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Introduction

Kurt Gödel’s incompleteness theorems have had a major impact in logic and

philosophy of mathematics. It is not entirely obvious that the incompleteness

theorems should be taken to have any significant implications outside of those

two areas, although some have argued that they do. In particular, some have

argued that Gödel’s incompleteness theorems imply that Mechanism is false.

Mechanism can be understood as the view that the human mind is a sort of

computational machine which can be exactly modeled by some Turing machine

or formal axiomatized theory (I will use the term formal system to refer to

either of these). Gödel demonstrated that (certain types) of formal systems

are limited with respect to what they can prove in arithmetic. If the human

mind is not subject to these limitations, then it cannot be exactly modeled by

a formal system and so Mechanism is false.

Below I will examine three attempts to show that Gödel’s results are incom-

patible with Mechanism. The first, and perhaps best known, is developed by

J. R. Lucas in his paper, “Minds, Machines and Gödel” (1961). Lucas argues

that his understanding of Gödels results allows him to outstrip any particular

formal system which could be proposed as an exact model of his mind. The

second is developed by Roger Penrose in Shadows of the Mind (1996). Penrose

argues that in light of Gödels theorems, the assumption that Mechanism is true

leads to contradiction and so Mechanism must be false. The third is developed

by Storrs McCall in his paper, “Can a Turing Machine Know that the Gödel

Sentence is True?” (1999). McCall argues that Gödel’s results reveal the exis-

tence of a category which humans can know about and use, but which formal
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systems cannot know about or use. I will consider each of these arguments in

turn and show that each fails to establish that Gödel’s theorems imply that

Mechanism is false. I will conclude, based on this and a weakness common to

all three that it is improbable that Gödel’s incompleteness theorems can be

definitively shown to be incompatible with Mechanism.

1 Setting the Stage

Before examining the three arguments against Mechanism, I should first pro-

vide a brief overview of Gödel’s results and of how Mechanism should be

understood in the context of this discussion. This section is devoted to setting

the stage for future discussion by providing a brief explanation of key concepts

and outlining a key assumption. I have divided this section into three main

subsections. In section (1.1), I provide a brief overview of Gödel’s results. In

section (1.2), I explain how Mechanism should be understood in the context

of this discussion. In section (1.3), I describe an important assumption made

by at least two of the authors whose arguments I will be examining.

1.1 Gödel’s Incompleteness Theorems

To understand the discussion that will follow, it is important to know what

Gödel’s theorems say. Gödel’s incompleteness theorems apply to any formal

axiomatized theory T , where T is ω-consistent 1 and strong enough to capture

1 A formal axiomatized theory T , is ω-consistent just in case it is not the case that for
some open formula, F (x) T proves ∃xF (x), yet for each number, n, T proves ¬F (n). It was
later shown by J. B. Rosser that Gödel’s result can be extended such that one need only
assume mere consistency to show that sufficiently strong formal theories are incomplete.
Many authors who use Gödel’s theorems to show that Mechanism is false speak only in
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a basic amount of arithmetic. Gödels incompleteness theorems yield three

results which are of particular importance to the present discussion. The first

is the first incompleteness theorem (G1). G1 states: if T is ω-consistent, then

T is negation-incomplete. To demonstrate this, define a Gödel sentence GT ,

for T , such that GT (indirectly) says, “GT is not provable in T .” The definition

of GT is such that if T proves GT , it proves ¬GT and if it proves ¬GT , it proves

GT . 2 Hence, if T is ω-consistent, GT must be undecidable in T . The second

important result is that T can prove that if T is consistent, then GT (is true).

That is, T proves the sentence, ConT → GT , where ‘ConT ’ is the (indirect)

statement, “T is consistent”. This is important for demonstrating the third

important result: the second incompleteness theorem (G2). G2 states: if T is

consistent, T cannot prove its own consistency.

1.2 Mechanism

For the purposes of this discussion, Mechanism should be understood as the

view that the human mind is a sort of computational machine which can be

exactly modeled by some formal system. More relevant to this discussion is

that Mechanism holds that whatever arithmetical sentence one’s mind can

prove can also be proved by a formal system which exactly models one’s mind.

That is, for any person P , there is a formal system M , such that M proves

all and only the arithmetic sentences that P proves. Put more succinctly, M

terms of mere consistency. It is perhaps worth noting that doing this requires the change
from Gödel’s original undecidable sentence for a theory T which indirectly says of itself, “I
am not provable in T” to Rossers undecidable sentence which indirectly says of itself, “If I
am provable in T , then T already proves my negation.” In the later sections of this paper I
speak in terms of mere consistency except where ω-consistency is especially relevant.

2Note: establishing this conditional requires the assumption that T is ω-consistent.
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exactly models P just in case:

∀ψ((P ` ψ) ↔ (M ` ψ))

is true, and for any P there is such an M . Notice that this formulation of

Mechanism requires us to restrict our attention to arithmetic sentences and

what the human mind can (or cannot) prove in arithmetic.

1.3 A Key Assumption

The human mind (like a digital computer) is limited with respect to time,

its memory, the amount of energy that it can allocate to proving arithmetic

sentences, etc. The finitude of the human mind trivially guarantees that the

set of arithmetic sentences which a person (P ) can, in fact, prove, call it S, is

finite. Given that S is finite, it would be a relatively easy task to construct a

formal system that proves all and only the sentences in S and thereby exactly

models P ‘s mind. 3 Perhaps not surprisingly then, both Lucas’s argument

and Penrose’s argument require one to consider not what the mind can, in

fact, prove, but what the mind can prove in principle (it is less clear to me

that McCall’s argument needs this assumption 4 ). That is, they each require

S to be the set of arithmetic sentences provable by P if P ’s mind were not

limited by time or memory or energy (etc.). I take it that considering the mind

in these idealized terms has the effect (possibly among other things) that the

3 One way of doing this would be to wait until P dies. Catalogue the arithmetic sentences
that P proved during P’s lifetime and then create a Turing machine which outputs those
sentences one after another, and nothing else.

4One of the key points made by McCall in his argument is that the human mind is
capable of knowing about the category of true but not provable sentences, but no formal
system can know about that category (for my discussion of this see §4.1). It is not clear to
me whether McCall needs to consider the mind in idealized terms to make this point.
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idealized mind at least extends Peano Arithmetic (PA). 5 6 It could be argued

that the factual limitations on the mind make the notion of an ‘idealized mind’

described above somewhat contrived and even confusing. The notion is rather

vague, which makes it unclear which formal system one would be exactly

modeled by were one’s mind idealized in the above way. 7 Hence, it may be

difficult to see how this notion could be useful in assessing the plausibility

of Mechanism. 8 Still, the Lucas-Penrose arguments require considering the

mind in the idealized terms outlined above, so I will set such concerns aside

and proceed with this notion in place. 9

5By “the idealized mind at least extends PA” I mean that one can assume that an
idealized subject is able to prove at least all of the statements provable in PA and possibly
more.

6 I think that it is worth noting that there is a slight difference between what it means
to be an idealized subject (i.e. what an idealized subject can prove) within the context
of Lucas’s argument and what it means to be an idealized subject within the context of
Penrose’s argument. Within the context of Lucas’s argument, S is the set of arithmetic
sentences that are provable by a particular idealized mind. This is distinct from Penrose’s
account in which S should be understood as the set of arithmetic sentences that are provable
by any human mind that is not limited by time or memory or energy, at any time in human
history (past, present or future). I do not think that using Lucas’s method for constructing S
would have a too significant of an impact on Penrose’s argument; however, Penrose’s method
for constructing S will not do for Lucas. As will be discussed in the next section, Lucas
appeals to the dialectical nature of his argument and requires the mechanist to produce a
formal proof of the consistency of the formal system which the mechanist alleges to be an
exact model of Lucas’s mind (see §2.4 for my discussion of this). Such a proof would be
impossible (if Lucas’s mind is consistent) if membership in S is defined as Penrose describes.
Admittedly, some of Lucas’s commentators have thought that he may define membership in
S just as Penrose does (see, for example, (Shapiro 2003 pp. 25–26)), but I will opt for what
I take to be the more charitable interpretation described above.

7 Benacerraf gives an interesting and rather sensible way of understanding what an
idealized mind is. He says S is the set of sentences that the non-idealized mind (under
consideration) can prove and “S∗ is the closure of S under the rules of first order logic with
identity.” (Benacerraf 1967 p. 24) The ‘idealized mind’ proves (every member of) S∗. I am
not sure that this would be idealized enough for Lucas and Penrose, but I think that it is
sensible.

8 For a more detailed discussion of the problems associated with this notion of idealized
minds, see (Franzén 2005 pp. 82–83); and (Shapiro 1998 pp. 275–277).

