Chapter Five: Discussion

Historical Comparison

The results of the Wilcoxon Rank Sum Test (z-test) indicate that the percentage of
positive total coliforms and E. coli positive water samples seen in the previous seven years
is statistically different from the percentage of positive results seen in 2013. From these
results it is likely that there was an event that occurred in 2013, which had not occurred in
the previous years, causing the percentage of positive samples to be statistically different.
It is likely that this event was the June 2013 flood. The results of this test indicates that it
is important to look at what factors could have contributed to this increased percentage
of positive results, which was explored through environmental factors.

Interestingly, the percentage of positive results seen in 2013 was not statistically
larger than the results seen in 2005. The total coliforms the results seen in 2005 and
20013 were statistically the same indicating that there was no difference between the
percentages of positive total coliforms test results between the two years. However, for E.
coli the percentage of positive samples seen in 2005 was statistically larger than the
results seen in 2013. In June of 2005, there was also the occurrence of a flood. Similar to
the June 2013 flood experienced in southern Alberta, the flood that occurred in June of
2005 also extreme earning a place in Environment Canada’s top weather story for 2005
(Environment Canada, 2013a; Environment Canada, 2013b). Comparing the two flood
years, following the June 2005 flood more samples were received than there were
following the June 2013 flood.

The winter preceding June 2005, much like the winter preceding the June 2013
flood, had seen an abnormally large volume of precipitation (Environment Canada,
2013b). Although, in 2005 the spring was dry, June is known to be the wettest month. As
the snowpack from the mountains was melting, in conjunction with three major storms
that passed through southern Alberta in the same week, caused water levels to rise
drastically. During this time the Bow, Old, and Red Deer Rivers had a flow rate between 10
to 30 times greater than normal. The flooding that occurred in June 2005 was a one in 200

year flood. Similar to the June 2013 flood, the June 2005 flood resulted in a state of
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emergency being declared in 14 different towns, evacuations, and damage reported to be
about $400 million (Environment Canada, 2013b). Comparing the percent of positive
samples seen in 2005 to 2013 suggest that the 2005 flood affected the groundwater
sourced by private households more than the 2013 flood.

There were more samples taken in 2013 than in the preceding years 2006-2012,
however using a proportion (percent of positive test results) for the analysis controls for
the number of samples. Interestingly, though statistically there were more samples taken
in 2005, than in the same time period in 2013, the percentage of positive total coliforms
results are not statistically different between the two flood years. The higher number of
samples that were taken by homeowners during flood years could also indicate that when
there is a potential threat to drinking water quality, homeowners are more likely to

sample their drinking well water.

Descriptive Results

Spatially, while the results of the nearest neighbour dispersion analysis indicated
that the location of all samples are clustered, the results (positive or negative) of these
samples were not spatially autocorrelated at the global level as indicated by the Moran’s |
analysis. However, locally, the Getis and Ord’s G* cluster analysis indicated that there was
spatial association at a local level occurring in both the total coliforms and E. coli positive
sample results. This clustering can be seen in both maps (Figure 8 and Figure 9).
Interestingly, there were only cold spot clusters of negative test results for total coliforms.
Although total coliforms did have a hot spot cluster of positive test results, E. coli only had
clusters of positive results. Another interesting aspect was the location where these
clusters occur. Between total coliforms and E. coli there were similar hot spot clusters in
the southern region of the Calgary Health Zone. The other clusters occurred in the
northern region of the Calgary Health Zone, however, the cold cluster of negative total
coliforms results occurred in the north region of the Calgary Health Zone and the hot
cluster of positive E. coli results occurred further south from the total coliforms cold spot

cluster, northwest of the city of Calgary.
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The different locations and different types of clusters seen in the study area
indicates that likely, different processes were affecting the contamination of private
drinking water wells with total coliforms and with E. coli; regression modeling can provide
some insight into the processes that either do or do not cause the patterns seen. As a
result, it was appropriate to model total coliforms and E. coli separately. This clustering
also indicated that likely, a geographically weighted regression would have to be utilized
as this non-stationarity violates the regression assumptions, which would cause the

variance to be inflated.

