1 Motivation

In the main, discrete-event simulation is used to investigate “hard” mod-
els with no known analytic solutions. Although there are several popular
programming styles in which to describe discrete event models, it is easy to
translate amongst them [6]. Thus without loss of generality, we concentrate
upon the process oriented style popularised by Simula in the 1960’s. Sim-
ula programs are collections of interacting processes in which each entity
of interest in the model gets mapped into a specific object in the Simula
description. An object has its own data values, its own operators (local
procedures), and its own actions. Each object is also equipped with a local
sequence control that keeps track of which action it is currently carrying
out.

If we strip away all the purely computational aspects (data collection and
reporting), we are left with an object description with the same structure
but containing only synchronisations. Such skeletal descriptions are closely
allied to system descriptions in process algebras for which there exists a
considerable body of results and techniques (see CCS [11], BPA [2, 3] for
example). Using these techniques we can test a system description expressed
in a process algebraic notation to see if it is deadlock-free, livelock-free, is
safe, is live, and is fair. These techniques are applied directly to the static
code skeleton, and we can establish that certain properties hold without
running the model at all. The properties we prove are guaranteed valid for
all possible system timings, i.e. they hold no matter how long a process is
blocked waiting upon on a resource, no matter how long a task takes, and
whatever queueing strategy is adopted. This very comservative approach
which has its pros and cons. It means any proofs are sample (indeed distri-
bution) independent, and are valid for all possible runs of the model. On
the other hand, we may not be able to show specialised results that depend
upon specific timings.

The main point of this paper is to show how standard techniques from
the world of concurrency theory can be brought to bear on the simulation
methodology. Because simulating for deadlock, say, is a hit-and-miss affair
(the timings may have to be just right), it is usually not attempted at all
by simulars. Likewise, neither safety, liveness and fairness testing are a
part of the simulars’ standard arsenal of techniques. As a result, many
systems implemented from simulation models turn out to have undesirable

properties. By adopting the methodology of process algebra, we can now test
for such properties and make our models that much more reliable. Further
since this testing is done on the static description, it will save a considerable
amount of expensive debugging time.

We have chosen to work with CCS, one of the simpler process algrbras.
CCS descriptions erase functionality and retain only the synchronisations.
The bonus is that CCS descriptions are crisp and clear, and their testing
can be mechanized efficiently. The main drawback, that CCS covers syn-
chronisations but not functionality, is partially countered by the argument
that getting the synchronisations right is by far the hardest part of the
task of debugging a complex interacting system. Varieties of CCS exist
which can cope with hard timings and functionality (value passing), but
they are harder to reason with and are correspondingly less well mechanised
[9, 12, 13, 14, 15, 18, 19]. See also [2, 3].

The following papers are recommended for backgound material. Walker
[20] and Milner [11] for material on CCS; Manna [10, part II, pages 177~
387] for a basic understanding of safety and liveness properties and how to
express them; and Stirling [17] for the link between CCS and process logics.

The paper is structured as follows. Section 2 serves as an introduction to
CCS. Section 3 shows how to express simulation synchronisations in CCS.
Section 4 introduces a particular process logic and shows how to use it
on a non-trivial simulation model. Finally we summarize our findings and
suggest how these techniques could become part of a standard methodology
for developing simulation models.

2 CCS notation

CCS is a language in one which may describe the various ways in which co-
operating sequential processes can interact with each another. Examples of
typical processes are: the receive, send, and retransmit processes in the X25
link-level; arbiters and mutual exclusion elements in asynchronous hardware
design; boats, trucks, cranes in a discrete-event harbour simulation; etc. We
will find that such simulation processes map directly into CCS processes, one
for one. To help distinguish simulation model processes from CCS processes
we call the former objects and the latter agents.

CCS agents may be constructed by prefixing ., non-deterministic choice
+, or by parallel composition \{}.

Sequencing. The simplest agent is the one that does nothing, 0. We can
construct agents with more interesting behaviours by prefixing 0 with any
number of actions. The agent Match; < strike.0 may engage in a single
strike action and then evolves into 0, whereas

Match, &/ strike.burn.0

strikes then burns before becoming spent. By convention, output actions
ate given co-names (they are overlined). le. the co-name of action « is @.
We take the co-name of @ to be o, i.e. @ = a.

Recursive definitions are allowed. A clock that ticks away forever is
def —

described by Clock = tick.Clock.

In general, the agent defined by 4 =} 0.0.....0,. B may also be written
in “stages” as

d d d
Al éf Otl.A2 A2 -_e__f ag.A;; cae An g an.B

where the o are actions and B is an agent (e.g. 0 or A or ...). We interpret
the agent A as one which first executes the action a; and evolves into the
agent A, which then executes the action a, and evolves into the agent A
which then ... and then executes the action @, and evolves into the agent

B. We are guaranteed that the action o; preceeds action a5 that the action
o preceeds action ag, ..., and the action a,_; preceeds the action a,.