9 There is another assumption made by Lucas and Penrose (and possibly McCall) which
I do not think is directly relevant to my discussion of their arguments, but I will mention it
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2 The Lucas Argument

In his paper, Minds, Machines and Gödel (1961), Lucas argues that Gödels

incompleteness theorems show that Mechanism is false. Lucas contends that

his ability to understand and apply Gödel’s incompleteness theorems enable

him to show that no formal system can prove all of the same arithmetical

sentences that he can prove. Hence, no formal system can exactly model his

mind. Therefore, Gödel’s incompleteness theorems imply that Mechanism is

false. In this section I will examine Lucass argument and show that it fails to

demonstrate that Gödel’s theorems are incompatible with Mechanism.

I have divided this section into four main subsections. In section (2.1), I

present Lucas’s Gödelean argument against Mechanism. In order for Lucas to

show that Gödel’s incompleteness theorems are incompatible with Mechanism,

Lucas must (somehow) be able to prove the consistency of the formal system

that is alleged to exactly model his mind (call this system, M), from which

he could derive M ’s Gödel sentence. Moreover, Lucas must do this without

here. Explicit in Penrose, and I think implicit in Lucas (and possibly McCall), is the idea
that correctable mistakes ought not to be considered in this discussion. Included among
the ‘correctable mistakes’ are at least two types of mistakes. The first type of mistake is an
error in the execution of some algorithm or procedure. A simple example of such a mistake
would include forgetting to “carry the one” when adding 15 and 7. The second type of
correctable mistake involves deploying questionable assumptions or rules when engaging in
mathematical reasoning which may lead to paradox. As an example of this sort of thing,
Penrose cites the paradox of “the set of all sets which are not members of themselves” which
Bertrand Russell pointed out was a consequence of some of Gottlob Frege’s work (Penrose
1996 p. 138). Correctable mistakes are to be omitted from this discussion or else, if they
are allowed, the mind of the idealized subject is not to be impugned on the basis of such
mistakes. That is, one is not permitted to conclude that the subject’s mind is inconsistent
because the subject makes correctable mistakes. This may raise the question, when is one
permitted to conclude that the subject’s mind is inconsistent? One may conclude that the
idealized subject’s mind is inconsistent just in case the subject’s mind will not allow the
subject to correct some contradiction. That is, the contradiction is fundamental or built in,
as it were, to the subject’s mind. No act of will would enable the subject to overcome the
inconsistency.
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compromising his own consistency. In section (2.2), I point out that Lucas does

not actually (consistently) produce a formal (Lucas-)proof of the consistency

of M and so the mere claim that Lucas is able to produce such a proof presents

no obvious threat to Mechanism. In section (2.3), I argue that Lucas’s ability

to produce an informal proof of the consistency M does not show that Gödels

theorems are incompatible with Mechanism. In section (2.4), I argue that

Lucas cannot make use of a formal proof (which has been produced in a non-

Lucas-system) of the consistency of M in a way which demonstrates that

Gödels theorems are incompatible with Mechanism.

2.1 Lucas’s Argument

Lucas’s argument may be put as follows:

(L1) Suppose Mechanism is true, for reductio.

(L2) For any consistent formal system, M , which a mechanist claims exactly

models Lucas’s M .

Let SL be the set of arithmetical sentences that Lucas can prove and let SM

be the set of arithmetical sentences that M can prove.

(L3) M can formally prove the sentence, ConM → GM (where ‘ConM ’ states

the consistency of M).

(L4) So, Lucas can formally prove ConM → GM by the assumption that M

exactly models Lucas.

(L5) Since M is, in fact, consistent, Lucas can apply modus ponens to

ConM → GM .
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(L6) So, Lucas can formally prove that GM (is true).

(L7) So, GM is in SL.

(L8) M cannot formally prove that GM (is true) by G1.

(L9) So, GM is not in SM

(L10) Hence, SL and SM are not identical sets by definition.

(L11) Therefore, M cannot be an exact model of Lucas’s mind.

Lucas can run this argument for any M, so statement (L11) generalizes to:

no (particular) formal system can be an exact model of Lucas’s mind. Hence,

Mechanism must be false.

It could be objected that Lucas’s argument fails as a reductio against Mech-

anism because Lucas’s mind, and the formal system that models it, could be

inconsistent. If Lucas’s mind is inconsistent, then the mechanist could specify

an inconsistent formal system (call it, IM) as its exact model. Inconsistent

systems are not subject to Gödels incompleteness theorems. Moreover, since

every arithmetical sentence is derivable in an inconsistent system, the set of

arithmetical sentences that Lucas can prove must be identical to the set of

arithmetical sentences that IM can prove. Hence, Lucas’s argument fails as

a reductio against Mechanism because it fails to consider the possibility that

Lucas’s mind is inconsistent.

Lucas tries to avoid this objection, insisting that it is implausible to think

that his mind (or the human mind generally) is inconsistent. Lucas appeals

to empirical evidence in support of this position. He claims that humans do
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not behave the same way that inconsistent formal systems operate. He writes,

“[W]e eschew inconsistencies when we recognize themIf we really were incon-

sistent machines, we should remain content with our inconsistencieshappily

[affirming] both halves of a contradiction. Moreover, we would be prepared

to say absolutely anythingwhich we are not.” (1961 p. 121) Lucas appears

to be right about the fact that humans are not generally observed behaving

in the same way that inconsistent formal systems operate. Humans are dis-

criminating with respect to what they assert and they view contradictions as

problematic. If the mind were an inconsistent formal system one would expect

that humans would assert anything and be comfortable with contradicting

themselves. Sane humans do not behave that way. Hence, it is implausible to

think that the human mind is an inconsistent formal system, or that it could

be exactly modeled by one.10

2.2 Lucas does not Formally Prove ConM

I am sympathetic with Lucas’s position; however, even if it is conceded that

the empirical evidence suggests that it is implausible to deny that the human

mind is consistent, 11 it is not clear that Lucas’s argument succeeds at showing

10(Lucas 1961 p. 121)
11 I am not sure that the mechanist should concede this. There is a problem with Lucas’s

argument for the consistency of the mind that is worth mentioning. It is not clear that his
argument should be admitted into the present discussion. One could charge that Lucas’s
evidence in support of the consistency of the mind cannot be used in light of the parameters
set in place to make sense of his argument, to wit, considering the mind in idealized terms.
It may be true that when considering idealized minds, the best explanation for apparently
consistent behavior is consistency; however, it is not at all obvious that one actually would
observe apparently consistent behavior were one actually observing an idealized mind. In
the absence of a reason to suppose that one would observe apparently consistent behavior
in an idealized subject, should one grant Lucas his factual evidence of apparently consistent
behaviour of the mind, one may reason that the mind need no longer be considered in
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that Gödel’s theorems imply that Mechanism is false. As it stands, Lucas’s

argument is unsound because it contains an obviously false premise. Statement

(L6) is the crucial premise in Lucas’s argument and it is supposed to follow

from statement (L5) (and (L4)). The trouble is that statement (L5) is clearly

false. It is not enough that M is, in fact, consistent. In order for Lucas to

soundly apply modus ponens to ConM → GM and thereby formally prove

GM , Lucas must first formally prove ConM . Hence, in order for (L6) to follow,

statement (L5) must be changed to (L5′) Lucas can formally prove ConM .

Statement (L6) does follow from (L5′) (and (L4)), but why should one think

that (L5′) is true? Lucas does not actually give a formal proof of ConM and

(L5′) is not (sufficiently) justified by the mere claim that Lucas can formally

prove ConM . Given the absence of support for (L5′), the mechanist is justified

in rejecting it.

The mechanist is justified in rejecting (L5′). Statement (L1) in Lucas’s

argument is the assumption that Mechanism is true. Statement (L2) stipulates

that M is a consistent formal system which exactly models Lucas’s mind. So

from statements (L1) and (L2) the mechanist is entitled to assume:

(I) ∀ψ((Lucas ` ψ) → (M ` ψ)

From (I) by substitution, the mechanist would know:

(II) (Lucas ` ConM) → (M ` ConM)

The contrapositive of (II) is:

idealized terms. Accordingly, one could explain the apparently consistent behavior without
appealing to the actual consistency of the mind. For example, it is possible that the proof
of the inconsistency (of the mind) is so long that it is impossible to encounter it in a human
life time. This could explain why one might behave as though one is consistent, even though
one is, in fact, inconsistent.
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(III) (M 0 ConM) → (Lucas 0 ConM)

From G2 and the stipulation that M is consistent, the mechanist would know:

(IV) (M 0 ConM)

From (III) and (IV) it follows that:

(V) (Lucas 0 ConM)

This shows that if statements (L1) and (L2) in Lucas’s argument are true, then

it should be impossible for Lucas to formally prove ConM . 12 This implies

that (L5′) is at least as contentious as the conclusion that Lucas wishes to

draw from it, namely the denial of Mechanism. Hence, unless Lucas gives

some good reasons(s) in support of (L5′), adding (L5′) to Lucas’s argument

begs the question. Lucas does not give good reason(s) in support of (L5′).

