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Abstract 

As a result of glacial isostatic adjustment the Earth's surface is experiencing a slow, three- 

dimensional deformation. This thesis presents a detailed study of the horizontal aspect 

of this deformation. parallel to the surface of the Earth. The analytical solutions for the 

horizontal displacement that results from the ioading of simple earth models are derived 

from the set of equations that describe the system. Numerical results using the 

mathematical manipulation program, Matlab. and the finite element modeling program. 

.L\B.AQUS. are found to be accurate through comparisons with the analytical solutions. 

-4B.AQUS is used to study the effect of loading on more comples earth models that 

include lateral variations. nonlinear rhrology and time dependent creep. For most models 

a masimum horizontal displacement is obtained at the edge of the load. This motion is 

found 10 be most sensitive to the thickness of the elastic lithosphere. lateral variations and 

nonlinear rheology . 
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Chapter 1: Introduction 

Periodically. large ice masses have formed to cover most of North America and Northern 

Europe. Each glacial event is defined by a slow accumulation of snow and ice to form 

continental sized ice sheets followed by a rapid disappearance of the glaciers. 

Accumulation occurs over a period of about 100 000 years and the disappearance occurs 

within 20 000 years. The most recent glacial maximum occurred about 18 000 years ago. 

The weight of these ice masses caused the land to subside. The subsequent removal of 

the ice occurred relatively quickly in _ecological time. Since the rate of the rebound of the 

land depends on the viscosity of the mantle. which is relati~~ely high. regions previously 

co~ered by glaciers are still adjusting to the new isostatic conditions. This glacial isostatic 

adjustment of the Earth's surface involves three dimensional motion of the surface and 

variations in the stresses espericnced within the crust. The evolution of the stresses and 

displacements of the surface can be determined and compared with predicted values 

obtained from computer modeling to estimate the e\.olution of the glacial load. the 

structure of the subsurface and the time and location of glacial induced earthquakes. 

The most commonly studied aspect of glacial isostatic adjustment is the vertical 

displacement associated with land uplift (Peltier. 1973: Cathles. 1973). This is due to the 

fact that it is the most easily measured aspect of the adjustment since the height and age 

of ancient beaches can be directly measured. However. another important aspect of the 

motion is the horizontal motion. which. until recently. has been very difficult to measure. 

With the advent of new technologies such as GPS (Global Positioning System) and VLBI 

(Veq  Long Baseline Interferometry). it is now possible to obtain accurate measurements 

of the three dimensional motion of the Earth's surface (Tushingharn, 1991 ; James and 



Lambert. 1993; Mitrovica et al.. 1994). If measurements are taken in regions that were 

previously covered by glaciers and far from the significant effects of tectonics then any 

motion present is interpreted as glacial isostatic adjustment. This gives an additional 

constraint in determining both ice and earth models. An example of the data obtained 

from V i B i  is given in Figures I .  1 and 1.2. Figure 1.1 shows the locations of the base 

stations and Figure 1.2 gives the rates of change of the baseline lengths. 

Figure 1.1 : .4n example of VLBI baselines used to obtain baseline length rates (Mitrovica 

et al.. 1993) 



Dluclinc Rate (mm/yr! 

11:sonquiit Park ( X i  .(;ilmorc Ck (C;) 3.3 i 0.3 
r\lgonquin Park (,I)-\VcstTord (\+') -0.7 i 0.5 
Gilmore Ck (G j-HayrtacX ( H  j -2.3 f 2.2 
Cilrnorc Ck (GI-SR.40 S.5 (51) -0.5 k 1.1 
Gilnore Ck ( G  j-Platteviile ( P j 5.6 f 2.3 
clirnore i'k (i;)-t~lcdi~l~orrd [Hi 1.1 f 1.2 
Giltnore Ck (G)-\Ycstford (I\') -0.4 f 0.5 
Gilnorc Ck (GI- \i?hl:chorscr !\Vfl J -3.5 f 3.5 
14cltsvillc iB)-SR..\O S5 (Sl 3.4 f 1.3 
Bt~ltsvillc (B)-Richrno~ld (R 1 6.9 f 2.  j 
Bcltsvii!e (B)-\\'est:'ord (\V) 0.0 f 3.0 
1Iays:ack [11)-SR.40 110 I $2'1 1 ..I i 2.0 
\Iary:and Pt  !.\I j-brllt~lond : H i  0.6 i .i.  I 
11; t!.lat;d Pt (111 \\'cstlord ( \V)  1.4 + 1.5 
SR:!O 85 (31 j-ltitl~nload (11; 2.2 It 0.3 
~ 1 ~ ~ ~ 0  $ 5  (SI:t-\Ve:~forJ i1Y.j 4.0 f '1.0 
SH-40 140 (.\2)-\\'cs:forif [\\.".I 0.5 i 0 . 3  
Pla~tcvillc ( P) -\\;.stford i \ V )  0.3 = 2.2 
Richn~ond ! KI-\!;:stford 1; \\ 'j -0.2 i 0. ! 5 

Figure 1 -2: An example of the rates of change of the baseline lengths (Mitrovica et al.. 

1993) 

The first study to investigate the horizontal motions that result from the remol.al of a 

load was done by James and Morgan (1990). Their preliminary results indicated that 

horizontal motions were more sensitive ro changes in the thickness of the lithosphere than 

are ~rertical motions. Based on these findings it was recognized that a careful analysis of 

the horizontal motions that results from the removal of a load could constrain the possible 

characteristics of the subsurface. However. the ice and eanh models that they used were 

rather simplistic and their results were not very accurate. As a result. James and Larnbert 

(1 993) undertook to characterize the horizontal motions using the more realistic ICE-3G 

deglaciation chronology (Tushingharn and Peltier, 199 1). They found that glacial rebound 

should be detectable by VLBI and that tangential velocities contributed more to baseline 

1eng.h change rates of shorter baselines. Mitrovica et al. (1993) determined that VLBI 

could be used to assess the acceptability of ice history and earth model pairings. Neither 



of these studies. however. gave any indication of what types of tangential motions were 

experienced or what types of models might produce these motions. 

hllitrovica et al. (1  994) conducted a more detailed analysis of the displacement for various 

mo3;ls 5:; u i n p  i ~ ~ ! i ~ i i  e 8 " l  mirdeb m d  iile ICE-3G ioading hislory to obtain predicted 

patterns of the horizontal motions for North America and Europe based on specific earth 

and ice models. Results of Mitrovica et al. (1 994) did not support the theory that the 

tangential motions are much more sensitive to details of the earth model (Janles and 

Larnbcn. 1993). but rather that the sensitivities are a strong f i c t i on  of geographic 

location and the specific parameter of the earth model and that lateral variarions could 

haw a significant impact on the results. The most recent consideration of horizontal 

motions have been done by D'Agostino et al. (1 997) and Giunchi et al. (1 997). Both o f  

these papers studied the effect of lateral viscosity variations and deep mantle 

stmrification on glacial rebound. They found that horizontal motions are more 

susceptible to changes in lateral variations than the corresponding vertical motions. 

Recent seismological data suggest that lateral variations in the subsurface are widespread 

and significant. Figure 1.3 shows the results of seismic tomographic analysis. It is 

apparent that there does esist significant lateral variations. Therefore any accurate eanh 

model must incorporate lateral variations in addition to radial variations. However. to 

date. there has been little attempt to systematically determine the effects of combined 

lateral and radial variations in viscosity together with changes in the thickness of the 

lithosphere. The only esceptions are Kaufmann et al. (1997) and Wu et a1. (1998). In 

addition, it is difficult to determine whether the horizontal displacement predicted by the 

difierent models is accurate since there has been little analytical study of the horizontal 

displacement that results from the removal of a load. 



Figure 1.3: Results from seismic tomography (Li and Romanodcz, 1996) 

The horizontal displacement has been shown to be sensitive to lateral variations in the 

subsurface (James and Morgan, 1990) while the vertical displacement tends to be more 

sensitive to radial variations. The combination of horizontaI and vertical displacements 

provides additional information which can be used to more accurately characterize the 

structure and properties of the subsurface. While several papers have been written 



analyzing horizontal motion data (James and Morgan, 1990; James and Lamben, 1993; 

Mitrovica et al.. 1991; Wu and Ni, 1996), there has been no systematic study of the 

horizontal solutions which are required to constrain the numerical modeling. 

The horizon:a! m d  vctliial d i s p l a i e m ~ s  t h a ~  result fram tile loading of scverai different 

models have been examined in this thesis. Historically, there were two basic hypotheses 

proposed to explain the motion associated with glacial isostatic adjustment. These are the 

"do\\n-punching hypothesis". associated with the deep flow model. and the "bulge 

h!-pothesis" associated with the channel flow model (Cathles, 1975). These are 

illustrated in Figure 1.4. 

2000 krn 
I 

Figure 1 -4: The halfspace (deep flow) and channel models 

In the deep flow model there is an infinite amount of material to compensate for the 

weight of the load and the motion under the load is dominantly vertical; whereas the 

channel model has a finite amount of material and necessarily horizontal motions occur as 

e l  These hvo simplistic models form the basis for the development of more detailed 

subsurface models. 



The analytical solutions for the horizontal and vertical displacements associated with 

these two models are discussed in Chapters 3 and 4, as is the analytical solution for an 

elastic lithosphere overlying a fluid halfspace. These results are compared with some 

numerical calculations. In this way. no: only are the motions well characterized, but the 

zcciiracy sf il~c nuurricai mehods is determined. The effects of variations in the density. 

the shear modulus and the thickness of various layers were determined. Using an 

advanced finite element modeling package called ABAQUS (Hibbitt. Karlsson and 

Sorensen. 1992) to determine the results numerically. it Lvas possible to examine models 

ivith lateral variations. nonlinear rheolopy and time dependent creep. By analyzing the 

responses of these various models to loading it  is possible to estimate the structure of the 

eanh based on a comparison with known motions of the Earth's crust. Although the 

displacement is dependent on the ice loading history as well as the subsurface structure. it 

is possible to eliminate those models which are not appropriate. 

The purpose of this thesis is to analyze the horizontal displacement that results from 

Heaviside loading of simple eanh models. First a systematic study of the horizontal 

motions was completed so that the impact of various earth parameters on the horizontal 

displacement could be determined. This was done through the analysis of the analytical 

solutions for various models, and a comparison of the relaxation and escitation strength 

diagrams. The methods used for the analytical and numerical analyses are discussed in 

Chapters 2 and 3 and the analysis of the various models in the wavenumber domain is 

discussed in Chapter 1. All of the models are based on a flat. incompressible. viscoelastic 

eanh. Nest. the accuracy of the finite element modeling program ABAQUS (Hibbitt et 

al.. 1992) was tested for the horizontal displacements. Once accuracy had been 

established. ..\BAQUS was used to determine the results of loading more complex models. 

The third goal of this thesis was to examine the horizontal motion that resulted from the 



loading of earth models that included lateral heterogeneity, nonlinear rheologg and time 

dependent creep. These results are discussed in Chapter 5. Based on these results the 

acceptability of various models was determined. 

Moaeiing the s u b s u ~ c e  is imponant not only to constrain tectomc and mantle 

convection models. but also to predict hture motions of the crust. This will not only 

enable scientists to obtain more accurate GPS and VLBI readings for use with other 

applications. but also to estimate the occurrence of hture earthquakes. 



Chapter 2: Basic Theoretical Concepts 

Many methods are used to study the effects of glacial isostatic adjustment. One method 

is to attempt to describe the motion in terms of a finite set of equations relating the 

propenies of the system. In this thesis. the system is defined as a flat earth that may be 

stratified. though each layer has constant properties. with an impulse load in time. This 

Ioad is defined as a circular disc load with conc!ant mass. radius and height. This load is 

most easily described in cylindrical coordinates so this is the coordinate system used. In 

this chapter. the basic equations used to describe the loading of a viscoelastic layer will be 

discussed. These differential equations are solved for an appropriate Ioad and 

appropriate boundary conditions. This is most easily accomplished through the use of 

~ h r  correspondence theorem which will be discussed in more detail in section 2.2. The 

correspondence theorem states that the viscoelastic solution in the Laplace transform 

domain can be obtained from the equivalent elastic solution where the elastic moduli are 

replaced by tariables dependent on the Laplace transform variable. s. The solution is 

most easily obtained in the wavenumber domain since in this transform domain the 

function of the displacement is multiplied by the function of the load rather than requiring 

a convolution between the two. The equations that describe the system will be discussed 

in section 2.1 and the methods used to determine the solutions in the (k.s) domain, the 

time domain and the space domain will be given in sections 2.3? 2.4 and 2.5 respectively. 

These methods \\ill be used to determine the analytical and numerical solutions associated 

with various earth models. The impact of variations in density. shear modulus, viscosity 

and layer thickness are discussed in Chapters 3 ,4  and 5. 

2.1 : Basic Equations 



This section will review the set of equations used to describe the loading of a viscoelastic 

layer. There are three basic equations to consider. These are: 

a. the equation of motion for a flat earth (Cathles, 1975, Appendix 11) 

where cr is the stress dyadic. 

p is the density. 

g is the gravitational acceleration. 

11. is the vertical displacement. 

E is the dilatation. 

and 2: is the unit vector in the vertical direction. 

b. the constitutive relation for a viscoelastic medium (the Navier-Stokes equation for a 

homogeneous. isotropic. elastic solid. i.e. Hookean elastic solid) (equation C. 16) 

where ekl is the kEh component of the strain tensor. 

oh, is the kp component of the stress tensor. 

i and p are the Lame parameters. 

6', is the Dirac delta function. 

and u is the viscosity. 



Note that for the incompressible case (Love, 19 1 1): 

where E is the dilatation. 

~ = Z e , , = e , + e , , + e , .  

and r i  is the displacement vector. 

c. and the equation for the strain tensor (hlalvem. 1969. equation (4.2.10)) 

where ei, is the kth  component of the strain tensor. 
- 
dl, and - is the displacement gradient. 
dl-/ 

Some of the assumptions associated with these equations are that the deformation 

processes are isothermal (constant temperature). that the displacements and displacement 

gradients are small. and that the Earth is flat. isotropic. and homogeneous with constant 
C 

gravitational acceleration and density. 



2.2: The Theorem of Correspondence 

The correspondence theorem simply states that any viscoelastic system can be described 

by the set of equations for the corresponding elastic system expressed in the transformed 

Laplace domain. if l is replaced by i ( s )  and p is replaced by p(s). This is useful in the 

interpretation of problems involving a viscous fluid because usually the equations for an 

elastic body are easier to solve. 

Here is a brief csrunple: 

Consider the constituti~.c relations for two different cases: a Newtonian fluid and a 

Ilas~i.sll  body. .A Seuronian fluid is defined as a material in which there is a linear 

relationship bet~vcen the stress and the rate of strain. The elastic solid (Hookean solid) 

and the i.iscous fluid (Neutonian fluid) represent the end members of ~.iscoeIastic bodies. 

\{*hen an elastic solid deforms. it experiences a strain proponional to the stress applied. 

Once the stress is removed. the body returns to its original state instantaneously. A 

simple esamplc is a spring where the stress. E is proportional to the deformation or 

strain. e. and G is the constant of proponionali~ or spring strength; o = Ge. A viscous 

fluid. however. esperiences a stress proportional to the rate of deformation and has no 

tendency to return to its original state when the applied stress is removed. A simple 

esample is a dashpot where the stress is related to the strain rate and q is called the 

viscosity: 0 = q&. 

r\ simple viscoelastic model is the Ma-swell model. It involves the combination of a 

spring and a dashpot in series. The constitutive relation for the one-dimensional case is 

(halase. 1970. equation 9.3) 



To determine the constitutive relation for the three dimensions! cast.. the k e e  

dimensional espressions for the Hookean and Newtonian bodies are used. For the general 

three dimensional case the constitutive relation for the Hookean solid is 

where d, = (3;. - 2 ~ ) r ' ,  = 3 d ~  = hkerlrr&l 

A.- is the bulk modulus. 

and E is the dilatation. 

and the constituti~e relation for a Xewtonian fluid is 

where rl is the viscous dissipative coefficient, 

u is the Newtonian viscosity. 

P is the thermodynanlic pressure, 

and d, = -3P - 3(r7 - fv)dpV,. 

Follo~ving the derivation of the constitutive relation for a Maxwell body in three 

dimensions as given in Appendis C. we obtain equation (C. 16): 



P 40, + - (nu - +ou6,) = ~ p d , ~ ,  + 
U 

This can be reduced to the fclllorving by performing the Lap!ace trasfnm. 

P where p(s) = - 
il 

i KP A+- 
and A(s )  = - 

U 
' (2.2.7) 
L1 

where K is the bulk modulus, 

p is the shear modulus. 

i is a Lame constant, 

and u is the Newtonian viscosity. 

Note that the bold variables represent variables in the transformed s domain. When 

equation (7.2.5) is compared with the constitutive relation for the elastic solid, they are 

identical in form with the exception that the stresses and strains have been transformed 

from the time domain to the s domain and the Lame constants are dependent on s. This 



demonstrates how the theorem of correspondence can be applied to the analysis of a 

~~iscoelastic problem. The viscoelastic problem and solution in the transformed domain 

halve the same form as the elastic problem in the time domain so if the solution for the 

elastic case is known then the solution for the viscoelasric solution can easily be obtained 

by replacing p and A with p(s) and A(s) respectively and performing the inverse Laplace 

transform. Also note that the impulse ioading boundary condition for the viscoelastic 

earth is rhe same as constant loading on an elastic earth since the transform of Po6(1) is Po 

where Po is the constant pressure of the load. 



2.3: Equations of Motion in the Transformed (k,s) Domain 

This section \\ill give the details of how the equations from section 2.1 are solved in the 

transformed domain. Transforming to the k domain removes a spatial differentiation so 

that a partial differential equation becomes an ordinary differential equation which is 

much easier to solve. The following section will give the solution in the time domain. 

Cylindrical coordinates are used with the variables r. 9. and :. to represent the three 

degrees of freedom. The (r.  3.:) components of the displacement correspond to (zr. v, n*). 

Cl-lindrical symmetry is assumed so that all derivatives in terms of 0 are zero and the 

displacement in the 8 direction. c is equal to zero. 

2 . 3 ~ :  Differential Equations for the Incompressible Earth 

The constraints for the incompressible case are that P-ii = E = 0 and lim EA = I7 . 
T-0 
A-*o* 

The equation of motion for the incompressible flat earth. from section 2.1. is 

r-component: &a,, ++d,a,, +d,o, ++(a, - ~ , ) - p g d , w = O  (2.3.2) 

8-component: d,a, + 2 fa,, + f d , ~ ,  + d p ,  - jpgd,ic = 0 (2.3 2) 

z-component: dra, +fo, +fd,~, +d,a- - - p g d , ~ ? = O  (2.3.4) 

(from Malvem. 1969, Appendix II.1.C I 1) 



The strain equations can be witten as (from Malvem. 1969, Appendix II.4.C9) 

and the stress-strain relationships are 

o,, = 0 

0, = o  

By inserting the appropriate stresses and strains into the equation of motion we obtain 

the following for the r and L- components to the equation of motion. while the 0 

component reduces to zero. 

