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Abstract

As a result of glacial isostatic adjustment the Earth’s surface is experiencing a slow, three-
dimensional deformation. This thesis presents a detailed study of the horizontal aspect
of this deformation. parallel to the surface of the Earth. The analytical solutions for the
horizontal displacement that results from the ioading of simple earth models are derived
from the set of equations that describe the system. Numerical results using the
mathematical manipulation program, Matlab. and the finite element modeling program,
ABAQUS. are found to be accurate through comparisons with the analytical solutions.
ABAQUS is used to study the effect of loading on more complex earth models that
include lateral variations. nonlinear rheology and time dependent creep. For most models
a maximum horizontal displacement is obtained at the edge of the load. This motion is
found 10 be most sensitive to the thickness of the elastic lithosphere. lateral variations and

nonlinear rheology.
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Chapter 1: Introduction

Periodically. large ice masses have formed to cover most of North America and Northern
Europe. Each glacial event is defined by a slow accumulation of snow and ice to form
continental sized ice sheets followed by a rapid disappearance of the glaciers.
Accumulation occurs over a period of about 100 000 vears and the disappearance occurs

within 20 000 years. The most recent glacial maximum occurred about 18 000 years ago.

The weight of these ice masses caused the land to subside. The subsequent removal of
the ice occurred relatively quickly in geological time. Since the rate of the rebound of the
land depends on the viscosity of the mantle. which is relatively high. regions previously
covered by glaciers are still adjusting to the new isostatic conditions. This glacial isostatic
adjustment of the Earth’s surface involves three dimensional motion of the surface and
variations in the stresses experienced within the crust. The evolution of the stresses and
displacements of the surface can be determined and compared with predicted values
obtained from computer modeling to estimate the evolution of the glacial load. the

structure of the subsurface and the time and location of glacial induced earthquakes.

The most commonly studied aspect of glacial isostatic adjustment is the vertical
displacement associated with land uplift (Peltier, 1973: Cathles, 1975). This is due to the
fact that it is the most easily measured aspect of the adjustment since the height and age
of ancient beaches can be directly measured. However. another important aspect of the
motion is the horizontal motion, which. until recently, has been very difficult to measure.
With the advent of new technologies such as GPS (Global Positioning System) and VLBI
(Very Long Baseline Interferometry), it is now possible to obtain accurate measurements

of the three dimensional motion of the Earth’s surface (Tushingham, 1991; James and



Lambert, 1993; Mitrovica et al.. 1994). If measurements are taken in regions that were
previously covered by glaciers and far from the significant effects of tectonics then any
motion present is interpreted as glacial isostatic adjustment. This gives an additional
constraint in determining both ice and earth models. An example of the data obtained
from VLBI is given in Figures 1.1 and 1.2. Figure .1 shows the locations ot the base

stations and Figure 1.2 gives the rates of change of the baseline lengths.

Figure 1.1: An example of VLBI baselines used to obtain baseline length rates (Mitrovica

etal.. 1993)
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TABLE i. GLB68 Baseline Length Rates

Baseline Rate {mm/yr)

Aigonquin Park (A) -Gilmore Ck (G)
Algonquin Park (A)-Westford (W)
Gilmore Ck (Gj-Haxstacx (H)
Gilmore Ck (G)-NRAO 35 (N1)
Gilmore Ck (G}-Platteviile {P)
Grimore Ck (G}-tuctunond (R)
Gihinore Ck {G)-Westford (W)
Gilmore Ck (G} Whirchorse i \Wh)
Heltsville (B)-NRAQ 85 (N1)
Beltsville (B)-Richmond (R}
Beltsville { B)-Westiord (W)
llaystack (H)-NRAQ 140 (N2)
Maryland Pt (M)-Richmond ‘ Rj
Meryvland Pt (M) Westford {W)
NRAQ 85 (N1j-Richmoad (R)
MAO 85 (N1i-Westford (W)
NRAO 140 (N2)-Westford (\V)
Platteviile (P)-Westford (W)
Richmond (R)-Westford (W)
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Figure 1.2: An example of the rates of change of the baseline lengths (Mitrovica et al..

1993)

The first study to investigate the horizontal motions that result from the removal of a
load was done by James and Morgan (1990). Their preliminary results indicated that
horizontal motions were more sensitive to changes in the thickness of the lithosphere than
are vertical motions. Based on these findings it was recognized that a careful analysis of
the horizontal motions that results from the removal of a load could constrain the possible
characteristics of the subsurface. However. the ice and earth models that they used were
rather simplistic and their results were not very accurate. As a result, James and Lambert
(1993) undertook to characterize the horizontal motions using the more realistic ICE-3G
deglaciation chronology (Tushingham and Peltier, 1991). They found that glacial rebound
should be detectable by VLBI and that tangential velocities contributed more to baseline
length change rates of shorter baselines. Mitrovica et al. (1993) determined that VLBI

could be used to assess the acceptability of ice history and earth model pairings. Neither



of these studies. however. gave any indication of what types of tangential motions were

experienced or what types of models might produce these motions.

Mitrovica et al. (1994) conducted a more detailed analysis of the displacement for various

cr

¥ USing realistic earth models and the ICE-3G ioading history 10 obtain predicted
patterns of the horizontal motions for North America and Europe based on specific earth
and ice models. Results of Mitrovica et al. (1994) did not support the theory that the
tangential motions are much more sensitive to details of the earth model (James and
Lambert. 1993). but rather that the sensitivities are a strong function of geographic
location and the specitic parameter of the earth model and that lateral variations could
have a significant impact on the results. The most recent consideration ot horizontal
motions have been done by D Agostino et al. (1997) and Giunchi et al. (1997). Both of
these papers studied the effect of [ateral viscosity variations and deep mantle
stratitication on glacial rebound. They found that horizontal motions are more

susceptible to changes in lateral variations than the corresponding vertical motions.

Recent seismological data suggest that lateral variations in the subsurface are widespread
and significant. Figure 1.3 shows the results of seismic tomographic analysis. Itis
apparent that there does exist significant lateral variations. Therefore any accurate earth
model must incorporate lateral variations in addition to radial variations. However, to
date. there has been little attempt to systematically determine the effects of combined
lateral and radial variations in viscosity together with changes in the thickness of the
lithosphere. The only exceptions are Kaufmann et al. (1997) and Wu et al. (1998). In
addition, it is difficult to determine whether the horizontal displacement predicted by the
different models is accurate since there has been little analytical study of the horizontal

displacement that results from the removal of a load.
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Figure 1.3: Results from seismic tomography (Li and Romanowicz, 1996)

The horizontal displacement has been shown to be sensitive to lateral variations in the
subsurface (James and Morgan, 1990) while the vertical displacement tends to be more
sensitive to radial variations. The combination of horizontal and vertical displacements
provides additional information which can be used to more accurately characterize the

structure and properties of the subsurface. While several papers have been written



analyzing horizontal motion data (James and Morgan, 1990; James and Lambert, 1993;
Mitrovica et al.. 1994; Wu and Ni, 1996), there has been no systematic study of the

horizontal solutions which are required to constrain the numerical modeling.

The horizontal and vertical displacemenis that resuli from the loading of several different
models have been examined in this thesis. Historically, there were two basic hypotheses
proposed to explain the motion associated with glacial isostatic adjustment. These are the
“down-punching hypothesis™. associated with the deep flow model. and the “bulge
hypothesis™ associated with the channel flow model (Cathles, 1975). These are

illustrated in Figure 1.4.

2000 km

2000 km

finite

w

infinity

Figure 1.4: The halfspace (deep flow) and channel models

In the deep flow model there is an infinite amount of material to compensate for the
weight of the load and the motion under the load is dominantly vertical; whereas the
channel model has a finite amount of material and necessarily horizontal motions occur as
well. These two simplistic models form the basis for the development of more detailed

subsurface models.



The analytical solutions for the horizontal and vertical displacements associated with
these two models are discussed in Chapters 3 and 4, as is the analytical solution for an
elastic lithosphere overlying a fluid halfspace. These results are compared with some
numerical calculations. In this way, not only are the motions well characterized, but the
accuracy of the numerical methods is determined. The effects of variations in the density,
the shear modulus and the thickness of various layers were determined. Using an
advanced finite element modeling package called ABAQUS (Hibbitt, Karlsson and
Sorensen. 1992) to determine the results numerically. it was possible to examine models
with lateral variations. nonlinear rheology and time dependent creep. By analyzing the
responses of these various modeis to loading it is possible to estimate the structure of the
earth based on a comparison with known motions of the Earth’s crust. Although the
displacement is dependent on the ice loading history as well as the subsurface structure. it

is possible to eliminate those models which are not appropriate.

The purpose of this thesis is to analvze the horizontal displacement that results from
Heaviside loading of simple earth models. First a systematic study of the horizontal
motions was completed so that the impact of various earth parameters on the horizontal
displacement could be determined. This was done through the analysis of the analytical
solutions for various models, and a comparison of the relaxation and excitation strength
diagrams. The methods used for the analytical and numerical analyses are discussed in
Chapters 2 and 3 and the analysis of the various models in the wavenumber domain is
discussed in Chapter 4. All of the models are based on a flat. incompressible, viscoelastic
earth. Next. the accuracy of the finite element modeling program ABAQUS (Hibbitt et
al., 1992) was tested for the horizontal displacements. Once accuracy had been
established. ABAQUS was used to determine the results of loading more complex models.

The third goal of this thesis was to examine the horizontal motion that resulted from the



loading of earth models that included lateral heterogeneity, nonlinear rheology and time
dependent creep. These results are discussed in Chapter 5. Based on these results the

acceptability of various models was determined.

Modeiing the subsurface is important not only to constrain tectonic and mantle
convection models. but also to predict future motions of the crust. This will not only
enable scientists to obtain more accurate GPS and VLBI readings for use with other

applications. but also to estimate the occurrence of future earthquakes.



Chapter 2: Basic Theoretical Concepts

Many methods are used to study the effects of glacial isostatic adjustment. One method
1s to attempt to describe the motion in terms of a finite set of equations relating the
properties of the system. In this thesis. the system is defined as a flat earth that may be
stratified. though each layer has constant properties, with an impulse load in time. This
load is defined as a circular disc load with con<tant mass. radius and height. This load is
most easily described in cylindrical coordinates so this is the coordinate system used. In
this chapter. the basic equations used to describe the loading of a viscoelastic layer will be
discussed. These differential equations are solved for an appropriate load and
appropriate boundary conditions. This is most easily accomplished through the use of
the correspondence theorem which will be discussed in more detail in section 2.2. The
correspondence theorem states that the viscoelastic solution in the Laplace transform
domain can be obtained from the equivalent elastic solution where the elastic moduli are
replaced by variables dependent on the Laplace transform variable. s. The solution is
most easily obtained in the wavenumber domain since in this transform domain the
function of the displacement is multiplied by the function of the load rather than requiring
a convolution between the two. The equations that describe the system will be discussed
in section 2.1 and the methods used to determine the solutions in the (k,s) domain, the
time domain and the space domain will be given in sections 2.3, 2.4 and 2.5 respectively.
These methods will be used to determine the analytical and numerical solutions associated
with various earth models. The impact of variations in density, shear modulus, viscosity

and layer thickness are discussed in Chapters 3, 4 and 5.

2.1: Basic Equations
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This section will review the set of equations used to describe the loading of a viscoelastic

layer. There are three basic equations to consider. These are:

a. the equation of motion for a flat earth (Cathles, 1973, Appendix II)

V.o -pgVw+pgee. =0 (2.1.1)

where o is the stress dvadic.

p is the density.

g is the gravitational acceleration.
w is the vertical displacement.

€ is the dilatation.

and é. is the unit vector in the vertical direction.

b. the constitutive relation for a viscoelastic medium (the Navier-Stokes equation for a

homogeneous. isotropic. elastic solid. i.e. Hookean elastic solid) (equation C.16)
do, + £ (0,- $06,8,) =2ude, + Adg, S, (2.1.2)
v

where ¢y, is the kI component of the strain tensor,

oy is the /™ component of the stress tensor.
A and u are the Lamé parameters,
&, 1s the Dirac delta function,

and v is the viscosity.
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Note that for the incompressible case (Love, 1911):

Viu=e=0 (2.1.3)

where ¢ is the dilatation.
E=2e, =€, t+egyt e

and u is the displacement vector.

c. and the equation for the strain tensor (Malvern. 1969. equation (4.2.10))

1, o, \
€y = E( T*‘XJ 2.1.4

AN

where ¢;, is the /™ component of the strain tensor.

du, . . .
and — is the displacement gradient.
X,

Some of the assumptions associated with these equations are that the deformation
processes are isothermal (constant temperature). that the displacements and displacement
gradients are small, and that the Earth is flat. isotropic. and homogeneous with constant

gravitational acceleration and density.



2.2: The Theorem of Correspondence

The correspondence theorem simply states that any viscoelastic system can be described
by the set of equations for the corresponding elastic system expressed in the transformed
Laplace domain. if 4 is replaced by A(s) and u is replaced by u(s). This is useful in the
interpretation of problems involving a viscous fluid because usually the equations for an

elastic body are easier to solve.

Here is a brief example:

Consider the constitutive relations for two different cases: a Newtonian fluid and a
Maxwell body. A Newtonian fluid is defined as a material in which there is a linear
relationship between the stress and the rate of strain. The elastic solid (Hookean solid)
and the viscous fluid (Newtonian fluid) represent the end members of viscoelastic bodies.
When an elastic solid deforms. it experiences a strain proportional to the stress applied.
Once the stress is removed. the body returns to its original state instantaneously. A

simple example is a spring where the stress. 0. is proportional to the deformation or
strain. ¢. and G is the constant of proportionality or spring strength; ¢ = Ge. A viscous

fluid. however. experiences a stress proportional to the rate of deformation and has no
tendency to return to its original state when the applied stress is removed. A simple

example is a dashpot where the stress is related to the strain rate and 7 is called the

viscosity: 0 = nde.

A simple viscoelastic model is the Maxwell model. It involves the combination of a
spring and a dashpot in series. The constitutive relation for the one-dimensional case is

(Mase. 1970. equation 9.3)
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lc’r’,cr+—l-0'=c9,e (2.2.1)
G n

To determine the constitutive relation for the three dimensional case, the three
dimensional expressions for the Hookean and Newtonian bodies are used. For the general

three dimensional case the constitutive relation for the Hookean solid is
o, = Adef, - 2ue’, (2.2.2)

where o, = (34 - 2u)e,, = 3K°e = K¢°,, 0
K° is the bulk modulus.

and € is the dilatation.

and the constitutive relation for a Newtonian fluid is

OJ."J = ('P - naferrr)(s:; - 21)9,6’“,/ (

9
19
[P
~—

where n is the viscous dissipative coefficient,
v is the Newtonian viscosity,
P is the thermodynamic pressure,

and &’,, = -3P + 3(n - 3 V)de",.

Following the derivation of the constitutive relation for a Maxwell body in three

dimensions as given in Appendix C, we obtain equation (C.16):
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9oy + % (0, - $0,6,) = 2udE, + AdE,d,

This can be reduced to the following by performing tne Laplace transform.

y v
or O = 2U(S5)Ey ~ AS)E,, (2.2.5)

where u(s)= (2.2.6)
S-E-—‘L-‘-
v
lt/._s-&—(,t.}.aﬂ)ﬁ] AS"*"_M
and A(s) = = v 227
s+ &2 s+ &
v v

where x is the bulk modulus.
u is the shear modulus.
A is a Lamé constant,

and v is the Newtonian viscosity.

Note that the bold variables represent variables in the transformed s domain. When
equation (2.2.5) is compared with the constitutive relation for the elastic solid, they are
identical in form with the exception that the stresses and strains have been transformed

from the time domain to the s domain and the Lamé constants are dependent on s. This
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demonstrates how the theorem of correspondence can be applied to the analysis of a
viscoelastic problem. The viscoelastic problem and solution in the transformed domain
have the same form as the elastic problem in the time domain so if the solution for the
elastic case is known then the solution for the viscoelastic solution can easily be obtained
by replacing u and 4 with u(s) and A(s) respectively and performing the inverse Laplace
transform. Also note that the impulse loading boundary condition for the viscoelastic

earth is the same as constant loading on an elastic earth since the transform of Po&1) is Py

where Py is the constant pressure of the load.



2.3: Equations of Motion in the Transformed (k,5s) Domain

This section will give the details of how the equations from section 2.1 are solved in the
transformed domain. Transforming to the X domain removes a spatial differentiation so
that a partial differential equation becomes an ordinary differential equation which is
much easier to solve. The following section will give the solution in the time domain.

Cvlindrical coordinates are used with the variables r. 8. and =. to represent the three
degrees of freedom. The (r,4,2) components of the displacement correspond to (u,v,w).
Cylindrical symmetry is assumed so that all derivatives in terms of 8 are zero and the

displacement in the 6 direction. v. is equal to zero.

2.3a: Differential Equations for the Incompressible Earth

The constraints for the incompressible case are that V-it = €= 0 and Iin;l eA =1T1.
£~

The equation of motion for the incompressible flat earth. from section 2.1. is

V.0 -pgVw=0 (2.3.1)
r-component: 9,0, +13,0,, +9.0,_ ++(0, -04)—pgd,w=0 (23.2)
f-component: 3,0,, +2L0,, +13,04 +3.0, —Lpgdyw =0 (2.3.3)
z-component: d,0,_ +10,_.+1d,0, +d.0_. -pgd.w=0 (2.3.4)

(from Malvern, 1969, Appendix I1.4.C11)

16



The strain equations can be written as (from Malvern. 1969, Appendix 11.4.C9)

e, =0d,u
u
Cog = —
r
e.=d.w
e, =0 (2.3.5)
e =0
e.=4+(d w+d.u)
e=e, +egt+e. =10 (ru)+d.w
and the stress-strain relationships are
0. =p(dw+d.u)
o, =-P+2u(d.w)
0, =0
, = (2.3.6)

By inserting the appropriate stresses and strains into the equation of motion we obtain
the following for the r and - components to the equation of motion. while the 8
component reduces to zero.

2Uuu

. 2
r-component: —d,P+2ud’u+d.o,. + —/'—la,u -==—-pgd,w=0 (2.3.7)
r rr

17
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z-component: d,0,_ + ﬁa,w + ﬁa:u +d.o..—pgd.w=0 (2.3.8)
r r = :

The stress divergence can also be written in terms of the displacement field. Therefore
the equation of motion can be expressed exclusively bv displacements. Therefore only
the displacement field needs to be determined. According to the Helmholtz
Decomposition Theorem. any vector can be expressed in terms of the gradient of a scalar
potential and the curl of a vector potential. Therefore the displacement vector can be in

the following way.

F=ur+1r8+wi=Vp+VxV¥ (2.3.

19
(U5}
D
S—

where ¢ is the scalar potential

and ¥ is the vector potential.