Example: send process We can now start to illuminate the mapping
between a fully fledged simulation object and its skeleton in CCS. In general,
synchronisations (such as acquiring or releasing a resource) are mapped into
CCS handshakes, task durations (ADVANCE in GPSS or HOLD in Simula)
are mapped into markers (names), and all other statements (e.g. explicit
data collection, assignments) are ignored. Here is the partial description
in DEMOS [4, 5], a Simula extension, of a SEND process in a long haul
network.

entity class SEND;

begin
integer NextFrameToSend;
receiveFromHost;
NextFrameToSend := NextFrameToSend + 1;
sendFrame (NextFrameToSend) ;
startTimer;
repeat;

end**x*SEND***;

The CCS code for SEND is simply:

SEND def recetveFromH ost.sendFrame.startTimer...SEND

In the CCS description of SEN D, we know that receive FromH ost com-
pletes before sendFrame can start, and that sendFrame completes before
startTimer can start, but we do not know how long each action will take.
This means that, if we so wish, we can absorb the time taken to effect com-
putational statements like NextFrameToSend := NextFrameToSend + 1
into the next action without penalty. As noted before, proofs we make
about CCS models are valid whatever the timings, so that if we replaced
NeztFrameToSend := NextFrameToSend+ 1 by computations that were
longer or shorter it would not affect our reasoning in the CCS model one
jot.

The CCS description erases functionality and retains only the synchro-
nisations. The bonus is that CCS descriptions are crisp and clear, and their

testing can be mechanized efficiently. The main drawback, that CCS covers
synchronisations but not functionality, is partially countered by the argu-
ment that getting the synchronisations right is by far the hardest part of the
task of debugging a complex interacting system. Additionally CCS is one
of the simplest process algebras: varieties exist which can cope with hard
timings and functionality (value passing), but they are harder to reason with
and are correspondingly less well mechanised [9, 12, 13, 14, 15, 18, 19].

Choice. + is used to represent non-deterministic choice, as in

Matchs strike.(burn + Matchs)

which describes a match that after being struck may burn and become spent,
or be struck again. The match has an unfair behaviour in that it may never
do a burn action.

Example : mouse click handler!. A mouse sends d and u signals to
MCH (a mouse click handler) which interprets them and sends individual
commands to a single click handler, or a double click handler, or a menu-
select handler.

Three types of reaction are catered for by the mouse click handler:
1. a du pair are close together — send sc to the single click handler

dusc.MCH

2. a du pair is swiftly followed by another — dudu this is a double click,
send dc to the double click handler

du.du.de MCH

3. adis NOT swiftly followed by a u — in this case we are menu browsing,
and want to stop browsing when the u signal appears. Send a select
start ss to the selector handler after the d, and a select stop se to the
selector handler after the u.

!Taken from IEEE Transaction on Software Engineering, September 1992, pages 810~
811. See also, Proc SIGGRAPH, 1985, pages 199-205.

dss5.use MCH

Combining possible tracks with the choice operator + results in the specifi-
cation:

MCH ¥ d(u(se MCH + du.de.MCH) +55.u5e.MCH)
¥ MCH
d
S1
dc||se /\g Se
— Sg 55
\d ‘u
S, Se
u
Y
S4

Figure 1: Possible evolutions of MCH

CCS can be seen as a compact algebraic notation in which to express the be-
haviour of a finite state machine (see figure 1). The CCS definition describes
all the possible ways in which the system can evolve.

Parallel composition. We give the intuition behind this construct in
simple stages.

Example: interleaving behaviour. Consider an system with two users
running freely in parallel. Each user U has cyclic behaviour consisting of
a non-critical section n; followed by a critical section ¢;. The system is
specified by describing its constituent objects and them composing them
together (with |):

U
U,

SY S,

=f ny.Cqy .U]

= ng.Cz.Uz

= (U | U)

The possible behaviour paths of SY S; are shown in figure 2.

C2

nl.cl.Ul I C2.U2

> U, | U,
€1
ny n2
Cl.Ul | n2.02.U2
3
ng n
C2
Cl.Ul | Cz.Uz

1

Figure 2: State-by-state expansion of SYS;

At any given stage, the system may evolve by carrying out either the next
(or leading) action from U, or the leading action from Us, but not both at
the same time. For example from the initial state n,.c;.U; | ng.c3.Us,

e U; = ny.¢,.U; may complete an n; action and evolve into ¢;.U,; leaving

U, unchanged, or

e U, = ny.c,.U; may complete an ny action and evolve into ¢,.U, leaving

U; unchanged.

As can be seen from figure 2, four states are distinguished, one of which
(¢;.U; | ¢.Us) has both users in their critical sections at the same time.

This is presumably not what we want.