Z P  7 p  11 r-component: -3, P + 2pd'u + dLaK + - drli - -- - p g d , ~  = O 
r r r  



The stress divergence can also be written in terms of the displacement field. Therefore 

the equation of motion can be expressed evclusively hy ddisp!acen?en!s. Theref9.e cr.!~ 

the displacement field needs to be determined. According to the Helmholtz 

Decomposition Theorem. any vector can be expressed in terms of the gradient of a scalar 

potential and the curl of a vector potential. Therefore the displacement vector can be in 

the following \\.a>-. 

where cp is the scalar potential 

and 9 is the vector potential. 

For cases where the material properties v a n  only as functions of z. the motion can be 

separated into poloidal and toroidal components. The poloidal component of motion 

inl.011-es motion in the z direction whereas the toroidal motion occurs in the r and 0 

directions. The poloidal component is a function of cp and the toroidal component is a 

function of q. For surface loading in an isotropic medium. toroidal deformation is not 

escitcd so this term is neglected. Therefore it is only necessary to solve IT = Vrp. For the 

incompressible case V. 17 = ~ ' t p  = 0. Therefore the displacements are related to the 

scalar potential in the following way. 



If the solution is assumed to be linear in r. 8. and r and have the form rp = R(r)Q(J)Z(:) ,  

then the follo\ving differential equations are obtained from ~ ' c p  = 0. 

Solving the above equations. sufficiently satisfies ihe equation of motion. These 

equations h x e  the follo\ving solutions. respectively. 

Q = 

R = J ,  (kr)  

where k and u are constants and 

J,(kr) is a Bessel function of the first kind 

and order u. 

Therefore. any variables dependent upon r can be expanded in terms of the Bessel 

hnction and any that are dependent on r can be expanded using an exponential function. 

Since there is no dependence on 0. the constant v must be equal to zero. Therefore the 

solution is: 



No\\. we can express the system of differential equations in terms of rp. This reduces the 

parrial differential equation to an ordinary differential equation. It is possible to express 

not only the displacements. but also the stresses in terms of cp. 

Knowing that J,(kr) sat istirs the t'olloiving differential equations (Tranter. 1968). 

a ( ~ , , ( k r ) +  fdpJ , , (kr )  i k ' ~ , , j k r )  = 0 

d, J , ,  ( k r )  = -Mi (kr)  

the following Bessrl function substitutions are obtained. which will be used to calculate 

the Hankel transform of these variables. 



11 = drcp = -ke-k J ,  (kr )  

LC = d: = - ke -" J ,  (kr )  
-k 4 err =Zpdrdrcp=2pe  [ , ~ , ( k r ) - k ' ~ , ( k r ) ]  

a ,  = Zpdrd;q = 2pFkk2 .T ,  (kr) 

0.. - = 2 ~ d . d . ~  = 7 . p e - ' k 2 ~  (kr\ - - " I  I 

For a \.erticall!- stratified halfspace. the vertical component is more complicated than a 

simple esponmtial. Instead. let .A = .4(k.=) be the vmical component of the Kh 

iva~.enumbr=r. Therefore we will have 

Using this form of cp \ye obtain the folloi~ing solutions for the displacements and stresses. 

These are the Honkel transforms associated with each of the different variables. 

Qrr = k ~ ,  [S J ,  (kr) - kl, (kr)]dk 
0 



a,lf = - f ku[kl0 (kr) - j J ,  (kr)]dk 
O 

DD 

&a, = -1 k ~ ,  [u0 (kr) - f J ,  (kr)]dk 
0 

Recall that the r and z components of the equation of motion. the stress-strain relations 

for a, and a,. and the divergence equation (dilatation) for the incompressible case are 

The formulae for the displacements and stresses as given by equations (2.3.20), (2.3.21). 

and (2.3.32) can be substituted into equation (2.3.23) and they are transformed into the k 

domain using the Hankel transform to get 



These five equations are reorganized and the Il term is eliminated to get the follo~c-ing four 

differential equations: 

These can be rspressed in matris form. 

This matris can be s h o w  to agree with the matrix given in Cathles (1975) for an 

incompressible. elastic. flat earth. where C equals iLT and T, equals iT,. This method of 

using the Hankel transform in cylindrical coordinates is equivalent to using the Fourier 

transform in Cartesian coordinates as used by Cathles (1 975). 

These equations can be normalized so that the variables are dimensionless. This is done 

to ensure accurate numerical calculations. Since the viscosity used in this thesis is 



relatively large as compared with the other material properties. the numerical calculations 

can introduce errors due to rounding errors. To minimize this problem. the values for the 

material properties are normalized. The normalization scheme is given in the table below. 

The form of the equations remains the same despite the normalization so the above 

diffzi~iitiii1  quaii ions can aijo be used iu represent h e  dirnrnsioniess probiem. 

Table 1: The Normalization Scheme 

The normalized values of s are in terms of thousands of years. 

Therefore if - represents the normalized form, then the following expressions apply. 

variable 

length 

mass 

density 

time 

stress 

era!-itationai 
t 

acceleration 
I 

elastic modulus 

viscosity 

- unit 

t ~ j  

I .if I 

: .ti - 
8 - 
L L ' ~  

I TI 

- . i f  
8 - 8 

, LT.' . 

' L :  
I - 
1 T: , 

L a 

,tf , 
[F! 

I"7 L L T j  

normalization 

factor - 
a 

5 O. 

- 
P 

-- 

(I - P 
', Fr - 
~1 

P r n  - - 
U P  

P* 

p' x 1 kyr 

value - 

radius of the Earth (637 i 000 m) 

mean mass of the Earth 

mean density (55 17 kg m'j) 

derived from the acceleration 

mean stress at surface of the Earth 

( n a : ~ : ~  = 2.589 x 10'' N m") 

mean gravitational acceleration of 

the Earth (7.365 m s-') 

mean stress at surface of the Earth 

( n a ' p ' ~  = 2.589 x 10'' N m-') 

stress over one thousand years 

(8.17 x 10'' Pa s) 



The linearized boundary conditions are determined by balancing the stress at the surface 

with the weight of the displaced material and relating the perturbed potential to the 

surface mass density. The boundary conditions can be derived from rhe equations of 

motion using the pillbos technique (Cathles. 1975). The stress is continuos in the viscous 

case. but for the elastic case there is also the advection of prestress term. Therefore, the 

linearized boundary conditions are 

elastic: 

viscous: 



When considering a viscoelastic problem. one uses the correspondence principle to relate 

the linearized equations of motion for the elastic and viscous cases. 

In the \.iscous limit. the advection of prestress term becomes pan of the overall stress. 

Therefore. the foiloiving can be defined. 

Therefore 

So the linearized equation of motion for the elastic case can be written 

This is equii-alent to the equation for a viscous fluid (equation (2.3.30)). This can also be 

applied to the boundary conditions so that for the elastic case 

This is also equivalent to that of the viscous fluid. Note that with this definition, the 

stress needs to be reinterpreted as rime progresses. 



2.3b: Solution to the Differential Equations 

In general the system of equations given by equation (2.3.26) can be written as 

d, = A F, where A is the square matrix. This is useful for numerical integration. This 

system of equations can be solved by finding the eigenvalues and eigenvectors of the 

matrix A. For a fourth order differential equation the solution is expressed in the 

following way assuming there is no redundancy in the eiegenvalues. 

where F,, represents the nth eigenvector, 

in represents the nth eigenvalue. 

c, represents the )7" constant as determined by !he 

boundary conditions. 

and = represents the depth. 

In terms of the differential equations derived in the previous section this method will give 

the solution in the (k.s) domain. Based on the correspondence theorem the viscoelastic 

solution can be obtained from this solution by substituting p(s) for p and performing the 

inverse Laplace transform to return to the time domain. Finally to return to the space 

domain from the wayenumber domain, the inverse Hankel transform will be performed. 

The solution for a uniform layer in a flat earth is obtained below. These equations apply 

only if the material properties are constant throughout the layer. 

The eigenvalues are determined by solving 



[A-AII=O 

where A represents a square matrix, 

A. are the eigenvalues, 

and I is the identity matrix. 

For the case of the incompressible. flat Earth. the values of the eigenvalues are f k, as 

demonstrated bsloiv. 

The above equation sho~vs ha t  the eigenvalues are degenerate. i.e., from this founh order 

equation only two unique eigenvaiues are obtained. Note that there are only two 

independent eigenvalues with only wo associated eigenvectors while four are needed to 

uniquely describe the system. There is a standard technique used in linear algebra to 

obtain two additional eigenvectors from the two existing eigenvectors (Boyce and 

DiPrima. 1986. p. 368). 



The first two eigenvectors are determined by solving 

where Fn are the eigenvectors associated with A,. 

The second two rigen\.ectors are determined by solving 

- (.A - in 1)c1, = r1, 

where 17, are the second set of eigenvectors associated with 

h, and Fn.  

The four eigenvectors obtained through this method arc 

The final solution. in the most general form for a problem where only two unique 

eigenvalues are ob~ianed. is given below. 



In matris form this is expressed as 

Therefore the solution can be winen as 9(:) = P($ where C is a vector of the 

constant coefficients. c,. and P(z) is a matris whose columns are equal to the eigenvectors. 

This satisties the differential equation (2.3.26). This represents the solution of an 

incompressible layer within a flat Earth with constant density, gravitational acceleration. 

viscosity and shear modulus. To obtain the solution for a stratified eanh model, the 

appropriate boundary conditions are applied to determine the values of the constants. 

The surface boundary conditions are that the shear stress is zero and the normal stress is 

constant due to the mass of the applied !oad. The surface boundary conditions can be 

espressed as F'(0) = (2)  = hl(0)i" = (-:). where P is a vector of' only the stresses. 

hI is a 2 x 2 matrix taken from the appropriate elements of matrix P to obtain equations 



for the stresses. C' is made up of the two constants, cl and c3. used to satisfv these 

boundary conditions and -0 is the magnitude of the impulse loading of the earth. These 

surface boundary conditions are used for all of the analytic models, since they are 

designed to investigate the response of an earth model to a constant load on the surface. 

The lower boundary conditions however vary from model to model. For the halfspace 

model the boundary condition as the depth goes to negative infinity (z is defmed as 

positi1.e upwards) is that the solution must be finite. Therefore the value for the 

constants c? and c4 is zero. The solution for the halfspace model without :he application 

of the surface boundary conditions is 

where c' is a 2 x 1 matris made up of constants cl and cj. 

For the channel model the lower boundary is fixed and does not move, therefore the 

~venicai and horizontal displacements are zero. The lower boundary conditions can be 

espressed as 

where z, is the depth of the lower boundary, 



is the 3 x 1 matrix made up of constants cl, cz, c3. and cr. 

and C" is a 2 x 1 matrix made up of constants C? and CJ. 

For the model of an elastic lithosphere over a fluid halfspace the conditions at the lower 

boundary are that the shear stress is zero and that the normal stress is caused by the 

buoyancy force due to the vertical dislpacement, i.e. pglV. These can be expressed as 

\$.here I, is the depth of the lower boundary. 

is the 4 x 1 matris made up of constants cl. c:. cj. and c4. 

and St' is a 2 x 1 matrix made up of constants cz and c4. 

For multi-layer models additional boundary conditions are needed. The boundary 

condition at any common boundary is that the solutions within the upper and lower 

layers must be continuous. It is assumed that the propenies within each layer are 

constant. In this way a complex model made up of many layers. each with constant 

properties. can be used to approximate the smooth variation in the properties as seen in 

the Earth where the bottom layer is a halfspace. A starting solution Pl(rl) is chosen, 

based on the model. to be pH. PC or PL and the solution is propagaxed through the layers 

by matris propagation. Therefore. for n distinct layers. the solution can be written as 



The two remaining constants are determined by applying the surface boundary 

conditions. 



2.3: Solution in the Time Domain 

In the last section the solution to the loading of a viscoelastic medium was obtained in the 

(k.s) domain so now it is necessary to invert the solution back to the ( x , r )  domain. The 

final two sections of this chapter will demonstrate the methods used to obtain the 

solutions in the inverse transformed domains; first in the (k . t )  domain and then in the (x . t )  

domain. Both of these methods assume that the solution in the (k .s )  domain has been 

determined and that all boundary conditions have been satisfied. Let the solution in the 

(k,s)  domain be a linear function of n independent solutions. each satisfying the 

differential equations. 

2.Ja: Spectral Method 

To determine the solution in the time domain the new normal mode method was used. 

The steps of this method are detailed below (I5'u. 1978; Wu. 1990). 

1. Find the matris M based on the boundary conditions applied at z = 0. For all of the 

models discussed in this thesis the boundary conditions at the surface are that the 

shear stress is zero and the normal stress is a constant equal to the weight of the ice 

load. The matris M is a portion of the matrix P. 

If the solution from equation (2.3.4)  is witten as 



then the matrix M is defined as 

Therefore 

Therefore 

F(: = 0.s) = M(s)E'(s)  = 6 ( s )  (2.4.2) 

where 6 is a 2 x 1 matrix d e f ~ g  the boundary conditions 

at the surface, 

c' is a 2 x 1 matris of the constants determined by the 

surface boundary conditions. 

M is the 2 x 2 matris used to apply these boundary 

conditions. 

and F(: = 0) involves only the stresses. 

- M *  C=- 
det 31 

c, = z, 4; (db,  
det M(s) 

where M' is the transpose matrix of the cofactors M,'. 

Therefore the solution can be written as 



where are the column vectors of P. 

2. To determine the singularities of the solution, the values of s for which detM = 0 are 

determined. These s values are equal to the inverse of the relaxation times. 

3. Define a vector which is dependent on the original matrix PI the inverse of M and 

the boundary conditions. 

so that 

4. The solution can be espressed as the sum of an elastic component (independent ofs) 

and a viscous component (s dependent). The elastic component is the solution at the 

initial time. i.e. as s goes to infinin. This elastic component can be subtracted from 

the total s dependent solution to obtain the viscous component. The viscous 

component of 0 can be obtained from the viscous component of the solution. 

FE(:) = Iim F(2, S )  
5 4 -  

P"(;s) = F(;.s) - PE(,) = Q '' (:, S) 

det M 



det M where by definition 0 " (z .  s )  = g(:. s) - 0 (=) 
d e t ~ ' '  

5 .  The solution in the time domain can be obtained by performins the inverse Laplace 

transform. 

6. This integral can be simplified using the Residue Theorem. The Residue Theorem 

states that the integral of a function around a cun-e can be expressed as a sum of the 

residues. The residue can be evaluated by first idenrifi-ing singularities in the 

function. then raking the numerator of the integral evaluated at these singularities. 

divided by the slope of the denominator evaluated at these singularities (Marsden. 

1973). The residue then becomes independent of s. For example. if the value of dethl 

is zero at s, and there are nl such singularities. then 

1 Q '  ( z .  s)e" tn 

GI' det hI(r) 
ds = ZRes  (2.4.13) 

r = 1 
Jl 

Therefore equation (2.3.12) becomes 

where I?, (:) = 
o r ( : . s r )  

are the residues. (2.4. I 5 )  
% [det M ( s ) ] ~  

J l  



7. Finally the elastic portion of the solution is obtained by calculating the value of the 

soiution as s goes to infinity, according to equation 2.4.9. 

8. Therefore the time dependent solution is a combination of the elastic solution and the 

sum of the residues. If a Heavisidc load is assumed. then the solution has the 

folloning form. 

' (') is the excitation strength. where - 
SI 



2.lb: Numerical Application of the Spectral Method 

The analytical derivations of the time dependent solutions for three different basic models 

can be found in Appendices D. E. and F. These basic models are the halfspace model, the 

channel model and the model of a lithosphere over a fluid. 

The results of the spectral method are used to check the results of the finite element 

method. especially the horizontal displacement. Analytical results esist only for 

relati\-el! simple models. but the results for models with lithospheres and stratified 

\.iscoelastic halfspaces also need to be analyzed. For this reason Matlab programs were 

written to compute the deformation in a laterally homogeneous earth model using the 

spectral method. 

A series of Matlab programs was n~ i t t en  to calculate the solution in the (k.s) domain and 

then to employ the method outlined in section 2.4a to calculate the solution in the (k.r) 

domain. These programs calculate the relasation times. residues. excitation strengths and 

time dependent solutions for any laterally homogeneous model. The solutions for the 

three basic models were calculated numerically using the Matlab programs and the results 

were compared with the analytical solutions. They were found to agree so huther results 

from the Matlab programs could be used with confidence. These comparisons d l 1  be 

discussed in more detail in the upcoming chapters. 

The Matlab programs were structured in a manner to facilitate the use of the normal mode 

method in determining the solution in the time domain. First a starting solution is chosen 

to reflect the desired structure of the model, either halfspace, channel, or lithosphere over 

a fluid. This allon-ed all three model types to be incorporated into one set of programs. 



This is done through the use of a flag. If the flag has a value of 1, then the starting 

solution is the halfspace solution, if 2 then the channel solution and if 3 then the 

lithosphere over a fluid solution. The starting solution for the halfspace model is based 

on the eigenvalues and eigenvectors obtained for the incompressible flat earth. The 

starting solutions for the channel and lithosphere over a fluid are the boundary conditions 

at the lower boundary as discussed in the previous section (equations (2.3.43) and 

(3.3.44)). The material parameters of the model are then entered into the program in the 

form of a vector. each element of the vector corresponding to a particular layer. The 

material parameters required are the density of the layers. the shear modulus. the 

viscosi? . the gravirational acceleration and the depth of the top of the layers. The 

solution in the ( k . 3 )  domain was obtained by propagating the starting solution through the 

various layers to the surface where the surface boundary conditions are applied. The 

solution in any giwm layer is based on the cigenvectors as discussed in section 2.3 and 

eiven in equation (2.341). Upon testing of the programs. it was noticed that for large 
L 

\.slurs of k the rigenwvectors were similar. hence the matrix P was singular for large values 

of k. Therefore the inversion of the matris P. required in the matrix propagation. became 

numericaliy unstable. Conceptually. for large values of k the model is sampled to only 

small depths and the eigenwvcctors approach those of the halfspace model. instead of the 

solution for an arbitrary layer. To accommodate this effect an effective depth was 

calculated below which the model is not sampled. This effective depth was chosen to be 

l/(jk). The matrix propagation then started from this effective depth using the halfspace 

solution no matter what the initial model. Since the material below this depth is not being 

sampled then it can be modeled as a halfspace without the loss of information. 

Once the solution in the (k.s) domain had been obtained the nest step was to calculate the 

items necessary to determine the solution in the (k t )  domain. These items are (a) the 



elastic pan of this solution, which can be easily obtained by determining the value of the 

solution as s gets very large, (b) the matrix M based on the matrix used to determine the 

constants from the surface boundary conditions, (c) the relaxation times by solving the 

determinant function, d e w  = 0, (d) the viscous part of the solution by subtracting the 

elastic part from the total. (e) the viscous Q vector as given by the viscous solution 

multiplied by detM. and (f) the residues obtained by dividing the viscous Q vector by the 

slope of drtkI evaluated at the inverses of the relaxation times. A further series of 

programs was winen to calculate these items and to combine them to determine the 

solution in the time domain. 



2.5: Numerical Solution in the Space domain 

From the solution in the time domain. the final step needed to obtain the solution in the 

space domain is to perform the inverse Hankel transform. The solution can then be 

invesrigated to determine how it varies both in time and in space. 