For cases where the material properties vary only as functions of =. the motion can be
separated into poloidal and torotdal components. The poloidal component of motion
involves motion in the = direction whereas the toroidal motion occurs in the r and 6

directions. The poloidal component is a function of ¢ and the toroidal component is a

function of ¥'. For surface loading in an isotropic medium, toroidal deformation is not

excited so this term is neglected. Therefore it is only necessary to solve it = V¢. For the
incompressible case V-ii = V*¢ = 0. Therefore the displacements are related to the

scalar potential in the following way.
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u=d,p
v=1L1d,0 (2.3.10)
w=2.9

s N T

then the following differential equations are obtained from V3¢ = 0.

diZ-k’Z=0
2;0+0v°Q0=0 (2.3.11)
85R+{8,R+(k: —i)k: 0

r-,

Solving the above equations. sutficiently satisfies the equation of motion. These

equations have the following solutions. respectively.

o
I
~
19
LI
—
9
S

R=1J (kr)
where & and v are constants and
J (kr) is a Bessel function of the first kind

and order v.

Therefore. any variables dependent upon » can be expanded in terms of the Bessel
function and any that are dependent on = can be expanded using an exponential function.
Since there is no dependence on 6. the constant v must be equal to zero. Therefore the

solution is:



=17, (kr)e " (2.3.13)

Now we can express the system of differential equations in terms of ¢. This reduces the
partial differential equation to an ordinary differential equation. It is possible to express

not only the displacements, but also the stresses in terms of ¢.

o, =2ud,d,¢
o =2ud,d.0 (2.3.14)
o.=21d.0.¢

Knowing that J,(kr) satisfies the following differential equations (Tranter. 1968).

9;J (kr)+1d,J (kr)+k*J (kr)=0

(2.3.15)

9.4 (kr) = —kJ, (kr)
J,(0) =1 (2.3.16)
J,(0)=0 (2.3.17)

the following Bessel function substitutions are obtained, which will be used to calculate

the Hankel transform of these variables.



u=4d,Q=-ke™J (kr)

w=0.0=-keJ (kr)
0, =2ud,0,¢ =2ue [+ (kr) - k77, (kr)] (2.3.18)
0. =2ud,d.¢=2ue " k*J (kr)
0. =2ud.0.0=2ue “k*J (kr)
For a vertically stratified halfspace. the vertical component is more complicated than a
simple exponential. Instead. let 4 = A4(k.2) be the vertical component of the 4™

wavenumber. Therefore we will have

© = [AJ, (kr)dk (2.3.19)

0

Using this form of ¢ we obtain the following solutions for the displacements and stresses.

These are the Hankel transforms associated with each of the different variables.

w= =] kUJ, (kr)dk
)}

[ kWJ, (kr)dk

W=

—

G, = KT [+, (kr) = kJ,(kr)]dk

e

]
o143 ©

7~~~
18]
W)
19
o
A

o, =~[kT_J, (kr)dk
0
o = [kT.J,(kr)dk

P = [ KTLJ, (kr)dk

Q] o— 1



19
9

9,u = = [ kU[kJ, (kr) - £ J, (kr)|dk

9w = [ k*WJ, (kr)dk
1}

do,_=- J;kT,: [k (kr) = LT, (kr))dk (2.3.21)
9P = - k*ITLJ, (kr)dk
0
Oiu= —TkU[—é Jo(kr) =22 (kr)]dk
0
Oiu+td u-Lu= |k UJ, (kr)dk (2.3.22)
0

Recall that the r and = components of the equation of motion. the stress-strain relations

for 0,. and o... and the divergence equation (dilatation) for the incompressible case are

-0 P+2ud u+2utd u- 2utu+d.o_-pgdw=0
0,0, +utdw+utdu+d.o.. -pgdw=0

89
(V%)
9
(U%)
—

o. = ,uarw-f-,ua:u (2.3.
o.=-P+2ud.w
Vii=0=4d,(r)+d.w

The formulae for the displacements and stresses as given by equations (2.3.20), (2.3.21),

domain using the Hankel transform to get



-0.T_ = -2uk’U - pgkW - Tk
LT, kI, T, —£kJW—-LJ0.U-pglyd.W+J,3.T. =0
~T_ = —pkW - o U (2.3.24)
—kJ U+ J,d.W=0
T.=-T+2ud W

These five equations are reorganized and the IT term is eliminated to get the following four

difterential equations:

0.T. =3uk*U + pghW - kT,
d.T_ = pghlU +kT_

2.3.25
QU =LT, —kW (2:3:23)
9. W = kU
These can be expressed in matrix form.
U ] -0 -k L 0Y U}
alw k 0 0 O W
g = . (2.3.26)
9| T.i |4k’ pgk O -k| T.
T. J pgk 0 k 0 N\T.

This matrix can be shown to agree with the matrix given in Cathles (1975) for an
incompressible. elastic. flat earth, where U equals iU and 7,- equals i7,.. This method of
using the Hankel transform in cylindrical coordinates is equivalent to using the Fourier

transform in Cartesian coordinates as used by Cathles (1975).

These equations can be normalized so that the variables are dimensionless. This is done

to ensure accurate numerical calculations. Since the viscosity used in this thesis is
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relatively large as compared with the other material properties, the numerical calculations
can introduce errors due to rounding errors. To minimize this problem, the values for the
material properties are normalized. The normalization scheme is given in the table below.

The form of the equations remains the same despite the normalization so the above

bl o ~ =~

differential equations can also be used o represent the dimensioniess probiem.

Table 1: The Normalization Scheme

variable unit normalization value
factor
length (L) a radius of the Earth (6371000 m)
mass (M pa mean mass of the Earth
density L; 5 mean density (5517 kg m™)
time T a\“i derived from the acceleration
7
stress % n* mean stress at surface of the Earth
(ra’5°G =2.589 x 10'' N m™)
gravitational ;Ti % mean gravitational acceleration of
acceleration the Earth (7.365 m s7)
elastic modulus [%. H* mean stress at surface of the Earth
(ra’5°G =2.589 x 10'' N m™)
viscosity F% u®x lkyr stress over one thousand years
(8.17 x 10*' Pa's)

The normalized values of s are in terms of thousands of years.

Therefore if ~ represents the normalized form, then the following expressions apply.




L8]
(W]}

g=Y
a
w=¥
a
f =l
J7i
7=l
u
p=t
u
= A
A=—
U
~.=‘;
k = ka
p==t
0
- oa
g=522
J7
- U
V= —
o x1kvr

The linearized boundary conditions are determined by balancing the stress at the surface
with the weight of the displaced material and relating the perturbed potential to the
surface mass density. The boundary conditions can be derived from the equations of
motion using the pillbox technique (Cathles, 1975). The stress is continuos in the viscous
case, but for the elastic case there is also the advection of prestress term. Therefore, the

linearized boundary conditions are

—_
9
[#%]
(RS ]
~

p—3

elastic: [c-4].=0

viscous: [o-fi+pygoun]_ =0 (2.3.

9
(99 ]
(NS
(=]
~



When considering a viscoelastic problem, one uses the correspondence principle to relate

the linearized equations of motion for the elastic and viscous cases.

LW
v

. - -~ - - A\ ~ A N Tt
clastic: V-G = P8~ PV, — V{Pogoit - 1) =0 (2.3.29)

viscous: Vo-pgii-p, Vo, =0 (2.3.30)

In the viscous limit. the advection of prestress term becomes part of the overall stress.

Therefore. the following can be defined.

0’ =0—p,8,un (2.3.31)
Therefore V.o'=V-0-Y(p,g,n)
So the linearized equation of motion for the elastic case can be written
V.o'-pgni—p,Vo, =0 (2.3.32)

This is equivalent to the equation for a viscous fluid (equation (2.3.30)). This can also be

applied to the boundary conditions so that for the elastic case

[0 -7 + Pogowi]. =0 (2.

(18]
(¥S)
L
(98 )
S’

This is also equivalent to that of the viscous fluid. Note that with this definition, the

stress needs to be reinterpreted as time progresses.



2.3b: Solution to the Differential Equations

In general the system of equations given by equation (2.3.26) can be written as

d.¥ = AY, where A is the square matrix. This is useful for numerical integration. This
system of equations can be solved by finding the eigenvalues and eigenvectors of the
matrix A. For a fourth order differential equation the solution is expressed in the
following way assuming there is no redundancy in the eiegenvalues.