Example: mutual exclusion. We can prevent overlapping critical sec-
tions by protecting them with a semaphore Sem and insisting that users
wishing to enter their critical section have to gain control of the semaphore
beforehand. We think of the semaphore as controlling a token which each
user must get before entering its critical section and put back after complet-
ing its critical sections. A user is blocked should the token not be available
when it makes a request. Here is a semi-formal CCS description of the
system components:

U, el ne;. get. ¢. put. U,
ft ¥

Sem . D Sem
4 ft

U, & ney,. get. co. put. U,

We define the semaphore formally by Sem f gT .pT.Sem. Initially it can
carry out a gT action (outputting the token), then a pT action (accepting

the token back), and then it evolves into a Sem again. The user template is

updated to Uy & ncy.gT.c pT.U, (k = 1, 2) in which the critical section

code of each user is bracketted by calls to get the token and then return it.
Notice that the specification of the semaphore Sem and the users Uj are
closely related — names in one are co-names in the other. The complete
CCS description of a system with one semaphore and two users is:

U1 déf ny .gT.Cl.;)T.Ul

U2 déf n2.gT.cz.p_T_.U2

Sem Y YTpT.Sem

SYS, Lf (U, | Uy | Sem)\ {¢T, pT}

What are new there are the notions of a handshake and hidden actions
(\{¢T,pT}). The ways in which the system may evolve are depicted in
figure 3.

In our first description, SY S;, none of the actions were hidden, and any
leading action could fire at any time. In this description g7 and pT are
hidden. A hidden action has a different firing mode: when leading, it can-
not fire until another agent offers a leading corresponding co-action. l.e.

T<pT >

Sy

T < gT[>

T<

S3

T < 9T >
pT>g/

< gT >

T<pT >

9T >

Ss

S7

Se

5]

C1

C2

Sg

SlO

Figure 3: State-by-state expansion of SY S,

T<pT >

the semaphore, g7 .pT.Sem cannot fire until (at least) one user offers a ¢T
and then a handshake may occur. When that happens both cooperating
agents advance by one action (each moves past its guard). Here is one valid
sequence of moves by SY S,:

INEEWR Y

o

(
(
(
(
(
(
(
(

Pagy 1s)

Sem

g—T.pT.Sem
-ﬁApT.Sem
pT.Sem
pT.Sem
pT.Sem
Sem
g—T.pT.Scm
pT.Sem

Uy

ny.gT.c; .pT...
gT.cl.;T.,.
c1.pT-..
¢1.pT...

?T...

I

Uz

ng.gT.cp . pT...
n2.gT.coy p—T
np.9T.co.pT...
gT.cz p_T .
9T.c; p_T -
gT.ca E .
gT.ca.pT...

ca. pT..

) \{gT.pT} state

\{9T, pT}
\{97, pT}
\{9T, pT}
\{9T, pT}
\{97T, pT}
\{9T, pT}
\{gT, pT}
\{9T, pT} 11

W W o N N e

Notice that CCS does NOT broadcast: an agent offering an internal action
say gT can handshake with only one other agent offering a gT. If several
are on offer, a choice will be made.

10

It is possible to describe this system state by state using only . and +
as follows, with handshakes represented by 7’s:

S 4 7.8y + n5.53
S, ¥ 1.8 + n.S,
S, .51 + 1.5,
S, %/ .5, + 1.5

Even with two users, the state space is complicated. For n users, it explodes
as (n+ 1) ¥ 2" so that attempting state-by-state expansions is not the right
approach. The system description is much clearer and simpler if we describe
it in terms of its constituent objects (individual users and a semaphore) and
then compose them using | and hiding. In particular, this style of system
specification is easy to extend to several users.

Spelling out the system state by state using only . and + is akin to how
we would program it in a language without objects. The simplicity of the
specification arrived at by the composition of a set of interacting objects is
a vivid demonstration of the power of the object-oriented approach when
system components interact strongly.

Summary of how CCS systems may evolve. If E,, F,, ..., E, are
agents, then so is

E=(E| B || E)\L
fliwhere L is a set of actions.
E=(B | B .| E)\L
At any given stage of its behaviour, F may evolve in one of two ways:

1. 7 and a,@ ¢ L: by a single visible interaction with the operating
environment. Either o.E; receives an o from the environment and
evolves into E;, or @.E} has @ accepted by the environment and evolves
into F.

11

2. o, € L: by an invisible, internal handshake (called) between two
agents with one agent performing an output action on a hidden line
and the other performing a complementary input action on the same
hidden line simultaneously. That is if a € L, then a.F; | @.E; may
evolve to E; | Ey in one step by performing 7.

7 represents a completed action in that both the complementary input and
output actions have been performed.

Thus a composed agent evolves in stepwise fashion and its possible be-
haviours interleave the individual behaviours of E;, F, ..., E, in all possible
ways except that the actions in L must be performed pairwise.

Renaming. If we require several instances of the same template in a model
we are allowed to instantiate the latter with appropriate names. E.g we
require two semaphores A and B with operations gA and pA, and ¢gB and
pB respectively, we write

Sem gR.pR.Sem
A 2 Sem[gA/pR,pA/pR]
B 2 Sem[gB/pR,pB/pR)

Read gA/gR as “substitute gA for gR”, etc. Renaming makes it clear that
agents have the same structure, but with varying access behaviours.

