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Abstract 

In previous systems, only very few line properties have been used 
for stylization in line rendering. This is due to a complicated han
dling and two-way dependency of these properties and the stages 
of the stylization pipeline. In this paper we propose the concept of 
G-strokes to efficiently deal with these and many more stroke prop
erties. This new concept allows a much simpler way of represent
ing and handling various line properties and stylization stages. By 
this we make it easy to enrich the set of line stylization means by 
adding more properties and stylization stages and, thus, allowing 
more freedom and creativity for generating expressive line draw
ings. We show a number of possible G-strokes using both simple 
and complex examples to demonstrate the power of our approach. 

Keywords: Non-photorealistic rendering, line rendering, line styl
ization, stroke pipeline, G-strokes, G-buffers. 

1 Introduction 

In the past decade or two, line rendering has been established as one 
of the major areas of research within the ever-growing field of non-
photorealistic rendering (NPR) [Gooch and Gooch 2001; Strothotte 
and Schlechtweg 2002]. Fueled by the development of a variety 
of silhouette extraction algorithms [Isenberg et al. 2003] as well as 
feature detection techniques (e. g., [DeCarlo et al. 2003]), numer
ous methods for line and stroke-based rendering using a wide range 
of styles have been and are being conceived. In particular, the use 
of object-space edge extraction facilitates the further stylization and 
processing of these edges as so-called strokes since they are avail
able in analytic form. 

Typically, the stylization process is implemented using a so-called 
stylization pipeline within which strokes are processed. In general, 
a stylization pipeline comprises a sequence of pipeline elements 
or stages, each of them modifying existing, adding new, or simply 
preparing all data for the next stage in line. The sequential approach 
of this procedure, therefore, is appropriate for the analytic stroke 
stylization process where strokes are to be stylized in a number of 
steps [Northrup and Markosian 2000; Halper et al. 2003; Grabli 
et al. 2004]. 

However, the more stylization stages are being created and added 
to the stylization pipeline, the more difficult the stylization process 
itself becomes. This is because a new stage may introduce a new 
line property which not only has to be captured but also has to be 
processed (e. g., visibility or line thickness). Consequently, all other 
pipeline elements that already have been implemented need to be 
adapted as well in order to handle the new property. Only then the 
old stages can be used together with the new one. Likewise, every 
new stage also has to ensure that it can handle the already exist
ing line properties. Therefore, a two-way dependency between the 
pipeline’s stages and the properties of the processed stroke exists. 
This makes the development of a comprehensive line stylization 
and rendering toolkit increasingly complex and difficult. 

Inspired by the groundbreaking work of SAITO and TAKAHASHI 
on G-buffers [Saito and Takahashi 1990], we propose the concept 
of G-strokes as a solution to this problem. We regard all properties 
added to the stroke geometry by a pipeline element as so-called G
strokes that are maintained parallel to the underlying geometry (see 
Figure 3). However, in contrast to SAITO and TAKAHASHI’s G-
buffers, G-strokes might need to be adapted during the stylization 
process as the underlying geometry or topology of the stroke may 
change. We demonstrate how this can be achieved and how the 
necessary programming work can be minimized. 

The remainder of this paper is structured as follows. In Section 2 
we discuss related work with respect to the concept presented in 
this paper. The following Section 3 discusses the problems arising 
from the previous handling of stylization pipelines and introduces 
our G-strokes concept to overcome these. In Section 4 we address 
a number of implementation issues and design decisions we made 
to realize the concept. Afterwards, Section 5 presents a number of 
case studies in order to illustrate the flexibility of a G-strokes based 
stylization. Finally, in Section 6 we summarize our contribution 
and discuss a few directions for future work. 

2 Related Work 

The field of non-photorealistic rendering has diversified and grown 
considerably in recent years [Gooch and Gooch 2001; Strothotte 
and Schlechtweg 2002]. However, line rendering has been one of 
the first issues that were discussed [Saito and Takahashi 1990; Doo
ley and Cohen 1990; Elber 1995] and this topic continues to be one 
of the major areas of NPR (e. g., [Kalnins et al. 2003; DeCarlo et al. 
2003; Isenberg et al. 2003; Sousa and Prusinkiewicz 2003; ?]). As 
one of the earliest and most important contributions for the area, 
SAITO and TAKAHASHI presented the G-buffer concept for enhanc
ing the expressiveness of renditions [Saito and Takahashi 1990]. In 
their paper, the authors describe how to extract additional data dur
ing the rendering process, store it in the so-called G-buffers, and 
use them for computing NPR primitives. These primitives (silhou
ettes and feature lines) are then composited into the image to extend 
the comprehensibility of the shown objects. It is important to note 
that G-buffers use the same underlying topology as the rendition 
they were generated for, i. e., the x× y pixel matrix of the image. 
Thus, G-buffers form a stack of images, each recording a different 
property. 