Quantitative Results

Total Coliform Model
Although it appeared as though the geographically weighted COM Poisson

regression was a better fit statistically, based on the comparison between the spatial and
the aspatial deviance of residuals values, AlCc, and pseudo—Rz/Quasi RZ, the
interpretability of the produced model was troubling. The high variability, exemplified by
the changes between negative and positive relationships represented by the beta values,
made the models difficult to interpret. While it appeared that the model improved with
the use of the geographically weighted regression, when applied to the real world, in
actuality it was not a better fit. This suggests that the variables included in the regression
were not able to accurately model the relationship between the environmental variables
and the occurrence of samples positive for total coliforms. It is possible that the correct
environmental variable was not included. It could also indicate that the correct
environmental variable was included, but the resolution of the GIS layer was used was too
coarse for a fine scale analysis of a quarter section. However, since none of the flood
variables were significant in the regression model, it is likely that the June 2013 flooding is
not associated with the number of positive total coliforms samples.

As noted in the background section, there can be many different sources of total
coliforms that are not classified as faecal. Total coliforms are used as an indicator of water
quality as a part of a multi-barrier approach to ensuring the safety of drinking water.

Although there are no health-based risk assessments for total coliforms in the absence of
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faecal coliforms, as most total coliforms are not considered a risk to human health, a
positive total coliforms test does warrants further investigation. When a water sample
tests positive for total coliforms but negative for E. coli, this indicates that the source is
not faecal. As protected groundwater system should contain zero total coliforms, when
this test result occurs, this indicates that there is likely contamination from the
surrounding environment. This contamination of well water can occur after the
construction of a new well, or during maintenance of an old well. Additionally, total
coliforms can become desensitized to the treatment of drinking water, which can result in
the regrowth of bacteria in the water system (Health Canada, 2013).

As indicated by Health Canada the presence of total coliforms in the absence of E.
coli is usually caused by maintenance issues associated with the individual well. Although
the environment is associated with total coliforms contamination, it appears the
construction and maintenance may have a greater association with contamination. It is
likely that the total coliforms regression is lacking variables that could have been able to
explain more of the variance in the dependent variable; these variables are the individual
characteristics of the wells. Therefore, the total coliforms model would benefit from an
individual scale analysis.

Although variables that can be associated with groundwater contamination, as
indicated by the DRASTIC methodology, were included in the regression variables, none of
the variable remained significant in the regression. Additionally, none of the flood
variables were statistically significant in the regression. This is another indication that the
flood and other water related variables did not have an impact on the contamination of
private drinking water wells with total coliforms that could be detected in this regression

model.

E.coli Regression Model

As there are two flood variables, area of land designated as flood fringe and
floodway were significant in the E. coli regression model, this indicated that the flooding
that occurred in June 2013 is associated with the risk of E. coli contamination. As none of

the surficial features were significant, such as the hydraulic connectivity, it suggest that
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this flood that occurred within a short period of time affected mostly surface water,
although more research is needed to confirm this. Therefore, this type of contamination is
more likely caused from contamination through the well head.

In the geographically weighted regression, the highest R* value was 0.19 with a
mean of 0.15, suggesting that there is uncertainty not accounted for in this model. Aside
from the limitations pertaining to the layers included in the regression, it is likely that
some of this variance could be accounted for by variables representing the characteristics
of the individual wells. Research demonstrates that well characteristics such as
construction type and depth, as well as maintenance are associated with the quality of
water obtaining from the well (Health Canada, 2013). Therefore, when the wells that had
prior vulnerability due to poor well maintenance and construction, were impacted by the
flood, the combination of these two occurrences may have predisposed certain wells to
drinking water contamination. If the characteristics of the individual wells are able to
explain more of the variance, this would be most advantageous to the home owner as
characteristics of the individual well are easier to modify than factors associated with the
environment. Further research is needed to confirm this theory.

Areas where the residual deviance was high indicate a quarter section where the
variables included in the model do not as accurately model the contamination of drinking
well water. There was no spatial autocorrelation in the residuals. Thus, the areas of high
deviance could indicate where the contamination is more likely due to the condition and
maintenance of the individual well. The condition of individual wells is assumed to be
independent of neighbouring wells. If there were clustered results, then this could
indicate that there was a process, either environmental or non-environmental, not
accounted for with the model acting upon those well. As this was not the case, it is more
likely that the individual characteristics of the well, such as a cracked well head, in
conjunction with the flood acted multiplicatively causing the contamination of private
drinking water wells. This information can be of importance in policy as individuals who
have submitted samples in quarter sections of high deviance should have an inspection of

their well for damage or defects that could more easily allow for contamination.