12

3 Expressing simulation synchronisations in CCS

In this section we show how to model in CCS the four most common syn-
chronisation mechanisms, namely mutual exclusion, producer consumer, the
rendezvous, and waitsuntil.

Mutual exclusion. We have already seen the simplest sort of mutual
exclusion mechanism, the semaphore. GPSS and Demos have more general
devices with limits greater than 1 which can be seized and released in chunks
instead of just units.

Suppose a file is used to record the current status of elements in a dy-
namic system. The file is periodically updated by writer processes, each of
which must have sole access to the file when carrying out an update. The file
is also read from time to time by reader processes, any number of which may
access the file at the same time. The trick is simply to define a resource of
size r where r is the maximum number of readers in the system (or greater)
and to let readers acquire and drop the resource in units, and the writers to
seize and drop all r shares at once. Here is the Demos code:

file :- new res("file", r);

entity class reader;

begin
file.acquire(1);

hold(read.sample);

file.release(1);
hold(use.sample);
repeat;

end***reader**;

entity class writer;

begin
hold(acq.sample);
file.acquire(r);

hold(write.sample);

file.release(r);
repeat;

end***writerks;

13

We model this variant of a resource of size n in CCS with nBUFF (max-
imum size n). An nBUFF can be acquired or released in unit chunks via
gb and pb nad acquired and released in toto by calls gB and pB.

nBUFF, GmBUFF,_, + + 9B.nBUFF,
nBUFF,_, ¢ @ mBUFF.,., + pbnBUFF,

nBUF Fy, = gbnBUFFy_y + pbnBUFFip

nBUFF, %< GJnmBUFF, + pbnBUFF,

nBUFF, % + pbmBUFF, + pB.nBUFF,
Reader and Writer definitions are now easy to write.

Reader; o record;. gb. wuse;. pb.Reader;

Writer; & acqy. gB. write,. pB.Writer,
Here is the definition of a system with m readers and n writers:

SYSmn & (I, Reader; | [I"., Writery, | mBUFF,,)

\{pd, gb, pB, pB}

Note that hold statements (ADVANCE in GPSS) need not be modelled
explicitly as we could consider them as being absorbed into the next ac-
tion (synchronisation). However they are useful as “markers” when we test
specifications for their properties (see further in section 4).

Producer/consumer. A simple manifestation of this second common syn-
chronisation occurs when we have two cooperating entities, the first of which
produces items for the second one to consume. Typical Demos code for a
producer and a consumer are:

bucket :- new bin("bucket", 0);

entity class producer;

begin
hold(prod.sample) ;
bucket.give(1);
repeat;

end***producer#x*;

14

entity class consumer;
begin
bucket.take(1);
hold(cons.sample);
repeat;
end***xconsumer*x;

The point is that the consumer is blocked if no item is currently available
when one is needed, i.e. it is consuming items faster than they are being

produced.

The CCS code for a bin is trival. We again use a buffer but this time
let one agent increment it and the other decrement it. The maximum size
of the buffer tells us how many items the Producer can be in front of the
Consumer. nBUFF, \ {pB,pB} hides away the ¢B and pB operations
(renders them invisible to producers and consumers).

Producer prod.pb. Producer

Consumer = gb.cons.Consumer

nBUFF, ' nBUFF,\{pB,pB}

SYS o (Producer | Consumer | nBUFFy)\ {pb, gb}

The rendezvous. The rendezvous is used in Demos when a number of
objects join together in a common task. Instead of having all of them trav-
elling in unison down the event list, it is easier to arrange for one to be a
master which “gathers” up the rest as slaves, carries out the task, and then
releases the slaves allowing them to carry on as independent processes. Here
is the Demos description of a crane loading a lorry

RDV :- new waitq("C + L");

entity class crane;
begin
hold(other.sample);
L :- RDV.coopt;
hold(load.sample);
L.schedule(0.0);

15

repeat;
end***crane*x*;

entity class lorry;

begin
hold(trip.sample);
RDV.wait;

repeat;
end***lorry***;

The CCS model is quite natural: the “master” sends out one signal to collect
the slave (srdv — start rendezvous) and another (erdv) to free it.

Crane “ other. srdv. load. erdv. Crane
Lorry o trip. srdv. erdv. Lorry
sys ¥ (Crane | Lorry) \ {srdv, erdv}

Waits until

In the models we have examined so far, we have been able to express the
action histories of entities as sequences of activities, usually of the form

acquire R;; acquire Ry; ... acquire Ry;
hold(activity duration);
release R’;; release R’y; ... release R,,;

where the extra resources required (R;, Ry, ..., Ry), be they modelled as
res, bin or entity objects, have been requested and acquired one at a time.
However this may not always happen. Suppose an entity competes with
other entities from a pool of resources, and is not allowed to start its next
activity unless all the resources required for its commencement are available.
For example, given resources R;, R; and R3, and there are several entities
E} which use one or more of these resources to carry out a task. Specifically
let E; require both R; and R, to start a task. The coding