2.5a: Solution Using the Inverse Hankel Transform 

For the cases where an analytical solution was available in the ( k , t )  domain. the formula 

\\.as directly incorporated into the FORTRAN program designed to perform the inverse 

Hankel transform using the Continued Fraction Expansion by Chave ( 1983). The 

solution in the space domain was obtained for different values of r at a particular time r .  

The formulae used to compute the in~er se  Hankel transform are determined from the 

equations used in the initial derivation of the differential equations in equation (2.3.20). 

The H d c l  transform of a disc load with small radius (Farrell. 1972. equation 8) is Jl (kR)  

R k- Tne solutions ?ITk.r) and L1k.r) are for a harmonic load with wavenumber k and 

amplitude o. thus to obtain the space-time solution for a disc load they have to be 

multiplied by the function of the load in the k domain and then the inverse Hankel 

transform is performed on this product. The formulae used to calculate the displacement 

at r = 0 are 

OD 

i~(r ,  t )  = -1 U(k ,  I )  RJ, (kr)dk 
0 



arid at all other values of r are 

where i l lk ,  r )  and w(r. I )  are the vertical displacements. 

Lxk, r )  and ir(r, I) are the horizontal dispiacements. 

J,(hn) is the Brssel function of first order. 

JQ(b-) is the Bessel function of zero order. 

and R is the radius of the cylindrical load. 

By investigating the analytical solutions for the vertical and horizontal displacements. it 

was possible to determine that the horizontal displacement was antisymmetrical around 

the k = 0 asis while the vertical displacement was s~~rnrnetrical. This is due to the order 

of the Bessel functions used in the above equations since J l ( x )  is an anti-symmetrical 

function and Jo(x) is symmetrical. The formula for w(r)  at r = 0 can be obtained from 

equation 2.5.3 by taking r = 0 since Jo(0) = 1 (see equation (2.3.16)). Also notice that the 

load function is not present in the formula for ir(r) at r = 0. This is due to that fact that 

Jl(b.)  is zero at r = 0 (see equation (2.3.17)). so the horizontal displacement at the center 

of the load is zero regardless of the magnitude of the load. 

It can be shown that the k domain solution for the horizontal displacement is singular 

where k = 0. however its product with Jl(kr) becomes finite since JI(0) is zero. Since the 



Fourier transform is similar to the Hankel transform and the differential equations are the 

same. originally the problem of this thesis was analysed using Cartesian coordinates (with 

a boxcar load that extends to plus and minus infinity in the y-direction). However. it was 

noted that the Fourier transform of a boxcar load is the sinc function which has a finite 

..- aluc .. - iii P = 0. This posed a probienl  hen trying to caicuiate u(xj due to the sinpuiar 

nature of ~ ( k )  at k = 0. For this reason the calculations were performed in cylindrical 

coordinates instead, 

The hlatlab programs output the numerical calculations as lists of numbers corresponding 

to the displacements for specific \*aIues of k. These lists are then imported into the 

FORTRAN program and values are interpolated and estrapolated as required so that 

continuous functions of k are obtained for both the vertical and horizontal displacements. 

The interpolation was done by assuming a linear relationship between consecutive values 

with respect to k. The estrapolation required the limits of the displacement hnctions for 

large and small k values to be e~*aluatrd. 

A comparison of the analytical results for the three basic models of the halfspace. channel 

and lithosphere over a fluid was done to determine the trends of these models as k goes 

from zero to positi\*e infinity for both the horizontal and vertical displacements. From 

this investigation it was determined that the halfspace and lithosphere models had similar 

limits. The channel model was found to give a slightly different form to the limits since it 

did not have an underlying halfspace. Therefore the limits used for the extrapolation of 

the horizontal displacement are 



for k + m! ic(k) = 2pe'HL & I (  I +  ;/k( 1 - e  . r ) )  2"' 

a d  the !hi ts  lsed 5: t!~e ~efiicz! disp!actm::.: a;; 

where the properties used for the k + 0 limit are those of the deepest layer or halfspace 

and the properties used in the k + - limit are those of the surface layer. 

Since the limits given in equations (2.5.5)  through (2.5.8) represent extreme values it was 

necessary to ensure that an appropriate range of k was used to generate the list of values 

that represent the displacements as a function of k. I t  was found that a suitable range was 

from 1 oV9 m-' to lo-' m-I. It was also important to ensure that this range was finely 

sampled since a linear interpolation method was used. For the range given above it was 

determined that a suitable number of divisions would be 1 o4 with a logarithmic sampling 

interval. however. testing showed that 250 divisions were sufficient. It was also found 

that the accuracy of the results was more dependent on the range of k values rather than 

the size of the sampling interval. The numerical results from the Matlab programs could 

then be transformed into the space domain so that comparisons could be made with the 

analytical results. 



2.5b: Solution from the Finite Element Method 

Another method used to generate the displacements that result from the loading of the 

Earth rvas to use the finite element modeling package called ABAQUS. This modeling 

program is fairly simple to use and it is easy to create complicated Earth models. The 

advantage of using this package is its ease in studying the influence of lateral variations. 

non-linear Eanh rhrology and time dependent creep. none of which can be easily 

incorporated into any of the other modeling methods discussed so far. ABAQUS requires 

only the description of the dimensions of the subsurface as well as the material properties 

and it produces the displacements that result from any type of loading One important 

detail in modeling with .AB.AQUS is to ensure that any particular layer is defined by an 

appropriate number of elements so that accurate displacements are generated. 

Since numerous methods were used to generate the solutions. a series of checks was 

carried out. The first step u-as to calculate the analytical solutions in the (k.s) domain. 

the (k.1) domain and the (.r,r) domain for the most simple models. the channel and 

halfspace models. The theoretical solution in the (k.s) domain was also determined for 

the model of an elastic lithosphere o w  a fluid. These theoretical solutions were 

compared with the solutions generated by the Matlab and FORTRAN programs. These 

solutions were also compared with the results of the finite element modeling program 

AB.4QUS. Once it was determined that the Matlab and FORTRmT programs were 

reliable some more complicated models were considered. The displacements produced by 

these complicated models were compared with ABAQUS output to ensure the validity of 

the finite element modeling program. All of the above comparisons will be discussed in 

more detail in Chapters 3.4 and 5. 



In this chapter all of the basic tools used in the analyses discussed in all subsequent 

chapters has been reviewed. The next chapter will apply these methods to the halfspace 

model. Chapters 4 and 5 will use these methods in the analysis of more complicated 

models. 



Chapter 3: Incompressible, Self-gravitating, Uniform Earth: Analytical and 
Numerical Solutions 

This chapter will present the analytical solution for the loading of the halfspace model. 

This ciiitpter w iii aisu 5-c to iiiustrate the steps taken in h e  anaiysis of the different 

models to be discussed in subsequent chapters. In the first section the solution in the 

(k.s) domain will be given. It will be compared with the numerical solution generated by 

the Matlab programs. In section 3.2 the analytical solution for the relaxation times will be 

derived and this will also be compared with the Matlab output. Similarly in section 3.3 

the cscitation strengths will be discussed. Finally in section 3.4 the solution in space and 

rime \\.ill be re\-iewed and the results will be compared with the results from the Matlab 

and FORTR49 programs and the finite element modeling package ABAQUS. The full 

derivation of all of rhr analytical solurions for the halfspace model can be found in 

Appendix D. 

3.1: The Anal~tical Solution in the (k.s) Domain 

This section \v\.ill begin with a brief review of the method used to determine the solution in 

the (k.s) domain as discussed in section 2 . h .  This solution is compared with the output 

of the klatlab programs to test the validity of the numerical calculations. The differential 

equations that describe the loading of a halfspace can be witten as 



~Tz) ( p g k  0  k 0 )  

where = 

These differential equations can be solved using the eigenvalues and eigenvectors of the 

matrix A. In this way the general solution is found to be 

where p is p(sr and U. A'. T,. and Tzz are in the Laplace transform 

U' 

T, 

and \va\.enumber domains. 

This is the general solution given by equation (2.3.4 1 ). There are four constants in this 

solution. A. B. C. and D which are determined by applying the appropriate boundary 

conditions. The boundary conditions for the upper boundary. z = 0. are that the shear 

stress. T,. is zero and the vertical normal stress, T=, is a constant equal to the weight of 

the load. The lower boundary is defined as negative infinity and the condition that must 

be satisfied at this boundar) is that the solution must remain finite. Applying all the 

boundan. conditions. the four constants are determined to have values of 

and A = 
k 0 0 0  

3pk2 pgk 0 - k '  



where - a = p g l ~  is the constant weight of the load with density p, and height h. 

Therefore the solution for the halfspace model under a constant load is 

Therefore the analytical solution for the horizontal displacement resulting from the 

loading of a halfspace is 

( ~ e  '' k: < ( k .  j t ( s ) )  = ~ ( k .  p ( s ) )  = 
?ru(s)k + Pg 

and the vertical displacement is 

As is evident by this solution the horizontal displacement has a value of zero at the 

surface. 



The t\vo graphs that foilow show the correlation between the Matlab output for the 

horizontal and vertical displacement and the analytical solution given above. Since the 

horizontal displacement has a value of zero at the surface. the solutions are investigated at 

a depth of 100 km. Figures 3.1.1 and 3.1.2 show that the two differe~t methods yield the 

same results indicating that the numerical calculations are accurate. 

The values used for the material properties of the halfspace are given in Table 2. They 

\\.ere chosm to represent the ayerage values for the Eanh. 

Table 2: The $laterial Properties of the Halfspace Model 

Recall that the solutions have been normalized so that the displacements are 

dimensionless and the s values are in terns of per thousand years. 

density 

gra\.itational acceleration 

viscosity 

shear modulus 

wa~-enurn ber 

depth 

load 

p =  j517kgm" 

g = 7.365 m s" 

u =  1 x 10"Pas 

p =  1.452 x 10" K'm-' 

k =  1 x l0"m" 

: = - I  x 10bm 

CF= 1 x lo7Pa 



Figure 3.1.1 : A graph of the vertical displacement at a depth of 100 km in the (ks) 

domain that results From the loading of a halfspace 

Figure 3.1.2: A graph of the horizontal displacement at a depth of 100 km in the ( k s )  

domain that results from the loading of a halfspace 



3.2: Relaxation Diagram 

To plot the relaxation diagram. it is necessary to determine the determinant h c t i o n  as a 

hnction of s. This determinant h c t i o n  is obtained from the matrix. M. used to 

determine the constants from the boundary conditions at the surface. as shown in 

equation (2.4.'). For the halfspace model t h s  matrix is 

Therefore by solving for detRl= 0 and substituting the formula for p(s) as given in 

equation (2.2.6 j the follou.ing equation is obtained. 

This is the determinant function for the halfspace model. There are three possible 

solutions. The! are (a) s = 0 

(b) s A ,u;u + = 

(c) 2/uk + pg(s + $) = 0 

The first two solutions are not particularly informative and it is the third solution that 

\\.ill be analyzed. This gives the values of s for ivrhich the determinant fimction is zero. 

Note that these values are always negative. 



1 The relaxation times are the inverses of these values, .r = -. 
-.f I.\ 

dt' J 

.Also note that there is a singularity in the determinant function at s = -pb. This can 

make it difficult to isolate the zeros of the hnction when it is being analyzed graphically. 

especially as the number of layers increases. As a remedy. the entire function is 

multiplied by a factor of xt=r"(~ - pZu,) ' .  where there are n distinct layers within the 

model. This is referred to as the normalized detrrminanr function (Wu and Ni. 1996). 

The material parameters are the same as those used in the previous section. given in Table 

2. except that these figures correspond to the solution at the surface. Figure 3.2.1 shoivs 

n graph of the determinant function for a halfspace as a function of s. It can be seen that 

the values for which this function is zero correspond to the solutions piyen by equation 

(3.2.3). It should also be noted that both the analytical and the numerical Matlab 

solutions are given. It is difficult to anal!.ze this graph due to the singularity which can be 

clearly identified at the right hand side of the graph. Figure 3 2 . 2  sho~vs the determinant 

function that has been multiplied by the factor (s + p'u)' to remove the singularity. 

Notice how it is much easier it is to identi& the zeros. This graph also shows that the 

analytical and numerical results agree well. 



Figure 3.2.1 : The analytical determinant function of the halfspace modei as a function of s 

compared with the numerical results from Matlab 

Figure 3.2.2: A comparison benveen the normalized and nonnormalized determinant 
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The values of s for which the determinant function are zero vary with wavenumber. k. A 

plot of these s values as a function of k is called the relaxation diagram. The relaxation 

diagram shows how the relaxation times (inverse of s) vary with wavenumber, k. In 

general the relaxation diagram for any particular model will have different modes of 
C 

relasation. The number of modes usually corresponds to the number of discontinuities in 

densin. and blaswell times (Wu and Ni. 1996). The M modes refer to the buoyancy 

modes which arise from density contrasts. Relaxation diagrams can be used for diagnostic 

purposes through rhe anal>.sis of the shape for large and small \vavenurnbers and the 

number of modes to determine the impact of iariations in the material parameters on the 

response of n particular earth model to loading. The relaxation diagram for the halfspace 

nlodcl is shoiin in Figure 3.2.3. In this case there is only a single mode of rcla~ation due 

to the density contrast at the surface. This is called the bIO mode. This curve 

approaches a constant value for small vaiues of k and becomes wries linearly for large 

values of k. The shape of this cun-e and the relasation times associated with specific 

~.a\.cnumbers agrees \\-ell with the relaxation diagram given by Wu and Ni ( 1996. Figure 2 )  

even though they use a spherical earth model. It should be noted that the angular order n 

for a spherical canh is related to the normalized \i.a\-cnumber. k. by the following 

relationship k = rt - 1 2 .  

The nest series of figures demonstrates the effect of changing various earth properties on 

the relaxation diagram. In all of the fo1loi1-ing graphs the reference model is represented 

by grey points and all orher models are represented by black points. Figure 3.2.4 shows 

the relaxation diagram for the original model (grey) and the model with an increase in the 

viscosity of the halfspace (black) from 1 x 10" Pa s to 1 x 1 o ' ~  Pa s. There is still only 

one mode of relaxation and the shape of the curve remains the same though it is displaced 

towards longer relaxation times; recall that the relaxation times are equal to the inverse of 



the s values. This implies that an earth model with a higher viscosity will relax more 

slon-ly when subjected to a load. A decrease in density from 55 17 kg m'3 to 3380 kg rn" 

had lialr effect other than to increase the relaxation times slightly as demonstrated in 

Figure 3.2.5. This is due to that fact the density contrast at the surface is still relatively 

Izigc. X msdel ii-i':i a iowcr iicosii) u iii a l ~ u  reiax more siowiy. A change in the shear 

modulus within the halfspace. as s h o r n ~  in Figure 3.2.6. results in a slight increase in the 

relaxation times at small ivavenumbers only. As the value of the shear modulus within 

the halfspace decreases from 1 . l j x 10' ' N m" to 0.67 x 10' ' N m-I only the small 

\va\.enumbers or large wavelengths are affected. The relaxation times for the small 

~\.ai.clength or shallow areas of the model arc unaffected by the change in shear modulus. 



Figure 3.1.3: The relasation diagram for the halfspace model (reference model) 

Figure 3.2.1: The relaxation diagram for a halfspace with a viscosity of 1 x 10" Pa s 

(black) and the reference model (grey) 



Figure 3.2.5: The relaxation diagram for a halfspace with a density of3380 kg m" (black) 

and the reference model (grey) 
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Figure 3.2.6: The relaxation diagram for a halfspace with a density of 3380 kg m" and a 

shear modulus cf 0.67 x 10' N m-' (black) and the reference model (grey) 



3.3: Excitation Strength Diagrams 

Another method of comparing different models is to analyze differences in their excitation 

strengths. The escitation strength as defined after equation (2.4.16) and represents the 

viscous time independent component of the displacement. It is helpful in investigating 

the importance of properties at various depths throughout the model. This is done by 

making a plot of the escitation strength as  a function of k. This is called an escitation 

strength diagram. As discussed in section 2.3. the escitation strength is defined as the 

Rl (4 residue multiplied b!. the relaxation time. - . In general residues are determined by 
S 

equation (2.4.15 ). 

Q1'(:*h., ) 
R, (:) = 

[de r 3 I (s)]l ,f t 

where s, are the solutions to detbI = 0. 

In the case of the halfspace model the vecror Q" is found to be 

and the slope of the determinant function is 



which is evaluated at. from equation (3.2.3). 

For the halfspace there is a single residue and it is gillen by the follo\r-ing analvtical 

equnt ion. 

Therefore the escitation strengths are 

The escitation strength for the horizontal displacement is zero at the surface. The 

following figures show the escitation strength diagrams for the venical displacement at 

the surface. i.e. z = 0. These diagrams plot the escitation strength as a function of the 

\va\.enumber. k. Figure 3.3.1 is the escitation strength of the halfspace model with 

material parameters as defined in Table 2 given in section 3.1. As with the relaxation 



diagram there is a single mode. A constant value is approached for large values of k and 

for small values of k the escitation strength varies linearly. The proceeding figures 

demonstrate the effect of changing the properties within the halfspace on the excitation 

strength. These models are the same as those discussed with respect to the relaxation 

diagrams in sectlon 3 2. Figures 3.3.2 through 3.3.4 contain both a reference curve, as 

given in Figure 3.3.1. identified by grey points and a curve identified by black points for a 

model with a variation from the reference. The excitation strength remains constant 

despite a change in the viscosity. (Figure 3.3.2). so although \,iscosit). has a significant 

effect on the relaxation time (Figure 3.2.4) it has no effect on the escitation strength. as 

expected from an examination of equation (3.3.4). However the escitation strength 

increases significantly with decreasing density. as sho\m in Figure 3.3 3. while density 

has little effect on the relasation rime (Figure 5.2.5). .A decrease in the shear modulus 

results in a decrease in the escitation strength for small values of k only. as shown in 

Figure 3 . M .  For both the relaxation time (Figure 3.1.6) and the excitation strength. a 

change in the shear modulus affects only the long \va\'elength (small wavenumber) 

response. 



Figure 3.3.1 : The vertical displacement excitation strength for the halfspace model 
(reference model) 

Figure 3.3.2: The vertical displacement excitation strength for a halfspace with a 

viscosity of 1 x 10" Pa s (black) and the reference model (grey) 



Figure 3.3.3: The vertical displacement excitation strength for a halfspace with a density 

of 3 3 SO kg m*' (black) and the reference model (grey) 

Figure 3.3.1: The vertical displacement escitation strength for a halfspace with a density 

of 3380 kg m" and a shear modulus of 0.67 x 10" hT m" (black) and the reference model 



3.4: Space Domain Solution 

This section will begin with a description of the analytical time domain solution obtained 

using the normal mode method. The space domain solution is difficult to determine 

analytically. so the analytical time domain solutions are entered into the FORTUN 

program designed to perform the inverse Hankel transform to obtain the space domain 

solution. This solution will be compared with the solution obtained by importing the 

numerical hlatlab data into the FORTUN program. Finally both of these solutions will 

be compared with the solution obtained from the finite element modeling package. 

:lB.\QL;S. 