Although SAITO and TAKAHASHI used their G-buffers to store 
extracted linear features from 3D data, this happened entirely in 
image-space. Besides this pixel-based approach there are also two 
different approaches to extract edges and render strokes—hybrid 
methods and techniques in object-space [Isenberg et al. 2003]. In 
particular the latter group is of interest for this paper as it simply of
fers a greater freedom in terms of line parametrization and further 
processing than the other two. In the area of object-space stroke gen
eration the concept of using line stylization pipelines has emerged. 
The pipeline’s elements are used to extract significant edges from 
a model, concatenate them to strokes, stylize these strokes accord
ing to certain properties and parameters, and finally render them 
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[Halper et al. 2003; Sousa and Prusinkiewicz 2003; Grabli et al. 
2004]. In particular, GRABLI et al. discuss the process of line 
stylization in a pipeline in greater detail. This is achieved by a 
modular system that first extracts and stores feature edges into a 
so-called viewmap. Depending on the user’s needs certain edges 
are selected and chained to create strokes. Due to the data dimen
sions the system stores certain properties, e. g. an ID per edge (3D) 
or a line thickness per stroke (2D). This way different line styles 
can be combined in one image. In summary, their system follows 
a step-by-step approach per stroke style which is based on a local 
edge-to-stroke concept. 

3 G-Strokes 

Based on previous line stylization pipelines we first analyze the 
problems that occur and explain in detail the above mentioned two-
way dependency between pipeline elements and processed stroke 
properties. We will then introduce and discuss the new G-strokes 
concept that eliminates this dependency making it much easier to 
implement and add new elements as well as properties to the stroke 
pipeline. 

3.1 Stroke Pipelines 

In previous stroke-based rendering systems (e. g., [Halper et al. 
2003; Sousa and Prusinkiewicz 2003; Grabli et al. 2004]), the pro
cedure of rendering the images followed the previously mentioned 
stylization pipeline approach. However, since typically not only 
the stylization itself but also the assembling of different strokes is 
performed in the pipeline we will refer to the term stroke pipeline 
instead. 

A common way to represent a stroke is to store the stroke’s seg
ments as an indexed list with pointers to the actual coordinates of 
the strokes’ vertices, each two segments being separated by a -1 
(see Figure 1). This allows to store strokes efficiently since vertices 
typically occur at least twice (with the exception of vertices where 
strokes end). Stroke properties are also kept as data tracks parallel 
to the stroke’s indices. This way they can either encode the property 
for the specific vertex or for the following stroke segment. 
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Figure 1: Vertex and index list for a simple set of strokes. 

At the first stage of a stroke pipeline, certain significant edges are 
extracted from the model and added to the pipeline as stroke data— 
typically the silhouette and specific feature edges (refer to Figure 2). 
At the next stage, these are concatenated using adjacency informa
tion to form the strokes that will later be stylized. Each stroke 
then consists of a chain of stroke segments and is terminated by 

a -1 itself. The concatenation of single segments to segment chains 
simulates the human approach to line drawing where several long 
strokes are used to depict the objects. To simplify matters, we will 
refer to the term stroke as the set of all strokes derived from the 
model, therefore describing the strokes’ topology. 

After the strokes have been formed, typically the visible subset of 
them is determined (e. g., [Northrup and Markosian 2000; Isenberg 
et al. 2002]). Also, when using polygonal meshes as the underly
ing 3D models, certain artifacts such as zig-zags are removed (see, 
e. g., [Northrup and Markosian 2000; Isenberg et al. 2002]). Sub
sequently, a set of base strokes has been identified that can now be 
stylized in order to simulate, for example, certain traditional draw
ing utensils. 
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Figure 2: Typical process of stroke stylization in NPR. 