16

entity class E;
begin
R1.acquire(1);
R2.acquire(1);
hold(task.sample);

........

end**xkExxx;

is manifestly undesirable since E; may seize R, and wait a long time before
R, is available. Whilst E; holds resource R,, it is preventing other entities
which require R; but not R, from progressing. What we need is a synchro-
nisation which lets F; know when all the resources it requires for its next
activity are available and allows E; to seize them all at once. In Demos this
is the condg. Informally, code for F; takes the shape:

Q :- new condq("Q");

entity class E;
begin
Q.waituntil(R1.avail >= 1 and R2.avail >= 1);
Ri.acquire(1);
R2.acquire(1);
hold(task.sample)

in which we have used ref(condq)@ to delay F; until all the resources it
requires are available until it commits to seizing them.

Modelling this behaviour in CCS is not easy. Essentially we require an
enhanced resource:

RES “ YRRES' + TR.RES

RES' * pRRES + nfR.RES'

which can be probed to see if it is free (fR) or not free (nfR). Accesses
to the three such resources, A, B, C must be enclosed in a semphore which
makes sure that we can test and seize them all when all are free, and escape
and try again when they are not.

17

Sem

A
B
C

E
B,
E,
Ea
Eap.

SYS

Ty

au
®
I~

Q
& 1

au
@
—

au
)
'~

a a 2
& e e

Il

o
)
"~

au
e

95.pS.Sem

RES[gA/gR,pA/pR,fA/fR,nfA/nfR]
RES[gB/gR,pB/pR, fB/fR,nfB/nfR]
RES[¢C/gR,pC/pR, fC/fR,nfC/nfR]

n.9S.Ey

fAE, 4+ nfApS.E
fB.Eyw + nfBpS.E
fC.Ey. + nfCpS.E
gA.gB.gC.pS.cs.gS.pApB.pC.pS..

(Sem | A|B|C|E|..)\{¢S,pS,....nfC}

Structure of Simula programs. Simula programs typically contain the
main program, say MAIN, and a number of objects, say P;, P, ..., P,.
Their structure usually falls into one of two categories:

1. distributed control: M AIN establishes the objects P, and then control
passes from one object to another object. The system terminates when
control returns to MAIN. In this style, the active object decides
for itself where to pass control. M AIN’s role is testricted to system
initialisation and shut down.

The action possibilities are captured in CCS by:

MAIN
MAIN'

Py
B

SYS

def

def

Q.
)
'

a2
o
I~

def

$1.r1.52.79....5,. 7, .MAIN'
go.go.report.0

Sk .initk.ﬁ.P,:

go.action.go.P;

(MAIN|IL: Pe) \ {75, g0}

Here, MAIN fires up P1, Py, ..., P, in turn. Upon receiving its firing
signal s, process Py carries out an initialising sequence init; and then,
by emitting signal r, returns control back to MAIN. When MAIN

18

then fires a §o signal, it may be accepted by any of the P,. When
its next action sequence is completed, it to emits a go signal which
may be accepted by any other P; (in which case more actions will be
carried out) or indeed by M AIN (in which case the simulation will be
closed with a final report. this definition does not preclude the model
running forever!

2. centralised control: as before, M AIN establishes the objects P;. Then
MAIN decides which single object to fire. When that object has
finished its task, it returns control to MAIN. In this style, it is
always M AIN that decides which object may execute next.

The action possiblities are captured in CCS by:
MAIN ¥ 550,50 MAIN'
MAIN' 2 (Y., F-dp.MAIN' + report.0)

a
D

Pk déf SklnltkﬁPé
P, df gr.actiony d_kP,g
sys ¥

(MAIN|TL Po) \ {sj,rj, 90}

Here, M AIN initialises the system as above. Thereafter, when a process P

is fired, it always returns control back to M AIN This time, M AIN decides
which process to fire next.

Process-oriented simulation languages such as Simula and Demos use
style 2. When a process finishes its current task, the first object in the
event list is the next one to go.

19

4 Process logics

We can never know that a specification is correct, but we gain confidence in
its appropriateness if its consequences fulfill our expectations. A good source
for the sorts of test that are used in practice (e.g. deadlock, livelock, safety,
liveness, fairness) is [10, pages 177-387]. [1] gives a tutorial introduction to
process logics.

Associated with CCS are two logics, Hennessy-Milner logic and the
modal p-calculus which enable one to ask such questions of CCS specifi-
cations. Consider the simple system

St % as2
So % .83
s3 “ ps3

Using Hennessy-Milner logic we can ask questions of the system states:

e “it is possible to make an a move” from S; and from S,. These are
expressed as S; |= <a> T and S, |= <a> T respectively.

o 53 does not have this property. S; £ <a> T.

e we may distinguish between S; and S, because from S; we may make
one a move followed by another, but not from S,. These are expressed
as §1 = <a> <a> T and S, [£ <a> <a> T respectively.