79



One of the most interesting relationships in this regression is that with intermittent
water or sloughs. Intermittent water bodies can dry up during certain times of the year
(DTMI, 2009). These regions have characteristics of wetlands, with shallow bodies of
water that are predominately covered in vegetation suitable to saturated soil conditions.
Although when using a geographically weighted regression is not uncommon for the
direction of the relationship to change between the global and local model, and even
within the local model (Kupfer and Calvin, 2007), this did not occur between the aspatial
and spatial regression for the intermittent water variance. This variable remained negative
even after being geographically weighted. Vegetation commonly found in Alberta’s
sloughs are duckweed, bulrushes and cattail (Smith et al., 2007). Sloughs/ wetlands are a
vital part of the ecosystem. They serve functions such as peat production, carbon storage,
and water purification (Zedler and Kercher, 2005). Wetlands have demonstrated the
ability to reduce high concentration of nutrient in water over long periods of time,
improving water quality (Verhoeven et al., 2006). Due to this ability, wetlands have been
constructed as methods of water treatment for municipal, domestic, and animal
wastewater treatment (Kadlec and Wallace, 2008). Natural wetlands are efficient in
reducing the nutrient load of nitrates and phosphorus and are more effective at removing
E. coli from surface water through biogeochemical processes. These processes and
abilities of the wetlands could explain the negative relationship between drinking water
wells contaminated with E. coli and intermittent water bodies. When properties have
larger volumes of intermittent water nearby, the regression revealed the wells on such
properties were less likely to become contaminated with E. coli during a flood. More
research would be necessary to assess whether this relationship holds true when there

was no flooding.

Limitations
The most prominent limitation that this study faces is the availability of GIS layers.
A model built using a GIS is only as good as the input information (Longley et al., 2005).

The coarse resolution of the geologic variables (1:100,000), and simple lack of information
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available (distance to groundwater) had the largest effect on the modeling. Limitations of

specific layer inputs and variables will be discussed below.

Farm Variables

The lack of a reliable GIS layer containing information pertaining to farms greatly
hampered this model. Although farm variables were included in two different ways, the
data was not optimal. The 2006 agricultural census data was reported by Soil Land Survey
of Canada Polygons for both hectares of farm land, as well as number of farms. These Soil
Land Survey polygons are an irregular shape and are not optimal for the method of
intersecting buffers and environmental features that was used in this research.
Additionally, due to the sensitivity of the data, farm information recorded in the 2011
Agricultural Census was too coarse to be used. There were approximately four polygons
that were completely within the study area, and two polygons that were only partially in
the study area. The 2006 Agricultural Census data was used, rather than the 2011
Agricultural Census data, as this older data is less sensitive and could be obtained at a
finer resolution. Due to the tradeoff between resolution of currency of data, as well as
non-optimal data format, this layer can only be used as a proxy for farms. The second
category of data that had information pertaining to farms was obtained through remotely
sensed data. Based on the accuracy assessment of the land cover classification, the five
general groups were has accuracy of 88%. This means that 12% of the pixels over the
province were classified incorrectly. This error adds to the uncertainty of the modeling.
Additionally, the overlap between the two farming variables is unknown. However, since
only the farming proxy variable (not the land cover classification data) was included in the
final regression models, it is unlikely that this would effect the final result.

Previous studies clearly demonstrate a link between agriculture and E. coli
contamination of drinking water (Richardson et al.,, 2009; Wallender et al.,, 2013). To
better this research and produce a more accurate model, having accurate information
pertaining to number of farms, types of farming, and manure practices is imperative.
Farming is a major industry in Alberta that provides a livelihood for many of the residents.

Alberta represents 21.1% of Canada’ agricultural production and is one of the most
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productive agricultural economies in the world. In the province there is over 50 million
acres of land devoted to crop and livestock production. This agricultural production added
$10.5 billion to the economy of Alberta in 2011. Additionally, secondary industries of
farming such as food processing also provide job opportunities for Albertans and
contributed more than $11 billion to the economy from the food processing industry. Of
this $11.3 billion, meat processing accounted for more than half (AARD, 2013).