The stylization process itself can only be performed with the proper 
stroke data and, therefore, has to be conducted at a later stage. For 
example, a parametrization may be assigned to the strokes to en
sure a balanced scaling of textures and frame-coherent animation 
[Kalnins et al. 2003]. Then, the line width may be modified, e. g., 
according to the distance from the viewer to add depth-cueing. Also, 
the geometry of the strokes themselves may be modified, for exam
ple, by introducing overshooting that is meant to simulate a very 
sketchy look (e. g., [Grabli et al. 2004]). In order to improve the 
overall appearance, a spline curve may be fitted to the stroke. Fi
nally, a texture could be assigned that simulates specific character
istics of the simulated traditional drawing utensil. 

In summary, during each pipeline stage, tasks of three types are 
being performed: the adding of new edges/strokes to the pipeline 
(e. g., the silhouette and feature line extraction), the adding of prop
erties to the strokes in the pipeline (e. g., the parametrization or the 
line width manipulation), and the modification of the underlying 
geometry of the strokes (e. g., concatenating edges, artifact removal, 
overshooting, and spline fitting). This includes also the removal 
of certain vertices or segments. However, there is no inherent se
quence in which these actions have to be performed (other than that 
the first step has to add an initial set of edges to the pipeline). Thus, 
even after certain properties have been derived, the stroke geometry 
may change. As a consequence, each pipeline element that does 
change the stroke’s geometry has to ensure that all existing proper
ties are updated accordingly in order to maintain a consistent stroke 
representation. 

Consequently, the implementation of each new geometry-
modifying stylization element has to ensure that all previously 
implemented stroke properties are adapted as well. Furthermore, 
when implementing a new stylization element that introduces a new 
property to the pipeline, the programmer has to ensure that all previ
ously implemented pipeline stages handle this new property accord
ingly. Therefore, a two-way dependency between pipeline stages 
and stroke properties exists that hinders the extension of line ren
dering systems. The more stages and properties have previously 
been implemented the more difficult it becomes to further extend 
the system. 



3.2 A New Stroke Concept 

In order to support the creative process of generating expressive 
line renditions, a wide variety of stylization elements and stroke 
properties need to be available to the artist. Therefore, the problem 
discussed above hinders the creation of truly powerful line render
ing systems. In the following, we present the concept of G-strokes 
that not only can overcome the mentioned limitations but also re
duce both the amount of necessary coding for each new stylization 
element and the complexity of the resulting stroke pipeline. 

3.2.1 Refined Stroke Definition 

Previously, a stroke has been defined as a path (usually a set of con
catenated edges extracted from a 3D model) that is modified by a 
line style [Schlechtweg et al. 1998]. The line style itself consists 
of a style curve and, in particular, it’s parameters including the de
viation from a straight style line. In our approach we re-define the 
term stroke to be a unique sequence of indices each representing a 
pointer into a list of 3D coordinates. This captures the geometric as
pect of the stroke and is similar to the previous path. As suggested 
by GRABLI et al. [Grabli et al. 2004], the style of the lines has to 
be captured by tracking a number of attributes. Inspired by SAITO 
and TAKAHASHI’s G-buffers [Saito and Takahashi 1990], our new 
notion of a stroke, therefore, includes a set of usually geometric 
properties being maintained parallel to the index sequence that we 
call G-strokes (see Figure 3). 

Similar to the G-buffers, each of the G-strokes is unique and only 
represents exactly one property. In contrast to the fairly static G
buffers, however, the G-strokes have to be adapted to a potentially 
changing stroke geometry and are, therefore, a dynamic data struc
ture. This also results in a two-way dependency between stroke and 
G-strokes: the G-strokes have to be adapted according to changes 
of the stroke’s geometry while they themselves can initiate such a 
change in geometry during stroke stylization. 
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Figure 3: Parallel handling of stroke and G-strokes. Each stroke is 
terminated by a -1. 

Hence, in contrast to, e. g., GRABLI et al.’s local stroke concept 
[Grabli et al. 2004], our concept pursues a global approach. All 
edges are extracted and chained to strokes only once. The styl
ization itself comprises both the process of deriving new and the 
modification of existing G-stroke data as well as the change of the 
underlying geometry of the stroke and the necessary adaption of 

affected G-strokes. Finally, the line style is controlled by the G-
strokes which will be explained in detail in Section 3.2.4. 