Therefore, adding (L5′) to Lucas’s argument begs the question. Ergo, the

mechanist is justified in rejecting (L5′).

There is another problem with (L5′) which is worth mentioning. Even

if (L5′) were (demonstrably) true, the mechanist could still be justified in

rejecting Lucas’s argument as a refutation of Mechanism. Replace statement

(III) above with:

(III∗) Lucas ` ConM
13

12 Note: this argument does not show that it is outright impossible for Lucas to prove
ConM , but only that it is impossible if Mechanism is true (and M is consistent and an exact
model of Lucas’s mind). The truth of Mechanism is precisely what Lucas is arguing against
and so asserting that it is outright impossible for Lucas to prove ConM would amount to
begging the question against Lucas. That is not my intent. My intent is only to show
that in the absence of some good evidence in support of the claim that Lucas can formally
prove ConM , the mechanist is justified in rejecting that claim (assuming of course that the
mechanist is justified in thinking that Mechanism is true).

13Statement (III∗) amounts to statement (L5′).
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From (II) and (III∗) it follows that:

(IV∗) M ` ConM

(IV∗) and G2 imply that M is inconsistent. Therefore, the mechanist can

either reject the claim that M exactly models Lucas (thus avoiding (IV∗))

and reject Mechanism, or conclude that Lucas’s mind (and the formal system

which exactly models it) must be inconsistent after all. Lucas does not pro-

vide sufficient reasons to prevent the mechanist from doing the latter. If the

mechanist is justified in believing that Mechanism is true and the mechanist

has a defeater for Lucas’s reason(s) in support of the consistency of his mind

(i.e. his empirical evidence), then, when confronted with a (Lucas-)proof of

ConM , the mechanist is justified in concluding that Lucas’s mind must be

inconsistent after all. The mechanist is justified in believing that Mechanism

is true. 14

Moreover, the mechanist has a defeater for Lucas’s reason(s) in support

of the consistency of his mind. The mechanist can argue that it is possible

that the mind is, in fact, inconsistent but that (sane) humans generally behave

as though they are consistent because the proof of the inconsistency (of the

mind) is so long that it is impossible to encounter it in a human life time. 15

Hence, the mechanist is justified in believing that Mechanism is true and the

mechanist has a defeater for Lucas’s reason(s) in support of the consistency

of his mind. Therefore, when confronted with a (Lucas-)proof of ConM , the

14 I take it as a given that the mechanist has reasons in support of Mechanism which
justify the mechanist in believing that Mechanism is true.

15 See footnote 12 for a more detailed explanation of why the mechanist could be justified
in thinking that the mind is inconsistent despite the apparent empirical evidence to the
contrary.
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mechanist is justified in concluding that Lucas’s mind must be inconsistent af-

ter all. Therefore, even if (L5′) were (demonstrably) true, the mechanist could

still be justified in rejecting Lucas’s argument as a refutation of Mechanism.

If Lucas’s argument is to convincingly show that Gödel’s theorems are

incompatible with Mechanism, Lucas must explain not only how he is able to

demonstrate ConM , but also how he is able to carry out that demonstration

while maintaining his own consistency. With respect to (L5′), Lucas does not

do this (nor is it is obvious, to me, how this could be done).

2.3 Lucas and M can Informally Prove ConM

If Lucas’s argument is to succeed, Lucas must explain how he is able to demon-

strate that ConM (is true) and why that demonstration does not compromise

his own consistency. One way Lucas might go about doing this is by claim-

ing that statement (L6) in his argument is not supposed to follow from (L4)

and (L5′), but from (L4) and (L5∗) Lucas can informally prove ConM . That

is, Lucas can conclude that ConM (is true) through empirical evidence or by

some non-formalizable-in-M (or in-Lucas) means. Making this change seems

to give Lucas the explanation that he needs. Lucas has provided an empirical

argument which supports (L5∗). 16 Moreover, the truth of (L5∗) does not

compromise Lucas’s consistency because Lucas’s producing an informal proof

of ConM does not run afoul of G2 given the stipulation that M is, in fact,

consistent (and under the assumption that M exactly models Lucas). 17

16As I have mentioned, there is room for debate here. A mechanist may not find Lucas’s
empirical argument in favour of the consistency of the mind very compelling (see footnote
12).

17G2 precludes a consistent formal system from producing a formal proof of its own
consistency. It says nothing of an informal proof thereof.
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The change from (L5′) to (L5∗) would give Lucas the explanation that he

needs, but, as Paul Benacerraf points out in, “God, The Devil, and Gödel”

(1967), the change gives rise to new problems for Lucas’s argument. Benacerraf

observes that this change undermines the validity of Lucas’s argument. The

change makes Lucas’s argument commit a sort of equivocation insofar as the

sense of ‘proves’ must shift between ‘informally proves’ in statement (L5∗) and

‘formally proves’ in the following premise (statement (L6)). This shift in the

sense of ‘proves’ is made explicit in my formulation of Lucas’s argument and

so the problem with changing (L5′) to (L5∗) is obvious. It does not follow from

the fact that Lucas can informally prove something that he can also formally

prove it. Hence, statement (L6) does not follow from statement (L5∗). Rather,

what does seem to follow is statement (L6∗), Lucas can informally prove that

GM (is true). Hence, in order to preserve the validity of his argument, Lucas

should change statement (L6) to (L6∗). Yet, if this change is implemented,

then, as Benacerraf notes, “it is not at all clear that the prowess claimed for

the mind is one that Gödel I [G1] precludes for machines.” (1967 p. 19) His

point is that Gödel’s results do not imply that M cannot informally prove

ConM , nor do they imply that M cannot informally prove GM . Hence, it is

not obvious that Lucas’s argument shows that he is able to outstrip M . To

put it another way, if SL (the set of arithmetical sentences that Lucas can

prove) and SM (the set of arithmetical sentences that M can prove) include

the arithmetical sentences which Lucas and M can informally prove, then

Lucas’s appeal to G1 (in statement (L8)) does not imply that GM is not in

SM (i.e. statement (L9) in Lucass argument). Ergo, it does not follow that SL

and SM are not identical sets. Therefore, Lucas cannot draw his conclusion
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from (L5∗).18

Lucas responds to Benacerraf’s criticism by insisting that his ability to pro-

duce an informal proof of ConM (and thereby of GM) is sufficient to demon-

strate, from G1 and G2, that he is not exactly modeled by M . Lucas argues

that though he is able to carry out such a task, M could not “produce-as-

true”19 its own consistency, even informally, without violating G2. He notes

that the operations of a Turing machine that was programmed to imitate in-

formal proofs of the sort that Lucas uses to assert (or justify the assertion),

ConM , must “be governed by [its] programme, and would correspond to a for-

mal system”. (1968 p. 147) Lucas is saying that the operations of any Turing

machine will correspond to the operations of some formal axiomatized theory.

That is, for any Turing machine, whatever sentences it outputs as true, there is

a formal axiomatized theory that formally proves all and only the exact same

sentences. Hence, if M is a Turing machine that is able to “informally prove”

its own consistency, then the formal axiomatized theory that corresponds to

M , 20 call it FM , must also assert ConM . Since FM is a formal axiomatized

theory, in order for it to assert ConM , it must prove ConM in the formal sense,

but that violates G2 (if M is consistent) because ConM and ConFM (the con-

sistency statement for FM) would be logically equivalent. Ergo, M cannot,

even informally, prove ConM without violating G2 (or GM without violating

G1). 21

There are two main problems with Lucas’s contention that his ability to

18 For Benacerraf’s discussion of this see (Benecerraf 1967 pp. 19–20)
19(Lucas 1968 p. 147)
20 That is, the formal axiomatized theory that formally proves all and only the same

arithmetic sentences that M outputs.
21For this argument in its entirety see (Lucas 1968 pp. 147–148).
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informally prove ConM is sufficient to draw the conclusion that he cannot

be exactly modeled by M . Firstly, it is not convincing. Lucas claims that

no formal system has the ability to produce an informal proof of its own

consistency (without violating G2). Lucass procedure for informally proving

ConM is roughly as follows:

(i) Lucas can informally prove the consistency of his own mind (on empir-

ical grounds).

(ii) By hypothesis, M exactly models Lucas.

(iii) So, if Lucas is consistent, then M is consistent.

(iv) Therefore, Lucas can informally prove the consistency of M .

Step (i) is problematic. Step (i) can be interpreted as indicating that Lucas

can produce a formal proof of his own consistency 22 or that he can produce an

informal proof of his own consistency. Suppose step (i) indicates that Lucas

can produce a formal proof of his own consistency. If Lucas’s argument is to

convincingly show that Mechanism is false, then Lucas must explain how he

is able to execute step (i) without compromising his own consistency. Other-

wise, when presented with a formal (Lucas-)proof of Lucas’s consistency the

mechanist is justified in concluding that Lucas’s mind is inconsistent. 23 Lu-

cas does not explain how he is able to execute step (i) without compromising

22Admittedly, interpreting step (i) as indicating that Lucas can produce a formal proof
of his own consistency seems like quite a stretch. However, I think that Lucas’s claim that
an informal proof carried out in formal systems is still a kind of formal proof gives the
mechanist license to explore the above as a possible interpretation of step (i).