Using the nornlal mode method as described in section 2.4. the analytical time domain 

solution for h e  halfspace model with a disc load of magnitude -a is 

The full derivation of this solution can be found in Appendix D. 

i \ k: 

Before the abol-e equations for the time domain solution of the vertical and horizontal 

displacements were incorporated into the FORTRAN program to obtain the space 

domain solution the FORTRAN program was tested. The inverse Hankel vansform was 

performed on some simple functions and the output was compared with the results given 

in a paper by Cha\.e (1 983). 

oe k: - 1 
P(k. I )  = i 

I 2cIk + pg 21tk': 
(k: - 1)(2pk + pg), 



The vertical displacement that results from the loading of a halfspace was examined using 

three different methods. The first was to substitute the analytical equation for the 

displacement in the (k.r) domain into the FORTIWN program. The second was to 

T t  imp!? fit. n~vnric?! :~su!!s f ~ 3 1 ~ 1  k ?.fa!!ab P i O e i L i  i i i t ~  &C F O n r & s  prsgram. I n~ 

third was to use the finite element modeling package ABAQUS. A graph of  the three 

results overlain can be seen in Figure 3.41. The data obtained from ABAQUS is much 

more dense which is why i t  is plotted as a curve rather than independent points. The 

results compare fa\.orably. This gives confidence in AB.i\QUS as well as the FORTRAN 

program. Unfortunately the wlue of the horizontal displacement is zero at the surface so 

it was not possible to test the validit!+ of the numerical methods in its calculation. 

The ~ ~ e n i c a l  displacement that results from the loading of halfspace. Figure 3.4.1. has 

several distinct propmics. The model parameters are given in Table 1. given in section 

3.1. and the ice load has a radius of 2000 km. indicated by the arrow. and a height of 1 h. 

There is an initial elastic displacement follo\ved by viscous relaxation at one. five and ten 

thousand years afier the emplacement of the load. After a period of five thousand years. 

the masimum displacement has been obtained. There is also a peripheral bulge that 

develops by ten thousand years afier the emplacement of the load. A peripheral bulge is 

defined as an area in the displacement c u n e  that experiences uplift rather than 

submergence after the emplacement of the load. The largest gradient in the displacement 

cun*e is located at the edge of the load. The displacement quickly approaches a value of 

zero away from the load. Figure 3.4.2 shows the effect on the vertical displacement as 

the viscosir]: of the halfspace increases from 1 x 10" Pa s to 1 x 10" Pa s. The initial 

elastic displacement remains unchanged. This agrees with the analytical solution which 

sho~vs that the elastic solution is independent of viscosity. However. the magnitude of 



the viscous motion has decreased significantly so that the full extent of the deformation 

will take longer than ten thousand years to be realized. The final model to be considered 

in this section has a smaller load. In Figure 3.4.3 the load has a radius of 1000 km instead 

of ZOO0 km. In general the shape of the curves remains the same. The maximum 

displacement is unchanged and the steepest slope is still at the edge of the load. A 

peripheral bulge is still present in the cunre for ten thousand years after the load is 

emplaced. 

distance from the center of the load (m) 

Figure 3.4.1 : Graph of the venical displacement that results from the loading of a 

halfspace with a viscosity of 1 x 10" Pa s and a load radius of 2000 km; results from the 

analytical soiution. the Matlab numerical solution and the ABAQUS numerical solution 
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Figure 3.4.2: The vertical displacement of a haifspace with a viscosity of 1 x 10'j Pa s 

Figure 3 -4.3 : The vertical displacement for a halfspace with a 1000 h radius load 



Chapter 4: Analysis of More Complicated Earth Models in the (k,s) Domain 

This chapter will discuss the relaxation and excitation strength diagrams of some more 

complicated earth models. The first to be considered is the channel model where there is a 

finite amount of material to compensate for the load. The next to be considered is the 

model with an elastic lithosphere. The analytical solution for the loading of an elastic 

lithosphere over a fluid is presented and then the relaxation and excitation strength 

diagrams for a lithosphere over a viscoelastic halfspace are analyzed. In the final section 

the response of models with two or three distinct layers will be discussed. By studying 

these \vide ranging models the impact of different parameters on the relaxation times and 

escitation strengths can be determined. This \\.ill facilitate the interpretation of the space 

and time domain solutions. 

4.1: The Channel Model 

.A channel is defined as a layer with a fixed loiver boundary such that all of the motion 

required to compensate for a load must occur within the channel. The viscoelastic channel 

rstends from the surface to a depth. -H. where the boundary is absolutely rigid. Since the 

channel model is a fairly simple model the analytical solution was derived and a further 

check of the accuracy of the numerical methods was carried out. A channel is a very 

unique model because there is no underlying viscoelastic halfspace hence there is a fmite 

amount of ~~iscoclastic material available for compensation. If numerical results be could 

accurately obtained for this model then further results could be examined with greater 

confidence. 



4.la The Analytical Solution 

The standard set of differential equations is solved with boundary conditions appropriate 

to a channel (equation (2.3.35)). By definition a channel has a rigid lower boundary. T ~ P  

cor?di!ior?s the s~rfnce  50md2q: :emsi:: :he s a i e .  ~ l a t  is, ~iLie shear jiisjj is zerd a i ~ d  

the normal stress is constant. However. in this case there is a lower boundary at some 

finite depth which is immobi!e. The weight of the load must be completely compensated 

by the limited material within the channel so strong horizontal flow is esperienced. This 

is in contrast to the halfspace model where there is an infinite amount of material for 

compensation and dominantly \.enical tlow. For the channel model the condition at the 

lower surface is that it is rigid and no motion occurs below this depth: horizontal and 

venical displacements arc zero. 

Follo\ving the method outlined in sections 2.3 and 2.4 the (k. t )  domain analytical solutions 

for the displacements at the surface of the channel model with a Heavisidr load were 

determined using a mathematical manipulation program called Math\?ien- (Hoffner. 1997). 

The details of this derivation are @en in Appendis E. The results are 

aH'k ' 
U(k . r )  = 

('pky + pg)(cosh Hk sinh Hk - H k )  

where a = P W  cosh' Hk + ~ ' k '  . and y = 
~ ( W Y  + ~ g )  cosh Hk sinh Hk - Hk ' 

and H is the thickness of the channel. 



It can be seen that this solution is very similar to the solution for the halfspace model 

given by equation (3.4.1). especially the vertical displacement. Therefore it can be seen 
b 

that the relasation times are given by the inverse of a 

the horizontal displacement escitation strengths are given by 

Zpky  
UES ( k )  = (2/1k7 + p.g)(cosh Hk sinh Hk - Hk) 

and the vertical displacement escitation strengths are given by 

6 
(k) = - 

These are also similar to the results obtained for the halfspace mode1 as given by 

equations (3.23) and (3.3.4). For all of the figures in this section the reference channel 

model is given by the material properties given in the table below (Table 3). 



Table 3: The Material Properties of the Channel Model 

density 

gir;i:ariona! ~ c c c l ~ r ~ ~ i ~ i i  

viscosity 

shear modulus 

radius of load 

load 

halfspace. below 670 km 

p =  5517 kg m" 

g = 7.365 m s-' 

v =  1 x 1 0 " ~ a s  

p = 1.452 x 10" N m*' 

channel. above 670-h 

p =  5517 kgm" 

- - F  g = -305 rn s" 

v = 1  x 10"Pas 

p =  1.452 x 10"Nrn -~  

R = 2 x  10% 

a= 1 x 107pa 



4.1 b The Relasation and Excitation Strength Diagrams 

The relavation diagram. the horizontal displacement escitation strength diagram and the 

vertical displacement escitation strength diagram for the channel model can be found in 

Figures 1.1.1.4.1.2, and 4. 1.3 respectively. The relaxation diagram for the channel model, 

as shoan in Figure 4.1.1. is very similar to that of the halfspace model (Figure 3.2.3). 

escept that while the relasation times approach a constant value at small k for the 

halfspace model. for the channel model the relasation times increase linearly with k in the 

log-log plot. Therefore a minimum relasation time is obtained at a specific value of k. 

Thib value of k corresponds to the depth of the base of the channel. For large 

tva~enumber (small wavelength) the shallow pan of the model is sampled and the 

response is that of the halfspacr model. For smaller \vavenurnbers (larger wa\~elenpths) 

deeper pans of the model are sampled and the rigid boundary below which no motion 

occur is encountered. Once this occurs the relayation times increase. The escitation 

strength for the horizontal displacement goes to zero for large values of k and increases 

lincarl!. for small values in the log-log plot. as demonstrated by Figure 4.1.2. Since there 

is zero horizontal cscitation strength for the halfspace model it is espected that at large 

in\-mumbers (small \va~.rlrngths) for the channel model the excitation strength would 

also be zero. which is obsened. The vertical displacement excitation strength diagram is 

shown in Figure 4.1.3. It is also similar to that of the halfspace model (Figure 3.3.1) in 

that it has a constant value for large values of k. however. the vertical excitation strength 

for the channel model is also constant for small values of k. In fact it is almost 

independent of k. The only deviation from this constant value is esperienced at k values 

which correspond ro the depth of the chamel. Note that both the horizontal and vertical 

displacement escitation strengths are positive. Since the excitation strength represents the 



viscous portion of the time domain solution, this implies that the subsequent viscous 

motion will be in the same direction as the initial elastic displacement. 

Figure 4.1.1 : The relaxation diagram of the channel model (reference model) 



Figure 4.1.2: The horizontal displacement escitation strength for the channel model 

(reference model) 

Figure 1.1.3: The vertical displacement escitation strength for the channel model 

(reference model) 



Now the effect of the material properties of the channel are studied. In all of the 

remaining figures in this section include two curves. The curve represented by grey 

points corresponds to the reference channel curve while the black points correspond to 

the curve of the new model being considered. Figure 4.1.4 shows the effect of decreasing 

the viscosity within the channel. As seen with the halfspace model the shape of the c u m  

of the relaxation times with respect to k remains constant. however. the relayation times 

uniformly decrease as the viscosity decreases from 1 x 10" Pa s ro 1 x 1 0 ' ~  Pa s. As the 

density of the channel decreases from 5517 kg m'j to 3380 kg m'3. as shown in Figure 

4.1 .j. a response similar to that of an increase in the viscosity is observed. The values for 

relaxation times increase for all lva~enurnbers. k. No change is noted for a decrease in the 

shear modulus of the channel (Figure 4.1.6). The final diagram in this section. Figure 

4.1.7. sho~vs the effect of decreasing the thickness of the channel from 670 km to 200 km. 

For small ~vavenumbers the relasation times increase and the location of the minimum 

relasation time shifts towards larger values of k. This value of k is related to the depth of 

the channel which esperiences the slowest relaxation. 

The nest set of figures sho~vs how these same changes in the material parameters affect 

the escitation strengths of the horizontal displacement. Figure 4.1.8 shows that as the 

viscosity decreases the horizontal displacement excitation strength remains vinually 

unchanged. As the density decreases. as in Figure 4.1.9, the excitation strength increases 

slightly. while again no change is observed for a decrease in the shear modulus of the 

channel (Figure 1.1.10). As the thickness of the channel decreases not only does the 

escitation strength increase. but it remains finite for larger values of k. as shorn in Figure 

4.1.1 1. 



The final set of figures in this section considers the excitation strengths of the vertical 

displacement. -4s seen with the horizontal displacement excitation strength (Figure 4.1.8) 

a change in viscosity has no effect on the vertical displacement excitation strength (Figure 

1.1.12). A decrease in the density significantly increases the excitation strength of the 

vertical displacement. as seen in Figure 1.1.13. As opposed to the horizontal 

displacement escitation strength the escitation strength of the vertical displacement 

changes with decreasing shear modulus as iilustrated in Figure 4.1-14. The minimum 

escitation strength decreases with decreasing shear modulus though the limits at large and 

small k remain constant. Figure 4.1.15 shows that a decrease in the thickness of the 

channel results in a wavenumber independent escitation strength curve. The minimum 

escitation strength is obtained at a larger \va~+enurnbcr which corresponds to the decrease 

in the channel thickness. 

Changes in viscosiry have a significant effect on the relaxation times but no effect on the 

horizontal and 1-mica1 displacement escitation strengths. This agrees with the expected 

results based on the analytical solutions for the relasarion times and escitation strengths. 

This is also the same response as seen with the halfspace model. A change in density 

affects all of the diagrams. while a change in the shear modulus affects only the vertical 

displacement escitation strength. A change in the thickness of the channel affects the 

response at small wavenumbers (large wavelengths) only. Overall, the channel thickness 

is the most imponant qualit) in determining the relaxation times and horizontal 

displacement escitation strength. The venical displacement excitation stren_mh is affected 

most strongly by changes in the density of the channel. 



Figure 1.1.4: The relaxation diagram for a channel with a viscosity of 1 x l o t 9  Pa s 

(black) and the reference model (grey) 

Figure 4.1.5: The relasarion diagram for a channel with a density of 3380 kg m" (black) 

and the reference model (grey) 



Figure 4.1.6: The relaxation diagram for a channel with a shear modulus of 0.67 x 10' N 

m-' (black) and the reference model (grey) 

I ,  

Figure 4.1.7: The relaxation diagram for a 200 km thick channel (black) and the 

reference model (grey) 



Figure 4.1 .S: The horizontal displacement excitation strengh for a channel with a 

viscosity of l x 10'" Pa s (black) and the reference model (gey) 

F ig re  3.1.9: The horizontal displacement excitation strength for a channel with a density 

3380 kg m-' (black) and the reference model (grey) 



F i g  41.10: The horizontal displacement escitation strength for a channel with a shear 

modulus of 0.67 x 10' ' S m-' (black) and the reference model (grey) 
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Figure 4.1.12: The \.ertical displacement escitation strength for a channel with a 

viscosity of 1 x 10" Pa s (black) and the reference model (grey) 

Figure 1.1.13: The vertical displacement excitation strength for a channel with a density 

of 3350 kg m-' (black) and the reference model (grey) 



Figure -1.1.14: The vertical displacement excitation strength for a channel with a shear 

modulus of 0.67 x 10' ' N m" (black) and the reference node1 (grey) 

Figure 41-15:  The irenicaI displacement escitation strength for a 200 km thick channel 

(black) and the reference model (grey) 



4.2: The Model of an Elastic Lithosphere Overlying a Halfspace 

This section will give the analytical solution for a model of a lithosphere over a fluid and 

discuss the relaxation diagrams and escitation strength diagrams for the model of a 

lithosphere over a viscoelastic halfspace. For this section the term lithosphere model 

refers to the model of an elastic lithosphere overlying a viscoelastic halfspace. There have 

been numerous papers witten concerning multi-layered models and the results of this 

thesis will be compared with some of these. 

4.23: Analytical Solution for the hIodel of a Lithosphere Overlying a Fluid 

Halfspace 

The model of an elastic lithosphere overlying a fluid halfspace. sho~vn in Figure 4.2.1. is a 

fairl). simple model and the analytical solution in the (k.s) domain was obtained using the 

symbolic manipulation program. Mathview. The derivation of this solution can be found 

in Appendix F. 

Figure 4.2.1 : A reference model for a lithosphere overlying a fluid 



The analytical solution is derived in a manner similar to that of the channel model except 

in this case the conditions at the lower boundary are that the shear stress is zero and the 

vertical normal stress is equal to the buoyancy. -pgW where p is the density of the 

halfspace. The density of the halfspace is used rather than the density difference because 

the elastic boundary condition. not the fluid one, is being applied. When the boundary 

conditions for the lithosphere overlying a fluid are appiied to the solution of the 

differential equations the analytical solution is found to be 

where A = cosh Hk sinh Hk + Hk . 
B = 1 - cosh' Hk. 

and His the thickness of the lithosphere. 

Note that ali of the above material parameters apply ro the properties within the 

lithosphere and that 6p represents the density difference between the fluid halfspace and 

the lithosphere if one exists. Since the lithosphere is elastic, the shear modulus in the 

above equations is independent of s. 

The above analytical result is compared with the numerical Matlab output. The 

comparison between these two methods for both the vertical and horizontal 



displacements can be found in Figures 4.2.2 and 3.2.3. The values used as the material 

parameters for these figures are given in Table 4. The two different methods give results 

which agree very well. Note how both the h~rizontal and vertical displacements tend to 

zero for large k values which means that the small wavelength response is damped by the 

lithosphere. Also note that the vertical displacement reaches a constant value for small k 

whereas the horizontal displacement tends to negative infinity. This demonstrates the 

singular nature of the horizontal displacement as k goes to zero. Note that in these cases 

the thickness of the lithosphere is 100 h and that there is a density contrast between the 

halfspace and the lithosphere. 

Table 4: The Material Properties of the hlodel of a Lithosphere Over a Fluid 

density 

gravitational acceieration 

\~iscosity 

shear modulus 

radius of load 

load 

halfspace. below 100 h 

p = j j l l  kgm" 

g = 9.7 109 m s" 

u = O  

p=O 

lithosphere. above 100 km 

p = 4 3 1 4  kgm-' 

g = 9.7109 m s" 

u +=  

,u = 3.15 x 10" N m" 

R = 2 x  106m 

a= l x 1 0 ' ~ a  



Figure 1.2.2: .A comparison between the analytical and numerical solutions for the 

horizontal displacement in the k domain of the model of a lithosphere overlyin, 0 a fluid 

Figure 4.2.3: A comparison between the analytical and numerical solutions for the 

vertical displacement in the k domain of the model of a lithosphere overlying a fluid 



4.2b: Relaxation and Escitation Strength Diagrams for the Model of a Lithosphere 

Overlying a Viscoelastic Halfspace 

Since the previous model includes an elastic layer over a fluid halfspace there is no 

viscous relaxation. only an initial elastic response. Note that there is no s dependence in 

equations (1.1.1) and (4.2.2). In order to study the viscous relaxation of a model with an 

elastic lithosphere the model of an elastic lithosphere over a viscoelastic halfspace was 

studied. This is the model referred to as the lithosphere model and it is shown in Figure 

4 . 4 .  The properties of the halfspace and lithosphere are given in Table 5. 

150 krn I 

Figure 4.2.1: The lithosphere model 



Table 5:  The Material Properties of the Lithosphere Model 

No effects other than the presence of the lithosphere are desired so the model has a 

constant density and shear modulus. The solutions for this model are obtained by 

applying the lower boundary condition to the halfspace and then using matris 

propagation to arrive at the solution at the surface. All of the following figures were 

obtaincd using the Matlab programs. 

density 

g a t  iialionai acceieration 

viscosity 

shear modulus 

radius of load 

load 

The relasation diagram. Figure 4.2.5. for the lithosphere model is quite distinct. There are 

two modes. a buoyancy mode associated with the halfspace. MO. and a lithospheric 

mode. LO (Peltier. 1976). The MO mode is due to the density contrast at the surface and 

the LO mode is due to the contrast in elastic propenies of the lithosphere. At large values 

of k. these modes approach one another and eventually coincide. At this point the 

numerical methods used to find the zeros can no longer identifv either as a me zero and 

this is why there are no values for k > 150. If this relavation diagram is compared with 

that of the halfspace model (Figure 3.2.3) then it is noted that for small kvavenumbers the 

MO mode has similar values however for larger uravenurnbers this mode in the lithosphere 

halfspace. below 150 km 

p =  5517 kg rn*3 

g = 7.365 m s-' 

u = l x 1 0 " P a s  

p = l . J 5 Z x 1 0 " ~ r n "  

lithos~here. above 150 km 

p = 5 5 1 7 k g r n - ~  
- 

g = 7.365 m s-- 

u + -  

p = 1 , 4 5 2 x 1 0 " ~ m ‘ ~  

R = 2 x  106m 

a= 1 x lo7pa  



model experiences a reduction in relavation times. Also note that the MO and LO modes 

cross at a wavenumber of k - 7, which is the thickness of the lithosphere. This is 

characteristic of models which incorporate an elastic lithosphere. Wu and Ni (1 996) had 

an almost identical form, even though their work was for a spherical earth and the 

saicuiaiions in this lhrsis are for a fiat eanh model. Woiiii  983j aiso anaiyzed the 

response of an elastic lithosphere over a halfspace for a flat earth and again the shape of 

the cunre and the values match estremely well. 