It is clear that the agricultural industry is important to Alberta’s economy providing
sources of income, revenue, and jobs. It is also clear that the unintentional ingestion of E.
coli via drinking water has the potential to make many individuals very ill. To have the
health of all individuals, including the farm operators, and farming operations co-exist in a
way that is not only beneficial to human health but also to the productivity and overall
health of the economy, data sharing and transparency is necessary. Being able to
understand the relationship between farming operations and human health is important,
as it is through this type of research that proactive measures can be put in place to avoid

the need for reactive measures and remediation.

Hydraulic Input

This model also lacks the input of another important system, which was the
amount of water that area around each of the wells received. In both models, the amount
of rain that had fallen in the month of June was included as increased amounts of rainfall
can be associated with the contamination of drinking water (Dorners et al., 2007; Hofstra,
2011). However, this did not take into account the larger system that was at play, which
was the overburdening of the river systems. During June of 2013, Alberta received higher
than normal volumes of water due to rainfall. This was taken into consideration in the
model. What was not taken into consideration was how the river system came to be
overburdened. During the winter of 2012-2013, a large volume of snow had fallen in the
mountain. During the spring of 2013, the large volume of snow began to melt and flow
into the Elbow River. This river flows from the Rocky Mountains towards Calgary. In the

City of Calgary, the Elbow River merges into the Bow River. It was the taxation from the
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higher than normal volume of spring melt water, in addition to the heavy rain that was
received June 2013 that caused the flooding.

Having an environmental input into the model that could capture the process
described above would have very beneficial for this research. Although the model’s inputs
included information on the flood fringe area, floodway, and area of overland flooding,
based on satellite imagery from the June 2013 flood, having variables with additional
information such as water height, volume and/or speed would also have benefited this

research.
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Chapter Six: Conclusions

To conclude, this research demonstrated that the number of private drinking

water samples positive for total coliforms and E. coli were significantly higher in 2013 than
previous non-flood years. This warrants the further investigations of how the 2013 June
flood impacted private drinking water in the Calgary Health Zone. Descriptive and
analytical methodologies were undertaken to further investigate.
The descriptive analyses indicated that the dependent variable, total coliforms and E. coli
contaminated water wells were clustered. As a result, a geographically weighted
regression was used for the quantitative analysis. Additionally, the clusters of negative
test results and the cluster of positive test results occurred in different locations indicating
that different processes were influencing water well contamination. As a result, total
coliforms and E. coli were modeled separately to determine the underlying processed that
caused the differing pattern seen in the cluster analysis.

Although a statistically significant GLM Poisson regression model for total
coliforms was produced, this methodology was not able to accurately model the
relationship between total coliforms and environmental variables. As a result, it is likely
that characteristics of the individual wells are associated with well contamination by total
coliforms. From this research, it is also likely that the flood was not a large influencing
factor on the contamination of private drinking water wells with total coliforms.

The E. coli model produced a statistically significant, and interpretable model. Less
common spatial methods of a geographically weighted Poisson regression were used. This
aided in satisfying the assumptions of the GLM Poisson regression. This methodology
demonstrated an improved model over the aspatial model, as indicated by model
indicators such as AlCc, and residual deviance.

In this model, flood variables proved to be statistically significant showing a
positive relationship with the number of positive well samples positive for E. coli. This
demonstrated that the flooding is associated with the contamination of private drinking
water wells. Additionally, a proxy for the number of farms around a well was found to be

statistically significant, demonstrating that proximity to farms can impact well water,
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especially during a flood. Interestingly, intermittent water/ sloughs was also significant
however, the relationship between the two, unlike the other variables, was negative. This
indicates that having intermittent water, also known as sloughs or wetlands, around the
water well helps to decrease the E. coli contamination of private drinking water wells
during a flood. This is due to biogeochemical processes within the wetlands that naturally
purifies water by removing nutrients and bacteria such as E. coli.