23 The reason for this is analogous to the reason that the mechanist is justified in con-
cluding that Lucas’s mind is inconsistent when presented with a (Lucas-)proof of ConM (see
§2.2).

17



his own consistency. Therefore, Lucas’s argument does not convincingly show

that Mechanism is false (under the supposition that step (i) indicates that

Lucas can produce a formal proof of his own consistency). Alternatively, sup-

pose step (i) indicates that Lucas can produce an informal proof of his own

consistency. It follows that Lucas must possess an ability which he claims no

formal system can possess, namely, the ability to informally prove his own

consistency. If Lucas has this ability, then it is the fact that he possesses this

ability which shows that mechanism is false and not strictly his ability to prove

ConM and GM (which is what is required for Lucas’s argument to show that

Gödels theorems are incompatible with Mechanism). Worse still, affirming

that Lucas has the ability to informally prove his own consistency (and that

no formal system has that ability) could be construed as begging the question

against Mechanism.

The second problem with Lucas’s contention that his ability to informally

prove ConM is sufficient to draw the conclusion that he cannot be exactly mod-

eled by M is that it is false. Lucas supports his contention by (essentially)

arguing M cannot informally prove ConM without violating G2 because there

is no real difference between an informal proof and a formal proof in a formal

system. However, this is inaccurate. It seems perfectly reasonable that a for-

mal system could produce a statement as true with less than absolute certainty

attached (i.e. probably true). There are, for example, Turing machines which

calculate probabilities. Perhaps, Lucas’s mind is a formal system which is able

to calculate probabilities. It takes as input observations of human behavior,

combines this with knowledge of the way in which inconsistent formal systems

operate and calculates the probability that the human mind is inconsistent
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to be low. From this, Lucas could conclude with a high degree of certainty

(but less than absolute certainty) that his mind is consistent. 24 Lucas thus

demonstrates that ‘it is highly probable that-ConM ’ and so, by modus ponens

on ConM → GM , no more than, ‘it is highly probable that-GM ’, but M could

also carry out this procedure without violating G1 or G2. Hence, there is

a difference between an informal and a formal proof in a formal system and,

moreover, it is possible for M to informally prove both ConM and GM without

violating G1 or G2. Therefore, Lucas’s ability to informally prove ConM (and

GM) does not show that Lucas is able to “produce-as-true” a statement which

M cannot also “produce-as-true”. 25 Therefore, adding statement (L5∗) to

Lucas’s argument and changing statement (L6) to (L6*) renders Lucas’s ar-

gument ineffective as a demonstration that Gödel’s theorems are incompatible

with Mechanism.

24 Notice that Lucas has formally proved, from the information available, that ‘it is
highly probable that his mind is consistent’, but he has not formally proved that ‘his mind
is consistent’. This difference is important.

25 Lucas may insist that when he asserts that his mind is consistent he is not claiming
merely that it is highly probable that his mind is consistent, but that it is certainly con-
sistent. His observations of human behavior combined with his knowledge of the way in
which inconsistent systems operate convince him, with absolute certainty, that the human
mind cannot be inconsistent. Indeed, this does seem to be what Lucas thinks, though this
view is peculiar in light of his statements about simple arithmetic. He writes, “[I]n spite
of our great feeling of certitude that our system of whole numbers which can be added and
multiplied together is never going to prove inconsistent. It is just as conceivable we might
find we had formalized it incorrectly.” (1967 p. 123) Lucas thinks that it is possible that
simple arithmetic may turn out to be inconsistent, despite the fact that it appears to oper-
ate consistently and despite the degree to which mathematicians may be certain that it is
consistent. Why then would he insist, on the basis of, arguably less sturdy ground, that one
can know with absolute certainty that one’s mind is consistent? He should not. Indeed, as
George Boolos points out, those two assertions appear irreconcilable (Boolos 1968 p. 614).
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2.4 Lucas Cannot Use a Mechanist-Proof of ConM (in a

way that M Cannot)

Lucas thinks that his argument still succeeds as a refutation of Mechanism

despite the criticisms presented in §§2.2–2.3. Lucas argues that the dialectical

nature of his argument is integral to its success. He reasons that since the

mechanist is claiming that M exactly models his mind, the mechanist must

be familiar enough with M to know whether M is consistent or inconsistent.

Thus, it is reasonable for Lucas to ask the mechanist if M is consistent. If

the mechanist says, “no,” then Lucas may reject the mechanist’s claim as

implausible. 26 Alternatively, if the mechanist says, “yes,” then this gives

Lucas the premise that he needs to apply modus ponens to ConM → GM ,

thereby enabling him to formally prove GM . 27 28

Lucas thinks that the onus to prove ConM is on the mechanist. He is not

explicit about whether he expects the mechanist to formally (mechanist-)prove

ConM or to informally (mechanist-)prove ConM , though he likely expects the

former. If Lucas were expecting the mechanist to informally prove ConM , then

his argument would have trouble getting off the ground. If the mechanist gives

Lucas an informal proof of ConM , then when Lucas applies modus ponens to

26 Recall that Lucas thinks that given certain empirical evidence it is implausible to think
that the mind is inconsistent (see §2.1).

27Lucas 1968 p. 154)
28 I should note that it is rather odd that Lucas thinks that the mechanist’s testimony can

be made part of a formal (Lucas-)proof of anything. As Shapiro notes, “[T]his “word of the
mechanist” does not give Lucas a premise he can use (in a modus ponens on [ConM → GM ])
simply because this word does not amount to mathematical certainty.” (2003 p. 25) I think
that Shapiro is ultimately right about this. Invoking someone’s testimony in a formal proof
is generally impermissible. At best, it seems that Lucas would be able to use the mechanist’s
testimony to produce an informal proof of ConM . However, as was discussed in §2.3, an
informal proof of ConM is insufficient to show that Gödel’s theorems imply that Mechanism
is false. Still, I will give Lucas the benefit of the doubt and explore this possibility.
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ConM → GM , he will at most informally prove GM . To give a formal proof of

GM Lucas needs a formal proof of ConM . Since Lucas needs to give a formal

proof of GM in order to outstrip M , Lucas must be expecting the mechanist

to give him a formal proof of ConM .

Initially, one may object to Lucas’s claim that the onus to formally prove

ConM is on the mechanist on the grounds that it seems unwarranted. Why

should the mechanist be expected to produce a formal proof of ConM for

Lucas? Lucas reasons that since the mechanist claims that M exactly models

his mind, the mechanist must be familiar enough with M to know (i.e. prove)

whether M is consistent or inconsistent. But why think that? The mechanist

may be familiar enough with M to know that M is an exact model of Lucas’s

mind but M may be so complex that the mechanist has been unable to produce

a formal proof of ConM . Still, the mechanist may have strong informal reasons

for thinking that ConM is true. Alternatively, perhaps the mechanist is unable

to formally prove ConM because M is an exact model of the mechanist’s mind

too. 29 It would be quite unreasonable of Lucas to expect the mechanist to

do the impossible. 30 It is conceivable that the mechanist is familiar enough

with M to know that M exactly models Lucas’s mind, but that the mechanist

is unable to formally prove ConM . Hence, Lucas’s claim that the onus to

formally prove ConM is on the mechanist seems unwarranted.

Lucas could potentially avoid the objection that his claim that the onus

to formally prove ConM is on the mechanist seems unwarranted by imposing

some assumptions. Assume that the mechanist is not exactly modeled by M

29 If Mechanism is true, and M is an exact model of the mechanist’s mind, then it would
be impossible for the mechanist to prove ConM (if M is consistent).

30 Impossible, that is, if Mechanism is true.
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and that the mechanist is very clever and knows that M is consistent and

can formally prove ConM . These assumptions eliminate potential reasons

why the mechanist may be unable to formally prove ConM . Indeed, under

these assumptions, the mechanist can formally prove ConM (i.e. there is a

formal (mechanist-)proof of ConM) and so Lucas’s request for the mechanist

to produce the proof (of ConM) is reasonable (and warranted).

I will grant that Lucas’s request for the mechanist to produce a formal

proof of ConM is reasonable (and warranted) and so I will proceed under the

assumptions that the mechanist is not exactly modeled by M and that the

mechanist is clever and knows that M is consistent and can formally prove

ConM . These assumptions raise at least two related problems with Lucas’s

contention that once the mechanist gives him a formal proof of ConM , he can

soundly apply modus ponens to ConM → GM and thereby falsify Mechanism.

I will consider each below.