3.2.2 Hierarchy of G-Strokes 

Depending on the type of data that is stored, G-strokes can have dif
ferent data types (see Figure 4). For example, the visibility stroke 
that captures whether a stroke segment is visible or not is a binary 
property and is, therefore, stored as BOOLEAN. However, since each 
G-stroke also has to include the termination marker -1 that sepa
rates consecutive strokes (see Figure 1) we use a pseudo-BOOLEAN 
data type. A different G-stroke is the width stroke that records the 
line width using the FLOAT data type. In general, there is a limited 
number of basis data types that may be used for G-strokes (see Fig
ure 4). So far we are using BOOLEAN (e. g., visibility), INTEGER 
(e. g., edge type and object ID), FLOAT (e. g., thickness and texture 
parameter), Vector2D (e. g., 2D orientation), and Vector3D (e. g., 
normal vectors and colors). Each G-stroke either denotes a property 
of its associated stroke vertex or of the following stroke segment. 
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Figure 4: Hierarchy of G-strokes. 

3.2.3 Separate Data Management 

The logical separation of stroke geometry (coordinates and indices) 
and stroke properties (G-strokes) facilitates a new handling of 
stroke data. In this context it is important to note that the stroke 
properties depend on the stroke geometry and, therefore, have to 
adapt to potential changes of the geometry. Also, since the stroke 
is the underlying basis of the G-strokes they also have to adapt to 
changes in stroke topology. 

The stroke maintains a list of its G-strokes. Hence, whenever a 
pipeline element changes the stroke’s geometry, the stroke can call 
an update function in each of its G-strokes. The G-strokes, on the 
other hand, all implement these update functions and modify them
selves accordingly. Naturally, this modification is specific to the 
data type and the data of each G-stroke. However, the G-Strokes’ 
self-administration in terms of geometric modifications is crucial in 
this regard. 

We identified the following five types of modifications that each 
G-stroke has to implement: 

1. vertex insertion, 

2. vertex removal, 

3. vertex coordinate modification, 

4. vertex splitting, and 

5. vertex joining. 



Vertex insertion is needed whenever a new vertex has to be added 
somewhere in an already existing stroke segment. This type of mod
ification occurs, e. g., when deriving the visibility G-stroke (see Fig
ure 5). In this case, some G-strokes have to interpolate their data ac
cording to the new position while others just have to replicate their 
values. The second modification is the deletion of a vertex from 
the stroke. This is necessary, for example, for artifact removal mod
ules. It might require just the deletion of the respective G-stroke 
data although there may be cases where more complex adaptations 
may be necessary. The vertex coordinate modification is similar to 
inserting a new vertex. It also may require new interpolations of G
stroke values. Vertex splitting is necessary whenever a stroke has to 
be separated into two at a certain vertex. On the G-stroke side, this 
usually only requires replicating the respective data. Finally, it has 
to be possible to join two G-strokes at a vertex that both share (geo
metrically or on the 3D mesh). The handling of G-strokes in this 
case may be tricky since the two strokes may store different values 
at the vertex. Some G-strokes, in particular those that store their 
data with respect to segments, may just keep the according data. 
However, in other cases special interpolation or more complex com
putations may be necessary. In general, the specific G-strokes have 
to implement all these modification operations according to what 
their data represents. This is not specific to the data types but will 
typically even vary among G-strokes using the same base data type. 
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Figure 5: Inserting new vertices for visibility G-stroke. 

Since the G-Strokes use the above explained self-administration, 
the only data that has to be exchanged is the stroke itself. With 
this new scheme we developed a clearly defined interface between 
pipeline elements, strokes, and their properties that does not change 
when new elements are implemented. Hence, old elements do not 
have to be adapted anymore when a new one implements a new 
property. 

3.2.4 Stylization Using G-Strokes 

In order to use the information stored in the G-strokes for line styl
ization three methods can be used, each requiring the implemen
tation of a novel pipeline element. As our implementation of the 
G-strokes concept is based on the Open Inventor scene graph API 
the following figures refer to scene graphs and nodes rather than 
to pipelines and pipeline elements or stages. Nevertheless, the con
cept suits any pipeline or scene graph approach other than Open 
Inventor. 