[] is the dual operator to <>. <a>> requires at least one a move; [a] requires
all a moves. Some useful extra notation: — stands for all actions; —k,l,m
stands for all actions except k,l,m; < a,b,c > S is short for <a> S vV
S V <¢> §; and [a,b,c]S is short for [a] S A [b] S A [c] S. Here are some
common uses of Hennessy-Milner logic:

20

E k [aF E cannot do an a move
E E <a>T E can do an a move
E E []F E is deadlocked
E FE <>T E can make a move
E F <>TA[-a]F E can only do an a

Hennessy-Milner logic is good for asking questions one or two moves
ahead, but cannot cope with recursive definitions. By adding just one con-
struct — fix point operators — to Hennessy-Milner logic, we get the modal
p-calculus. Unfortunately, modal p formulae are hard to read. Fortunately
it is a very expressive logic, and we express many well-known temporal op-
erators in it. Amongst these are:

e BOX: S |= BOX a is true if a holds in each state reachable from S.
E.g. the test for whether S can deadlock is simply S | BOX <-> T
(we ask of each state reachable from S “can you make a move?”).

e POSS: S |= POSS bis true if S or (at least) one state reachable from
S satisfies b.

e EVENT: S |z EVENT cis true if ¢ holds for (at least) one state on
each and every path from S.

o CAN: S | CAN d is true if d holds along at least one path from S

e LOOP: S = LOOP e is true if there is an unending path of e moves
from S. E.g. POSS(LOOP <1 >T)is a test for livelock.

e MUST.DO: S | MUST_DO f{ is true if the only move that S can

make is an f move.

e NEC: S = NEC g h is true if however the system evolves, we cannot
do an A until aftera g

e CYCLE,: S = CYCLE, 1,...1, is only true if, however the system
evolves from S, ¢; < 45... < i, < ;... where < reads “must come
before”. This is a useful test to check that agents maintain their
integrity and perform actions in the expected sequence no matter what
the rest of the system does.

21

a
)
.

U, = ny.gT.sci.ec;.pT.U;

U, wf n9.9T.5¢5.€c5.pT .Uy

Sem ¥ gT .pT.Sem

SYs ¥ (U] U, | Sem)\{sT,pT}

Using these operators on a slightly modified SY'S, system
we can ask such questions as:

i SYS E CYCLE;n; sc ec
ii SYS [BOX[sc)(NEC ec; s¢; & NEC ec scy)

i.e. (i) U; maintains its expected behaviour cycle regardless of other activity
in the system and (ii) after U; entered its critical section BOX [sc;] (read
this as “from every state in which we can do an s¢; action, do it and then”)
it must exit its critical section ec; before re-entering its critical section or
before U, is permitted access to its critical section via scy. Splitting “holds”
into shold (start hold) and ehold (end hold) is sometimes used to aid modal
testing.

Plant simulation

We close by giving a larger example of the methodology in action. Consider
an industrial plant where machines periodically break down and have to be
repaired. We model such generic behaviour by:

job 4 working; broken; repeat

The plant employs a number of repairers to fix broken machines; each
repair requiring just one repairer. Each repairer carries his/her own basic
tool kit. In addition there are two spanner sets shared amongst the repairers,
denoted by spanner, and spanners.

We model four types of machine breakdown:

1. requires just a basic tool kit

2. requires a basic tool kit plus spanner;

22

3. requires a basic tool kit plus spanner,

4. requires a basic tool kit plus spanner; and spanner,

Each repairer is capable of fixing any type of breakdown. Their generic
behaviour is thus:

. def .
repairer = eﬂect repairy

or acquire spanner;; effect repairy; release spanner
Or acquire spannery; effect repairs; release spanner,
or acquire spanner; and spannersy;

effect repairy;

release spanner, and spanner,

repeat

The obvious way of modelling this system in DEMOS is to use a waitq
and let the machines be slaves and the repairers be masters (or vice versa).
Here is a sketch of the Demos code:

ref(waitq) BDQ;
ref(res) spannerl, spanner2;

entity class job(BDtype); integer BDtype;
begin

hold(useful [DBtype].sample);

DBQ.wait;

repeat;
end***entity***;

entity class repairer;
begin
ref(job) J;

J :- BDQ.coopt;
if J.BDtype =1
then
hold(repair[1].sample)
else
if J.BDtype = 2
then
begin
si.acquire(1); hold(repair[2].sample); si.release(1);

23

end
else
if J.BDtype = 3
then
begin
s2.acquire(1); hold(repair[3].sample); s2.release(1);
end
else
if J.BDtype = 4
then
begin
(s1 and s2).acquire(1);
hold(repair[3].sample);
(s1 and s2).release(1);
end
else ERROR;
repeat;
end***repairerk*;

where useful, and repair, are appropriate distributions.

Before simulating for performance, we use CCS to analyse the tempo-
ral properties of this little system. The resources are modelled by simple
semaphores:

def

SPANNER, ¥ 4S1.pS1.SPANNER,

€

SPANNER, = ¢S52.pS2.SPANNER,

a
-

The waitq synchronisation is standard

J] dg mpRl.Jl

J, = YR2pR2J,
J3 o mpR:;Ja
J4 mpR‘l.Jq

!