2.4.1 Problem 1

Under the current assumptions, it is not obvious that Lucas could use the

mechanist’s proof of ConM (or ‘ConM ’ once mechanist-proved) in a formal

(Lucas-)proof of GM . To explain why first requires briefly considering what

it means to be a ‘formal Lucas-proof’ and what it means to be a ‘formal

mechanist-proof’. The Lucas-proof relation, ‘is a Lucas-proof of ’(call this

relation, PrfLuc) is constructed as follows. A sequence of formulae, α, is a

formal Lucas-proof of some sentence, λ, just in case every formula in α is

either an axiom of Lucas’s system (mind) or follows from a previous formula

by (at least) one of the inference rules of Lucas’s system and λ is the last

22



formula of α. Hence, it is true that PrfLuc holds between pαq and pλq (i.e.

PrfLuc(pαq, pλq) is true) just in case α is a formal Lucas-proof of λ. The

mechanist-proof relation, ‘is a mechanist-proof of ’ (call this relation, PrfMec)

is constructed in a likewise manner only by the axioms and inference rules of

the mechanist’s system (mind).

The current assumptions imply that Lucas must hold that PrfLuc and

PrfMec are different relations. By assumption, M is, in fact, consistent and

there is a formal mechanist-proof of ConM . By G2, M cannot prove ConM

and so the axioms or inference rules of the mechanist’s system must be distinct

from the axioms or inference rules of M . From the hypothesis that M exactly

models Lucas (i.e. statement (L2)) it follows that the axioms or inference

rules of the mechanist’s system must be distinct from the axioms or inference

rules of Lucas’s system . Of course, Lucas’s argument is supposed to show

that it is false that he is exactly modeled by M , so he may deny that that

hypothesis can be used to show that his axioms or inference rules are distinct

from the mechanist’s. This may be true, but if Lucas wishes his argument to be

persuasive, the assumptions in play still require Lucas to hold that PrfLuc and

PrfMec are different relations. Holding that PrfLuc and PrfMec are the same

relation begs the question. The assumptions that there is a mechanist-proof

of ConM and that M is in fact consistent, imply that the mechanist is not

exactly modeled by M . Hence, holding that PrfLuc and PrfMec are the same

relation, presupposes that Lucas is not exactly modeled by M . Therefore, if

Lucas wishes his argument to be persuasive, he must hold that PrfLuc and

PrfMec are different relations.

Given that Lucas must hold that PrfLuc and PrfMec are not the same re-
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lation, it is not clear why Lucas thinks that being given the mechanist’s proof

of ConM could enable him to produce a formal Lucas-proof of GM . When

the mechanist proves ConM for Lucas, the mechanist demonstrates to Lucas

that the sequence of formulae α, is a formal mechanist-proof of ConM . That

is, the mechanist demonstrates to Lucas that PrfMec(pαq, pConMq) is true.

In order for Lucas’s argument to succeed, Lucas must be able to use this, in

some way, to construct a formal Lucas-proof of GM . Lucas does not explain

how he intends to use PrfMec(pαq, pConMq) in his own formal proof of GM .

Presumably, Lucas still intends to formally prove GM by modus ponens on

ConM → GM . This means that Lucas must be using PrfMec(pαq, pConMq)

to derive ConM in his system. But how can he do that? Lucas cannot use α to

formally prove ConM for himself (i.e. in his system). PrfLuc and PrfMec are

different relations and so, it is invalid for Lucas to infer PrfLuc(pαq, pConMq)

from PrfMec(pαq, pConMq). Perhaps Lucas plans to infer ConM directly from

PrfMec(pαq, pConMq). This would be odd. It requires postulating that Lu-

cas’s system contains a rather dubious inference rule something like: if ϕ is

a theorem of the mechanists system, infer ϕ. Not only is this rule strange

and ad hoc, it also begs the question. The rule enables Lucas to prove all

of the arithmetical sentences which the mechanist can prove. By assumption

the mechanist is not exactly modeled by M . Therefore, Lucas is not exactly

modeled by M . Hence, postulating that Lucas’s system has this strange in-

ference rule presupposes that Lucas is not exactly modeled by M . Going this

route would beg the question (it would also make Lucas’s proof of GM su-

perfluous). 31 Therefore, Lucas must not intend to infer ConM directly from

31 It is perhaps worth noting that Lucas could avoid the problem of question begging here
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PrfMec(pαq, pConMq). Failing the above two options, it is not at all clear how

Lucas could use PrfMec(pαq, pConMq) to produce a Lucas-proof of GM .

2.4.2 Problem 2

Lucas could respond to Problem 1 by arguing that it is not his knowledge that

PrfMec(pαq, pConMq) is true which enables him to produce a Lucas-proof of

ConM , rather it is his knowledge of why PrfMec(pαq, pConMq) is true. That

is, once Lucas sees the mechanist’s proof of ConM and examines how it was

carried out (i.e. which axioms and inference rules are needed for α to be a

valid formal proof of ConM), Lucas can modify his system (mind) such that α

becomes a Lucas-proof of ConM . Lucas simply recognizes which axioms and

inference rules are required to make PrfMec(pαq, pConMq) true and then adds

the required axioms or rules of inference to his system such that α becomes

a Lucas-proof of ConM . Once Lucas has done this he will be able to apply

modus ponens to ConM → GM and thereby generate a formal Lucas-proof of

GM . Thus, Lucas can prove that he is not exactly modeled by M and thereby

show that Gödel’s theorems are incompatible with Mechanism.

There is a difficulty with the above response to Problem 1. If Lucas modi-

fies his system in order to formally (Lucas-)prove ConM , then the terms of the

discussion change such that Lucas’s argument does not show that Gödel’s re-

sults imply that Mechanism is false. In “Lucas Against Mechanism II” (1979),

David Lewis makes this point by arguing along the following lines. A modi-

by dropping the assumption that the mechanist is not exactly modeled by M . However,
this would raise other problems for Lucas’s argument. Particularly, it would prevent Lucas
from being able to avoid the objection that his request that the mechanist provide him with
a formal proof of ConM is unreasonable (and unwarranted).
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fied Lucas, call him, Lucas∗, is not identical to the unmodified Lucas, Lucas.

Hence, Lucas∗ is not exactly modeled by M and so Lucas∗ can prove ConM

and thereby derive GM without contradiction. M will either possess the ability

to modify itself in the same way that Lucas can modify himself, or it will not.

If M does not have this ability, then it is Lucas’s ability to modify his system

that distinguishes him from M and not strictly his ability to prove GM . 32

If M can modify itself, as Lucas can, then M , if presented with the mecha-

nist’s proof of ConM , will modify itself to M∗ an exact model of Lucas∗. M∗

will be different from M and so no contradiction will ensue if M∗ can prove

ConM . Furthermore, since M∗, like Lucas∗, can prove ConM → GM , M∗

can also prove GM without violating Gödel’s theorems. Consequently, Lucas

would now need to show that S∗L (the set of arithmetical sentences provable

by Lucas∗) is not identical to S∗M (the set of arithmetical sentences provable

by M∗) in order to falsify Mechanism; however, his argument fails to estab-

lish that that is the case. Therefore, if Lucas modifies his system in order to

formally Lucas-prove ConM , then his argument does not show that Gödel’s

results imply that Mechanism is false. 33

There does not appear to be a way for Lucas to adapt the mechanists

formal proof of ConM into a formal Lucas-proof of ConM (from which Lucas

could derive GM) in such a way as to show that Gödel’s theorems are incom-

patible with Mechanism. Lucas’s claim that the mechanist’s formal proof of

ConM gives him the premise he needs to apply modus ponens to ConM → GM

is either false, or requires Lucas to modify his system. In either case, Lucas’s

32 Claiming that Lucas has the ability to modify his system but denying that M has the
same ability could be construed as begging the question against Mechanism.

33For Lewis’s version of this argument see (Lewise 1979 p. 376)
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argument fails to show that Gödel’s theorems are incompatible with Mecha-

nism.

2.5 Concluding Remarks on Lucas’s Argument

Lucas’s argument fails to demonstrate that Gödel’s incompleteness theorems

are incompatible with Mechanism. In order for Lucas’s argument to run, Lu-

cas must somehow (consistently) prove ConM , from which he could derive GM

and thereby demonstrate that he is not exactly modeled by M . I examined

three ways Lucas may attempt to execute this task. First, Lucas could for-

mally (Lucas-)prove ConM . As was discussed, Lucas does not provide a formal

(Lucas-)proof of ConM and the mere claim that Lucas can formally (Lucas-

)prove ConM can be rejected as it begs the question. Moreover, Lucas does

not give a compelling reason to suppose that he even could produce a formal

(Lucas-)proof of ConM without compromising his own consistency. Hence,

if Lucas were to produce a formal (Lucas-)proof of ConM , the mechanist is

entitled to conclude that Lucas’s mind is inconsistent. Second, Lucas may

attempt to prove ConM by means of an informal proof. It was shown that,

though Lucas could consistently produce an informal proof of ConM , M could

do the same thing (without violating G1 or G2). Hence, Lucas’s ability to

informally prove ConM does not show that he is not exactly modeled by M or

that Gödel’s theorems are incompatible with Mechanism. Third, Lucas could

attempt to use a formal (mechanist-)proof of ConM in his own formal proof

of GM . It was shown that this seems possible only if Lucas modifies his sys-

tem such that it contains the axioms or inference rules used by the mechanist

to produce the formal (mechanist-)proof of ConM (thus making the mecha-
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nist’s proof into a formal (Lucas-)proof). Yet, M could also carry out this

procedure without violating G1 or G2. Hence, Lucas’s ability to use a formal

(mechanist-)proof of ConM in a formal (Lucas-)proof of GM does not show

that Gödel’s theorems are incompatible with Mechanism. Therefore, Lucas’s

argument fails to show that Gödel’s incompleteness theorems are incompatible

with Mechanism.