The first and most flexible way is to use a filter element. A filter 
element monitors one specified G-stroke and filters only those seg
ments of a stroke where the G-stroke fulfills a certain condition. At 
the same time, it can also serve as a root element for a pipeline 
subtree. Hence, the pipeline subtree can now be used to stylize the 
selected stroke subset in a specific way. This can be realized with a 
scene graph approach excellently. By using several filter elements 
in one stroke pipeline different properties can be filtered and styl
ized differently. Figure 6 shows an example that demonstrates the 
use of an actual filter node to stylize the visible part of the strokes 
one way and the invisible part in a second. 
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Figure 6: From the input 3D model edges are extracted, concate
nated, and their visibility determined. Now, filter nodes are em
ployed to depict visibility using separate subgraphs. 

A second way to use the G-stroke data is to implement a style ele
ment. Such a style element uses the data in one or more G-strokes 
and generates output according to it—either in the form of other 
G-strokes or by rendering directly. Hence, a style element is very 
specific in the results it produces, i. e., to produce a different result 
a new style element has to be implemented. As the name suggests, 
a style element represents a complete style that is applied to the en
tire set of strokes at the same time (see scene graph in Figure 7). It 
is useful especially when a style is to be used several times. 
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Figure 7: Instead of using filter nodes as in Figure 6, stylization 
can also be done with a single style node. 

Finally, a hybrid form between the two methods discussed before 
is to use a filter-style element. This element applies a certain pre
defined style (similar to the style element) to a subset of the strokes 
that is being filtered similar to the filter element. That means to fully 
stylize a set of strokes typically a number of filter-style element 
have to be used (see Figure 8). Therefore, it is more flexible than 
the style element but not as flexible as the filter element. In addition, 
the scene graphs created using the filter-style element are not as big 
as the ones created using the filter element but bigger than the ones 
using the style element. The rendering time is fastest whenever 
the style element is used because no copying operation has to be 
applied to the stroke data. However, this element is most restricted 
in its flexibility. 

4 Implementation Issues 

The consequences of implementing the G-strokes concept in a NPR 
rendering system based on the Open Inventor scene graph API are 
briefly discussed in the following. In addition, in order to realize the 
separate data management as laid out above we used the observer 
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Figure 8: Stylization using a filter-style node is a hybrid between 
the the methods shown in Figures 6 and 7. 

and the singleton pattern, two object-oriented design patterns. Fi
nally, we explain the created G-strokes hierarchy and what has to 
be done to implement additional G-strokes. 

4.1	 Scene Graph API 

Using a scene graph API has a number of important advantages. 
It not only allows us to use, e. g., the available rendering and 3D 
model handling capabilities. It also provides means to implement 
the stroke pipeline as a subtree of the scene graph. This is important, 
in particular, for implementing the filter element that uses subtrees 
for stylizing selected parts of the stroke set (see Figure 6). Among 
other things, the use of caching is required to re-establish the pre
vious state of the pipeline after the subgraph has been traversed. 
We used the Open Inventor API which meets these demands. In 
addition, although the stroke pipeline is now a hierarchical entity 
its linear character is still preserved since the traversal of the scene 
graph imposes a linear sequence upon it. 

The Open Inventor scene graph API also allows us to prepare spe
cific scene graphs ahead of time that implement specific stylization 
functionality. These pre-defined subgraphs can be integrated into 
the stroke pipeline easily and interactively whenever this specific 
style is requested by the user. In addition, the scene graphs can be 
stored as a file and can be reloaded into the program at any time. 

4.2	 Implementing New G-Strokes and Pipeline 
Nodes 

Based on the G-stroke hierarchy described in Section 3.2.2, new 
G-stroke classes can easily be implemented by sub-classing one of 
the abstract base data type G-stroke classes. Much of the behavior 
of a G-stroke is already implemented in these base classes or even 
in the main G-stroke class, such as the observer behavior and the 
basic data handling. A new G-stroke class only has to implement 
its update function. 

Each new pipeline node typically just has to work with the stroke 
geometry and/or stroke topology. The G-strokes adapt according to 
their implemented update behavior. Moreover, if the new node does 
not alter the stroke itself, it can add data to a new or modify data 
of an existing G-stroke. Reading out data from a specific G-stroke 
can also be easily achieved by accessing individual G-strokes using 
their unique IDs. In any case, it is not necessary anymore to update 
the line properties data in the pipeline nodes. 

5 Case Study and Examples 

In this section we will first discuss a number of the implemented 
G-strokes separately and show some related simple examples to 
demonstrate their effect. In this overview we omit some of the obvi
ous properties of strokes such as line width, line saturation, surface 
normal, and stroke orientation that are also kept as G-strokes and 
can be both influenced by the values in other G-strokes and used in 
stylization. Afterwards, we will talk about and show a few more 
elaborate examples to demonstrate the power of our approach. 