Y=cve

-4y = AsZ

~~~
9
(U9 ]
(V)
E =S
S—

+c. T o, ¥e ™ o, e

where T, represents the n™ eigenvector,
A represents the ' eigenvalue,
c, represents the n constant as determined by the

boundary conditions.

and - represents the depth.

In terms of the differential equations derived in the previous section this method will give
the solution in the (4.5) domain. Based on the correspondence theorem the viscoelastic
solution can be obtained from this solution by substituting u(s) for 4 and performing the
inverse Laplace transform to return to the time domain. Finally to return to the space
domain from the wavenumber domain, the inverse Hankel transform will be performed.
The solution for a uniform layer in a flat earth is obtained below. These equations apply

only if the material properties are constant throughout the layer.

The eigenvalues are determined by solving



|A-2L =0 (2.3.35)
where A represents a square matrix,
A are the eigenvalues,

and I is the identity matrix.

For the case of the incompressible. flat Earth. the values of the eigenvalues are * k, as

demonstrated below.

Uy (0 -k L+ oYU

W k 0O 0 o)W
i = . (2.3.36)
O\ T.| |4uk® pgk 0 —k|T.

T.) lpgk 0 k O)\T.

-A -k £ 0

k -4 0 0 =0

duk®  pgk -A -kl

pgk 0 kK -4

(2.3.37)

;»4 +k4 —2)¥:k: =0

The above equation shows that the eigenvalues are degenerate. i.e., from this fourth order
equation only two unique eigenvalues are obtained. Note that there are only two
independent eigenvalues with only two associated eigenvectors while four are needed to
uniquely describe the system. There is a standard technique used in linear algebra to

obtain two additional eigenvectors from the two existing eigenvectors (Boyce and

DiPrima. 1986, p. 368).



The first two eigenvectors are determined by solving

(A-4,1)%, =0 (23.38)

where ¥, are the eigenvectors associated with 4.

The second two eigenvectors are determined by solving

(A-4Da, =7 (2.

n n n

[§S)
(V3]
v
O
S

where i, are the second set of eigenvectors associated with

hpand ¥ .

The four eigenvectors obtained through this method are

1o
T o

+ E T~
3

o £ o

(2.3.40)

,_.
|
-

I
O a

- —2uk
Juk - pg 0)

2
®

The final solution. in the most general form for a problem where only two unique

eigenvalues are obtianed. is given below.
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P - ks - - - - - —ks
Y=cve" +c,v e +c,(vo+in,)e +c, (v z+ii,)e™

In matrix form this is expressed as

ek: e-k: (:+{')et (:_%)e—k:
?_ eL‘ _e—k: :el‘: _:e-k: _
T 2uke® “2 ke 2ulkz+ D) 2u(l-k)e ™
(Quk + pgle (2uk - pgle™  z(2uk +pgle™  =(2uk - pgle™™
(2.5.41)
U (cl
_ W - | ca
where ¥ = and C=| ~
T. C;
T:: €,

Therefore the solution can be written as ¥(z) = P(z)C where C is a vector of the
constant coefficients. ¢,. and P(-) is a matrix whose columns are equal to the eigenvectors.
This satisfies the differential equation (2.3.26). This represents the solution of an
incompressible layer within a flat Earth with constant density, gravitational acceleration,
viscosity and shear modulus. To obtain the solution for a stratified earth model, the
appropriate boundary conditions are applied to determine the values of the constants.
The surface boundary conditions are that the shear stress is zero and the normal stress is

constant due to the mass of the applied load. The surface boundary conditions can be

- T - 0 ~
expressed as Y’(0) = (T':J =M(0)C’ =( 0')’ where Y is a vector of only the stresses.

M is a 2 x 2 matrix taken from the appropriate elements of matrix P to obtain equations
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for the stresses, C’ is made up of the two constants, ¢, and c;. used to satisfy these
boundary conditions and -o is the magnitude of the impulse loading of the earth. These
surface boundary conditions are used for all of the analytic models, since they are
designed to investigate the response of an earth model to a constant load on the surface.
The lower boundary conditions however vary from model to model. For the halfspace
model the boundary condition as the depth goes to negative infinity (z is defined as
positive upwards) is that the solution must be finite. Therefore the value for the
constants ¢» and c; is zero. The solution for the halfspace model without the application

of the surface boundary conditions is

Y, =

C’'=PyC’ 2442
ke 2u(kz +1)e™ f (2443)
L(?.u/c +pgle™  (2uk + pgle”

where C’isa2 x | matrix made up of constants ¢, and ¢;.

For the channel model the lower boundary is fixed and does not move, therefore the
vertical and horizontal displacements are zero. The lower boundary conditions can be

expressed as

(U(:,) 00

oy W), s |00, .

Yc(ﬂ)_[Tn(q) =P.(z,)C= Lol€ (2.3.43)
T:(:l) \Opg

where =, is the depth of the lower boundary,
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C is the 4 x 1 matrix made up of constants cy, ¢, ¢3. and c..

and C” is a2 x | matrix made up of constants ¢, and c;.

For the model of an elastic lithosphere over a fluid halfspace the conditions at the lower
boundary are that the shear stress is zero and that the normal stress is caused by the

buovancy force due to the vertical dislpacement, i.e. pgl¥. These can be expressed as

U(z,) 10’
. W(z) _ |01, ,
3= = < = ’ .‘..q.’4
A P RS R P (23.44)
T::(:/)' Opg

where z; is the depth of the lower boundary.

C is the 4 x | matrix made up of constants c;. ¢. ¢;. and ¢,.

and C” is a2 x | matrix made up of constants ¢, and c;.

For multi-layer models additional boundary conditions are needed. The boundary
condition at any common boundary is that the solutions within the upper and lower
layers must be continuous. It ts assumed that the properties within each layer are
constant. In this way a complex model made up of many layers, each with constant
properties. can be used to approximate the smooth variation in the properties as seen in
the Earth where the bottom layer is a halfspace. A starting solution P(z)) is chosen,
based on the model. to be Py. Pc or Py and the solution is propagated through the layers

by matrix propagation. Therefore, for n distinct layers. the solution can be written as



Y.(2)= {ﬁ P (2. )P (2 )}Pl (z,)C, (2.3.

m=2

The two remaining constants are determined by applying the surface boundary

conditions.

33
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2.4: Solution in the Time Domain

In the last section the solution to the loading of a viscoelastic medium was obtained in the
(k.5) domain so now it is necessary to invert the solution back to the (x,7) domain. The
final two sections of this chapter will demonstrate the methods used to obtain the
solutions in the inverse transformed domains; first in the (k,¢) domain and then in the (x.7)
domain. Both of these methods assume that the solution in the (£ .s) domain has been
determined and that all boundary conditions have been satisfied. Let the solution in the
(k.s) domain be a linear function of » independent solutions. each satisfying the

difterential equations.

2.4a: Spectral Method

To determine the solution in the time domain the new normal mode method was used.

The steps of this method are detailed below (Wu. 1978; Wu. 1990).

1. Find the matrix M based on the boundary conditions applied at z=0. For all of the
models discussed in this thesis the boundary conditions at the surface are that the
shear stress is zero and the normal stress is a constant equal to the weight of the ice
load. The matrix M is a portion of the matrix P.

If the solution from equation (2.3.41) is written as

Y(z,s) = P(z,5)C(s) (2.4.1)



then the matrix M is defined as

Y(z=0,5) = M(s)C'(s) = b(s) (2.4.2)
where b isa 2 x 1 matrix defining the boundary conditions
at the surface,
C’ is a 2 x | matrix of the constants determined by the
surface boundary conditions.
M is the 2 x 2 matrix used to apply these boundary
conditions.

and Y(z =0) involves only the stresses.

_ 0
Therefore b =[ )
_G’
Therefore C=M"h (2.4.3)
* -
C= M* ; (2.4.4)
det M
M, (s)b,

or (2.4.5)

€=2, det M(s)

where M’ is the transpose matrix of the cofactors M;".

Therefore the solution can be written as

M, (s)b, -

Y(z5) =3, = M(S)T‘(:’S) (2.4.6)
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where 7, are the column vectors of P.

To determine the singularities of the solution, the values of s for which detM = 0 are

determined. These s values are equal to the inverse of the relaxation times.

Define a vector @ which is dependent on the original matrix P, the inverse of M and

the boundary conditions.

O(z.s) =3, M. ()b, T (2.9). (2.4.7)
5 o 9(z9) )
so that Y(z5) = det M(s) (2.4.8)

The solution can be expressed as the sum of an elastic component (independent of s)
and a viscous component (s dependent). The elastic component is the solution at the
initial time. i.e. as s goes to infinity. This elastic component can be subtracted from
the total s dependent solution to obtain the viscous component. The viscous

component of 0 can be obtained from the viscous component of the solution.

Y(z.5)=Y" (z.5)+ YE(2) (2.4.9)

75(z) = lim¥(z,s) (2.4.10)

2.4.11)
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detM
detME’

where by definition Q' (z.5) = 0(z.5) - 0% (2)

. The solution in the time domain can be obtained by performing the inverse Laplace

transform.

)= L ™ E"‘I’) s + VES(1) (2.4.12)

. This integral can be simplitied using the Residue Theorem. The Residue Theorem
states that the integral of a function around a curve can be expressed as a sum of the
residues. The residue can be evaluated by first identifving singularities in the
function. then taking the numerator of the integral evaluated at these singularities.
divided by the slope of the denominator evaluated at these singularities (Marsden.
1973). The residue then becomes independent of s. For example. if the value of detM

is zero at s, and there are m such singularities. then

_[LQ (5)e” 1o $Res Q (zs)e” 5, i—Q—&‘—‘)—-— (2.4.13)
2m ™" det M(s) =1 det M(s) =i 4[detM s)]l
Therefore equation (2.4.12) becomes
F(z1)= $ R (e +TE(2)S() (2.4.14)

"
—

0'(zs.)

‘h I-é T T aoaar
where R (z) 'Zf.[detM(S)]I,

are the residues. (2.4.15)
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7. Finally the elastic portion of the solution is obtained by calculating the value of the

solution as s goes to infinity, according to equation 2.4.9.

Fe(z)=limY(z,s)

s—tem

8. Therefore the time dependent solution is a combination of the elastic solution and the
sum of the residues. If a Heaviside load is assumed. then the solution has the

following form.

(1-e)+75(2) (2.4.16)

R ()
5

1

where is the excitation strength.
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2.4b: Numerical Application of the Spectral Method

The analytical derivations of the time dependent solutions for three different basic models
can be found in Appendices D, E, and F. These basic models are the halfspace model, the

channel model and the mode! of a lithosphere over a fluid.

The results of the spectral method are used to check the results of the finite element
method. especially the horizontal displacement. Analytical results exist only for
relatively simple models. but the results for models with lithospheres and stratified
viscoelastic halfspaces also need to be analyzed. For this reason Matlab programs were
written to compute the deformation in a laterally homogeneous earth model using the

spectral method.

A series of Matlab programs was written to calculate the solution in the (4.5) domain and
then to employ the method outlined in section 2.4a to calculate the solution in the (4.7)
domain. These programs calculate the relaxation times. residues, excitation strengths and
time dependent solutions for any laterally homogeneous model. The solutions for the
three basic models were calculated numerically using the Matlab programs and the results
were compared with the analytical solutions. They were found to agree so further results
from the Matlab programs could be used with confidence. These comparisons will be

discussed in more detail in the upcoming chapters.

The Matlab programs were structured in a manner to facilitate the use of the normal mode
method in determining the solution in the time domain. First a starting solution is chosen
to reflect the desired structure of the model, either halfspace, channel, or lithosphere over

a fluid. This allowed all three model types to be incorporated into one set of programs.
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This is done through the use of a flag. If the flag has a value of 1, then the starting
solution is the halfspace solution, if 2 then the channel solution and if 3 then the
lithosphere over a fluid solution. The starting solution for the halfspace model is based
on the eigenvalues and eigenvectors obtained for the incompressible flat earth. The
starting solutions for the channel and lithosphere over a fluid are the boundary conditions
at the lower boundary as discussed in the previous section (equations (2.3.43) and
(2.3.44)). The material parameters of the model are then entered into the program in the
form of a vector. each element of the vector corresponding to a particular layer. The
material parameters required are the density of the layers. the shear modulus, the
viscosity. the gravitational acceleration and the depth of the top of the layers. The
solution in the (k.5) domain was obtained by propagating the starting solution through the
various layers to the surface where the surface boundary conditions are applied. The
solution in any given laver is based on the eigenvectors as discussed in section 2.3 and
given in equation (2.3.41). Upon testing of the programs. it was noticed that for large
values of 4 the eigenvectors were similar. hence the matrix P was singular for large values
of k. Therefore the inversion of the matrix P. required in the matrix propagation, became
numerically unstable. Conceptually. for large values of k the model is sampled to only
small depths and the eigenvectors approach those of the halfspace model, instead of the
solution for an arbitrary layer. To accommodate this effect an effective depth was
calculated below which the model is not sampled. This effective depth was chosen to be
1/(5k). The matrix propagation then started from this effective depth using the halfspace
solution no matter what the initial model. Since the material below this depth is not being

sampled then it can be modeled as a halfspace without the loss of information.

Once the solution in the (%.5) domain had been obtained the next step was to calculate the

items necessary to determine the solution in the (k f) domain. These items are (a) the
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elastic part of this solution, which can be easily obtained by determining the value of the
solution as s gets very large, (b) the matrix M based on the matrix used to determine the
constants from the surface boundary conditions, (c) the relaxation times by solving the
determinant function, detM = 0, (d) the viscous part of the solution by subtracting the
elastic part from the total, (e) the viscous Q vector as given by the viscous solution
multiplied by detM. and (f) the residues obtained by dividing the viscous Q vector by the
slope of detM evaluated at the inverses of the relaxation times. A further series of
programs was written to calculate these items and to combine them to determine the

solution in the time domain.



2.5: Numerical Solution in the Space domain

From the solution in the time domain. the final step needed to obtain the solution in the
space domain is to perform the inverse Hankel transform. The solution can then be

investigated to determine how it varies both in time and in space.
2.5a: Solution Using the Inverse Hankel Transform

For the cases where an analytical solution was available in the (k,¢) domain. the formula
was directly incorporated into the FORTRAN program designed to perform the inverse
Hankel transtorm using the Continued Fraction Expansion by Chave (1983). The
solution in the space domain was obtained for different values of r at a particular time .
The formulae used to compute the inverse Hankel transform are determined from the
equations used in the initial derivation of the differential equations in equation (2.3.20).
The Hankel transform of a disc load with small radius (Farrell. 1972. equation 8) is J,(kR)
Rk The solutions H(k.r) and U(k.r) are for a harmonic load with wavenumber & and
amplitude . thus to obtain the space-time solution for a disc load they have to be
multiplied by the function of the load in the £ domain and then the inverse Hankel
transform is performed on this product. The formulae use‘d to calculate the displacement

atr=0are

w(r.t) = [ W(k.t)RJ, (kR)dk .5.0)

u(r.t) = = U(k.1)RJ, (kr)dk (2.5.2)
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and at all other values of r are

w(r,t) = [ W(k.t)RJ,(kR)J, (kr)dk (2.5.3)

o1

w(r.t) = =[ U(k.1)RJ, (kR)J, (kr)dk (2.5.4)

0

where I1{k.r) and w(r.1) are the vertical displacements,
L'(k.r) and wu(r.1) are the horizontal displacements.
Ji(kr) is the Bessel function of first order.

Jo(kr) is the Bessel function of zero order.

and R is the radius of the cyvlindrical load.

By investigating the analytical solutions for the vertical and horizontal displacements. it
was possible to determine that the horizontal displacement was antisymmetrical around
the & = 0 axis while the vertical displacement was symmetrical. This is due to the order
of the Bessel functions used in the above equations since J|(x) is an anti-symmetrical
function and Jy(x) is symmetrical. The formula for w(r} at » = 0 can be obtained from
equation 2.5.3 by taking r = 0 since Jy(0) = 1 (see equation (2.3.16)). Also notice that the
load function is not present in the formula for «(r) at » = 0. This is due to that fact that
Ji(kr) is zero at r = 0 (see equation (2.3.17)). so the horizontal displacement at the center

of the load is zero regardless of the magnitude of the load.

[t can be shown that the k£ domain solution for the horizontal displacement is singular

where & = 0. however its product with J,(kr) becomes finite since J,(0) is zero. Since the
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Fourier transform is similar to the Hankel transform and the differential equations are the
same, originally the problem of this thesis was analysed using Cartesian coordinates (with
a boxcar load that extends to plus and minus infinity in the v-direction). However, it was
noted that the Fourier transform of a boxcar load is the sinc function which has a finite
value ai 4 = 0. This posed a problem when trying o calculate w(x) due to the singular
nature of u(k) at k=0. For this reason the calculations were performed in cylindrical

coordinates instead.

The Matlab programs output the numerical calculations as lists of numbers corresponding
to the displacements for specific values of k. These lists are then imported into the
FORTRAN program and values are interpolated and extrapolated as required so that
continuous functions of k& are obtained for both the vertical and horizontal displacements.
The interpolation was done by assuming a linear relationship between consecutive values
with respect to . The extrapolation required the limits of the displacement functions for

large and small & values to be evaluated.

A comparison of the analytical results for the three basic models of the halfspace. channel
and lithosphere over a fluid was done to determine the trends of these models as & goes
from zero to positive infinity for both the horizontal and vertical displacements. From
this investigation it was determined that the halfspace and lithosphere models had similar
limits. The channel model was found to give a slightly different form to the limits since it
did not have an underlying halfspace. Therefore the limits used for the extrapolation of

the horizontal displacement are

[N
.Lll
v
g

for k — 0. u(k)=—7i#k(l+£(l—e-€')] Q.



c 2uk s
fork — 0. wk)=-—— 1+—(1-e v ) (2.3.7)
g g
2 . e
for k= eo.  wi(k)= ——"-[1 +“—“i(1 — )J (2.5.8)
2uk P8

where the properties used for the £ — 0 limit are those of the deepest layer or halfspace

and the properties used in the k£ — oo limit are those of the surface layer.

Since the limits given in equations (2.5.5) through (2.5.8) represent extreme values it was
necessary to ensure that an appropriate range of k was used to generate the list of values
that represent the displacements as a function of . It was found that a suitable range was
from 10° m™ to 107 m™. It was also important to ensure that this range was finely
sampled since a linear interpolation method was used. For the range given above it was
determined that a suitable number of divisions would be 10* with a logarithmic sampling
interval. however, testing showed that 250 divisions were sufficient. It was also found
that the accuracy of the resuits was more dependent on the range of £ values rather than
the size of the sampling interval. The numerical results from the Matlab programs could
then be transformed into the space domain so that comparisons could be made with the

analytical results.
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2.5b: Solution from the Finite Element Method

Another method used to generate the displacements that result from the loading of the
Earth was to use the finite element modeling package called ABAQUS. This modeling
program is fairly simple to use and it is easy to create complicated Earth models. The
advantage of using this package is its ease in studying the influence of lateral variations,
non-linear Earth rheology and time dependent creep, none of which can be easily
incorporated into any of the other modeling methods discussed so far. ABAQUS requires
only the description of the dimensions of the subsurface as well as the material properties
and it oroduces the displacements that result from any type of loading. One important
detail in modeling with ABAQUS is to ensure that any particular layer is defined by an

appropriate number of elements so that accurate displacements are generated.

Since numerous methods were used to generate the solutions. a series of checks was
carried out. The first step was to calculate the analvtical solutions in the (k.s) domain.
the (£.r) domain and the (x.r) domain for the most simple models. the channel and
halfspace models. The theoretical solution in the (%.5) domain was also determined for
the model of an elastic lithosphere over a fluid. These theoretical solutions were
compared with the solutions generated by the Matlab and FORTRAN programs. These
solutions were also compared with the results of the finite element modeling program
ABAQUS. Once it was determined that the Matlab and FORTRAN programs were
reliable some more complicated models were considered. The displacements produced by