There are serious difficulties with Lucas’s attempt to use Gödel’s theorems

to show that he cannot be exactly modeled by any formal system. It would

seem, therefore, that if one wishes to construct a convincing argument to show

that Gödel’s theorems are incompatible with Mechanism, one should try a

different approach. Roger Penrose does precisely that. In the next section

I will examine Penroses attempt to demonstrate that Gödel’s incompleteness

theorems can be used to show that the assumption that he is exactly modeled

by some formal system leads to contradiction.

3 The Penrose Argument

In Shadows of the Mind (1996), Roger Penrose devotes a considerable amount

of space to the development of Gödelean arguments against Mechanism. Be-

low I will examine the second Gödelean argument that Penrose presents in

Shadows of the Mind (often dubbed in the literature as “Penrose’s new argu-

ment”). Penrose attempts to overcome some of the more problematic elements

in the Lucas argument by structuring his argument in a slightly different way.

Penrose argues that he will be able to deduce certain sentences from the as-

sumption that he is exactly modeled by some formal system, M . Penrose
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argues that the assumption that he is exactly modeled by M together with

Gödel’s incompleteness theorems (and the fact that he can know that his mind

is sound) allow him to deduce a contradiction. He concludes that Gödel’s the-

orems imply that Mechanism is false. In this section I will show that Penrose’s

argument fails to establish that Gödel’s incompleteness theorems are incom-

patible with Mechanism.

I have divided this section into four main subsections. In section (3.1), I

present Penroses argument. Penroses argument relies, crucially, on Penrose’s

ability to know that his mind is sound. In section (3.2), I present a sketch

of Penrose’s argument for his (knowledge of) his own soundness and a worry

for that argument. In section (3.3), I develop Penrose’s argument for his own

soundness in a bit more detail and present some criticisms. In section (3.4),

I argue that even if Penrose were able to know that his mind is sound his

argument would fail to run.

3.1 Penrose’s Argument

To show that Gödel’s theorems are incompatible with Mechanism, Penrose

reasons as follows:

(P1) Suppose I am exactly modeled by a formal system, M (or “My mind

is exactly modeled by M” is true).

(P2) I know that my mind is sound

(P3) So, I know that M is sound. (from P1, P2)
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Let, M∗, be the formal system M plus the statement: “My mind is exactly

modeled by M”. 34 That is, M∗ is the formal system which outputs a set of

sentences, SM∗ , such that SM∗ contains every sentence output by M plus the

sentence “My mind is exactly modeled by M” and no other sentences.

(P4) I know M∗ is consistent. (because M is sound and “My mind is exactly

modeled by M” is true by assumption. So SM∗ is sound. Ergo, M∗ is

consistent.)

(P5) I am exactly modeled by M∗. (because, by assumption, I am exactly

modeled by M and I know “My mind is exactly modeled by M”)

(P6) So, M∗ knows that M∗ is consistent. (from P4, P5)

(P7) M∗ cannot know that M∗ is consistent (by G2)

(P8) Contradiction.

Since statement (P1) leads to contradiction, Penrose concludes that it must

be false. Penrose cannot be exactly modeled by M . Moreover, since M is

arbitrary, this conclusion generalizes to: no formal system can exactly model

Penrose’s mind. Therefore, Mechanism must be false. 35

3.2 Penrose’s Argument for his Soundness

Initially, it seems that statement (P2) is the most controversial statement in

Penroses argument. In order to draw the contradiction from Gödel’s theorems

34 Penrose does not specify which language the statement “My mind is exactly modeled
by M” is supposed to be expressed in.

35Penrose gives summaries of this argument in (1996 p. 187) ; and (1996-B §3.2).
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that he needs, the sense of the word ‘knows’ which Penrose has in mind needs

to be something like ‘formally proves’. Yet, if this is the intended sense of

‘knows’, then it is difficult to see how Penrose could know that his mind

is sound without contradicting himself or else begging the question against

Mechanism.

Penrose thinks that statement (P2) is reasonable, and demonstrable, given

the parameters of his argument. Penrose’s argument deals with a system (in

this case Penrose’s mind) reasoning about its own beliefs, specifically, what

he calls “unassailable” beliefs. Penrose insists that there is a certain class

of statements which are “unassailable” and that it is implausible to think

that such statements are false. If Penrose only asserts statements which are

“unassailable” it follows that it is implausible that his mind is unsound. But

when does a statement count as “unassailable”? Penrose is not that specific,

he writes:

Perhaps mathematicians have now become more cautious as to

what they are prepared to regard as ‘unassailably true’—after a pe-

riod of excessive boldness...at the end of the nineteenth century...I

am happy that only those things whose truth is indeed unassailable

should be included in the discussion, and that anything concerning

infinite sets that is at all questionable should not be so included.

The essential point is that wherever the line is drawn, Gödel’s argu-

ment produces statements that remain within the compass of what

is indeed unassailable...Doubtful issues in relation to the kind of

very free reasoning that Cantor, Frege, and Russell were concerned

with need not concern us so long as they remain ‘doubtful’ as op-
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posed to ‘unassailable’. This being accepted, I cannot really see

that it is plausible that mathematicians are really using an unsound

formal system F as the basis of their mathematical understandings

and beliefs. (1996 pp. 139–140)

Penrose seems to be saying that a statement is “unassailable” just when it

is believed to be true with an extremely high level of conviction or certainty.

Perhaps something on the order of the level of conviction that a mathematician

might have in believing some theorem to be true after the mathematician has

proved it. The key is that “unassailable” statements are beyond doubt and

denying their truth is implausible. Penrose limits the beliefs that he can

assert to only statements within the class of statements which are (believed

to be) “unassailable”. Hence, there is no reason to doubt the soundness of

Penrose’s mind. Therefore, Penrose argues, he knows that his mind is sound

and statement (P2) is true.

There is at least one worry with Penrose’s appeal to the “unassailable” in

his argument in support of statement (P2). Even if Penrose limits all of the

sentences which he asserts to the “unassailable” it is not obvious that he could

use that fact in a formal proof of his own soundness. There are two reasons

for this. First, unassailability seems like an epistemic property or relation.

Penrose describes sentences as being “unassailable” when they are not doubtful

and when they are such that it is implausible to deny their truth. This suggests

that unassailability is, in a sense, a measure of Penrose’s level of certainty or

the strength of his epistemic position with respect to certain sentences. It does

not necessarily follow from the fact that Penrose is certain that a sentence is

true that that sentence is, in fact, true. Second, unassailability seems too
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subjective to be used in a formal proof of soundness. Penrose thinks that the

criteria which determine whether a sentence is “unassailable” can vary from

system to system. 36 He writes,

If our robot is really to have capabilities, understandings, and in-

sights of a human mathematician, it will require some kind of

concept of ‘unassailable mathematical truth’...If our robot is to

behave like a genuine mathematician, although it will still make

mistakes from time to time, these mistakes will be correctable—

and correctable, in principle, according to its own internal criteria

of ‘unassailable truth’. (1996 pp. 157–158)

This indicates that Penrose does not think that the criteria for unassailability

need to be the same for every system. Since the criteria for unassailability

are allowed to vary from system to system, it is conceivable that a sentence

may be deemed “unassailable” by one system while another system deems that

sentence’s denial to be “unassailable”. This cannot be done with truth. Hence,

it is not obvious that unassailability can be used as a reliable indicator of truth.

If Penrose is to use unassailability in a formal proof of his own soundness, then

it needs to be a reliable indicator of truth. Therefore, it is not obvious that

Penrose can use unassailability in a formal proof of his soundness.

Penrose does not offer a response to the worry that it is not obvious that

he can use unassailability in a formal proof of his own soundness. This could

be because he is unaware that it is a worry, or perhaps because he thinks that

the structure of his argument eliminates it somehow. 37 Whatever the case

36 By ‘system’ here, I mean either a formal system or a mind.
37 I am not entirely sure how the structure of Penrose’s argument could eliminate the
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may be, neither Penrose nor his commentators make much ado about whether

unassailability is the sort of thing that Penrose can use in a proof of his own

soundness. Though I think it is a rather serious worry, I will set it aside and

proceed with an examination of Penrose’s argument as though it is not unclear

that Penrose can use unassailability as a reliable indicator of truth. I suspect

this is what many of Penrose’s commentators are doing also.