The escitation strength of the horizontal displacement of the lithosphere model is shown 

in Figure 1.2.6. There appears to be a singularity where the two modes change sign. The 

magnitude of the negatii~e escitation strength is larger than the positive. In general the LO 

mode approaches zero from the positive vertical axis for large wavenumber and becomes 

constant for wavenumbers less than one. The XI0 mode approaches zero from the 

positi\-e asis for small wavenumber and approaches zero from the negative asis for large 

wa\.enumber. Though the trends of the escitation strength are similar to those shown by 

U'u and Ni ( 1  996) for the spherical case the results are very different. This might mean 

that the spherical nature of the earth has a significant effect on the excitation strength of 

the horizontal displacement. 

The escitation strength diagrams for the vertical displacement of the lithosphere model are 

also quite distinct since the two modes have the same strength at the wavenumber that 

corresponds to the thickness of the lithosphere. For the excitation strength of the vertical 

displacement. as shown in Figure 4.2.7, the MO mode resembles the excitation strength of 

the vertical displacement as seen in the halfspace model (Figure 3.3.1) except that the 

escitation strength decreases at high values of k. Figure 1.2.7 is similar to the diagrams 

given by Wu and Ni (1 996) and Wolf (1 985). The MO mode always has the most - 



strength but at a particular wavenumber. where the modes cross in the relaxation diagram. 

the two modes meet in the excitation strength diagram and the LO mode has a strength 

equal to that of the halfspace mode. Both of the modes tend to zero for larger 

wavenum bers. 

Figure 4.2.5: The relaxation diagram for the model of an elastic lithosphere overlying a 

viscoelanic halfspace (referecce model) 
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Figure 4.2.6: The horizontal displacement escita~ion strength for the model of an elastic 

lithosphere overlying a viscoelastic halfspace (reference model) 

Figure 4.2.7: The vertical displacement excitation strength for the model of an elastic 

lithosphere overlying a viscoelastic halfspace (reference model) 



As with previous models. the material parameters of the lithosphere model are varied so 

that the effect on the relaxation and excitation strength diagrams can be determined. All of 

these figures include the results for a specific model and the results for the reference 

model so that comparisons can be made more easily. Figure 1.2.8 demonstrates the effect 

of i~creclsing :he hdfspacc v i s i ~ s i ~ . .  As p i ~ ~ i w ~ : ~ .  h e  mtxi significzu~t c G c i  i j  an 

increase in the relaxation times. A change in the density of the whole earth has little effect 

on the relaxation times as demonstrated in Figure 4.2.9. The relaxation times increase for 

small ~vavenumbers only and the values at large k remain constant. A decrease in the 

halfspace shear modulus. Figure 42-10. results in an increase in the relaxation times 

similar to the effect of increasing the ~.iscosity. however. the ivavenumber at which the 

two modes cross increases with decreasing shear modulus. A change in the Iithospheric 

thickness also affects predominantly the LO modr. as shown in Figure 4.2.1 1 .  The MO 

modr for small \va\.rnumbers remains unchanged as espected since these correspond to 

the response at depth. 

The nest set of figures deals with the horizontal displacement excitation strength. The 

escitation strength of the horizontal displacement decreases for the LO mode and increases 

for the R.10 mode with increasing halfspace viscosity. as demonstrated in Figure 4.2.12. 

Changing the density has little effect other than a slight increase in the escitation strengths 

at large wavenumbers (Figure 4.2.13). The results of a decrease in the halfspace shear 

modulus is given in Figure 4.2.14 and it is evident that there is a significant shift towards 

higher wavenumber. Also note the additional sign change in the MO mode at low 

wavenumbers. Figure 4.2.15 shows how the cunres are shifted towards higher 

wavenumbers as the thickness of the lithosphere decreases. This is similar to the change 

seen with a decrease in the halfspace shear modulus. 



The fmal set of figures to be discussed in this section includes the escitation strengh 

diagrams for the venical displacement of the lithosphere model. The results are similar to 

those of the horizontal displacement. Figure 4.2.16 shows that a change in halfspace 

viscosity has little effect on the escitation strength of the MO mode and slightly decreases 

the escitation of the LO mode at small k. but increases it at large k. A decrease in the 

density. as shoitn in Figure 4.2.17, increases the excitation strength of the MO mode 

towards large ~va\*enumbers. This results in increased strength at larger wavenumbers. A 

decrease in the shear modulus (Figure 4.1.1 8) shifis the excitation strengths of both 

modes. Figure 4.2.19 sho\vs that an increase in the thickness of the lithosphere shifis the 

tun-cs towards larger \va\.enurnbers similar to the effect seen uith a increase in shear 

modulus. 

Unlike the halfspace and channel models a change in viscosity affects not only the 

relasation times. but also the horizontal and \.mica1 displacement excitation strengths. ..\ 
change in density has a small impact on the diagrams while a change in the shear modulus 

shifis the cunw in all of the diagrams. A change in the thickness also shifis the cunves in 

all three diagrams. For the lithosphere models. the material parameters which have the 

createst impact on the relaxation times and escitation strengths are the thickness of the 
C 

lithosphere and the shear modulus of the halfspace. 
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Figure 1.1.S: The relasation diagram for the lithcsphere model with a halfspace viscosity 

of 1 x 10" Pa s and the reference model 

Figure 1.2.9: The relaxation diagram for a lithosphere model with a model density of 

3380 kg m*' and the reference model 



Figure 4.2.10: The relaxation diagram for a lithosphere model with a halfspace shear 

modulus of 0.67 x 10" N m" and the reference model 

Figure 4.2.11 : The relaxation diagram for a lithosphere model with a 50 km thick 

lithosphere and the reference model 
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Figure 4.2.12: The horizontal displacement escitation strength for a lithosphere model 

with a halfspace viscosity of 1 x 10" Pa s and the reference model 

Figure 42.13: The horizontal displacement excitation strength for a lithosphere model 
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Figure 4.2.14: The horizontal displacement escitation strength for a lithosphere model 

with a ha1 fspace shear modulus of 0.67 x 10' ' N rn" and the reference model 
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Figure 1.2.16: The venical displacement excitation strength for a lithosphere model with 
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Figure 4.2.17: The venical displacement excitation strength for a lithosphere model with 
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a model density of 3330 kg m" and the reference model 



Fisure 1.2.18: The vertical displacement excitation strength for a lithosphere model with 

a halfspace shear modulus of 0.67 x 10' N m" and the reference model 

Figure 1.2.19: The vertical displacement excitation strength for a lithosphere model with 

a 50 km thick lithosphere and the reference model 



1.3: Relaxation Diagrams and Escitation Strength Diagrams for More 

Complicated Earth Models 

p,is S L ~ ~ ~ V C I -  L A  .. : A  * I I  U: c ss ---n +. a i d  tlLiiee kyer nroittls. The first ntodd tu be 

considered is a two layer model defined by a single density variation, the second model is 

a two layer model defined by a change in the elastic properties, and the final one will be a 

three layer model with a low \piscosit) channel below an elastic lithosphere and over a 

viscoeinstic halfspace. The primary rnoti~~ation in analyzing these more complex models 

is to determine the various modes that arise in the relaxation and excitation strength 

diagrams and holy they are affected by variations in the material parameters. These 

models arc similar to ones studied by Nru and Xi (1996). In general the relaxation 

diagrams and rscitarion strengths of the venical displacement agree with the ones studied 

by W*u and Xi ( 1996) and the excitation strengths of the horizontal displacements tend 

not to agree as well. 

4.3a Models with a Single Density Discontinuity 

The models that will be discussed in this section involve a single radial density 

discontinuity, as shown in Figure 4.3.1. The reference values for the material properties 

are given in Table 6. These values are based on those used in the paper by Wu and Ni 

(1 996) so that comparisons between studies could be made. First the relaxation diagrams 

will be discussed. including how the relaxation times are affected by the density contrast 

and the depth of contrast, then the excitation strength diagrams will be discussed. 



Figure 4.3.1 : The reference model with a single density discontinuity 

Table 6: The Material Properties of  the blodel with a Single Density 

Discontinuity 

The relaxation diagram for a two layer model defined by a single density discontinuity is 

given in Figure 4.3.2. It is very similar to that of the halfspace modei, except that there is 
C 

an additional buoyancy mode due to the additional density contrast referred to as bil 

(Peltier. 1976: Wu and Ni. 1996). This mode has a longer relaxation time as compared to 

the MO mode since the density contrast is smaller than the one at the surface and it occurs 

density 

era\-itational acceleration - 

viscosiry 

shear modulus 

radius of the load 

load 

halfspace. below 670 km 

p = 6288 kg m" 

g = 7.365 m s" 

u =  1 x 10"Pas 

p =  1.452 x 10" N m" 

umer lairer. above 670 

h - 

p =  3572 kg m" 

g = 7.365 m s" 

u =  1 x 1 0 " ~ a s  

p =  1 . 4 5 2 ~  1 0 ' ~ ~ m - '  

R = Z x  106m 

o= 1 x lo7pa 



at depth (Wu and Ni. 1996, equation 22). The MO mode is identical to the one of the 

halfspace model and the M1 mode resembles the relaxation curve obtained for the channel 

model. The shortest relaxation time occurs at a wavenumber which corresponds to the 

depth of the contrast, in this case k - 20. This figure matches well with the one given by 

Wu and Ni (1  996. Figure ja) for a similar model using a spherical earth. As the depth at 

which the density contrast occurs decreases. i.e. as it moves closer to the surface. the M1 

mode is shifted towards longer relaxation times while the MO mode remains relatively 

consistent. as shown in Figure 4.3.3. A decrease in the density value in the upper layer 

results in an increase in the densiry contrast between the two layers. This results in a 

very slight increase in the relaxation times for both the MO and h.11 modes (Figure 4.3.4). 

The escitation strength of the horizontal displacement shows that the MO mode has a 

negative escitation strength while the M1 mode has a positive excitation strength. as 

demonstrated by Figure 4.3.5. For small wa\.enumbers the M1 mode is stronger and at 

larger wavenumbers both modes lend towards zero. This figure is quite different from 

Figure jc presented by \i'u and Xi ( 1  996). This could be due to the spherical nature of 

the model that they used. As the 1r1-el of the discontinuity moves closer to the surface 

(Figure 4.5.6) the escitation strengths of both modes persist to larger wavenumbers 

before decaying rapidly to zero. as expected since the model can be sampled zt a shorter 

wavelength (larger wavenumber) to distinguish the nvo independent layers. The strength 

of the MI mode increases while the h.IO mode decreases. The excitation strength of the 

h.11 mode increases while that of the M0 mode decreases. Increasing the density contrast 

slightiy decreases the escitation strength of both modes for larger wavenumbers only. as 

sho\\n in Figure 4.3.7. 



In Figures 1.3.8 to 4.3.10. the effect of this density discontinuity on the excitation 

strength of the vertical displacement can be seen. Figure 4.3.8 agrees well with a similar 

figure given in the paper by Wu and Ni (1996). For very small wavenumbers the M 1 

mode dominates, but for most of the relevant wavenumbers the MO mode dominates, in 

fact h e  Mi mode quickiy decays ro zero for iarge wavenurnbers. As the thickness of the 

upper layer decreases (Figure 4.3.9) the M 1 mode extends to larger wavenumbers before 

decaying. This is also similar to the effect noted by Wu and Ni (1 996). Figure 4.3.10 

shows that for an increase in the density contrast at the discontinuity the excitation 

strength of the b11 mode increases slightly for all u-avenumbers. 

Since MO is due to a density contrast at the surface and the M1 mode is due to a density 

contrast at depth. the MO mode dominates the shon wavelength (large k) and the MI 

mode dominares at greater depth (small k). The location oithe shortest relaxation time in 

the bI1 mode corresponds to the depth of the density discontinuity. The depth of the 

contrast is more important than the magnitude of the contrast in terms of the effect on the 

relasation times and the escitation strengths. 



Figure 4.3.2: The relaxation diagram for a model with a single density discontinuity 

(reference model) 

Figure 3.3.3: The relaxation diagarn for a model with a single density discontinuity at a 

depth of 200 km and the reference model 



Figure 4.3.4: The relasation diagram for a model with a single density discontinuity and 

an upper layer density of 3380 kg m" and the reference model 

Fizure 1.3.5: The horizontal displacement excitation strength for a model with a single 

density discontinuity (reference model) 



Figure 4.3.6: The horizontal displacement escitation strength for a model with a single 

density discontinuity at a depth of ZOO km and the reference model 

Figure 1.3.7: The horizontal displacement excitation stren,& for a model with a single 

density discontinuity and an upper layer density of 3380 kg mJ and the reference model 



Figure 1.3.5: The \-enical displacement escitation strength for a model with a single 

density discontinuity (reference model) 

Figure 4.3.9: The vertical displacement excitation strength for a model with a single 

density discontinuity at a depth of 200 krn and the reference model 



Figure 4.3.10: The venical displacement escitation strength for a model with a single 

density discontinuity and an upper layer density of 3350 kg m-3 and the reference model 



4.3b: hlodels with a Single Shear iModulus Discontinuity 

The section will discuss the relaxation and the excitation strength diagrams for a model 

where there is a single radial discontinuity in the shear modulus. The reference model is 

shown in Figure 4.3.1 1. The default values for the material parameters are given in the 

Table 7 and they are based on the values used by Wu and Ni (1996). 

2000 km 

Figure 4.3. I 1 : The reference model with a single shear modulus discontinuity 

Table 7: The hlaterinl Properties of the 3Iodel with a Single Shear Modulus 

Discontinuity 

density 

gravitational acceleration 

viscosity 

shear modulus 

radius of load 

load 

halfspace. below 670 km 

p = j 5 1 7 k g m 4  

g = 7.365 m s" 

u = 1  x 1 0 " ~ a s  

p = 1 . 7 1 4 7 ~ 1 0 " ~ r n - ~  

upper layer. above 670 

km - 

p=5517kprn" 

g = 7.365 m s-' 

u =  1 x 10" Pas  

p=0.8281 ~10~'h'rn" 

R = 2 x  106m 

o= 1 x 107Pa 



The relaxation diagram has three modes of relaxation. The MO mode is due to the density 

contrast at the surface and the other two are due to the single discontinuity of the 

Maxwell time. p/q, labeled the T1 and T2 modes (Peltier, 1976; Wu and Peltier. 1982; Wu 

and Ni. 1996). see Figure 4.3.12. The T modes are the viscoelastic or transition modes and - 

they arise from contrasts in the elastic properties (Peltier. 1976). The relaxation times of 

these transition modes are found to coalesce for large and small wavenumbers such that 

the! are indistinguishable. Again this agrees well with Figure 8a given by Wu and Ni 

( 1  996). The result of a decrease in the shear modulus of the upper layer. as shown in 

Figure 4.3.1 3. is to increase the relasation times of the transition modes. TI and T2. As 

the depth of the discontinuin. moves closer to the surface. as in Figure 4.3.14. and the 

transition modes are shifted towards larger iva\*mumbers. 

The escitation strength of the horizontal displacement of the model with a discontinuit?. 

in rhe shear modulus is similar to that of the model with a single density discontinuity. 

wj-hich can be seen in a comparison of Figures 4.3.5 and 4.3.15. The blO mode is alu-ays 

negative as is the T1 mode and the T2 mode is al\vays positive. All of these modes ha1.e 

escitation strengths which tend towards zero for large wavenumbers. For all 

wavenumbers the MO mode dominates. A decrease in the shear modulus of the upper 

layer increases the escitation strength of all of the modes. as shown in Figure 1.3.16. since 

the contrast in p is increased. Figure 4.3.17 shows that as the level of the discontinuin. 

mo\.rs closer to the surface the escitation strengths decrease and extend to larger 

\vavenumbers before decaying to zero. 

Figures 4.3.18.4.3.19. and 4.3.20 show the escitation strength of the vertical 

displacement for the model with a single discontinuity in the shear modulus. The MO 



mode is relatively independent of the wavenumber and the transition modes decay rapidly 

to zero for large wavenumbers. A decrease in the shear modulus of the upper layer 

increases the excitation strength of the transition modes (Figure 4.3.1 9) whereas a 

decrease in the depth of the discontinuity shifts the transition modes to larger 

wavenumbers, as shown in Figure 4.3.20. These results are similar to the effects noted 

for the excitation strength of the horizontal displacement. These figures agree very well 

with the results of the Wu and Ni (1996). 

Therefore a discontinuity caused by a change in the shear modulus adds two additional 

modes of relasation. The relasation times of these modes are dependent not only on the 

magnitude of the contrast between the shear moduli of the two layers. but also on the 

depth at which this discontinuity occurs. As the contrast increases. the relaxation times 

decrease and as the depth of the discontinuity approaches the surface. the relasation times 

are shifted towards shoner ~~avelengths (larger k). The excitation strengths are more 

sensitive to the depth of the discontinuity. 



Figure 4.3.12: The relaxation diagram for a model with a single shear modulus 

discontinuity (reference model) 

Figure 4.3.13: The relaxation diagram for a model with a single shear modulus 

discontinuity with an upper layer shear modulus of 0.67 x 10" N m-2 and the reference 

model 



Figure 1.3.13: The relaxation diagram for a model with a single shear modulus 

discontinuity at a depth of 200 km and the reference model 

Figure 4.3.15: The horizontal displacement excitation strena* for a model with a single 

shear modulus discontinuity (reference model) 



Figure 4.3.16: The horizontal displacement excitation strength for a model with a single 

shear modulus discontinuity with an upper layer shear modulus of 0.67 x 10" N m" and 

the reference model 

Figure 4.3. L 7: The horizontal displacement excitation strength for a model with a single 

shear modulus discontinuity at a depth of 200 km and the reference model 



Figure 4.3.15: The vertical displacement excitation strength for a model with a single 

shear modulus discontinuity (reference model) 

Figure 4.3.19: The vertical displacement excitation strength for a model with a single 

shear modulus discontinuity with an upper layer shear modulus of 0.67 x 10'' N m-' and 

the reference model 



Figure 1.3.20: The vertical displacement excitation strength for a model with a single 

shear modulus discontinuity at a depth of 200 km and the reference model 



4 . 3 ~  Models with a Low Viscosity Asthenosphere 

This is the only three layer model considered. The first layer is an elastic lithosphere and 

this is followed by a low viscosity channel and the bottom layer is a viscoelastic 

halfspace. The reference model is shown in Figure 4.3.21. The parameters used in this 

model are given in Table 8. 