2
)
—

The final system component we need to define is the repairer:

24

a
@
-

R, gR1.stl.etl.pR1.Rman

au
)
.

R, = gR2.9S1.s5t2.et2.pS1.pR2.Rman

Rs ' gR3.952.5t3.et3.p52.pR3.Rman

Re ¥ gR4. (¢51.952.5t4.et4.pS1.pS2.pRA.Rman
+ ¢52.9S1.std.et4.pS1.pS2.pR4.Rman
)

Rman ¥ R, +R,+Rs+R,

the first three sub-behaviours (Ri, Ry, R3) are obvious. In the final branch
we model the notion of fixing a job of type 4 as permitting to pick up the
extra spanners in either order. We add actions sty.et, (start task of class k,
end task of class k respectively) to facilitate modal testing.

We can build a mini-system two jobs of type 4 and two repairers who
handle jobs of type 4 only by

S, “ (SPANNER1|SPANNER2|J4|J4| R4| R4)
\{gR4,pR4,¢S1,pS1,¢52,p52}

Does this system have desirable properties? We first check for deadlock
using the CWB (Concurrency Workbench [7, 8, 16]) a mechanized support
tool for CCS. The CWB command is fd — find deadlock. The CWB uses ¢

for .

fd S1
--—- use4 t<gR4> t<gS1> used t<gR4> t<gS2>
---> (pS1.SPANNER1 | pS2.SPANNER2
| pR4.J4 | pR4.J4
| gS1.st4.et4.’pS1.’pS2.’pR4.Rman
| gS2.st4.et4.’pS1.’pS2.’pR4.Rman
)\{gR4,gSl,gS?,pR4,pSi,pS2}

--- use4 t<gR4> t<gS2> used t<gR4> t<gS1>
---> (pS1.SPANNER1 | pS2.SPANNER2
| pR4.J4 | pR4.J4
| gS2.st4.et4.’pS1.’pS2.’pR4.Rman
| gS1.st4.et4.’pS1.’pS2.’pR4.Rman
)\{gR4,gS1,gS2,pR4,pS1,pS2}

25

The output shows both ways in which deadlock can be achieved, both the
steps to reach a certain configuration, and the deadlocked end state. Either
way, one repairer has spanner; and is waiting for spanner, whilst the other
one has spanner; and is waiting for spanner;.

This we can circumvent by requiring resources to be prioritized and
picked up in priority order. We try again with a modified version of R4 and
hence Rman,

R, -4 gR1.stl.etl.pR1.Rman

R, ' gR2.gS1.5t2.¢t2.p51.pR2. Rman
Rs % yR3.9S2.5t3.¢t3.pS2.pR3. Rman
R, Lf gR4.951.952.st4.et4.

(pS1.pS2 + pS2.pS1).pR4.Rman

Rman d= R1 + Rz + R3 + R4

this time modelling a system with two repairers and two jobs of each cate-
gory.

JUIJ1|J2(J2|J3|J3|J4|J4
Rman | Rman
) \{gSk, pSk, gRx, PR}

We now use the CWB to assure ourselves certain desirable consequences
obtain. Read the CWB command cp as “check proposition”.

S, % (SPANNER1|SPANNER?2
!
|

e the test for deadlock is built into the concurrency workbench:

fd s2
No such agents.

It is also easy to express in the modal p-calculus: in every state
(BOX),it is possible to make a move; or equivalently, it is not possible
to reach a state (~ POSS) from which no move can be made

cp S2

BOX(<~->T)
true

26

cp S2
("POSS([-]IF))
false

e can the system livelock? — is it possible to reach a state (POSS)
which permits a cycle of internal handshakes (LOOP)

cp S2
POSS(LOOP t)
false

e mutual exclusion holds on the spanners? always after entering a crit-
ical section, (literally —in every state that can make an st2 move,
having made it) we must end critical section, (do an et2 move) before
entering another critical section,, or a critical sectiony, and similarly.
The CWB represents A by &.

cp S2
BOX[st2] (NEC et2 st4 & NEC et2 st4)
true

cp S2
BOX [st3] (NEC et3 st3 & NEC et3 st4)
true

cp S2
BOX[st4] (NEC et4 st2 & NEC et4 st3 & NEC et4d st4)
true

e having entered a critical section, we must complete it, i.e. all paths
(EVENT) lead to a state where all we can do is end it

cp S2
BOX[st2] (EVENT (MUST_DO et2))

false

This is too strong — the other repairer may cycle on jobs of type 1
quite happily. We content ourselves with the weaker statement

27

cp S2
BOX [st2] (EVENT <et2>T)
true

the possibility of ending the critical section remains open on all paths,
i.e. the option is never taken away.

o the basic behaviour patterns of a repairer always open up after the
curent task is completed — it is always possible to get to a state
where one can start to fix a job of type 1, etc

cp S2

BOX (POSS <st1>T
& POSS <st2>T
& POSS <st3>T
& POSS <st4>T
)

true
o unfair behaviour: it is possible never to repair a job of type 1, etc

cp S2
CAN <-stl1,eti>T
true

5 Summary and conclusions

In this paper we have sought to explain the advantages of using well-known
techniques from process algebra in simulation model development. Simply
by expressing the model in a process algebra notation, means that we can
test a system description for many properties that are very difficult and time
consuming to find by simulation runs (for example, we know of hardware
projects that have been delayed by over one elapsed year trying to locate
and fix a deadlock). Adopting this methodology makes our models much
more reliable.