The color G-stroke is used to encode the color property of the 
strokes as 3D vectors representing red, green, and blue (see Fig
ure 9). It can either be interpreted as the color of the starting stroke 
segment or as the color of the vertex. In the latter case the color 
would need to be interpolated along the segment between two con
secutive vertices. For now, however, we use the former method 
and encode the color of segments directly. The color G-stroke is 
particularly useful in illustrations to emphasize certain objects. Al
though coloring of strokes has previously been possible by assign
ing a color directly before rendering the stroke, now this color can 
be varied even within one stroke pipeline. 

1 2 3 4 5Indices

Data

...

...
0,8

-10,0
0,0

0,8
0,0
0,0

0,8
0,0
0,0

1,0
0,6
0,2

(a) Stroke and G-stroke.	 (b) Example. 

Figure 9: Color G-stroke. 

The visibility G-stroke captures the visibility of the segment start
ing in a particular vertex using a simple BOOLEAN value (see Fig
ure 10). Previously, the invisible part of a set of strokes used to 
be removed (hidden line removal) so that these strokes could not 
be used anymore in an illustration. Now, the former hidden line 
removal node just determines the visibility of a segment into the 
visibility G-stroke and later on the information can be used for styl
ization as shown in the example in Figure 10(b). Potentially, this re
quires adding new vertices to a segment when the visibility changes 
as was illustrated in Figure 5. 
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(a) Stroke and G-stroke. (b) Example. 

Figure 10: Visibility G-stroke. Gray dots in (a) denote newly in
serted vertices while black dots denote the original ones. 

As noted before, it is necessary to track a parameter property of the 
strokes to ensure that textures are scaled evenly across the whole 



rendition. This is where the parameter G-stroke is employed (see 
Figure 11). It is determined using the projected coordinates of the 
strokes and stores FLOAT values between 0.0 and 1.0, 0.0 denoting 
the start of a texture and 1.0 denoting its end. In the actual system 
0.0 denotes both the values of 0.0 and 1.0 at the same time since 
at these points both a parameter segment ends and a new one starts. 
Similar to the visibility G-stroke, deriving the parameter G-stroke 
might also require adding one or more new vertices within a seg
ment where the parameter value reaches 1.0. 
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Figure 11: Parameter G-stroke. 

The dashing G-stroke can be used to generate a wide variety of line 
patterns. It subdivides each parameter segment (ranging from 0.0 
to 1.0) into n evenly sized subsegments and assigns an INTEGER 
dashing ID between 0 and n− 1 to them (see Figure 12). This can 
now be used, for example, to assign different textures to each of 
the dashing IDs and assemble a unique dasing pattern as shown in 
Figure 12(b). 
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Figure 12: Dashing G-stroke. 

A very important property of the strokes in a line drawing is the type 
of algorithm used to extract its edges. This property is captured by 
the edge type G-stroke (see Figure 13). It can distinguish, e. g., be
tween silhouettes and the various types of feature edges—each of 
them denoted by a unique ID. Even the different methods to extract 
silhouettes from a 3D model—edge-based or sub-polygon-based— 
can be assigned different edge type IDs. When used in stroke ren
dering, this can lead to very nice effects (see, e. g., Figure 13(b)) 
since in traditional renditions the different edge types are also de
picted using different styles. 

Very important for line renditions used as illustrations is to render 
different objects using different styles. This can easily be achieved 
using the object ID G-stroke (see Figure 14). The object ID property 
is extracted very early when the strokes are initially extracted from 
the 3D model. The values are typically later used to influence the 
values of other G-strokes (see Figure 14(b)) such as the color, line 
width, and line saturation G-strokes. 

Based on the simple examples presented above, we will now show 
more complex examples that partially make use of more than one 

1 2 3 4Indices

Data

...

...2 2 2 -1 0

-1

(a) Stroke and G-stroke. (b) Example. 

Figure 13: Edge type G-stroke. 

1 2 3 4Indices

Data

...

...0 0 0 -1 1

-1

(a) Stroke and G-stroke. (b) Example. 

Figure 14: Object ID G-stroke. 