these complicated models were compared with ABAQUS output to ensure the validity of
the finite element modeling program. All of the above comparisons will be discussed in

more detail in Chapters 3. 4 and 3.
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In this chapter all of the basic tools used in the analyses discussed in all subsequent
chapters has been reviewed. The next chapter will apply these methods to the halfspace
model. Chapters 4 and 5 will use these methods in the analysis of more complicated

models.
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Chapter 3: Incompressible, Self-gravitating, Uniform Earth: Analytical and
Numerical Solutions

This chapter will present the analytical solution for the loading of the halfspace model.
This chapter will aiso serve to iliustrate the steps taken in the anaiysis of the different
models to be discussed in subsequent chapters. In the first section the solution in the
(k.s) domain will be given. It will be compared with the numerical solution generated by
the Matlab programs. In section 3.2 the analytical solution for the relaxation times will be
derived and this will also be compared with the Matlab output. Similarly in section 3.3
the excitation strengths will be discussed. Finally in section 3.4 the solution in space and
time will be reviewed and the results will be compared with the results from the Matlab
and FORTRAN programs and the finite element modeling package ABAQUS. The full
derivation of all of the analytical solutions for the halfspace model can be found in

Appendix D.

3.1: The Analytical Solution in the (A,s) Domain

This section will begin with a brief review of the method used to determine the solution in
the (4.5) domain as discussed in section 2.3a. This solution is compared with the output
of the Matlab programs to test the validity of the numerical calculations. The differential

equations that describe the loading of a halfspace can be written as

.Y =AY (3.1.1)
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U 0 -k -}; 0
_ W k 0 0 O
where Y = and A = . )
T. quk- pgk 0 -k
T. pgk 0 &k O

These differential equations can be solved using the eigenvalues and eigenvectors of the

matrix A. In this way the general solution is found to be

Ly | | [ k-1
_ 1 -1 v 6 k-'
Y= A6t N, ¥ BT S5, |TCe” - + De™™ -
2Lk | L =2k J 2ulkz+1) 2u(1-k3)
2uk + pg ) 24k - pg ) (2pk + pg)z (2uk - pg)z)
(3.1.2)

where s u(s) and U, W, T,,. and T, are in the Laplace transform

and wavenumber domains.

This is the general solution given by equation (2.3.41). There are four constants in this
solution. A. B. C. and D which are determined by applyving the appropriate boundarvy
conditions. The boundary conditions for the upper boundary. = = 0, are that the shear
stress. T,.. is zero and the vertical normal stress, T.., is a constant equal to the weight of
the load. The lower boundary is defined as negative infinity and the condition that must
be satisfied at this boundary is that the solution must remain finite. Applying all the

boundary conditions, the four constants are determined to have values of



_ (o)
2u(s)k + pg
B=0
(3.1.3)
c=—2
2u(s)k + pg
D=0

where - 0 = p,gh is the constant weight of the load with density p, and height 4.

Therefore the solution for the halfspace model under a constant load is

kz }
oe™ ( kz-1

2u(s)k + pg[ 2u(s)kz J (.14
(k= - 1)(2u(s)k + pg)

Y(k.u(s)) =

Therefore the analyvtical solution for the horizontal displacement resulting from the

loading of a halfspace is

oe' k=

Y (k. u(s)) = Ulk, p(s)) = ——— (3.1.5)
(b s) = Uk m09) = 2
and the vertical displacement is
- oe* (kz~1)
Y. (k, = W(k. = —_— 3.1.6
(k. s) = Wk (s) = 3= G.16)

As is evident by this solution the horizontal displacement has a value of zero at the

surface.
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The two graphs that follow show the correlation between the Matlab output for the
horizontal and vertical displacement and the analytical solution given above. Since the
horizontal displacement has a value of zero at the surface, the solutions are investigated at
a depth of 100 km. Figures 3.1.1 and 3.1.2 show that the two different methods vield the

same results indicating that the numerical calculations are accurate.

The values used for the material properties of the halfspace are given in Table 2. They

were chosen to represent the average values for the Earth.

Table 2: The Material Properties of the Halfspace Model

density p=35517kgm?
gravitational acceleration g=7365ms"
viscosity v=1x10"Pas
shear modulus u=1452x10" Nm
wavenumber k=1x10°m"

depth c=-1x10°m

load o=1x10"Pa

Recall that the solutions have been normalized so that the displacements are

dimensionless and the s values are in terms of per thousand vears.
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domain that results from the loading of a halfspace



3.2: Relaxation Diagram

To plot the relaxation diagram. it is necessary to determine the determinant function as a
function of s. This determinant function is obtained from the matrix. M. used to
determine the constants from the boundary conditions at the surface. as shown in

equation (2.4.2). For the halfspace model this matrix is

[ 2 k 2u(s)
M=|  2HG) His) G2.1)
2u(s)k+pg 0

Theretfore by solving for detM = 0 and substituting the formula for u(s) as given in

equation (2.2.6) the following equation is obtained.

5 : s
) -us[l,us/\ + ps(s + L)] 0 -
(S+%)'

[9¥)

[£S]

9
~—

This is the determinant function for the halfspace model. There are three possible
solutions. Thevare (a)s=0

(b)s - LUV — o0

(c) 2usk +pg(s+%—) =0

The first two solutions are not particularly informative and it is the third solution that
will be analyzed. This gives the values of s for which the determinant function is zero.

Note that these values are always negative.
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N___ Pg%
s(k) = ke e (

(V'S ]
to
(U5}
~

The relaxation times are the inverses of these values. 7 =

-s{k)

Also note that there is a singularity in the determinant function at s = -g/v. This can
make it difficult to isolate the zeros of the function when it is being analyzed graphically.
especially as the number of layers increases. As a remedy. the entire function is
multiplied by a factor of X,-,"(s = u, v,)°. where there are n distinct layers within the

model. This is referred to as the normalized determinant function (Wu and Ni, 1996).

The material parameters are the same as those used in the previous section. given in Table
2. except that these figures correspond to the solution at the surface. Figure 3.2.1 shows
a graph of the determinant function for a halfspace as a function of 5. [t can be seen that
the values for which this function is zero correspond to the solutions given by equation
(3.2.3). It should also be noted that both the analytical and the numerical Matlab
solutions are given. Itis difficult to analyze this graph due to the singularity which can be
clearly identified at the right hand side of the graph. Figure 3.2.2 shows the determinant

function that has been multiplied by the factor (s + &'v)* to remove the singularity.

Notice how it is much easier it is to identify the zeros. This graph also shows that the

analytical and numerical results agree well.



500

.500

-1000

determinant

-15004 \
~—— detts)-numencal L/

x detts-analyucal

-2000 : —_
a0l ol I

-s (Lkyr)

Figure 3.2.1: The analytical determinant function of the halfspace model as a function of s

compared with the numerical results from Matlab

0s X

- Q
2 \ x
£ ™
=2 .
=2 b
=i
05
norm deus)-numencal
e norm dexs)-analyocal
— deus)-pumerical
N x  detis)-analvtical |
hd T
00l Q.1 1

-s (1'kyr)
Figure 3.2.2: A comparison between the normalized and nonnormalized determinant

functions of the halfspace model with numerical and analytical results



56

The values of s for which the determinant function are zero vary with wavenumber. £. A
plot of these s values as a function of  is called the relaxation diagram. The relaxation
diagram shows how the relaxation times (inverse of s) vary with wavenumber, £. In
general the relaxation diagram for any particular model will have different modes of
relaxation. The number of modes usually corresponds to the number of discontinuities in
density and Maxwell times (Wu and Ni. 1996). The M modes refer to the buoyancy
modes which arise from density contrasts. Relaxation diagrams can be used for diagnostic
purposes through the analysis of the shape for large and small wavenumbers and the
number of modes to determine the impact of variations in the material parameters on the
response of a particular earth model to loading. The relaxation diagram for the halfspace
model is shown in Figure 3.2.3. In this case there is only a single mode of relaxation due
to the density contrast at the surface. This is called the MO mode. This curve
approaches a constant value for small values of &£ and becomes varies linearly for large
values of . The shape of this curve and the relaxation times associated with specific
wavenumbers agrees well with the relaxation diagram given by Wu and Ni (1996. Figure 2)
even though they use a spherical earth model. [t should be noted that the angular order n
for a spherical earth is related to the normalized wavenumber. 4. by the following

relationship A= n - 1.2,

The next series of figures demonstrates the effect of changing various earth properties on
the relaxation diagram. In all of the following graphs the reference model is represented
by grev points and all other models are represented by black points. Figure 3.2.4 shows
the relaxation diagram for the original model (grey) and the model with an increase in the
viscosity of the halfspace (black) from 1 x 10*! Pasto 1 x 10 Pas. There is still only
one mode of relaxation and the shape of the curve remains the same though it is displaced

towards longer relaxation times; recall that the relaxation times are equal to the inverse of



the s values. This implies that an earth model with a higher viscosity will relax more
slowly when subjected to a load. A decrease in density from 5517 kg m™3 to 3380 kg m”
had little effect other than to increase the relaxation times slightly as demonstrated in
Figure 3.2.5. This is due to that fact the density contrast at the surface is still relatively
arge. A model with a lower density wili also relax more siowly. A change in the shear
modulus within the halfspace. as shown in Figure 3.2.6. results in a slight increase in the
relaxation times at small wavenumbers only. As the value of the shear modulus within

the halfspace decreases from 1.45 x 10" N m~ 10 0.67 x 10'' N m™ only the small

wavenumbers or large wavelengths are affected. The relaxation times for the small

wavelength or shallow areas of the model are unaffected by the change in shear modulus.
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3.3: Excitation Strength Diagrams

Another method of comparing different models is to analyze differences in their excitation
strengths. The excitation strength as defined after equation (2.4.16) and represents the
viscous time independent component of the displacement. It is helpful in investigating
the importance of properties at various depths throughout the model. This is done by
making a plot of the excitation strength as a function of k. This is called an excitation
strength diagram. As discussed in section 2.3. the excitation strength is defined as the

R(3)

Sn’

residue multiplied by the relaxation time. . In general residues are determined by

equation (2.4.13).

RO= Taameo]

where s, are the solutions to detM = 0.

In the case of the halfspace model the vector Q" is found to be

kz
s _ opge” | ka-1 < -
- 3.1
Q | —pgks (3.3.1)
0

and the slope of the determinant function is
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—2u°v| pglvs + ) + 4 uvk
9 oy pg = 2H Vo8 (s uz puks]
ds (vs + 1)

which is evaluated at. from equation (3.2.3),

Pg 5

s(k)= ————2#k s

For the halfspace there is a single residue and it is given by the following analytical

equation.

kz \]
_ 2outket | kz-1|
R=—Oke (3.3.3)
(2uk + pg)” v| —pghS
0
Theretore the excitation strengths are
kz
R Jouke® | kz-1
R _comke (334)
s (2uk+ pg)pg| —pgk:

0

The excitation strength for the horizontal displacement is zero at the surface. The
following figures show the excitation strength diagrams for the vertical displacement at
the surface. i.e. 2= 0. These diagrams plot the excitation strength as a function of the
wavenumber. k. Figure 3.3.1 is the excitation strength of the halfspace model with

material parameters as defined in Table 2 given in section 3.1. As with the relaxation
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diagram there is a single mode. A constant value is approached for large values of k and
for small values of & the excitation strength varies linearly. The proceeding figures
demonstrate the effect of changing the properties within the halfspace on the excitation
strength. These models are the same as those discussed with respect to the relaxation
diagrams in section 3.2. Figures 3.3.2 through 3.3.4 contain both a reference curve, as
given in Figure 3.3.1, identified by grey points and a curve identified by black points for a
model with a variation from the reference. The excitation strength remains constant
despite a change in the viscosity. (Figure 3.3.2). so although viscosity has a significant
effect on the relaxation time (Figure 3.2.4) it has no effect on the excitation strength. as
expected from an examination of equation (3.3.4). However the excitation strength
increases significantly with decreasing density. as shown in Figure 3.3.3. while density
has little effect on the relaxation time (Figure 3.2.5). A decrease in the shear modulus
results in a decrease in the excitation strength for small values of £ only. as shown in
Figure 3.3.4. For both the relaxation time (Figure 3.2.6) and the excitation strength. a

change in the shear modulus affects only the long wavelength (small wavenumber)

response.



00001

residue/s

1E-N$

1000

Figure 3.3.1: The vertical displacement excitation strength for the halfspace model
(reference model)

00001

residuc/s

x MO

° MO-reference
iEDS

1000

Figure 3.3.2: The vertical displacement excitation strength for a halfspace with a

viscosity of 1 x 10** Pa s (black) and the reference model (grey)

63



64

00001

residuc/s

x MO

° MO-reference

tEw¢

Figure 3.3.3: The vertical displacement excitation strength for a halfspace with a density

of 3380 kg m™ (black) and the reference model (grey)

0 vout

residuc/s

x Mo

° MO-reference

HE-0% —
! o 100 1000

Figure 3.3.4: The vertical displacement excitation strength for a halfspace with a density
of 3380 kg m™ and a shear modulus of 0.67 x 10'' N m™ (black) and the reference model

(grey)



3.4: Space Domain Solution

This section will begin with a description of the analytical time domain solution obtained
using the normal mode method. The space domain solution is difficult to determine
analytically. so the analytical time domain solutions are entered into the FORTRAN
program designed to perform the inverse Hankel transform to obtain the space domain
solution. This solution will be compared with the solution obtained by importing the
numerical Matlab data into the FORTRAN program. Finally both of these solutions will
be compared with the solution obtained from the finite element modeling package.

ABAQLUS.

Using the normal mode method as described in section 2.+, the analytical time domain

solution for the halfspace model with a disc load of magnitude -c' is

kz ) k-
v e ka1 2ouke ™ kz-1 o
Y(k.t) = ——— ) N dd sk S I
2pk + pgt 2HKZ (2uk + pg)og| —Pgks
(k= 1)(2uk + pg) ) 0

The full derivation of this solution can be found in Appendix D.

Before the above equations for the time domain solution of the vertical and horizontal
displacements were incorporated into the FORTRAN program to obtain the space
domain solution the FORTRAN program was tested. The inverse Hankel transform was
performed on some simple functions and the output was compared with the results given

in a paper by Chave (1983).
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The vertical displacement that results from the loading of a halfspace was examined using
three different methods. The first was to substitute the analytical equation for the
displacement in the (4 ) domain into the FORTRAN program. The second was to
import the numerical results from the Matlab program into the FORTRAN program. The
third was to use the finite element modeling package ABAQUS. A graph of the three
results overlain can be seen in Figure 3.4.1. The data obtained from ABAQUS is much
more dense which is why it is plotted as a curve rather than independent points. The
results compare favorably. This gives confidence in ABAQUS as well as the FORTRAN
program. Unfortunately the value of the horizontal displacement is zero at the surface so

it was not possible to test the validity of the numerical methods in its calculation.

The vertical displacement that results from the loading of halfspace. Figure 3.4.1. has
several distinct properties. The model parameters are given in Table 2. given in section
3.1. and the ice load has a radius of 2000 km. indicated by the arrow. and a height of 1 km.
There is an initial elastic displacement followed by viscous relaxation at one. five and ten
thousand vears after the emplacement of the load. After a period of five thousand years.
the maximum displacement has been obtained. There is also a peripheral bulge that
develops by ten thousand vears after the emplacement of the load. A peripheral bulge is
defined as an area in the displacement curve that experiences uplift rather than
submergence after the emplacement of the load. The largest gradient in the displacement
curve is located at the edge of the load. The displacement quickly approaches a value of
zero away from the load. Figure 3.4.2 shows the effect on the vertical displacement as
the viscosity of the halfspace increases from 1 x 10*! Pa's to 1x 10* Pas. The initial
elastic displacement remains unchanged. This agrees with the analytical solution which

shows that the elastic solution is independent of viscosity. However. the magnitude of
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the viscous motion has decreased significantly so that the full extent of the deformation

will take longer than ten thousand years to be realized. The final model to be considered

in this section has a smaller load. In Figure 3.4.3 the load has a radius of 1000 km instead

of 2000 km. In general the shape of the curves remains the same. The maximum

displacement 1s unchanged and the steepest slope is still at the edge of the load. A

peripheral bulge is still present in the curve for ten thousand years after the load is

emplaced.
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Chapter 4: Analysis of More Complicated Earth Models in the (k,5s) Domain

This chapter will discuss the relaxation and excitation strength diagrams of some more
complicated earth models. The first to be considered is the channel model where there is a
finite amount of material to compensate for the load. The next to be considered is the
model with an elastic lithosphere. The analytical solution for the loading of an elastic
lithosphere over a fluid is presented and then the relaxation and excitation strength
diagrams for a lithosphere over a viscoelastic halfspace are analyzed. In the final section
the response of models with two or three distinct lavers will be discussed. By studving
these wide ranging models the impact of different parameters on the relaxation times and
excitation strengths can be determined. This will facilitate the interpretation of the space

and time domain solutions.

4.1: The Channel Model

A channel is defined as a layer with a fixed lower boundary such that all of the motion
required to compensate for a load must occur within the channel. The viscoelastic channel
extends from the surface to a depth. -H. where the boundary is absolutely rigid. Since the
channel model is a fairly simple model the analytical solution was derived and a further
check of the accuracy of the numerical methods was carried out. A channel is a very
unique model because there is no underlying viscoelastic halfspace hence there is a finite
amount of viscoelastic material available for compensation. If numerical results be could
accurately obtained for this model then further results could be examined with greater

confidence.
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4.1a The Analytical Solution

The standard set of differential equations is solved with boundary conditions appropriate
to a channel (equation (2.3.35)). By definition a channel has a rigid lower boundary. The
conditions at the surface boundary remain the samc. that is, the shear stress is zero and
the normal stress is constant. However. in this case there is a lower boundary at some
finite depth which is immobile. The weight of the load must be completely compensated
by the limited material within the channel so strong horizontal flow is experienced. This
is in contrast to the halfspace model where there is an infinite amount of material for
compensation and dominantly vertical flow. For the channel model the condition at the
lower surface is that it is rigid and no motion occurs below this depth; horizontal and

vertical displacements are zero.

Following the method outlined in sections 2.5 and 2.4 the (£.¢) domain analytical solutions
for the displacements at the surface of the channel model with a Heaviside load were
determined using a mathematical manipulation program called Mathview (Hoffner. 1997).

The details of this derivation are given in Appendix E. The results are

2.2 Y441
Ulk.1) = L [H"”‘}' (1-e )} “.1.1)
(2uky + pg)(cosh Hk sinh Hk — Hk) og
3 1len
Wikt) = - 1+ 2L (e (4.1.2)
(2uky + pg) g
where @ = ogit _ cosh® Hk + H*k?

—————.and ¥y = - ,
v(2uky + pg) cosh Hk sinh Hk — Hk

and A is the thickness of the channel.



It can be seen that this solution is very similar to the solution for the halfspace model
given by equation (3.4.1). especially the vertical displacement. Therefore it can be seen

that the relaxation times are given by the inverse of .

tlegq=—PSH (4.1.3)

v(2uky + pg)

the horizontal displacement excitation strengths are given by

Ugs(k) = oH & lr?.,uk}'-l (+.1.4)
(2pky + pg)(cosh Hksinh Hk — Hk)| pg |

-

and the vertical displacement excitation strengths are given by

o 2uky -
W, (k)=- 4.1.5
es(4) (2uky +pg)[ pg } 1)

These are also similar to the resuits obtained for the halfspace model as given by
equations (3.2.3) and (3.3.4). For all of the figures in this section the reference channel

model is given by the material properties given in the table below (Table 3).