Figure 4.3.2 1 : The reference model for a model tiiirh a low viscosity ashenosphere 

Table 8: The Material Properties of the Model with a Low Viscosity Layer 

density 

cravitational 
L 

acceleration 

viscosity 

shear modulus 

radius of load 

load 

halfspace. below 100 

km - 

p=5517 kgm" 

g = 7.365 m s" 

9 = I x 10" Pas  

C( = 1.45 x 10" N m" 

low viscositv laver, 

from 200 to 150 km 

p=5517kgm" 

g = 7.365 m s" 

q= 1 x 1 0 ' ~ P a s  

p = 1-45 x 1011 N ms2 

lithosphere. above 

150 h 

p =  5517 kg m" 

g = 7.365 m s" 

rl*" 

p =  1.45 x 10'' N m-' 

R = Z x  106m 

o= 1 x lo7 Pa 



Based on the knowledge that every density discontinuity leads to one additional mode of 

relaxation and every discontinuity in the elastic properties leads to two additional modes. 

escrpt for the lithosphere which leads to only one, four modes of relaxation are expected 

tbr this model; the halfspace mode. MO, a lithospheric mode. LO, and two transition 

modes corresponding to the change in the elastic properties of a layer, T1 and T2. These 

are demonstrated in the relaxation diagram given in Figure 4.3.22. The presence of the 

additional low \.iscosity layer reduces the relaxation times of the lithospheric and 

halfspace modes. as espected. due to the 1o:v viscosity of this layer. In terms of the 

csciration strength of the horizontal displacement for this model. as sho\\n in Figure 

43-23. all four modes appear to have negative escitation strengths while the LO and T1 

modes also have positive strengths. The halfspace and lithospheric modes are dominant. 

The escitation strength of the vertical displacement is also dominated by the MO mode. 

F i r  4 . 3 .  The strength of all of the modes decay to zero for large wavenumbers. 

This is also seen in the escitarion strength diagram for the horizontal displacement. 



Figure 4.3.22: The relaxation diagram for the low ~~iscosity channel model 

Figure 1.3 2 3  : The horizontal displacement excitation strength for the low viscosity 

chamel mode1 



Figure 4.3.24: The venical displacement excitation strength for the low viscosity channel 

model 



Chapter 5: Space Domain Solutions 

This chapter will investigate the space domain solutions for the models discussed in 

Chapter 4 in addition to models with lateral heterogeneity, nonlinear rheology and time 

dependent creep. The shape and magnitudes of both the vertical and horizontal 

displacements will be discussed as well as the effect of changing viscosity. density and 

thickness where appropriate. In general the material parameters used for the various 

models are given in the appropriate sections in Chapter 4. 1\11 of the disc loads haw a 

radius of 2000 km and a height of 1 h with Heavisidr loading. Most of the results were 

obtained using the finite element method. though in a few cases the solutions using the 

spectral method are shown to suppon the finite element method results from .ABXQUS. 

5.1 : Halfspace and Channel Models 

In this section the space domain solutions of the halfspace and channel models will be 

discussed. .A comparison between the finite element method using the program 

ABAQCS and the spectral method will be presented as a check of the numerical results 

obtained from ..ZBAQUS. This has been done for the vertical displacement. but not for 

the horizontal displacement. Several curves are included on each graph to show the 

variation in time of the horizontal and vertical displacements afier the load has been 

emplaced: these times correspond to 0. 1.5, and 10 thousand years afier loading. In all 

of these figures. there is arrow at the top of the figure which indicates the edge of the ice 

load. 

The 5-enical displacement that results from the loading of the halfspace model can be seen 

in Figure 5.1.1. This is identical to the figure given in section 3.4 (Figure 3.3.1). The 



material parameters used in this model are given in Table 2 in section 3.4. Recall that for 

the halfspace model there is no horizontal displacement experienced upon loading. Most 

of the vertical displacement occurs within the region of the load w i t h  a small peripheral 

bulge outside of the load. In Figure 5.1.2 the effect of a viscosity stratification can be 

seen. This is done through ABAQUS by changing the properties of the appropriate 

elements. In this model the viscosity increases with depth; from the surface to a depth of 

100 km the viscosity is 1 x 10" Pa s and from 100 km to 200 km there is a viscosity of 1 

x 10" Pa s and below 200 km the viscosit). is 1 x 10':' Pa s. The shape of these 

displacement curves resemble those of the channel modrl (Figure 5.1.4) which indicates 

that most of the viscous relasation is occurring within the upper ~~~~~er viscosit?. layers. 

Note that the magnitude of the elastic displacement is the same as that of the modrl with 

constant viscosity (Figure 5.1.1) and the increase in the magnitude of the displacement 

experienced in the peripheral bulge. Also note that the viscosity stratification produces 

horizontal displacement (Figure 5.1.3) unlike the constant halfspace. The horizontal 

displacement in this case is positive for all time periods afier loading. 

The Heal-iside loading response of the basic channel modrl involves a positi~se horizontal 

displacement and a negative vertical displacement. For the channel model the results of 

the analytical solution. the numerical solution using Matlab and the numerical solution 

using ABAQUS can be seen in Figures 5.1.4 and 5.1.5. These figures show that the 

results compare favorably. The material parameters are the same as those used for the 

halfspacr model and the thickness of the channel is 670 km. Table 3. in section 4.1. lists 

the material parameters used for the channel model discussed in all of the following cases 

escept where indicated othenvise. The 0 thousand year curve shows the initial elastic 

displacement and the subsequent curves illustrate the viscous relaxation over time. The 

horizontal displacement that results from the loading of a channel model is positive. The 



maximum displacement is obtained at the edge of the load. By contrast the vertical 

displacement is negative within the region of the load and positive outside of this region 

and the maximum is attained just within the load from the edge. There is a prominent 

peripheral bulge. The horizontal and vertical displacements experience approximately the 

same range of displacement. 

distance from the center of the load (m) 

Figure 5.1.1 : The ~ertical displacement for the halfspace model 



Figure 5.1.': The vertical displacement for a halfspace with radial viscosity variations 

Figure 5.1.3: The horizontal displacement for a halfspace with radial viscosity variations 
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Figure 5.1 .-I: Comparison between different methods for the horizontal displacement that 

results from the loading of a channel model 
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Figure 5.1 .j: Comparison between different methods for the vertical displacement that 

results from the loading of a channel model 



The nest hvo figures show the effect of changing various material parameters on the 

horizontal displacement. The solid lines represent the results of ABAQUS. while the 

distinct points represent the results from the spectral method using MATLAB. Figure 

5.1.6 shows the effect of a change in the channel viscosity. The displacement is 

drastically increased for an decrease in the viscosity. though the general shape of the curve 

remains the same with a maximum displacement occurring at the edse of the load. compare 

with Fieure L 5.1.4. A decrease in the viscosity increases the displacement experienced at 

the initial times. The displacement at infinite time remains the same regardless of the 

viscosity. but with a lower viscosity the material can reach this mavimum displacement 

more quicklj.. Note the error in the displacement predicted by ABAQUS at the edge of 

the load. The result of haying a load with a 1000 km radius is shown in Figure 5.1.7. 

Again the masimum displacement occurs at the edge of the load. though this maximum 

value is less for the smaller load. 

Figures 5.1.8 and 5.1.9 show similar results for the vertical displacement. Figure 5.1.8 

sho\vs the results of a 101s- viscosity channel. This is the same viscosity used in the low 

viscosit). layer models discussed in section 4.32. At this viscosity the vertical 

displacement is almost entirely confined within the region of the load and little 

displacement occurs outside of this region at times greater than 5 thousand years after the 

emplacement of the load. As with the horizontal displacement, the vertical displacement 

predicted by ABAQUS at the edge of the load esceeds the actual displacement as shown 

by the spectral method. This is due to the fact that there is a large displacement gradient 

at this point which implies that there is a large stress gradient. This leads to a breakdown 

of the finite element method which assumes that the displacements and stresses vary 

linearly from one grid to another. In Figure 5.1.9, the radius of the load is decreased from 

ZOO0 km to 1000 km. The vertical displacement within the region of the load increases 



while the displacement outside of the region decreases. even for the initial elastic 

dispiacement. 



Figure 5.1.6: The horizontal displaccrne~lr for a channel with a ~*iscosity of 1 x 10" Pa s 

distance from the center of the load {IT!) 

Figure 5.1.7: The horizontal displacement for a channel with a 1000 km radius load and a 

viscosity of 1 x 10" Pa s 



Figure 5.1.8: The vertical displacement for a chamel with a viscosity of 1 x 10" Pa s 
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Figure 5.1.9: The vertical displacement for a channel with a 1000 km radius load and a 

viscosity of 1 x 10" Pa s 
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5.2: The Lithosphere over a Halfsprce Model 

This section will discuss the space domain solutions of models with an elastic 

lithosphere. In general. there are four curves on each figure which correspond to the 

displacements esperienced at four specific time intemals aficr the emplacement of the 

load. There is the initial elastic displacement follo~ved by the displacement 1. 5.  and 10 

thousand years afier loading. In all of the figures. there is an arrow located at the top of 

the figure to indicate the edge of the load. 

5.2a: Models with Lateral Homogeneity 

First. the numerical results obtained for the lithosphere over a fluid are tested. The 

material parameters of the model tested are given in Table 4. in section 4.2a. The 

lithosphere in this model has a thickness of 150 h. In Figure 5.2.1 four different 

methods are compared: the analytical solution as given by equations (4.2.1) and (4.2.2) 

transformed to the space domain. the numerical solution obtained from Matlab. the 

numerical solution obtained from the ABAQUS modeling package and the theoretical 

solution for the vertical displacement. The theoretical solution for the vertical 

displacement of an elastic lithosphere over a fluid halfspace was obtained from the Thin 

Plate Theory. The solution is given by 

S 
p,h [C, cos- 

(P- - P,-) a 
-- PJ' : 

(P- - P , )  

S 
cosh - 

a 

' [ F, cos 

X + C. sin-sinh - - 1 , 
- U CY " 1 

where p~ is the density of the load. 



Pm is the density of the halfspace. 

pJis the density of the fluid. 

a is the flesural parameter. 

h is the height of the load. 

L is the half-width of the load. 

and CI. Cz. F I ,  F2 are constants. 

The derivarion of this solution is based on the bending of a thin beam and can be found in 

Turcotte and Schuben (1982). The results of the four methods are compared in Figure 

5.2.1 as a check of the validity of the numerical programs. The results agree well. 

Figure 5.2.1 : The comparison of four different methods in determining the vertical 
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The nest hvo figures. Figures 5.2.2 and 5.2.3. show the horizontal and vertical 

displacements that result from the loading of a lithosphere overlying a viscoelastic 

halfspace instead of a fluid. The load has a radius of 2000 km and a height of 1 km. The 

properties of the halfspace and lithosphere are given in Table 5 in section 1.B. One 

important distinction to be noted immediately is the fact that in contrast to the channel 

model. the horizontal displacement experienced by this model is negative (Figure 5.2.2). 

This is not unexpected since from the analysis of the horizontal displacement escitation 

strengths of the two models. the channel model gives a posirive excitation strength (Figure 

4.1.2) while the lithosphere model gives a negative escitarion strength for the MO mode 

(Figure 42.5) .  In both cases the initial elastic displacement is positive. i.e. motion away 

from the center of the load. but with the channel model subsequent motion is also positi~e 

while for the lithosphere model subsequent motion is negative. .41so. note that although 

the horizontal displacement that results from loading a halfspace model is zero. the 

presence of the lithosphere yields a non-zero horizontal displacement. The venical 

displacement. shown in Figure 5.2.3. is similar to the displacement experienced by the 

channel model though for the lithosphere model the displacement within the region of the 

load is much greater than outside of the this region. Note also the presence of the 

peripheral bulge in Figure 5.2.3 and how the maximum migrates over time. For the 

channel model the horizontal and vertical displacements are of the same order. however, 

for the lithosphere model the magnitude of the horizontal displacement is about one tenth 

of the vertical since the halfspace allo~vs a significant component of the compensation of 

the load to be made through venical rather than horizontal motion. 

Figures 5.2.2 and 5.2.3 also show a comparison between the two different numerical 

methods. The first method uses the Matlab programs as discussed in Chapter 2 and the 

second uses the finite element modeling package ABAQUS. The results agee  fairly well. 



Note that the viscous relaxation of the horizontal displacement experienced at early times 

is not well represented by ABAQUS, though for longer times, the results are very 

accurate. Also note that the horizontal displacements predicted by ABAQUS for 

distances far from the load are not accurate. The displacement predicted by the Matlab 

programs approaches zero very quickly outside of the region of the load and the 

ABAQUS results do no reflect this. This tendency for the horizontal displacement to 

persist far from the load. as obtained by ABAQUS. is seen in many of the figures and it is 

important to recognize that this is most likely not representative of the true displacement. 

This is not thought ro be due to aliasing of the transform method because Matlab gives 

accurate results for the channel model. 

distance from rhe center of the load (rn) 

Figure 5.2.2: .4 ccmparison between hvo different methods for the horizontal 

displacement that results from the loading of a lithosphere model with a I50 km thick 

lithosphere 



Figure 5.7.3:  A comparison between nvo different methods for the vertical displacement 

that results from the loading of a lithosphere model with a 150 h thick lithosphere 
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5.2b: Models with Lateral Heterogeneity 

The nest set of figures is designed to investigate the effect of lateral variations within the 

subsurface in terms of the viscosity of the halfspace and the thickness of the lithosphere. 

Since seismic tomography has shown that lateral heterogeneity does exist in the 

subsurface. it is important to investigate its effect on the displacements that result from 

the loading of eanh models. 

The first set of figures is designed to investigate the impact of a lateral variation in 

viscosity. First the effect of a constant increase in the viscosity of the halfspace is 

determined. Figure 5.2.6 shotvs the effect of an increase in the halfspacc viscosity on the 

horizontal displacement. The viscosity of the halfspacc is increased from 1 x 10" P3 s to 

1 x 10" Pa s. The increase in viscosity reduces the viscous relaxation such that very little 

displacement is esperienced after the initial elastic displacement. Nest a model with a 

lateral variation is considered. This model has a viscosity of 1 x 10" Pa s under the 

region of the load to a depth of 670 km and a viscosih of 1 x 10" Pa s everywhere else: 

see Figure 5.2.4 for an illustration of the earth model. Figure 5.2.7 shows the rffect of a 

lateral variation in viscosity: the resultant horizontal displacement cunre has a wren- 

distinct shape. The maximum displacement is no longer obtained at the edge of the load. 

but rather it is displaced away from the load. 

The nest two figures show the vertical displacement that results from these same two 

models. one with a constant. high viscosity halfspace and the second with a lateral 

variation in viscosity. Figure 5.2.8 shows that an increase in the viscosity of the 

halfspacc decreases the viscous vertical displacement, though the elastic displacement 

remains constant. In Figure 5.2.9 the vertical displacement that results from the loading 



of a model with lateral variation in viscosity are show.  The mavimurn displacement 

experienced at the center of the load has the same magnitude as obtained that for the 

model with a constant viscosity of 1 x 10" Pa s (Figure 5.2.3). however. the shape of the 

displacement curve at the edge of the load has been modified by the presence of the lateral 

heterogeneity. In fact, the peripheral bulge has vanished and there is a more gradual 

variation in the displacement rather than the sharp gradient at the edge of the load 

obsen-ed previously. 

The final set of figures in this section demonstrates the effect of a lateral variation in the 

thickness of the lithosphere. The first model to be studied has the same material 

parameters as given in Table 5 in section 4.2b. except that in this case the lithosphere has 

a thickness of only 50 hm instead of 150 km. .4 change in the thickness of the lithosphere 

has a significant impact on the horizontal displacement. This can be seen by comparing 

Figures 5.2.2 and 5.2.10. As the thickness of the lithosphere decreases the horizontal 

displacen~ent also decreases. Figure 5.2. I I shows that a lateral variation in the thickness 

of the lithosphere also has a significant impact. The earth model used in this case is given 

in Figure 5.2.5. The thickness of the lithosphere is 100 km within the region of the load 

and 50 km outside of this region. The halfspace viscosity is 1 x 10" Pa s. This lateral 

variation results in a larger horizontal displacement outside the region of the load even for 

times long after the emplacement of the load. The mavimum displacement still occurs at 

the edge of the load and the magnitude of this displacement is close to the maximum 

displacement obsened for the 100 km thick lithosphere model. 

In contrast to the horizontal displacement. there is little change in the vertical 

displacement d t h  a change in the lithospheric thickness. as seen by comparing Figures 

52.3 and 5.2.12. The only difference is a slight variation at the edge of the load, the 



peripheral bulge is closer to the load and the slope of the curve at the edge of the load is 

steeper. Also. in contrast to the effect noted in the horizontal displacement. a lateral 

variation in rhe thickness of the lithosphere has only a small effect on the vertical 

displacement. The most notable area of change is in the magnitude of the peripheral 

bulge. as shown in Figure 5.2.13, which increases slightly. 

In this section it has shown not only that ABAQUS is able to give accurale results for the 

displacements that result from the loading of a model with an elastic lithosphere. but also 

that lateral variations in the properties of the subsurface have a significant impact on 

displacement. In general. lateral variations are more easily distinguished from the cun9es 

of the horizontal displacement despite the fact thac the magnitude of these displacements 

is less than the vertical displacement. Lateral variations result in a significant change in 

the magnitude of the horizontal displacements. not just the particular shape of the 

displacement cune  as with the vertical displacement. Lateral viscosity variations 

produce a more significant effect on both the vertical and horizontal displacements as 

compared with lateral variations in lithospheric thickness. 



Figure 5.2.4: The earth model of a laterally heterogeneous halfspace viscosity 

Figure 5.2.5: The earth model of a laterally heterogeneous lithospheric thickness 



d~stmcr  from the center o i  the load c m)  

Figure 5.2.6: The horizontal displacement for the lithosphere model with a halfspace 

distance from the center of the load crn) 

Figure 5.2.7: The horizontal displacement for the model in Figure 5.2.4 



disansr from rhr ccnrer oi !he toad m 

Figure 5.2.8: The vertical displacement for the lithosphere model with a halfspace 

distance from the center of the toad (m) 

Figure 52.9: The vertical displacement for the model in Figure 5.2.4 



d~stance from the cenler of the load (rn) 

Figure 5.1.10: The horizontal disphcemmt for the lithosphere model with a 50 km thick 

l i  thosphcre 

distvlce from the center of the load (m) 

Figure 3.2.1 1 : The horizontal displacement for the model in Figure 5.2.5 



distance from the center oi the load I m) 

Figure 5.2.12: The venical displacement for the lithosphere model with a 50 km thick 

lithosphere 

distance from [he center of rhe load (m) 

Figure 5.2.1 3 : The vertical displacement for the model in Figure 5.2.5 



5.3: The Low Viscosity Asthenosphere with a Lithosphere Model 

This section will discuss the space domain solutions of models with a low viscosity 

asthenosphere beneath an elastic lithosphere. The low viscosity zone is defined by a 

decrease in the radial viscosity structure of the model. This zone can also have lateral 

heterogeneities. The low viscosity asthenosphere model has the same material parameters 

as used in section 4 . 3 ~ .  given in Table 8. except that the lithosphere and low viscosity 

asthenosphere both have a thickness of 100 km overlying a viscoelastic halfspace. The 

earth model is given in Figure 4.3.21- The default viscosity of the asthenosphere is 1 x 

10" Pa s which is two orders of magnitude less than that of the underlying halfspace. -411 

of the figures give displacement cunves as a function of the distance from the center of the 

load. Each graph contains four cunees. each one representing the displacement for a 

different time after the load is emplaced. There is an arrow above each figure which 

represents the edge of the load. In a11 cares the cylindrical load has a constant radius of 

2000 and a constant height of 1 km. 