3.3 Can Penrose Prove that He is Sound?

Penrose claims that he can prove the soundness of his own mind (i.e. statement

(P2) is true) because he is able to demonstrate that every arithmetic state-

ment he proves is “unassailable”. If Penrose is using the property in a proof,

then there must be a (1-place) predicate U(x), in whatever language Penrose

uses to produce proofs (call that language, LP ) such that an LP -sentence ϕ,

is “unassailable” just in case U(pϕq) is true. For Penrose to know that a sen-

tences being “unassailable” guarantees that that sentence is not false, Penrose

must know that:

(i) U(pϕq) → ϕ

is true for all LP -sentences, ϕ. In order to use this to demonstrate his own

soundness, Penrose must also know that he does not assert (that is, prove)

any sentence if that sentence is not “unassailable”. Or equivalently, Penrose

worry. Again, Penrose’s argument deals with Penrose reasoning about his own beliefs.
Perhaps Penrose thinks that this makes his certainty of the truth of the sentences which he
proves particularly relevant to whether or not he believes himself to be sound. Or, perhaps
Penrose thinks that restricting the context to only him reasoning about his own beliefs
would avoid worries associated with the subjectivity of unassailability. As long as he does
not assert that both a sentence and its denial are “unassailable” he can use the notion to
guarantee his own soundness. This is not very convincing.
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must know:

(ii) ∀ϕ(ProvP (pϕq) → U(pϕq)

where ‘ProvP ’ is the standard provability predicate for Penrose. 38 In other

words, Penrose is claiming that he has knowledge that (i), for all LP -sentences,

if a sentence is “unassailable” then it is true and that (ii) all of the LP -

sentences which Penrose proves (or for which there is a Penrose-proof) are

“unassailable”. From his knowledge that (i) and (ii) it follows that Penrose

knows that his mind is sound. Therefore, statement (P2) is true.

As has been pointed out by David Chalmers and others, the main problem

with justifying statement (P2) in the above way, is that it leads to a contra-

diction which forces one to conclude either that statement (P2) is false, or else

that Penrose’s mind is inconsistent. 39 Whatever else one may wish to assume

about the mind of an idealized Penrose one may be confident in assuming that

it must be at least powerful enough to prove the diagonalization lemma. This

means that there is an LP -sentence, λ, such that Penrose proves:

(*) ¬U(pλq) ↔ λ

Since Penrose knows that (i) is true for all LP -sentences and λ is an LP -

sentence, λ can be substituted for ϕ in (i), and so Penrose must also prove:

(**) U(pλq) → λ

From (*) and (**) it follows that (U(pλq) ∨ ¬U(pλq)) → λ . Since U(pλq) ∨

¬U(pλq) is a tautology, Penrose proves it. Hence, Penrose must prove λ.

38 ProvP (pϕq) expresses ∃x(PrfPenrose(x, pϕq))
39See: (Chalmers 1995 §§3.8–3.13); (Shapiro 2003 p. 30); and (Lindström 2006 p. 235)
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If Penrose proves λ, then there is a Penrose-proof of λ, and so from (ii) it

follows that Penrose proves U(pλq). Yet, from the fact that Penrose proves

(*) and λ, it also follows that Penrose proves ¬U(pλq). Hence Penrose proves

a contradiction. Penrose either knows that his mind is sound or he does not.

If Penrose knows that his mind is sound (through knowing (i) and (ii)), then

it would seem that his mind is, in fact, inconsistent. Of course, if Penrose’s

mind is inconsistent, then his argument fails to show that Gödel’s theorems

are incompatible with Mechanism. 40 Alternatively, if Penrose does not know

that his mind is sound, then statement (P2) is false and his argument against

Mechanism is unsound.

Penrose responds to the criticism that he cannot know his own soundness

because (i) and (ii) lead to contradiction by imposing a restriction and making

a change. He writes:

The belief system B, in question, is simply the one which “be-

lieves” (and is prepared to assert as “unassailably perceived”) a

[Π1-sentence] S if and only if S happens to be true. B is not al-

lowed to “output” anything other than a decision as to whether

or not a suggested [Π1-sentence] is true or false...However, as part

of its internal musings, it is allowed to contemplate other kinds of

thing[s].41 (1996-B §3.8)

Penrose intends to impose a restriction and make a slight change. Firstly, each

member ϕ of the set of arithmetic sentences which Penrose asserts (or proves),

40 This is because his argument would fail to show that he can know something that no
formal system can know. If Penrose’s mind is inconsistent then so are M and M∗. Hence
they each prove every arithmetic statement.

41Penrose uses the term “P-sentence” to refer to Π1-sentences in the original text. I have
changed ‘P-sentence’ to ‘Π1-sentence’ throughout the quotation.
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SP , must be Π1.
42 Secondly, change the claim that Penrose knows that (i) is

true for all LP -sentences to: Penrose knows that :

(i∗) U(pϕq) ↔ ϕ

is true for all LP -sentences ϕ if ϕ is Π1. By imposing this restriction and

making this change, the objection presented above is avoided and Penrose

is still able to know that he is sound. Given the change, the LP -sentence

λ, for which it is provable that ¬U(pλq) ↔ λ, will not be Π1. This means

that λ cannot be validly substituted into (i*). Moreover, since membership

in SP is restricted to only Π1-sentences, Penrose cannot prove λ. Hence, no

contradiction follows from (i*) and (ii). Restricting membership in SP to only

Π1-sentences means that, if Penrose can prove that (i*) is true for all LP -

sentences ϕ if ϕ is Π1 and that (ii) is true, then he can prove that SP is sound.

Penrose asserts that he can prove that (i*) is true for all LP -sentences ϕ if ϕ

is Π1 and that (ii) is true. If so, Penrose knows that his mind is sound and

statement (P2) is true.

Penrose’s method for demonstrating his own soundness is no longer ob-

viously contradictory, but it is hardly convincing. Penrose does not actually

demonstrate that that he can prove that (i*) is true for all LP -sentences ϕ if

ϕ is Π1 and that (ii) is true, he merely stipulates it. Given the restriction that

Penrose can only prove Π1-sentences, if (i*) is true for all LP -sentences ϕ if ϕ

is Π1 and (ii) is true, then Penrose can only prove true (Π1) sentences. Hence,

Penrose is, in effect, “demonstrating” that he is sound by stipulating that he

is only able to prove true (Π1) sentences. Of course Penrose is sound if he is

42 A Π1-sentence is (or is logically equivalent to) a sentence which begins with one or
more unbounded universal quantifiers (followed by a ∆0 wff). It is important to note that
‘ConM ’ is a Π1-sentence. ‘ConM ’ expresses ‘∀x¬(PrfM (x, p⊥q))’
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only able to prove true (Π1) sentences, but why should the mechanist grant

that Penrose is only able to prove true (Π1) sentences? Penrose’s merely stip-

ulating that he is only able to prove true (Π1) sentences and claiming to know

that he is sound on that basis is hardly convincing. Hence, the mechanist does

not need to concede that (P2) is true. But things are even worse for Penrose

because even with (P2) his argument fails.

3.4 Knowing He is Sound Does Not Save Penrose’s Ar-

gument

Grant, for the moment, that Penrose knows that (i*) is true for all LP -sentences

ϕ if ϕ is Π1 and that (ii) is true. This combined with Penrose’s restriction

that SP contains only Π1-sentences means that Penrose knows that his mind

is sound; however, even with this concession, Penrose’s argument will fail. In

“Mechanism, Truth, and Penrose’s New Argument” (2003), Shapiro notes that

Penrose’s restrictions block the inference to statement (P4) in his argument:

I know M∗ is consistent. 43 This is because Penrose’s restrictions prevent him

from inferring the soundness of M∗. Recall that M∗ is the formal system which

outputs a set of sentences, SM∗ , such that SM∗ contains every sentence output

by M plus statement (P1) My mind is exactly modeled by M and no other

sentences. The statement, “My mind is exactly modeled by M”, when uttered

by Penrose, is equivalent to the claim that for any LP -sentence ϕ, there is a

Penrose-proof of ϕ just in case there is an M -proof of ϕ. Thus, statement (P1)

43 Shapiro’s formulation of Penrose’s argument is slightly different than mine and so his
formulation of this problem is slightly different than the one I give here. However, the point
is the same.
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expresses:

(P1∗) ∀ϕ(ProvP (pϕq) ↔ ProvM(pϕq))

This raises a problem for Penroses argument because (P1∗) is not a Π1-

sentence. Penrose has restricted the LP -predicate U(x) such that it is a reliable

indicator of truth for only Π1-sentences. This means that Penrose cannot as-

sert, or suppose, that U(pP1∗q) is true and declare M∗ to be sound on that

basis. U(pP1∗q) would reliably indicate the truth of (P1∗) only if (P1∗) were

Π1. (P1∗) is not Π1. Hence, U(pP1∗q) will not reliably indicate the truth of

(P1∗). This means that Penrose’s method for determining the soundness of a

system (specifically his mind and M) is not reliable for M∗. Therefore, the

inference to statement (P4) in his argument is blocked and so his argument is

unsound. 44

Penrose could respond to Shapiros objection by arguing that he does not

need U(pP1∗q) to reliably indicate the truth of (P1∗) in order to determine that

M∗ is sound because he does not need to appeal to U(pP1∗q) in order to make

that determination. Penrose only needs the LP -predicate U(x) to demonstrate

that his mind is sound. Penrose knows that all of the sentences which he proves

are unassailable (i.e. ∀ϕ(ProvP (pϕq) → U(pϕq))). Since Penrose knows that

(U(pϕq) ↔ ϕ) is true for all Π1-sentences and since Penrose is only able to

prove Π1-sentences, Penrose knows that all of the sentences he proves are true.