Table 3: The Material Properties of the Channel Model

density
viscosity
shear modulus
radius of load

load

halfspace, below 670 km

-

p=5517kgm”
2=7.365ms>
v=1x10"Pas

u=1452x 10" Nm?

channel. above 670 km

=5517kg m?




4.1b The Relaxation and Excitation Strength Diagrams

The relaxation diagram. the horizontal displacement excitation strength diagram and the
vertical displacement excitation strength diagram for the channel model can be found in
Figures 4.1.1. 4.1.2, and 4.1.3 respectively. The relaxation diagram for the channel model,
as shown in Figure 4.1.1. is very similar to that of the halfspace model (Figure 3.2.3).
except that while the relaxation times approach a constant value at small & for the
halfspace model. for the channel model the relaxation times increase linearly with k in the
log-log plot. Therefore a minimum relaxation time is obtained at a specific value of £.
This value of & corresponds to the depth of the base of the channel. For large
wavenumber (small wavelength) the shallow part of the model is sampled and the
response is that of the halfspace model. For smaller wavenumbers (larger wavelengths)
deeper parts of the model are sampled and the rigid boundary below which no motion
occur is encountered. Once this occurs the relaxation times increase. The excitation
strength for the horizontal displacement goes to zero for large values of & and increases
linearly for small values in the log-log plot. as demonstrated by Figure 4.1.2. Since there
1s zero horizontal excitation strength for the halfspace model it is expected that at large
wavenumbers (small wavelengths) for the channel model the excitation strength would
also be zero. which is observed. The vertical displacement excitation strength diagram is
shown in Figure 4.1.3. It is also similar to that of the halfspace model (Figure 3.3.1) in
that it has a constant value for large values of &, however, the vertical excitation strength
for the channel model is also constant for small values of 4. In fact it is aimost
independent of &. The only deviation from this constant value is experienced at k values
which correspond to the depth of the channel. Note that both the horizontal and vertical

displacement excitation strengths are positive. Since the excitation strength represents the



viscous portion of the time domain solution, this implies that the subsequent viscous

motion will be in the same direction as the initial elastic displacement.
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Figure 4.1.1: The relaxation diagram of the channel model (reference model)
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Now the effect of the material properties of the channel are studied. In all of the
remaining figures in this section include two curves. The curve represented by grey
points corresponds to the reference channel curve while the black points correspond to
the curve of the new model being considered. Figure 4.1.4 shows the effect of decreasing
the viscosity within the channel. As seen with the halfspace model the shape of the curve
of the relaxation times with respect to k remains constant, however, the relaxation times

uniformly decrease as the viscosity decreases from 1 x 10?' Pasto 1 x 10'? Pas. Asthe

density of the channel decreases from 5517 kg m™ to 3380 kg m™. as shown in Figure
4.1.5. aresponse similar to that of an increase in the viscosity is observed. The values for
relaxation times increase for all wavenumbers. &. No change is noted for a decrease in the
shear modulus of the channel (Figure 4.1.6). The final diagram in this section. Figure
4.1.7. shows the effect of decreasing the thickness of the channel from 670 km to 200 km.
For small wavenumbers the relaxation times increase and the location of the minimum
relaxation time shitts towards larger values of k. This value of & is related to the depth of

the channel which experiences the slowest relaxation.

The next set of figures shows how these same changes in the material parameters affect
the excitation strengths of the horizontal displacement. Figure 4.1.8 shows that as the
viscosity decreases the horizontal displacement excitation strength remains virtually
unchanged. As the density decreases. as in Figure 4.1.9, the excitation strength increases
slightly. while again no change is observed for a decrease in the shear modulus of the
channel (Figure 4.1.10). As the thickness of the channel decreases not only does the
excitation strength increase, but it remains finite for larger values of k. as shown in Figure

+.1.11.
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The final set of figures in this section considers the excitation strengths of the vertical
displacement. As seen with the horizontal displacement excitation strength (Figure 4.1.8)
a change in viscosity has no effect on the vertical displacement excitation strength (Figure
4.1.12). A decrease in the density significantly increases the excitation strength of the
vertical displacement. as seen in Figure 4.1.13. As opposed to the horizontal
displacement excitation strength the excitation strength of the vertical displacement
changes with decreasing shear modulus as iilustrated in Figure 4.1.14. The minimum
excitation strength decreases with decreasing shear modulus though the limits at large and
small £ remain constant. Figure 4.1.135 shows that a decrease in the thickness of the
channel results in a wavenumber independent excitation strength curve. The minimum
excitation strength is obtained at a larger wavenumber which corresponds to the decrease

in the channel thickness.

Changes in viscosity have a significant effect on the relaxation times but no effect on the
horizontal and vertical displacement excitation strengths. This agrees with the expected
results based on the analytical solutions for the relaxation times and excitation strengths.
This is also the same response as seen with the halfspace model. A change in density
affects all of the diagrams. while a change in the shear modulus affects only the vertical
displacement excitation strength. A change in the thickness of the channel affects the
response at small wavenumbers (large wavelengths) only. Overall, the channel thickness
is the most important quality in determining the relaxation times and horizontal
displacement excitation strength. The vertical displacement excitation strength is affected

most strongly by changes in the density of the channel.
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Figure 4.1.6: The relaxation diagram for a channel with a shear modulus of 0.67 x 10'' N

m (black) and the reference model (grey)

U1

Vvl 4

-5 (Vhyr)

0001 1
00001 +
co
CO-reference
1E-0% r v

Figure 4.1.7: The relaxation diagram for a 200 km thick channel (black) and the

reference model (grey)

1000



80

00l

0001

00001 4

LE-0$

residuc/s

1E-06 1
1E<7

[
L]
< x
18
1E-u8 . » co

° CO-reference

1E-09

1 1 100 1000

tEc

Figure 4.1.8: The horizontal displacement excitation strength for a channel with a

viscosity of 1 x 10" Pa's (black) and the reference model (grey)

001
0001 4
a0001 4
z 1E-04
=2
5 g0 °¢§%‘
%
1E-0~ 4 %(‘
x
x
*x
1E-08 1 % < o
° CO-reference
1E9 v
i 10 100 1000

Figure 4.1.9: The horizontal displacement excitation strength for a channel with a density

3380 kg m™ (black) and the reference model (grey)



001

0001 4

0.0001 4

1E-05 4

residue/s

1E-06 -

1E-07 4

1E-08 <

1E-09

%

x

k-]

(q4]

CQ-reference

100

1000

81

Figure 4.1.10: The horizontal displacement excitation strength for a channel with a shear
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4.2: The Model of an Elastic Lithosphere Overlying a Halfspace

This section will give the analytical solution for a model of a lithosphere over a fluid and
discuss the relaxation diagrams and excitation strength diagrams for the model of a
lithosphere over a viscoelastic halfspace. For this section the term lithosphere model
refers to the model of an elastic lithosphere overlying a viscoelastic halfspace. There have
been numerous papers written concerning multi-layered models and the results of this

thesis will be compared with some of these.

4.2a: Analytical Solution for the Model of a Lithosphere Overlying a Fluid

Halfspace

The model of an elastic lithosphere overlving a fluid halfspace. shown in Figure 4.2.1. is a
fairly simple model and the analytical solution in the (&.5) domain was obtained using the
svmbolic manipulation program. Mathview. The derivation of this solution can be found

in Appendix F.

2000 km

< ?

.

<’ AFATAVAT A JA JA PRI

NN AR AR NN NN
~

150 ka ,:I;I‘,‘,»‘l1thosphere»»»i*i‘:‘ﬁ"""

AJAY 3734
>

~ NN

Figure 4.2.1: A reference model for a lithosphere overlying a fluid



The analytical solution is derived in a manner similar to that of the channel model except
in this case the conditions at the lower boundary are that the shear stress is zero and the

vertical normal stress is equal to the buoyancy, -pgl where p is the density of the

halfspace. The density of the halfspace is used rather than the density difference because
the elastic boundary condition. not the fluid one, is being applied. When the boundary
conditions for the lithosphere overlying a fluid are appiied to the solution of the

differential equations the analytical solution is found to be

40Hk(Jpg — 2uHk )

Ulk.u)=- — s T
(k) —Suk(p+5p)gA+16y'H'k‘+(4p'k'+p0pg')3

o(2ukA + SpgB)
—8uk(p +8p)gA + 16  Hk* + 447k + pépgl)B

W(k.u)=-

where A = cosh Hksinh Hk + Hk .
B =1-cosh® Hk.
and A is the thickness of the lithosphere.

Note that all of the above material parameters apply to the properties within the
lithosphere and that dp represents the density difference between the fluid halfspace and

the lithosphere if one exists. Since the lithosphere is elastic, the shear modulus in the

above equations is independent of s.

The above analytical result is compared with the numerical Matlab output. The

comparison between these two methods for both the vertical and horizontal
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displacements can be found in Figures 4.2.2 and 4.2.3. The values used as the material
parameters for these figures are given in Table 4. The two different methods give results
which agree very well. Note how both the horizontal and vertical displacements tend to
zero for large & values which means that the small wavelength response is damped by the
lithosphere. Also note that the vertical displacement reaches a constant value for small &
whereas the horizontal displacement tends to negative infinity. This demonstrates the
singular nature of the horizontal displacement as & goes to zero. Note that in these cases
the thickness of the lithosphere is 100 km and that there is a density contrast between the

halfspace and the lithosphere.

Table 4: The Material Properties of the Model of a Lithosphere Over a Fluid

halfspace. below 100 km | lithosphere, above 100 km
density p=3511kgm? p=4314kgm’
gravitational acceleration | g=9.7109 m s~ €=9.7109ms"
viscosity v=0 UV > o
shear modulus u=0 £=3.15% 10N m?
radius of load R=2x10°m
load o=1x10"Pa




50

rd
~
s
-50 A |

displacemient {m)
\\

ks bl - analyns

=180

/ L — uth)- matlab
i
i

1E-0° 1E-06 1E-05 1E-04 1E-03
kKol m

Figure 4.2.2: A comparison between the analytical and numerical solutions for the

horizontal displacement in the & domain of the model of a lithosphere overlying a fluid

+80

106 /
-150
wik) - matlab
1 _ k4 wik) - anaivucal

IE-0" 1E-00 1E-05 1E-04 1E-03
K (l'm)

displacement (m)

Figure 4.2.3: A comparison between the analytical and numerical solutions for the

vertical displacement in the & domain of the model of a lithosphere overlying a fluid



88

4.2b: Relaxation and Excitation Strength Diagrams for the Model of a Lithosphere

Overlying a Viscoelastic Halfspace

Since the previous model includes an elastic layer over a fluid halfspace there is no
viscous relaxation. only an initial elastic response. Note that there is no s dependence in
equations (4.2.1) and (4.2.2). In order to study the viscous relaxation of a model with an
elastic lithosphere the model of an elastic lithosphere over a viscoelastic halfspace was
studied. This is the model referred to as the lithosphere model and it is shown in Figure

4.2.4. The properties of the halfspace and lithosphere are given in Table 5.

150 kml

Figure 4.2.4: The lithosphere model
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Table 5: The Material Properties of the Lithosphere Model

density

gravitationai aceeleration

halfspace, below 150 km

p=35517kg m’

. )

g=736ms

lithosphere. above 150 km
p=5517kgm>

g=7.365ms"

viscosity v=1x10"Pas

shear modulus u=1432x 10" Nm*
radius of load

load o=1x10"Pa

No effects other than the presence of the lithosphere are desired so the model has a
constant density and shear modulus. The solutions for this model are obtained by
applying the lower boundary condition to the halfspace and then using matrix
propagation to arrive at the solution at the surface. All of the following figures were

obtained using the Matlab programs.

The relaxation diagram. Figure 4.2.5. for the lithosphere model is quite distinct. There are
two modes. a buoyancy mode associated with the halfspace, M0, and a lithospheric
mode. LO (Peltier. 1976). The MO mode is due to the density contrast at the surface and
the L0 mode is due to the contrast in elastic properties of the lithosphere. At large values
of k. these modes approach one another and eventually coincide. At this point the
numerical methods used to find the zeros can no longer identify either as a true zero and
this is why there are no values for £> 150. If this relaxation diagram is compared with
that of the halfspace model (Figure 3.2.3) then it is noted that for small wavenumbers the

MO mode has similar values however for larger wavenumbers this mode in the lithosphere
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model experiences a reduction in relaxation times. Also note that the M0 and L0 modes
cross at a wavenumber of k ~ 7, which is the thickness of the lithosphere. This is
characteristic of models which incorporate an elastic lithosphere. Wu and Ni (1996) had
an almost identical form, even though their work was for a spherical earth and the
calculations in this thesis are for a flat earth model. Wolf (1989) aiso anaiyzed the
response of an elastic lithosphere over a halfspace for a flat earth and again the shape of

the curve and the values match extremely well.

The excitation strength of the horizontal displacement of the lithosphere model is shown
in Figure 4.2.6. There appears to be a singularity where the two modes change sign. The
magnitude of the negative excitation strength is larger than the positive. In general the L0
mode approaches zero from the positive vertical axis for large wavenumber and becomes
constant for wavenumbers less than one. The M0 mode approaches zero from the
positive axis for small wavenumber and approaches zero from the negative axis for large
wavenumber. Though the trends of the excitation strength are similar to those shown by
Wu and Ni (1996) for the spherical case the results are very different. This might mean
that the spherical nature of the earth has a significant effect on the excitation strength of

the horizontal displacement.

The excitation strength diagrams for the vertical displacement of the lithosphere model are
also quite distinct since the two modes have the same strength at the wavenumber that
corresponds to the thickness of the lithosphere. For the excitation strength of the vertical
displacement. as shown in Figure 4.2.7, the M0 mode resembles the excitation strength of
the vertical displacement as seen in the halfspace model (Figure 3.3.1) except that the
excitation strength decreases at high values of k. Figure 4.2.7 is similar to the diagrams

given by Wu and Ni (1996) and Wolf (1985). The M0 mode always has the most
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strength but at a particular wavenumber, where the modes cross in the relaxation diagram.
the two modes meet in the excitation strength diagram and the L0 mode has a strength

equal to that of the halfspace mode. Both of the modes tend to zero for larger

wavenumbers.
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Figure 4.2.5: The relaxation diagram for the model of an elastic lithosphere overlying a

viscoelastic halfspace (reference model)
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As with previous models, the material parameters of the lithosphere model are varied so
that the effect on the relaxation and excitation strength diagrams can be determined. All of
these figures include the results for a specific model and the results for the reference
model so that comparisons can be made more easily. Figure 4.2.8 demonstrates the effect
of increasing the halfspace viscosity. As previousiy. the mosi significant effect is an
increase in the relaxation times. A change in the density of the whole earth has little effect
on the relaxation times as demonstrated in Figure 4.2.9. The relaxation times increase for
small wavenumbers only and the values at large £ remain constant. A decrease in the
halfspace shear modulus. Figure 4.2.10. results in an increase in the relaxation times
similar to the effect of increasing the viscosity. however, the wavenumber at which the
two modes cross increases with decreasing shear modulus. A change in the lithospheric
thickness also affects predominantly the LO mode. as shown in Figure 4.2.11. The M0

mode for small wavenumbers remains unchanged as expected since these correspond to

the response at depth.

The next set of figures deals with the horizontal displacement excitation strength. The
excitation strength of the horizontal displacement decreases for the L0 mode and increases
for the MO mode with increasing halfspace viscosity, as demonstrated in Figure 4.2.12.
Changing the density has little effect other than a slight increase in the excitation strengths
at large wavenumbers (Figure 4.2.13). The results of a decrease in the halfspace shear
modulus is given in Figure 4.2.14 and it is evident that there is a significant shift towards
higher wavenumber. Also note the additional sign change in the MO mode at low
wavenumbers. Figure 4.2.15 shows how the curves are shifted towards higher
wavenumbers as the thickness of the lithosphere decreases. This is similar to the change

seen with a decrease in the halfspace shear modulus.
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The final set of figures to be discussed in this section includes the excitation strength
diagrams for the vertical displacement of the lithosphere model. The results are similar to
those of the horizontal displacement. Figure 4.2.16 shows that a change in halfspace
viscosity has little effect on the excitation strength of the MO mode and slightly decreases
the excitation of the L0 mode at small £. but increases it at large k. A decrease in the
density. as shown in Figure 4.2.17, increases the excitation strength of the M0 mode
towards large wavenumbers. This results in increased strength at larger wavenumbers. A
decrease in the shear modulus (Figure 4.2.18) shifts the excitation strengths of both
modes. Figure 4.2.19 shows that an increase in the thickness of the lithosphere shifts the
curves towards larger wavenumbers similar to the effect seen with a increase in shear

modulus.

Unlike the haifspace and channel models a change in viscosity affects not only the
relaxation times. but also the horizontal and vertical displacement excitation strengths. A
change in density has a small impact on the diagrams while a change in the shear modulus
shifts the curves in all of the diagrams. A change in the thickness also shifts the curves in
all three diagrams. For the lithosphere models. the material parameters which have the
greatest impact on the relaxation times and excitation strengths are the thickness of the

lithosphere and the shear modulus of the halfspace.
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4.3: Relaxation Diagrams and Excitation Strength Diagrams for More

Complicated Earth Models

This section will discuss more two and three layer models. The first model to be
considered is a two layer model defined by a single density variation, the second model is
a two layer model defined by a change in the elastic properties, and the final one will be a
three laver model with a low viscosity channel below an elastic lithosphere and over a
viscoelastic halfspace. The primary motivation in analyzing these more complex models
is to determine the various modes that arise in the relaxation and excitation strength
diagrams and how they are affected by variations in the material parameters. These
models are similar to ones studied by Wu and Ni (1996). In general the relaxation
diagrams and excitation strengths of the vertical displacement agree with the ones studied
by Wu and Ni (1996) and the excitation strengths of the horizontal displacements tend

not to agree as well.

4.3a Models with a Single Density Discontinuity

The models that will be discussed in this section involve a single radial density
discontinuity, as shown in Figure 4.3.1. The reference values for the material properties
are given in Table 6. These values are based on those used in the paper by Wu and Ni
(1996) so that comparisons between studies could be made. First the relaxation diagrams
will be discussed, including how the relaxation times are affected by the density contrast

and the depth of contrast, then the excitation strength diagrams will be discussed.
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Figure 4.3.1: The reference model with a single density discontinuity

Table 6: The Material Properties of the Model with a Single Density
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Discontinuity
halfspace. below 670 km | upper laver. above 670
km

density p=6288 kg m” p=3572kgm>
gravitational acceleration | g =7.365 m s™ g=7365ms™
viscosity v=1x10"Pas v=1x10"Pas
shear modulus H=1452x10"Nm? |u=1452x10"Nm>
radius of the load R=2x10°m

load

The relaxation diagram for a two layer model defined by a single density discontinuity is

given in Figure 4.3.2. It is very similar to that of the halfspace model, except that there is

an additional buoyancy mode due to the additional density contrast referred to as M1

(Peltier, 1976 Wu and Ni, 1996). This mode has a longer relaxation time as compared to

the MO mode since the density contrast is smaller than the one at the surface and it occurs



at depth (Wu and Ni, 1996, equation 22). The M0 mode is identical to the one of the
halfspace maodel and the M1 mode resembles the relaxation curve obtained for the channel
model. The shortest relaxation time occurs at a wavenumber which corresponds to the