For pedagogic reasons, we illustrated the approach using CCS, one of
the simplest process algebras. There are many notions not covered by CCS:
but there are many more advanced process algebras which can cope with

28

priorities, hard timings and/or functionality (value passing) [9, 12, 13, 14,
15, 18, 19].

Finally, more work is required on the appropriateness of the match be-
tween the simulation model and CCS. For example, DEMOS uses priority
queueing for processes blocked on resources. The CCS model mimics all
possible variations of behaviour. Ipso facto, it encompasses the DEMOS be-
haviours. Our model is therefore safe, but too conservative. Thus there will
be some questions to which CCS says no which will be valid in the DEMOS
regime.

6 Acknowledgements

The authors are happy to acknowledge the strong influences on their work
of: Keith Tocher (entities, methodology), Steve Mathewson (central model
notations), Dahl, Myrhaug, Nygaard (Simula and objects), Milner, Stirling,
and Moller (CCS and process logics); Kendall, Ord-Smith, Rokne (mobility).

The work of the first author has been supported by an Operating Grant
bestowed by the Natural Sciences and Engineering Research Council of
Canada.

29

References

(1] J. Aldwinckle, R. Nagarajan, and G. Birtwistle. An introduction to

[2]

3]

(4]

[5]

[6]

[7]

8

[t}

(9]

(10]

Modal Logic and its Applications on the Concurrency Workbench.
Technical Report, Computer Science Department, University of Cal-
gary, 1991.

J. C. M. Baeten. Applications of Process Algebra. Cambridge Tracts in
Theoretical Computer Science 17, Cambridge University Press, Cam-
bridge, 1990.

J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts
in Theoretical Computer Science 18, Cambridge University Press, Cam-
bridge, 1990.

G. Birtwistle. DEMOS — a system for discrete event modelling on
Simula. Macmillen, London, 1979.

G. Birtwistle. The Demos Implementation Guide and Reference Man-
ual. Technical Report, 260 pages, Computer Science Department, Uni-
versity of Calgary, 1983.

G. Birtwistle, P.A.Luker, G.Lomow, and B.Unger. Process style pack-
ages for discrete event modelling: Experience from the transaction, ac-
tivity, and event approaches. Transactions on Simulation, 2(1):25-56,
1985.

R. Cleaveland, J. Parrow, and B.Steffen. The Concurrency Workbench.
In J. Sifakis, editor, Automatic Verification Methods for Finite State
Systems, LNCS 407, pages 24-37. Springer Verlag, 1990.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The con-
currency workbench: A semantics-based tool for the verification fo con-
current systems. ACM Transactions on Programming Languages and
Systems, 15(1), 1993.

M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge,
Mass, 1988.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems:
specification. Springer-Verlag, New York, 1992,

30

[11] R. Milner. Communication and‘Concurrency. Prentice Hall, London,

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19

1989.

R. Milner. The Polyadic w-Calculus: A Tutorial. Technical Report ECS-
LFCS-91-180, Computer Science Department, University of Edinburgh,
1991.

R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes:
Part 1. Technical Report ECS-LFCS-89-85, Computer Science Depart-
ment, University of Edinburgh, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes:
Part II. Technical Report ECS-LFCS-89-86, Computer Science Depart-
ment, University of Edinburgh, 1989.

F. Moller and C. Tofts. A Temporal Calculus of Communicating Sys-
tems. Technical Report ECS-LFCS-89-104, Department of Computer
Science, University of Edinburgh, Edinburgh, 1989.

F. G. Moller. The Edinburgh Concurrency Workbench, Version 6.0.
Tech Report, Computer Science Department, University of Edinburgh,
1991.

C. Stirling. Modal and Temporal Logics for Processes. Tech Report
ECS-LFCS-92-221, Laboratory for the Foundations of Computer Sci-
ence, Computer Science, University of Edinburgh, 1992.

C. Tofts. A Synchronous Calculus of Relative Frequency. In J. W. Klop
J. C. M. Baeten, editor, CONCUR ’90, number 458 in LNCS. Springer-
Verlag, 1990.

C. Tofts. Process Semantics for Simulation. Technical Report, Depart-
ment of Mathematics and Computer Science, University of Swansa,
Swansea, Wales, 1993.

[20] D. Walker. Introduction to a Calculus of Communicating Systems.

Technical Report ECS-LFCS-87-22, Laboratory for the Foundations of
Computer Science, University of Edinburgh, 1987.

31