The horizontal and vertical displacements that result from the loading of a model with a 

lo~v viscosity asthenosphere are given in Figures 5.3.1 and 5.3.2 respectively. When 

these are compared with the results for the displacements esperienced by a model with 

only a lithosphere (Figures 5.2.2 and 5.2.3). some significant differences are noted. First. 

the viscous relaxation experienced by the horizontal displacement soon after the 

emplacement of the load produces a strong positive displacement which then turns 

negative for longer time periods. The results for the lithosphere model do not show this 

positive displacement. For shon times, the results are intermediate between the 

lithosphere model (Figure 5.2.2) and the channel model (Figure 5.1.4). This is due to the 

faster initial relaxation caused by the low viscosity layer. At long time periods the two 



models match more closely, since the viscosity does not significantly affect the response 

at long times. In addition, the maximum magnitude of the displacement is slightly greater 

than expected since the lithosphere is thinner than the one used in the reference 

lithosphere models. The vertical displacement (Figure 5.3.2) demonstrates that the 

magnitude of the peripheral bulge is increased by the presence of the low viscosity layer. 

The cunees of the vertical displacement also resemble a combination of the lithosphere 

model (Figure 5.2 .3)  and the channel model (Figure 5.1.5). The greatest impact of this 

lo\\- \.iscosity asthenosphere is to modif\. the \-mica1 displacement in the region of the 

edge of the load. 



distance from rhc center of the load cm) 

Figure 5.3. 1: The horizontal displacement for the low viscosity asthenosphere model 

distance from the center of the load (rn) 

Figure 5.3.2: The \mica1 displacement for the low v i s c o s i ~  asthenosphere model 



Two different parameters were investigated with the low viscosity asthenosphere model. 

The first was to determine the effect of the viscosity of the asthenosphere and how lateral 

variations in this viscosity might impact the displacement. The second was to determine 

how the thickness of the low viscosih layer and lateral variations in the thickness affect 

the dispiacement. Figure 5.3.5 demonstrates the impact of the viscosih within the low 

viscosit). asthenosphere on the horizontal displacement. In this model the viscosity 

within the asthenosphere is increased from I x 1019 Pa s to 1 x 10'O Pa s. An increase in 

the viscosity decreases the initial viscous motions and the masimum displacement is 

attained more slo~viy. A model with a lateral variation of the viscosity within the 

asthenosphere is shown in Figure 5.5.3. In this model the viscosity directly below the 

load is increased to 1 x 10" Pa s while the viscosity in the rest of the asthenosphere 

remains 1 x 10" Pa s. The horizontal displacement that results from the loading of this 

model can be seen in Figure 5.3.6. A slight difference behveen the displacement within 

the region of the load and outside can be identified for longer time scales. especially in the 

peripheral regions. The displacement in the region outside of the load resembles the 

displacement observed for the reference model with a constant low viscosity 

asthenosphere 1-iscosity of 1 x 1019 Pa s (Figure 5.3.1). 

Figures 5.3.7 and 5.3.8 show the vertical displacement for the same two models discussed 

above. As the viscosity within the asthenosphere increases, the amplitude of the 

peripheral bulge decreases. A lateral variation in the viscosity, as shoum in Figure 5.3.3. 

produces displacement cunres similar to those obtained for the model with a constant 1 x 

10'' Pa s viscosity within the region of the load and outside of this region the 

displacement curves resemble those of the model with a constant viscosity in the IOU- 

viscosity layer of 1 x 1019 Pa s. Overall the lateral variation in the viscosity of the low 



viscosity asthenosphere produces only small changes to the displacement cunres. This 

type of model would be difficult to distinguish from models with lateral homogeneity. 

A lateral variation in the thickness of the low viscosity asthenosphere was also 

inues~igatrd. An iiiusuation of this eanh modei is given in Figure 5.3.4. Under the load? 

the thickness of the asthenosphere is 200 km and outside of this region the thickness is 

100 km. First. the horizontal displacement that results from a low viscosity 

asthenosphere model with a constant in layer thickness was determined. This can be seen 

in Figure 5.3.9. In this case the rhickness of the layer is increased to 200 km. An increase 

in the thickness of the low viscosi~. asthenosphere produces an effect similar to the one 

obtained with a decrease in the viscosity of the asthenosphere. Both an increase in the 

viscosity of the asthenosphere and a decrease in the thickness of the asthenosphere 

produce a result more ciosel!~ resembling that of a model with a uniform halfspace. Figure 

5.3.10 shoivs the effect of a lateral variation in the thickness of the low viscosity layer on 

the horizontal displacement. Similarl!. to the models with a lateral variation in viscosity. 

the displacement within the load margin is similar to the displacement observed for the 

model of constant thickness of 200 h and outside the displacement is similar to that 

esperienced by the model with constant asthenosphere thickness of 100 km. 

The response of the vertical displacement is also investigated for these two models. 

Figure 5.3.1 1 shows the displacement for a model with a constant low viscosity layer 

with a thickness of 200 km. This increase in thickness increases the amplitude of the 

peripheral bulge. Figure 5.3.12 shows the vertical displacement for the model with a 

lateral variation in the thickness of the asthenosphere. as given in Figure 5.3.4. In this 

case the displacement within the region of the load appears to be an average of the 

displacement that results from the models d t h  constant asthenosphere thickness of 200 



km and 100 km. However. outside of this region. the displacement is similar to the 

displacement observed for the model with a constant asthenosphere thickness of 100 km. 

Overall. lateral changes in the low viscosit). asthenosphere have very little impact on the 

dispiacemenr that resuirs from the ioading of these models. In general. the variations in 

the displacement cunres are most significant for shorter time periods. Since it is only the 

v i s c o s i ~  within the halfspace that is changed. it would be expected that at infinite times 

the displacement would be the same regardless of the specific \viscosity structure within 

the halfspace. 



Figure 5.3.3: The earth model of a laterally heterogeneous low viscosity asthenosphere 

tbiscosi ty 

Figure 5.3.4: The earth model of a laterally heterogeneous low viscosity asthenosphere 

thickness 



disrancc from the centcr of the loxi (ml 

Figure 5 . 3 . 5 :  The horizontal displacement for the low viscosit!. asthenosphere model 

with an asthenosphere viscosih of 1 x 10" Pa s 

distance from the center of the Ioad (m) 

Figure 5.3.6: The horizontal displacement for the model in Figure 5.3.3 



Figure 5.3.7: The venical displacement for the low viscosity asthenosphere model with 
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Figure 5.3 -9: The horizonral displacemenr for the low viscosity asthenosphere model 

with a 200 km thick asthenosphere 

distance from the center of the load (m) 

Figure 5.3.10: The horizontal displacement for the model in Figure j.5.4 



d~stancr from thr crnrer of the 1036 (rn) 

Figure 5.3. l 1 : The venical displacement for the lo\{. viscosity ashenosphere model with 

a 200 km thick asthenosphere 

Figure 5.3.12: The vertical displacement for the model in Figure 5.3.3 



In all of the models discussed so far it has always been assumed that the rheology of the 

earth could be explained by a linear relationship between the stress and the rate of strain: 

see Appendis B for the constitutive relations used. However, it has been proposed that 

the rheology of the Earth may in fact follow a non-linear relationship benveen the stress 

and the strain rate. One of the most commonly used forms of this non-linearity is the 

power law relationship. This can be written as (Ranalli. 1987) 

where r is the strain. 

a is the stress. 

.4 is a constant determined by temperature. activation 

energy and volume. 

and n is a constant greater than 1. 

In the case where a linear rhrology is assumed the value of the constant .4 is well known 

and it is related to the viscosity. However, in non-linear cases the viscosity is actually a 

function of the stress and so the constant -4 must be determined experimentally. In a 

recent paper by Wu ( 1999) various cases \rere studied. The results were compared with 

vertical motion data from the East Coast of North America. It was determined that the 

best fit to the data was obtained for a model comprised of an elastic lithospherc and a 

non-linear lower mantle with n = 3 and d = 3 x 10"' paJ s". Since only the vertical 



displacement was investigated. this section will discuss the horizontal displacement that 

results from some of these non-linear models. 

Several different models will be investigated so that the horizontal displacement can be 

characrerized for modeis with a non-linear rheoiogy. ~ l l  of the results ~ i 1 1 1  be compared 

with the results obtained for a similar linear model defined by the parameters given in 

Table 9. This will help to illustrate the effect of the non-linearity. These values are 

chosen to agree with the values used by Wu ( 1999). 

Table 9: The Material Properties of the Lithosphere Model for Comparison with 

Konlinear Rheolog? Models 

Several different rypes of models are investigated to determine the effect of nonlinearity. 

The first model has a nonlinear halfspace. This is followed by two different models with 

nonlinear zones in the upper mantle. and these are follo\ved by two models with a 

nonlinear lower mantle. Refer to Figure 5.4.1 for an illustration of the four multi-layered 

models: the model with a nonlinear halfspace is not shown. For the all of the nonlinear 
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density 

gral.itariona1 acceleration 

viscosity 

shear modulus 

radius of load 

load 

halfs~acs. below 150 km 

p = 3888 kg m" 

g = 7.365 m s' 

v =  1 x 10" pas  

p =  2.203 x 10'' h'm-' 

lithosphere. above 150 km 

p = 3475 kg m*' 

g = 7.365 m s" 

u += 

p=0.64 x 10" K m*' 

R = 2 x  106m 

a= 1 x 10' Pa 



layers the following values were used: n = 3 and A = 3.33 x 1 W3' pa" s". The material 

parameters of each of these different models is given in Table 10. Only those properties 

that are different from the basic halfspace model are s h o w .  Note that the shear moduli 

and densities are chosen to reflect the actual values at a specific depth. 

Table 10: The Material Properties of the Models with Nonlinear Rheology 

The results for the model with a linear halfspace and an elastic lithosphere. as described 

by Table 9. are given in Figures 5.4.2 and 5.4.3. These will be used as the reference 

figures. Figures 5.4.4 and 5.4.5 show the vertical and horizontal displacement results for 

a model with a nonlinear halfspace and an elastic lithosphere. The magnitude of the 

venical displacement diminishes and the magnitude of the horizontal displacement c u r e s  

are predominantly positive. The horizontal displacement resembles the results of the 

channel model (Figure 5.1.3). The peripheral bulge is not evident in the vertical 

displacement. the minimum horizontal displacement is experienced at the edge of the load. 

and the maximum horizontal displacement is displaced away from the load. 
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Nest. there are four figures which show the response to models with nonlinear zones 

beneath the elastic lithosphere (earth models given in Figures 5.4. la and 5.1. l b). as shown 

in Figures 5.4.6,5.4.7.5.4.8, and 5.4.9. The results are very similar to the results of the 

lithosphere model. With an increase in the thickness of this nonlinear zone. the horizontal 

displacement esperiences a slight increase in areas where there is positive displacement 

and the vertical displacement experiences a reduction in the magnitude of the peripheral 

bulge. 

The nest two figures show the results for a model with a nonlinear lower mantle below a 

linear upper mantle which estencis from the base of the lithosphere to a depth of 670 km 

(see Figure 5.4.1~). Figure 5.4.10 sholvs that the horizontal displacement responds in a 

manner similar to that seen with a nonlinear halfspace. The magnitude of the 

displacement increases and though the shapes of the curves are consistent they are shifted 

in the positive direction similar to that seen in the results for the model with an entirely 

nonlinear halfspace. The vertical displacement. as shoan in Figure 5.4.1 1. however. 

maintains the peripheral bulge which is not evident in the displacement c u r e s  of the 

model with a nonlinear halfspace. The addition of a low viscosity asthenosphere between 

the lithosphere and the nonlinear halfspace (see Figure 5.4. ld) increases the magnitude of 

both the horizontal and vertical displacements. as expected. This is demonstrated in 

Figures 5.4.12 and 5.413. 

The study by Wu (1999) showed that a model with a nonlinear lower mantle had the best 

fit to the venical displacement data. The horizontal displacement for this model is very 

distinct. The maximum displacement is predicted to occur on either side of the edge of 

the Load and this displacement is predicted to be positive after the load has been 

emplaced. This implies that the displacement after the load is removed would be in a 



negative direction, towards the center of the load. Since models with nonlinear lower 

mantles predict a different direction for the horizontal displacement, these types of earth 

models should be relatively easy to determine from data. 
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Figure 5.1.1 : The earth models with nonlinear zones 



Figure 5.4.2: The horizontal displacement for the lithosphere model with linear rheology 
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Figure 5 - 4 2 :  The vertical displacement for the lithosphere model with linear rheology 
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Figure 5 -4.4: The horizontal displacement for the nonlinear halfspace model 

distance from the center of the load (m) 

Figure 5.4.5: The vertical displacement for the nonlinear halfspace model 



d~strrncr from the cenler of rhr load (m) 

Figure 5.4.6: The horizontal displacement for the model in Figure 5.4. l a  

disunce from the center of the load (m) 

Figure 5 -4.7: The vertical displacement for the model in Figure 5 -4.1 a 
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Figure 5.4.8: The horizontal displacement for the model in Figure 5.4.1 b 

distance from the center of the load (m) 

Figure 5.4.9: The vertical displacement for the model in Figure 5.4.1 b 



d~stancr from the ccnler of the load (m) 

Figure 5.4.10: The horizontal displacement for the model in Figure 5.4. lc  

distance from the center of rhe load (m) 

Figure 5.4.1 1 : The vertical displacement for the model in Figure 5.4.1 c 
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Figure 5.4.12: The horizonral displacement for the model in Figure 5.4.1 d 

distance from [he center of [he load (m) 

Figure 5.4.13 : The vertical displacement for the model in Figure 5.4.1 d 



5 . :  Time Dependent Creep 

Another assumption in all of the models discussed so far is that there are no time 

dependent effects. I t  is assumed that the deformation is either an elastic deformation or 

viscous steady-state creep. However. there could be some son of time dependent creep. 

The strain produced by these three components can be expressed as (Ranalli, 1987) 

where r ,  is the elastic strain. 

e ,  is the time dependent creep. 

and 2 is the stead!. state strain rate. 

A simple transienr creep law is the Andrade-type time dependence. given by 

In AB.L\QUS. this is espressed as 

Several values of nl are tested to determine the effect of time dependent creep on the 

displacement that results fiom the loading of an elastic lithosphere overlying a viscoelastic 

halfspace. In all of these models the thickness of the lithosphere is 150 h and the 



viscosity of the halfspace is 1 x 10" Pa s. The material parameters are given in Table 9 in 

section 5.4. The halfspace is modeled with the time dependent creep. 

Figures 5.5.1 and 5.5.2 show the horizontal and vertical displacements that result from a 

model with tlme dependent creep ~ l t h  m = -0.05. These results are similar to the results 

observed for a simple increase in the viscosity of the halfspace below the lithosphere 

(Figure 3.4.2). For very small values of n~. the viscous displacement is reduced even 

funher and only the initial elastic displacement is observed. as shown in Figures 5.5.3 and 

5 . 4  Since even for very large values of nt there is no peripheral bulge observed in the 

vertical displacement. this type of time dependent creep model does not seem 



distance from thc center of the l o ~ d  c m) 

Figure 5.5.1 : The horizontal displacement for a time dependent creep model with 

nt = -0.05 in the mantle 

disnncc from the center of the toad (m) 

Figure 5.5.2: The vertical displacement for a time dependent creep model with nt = -0.05 

in the mantle 



distance irom the center oi the load ern, 

Figure 5.5.;: The horizontal displacenlrnt for a time dependent creep model with 

nr = -0.2 in the mantle 

distance from the center of the load (m) 

Figure 5.5.4: The vertical displacement for a time dependent creep model with n1= -0.7 

in the mantle 



Chapter 6: Conclusions 

In this thesis, the horizontal and venical displacements that result from the loading of 

simple earth models were analyzed using three different techniques. The fa t  method 

was to investigate the analytical solutions for the model of a halfspace, a channel and a 

lithosphere over a fluid. The second was to investigate the solution in the wavenumber 

domain through the use of relaxation and excitation strength diagrams so that the 

importance of various transitions could be determined. The final technique was to use 

ABAQUS. a finite element modeling package. to model the space and time domain 

displacements for more detailed models including models with nonlinear rheology. lateral 

variations and time dependent creep. 

One of the most imponant elements of this thesis was the validation of the .4BAQUS 

modeling program. The detailed anal!.tical calculations of the solutions for three simple 

models were compared with the resuits from ABAQUS. The results compared favorably 

for all three models. The only case where ABAQUS failed to produce accurate 

displacements was in the horizontal displacement for the halfspace model. 

In addition. the relaxation and excitation strength diagrams were determined for various 

models so that a systematic analysis of the horizontal displacement escitation strengh 

could be undertaken. These diagrams demonstrate the impact on the relaxation times and 

viscous motions for models with different densities. shear moduli and layer thicknesses. 

The analysis of the model with an elastic lithosphere showed that the lithosphere is a 

very important component in a model, especially in terms of the horizontal displacement. 

In terms of the effect on the relaxation times and the excitation strengths the thickness of 

the lithosphere is the most imponant aspect. Simple two layer models with a density 



variation show that density variations have a significant impact on the horizontal 

displacement. This is due to the fact that in these models the MO mode of relaxation has 

a negati\?e excitation strength for all wavenurnbers. These models have a second mode of 

relaxation caused by the density discontinuity which resembles the relaxation curve of the 

channel model. Models with a discontinuity in the shear modulus have the same effect on 

the horizontal displacement excitation strength and there is the addition of a third mode of 

relaxation. For models with a discontinuity in either density or shear modulus the MO 

mode of relaxation is virtually unchanged by the presence of the discontinuit). in both the 

relaxation diagram and the \.ertical displacement excitation strengths. This is also seen in 

the results of the low viscosity channel model. The low \-iscosity channel model 

produces figures which are an amalgamation of the figures for the lithosphere model and 

the model with a shear modulus discontinuity. 

The third objective of this thesis was to analyze the space domain solutions to determine 

the effect of lateral variations. nonlinear rheology and time dependent creep on the 

displacements that results from loading. It was found that the magnitude of the 

horizontal displacement is very sensitive to the thickness of the lithosphere and it 

decreases significantly with a decrease in lithospheric thickness. If the measured 

horizontal motion is quite large. a thicker lithosphere is favored. The horizontal 

displacement is also shown to be more sensitive to lateral variations than the vertical 

displacement. Also. radial variations in viscosity result in variations in the magnitude of 

the horizontal displacement. not just in the relative shape of the displacement cunres as 

with the vertical displacement. Compared to precise displacement curves, magnitudes are 

more easily measured and less sensitive to the ice history. Therefore horizontal motions 

can be used as an important diagnostic tool to determine the lateral and radial 

characteristics of the subsurface. In general. most of the cunres for the horizontal 



displacement experience a displacement of approximately 30 meters over ten thousand 

years. This corresponds to an average speed of 3 mm per year. 