depth of the contrast, in this case k£ ~ 20. This figure matches well with the one given by
Wu and N1 (1996, Figure 3a) for a similar model using a spherical earth. As the depth at
which the density contrast occurs decreases, i.e. as it moves closer to the surface, the M1
mode is shifted towards longer relaxation times while the MO mode remains relatively
consistent. as shown in Figure 4.3.3. A decrease in the density value in the upper layver
results in an increase in the density contrast between the two layers. This results in a

very slight increase in the relaxation times for both the MO and M1 modes (Figure 4.3.4).

The excitation strength of the horizontal displacement shows that the M0 mode has a
negative excitation strength while the M1 mode has a positive excitation strength. as
demonstrated by Figure 4.3.5. For small wavenumbers the M1 mode is stronger and at
larger wavenumbers both modes tend towards zero. This figure is quite different from
Figure 5c presented by Wu and Ni (1996). This could be due to the spherical nature of
the model that they used. As the level of the discontinuity moves closer to the surface
(Figure 4.3.6) the excitation strengths of both modes persist to larger wavenumbers
before decaying rapidly to zero. as expected since the model can be sampled at a shorter
wavelength (larger wavenumber) to distinguish the two independent layers. The strength
of the M1 mode increases while the M0 mode decreases. The excitation strength of the
M1 mode increases while that of the MO mode decreases. Increasing the density contrast
slightly decreases the excitation strength of both modes for larger wavenumbers only, as

shown in Figure 4.3.7.
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In Figures 4.3.8 to 4.3.10, the effect of this density discontinuity on the excitation
strength of the vertical displacement can be seen. Figure 4.3.8 agrees well with a similar
figure given in the paper by Wu and Ni (1996). For very small wavenumbers the M1
mode dominates, but for most of the relevant wavenumbers the MO mode dominates, in
fact the M1 mode quickiy decays to zero for iarge wavenumbers. As the thickness of the
upper layer decreases (Figure 4.3.9) the M1 mode extends to larger wavenumbers before
decaying. This is also similar to the effect noted by Wu and Ni (1996). Figure 4.3.10
shows that for an increase in the density contrast at the discontinuity the excitation

strength of the M1 mode increases slightly for all wavenumbers.

Since MO is due to a density contrast at the surface and the M1 mode is due to a density
contrast at depth. the MO mode dominates the short wavelength (large &) and the M1
mode dominates at greater depth (small k). The location of the shortest relaxation time in
the M1 mode corresponds to the depth of the density discontinuity. The depth of the
contrast is more important than the magnitude of the contrast in terms of the effect on the

relaxation times and the excitation strengths.
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an upper layer density of 3380 kg m™ and the reference model
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4.3b: Models with a Single Shear Modulus Discontinuity

The section will discuss the relaxation and the excitation strength diagrams for a model
where there is a single radial discontinuity in the shear modulus. The reference model is
shown in Figure 4.3.11. The detault values for the material parameters are given in the

Table 7 and they are based on the values used by Wu and Ni (1996).

2000 km

670 km

Figure 4.3.11: The reference model with a single shear modulus discontinuity

Table 7: The Material Properties of the Model with a Single Shear Modulus

Discontinuity
halfspace. below 670 km | upper laver. above 670
km
density p=35517kgm? p=5517 kg m?

gravitational acceleration

viscosity
shear modulus
radius of load

load

g=7.365ms>
v=1x10"Pas

u=17147x 10" Nm?

g=7365ms>
v=1x10*Pas
u=0.8281 x 10" N m™
R=2x10°m

oc=1x10"Pa
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The relaxation diagram has three modes of relaxation. The M0 mode is due to the density
contrast at the surface and the other two are due to the single discontinuity of the

Maxwell time. w/n, labeled the T1 and T2 modes (Peltier, 1976; Wu and Peltier. 1982; Wu

and Ni. 1996). see Figure 4.3.12. The T modes are the viscoelastic or transition modes and
they arise from contrasts in the elastic properties (Peltier, 1976). The relaxation times of
these transition modes are found to coalesce for large and small wavenumbers such that
they are indistinguishable. Again this agrees very well with Figure 8a given by Wu and Ni
(1996). The result of a decrease in the shear modulus of the upper layer. as shown in
Figure 4.3.13. is to increase the relaxation times of the transition modes. T1 and T2. As
the depth of the discontinuity moves closer to the surface. as in Figure 4.3.14. and the

transition modes are shifted towards larger wavenumbers.

The excitation strength of the horizontal displacement of the model with a discontinuity
in the shear modulus is similar to that of the model with a single density discontinuity.
which can be seen in a comparison of Figures 4.3.5 and 4.3.15. The M0 mode is always
negative as is the T1 mode and the T2 mode is always positive. All ot these modes have
excitation strengths which tend towards zero for large wavenumbers. For all
wavenumbers the MO mode dominates. A decrease in the shear modulus of the upper
layer increases the excitation strength of all of the modes, as shown in Figure 4.3.16. since

the contrast in u is increased. Figure 4.3.17 shows that as the level of the discontinuity

moves closer to the surface the excitation strengths decrease and extend to larger

wavenumbers before decaying to zero.

Figures 4.3.18, 4.3.19, and 4.3.20 show the excitation strength of the vertical

displacement for the model with a single discontinuity in the shear modulus. The M0
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mode is relatively independent of the wavenumber and the transition modes decay rapidly
to zero for large wavenumbers. A decrease in the shear modulus of the upper layer
increases the excitation strength of the transition modes (Figure 4.3.19) whereas a
decrease in the depth of the discontinuity shifts the transition modes to larger
wavenumbers, as shown in Figure 4.3.20. These results are similar to the effects noted
for the excitation strength of the horizontal displacement. These figures agree very well

with the results of the Wu and Ni (1996).

Therefore a discontinuity caused by a change in the shear modulus adds two additional
modes of relaxation. The relaxation times of these modes are dependent not only on the
magnitude of the contrast between the shear moduli of the two layers. but also on the
depth at which this discontinuity occurs. As the contrast increases, the relaxation times
decrease and as the depth of the discontinuity approaches the surface. the relaxation times
are shifted towards shorter wavelengths (larger k). The excitation strengths are more

sensitive to the depth of the discontinuity.
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shear modulus discontinuity (reference model)
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4.3¢c Models with a Low Viscosity Asthenosphere

This 1s the only three layer model considered. The first layer is an elastic lithosphere and
this is followed by a low viscosity channel and the bottom layer is a viscoelastic
halfspace. The reference model is shown in Figure 4.3.21. The parameters used in this

model are given in Table 8.
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Figure 4.3.21: The reference model for a model with a low viscosity asthenosphere

Table 8: The Material Properties of the Model with a Low Viscosity Layer

halfspace. below 200 | low viscosity laver, lithosphere. above

km from 200to 150 km | 150km
density p=35517kgm’ p=35517kgm’? p=5517kgm’
gravitational | g=7.365ms"> g=7365ms"> g=7.365ms>
acceleration
viscosity n=1x10*"Pas n=1x10"Pas n— oo

shear modulus | u=145x 10" Nm? | u=145x10"Nm? | u=145x 10" Nm>
radius of load R=2x10°m

load c=1x10"Pa
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Based on the knowledge that every density discontinuity leads to one additional mode of
relaxation and every discontinuity in the elastic properties leads to two additional modes,
except for the lithosphere which leads to only one, four modes of relaxation are expected
tor this model; the halfspace mode. MO, a lithospheric mode, L0, and two transition
modes corresponding to the change in the elastic properties of a layer, T1 and T2. These
are demonstrated in the relaxation diagram given in Figure 4.3.22. The presence of the
additional low viscosity layer reduces the relaxation times of the lithospheric and
halfspace modes. as expected. due to the low viscosity of this layer. In terms of the
excitation strength of the horizontal displacement for this model. as shown in Figure
4.3.23. all four modes appear to have negative excitation strengths while the LO and T1
modes also have positive strengths. The halfspace and lithospheric modes are dominant.
The excitation strength of the vertical displacement is also dominated by the M0 mode.
Figure 4.3.24. The strength of all of the modes decay to zero for large wavenumbers.

This is also seen in the excitation strength diagram for the horizontal displacement.
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Chapter 5: Space Domain Solutions

This chapter will investigate the space domain solutions for the models discussed in
Chapter 4 in addition to models with lateral heterogeneity, nonlinear rheology and time
dependent creep. The shape and magnitudes of both the vertical and horizontal
displacements will be discussed as well as the effect of changing viscosity. density and
thickness where appropriate. In general the material parameters used for the various
models are given in the appropriate sections in Chapter 4. All of the disc loads have a
radius of 2000 km and a height of 1 km with Heaviside loading. Most of the results were
obtained using the finite element method. though in a few cases the solutions using the

spectral method are shown to support the finite element method results from ABAQUS.

5.1: Halfspace and Channel Models

In this section the space domain solutions of the halfspace and channel models will be
discussed. A comparison between the finite element method using the program
ABAQUS and the spectral method will be presented as a check of the numerical results
obtained from ABAQUS. This has been done for the vertical displacement. but not for
the horizontal displacement. Several curves are included on each graph to show the
variation in time of the horizontal and vertical displacements after the load has been
emplaced: these times correspond to 0, 1. 3, and 10 thousand years after loading. In all
of these figures. there is arrow at the top of the figure which indicates the edge of the ice

load.

The vertical displacement that results from the loading of the halfspace model can be seen

in Figure 5.1.1. This is identical to the figure given in section 3.4 (Figure 3.4.1). The



material parameters used in this model are given in Table 2 in section 3.4. Recall that for
the halfspace model there is no horizontal displacement experienced upon loading. Most
of the vertical displacement occurs within the region of the load with a small peripheral
bulge outside of the load. In Figure 5.1.2 the effect of a viscosity stratification can be
seen. Tnis is done througn ABAQUS by changing the properties of the appropriate
elements. In this model the viscosity increases with depth; from the surface to a depth of

100 km the viscosity is 1 x 10*' Pa s and from 100 km to 200 km there is a viscosity of 1
x 10% Pa s and below 200 km the viscosity is I x 10** Pas. The shape of these

displacement curves resemble those of the channel model (Figure 5.1.4) which indicates
that most of the viscous relaxation is occurring within the upper lower viscosity layers.
Note that the magnitude of the elastic displacement is the same as that of the model with
constant viscosity (Figure 5.1.1) and the increase in the magnitude of the displacement
experienced in the peripheral bulge. Also note that the viscosity stratification produces
horizontal displacement (Figure 5.1.3) unlike the constant halfspace. The horizontal

displacement in this case is positive for all time periods after loading.

The Heaviside loading response of the basic channel model involves a positive horizontal
displacement and a negative vertical displacement. For the channel model the results of
the analytical solution, the numerical solution using Matlab and the numerical solution
using ABAQUS can be seen in Figures 5.1.4 and 5.1.5. These figures show that the
results compare favorably. The material parameters are the same as those used for the
halfspace model and the thickness of the channel is 670 km. Table 3. in section 4.1. lists
the material parameters used for the channel model discussed in all of the following cases
except where indicated otherwise. The 0 thousand year curve shows the initial elastic
displacement and the subsequent curves illustrate the viscous relaxation over time. The

horizontal displacement that results from the loading of a channel model is positive. The



maximum displacement is obtained at the edge of the load. By contrast the vertical
displacement is negative within the region of the load and positive outside of this region
and the maximum is attained just within the load from the edge. There is a prominent

peripheral bulge. The horizontal and vertical displacements experience approximately the

same range of displacement.
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Figure 5.1.1: The vertical displacement for the halfspace model
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The next two figures show the effect of changing various material parameters on the
horizontal displacement. The solid lines represent the results of ABAQUS. while the
distinct points represent the results from the spectral method using MATLAB. Figure
5.1.6 shows the effect of a change in the channel viscosity. The displacement is
drastically increased for an decrease in the viscosity. though the general shape of the curve
remains the same with a maximum displacement occurring at the edge of the load. compare
with Figure 5.1.4. A decrease in the viscosity increases the displacement experienced at
the initial times. The displacement at infinite time remains the same regardless of the
viscosity. but with a lower viscosity the material can reach this maximum displacement
more quickly. Note the error in the displacement predicted by ABAQUS at the edge of
the load. The result of having a load with a 1000 km radius is shown in Figure 5.1.7.
Again the maximum displacement occurs at the edge of the load. though this maximum

value is less for the smaller load.

Figures 5.1.8 and 5.1.9 show similar results for the vertical displacement. Figure 5.1.8
shows the results of a low viscosity channel. This is the same viscosity used in the low
viscosity laver models discussed in section 4.3c. At this viscosity the vertical
displacement is almost entirely confined within the region of the load and little
displacement occurs outside of this region at times greater than 5 thousand years after the
emplacement of the load. As with the horizontal displacement, the vertical displacement
predicted by ABAQUS at the edge of the load exceeds the actual displacement as shown
by the spectral method. This is due to the fact that there is a large displacement gradient
at this point which implies that there is a large stress gradient. This leads to a breakdown
of the finite element method which assumes that the displacements and stresses vary
linearly from one grid to another. In Figure 5.1.9, the radius of the load is decreased from

2000 km to 1000 km. The vertical displacement within the region of the load increases
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while the displacement outside of the region decreases. even for the initial elastic

displacement.
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5.2: The Lithosphere over a Halfspace Model

This section will discuss the space domain solutions of models with an elastic
lithosphere. In general. there are four curves on each figure which correspond to the
displacements experienced at four specific time intervals after the emplacement of the
load. There is the initial elastic displacement followed by the displacement 1. 5. and 10
thousand years after loading. In all of the figures. there is an arrow located at the top of

the figure to indicate the edge of the load.
5.2a: Models with Lateral Homogeneity

First. the numerical results obtained for the lithosphere over a fluid are tested. The
material parameters of the model tested are given in Table 4. in section 4.2a. The
lithosphere in this model has a thickness of 150 km. In Figure 5.2.1 four different
methods are compared: the analytical solution as given by equations (4.2.1) and (4.2.2)
transtormed to the space domain. the numerical solution obtained from Matlab, the
numerical solution obtained from the ABAQUS modeling package and the theoretical
solution for the vertical displacement. The theoretical solution for the vertical
displacement of an elastic lithosphere over a fluid halfspace was obtained from the Thin

Plate Theory. The solution is given by

J/ 3 X J )
Pt [Cl coslcoshi-i-C2 sinisinh—r——l], xsL

-0, oq (04 a a

w(x) = (e, pl)/ B _ _ (5.2.1)
P, "[Fl cos-"—+1-“lsin5‘—:|, x2L
(pm—p_f) a a

where o, is the density of the load.



Pm is the density of the halfspace,
Py is the density of the fluid,

¢ is the flexural parameter,

h is the height of the load.
L is the half-width of the load.

and C,. C,, F,, F> are constants.

The derivation of this solution is based on the bending of a thin beam and can be found in
Turcotte and Schubert (1982). The results of the four methods are compared in Figure

5.2.1 as a check of the validity of the numerical programs. The results agree well.
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The next two figures. Figures 5.2.2 and 5.2.3, show the horizontal and vertical
displacements that result from the loading of a lithosphere overlying a viscoelastic
halfspace instead of a fluid. The load has a radius of 2000 km and a height of 1 km. The
properties of the halfspace and lithosphere are given in Table 5 in section 4.2b. One
important distinction to be noted immediately is the fact that in contrast to the channel
model. the horizontal displacement experienced by this model is negative (Figure 5.2.2).
This is not unexpected since from the analysis of the horizontal displacement excitation
strengths of the two models. the channel model gives a positive excitation strength (Figure
+.1.2) while the lithosphere model gives a negative excitation strength for the M0 mode
(Figure 4.2.5). In both cases the initial elastic displacement is positive. i.e. motion away
from the center of the load. but with the channel model subsequent motion is also positive
while for the lithosphere model subsequent motion is negative. Also. note that although
the horizontal displacement that results from loading a halfspace model is zero. the
presence of the lithosphere vields a non-zero horizontal displacement. The vertical
displacement. shown in Figure 5.2.3. is similar to the displacement experienced by the
channel model though for the lithosphere model the displacement within the region of the
load is much greater than outside of the this region. Note also the presence of the
peripheral bulge in Figure 5.2.3 and how the maximum migrates over time. For the
channel model the horizontal and vertical displacements are of the same order, however,
for the lithosphere model the magnitude of the horizontal displacement is about one tenth
of the vertical since the halfspace allows a significant component of the compensation of

the load to be made through vertical rather than horizontal motion.
Figures 5.2.2 and 5.2.3 also show a comparison between the two different numerical

methods. The first method uses the Matlab programs as discussed in Chapter 2 and the

second uses the finite element modeling package ABAQUS. The results agree fairly well.



Note that the viscous relaxation of the horizontal displacement experienced at early times
is not well represented by ABAQUS, though for longer times, the results are very
accurate. Also note that the horizontal displacements predicted by ABAQUS for
distances far from the load are not accurate. The displacement predicted by the Matlab
programs approaches zero very quickly outside of the region of the load and the
ABAQUS results do no reflect this. This tendency for the horizontal displacement to
persist far from the load, as obtained by ABAQUS. is seen in many of the figures and it is
important to recognize that this is most likely not representative of the true displacement.
This is not thought to be due to aliasing of the transform method because Matlab gives

accurate results for the channel model.
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5.2b: Models with Lateral Heterogeneity

The next set of figures is designed to investigate the effect of lateral variations within the
subsurface in terms of the viscosity of the halfspace and the thickness of the lithosphere.
Since seismic tomography has shown that lateral heterogeneity does exist in the
subsurface. it is important to investigate its effect on the displacements that result from

the loading of earth models.

The first set of figures is designed to investigate the impact of a lateral variation in
viscosity. First the effect of a constant increase in the viscosity of the halfspace is
determined. Figure 5.2.6 shows the effect of an increase in the halfspace viscosity on the
horizontal displacement. The viscosity of the halfspace is increased from 1 x 10°! Pas to
I x 10> Pas. The increase in viscosity reduces the viscous relaxation such that very little

displacement is experienced after the initial elastic displacement. Next a model with a

lateral variation is considered. This model has a viscosity of 1 x 10* Pa s under the
region of the load to a depth of 670 km and a viscosity of 1 x 10°! Pa s evervwhere else:

see Figure 5.2.4 for an illustration of the earth model. Figure 5.2.7 shows the effect of a
lateral variation in viscosity: the resultant horizontal displacement curve has a very
distinct shape. The maximum displacement is no longer obtained at the edge of the load.

but rather it is displaced away from the load.

The next two figures show the vertical displacement that results from these same two