It is recommended that in the future, research be conducted at the individual well
level. This would likely improve the modeling of total coliforms as discussed above.
Additional information such as characteristics of the individual wells such as age, depth,
and construction type, should be included in the model. Having this information may be
able to explain more of the variance seen in the contamination variables, total coliforms
and E. coli. This research would also benefit from more accurate GIS layers as identified

above.
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Appendix A: R Script for Regression Models

#Set up Working Directory

getwd()

setwd("C:/Users/Kristin/Desktop/Reg")

#Install Packages

library(car)

library("ctv")

library(maptools)

library(rgdal)

library(spdep)

owd <-getwd()

setwd(system.file("etc/shapes", package = "spdep"))

library(spgwr)

library(sp)

library(compoisson)

library(COMPoissonReg)

library(AER)

#Choose Variables for Regression

#Spearmans Correlation Coefficients

COR<-read.csv("C:/Users/Kristin/Desktop/Reg/TCEC_Master.csv", header=TRUE)

cor(COR, use="complete.obs", method="spearman")

#Refine Variables based on highest Correlation Coefficient

#TOTAL COLIFORM MODEL

#TC Aspatial Poisson GLM

TC<-read.csv("C:/Users/Kristin/Desktop/Reg/TC_Count_Master-April14.csv", header=TRUE)

attach(TC)

summary(TC)

#setup regression

colnames(TC)

modTC<-glm(formula = No_Pos ~ offset(log(Total_Sam)) + Rainfall + Elevation +
Slope + Aspect + KSAT + X6400M_WatLines + X1600M_OL_Flood +
X3200M_Mnwat + X400M_MJwater + X3200M_INwater + X400M_Floodway +
X400M_Flood_FR + X400M_Developed + X800M_Agri2 + X400M_Forest +
Near_ AW + Farms+HA_Farms+Pop_Den+Dwell_Den, family = poisson(link = "log"), data
=TC)

#Correlation of Coefficients

summary.glm(modTC,dispersion=NULL,correlation=T)

#Number of Farms and HA of farms highly correlated (0.85)- removed No of Farms bc less

correlated

#Test Dispersion

library(AER)

dispersiontest(modTC, alternative=c("greater"))

#Not over dispersed

dispersiontest(modTC, alternative=c("less"))

#Underdispered p= 2.38e-16, therefore must use COM

#Backwards Variable Selection Based on 95% Cl

modTC<-com(formula = No_Pos ~ offset(log(Total_Sam)) + Rainfall + Elevation +
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Slope + Aspect + KSAT + X6400M_WatLines + X1600M_OL_Flood +
X3200M_Mnwat + X400M_MJwater + X3200M_INwater + X400M_Floodway +
X400M_Flood_FR + X400M_Developed + X800M_Agri2 + X400M_Forest +
Near_AW +Farms+Pop_Den + Dwell_Den, family=poisson, na.action=na.exclude, data =
TC)

#Final Model

modTC<-com(formula = No_Pos ~ offset(log(Total_Sam)) + Rainfall +
X800M_Agri2, family = poisson(link = "log"), data = TC)

summary(modTC)

PID<-PID

TCpredict<-predict(modTC)

TCresid<-resid(modTC)

TCaspatial<-cbind(PID,TCpredict, TCresid)

write.csv(TCaspatial, "C:/Users/Kristin/Desktop/Reg/TCaspatial.csv")

#McFadden Test

mfTC<-1-LLTC/LLNulITC

mfTC

mfaTC<-1-((LLTC-8)/LLNulITC)

mfaTC

#Breusch Pagan Test for Heterscedascity

#lmtest packaged needed will add zoo

library(Imtest)

#bptest(formula, varformula = NULL, studentize = TRUE, data = list())

bp <- bptest(modTC)

bp

#BP = 5.3327, df = 2, p-value = 0.06951

#TC Spatial GWR Poisson GLM

TC_bw_aic <- gwr.sel(modTC, data = TC, coords = cbind(TCSX, TCSY), method="aic"

TC_gauss <- gwr(modTC, data= TC, coords = cbind(TCSX, TCSY), bandwidth = TC_bw_aic,

hatmatrix = TRUE)

TC_gauss

#Getting T-Values

beta.rainfall<-TC_gaussSSDFS$Rainfall

SE_rainfall<-TC_gaussSSDFSRainfall_se

T rainfall<-beta.rainfall/SE_rainfall

beta.Agri<-TC_gaussSSDFSX800M_Agri2

SE_Agri<-TC_gaussSSDFSX800M_Agri2_se

T_Agri<-beta.rainfall/SE_rainfall

TCcoeff<-cbind(beta.rainfall, SE_rainfall, T_rainfall, beta.Agri, SE_Agri, T_Agri)

write.csv(TCcoeff, "C:/Users/Kristin/Desktop/Reg/TC-GWRcoeff.csv")

results_TC_gauss<- as.data.frame(TC_gaussSSDF)

head(results_TC_gauss)

write.csv(results_TC_gauss, "C:/Users/Kristin/Desktop/Reg/TC_gauss_Results.csv")