The effect of the low viscosity channel is most readily apparent in the curves of the 
-. venicai dispiacernenr. I he presence of the iayer modifies the early viscous relavation of 

the horizontal displacement and it magnifies the magnitude of the peripheral bulge of the 

vertical displacement and allows this peripheral bulge to persist over time. 

The horizontal displacement that results from loading models with a nonlinear halfspacr 

or nonlinear lower mantle is quite distinct. while a nonlinear zone seems to have little 

effect. Models with a nonlinear lower mantle give results similar to models with a 

nonlinear halfspace except that the peripheral bulge is preserved in the vertical 

displacement curves. The horizontal displacement is predominantly positive for both of 

these types of models. These are the only models for which a positive horizontal 

displacement is obtained esccpt for the channel model. 

When the effect of time dependent creep is incorporated into the system. the results for 

both the horizontal and vertical displacements are similar to those obtained from a simple 

increase in halfspacr viscosity. The magnitudes of the displacements diminish and the 

peripheral bulge is suppressed. Since this does not agree with the measurements. this 

type of model does not seem to be a viable option for an accurate earth model. 

Now that a detailed study of the horizontal displacement has been conducted and the 

results of the AB.4QUS program have been s h o w  to be consistent with the analytical 

solutions the nest step is to obtain data for the region of Fennoscandia. which can be 

accurately modeled by a flat earth. and determine a possible earth model by combining 



the data for the horizontal and vertical displacements. It would also be interesting to 

determine if and how the flat earth assumption affects the results. A funher 

consideration when using a spherical earth model would be to include the effect of 

compressibilit)* since this would more closely reflect the true characteristics of the earth. 

Once more detailed data for the horizontal motions of the Earth's surface are obtained 

then the results from seismic tomography and the existing subsurface models determined 

from the vertical motions can be used to determine an even more detailed subsurface 

model. Not only will these detailed earth models be used to constrain tectonic and mantle 

con\*cction models. but this will also allon. for more accurate predictions of the motion of 

the crust. These predictions can be used to calibrate shifts in the locations of the 

stationary GPS base stations. Currently the positions of the base stations are recalibrated 

even. few years ho\vever if a detailed glacial isostatic adjustment model is developed. then 

the base station positions could be accurately predicted without the nerd for recalibration. 
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Appendix A: The Equation of Motion 

This appendix demonstrates how the equation of motion is derived from the basic 

p i h i i p l c ~  ~fc~iiserb-aiion of mass and iinear momenrum. 

1. continuih equation (consenpation of mass). 

where p is the density. 

and v is the velocity vector. 

2. consenation of linear momentum (body forces equal surface stresses): 

where F is the total body force vector. 

and T is the total surface stress vector. 

Using the divergence theorem. we obtain: 

3. The total stress. T. can be expressed as a combination of the perturbational stress. a. 

and the hydrostatic (implies pressure, P) initial stress. 



The hydrostatic initial stress is a result of the presence of a gravitational field, i-e. in this 

case self-gravitation. This prestress is carried along (advected) during any deformation. 

This initial prestress is constant over time for any individual material element (particle). 

Ho\i.svrr. there may be a  ariat ti on in the prestress between different material elements. 

From A.5  the prestress at a particular point in space may vary with time. 

d,(P,) = 0 = a,(P,) + v. W, (A.6) 

.'. d,(P,) = - 1.. wo (A. 7) 

I Therefore $Po) = Po 1, - a - Po I ,, = -A:-" v. V Po 

:. P , I , ~ , = P , I , o - ~ . l O - " v . ~ ~ ,  

Assume that the motion that the material elements undergo is an instantaneous elastic 

displacement. The forces must balance to include this displacement. 

(A. Z 0) 

where v is the velociry vector, 

u is the displacement vector, 

and 6(t)  is the Dirac delta function. 



Therefore p ~ ~ t O - ~ = p ~ I ~ - ~ - ~ ~  (A. 1 1) 

However. the viscous displacements are conintuous functions of time so that 

P o  I to-* = Po I ,o 

Therefore the equation of motion for an elastic body. so far. is: 

(A. 12) 

(A. 13) 

(A. 14) 

(.A. 1 5 )  

(A. 16) 

The equation of motion for a viscous body reduces to 

GO- W , ~ , + F = O  (A. 1 7) 

4. For a self-gra~~itating earth where the mass of the emh is large and isolated the 

gravitational attraction of other parts of the fluid provide the volume force on any 

individual element. 

(A. 18) 



rp is the gravitational potential. 

and G is the gravitational constant. 

For a flat earth whihc is non-self-gravitating the gravitational field is uniform. This is 

applicable when the mass of fluid concerned is much smaller than any neighbouring 

matler. In this case the body forces are defined as 

F = -g = constant. (.A. 1 9 )  

5. Assume a zero order state of h~drostatic equilibrium (no motion). 

6. Assume the perturbations have in the follo~ving form: 

and v2cp, = qn~p, 

7. Therefore dl(po - pi )  = - v.((po - p,)v) 

alpo f a@, 'Z(p,v - p,v) = 0 

Neglect second order terms: d,pl + F(p,v) = 0 

Integrate: p, + P.(p,u) = 0 



Expand F. This equation is for elastic material only. 

Y O -  w,I,,+ Q U . V P , ) + F = O  ( ~ 2 9 )  

~ c r - ~ , I , ~ + -  ~ ( u . ~ , ) - p o ~ p o - p o ~ ~ l - p l ~ ~ - p l ~ p l = O  (A.30) 

Neglect second order terms and recall that W, = - po Vq0 

But. = - p , G r p , = p s  = - p g ; .  (.A3 2 )  

and p, = - C (p,ci), and Fcp, = g g  = -g. (A.33) 

Therefore Fa - q u . ( - p g ~ ) )  - ( r ( p , u ) )  F cp, - p,EpI = 0 (A.34) 

O fJ - F( -zc:P&~) ( r (poll ))g& - Po Qll = 0 ( A . 3 )  

Since p, and g, are functions of z only. we can reduce -4.35 to the follo~ving. 

8. Assume a flat elastic earth. 

Therefore 



This is the equation of motion for an elastic solid. Note that in all of the above equations 

a bold variable indicates that it is a vector. For a viscous fluid the equation of motion is 



Appendis B: The Constitutive Relation 

This appendix will discuss some of the assumptions associated with the constitutive 

relations. We assume that the displacements and displacement gradients are small enough 

that there is no difference between the material and space reference frames. We also 

assume that the deformation processes are isothermal (constant temperature). 

The constitutive equations for a linear elastic solid relate the stress and strain tensors 

through the generalized Hooke's Law. 

where o,, is the stress tensor. 

e~ , , ,  is the strain tensor. 

and CYkm is the tensor of elastic constants. 

The tensor of elastic constants has 8 1 elements. 21 of which are distinct due to the 

symmetry of the stress and strain tensors. If the elastic properties are independent of the 

reference system. a material is said to be isotropic. For isotropy the number of 

independent elastic constant reduces to 2. Therefore we obtain Hooke's Law for an 

isotropic body. 

where ekl is the strain, 

q, is the stress, 



A and p are the Lame parameters, 

and Ski is the Dirac delta function. 

Define the bulk modulus: K = I 2/3p This relates pressure to cubica! dilatation of the 

body. 

For the incompressible case we impose the following restriction: 

where E = Se,, = e ,  e ,  - e, 
Vrc = E = 0, E is the dilatation 

and N is the displacement vector. 

Therefore Hooke's Law for the incompressible case is: 

where e~ is the strain. 

q, is the stress, 

A and p are the Lame parameters. 

6' is the Dirac delta function, 

and Il is the pressure defined by lim d = ll. 
E-0 
i - bml  



Appendix C: Derivation of the Correspondence Theorem 

The following set of equations shows the derivation of the constitutive relation for a 

Mauwell body. where the stress and strain are expressed as tensors. Displacements 

(elastlc and viscous) add tensorally and stresses are constant. 

Therefore: 

d , ~ ~ !  = d,tCPI - dpVLl 

qf = dM = dlt 

where e' is the Hookean strain, 

e' is the Ne~vtonian strain. 

E is the blas~vellian strain. 

a" is the Hookean stress. 

d is the Neutonian stress. and 

r is the blaswellian stress. 

Follo\ving Cathles. 1975. p.23. the stress tensor is split into hvo component tensors. 

The first one is the hydrostatic stress tensor (a, = -3P) and the second one is the 

deviatoric stress tensor. 

The deviatoric stresses are defined as: 

(dkf)* = &k, - drr6'/ (C-3) 

( d k d D  = dl., - drrSkl (C.3) 

Using the definitions for the d, and the d ,  as given above for the Hookean and 

We\~tonian bodies. we obtain the following form for the deviatoric stresses: 



Therefore for a Maxwell body: 

Since all stresses are equal 

We can re\vritr these last nvo equations as: 

(C. 10) 

(C.1 I) 

(C. 12) 

3A + 2 p  
dltTkk + ( 0 ~  - 3') = (3/1 + 2 ~ )  (c. 13) 

3t7 + 2v 

If we take (B .12) + f (B. 1 3 ) b  where 6& is the Dirac delta function. then we get 



P 31 + 2p - + c?,okk6kl + - &I -+ + ( o ~  3 P )  = 2~ dlEDk. -+ f ( M  + ~ p )  d,gkkfik, u 3q+2v  

(C. 14) 

* 3A + 2p 
d1ok/ + tPkl - 7 (akk + 3P)6k1 = 3pdr%/ + /ld,~,6~/ 

U 317 + 2u 
(C. 15) 

Recall that okp = q, - + qlSAl and P = - + okk if in a quasi-static state. 

Therefore the stress-strain relation for a Maxwell Body is given by 

/1 dro~l - - (q, - f okkSkj = 2 p d , ~ ~ /  - 
U 

(C. 16) 

Now. if we perform the Laplace Transform on all of the elements of this equation. a-e 

obtain: 

(C. 1 7) 

Let the bold s!.rnbolize the !variable transposed into the s domain. 

Let k = / = r to show that = (2p + ~ A . ) E ~ ~  Substitute this into the previous equation. 

Therefore we obtain: 

(C. 1 8) 



P where p(s) = 7 

190 

(C. 19) 

KP L L + ( A + + ~ ) L J  h+- 
and i ( s )  = V d  - 

U U (C.21) 

where K is the bulk modulus. 

p is the shear modulus. 

i is a Lami constant. 

and u is the Nemonian viscosity. 



Appendix D: The Analytical Solution for the Halfspace Model 

This is the case for a incompressible, flat earth in cylindrical coordinates. The matrix 

below satisfies equation (3.1.1 ). 

According to the Correspondence Theorem this is valid for the viscoelastic case if 

The cigenvalues are determined by solying equation (2.3.28): 

1 - 5  - k  - 0 
P 

k - S O 0  
DET = 

- l P k 2 p g k  - 5  - k  

Therefore the eigenvalues are k and - k. 

Now we need to calculate the eigenvectors by solving (2.3.3 1). This is done by row 

reduction. 





~ . . ~ ( - 5 ~ + 3 k ' ) < + p 6 ~ k ~  
Tzz = e k (D. 16) 

Therefore 

5 = k a n d g = - k  

To find another eigenvector for each of the eigenvalues. we will follow Boyce and 

DiPrima (1986. p. 366). and solve equation (2.3.32). 

(D. 19) 



Now let u = 1 /k: 

No\{. for the second eigenvalue ; eigenvector: 

E = - k  



NOIV let u = - 1 / k: 



Therefore the solution is (equation (3.1.2)) 

(D .48) 

Soiv. when a-e use the boundary conditions: as z goes to negative infinity. the solution 

must remain finite and at z = 0. we have Trz = 0 and Tzz = - sigma. 

Therefore. from the first boundary condition. B = 0 and D = 0. 

B=O 

D=O 

From the second boundary condition: 

z 

Tzz / 2 y [ k z +  I ]  



These are given in equation (3.1 3). 

Therefore the solution is (equation (3.1 .l)): 

k z 

2 p k - z  
TZZ [ - 2 p k - p S g ] [ - k ~ +  I ]  

To determine thc rime dependent solution. we must first find M such that b1 CN = BN. 

where CS is a matrix of the constants. A .B.C.D and BN is the boundary condition 

matrix. 

BY=[-:) 
and 

We must first idatif?. the poles: 

IMj=O 

(equation (3.2.3)) 

No\\. we need to determine the elastic asymptote (s goes to infinity). so that we can 

deduce the ~iscoelastic response. 

Yv=AYAtCYC-AeYAe-CeYCe 



YCe = e lz  
z 

2 p t k z + 2 p '  



Therefore 

0 P' k e ' z  

I.\. = 2 
( p S g + 2 p ' k ) ( p S g [ q s + p 8 ] + 2 p ' q  ks )  

( - ~ + ~ ' ) a  k e "  
Y v = 2  

( p S g + 2 p k ) ( p 6 g + 2 p ' k )  

P =  
P' rl s 

where P8+rl  s  

k z -  1 
- p 6 g k z  

Therefore 

(D. 72) 

evaluated at s = - y 

(equation (3.3.1 )) 

V 

-de tLM 
as evaluated at s = - y 



Ye = Ae YAe + Ce YCe 

(equation (3.3 -3)) 

Therefore our solution is 

Yt = Ye delta + Q jg 

a e-'" 
-detM y as 

k z k z 

Yt = 2 ( p b g + l p + k ~ ' r l  ~ p " k e  [ - p 6 g k z  k; 1 Ie..!,+ p & g + 2 p D k  ~ d e l n e ~ '  [ k z -  1 
? p ' k 2 z  

[ p S g + ? p ' k ]  [ k z -  I ]  
(D.76) 

1 - & . f C  e-'" = 
For the Heavisidr response. perform the follo\ving substitution " . Therefore 

the solution is 

This is equivalent to equation (3.41). 



Appendix E: The Analytical Solution for the Channel Model 

This appendix will show the derivation of the time domain solution for the channel model. 

The results are summarized in section 4.1. The following derivation was accomplished 

using the mathematical manipulation program Mathview. 

Love's Strain Function 

The displacement and stress are related to Love's Strain Function by the following 

formulas: 

\+%en the strain function is substituted into the previous equations, the following is 

obtained. 



I P g  p= - -  
2 k p  

where (E. 10) 

These equations satisfy the differential equations. 

Therefore the displaceernnts and stresses can be expressed as 

[:.]I Ssz Szz 

Espress the boundan conditions in a matris: 1.  bottom of channel has zero displacement 

2. surface boundary condition at z = 0. 

Ie4*'+ + 2 {H k - 1) H e t H k  k] 0 
Det 

[, H =2HL kl - e J H k  - k - e'HL k] Q 

Det 

[ - e ' H ' - 2 ( ~ k + 1 } ~ e ' H L k - 1 ] ~  
Det 

(E. 12) 

\ Det j (E. 13) 



Det = 2 
([- cosh{H k) sinh{H k) + H k] p g - 3 [ ( c o s h ( ~  k)}' + H' k'] p k) elHk k' 

CL 

(E. 14) 

At z = 0 we obtain 
f 

I k2i -- 1 kl -- 1 k'l - - -  
2 Cl 2 Cl 2 P 

1 k' - - -  0 
1 k' 

* - - 
2 CI 2 P 

0 

SSZ k2 i k 2  i k' i - k' i 
Szz 

- k' [ P +  11 0 k ' [ - p +  1] 0 

(E. 15) 

1 [e 
J H L  - H e :Hh  k - 11 k: - 

3 - p Det 

0 

o k ' [ e J H L ( P +  l } + 2 e ' B L ( - 2 ~ k p + 2 ~ ' k 2 + l } - p +  l ]  
Det 

(E. 16) 

Therefore 

(E. 1 7) 

1 o ( e ' H k - ~ ~ e ' H k k -  1) 
L!' = - W =  

a CSA 
4 ( - Z p C B  k + p ~ s ~ ~ ) e ' ~ '  2 k p C B - g p C S A  

or (E. 1 8) 

where CSA = - cosh(H k) sinh(H k) + H k and CB = (cosh[H k])' + H' k' 

cl' s p=- 
P' 

S+- 

Transform into the time domzin from the s - domain using "l 



W =  
o (q s + p') CSA 

-gpp'CSA+q(2kp'CB-gpCS~)s 

Therefore 

u = -  
a H' i (7 s + pf) k' 

( S  + U )  (-  2 p' CB k + p CSA g) 

I\' = 
o (q s + p') CSA 

(S + U) ( 2  k p' CB - g p CS.A) 

Separate into Elastic +Viscous pans: 

Therefore 

For Heaviside Load: 

W =  
o CSA 

11 ( 2 k p 1 C B - g p C S A )  

(E. 19) 

(E.20) 



CB y = - -  
CSA 

0 H' k' i 
u = -  

(2 y' k y +  p g) CSA 
[ I  - e - a ' ] )  

These last two equations agree with equations (4.1.1) and (3.1 2).  



Appendis F: The Analytical Solution for the Model of a Lithosphere Overlying a 

Fluid 

In this appendix the derivation of the analytical solution in the k domain for the model of 

a iirtiosphere overlying d fluid is shoun. Tnis derivation was accompiishea wifn 

Mathview. Note that there is no s dependence since the lithosphere is elastic and the 

halfspace is a fluid. The results are summarized in section 4.2a. 

The displacements and stresses can be expressed as follon-s (as with the channel 

deriwtion): 

1 P g  1 dpg p = - -  db=--  
2 k p  2 k p  where and 

The following boundary conditions are applied. 

A t z  =O,wehaveSxz=OandSzz=-o 

At z = - H. we have Sxz = 0 and S u  = (p + dp)bgw 

These boundary condtions can be written in matris form. 



i - 

i k' i k? i k3 - i k' 
- [ P C  l ]  k3 0 [- fi + 1]  k3 0 

i e . H h  k- ' i [- H  k + 1] e 'HL k' i e ~ k  k3 i [ - ~ k - l ] e ~ ' k '  
( d b -  l ] e - H L t 3  - [ d b - l ] ~ e - ' ~ k '  [db+ 1]eHLb3 - [ d b + l ] ~ e ~ ~ k '  

[(db + 1) (- e 'HL+  1) - 2 H k] k 
[db- 1 ] [ e ' ' H k - 2 ~ k -  1 ] + 2 ~ ' k '  

[ (db -  l ) ( e - ' H L - 1 ) + 2 . ~ k ] k  

DET = ([P + db] [e"HL - e'" - 4 H k] + [P db + 11 [- e-'HL - e'HL + 21 + 4 H' k') k1° 

(F. 5) 

Therefore at z = 0. use get: 

a [ 2  u CSAC k + CBC dp g] - 
Z [ ~ + ~ ~ ] ~ C S A C ~ ~ +  1 6 p ' ~ 2 k ' + ~ ~ ~ [ 4 p ' k ' + p d p g ' ]  

0 

(F.6) 

where 
CS.4C = - 4 (cosh[H k] sinh[H k] + H k )  and CBC = 4 (-  [cosh(H k)]' + I )  