models. one with a constant. high viscosity halfspace and the second with a lateral
variation in viscosity. Figure 5.2.8 shows that an increase in the viscosity of the
halfspace decreases the viscous vertical displacement, though the elastic displacement

remains constant. In Figure 5.2.9 the vertical displacement that results from the loading



of a model with lateral variation in viscosity are shown. The maximum displacement
experienced at the center of the load has the same magnitude as obtained that for the
model with a constant viscosity of 1 x 10*! Pa s (Figure 5.2.3). however, the shape of the
displacement curve at the edge of the load has been modified by the presence of the lateral
heterogeneity. In fact, the peripheral bulge has vanished and there is a more gradual
variation in the displacement rather than the sharp gradient at the edge of the load

observed previously.

The final set of figures in this section demonstrates the effect of a lateral variation in the
thickness of the lithosphere. The first model to be studied has the same material
parameters as given in Table 5 in section 4.2b. except that in this case the lithosphere has
a thickness of only 50 km instead of 150 km. A change in the thickness of the lithosphere
has a significant impact on the horizontal displacement. This can be seen by comparing
Figures 5.2.2 and 5.2.10. As the thickness of the lithosphere decreases the horizontal
displacement also decreases. Figure 5.2.11 shows that a lateral variation in the thickness
of the lithosphere also has a significant impact. The earth model used in this case is given
in Figure 5.2.5. The thickness of the lithosphere is 100 km within the region of the load

and 50 km outside of this region. The halfspace viscosity is 1 x 10°! Pas. This lateral

variation results in a larger horizontal displacement outside the region of the load even for
times long after the emplacement of the load. The maximum displacement still occurs at
the edge of the load and the magnitude of this displacement is close to the maximum

displacement observed for the 100 km thick lithosphere model.
In contrast to the horizontal displacement, there is little change in the vertical

displacement with a change in the lithospheric thickness, as seen by comparing Figures

5.2.3 and 5.2.12. The only difference is a slight variation at the edge of the load, the



peripheral bulge is closer to the load and the slope of the curve at the edge of the load is
steeper. Also. in contrast to the effect noted in the horizontal displacement, a lateral
variation in the thickness of the lithosphere has only a small effect on the vertical
displacement. The most notable area of change is in the magnitude of the peripheral

bulge. as shown in Figure 5.2.13, which increases slightly.

In this section it has shown not only that ABAQUS is able to give accurate results for the
displacements that result from the loading of'a model with an elastic lithosphere. but also
that lateral variations in the properties of the subsurface have a significant impact on
displacement. In general. lateral variations are more easily distinguished from the curves
of the horizontal displacement despite the fact that the magnitude of these displacements
is less than the vertical displacement. Lateral variations result in a significant change in
the magnitude of the horizontal displacements. not just the particular shape of the
displacement curve as with the vertical displacement. Lateral viscosity variations
produce a more significant effect cn both the vertical and horizontal displacements as

compared with lateral variations in lithospheric thickness.
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5.3: The Low Viscosity Asthenosphere with a Lithosphere Model

This section will discuss the space domain solutions of models with a low viscosity
asthenosphere beneath an elastic lithosphere. The low viscosity zone is defined by a
decrease in the radial viscosity structure of the model. This zone can also have lateral
heterogeneities. The low viscosity asthenosphere model has the same material parameters
as used in section 4.3c, given in Table 8. except that the lithosphere and low viscosity
asthenosphere both have a thickness of 100 km overlying a viscoelastic halfspace. The

earth model is given in Figure 4.3.21. The default viscosity of the asthenosphere is 1 x

10" Pa s which is two orders of magnitude less than that of the underlying halfspace. All
of the figures give displacement curves as a function of the distance from the center of the
load. Each graph contains four curves, each one representing the displacement for a
different time after the load is emplaced. There is an arrow above each figure which
represents the edge of the load. In all cases the cyvlindrical load has a constant radius of

2000 km and a constant height of 1 km.

The horizontal and vertical displacements that result from the loading of a model with a
low viscosity asthenosphere are given in Figures 5.5.1 and 5.3.2 respectively. When
these are compared with the results for the displacements experienced by a model with
only a lithosphere (Figures 5.2.2 and 5.2.3). some significant differences are noted. First.
the viscous relaxation experienced by the horizontal displacement soon after the
emplacement of the load produces a strong positive displacement which then turns
negative for longer time periods. The results for the lithosphere model do not show this
positive displacement. For short times, the results are intermediate between the
lithosphere model (Figure 5.2.2) and the channel model (Figure 5.1.4). This is due to the

faster initial relaxation caused by the low viscosity layer. At long time periods the two
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models match more closely, since the viscosity does not significantly affect the response
at long times. In addition, the maximum magnitude of the displacement is slightly greater
than expected since the lithosphere is thinner than the one used in the reference
lithosphere models. The vertical displacement (Figure 5.3.2) demonstrates that the
magnitude of the peripheral bulge is increased by the presence of the low viscosity layer.
The curves of the vertical displacement also resemble a combination of the lithosphere
model (Figure 5.2.3) and the channel model (Figure 5.1.5). The greatest impact of this
low viscosity asthenosphere is to modify the vertical displacement in the region of the

edge of the load.
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Two different parameters were investigated with the low viscosity asthenosphere model.
The first was to determine the effect of the viscosity of the asthenosphere and how lateral
variations in this viscosity might impact the displacement. The second was to determine
how the thickness of the low viscosity laver and lateral variations in the thickness affect
the displacement. Figure 5.3.5 demonstrates the impact of the viscosity within the low
viscosity asthenosphere on the horizontal displacement. In this model the viscosity
within the asthenosphere is increased from ! x 10" Pasto 1 x 102 Pas. An increase in
the viscosity decreases the initial viscous motions and the maximum displacement is
attained more slowly. A model with a lateral variation of the viscosity within the
asthenosphere is shown in Figure 5.3.3. In this model the viscosity directly below the
load is increased to 1 x 10°° Pa s while the viscosity in the rest of the asthenosphere
remains 1 x 10'° Pa's. The horizontal dispiacement that results from the loading of this
model can be seen in Figure 5.3.6. A slight difference between the displacement within
the region of the load and outside can be identified for longer time scales, especially in the
peripheral regtons. The displacement in the region outside of the load resembles the
displacement observed for the reference model with a constant low viscosity

asthenosphere viscosity of 1 x 10'° Pa s (Figure 5.3.1).

Figures 5.3.7 and 5.3.8 show the vertical displacement for the same two models discussed
above. As the viscosity within the asthenosphere increases, the amplitude of the
peripheral bulge decreases. A lateral variation in the viscosity, as shown in Figure 5.3.3.
produces displacement curves similar to those obtained for the model with a constant 1 x
10% Pa s viscosity within the region of the load and outside of this region the
displacement curves resemble those of the model with a constant viscosity in the low

viscosity layer of 1 x 10" Pa's. Overall the lateral variaticn in the viscosity of the low
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viscosity asthenosphere produces only small changes to the displacement curves. This

type of model would be difficult te distinguish from models with lateral homogeneity.

A lateral variation in the thickness of the low viscosity asthenosphere was also
investigated. An iifustration of this earth modeli is given in Figure 5.3.4. Under the load,
the thickness of the asthenosphere is 200 km and outside of this region the thickness is
100 km. First. the horizontal displacement that results from a low viscosity
asthenosphere model with a constant in layer thickness was determined. This can be seen
in Figure 5.3.9. In this case the thickness of the layer is increased to 200 km. An increase
in the thickness of the low viscosity asthenosphere produces an effect similar to the one
obtained with a decrease in the viscosity of the asthenosphere. Both an increase in the
viscosity of the asthenosphere and a decrease in the thickness of the asthenosphere
produce a result more closely resembling that of a model with a uniform halfspace. Figure
5.3.10 shows the effect of a lateral variation in the thickness of the low viscosity layer on
the horizontal displacement. Similarly to the models with a lateral variation in viscosity.
the displacement within the load margin is similar to the displacement observed for the
model of constant thickness of 200 km and outside the displacement is similar to that

experienced by the model with constant asthenosphere thickness of 100 km.

The response of the vertical displacement is also investigated for these two models.
Figure 5.3.11 shows the displacement for a model with a constant low viscosity layer
with a thickness of 200 km. This increase in thickness increases the amplitude of the
peripheral bulge. Figure 5.3.12 shows the vertical displacement for the model with a
lateral variation in the thickness of the asthenosphere, as given in Figure 5.3.4. In this
case the displacement within the region of the load appears to be an average of the

displacement that results from the models with constant asthenosphere thickness of 200
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km and 100 km. However. outside of this region, the displacement is similar to the

displacement observed for the model with a constant asthenosphere thickness of 100 km.

Overall. lateral changes in the low viscosity asthenosphere have very little impact on the
dispiacement that resuits from the ioading of these models. In general. the variations in
the displacement curves are most significant for shorter time periods. Since it is only the
viscosity within the halfspace that is changed. it would be expected that at infinite times
the displacement would be the same regardless of the specific viscosity structure within

the halfspace.
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5.4: Non-Linear Rheology

In all of the models discussed so far it has always been assumed that the rheology of the
earth could be explained by a linear relationship between the stress and the rate of strain:
see Appendix B for the constitutive relations used. However, it has been proposed that
the rheology of the Earth may in fact follow a non-linear relationship between the stress
and the strain rate. One of the most commonly used forms of this non-linearity is the

power law relationship. This can be written as (Ranalli. 1987)

it

de_ o (5.4.1)

dr
where ¢ is the strain.

O 1s the stress.

A is a constant determined by temperature. activation
energy and volume.

and » is a constant greater than 1.

In the case where a linear rheology is assumed the value of the constant .4 is well known
and it is related to the viscosity. However, in non-linear cases the viscosity is actually a
function of the stress and so the constant .4 must be determined experimentally. Ina
recent paper by Wu (1999) various cases were studied. The results were compared with
vertical motion data from the East Coast of North America. It was determined that the
best fit to the data was obtained for a model comprised of an elastic lithosphere and a

non-linear lower mantle with n=3 and 4 =3 x 10 Pa? s, Since only the vertical

W
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displacement was investigated, this section will discuss the horizontal displacement that

results from some of these non-linear models.

Several different models will be investigated so that the horizontal displacement can be
characterized for modeis with a non-iinear rheology. All of the results will be compared
with the results obtained for a similar linear model defined by the parameters given in
Table 9. This will help to illustrate the effect of the non-linearity. These values are

chosen to agree with the values used by Wu (1999).

Table 9: The Material Properties of the Lithosphere Model for Comparison with

Nonlinear Rheology Models

lithosphere. above 150 km

p=3475kgm?

halfspace. below 150 km

density p = 3888 kg m™

gravitational acceleration
viscosity

shear modulus

g=7363ms"
v=1x10""Pas

u=2203x10"Nm>

4% -2
g=7363ms
UV >

1=0.64x 10" Nm?

radius of load R=2x10%m

load o=1x10"Pa

Several different types of models are investigated to determine the effect of nonlinearity.
The first model has a nonlinear halfspace. This is followed by two different models with
nonlinear zones in the upper mantle, and these are followed by two models with a

nonlinear lower mantle. Refer to Figure 5.4.1 for an illustration of the four multi-lavered

models; the model with a nonlinear halfspace is not shown. For the all of the nonlinear
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layers the following values were used: n =3 and 4 = 3.33 x 10** Pa’ s”!. The material

parameters of each of these different models is given in Table 10. Only those properties
that are different from the basic halfspace model are shown. Note that the shear moduli

and densities are chosen to reflect the actual values at a specific depth.

Table 10: The Material Properties of the Models with Nonlinear Rheology

nonlinear nonlinear nonlinear with low

zone-300 km | zone-420 km | lower mantle: | viscositv

upper mantle | laver

density (kg m™) 3475 3475 3546 3546
viscosity (Pa s) nonlinear nonlinear 1 x10%! 1 x10%

shear modulus N m™) | 720x 10" |7.20x 10" |9.03x 10" 9.03 x 10'°

The results for the model with a linear halfspace and an elastic lithosphere. as described
by Table 9. are given in Figures 5.4.2 and 5.4.3. These will be used as the reference
figures. Figures 5.4.4 and 5.4.5 show the vertical and horizontal displacement results for
a model with a nonlinear halfspace and an elastic lithosphere. The magnitude of the
vertical displacement diminishes and the magnitude of the horizontal displacement curves
are predominantly positive. The horizontal displacement resembles the results of the
channel model (Figure 5.1.3). The peripheral bulge is not evident in the vertical
displacement. the minimum horizontal displacement is experienced at the edge of the load.

and the maximum horizontal displacement is displaced away from the load.
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Next. there are four figures which show the response to models with nonlinear zones
beneath the elastic lithosphere (earth models given in Figures 5.4.1a and 5.4.1b), as shown
in Figures 5.4.6, 5.4.7, 5.4.8, and 5.4.9. The results are very similar to the results of the
lithosphere model. With an increase in the thickness of this nonlinear zone. the horizontal
displacement experiences a slight increase in areas where there is positive displacement
and the vertical displacement experiences a reduction in the magnitude of the peripheral

bulge.

The next two figures show the results for a model with a nonlinear lower mantle below a
linear upper mantle which extends from the base of the lithosphere to a depth of 670 km
(see Figure 5.4.1c). Figure 5.4.10 shows that the horizontal displacement responds in a
manner similar to that seen with a nonlinear halfspace. The magnitude of the
displacement increases and though the shapes of the curves are consistent they are shifted
in the positive direction similar to that seen in the results for the model with an entirely
nonlinear halfspace. The vertical displacement. as shown in Figure 5.4.11. however,
maintains the peripheral bulge which is not evident in the displacement curves of the
model with a nonlinear halfspace. The addition of a low viscosity asthenosphere between
the lithosphere and the nonlinear halfspace (see Figure 5.4.1d) increases the magnitude of
both the horizontal and vertical displacements, as expected. This is demonstrated in

Figures 5.4.12 and 5.4.13.

The study by Wu (1999) showed that a model with a nonlinear lower mantle had the best
fit to the vertical displacement data. The horizontal displacement for this model is very
distinct. The maximum displacement is predicted to occur on either side of the edge of
the load and this displacement is predicted to be positive after the load has been

emplaced. This implies that the displacement after the load is removed would be in a



negative direction, towards the center of the load. Since models with nonlinear lower
mantles predict a different direction for the horizontal displacement, these types of earth

models should be relatively easy to determine from data.
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Figure 5.4.2: The horizontal displacement for the lithosphere model with linear rheology
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5.5: Time Dependent Creep

Another assumption in all of the models discussed so far is that there are no time
dependent effects. It is assumed that the deformation is either an elastic deformation or
viscous steady-state creep. However. there could be some sort of time dependent creep.

The strain produced by these three components can be expressed as (Ranalli, 1987)

e(t)=¢, +e/(r)+er

where e, is the elastic strain,
e, is the time dependent creep.
and ¢ is the steady state strain rate.
A simple transient creep law is the Andrade-type time dependence, given by
e,(1)=Aor’. wherer>1.

In ABAQUS. this is expressed as

— = Ao, where m£0.

Several values of m are tested to determine the effect of time dependent creep on the
displacement that results from the loading of an elastic lithosphere overlying a viscoelastic

halfspace. In all of these models the thickness of the lithosphere is 150 km and the
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viscosity of the halfspace is 1 x 10*! Pas. The material parameters are given in Table 9 in

section 5.4. The halfspace is modeled with the time dependent creep.

Figures 5.5.1 and 3.5.2 show the horizontal and vertical displacements that result from a
model with time dependent creep with m = -0.05. These results are similar to the results
observed for a simple increase in the viscosity of the halfspace below the lithosphere
(Figure 3.4.2). For very small values of m. the viscous displacement is reduced even
further and only the initial elastic displacement is observed. as shown in Figures 5.5.3 and
5.5.4. Since even for very large values of m there is no peripheral bulge observed in the
vertical displacement. this type of time dependent creep model does not seem

appropriate.



displacement (m)

Figure 5.5.1

[~

b .‘. 7 l.
\ iy
vy
[ s
' Y ]
Vo
*
54 ! !
‘ L]
.\ 'I sevvameer x50
' i
\ '- .= wuynrisl
'\ " o= TR
.
\. /' - xni=|0
10 r Ay v v
[ 10000 2000000 30000KK) 4000000

distance from the center of the load (m)

m =-0.05 in the mantle

displacement (m)

5000000

: The horizontal displacement for a time dependent creep model with

distance from the center of the load (m)

50
LAY )
| e an == ,,----‘ .’[’
/4
-100 4 i e
(!
."-'
!
. 2 e
150 o o -
’ .
-’ !
.- - ,¢ wosersers W(RKI=Q
2004 /’ - aw witki=| b=
&
-’-’ ——cmee WiR=S
-
———— - Witi-1=10
20 2t : . : .
0 1000000 2000000 3000000 4000000 $000000

169

Figure 5.5.2: The vertical displacement for a time dependent creep model with nt =-0.03

in the mantle
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Figure 5.5.4: The vertical displacement for a time dependent creep model with m = -0.2

in the mantle
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Chapter 6: Conclusions

In this thesis, the horizontal and vertical displacements that result from the loading of
simple earth models were analyzed using three different techniques. The first method
was to investigate the analytical solutions for the model of a halfspace, a channel and a
lithosphere over a fluid. The second was to investigate the solution in the wavenumber
domain through the use of relaxation and excitation strength diagrams so that the
importance of various transitions could be determined. The final technique was to use
ABAQUS. a finite element modeling package. to model the space and time domain
displacements for more detailed models including models with nonlinear rheology. lateral

variations and time dependent creep.

One of the most important elements of this thesis was the validation of the ABAQUS
modeling program. The detailed analytical calculations of the solutions for three simple
models were compared with the results from ABAQUS. The results compared favorably
for all three models. The only case where ABAQUS failed to produce accurate

displacements was in the horizontal displacement for the halfspace model.

In addition. the relaxation and excitation strength diagrams were determined for various
models so that a systematic analysis of the horizontal displacement excitation strength
could be undertaken. These diagrams demonstrate the impact on the relaxation times and
viscous motions for models with different densities. shear moduli and layer thicknesses.
The analysis of the model with an elastic lithosphere showed that the lithosphere is a
very important component in a model, especially in terms of the horizontal displacement.
In terms of the effect on the relaxation times and the excitation strengths the thickness of

the lithosphere is the most important aspect. Simple two layer models with a density



variation show that density variations have a significant impact on the horizontal
displacement. This is due to the fact that in these models the M0 mode of relaxation has