G-stroke at the same time. The first two examples in Figures 15(a) 
and 15(b) demonstrate the use of the parameter and the edge type 
G-strokes, respectively. The first example shows that, using this in
formation, it is possible to improve the quality of textured line draw
ings by applying evenly scaled textures throughout the image. The 
second example demonstrates that the use of different stroke styl
izations for different edge types (silhouettes and angle-thresholded 
feature lines) may be subtle yet very powerful. 

The next example in Figure 15(c) shows the use of both edge type 
and visibility G-strokes at the same time. This type of drawing em
ploys the visibility G-stroke to render hidden lines using a dashed 
texture and could easily be used for architectural or archaeological 
illustrations where it is important to also reveal the internal struc
ture of buildings. Again, the edge type G-stroke is used to create 
the subtle but powerful effect to hint more structure than just silhou
ettes but not to disturb from the main shape. 

Combining the dashing G-stroke with the object ID and the color 
G-strokes produces the result shown in Figure 15(d). Using the ob
ject ID G-stroke the individual objects are identified. Consecutively, 
this data is used to assign the color G-stroke with a different color 
to each object ID. The dashed G-stroke is used to create a dashing 
pattern that is partially in the object’s color and partially in black. 

Finally, the last two examples show that coloring certain objects 
may easily be used in medical illustration. In particular in this do
main it is common to color certain organs in very specific colors, 
such as the arteries in red as done in the first image in Figure 15(e). 
Of course, it is also possible to emphasize different objects using 
other colors as in the second image in Figure 15(e). 

Using this example we show a comparison of the previous way of 
stylizing with the new G-strokes method with respect to the neces
sary scene graphs in Figure 16. Previously, each group of objects 
that needed to be stylized differently was extracted from the 3D 
model and a separate stylization pipeline was applied to it. This 
leads to a very complex and computationally expensive scene graph 



(a) Use of parameter G-stroke. 

(c) Use of both edge type and visibility G-strokes. 

(d) Use of dashing, object ID, and color G-strokes. 

(b) Use of edge type G-stroke. (e) Object ID G-stroke used to emphasize objects in illustrations. 

Figure 15: More complex examples for using G-stroke to stylize line renderings. 

(upper part of Figure 16). With the G-stroke approach this is not 
necessary anymore. Now, we can simply use one single stylization 
pipeline and filter the generated strokes according to the automat
ically extracted object ID G-stroke. Afterwards, we just have to 
use a few sub-pipelines to stylize and render each group of objects 
accordingly (lower part of Figure 16). 

6 Summary and Future Work 

In this paper we presented an approach that allows to handle all 
stroke properties that may occur in a line rendering system. In con
trast to previous local methods we propose a global technique that 
allows to store and manage the attributes in a coherent and con
sistent way. We demonstrated that there is a dependency between 
strokes and their properties—called G-strokes—and how this can 
be solved by separating the data management between strokes and 

G-strokes. We discussed what types of G-strokes may occur in a typ
ical system and how these can be arranged in a G-strokes hierarchy. 
This hierarchy makes the development of new strokes very easy be
cause most of the functionality is implemented in the upper levels 
so it simply needs to be re-defined. Moreover, we demonstrated the 
use of many G-strokes both with simple and more advanced exam
ples. Finally, we could show that our approach simplifies the cre
ation of elaborate stylization techniques by significantly reducing 
the size of the used scene graphs. 

Future work includes the extension of the G-strokes concept in 
terms of creating new specific G-strokes. For example, the sev
eral notions of curvature as, e. g., in [Sousa et al. 2003] could be 
tracked each as an individual G-stroke, the degree of an extracted 
feature edge (e. g., in terms of angle) could be stored as a G-stroke 
and used to influence the line width, and many more. Also, new 
nodes have to be implemented that make use of the G-stroke data 
for stroke modification and stroke stylization. For example, over
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shooting could be implemented as in [Grabli et al. 2004], the cur
vature G-strokes could be used to influence the line thickness as in 
[Sousa et al. 2003], etc. 

Very important for future line rendering systems is the development 
of good and efficient interaction metaphors and/or interfaces that 
allow users to intuitively specify rendering styles. For example, the 
system presented by HALPER et al. [Halper et al. 2002] could serve 
as a starting point for this task. 

In addition, the G-buffer concept can also be applied to domains 
other than pixel images or strokes. In fact, the variety of texture 
types that are used in regular rendering could considered to be G-
properties of the 3D surface model. 
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