H#ECOLI MODEL
EC<-read.csv("C:/Users/Kristin/Desktop/Reg/EC_Count_Master-April4.csv", header=TRUE)
attach(EC)

summary(EC)



modEC<-glm(formula = EC_NO_POS ~ offset(log(EC_RESULT_COUNT)) + Rainfall +
Elevation + Slope + KSAT + X1600M_OL_Flood + X800M_Mnwat +
X400M_MJwater + X3200M_INwater + X800M_Floodway + X400M_Flood_FR +
X800M_Developed + X800M_Agri2 + X400M_Forest + Near_ AW +
Farms + X1600M_PopDen + X1600M_DwellDen, family = poisson(link = "log"), data = EC)

cor(EC, use="complete.obs", method="spearman")

#Correlation of Coefficients

summary.glm(modEC,dispersion=NULL,correlation=T)

#Test Dispersion

dispersiontest(modEC, alternative=c("greater"))

#Not over dispersed

dispersiontest(modEC, alternative=c("less"))

#Not over dispersed, therefore Poisson Model is adequate

#Backwards Variable Selection Based on 95% Cl

#Final TC Model

modEC<-glm(formula = EC_NO_POS ~ offset(log(EC_RESULT_COUNT)) +
X3200M_INwater + X800M_Floodway + X400M_Flood_FR +
Farms, family = poisson(link = "log"), data = EC)

summary(modEC)

PID<-PID

ECpredict<-predict(modEC)

ECresid<-resid(modEC)

ECaspatial<-cbind(PID,ECpredict,ECresid)

write.csv(ECaspatial, "C:/Users/Kristin/Desktop/Reg/ECaspatial.csv")

#McFadden Test

mfEC<-1-LLEC/LLNulIEC

mfEC

mfaEC<-1-((LLEC-8)/LLNUlIEC)

mfaEC

#Bresush-Pagan Test for Heteroscedasticity

bp <- bptest(modEC)

bp

#BP = 78.4048, df = 4, p-value = 3.792e-16

#Spatial GWR Poisson GLM

EC_bw_aic<- gwr.sel(modEC, data = EC, coords = cbind(ECSX, ECSY), method="aic"

EC_gauss<- gwr(modEC, data= EC, coords = cbind(EC$X, ECSY), bandwidth = EC_bw_aic,

hatmatrix = TRUE, predictions=TRUE)

EC_gauss

#Getting T-Vaules

beta.INwater<-EC_gaussSSDF$X3200M_INwater

SE_INwater<-EC_gaussSSDF$X3200M_INwater_se

T_INwater<-beta.INwater/SE_INwater

beta.Floodway<-EC_gaussSSDF$X800M_Floodway

SE_Floodway<-EC_gaussSSDF$SX800M_Floodway_se

T_Floodway<-beta.Floodway/SE_Flooway

beta.Flood_FR<-EC_gaussSSDFSX400M_Flood_FR

SE_Flood_FR<-EC_gauss$SSDFSX400M_Flood_FR_se

T Flood_FR<-beta.Flood_FR/SE_Flood_FR

ag



beta.Farms <-EC_gaussSSDFSFarms

SE_Farms<-EC_gaussSSDFSFarms_se

T _Farms<-beta.Farms/SE_Farms

ECcoeff<-cbind( beta.INwater,SE_INwater,T_INwater, beta.Flood_FR, SE_Flood_FR, T_Flood_FR,
beta.Floodway, SE_Floodway, T_Floodway, beta.Farms, SE_Farms, T_Farms)

write.csv(ECcoeff, "C:/Users/Kristin/Desktop/Reg/EC-GWRcoeff.csv")

#Getting Coefficients

results_EC_gauss<- as.data.frame(EC_gaussSSDF)

head(results_EC_gaus)

write.csv(results_EC_gauss, "C:/Users/Kristin/Desktop/Reg/EC_log_Results.csv")
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