a negative excitation strength for all wavenumbers. These models have a second mode of
relaxation caused by the density discontinuity which resembles the relaxation curve of the
channel model. Models with a discontinuity in the shear modulus have the same effect on
the horizontal displacement excitation strength and there is the addition of a third mode of
relaxation. For models with a discontinuity in either density or shear modulus the M0
mode of relaxation is virtually unchanged by the presence of the discontinuity in both the
relaxation diagram and the vertical displacement excitation strengths. This is also seen in
the results of the low viscosity channel model. The low viscosity channel model
produces figures which are an amalgamation of the figures for the lithosphere model and

the model with a shear modulus discontinuity.

The third objective of this thesis was to analyze the space domain solutions to determine
the effect of lateral variations. nonlinear rheology and time dependent creep on the
displacements that results from loading. It was found that the magnitude of the
horizontal displacement is very sensitive to the thickness of the lithosphere and it
decreases significantly with a decrease in lithospheric thickness. If the measured
horizontal motion is quite large. a thicker lithosphere is favored. The horizontal
displacement is also shown to be more sensitive to lateral variations than the vertical
displacement. Also, radial variations in viscosity result in variations in the magnitude of
the horizontal displacement. not just in the relative shape of the displacement curves as
with the vertical displacement. Compared to precise displacement curves, magnitudes are
more easily measured and less sensitive to the ice history. Therefore horizontal motions
can be used as an important diagnostic tool to determine the lateral and radial

characteristics of the subsurface. In general. most of the curves for the horizontal
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displacement experience a displacement of approximately 30 meters over ten thousand

vears. This corresponds to an average speed of 3 mm per year.

The effect of the low viscosity channel is most readily apparent in the curves of the
vertical dispiacement. The presence of the layer modities the early viscous relaxation ot
the horizontal displacement and it magnifies the magnitude of the peripheral bulge of the

vertical displacement and allows this peripheral bulge to persist over time.

The horizontal displacement that results from loading models with a nonlinear halfspace
or nonlinear lower mantle is quite distinct, while a nonlinear zone seems to have little
effect. Models with a nonlinear lower mantle give results similar to models with a
nonlinear halfspace except that the peripheral bulge is preserved in the vertical
displacement curves. The horizontal displacement is predominantly positive for both of
these types of models. These are the only models for which a positive horizontal

displacement is obtained except for the channel model.

When the effect of time dependent creep is incorporated into the system. the results for
both the horizontal and vertical displacements are similar to those obtained from a simple
increase in halfspace viscosity. The magnitudes of the displacements diminish and the
peripheral bulge is suppressed. Since this does not agree with the measurements, this

type of model does not seem to be a viable option for an accurate earth model.

Now that a detailed study of the horizontal displacement has been conducted and the
results of the ABAQUS program have been shown to be consistent with the analytical
solutions the next step is to obtain data for the region of Fennoscandia, which can be

accurately modeled by a flat earth. and determine a possible earth model by combining
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the data for the horizontal and vertical displacements. It would also be interesting to
determine if and how the flat earth assumption affects the results. A further
consideration when using a spherical earth model would be to include the effect of

compressibility since this would more closely reflect the true characteristics of the earth.

Once more detailed data for the horizontal motions of the Earth’s surface are obtained
then the results from seismic tomography and the existing subsurface models determined
from the vertical motions can be used to determine an even more detailed subsurface
model. Not only will these detailed earth models be used to constrain tectonic and mantle
convection models. but this will also allow for more accurate predictions of the motion of
the crust. These predictions can be used to calibrate shifts in the locations of the
stationary GPS base stations. Currently the positions of the base stations are recalibrated
every few vears however if a detailed glacial isostatic adjustment model is developed. then

the base station positions could be accurately predicted without the need for recalibration.
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Appendix A: The Equation of Motion

This appendix demonstrates how the equation of motion is derived from the basic

principl servation of mass and linear momentum.

1. continuity equation (conservation of mass),

a,P + Vi(pv) =0 (A.1)

where p is the density.

and v is the velocity vector.
2. conservation of linear momentum (body forces equal surface stresses):
SiFdl = [T.da=0 (A.2)
where F is the total body force vector.

and T is the total surface stress vector.

Using the divergence theorem, we obtain:

VT+F=0 (A.3)

3. The total stress. T, can be expressed as a combination of the perturbational stress. o.

and the hydrostatic (implies pressure, P) initial stress.
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T=0-P,l (A.4)

The hydrostatic initial stress is a result of the presence of a gravitational field, i.e. in this

case self-gravitation. This prestress is carried along (advected) during any deformation.

This initial prestress is constant over time for any individual material element (particle).

d(P,) =0 (A.5)

However. there may be a variation in the prestress between different material elements.

From A.S the prestress at a particular point in space may vary with time.

d(P,) =0=d(P,) + v. VP, (A.6)

5 (P,) =-v. VP, (A7)

Therefore AP,) =Pyl o - g-Poliw=- [ 2 v. VP, (A.8)
v Paliomg = Polio-Jo* v. VP, (A.9)

Assume that the motion that the material elements undergo is an instantaneous elastic

displacement. The forces must balance to include this displacement.

v = uXt-t,) (A.10)

where v is the velocity vector,

u is the displacement vector,

and &) is the Dirac delta function.



Therefore P, | 0-g= Po | o~ U. VP, (A.1D)

However. the viscous displacements are conintuous functions of time so that

Polr0-5=Pol (A.12)

Therefore the equation of motion for an elastic body. so far. is:

VT-F=0 (A.13)
Vic-P)~F=0 (A.14)
V.o- WPl ip-g+ F =0 (A.15)
V.o- WPl + W VPy)+F =0 (A.16)

The equation of motion for a viscous body reduces to

V.o-VP,l,+F=0 (A.17)
4. For a self-gravitating earth where the mass of the earth is large and isolated the
gravitational attraction of other parts of the fluid provide the velume force on any
individual element.

F=pg=-pVp (A.18)

where Vo = 47Gp
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¢ is the gravitational potential.

and G is the gravitational constant.
For a flat earth whihc is non-self-gravitating. the gravitational field is uniform. This is
applicable when the mass of fluid concerned is much smaller than any neighbouring

matter. In this case the body forces are defined as

F = -g = constant. (A.19)

th

. Assume a zero order state of hydrostatic equilibrium (no motion).

VP,-F,=0 (A.20)

VP, + p, Vi, =0 (A.21)

6. Assume the perturbations have in the following form:

PX.T) = Polx)) = py(x.r) (A.22)

ox.1) = @y(x)) ~ Pi(x.1) (A.23)

and Vo, = 41Gp, (A.24)

7. Therefore P, = p1) =- V.((p, = P1)V) (A.25)
9P, = 1 = V.(Pv ~ pv) = 0 (A.26)

Neglect second order terms:  dp; + V.(ov) =0 (A.27)

Integrate: o+ Vi(pu)=0 (A.28)



Expand F. This equation is for elastic material only.
V.o-VP,|,+ V(uVP)+F =0
V.o- VPoli ~ Viu. VP,) - poV, - 0. V0, - PV, - p; Vo, = 0
Neglect second order terms and recall that VP, = - p, Vo,

V.o = V(uVP,) - p, Vo - p1 Ve, =0

But. Vpu =- poV(po = Pof = - Pofol-

and p; = -V.(p,u). and Vo, = g,z = -g.

Therefore V.o - Vu(-pg.2) — (Vipu)Veo,-p, Vo, =0

Vo- V('“:pogo) - (V(po“))go:- - Po V(pl =0

(A.29)

(A30)

(A.31)

(A.32)

(A.33)

(A3

(A.35)

Since p, and g, are functions of z only. we can reduce A.35 to the following.

Vo- pogoVu; - [po(v-u) + u-( Vpo)]goz - Po V(pl =0

8. Assume a flat elastic earth.

d.p, =0
V(pl =0
Therefore

Vo- Pogo V. ~ P V.u)g,z =

(A.36)

(A.37)

(A.38)
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This is the equation of motion for an elastic solid. Note that in all of the above equations

a bold variable indicates that it is a vector. For a viscous fluid the equation of motion is

V.o +p,(Viu)g,z=0 (A.40)



Appendix B: The Constitutive Relation

This appendix will discuss some of the assumptions associated with the constitutive
relations. We assume that the displacements and displacement gradients are small enough
that there is no ditterence between the material and space reference frames. We also

assume that the deformation processes are isothermal (constant temperature).

The constitutive equations for a linear elastic solid relate the stress and strain tensors

through the generalized Hooke's Law.

U!j = Cukme km (B 1 )

where g, is the stress tensor.

€ 1S the strain tensor.

and Cy. is the tensor of elastic constants.

The tensor of elastic constants has 81 elements. 21 of which are distinct due to the
svmmetry of the stress and strain tensors. [f the elastic properties are independent of the
reference svstem. a material is said to be isotropic. For isotropy the number of
independent elastic constant reduces to 2. Therefore we obtain Hooke’s Law for an

isotropic body.

Oy = Ae, 0y + 2uey (B.2)

where ¢, is the strain,

Oy, is the stress,
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A and y are the Lamé parameters,

and Jy, is the Dirac delta function.

Define the bulk modulus: k = A + 2/3u. This relates pressure to cubical dilatation of the

body.

For the incompressible case we impose the following restriction:

limes =11 (B.3)
{—00

where € =3¢, = ¢, + €4 ~ €.-

V. = € = 0. ¢is the dilatation

and u is the displacement vector.

Therefore Hooke's Law for the incompressible case is:

oy =116y + 2uey (B.4)

where ey, is the strain.

Oy, is the stress,

A and u are the Lamé parameters,
Oy is the Dirac delta function,

and IT is the pressure defined by lirg eA =TI.
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Appendix C: Derivation of the Correspondence Theorem

The following set of equations shows the derivation of the constitutive relation for a
Maxwell body, where the stress and strain are expressed as tensors. Displacements
(elastic and viscous) add tensorally and stresses are constant.

Therefore:
A&y = 9y~ 9e'y (C.1)
Tu=0y=0x (C.2)
where ¢° is the Hookean strain,
¢' is the Newtonian strain.

£ is the Maxwellian strain.
o° is the Hookean stress.
o' is the Newtonian stress. and

T is the Maxwellian stress.

Following Cathles. 1975. p.23. the stress tensor is split into two component tensors.
The first one is the hydrostatic stress tensor (g,, = -3P) and the second one is the
deviatoric stress tensor.

The deviatoric stresses are defined as:

()P = - 10,8 (C.3)
(0*0)? = oy - 1058y (C4)
Using the definitions for the ¢,, and the ¢",, as given above for the Hookean and

Newtonian bodies, we obtain the following form for the deviatoric stresses:



(0% )’ = 203"y - L' b)) = 20(de" )P

(°0)” = 2u(ey - +endi) = 2u(e*y)®
Therefore for a Maxwell body:

(BiE)® = (e%u)® + (9e"u)®

(de,)" = (04)° + 9(05)’
[l ¥

v 2u

Since all stresses are equal

(a:EU)D = —; *

Also dE,r = 9"y ~ 0,

_ 0, +3P Jdo,
IN+20 3A+2u

a,‘ Err

We can rewrite these last two equations as:

(a) 3,0% + % 0%y =21 dy
3A+2u -

(b) 8,0'“. + (Cu ~ .JP) = (3); + 2#)3,&*
In+2v

(C.5)
(C.6)

(o))

(C.8)

(C.9

(C.10)

(C.11)

(C.12)

(C.13)

[f we take (B.12) + $(B.13)d,. where &, is the Dirac delta function. then we get
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3442 A .
3,6°% + +9,0u8u + "L—IO'DH + 4 £ (Ou + 3P)8y = 210 3% + L (34 +24) deuyy
v In+2v
(C.14)
3A+2 -
doy+ £ o+ 1 £ (ou+ 3P)Oy = 2udiEy + AdEydy (C.15)
v In+2v
Recall that 6,,° = oy - +68 and P = - L 6y if in a quasi-static state.
Therefore the stress-strain relation for a Maxwell Body is given by
1 . .
3,6 - % (O - 0l = 2UdEy = Ay (C.16)

Now. if we perform the Laplace Transform on all of the elements of this equation. we

obtain:
- ‘u ‘u = - Y
Y ey¥ ;O-“ - ;O',,- = 2usEy ~ ASEpi O (C.17

Let the bold symbolize the variable transposed into the s domain.

Let k =1 = r to show that O,, = (2u + 34)E,,. Substitute this into the previous equation.

Therefore we obtain:

O'“(s + E) = JUsEy + [:/ls +(A+ ;y)%] ErrOit (C.18)
v



or
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Okt = 2U(s)Exs + A(S)Epr (C.19)
where pi(s) = —= (C.20)

s+ &

v

[Aﬁ(u%u)ﬂ is+ KM

and A(s) = = v(cal
s+& s+ &
3] 19}

where x is the bulk modulus.
 is the shear modulus.
A is a Lamé constant.

and v is the Newtonian viscosity.
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Appendix D: The Analytical Solution for the Halfspace Model

This is the case for a incompressible, flat earth in cylindrical coordinates. The matrix

below satisfies equation (3.1.1).

A

0 -k < o0
m
k 0 0 0
A=
+ukipgk 0 -k

(D.1)
According to the Correspondence Theorem this is valid for the viscoelastic case if
LT
ns+p

The eigenvalues are determined by solving equation (2.3.28):
L
m

0 0
DET=

(D.2)
DET=Z*+k*-22°K (D.3)
DET=(k+&)* (- k + &) (D.4)

Therefore the eigenvalues are k and - k.
Now we need to calculate the eigenvectors by solving (2.3.31). This is done by row

reduction.
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Tzz= X
= (D.16)
Therefore
N E .
S=k ang 5=°K
[ 1 \ { 1 \ / 1 \ [ 1 \
Y=Ae'* 1 +Be** - | +Ce*? 1 +De“ -1
- 2uk -2uk 2uk -2uk
Juk+pde 2uk-pdg Juk+pdg 2uk-pdg
(D.17)

To find another eigenvector for each of the eigenvalues. we will follow Boyce and

DiPrima (1986. p. 366). and solve equation (2.3.32).

S S
m
k -: 0 0 u |
vl l
L uz | 2uk
tukipdgk - -k tzz| \2pk+pdg
pdgk O K -
(D.18)
E-E_u-k\'
u
| \
ku-3v 1
- 4 .
z : S Sekv Spk
-Zwz-kuzz+dpuku+tpdgky Juk+p8e
ktrz-Ztuzz+pdgku
(D.19)
T ozu-kv=l
n (D.20)
E-k+&u+ku
Uz=p-—"--—"F——
3 (D.21)
ku-8v= (D.22)
ku-1




kuz-Jtzz+pdgku=2puk+pdg

zz=

(-p8el-pk-pEk)+(ug+pdgg+puki)ku
él

Now letu=1/k:

u=lt

Tk

2=k

ku-1

V= —
v=_0

trz=u;-]\+:,;u+ku
rz=2p

po tPO28-pk - pik)+(uiT+pSei+ukky

1zz=0

Now for the second eigenvalue / eigenvector:

t=ok
2ok L)
n
I
Kk -2 0 0 N
d vl -1
.. 3 rz | 2uk
+pukpdgk -E -k tzz 2pk-“p5cr

(D.26)

(D.27)

(D.28)

(D.29)
(D.30)

(D.31)
(D.32)

(D.33)
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vz .
—-Zu-kv
TR
1
ku-Zv -1
N -2 X
Zuz-kuzz+4pku+plgky Zpk-upkég

kuz-Suzz+pdgku

-
~

E+(ku+1)k+Eu
rz=u =

ku-Zvs=-1

ku+1

v=

o

ktrz-Zizz+pdgku=2uk-pde

2z P05 Uk - ulk+(ui+pdedepk)ku

e
'

Now letu=-1/k;

u=-t
Tk
i=-k
ku+l
v= =
v=0
E+(ku+l)k+&u
rz= =
rz=2p
m_p8g§+pk:-u§k+(p§:+p8gi+pk“)ku

(D.41)

(D.42)
(D.43)

(D.44)
(D.45)

(D.46)
(D.A4T)
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Therefore the solution is (equation (3.1.2))

2+ z-+
k k
1 1
z -z
Y=Ce" +De™ +Ae" 1 +Be*’ ,,'l
2pukz+2p 2ukz+2u 2pk -2pk
2uk+pd¢g 2uk-po.
\[p8g+2p.k]z/ \[-p8g+2uk]z/
(D.48)

Now. when we use the boundary conditions: as z goes to negative infinity. the solution
must remain finite and at z= 0. we have Trz =0 and Tzz = - sigma.

Therefore. from the first boundary condition. B=0and D = 0.

B=0 (D.49)
D=0 (D.50)
From the second boundary condition:
kz+1
k
U l 2
!
Volzae l +Ce'
Tz 2uk Jufkz+1]
Tez | 2uk+pdg -
[2uk+pdg|z
(D.51)
atz=0:
%+A
U
W A
Tz |~
9 c 4+
Tzz 2uAk+2uC
A[2puk+pdg]
(D.52)
Trz=0
ok
C~2pk+p5g

(D.53)
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Tzz=-0o
=9
Jnk+pde (D.54)

These are given in equation (3.1.3).
Therefore the solution is (equation (3.1.4)):

U kz

W ce' kz-1

Trz | 2uk+pdg 2ukiz

Tzz [-2uk-pdg]f-kz+1] (D.55)

To determine the time dependent solution. we must first find M such that M CN = BN,

where CN is a matrix of the constants. A .B.C.D and BN is the boundary condition

matrix.
c:xe(é) B.\':(OG)
' and (D.36)
2uk 2u
M-(Zuk+p5g 0 ) .
(D.57)
We must first identify the poles:
IM|=0
2uk 2 o
pdg+2uk 0 - .
(D.38)
' a ' 9 r ,
detM:-zun(pSC[nsw]lt-MkS)s
Mms+w) (D.59)
e pudg
(pdg+2ukjn

(equation (3.2.3))
Now we need to determine the elastic asymptote (s goes to infinity), so that we can

deduce the viscoelastic response.

Yv=AYA+CYC-AeYAe-Ce YCe (D.60)



YA =e**
unsk

p+ns

2unsk+[u+ns]pdg

z+—

YC =e"*

,unlkz+1]s

ns+W

2umks+pdgns+p]

\
(

ns+u
YAe=¢* -Mk
2uk+pdg

YCe ="’

pdg+2uk|z
[

) (W +ns)o
2unsk+(W+ns)pdg

o)

Ae=- S rk+pds

)

)

(D.61)

(D.62)

(D.63)

(D.64)

(D.65)

(D.66)
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_ (W+ns)ok
T2unsk+(u+ ]
wn (W+ns)pdg (D.67)
ok
Ce= o
2uk+pd¢
Hx+pog (D.68)
Therefore
kz
N (-u+w)oke" kz-1
T (pdg+2pk)(pSg+2uk)| -pSgkz
0
(D.69)
kz
Yy =2 ouke’ kz-1
“(pdg+2uk)(pdg[ns+w]+2punks)| -pdgkz
0
(D.70)
wns
m=—
where H+ns
Therefore
. Qv
Yv=
detM (D.71)
) kz
Qv=-4 ocunke s kz-1
(P8g+2pwk)(ns+u)’| -pdgkz
0
(D.72)

evaluatedats=-vy

kz

kz s

Ov= ocpdge kz-1
k -pdgkz
0 .
(equation (3.3.1))
R= &
=detM

s evaluatedats =-y



Kz
2, k2 .
R =2 cu-ke ’ kz-1
(pSg+2wk)'n|-pdgkz
0
(equation (3.3.3))
Ye=Ae YAe + Ce YCe (D.73)
kz
%4
ge $Z-
Ye=—C2¢ kz ‘l
pdg+2u'kK 2uk’z
dg+2uk][kz-1
[pPdg+2pK][kz-1] (D74
Therefore our solution is
Y= Ye delta + Qv e "
=—detM y
ds -
> (D.75)
kz kz
.. optket kz-1 . Odelae'’ kz-1
Yt=2 —mMm—— e )
(p8g+2wk)n|-pdgkz pdg+2uk 2ukiz
0 ,
Sg+2uwk][kz-1
Pog+2uk]lkz-1l] o)
- e
For the Heaviside response. perform the following substitution r Therefore
the solution is
kz kz
W Opek kz-1 | v oe'’ kz-1
h"pg(lu'kwﬁg} -pdgkz (-e H)+2u'k+05g 2uk’z
0 [p8g+2uwk][kz-1]

This is equivalent to equation (3.4.1).



Appendix E: The Analytical Solution for the Channel Model

This appendix will show the derivation of the time domain solution for the channel model.
The results are summarized in section 4.1. The following derivation was accomplished

using the mathematical manipulation program Mathview.

Love's Strain Function

k2

[N k -k .
z=Ae ‘+Bze ‘+Ce "+Dze

(E.1)
The displacement and stress are related to Love's Strain Function by the following
formulas:
u= 11\ ( d )
& (E.2)
W= = kK ya
- ‘)—— 4
-H (E.3)
ik({d[d,
Sxz=— ( [ +K° ,()
9
3 |32/ 3z’ (E.4)
d \ 3
a1l R EREE
dz|dz\dz"™[}] 2 (E.5)

When the strain function is substituted into the previous equations, the following is

obtained.
1 Ak%ie*” 1 Bki(kz+1)e* 1Ck’ie™ 1Dki(-kz+1)e**
e B TR m 2T . 2 m
(E.6)
wz_%Al\:e“_lBk:e“z-le'e“__I_Dk:e'“z
2 2 pu 2 u 2 m E

Sxz=Ak'ie*+BKi(kz+1)e""+CK'ie™+DKki(kz-1)e™* (E.8)



Szz=-AK' (B+1)e-BK' (B+1)e z+CK’ (-B+1)e*

P

kp

aQ

B

where

1| ¥

These equations satisfy the differential equations.

Therefore the displaceemnts and stresses can be expressed as

(1]
o
(B8]

*+DK' (-B+1)etz

(E.9)

(E.10)

Lki[-kz+1]e™

1 ke’ Lki[kz+1]e" 1kiie?
3T 2T uw B
" _lk:e“ ’l klekxz -l kle»kx
W 2 u 2 2 0u
2;: kliet: Kri[kz+1]e" kiie*s
KB+ -k Btz K[-BH1)et

Express the boundary conditions in a matrix:

2. surface boundary condition at z = 0.

k -Hk+1 -e'Mk [Hk+1]e™*

-1 H _elHL HeZHL
K [B+1] 0 K'[-B+1] 0

k 1 K -1

[e*" + e’ +2(Hk-1}He™ K]0
Det
[ZHe:Hk k:-e‘"kk—e:""k] G
Det
[-e”“-l{Hk+ 1}He " k-1]o
Det
[-(2Hk+1}e'" k-k]o
i Det

/.

N w>
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M
1 ket 2z
1 qu

O0ws3

K'i[kz-1]e™

K[-B+ ez

(E.11)

1. bottom of channel has zero displacement

A 0

B| |0

C| | -o

D 0
(E.12)

(E.13)
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([- cosh{H k) sinh(Hk} + Hk] p g- 2 [{cosh(H k)}* + H* k*] p k) e*** k*

Det=2
T
(E.14)
At z =0 we obtain
CLEr Lk LR 1k
2 u 2 U 2 u 2
| aE e
Wl = K S B
Sxz l\xl k=i ksl -k7i C
Szz D
-K[B+1] 0 K[-B+1l] 0
(E.15)
_,O'H:e:}“\k‘i \
i u Det
u [ He ™ k- 1]o
| 2 u Det
Sxz 0
Szz
ck:‘[e*HL{B-{-1}+2e:ﬂl<'2HkB+2H:k:+l}-B+l]
Det
(E.16)
Therefore
_ oHiK’
4= T3UCBk+pCSAg (E.17)
wed cle -4He M k-1) o CSA
--I 5 R o IHK W=7 . .o
(-2uCBk+pCSAg)e or 2kuCB-gpCSA (E.18)
where CSA =-cosh(HK)sinh(HK) +Hk __, CB = (cosh[H k])* + H'k*
W's
H=—p
S+ —
n

Transform into the time domain from the s - domain using



cHi(ns+ W)k’

S N 2WCBKk+pCSAg)s+pH CSAg
we o(ns+u)CSA

T -gpW CSA+n(2kw CB-gpCSA)s
Define
o= gpu CSA

T Nn(2kw CB-gpCSA)
Therefore
. cHi(ns+u) K

n{s+a)(-2u'CBk+pCSA g)

o(ns+u)CSA

w=

N(s+a)(2ku CB-gpCSA)

Separate into Elastic +Viscous parts:

S+ S+

NS+ W-an

Theretore

+ U

cH=ik3(”S'a”+n)

u=-

n(-2uw'CBk+pCSAg)

o(“ il +n)CSA
S+

W=

n(2kp CB-gpCSA)
For Heaviside Load:

U=

n(2ku CB-pgCSA

c CSA
N2k CB-gpCSA)

Defining

ciH K’
il

2

(E.19)

(E.20)

(E.21)

(E.24)

(E.26)

(E.27)

(E.28)
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Y=-CsA

cH Kk%i 2uky .m)
. 1+ l-e
(2 kv+pg}C3A( pg [ ]

[1-e™)

- / 2;"!\-.[.

W:'—'—" e 1 + :
2ukv+pg( pg

These last two equations agree with equations (4.1.1) and (4.1.2).

(E.29)

(E.30)

(E.31)
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Appendix F: The Analytical Solution for the Model of a Lithosphere Overlying a
Fluid

In this appendix the derivation of the analytical solution in the £ domain for the model of
a lithosphere overlying a fluid 15 shown. This derivation was accomplished with
Mathview. Note that there is no s dependence since the lithosphere is elastic and the

halfspace is a fluid. The results are summarized in section 4.2a.

The displacements and stresses can be expressed as follows (as with the channel

derivation):
I kiiet I kifkz+1]e" Lkiiet Lki[-kz+1]e™
A 3 m I 2 m
u _lk:e“ -_l.k:E“Z -ikleALz __l_k:e“z A
wo|_ 2 u 2 u 2 u 2 u B
o Kiets Kifkze1]e" Kiett Cifkz-1e™ || ¢
-k“[B«-l]e“ -k'.'[B+l]e“z k"'[-B+l]e'“ k3[-[3+l]e'“z/
(F.1)
lpg l1dpg
B=79; db== pe
2ku 2 ku
where and (F.2)

The following boundary conditions are applied.

Atz =0.wehave Sxz=0and Szz=-¢

Atz = - H, we have Sxz = 0 and Szz = (p + dp)dgw

These boundary condtions can be written in matrix form.



ik’ ik’ ik’ -k A 0
-[B+1]K° 0 [-B+1]K° 0 B|_[-o
ek’ i[-Hk+1]eMK ie" K’ i[-Hk-1]e"k* 1 C 0
[db-1]e™ K -[db-1]He™ K’ [db+1]e"™K® -[db+1]He" Kk | \D 0

(F.3)
A [db+1][e*"*+2Hk-1]-2 H K’
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(F.5)

Therefore at z = 0. we get:

-4

cHi[-2uHK +dpg|k \
2[p+dp]uCSACgk+ 16 W H k' +CBC[4u’k* +pdp g7
o{2uCSACk+CBCdp ¢g]

N " 2[p+dp]uCSACgk+ 16 H k' +CBC 4k +pdp g’]
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s /
(F.6)

CSAC = -4 (cosh[H k] sinh{(Hk] + Hk) __ CBC=4 (- [cosh{H K} +1)

where d