Hence, Penrose knows that his mind is sound and, by the assumption that M

exactly models his mind, Penrose knows that M is sound too. Since Penrose

knows that M is sound, he can infer the soundness of M∗ directly from the

assumption that (P1∗) is true. Penrose’s argument begins with the assumption

44For Shapiro’s formulation of this problem see (Shapiro 2003 pp. 31–32).
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that (P1∗) is true. SM∗ contains every sentence output by M plus (P1∗) and no

other sentences. Penrose knows that every sentence output by M is true (since

he knows that M is sound) and, by assumption, Penrose knows that (P1∗) is

true. Hence, Penrose knows (by assumption and M ’s soundness) that SM∗

contains only true sentences. Therefore, Penrose knows (by assumption and

M ’s soundness) that M∗ is sound. Therefore, Penrose does not need U(pP1∗q)

to reliably indicate the truth of (P1∗) in order to determine that M∗ is sound

because Penrose does not need to appeal to U(pP1∗q) in order to make that

determination.

Even if it is conceded that Penrose knows that the soundness of M∗ follows

from the assumption that (P1∗) is true, Penrose’s argument still fails because

it is not possible for both statement (P2) and statement (P5) to be true. Recall

that in order for statement (P2) to be true, Penrose needs to restrict the kinds

of sentences which he can assert to only Π1-sentences, and he needs to restrict

unassailability as being a reliable indicator of truth for only Π1-sentences. If

statement (P2) is true, then at least these two restrictions need to be in place.

45 Statement (P5) is the claim that Penrose is exactly modeled by M∗ (when

statement (P5) is uttered by Penrose). So, statement (P5) is true just in case:

(P5∗) ∀ϕ((ProvP (pϕq) ↔ (ProvM∗(pϕq)))

is true. It follows from the definition of M* that ProvM∗(pP1∗q) is true; how-

ever, if statement (P2) is true, then ProvP (pP1∗q) cannot be true because

(P1∗) is not a Π1-sentence and Penrose cannot prove (i.e. assert) non-Π1-

sentences. Hence, Penrose must reject either statement (P2), I know that my

45 Recall that if these two restrictions are not in place, then it is not possible for Penrose
to consistently know that he is sound.
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mind is sound or else statement (P5) I am exactly modeled by M∗. If Penrose

rejects statement (P2), then his argument collapses immediately. Alterna-

tively, if Penrose rejects statement (P5) then even if he knows that M∗ is

sound, and thereby knows that M∗ is consistent, it will no longer follow that

M∗ knows that M∗ is consistent. Hence, if Penrose rejects statement (P5),

then his argument will fail to generate a contradiction from the assumption

that he is exactly modeled by M . Since either statement (P2) or (P5) must be

false and Penroses argument collapses unless both are true, Penroses argument

fails to falsify Mechanism. 46

3.5 Concluding Remarks on Penrose’s Argument

Penrose’s argument does not conclusively show that Gödel’s theorems are in-

compatible with Mechanism. There are a number of problems with Penrose’s

argument, each of which seems to stem from Penrose’s claim to know that

his mind is sound (i.e. statement (P2)). It was shown that Penrose’s method

for demonstrating his own soundness implies that he is inconsistent, unless he

imposes certain restrictions. However, even with the restrictions, Penrose’s

“demonstration” of his own soundness remains unconvincing because Penrose

does not really demonstrate that his mind is sound, he stipulates it. More-

over, the restrictions that Penrose requires to make (P2) true block inferences

46 At this juncture it could be argued that Penrose’s ability to demonstrate his own
soundness is enough to show, from Gödel’s theorems that he cannot be exactly modeled by
any formal system. Going this route would require tweaking Penrose’s argument slightly,
but ultimately it will remain unconvincing (given Penrose’s current argument for his own
soundness). As was pointed out at the end of §3.3, Penrose does not actually demonstrate
his own soundness, he merely stipulates it. In order to make a convincing case against
Mechanism, Penrose would need to give a better demonstration of his own soundness. As
yet, no such demonstration is forthcoming.
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to other key premises in his argument. The inference to (P4) I know that M∗

is consistent (when uttered by Penrose) is blocked because Penroses method

for determining soundness is not reliable for M∗. Additionally, it is not pos-

sible for both (P2) and (P5) I am exactly modeled by M∗ (when uttered by

Penrose) to both be true because if (P2) is true, then Penrose is prohibited

from proving non-Π1-sentences and M∗ proves (at least one) non-Π1-sentence.

Yet, if either (P2) or (P5) is rejected, Penrose’s argument no longer shows

that a contradiction follows from the assumption that he is exactly modeled

by some formal system, M .

Neither Lucas’s argument nor Penroses argument convincingly demon-

strates that Gödel’s theorems are incompatible with Mechanism. David Chalmers

observes that,

[T]he deepest flaw [in Gödelean arguments against Mechanism] lies

in the assumption that we know that we are sound. All Gödelean

arguments appeal to this premise somewhere, but in fact the premise

generates a contradiction. Perhaps we are sound, but we cannot

know unassailably that we are sound. (1995 § 3.14)

Chalmers seems right, at least in part. It appears that the major weakness of

both arguments is an inability to convincingly demonstrate that the human

mind is capable of (consistently) proving its own soundness or consistency

or the consistency of M . Perhaps what is needed is an argument for the

incompatibility of Gödel’s theorems with Mechanism which does not appeal to

the mind’s ability to prove its own soundness or consistency or the consistency

of M . Storrs McCall develops such an argument. 47 In the next section I

47Note: This is not quite accurate. McCall’s argument does, in a sense, rely on a consis-
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will examine McCalls attempt to show that the human mind can gain certain

knowledge from Gödel’s incompleteness theorems which no formal system can

possess.

4 The McCall Argument

In his paper, “Can a Turing Machine Know that the Gödel Sentence is True?”

(1999) McCall presents an innovative argument intended to show that Gödel’s

theorems are (indirectly) incompatible with Mechanism. 48 He points out that

Gödel’s incompleteness theorems can be used to demonstrate that truth and

provability diverge and that this divergence, and the human mind’s awareness

of it, points to a fundamental difference between human and machine thinking.

He makes two main points. The first is that the human mind is able to

know when a (particular) sentence is true and not provable, but no formal

system has such knowledge. The second is that no formal system is capable

of knowing about the existence of category true but not provable. It is this

second point which makes McCall’s argument so unique. Unlike the other

arguments which have been examined so far, McCall’s second point does not

rely on his being able to demonstrate his own consistency or the consistency

of the formal system which is alleged to exactly model his mind in order to

tency proof. He is required to assume the consistency of his mind and of the formal system
which exactly models it in order to draw his conclusion. If his claim is that no formal system
can prove what he can prove, then the consistency of each seems presupposed. Else, each
could prove everything.

48 My use of ‘indirectly’ in parentheses is intended to make it explicit that that Mc-
Call’s argument (if successful) shows that Gödel’s theorems are indirectly incompatible with
Mechanism. McCall’s argument is supposed to show that the human mind is able to learn
something from Gödel’s results which no formal system is capable of learning. So, it is not
Gödel’s theorems per se which are incompatible with Mechanism, rather it is what we can
learn from them.
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draw the conclusion that Mechanism is false. 49 This allows McCall to avoid

the primary difficulties associated with the Lucas and Penrose arguments.

Still, it is not clear that McCall is successful in his efforts. Below I will show

that McCall’s argument fails to show that Gödel’s theorems are (indirectly)

incompatible with Mechanism despite his novel approach.

I have divided this section into three main subsections. In section (4.1), I

present McCalls argument. In section (4.2), I discuss McCalls first claim that

he, unlike a formal system, is able to know when a (particular) sentence is

true but not provable. I argue that McCall does not show that he has such

knowledge when the formal system under consideration is the one which is

alleged to exactly model his mind. In section (4.3), I explore McCall’s second

claim and argue that it is possible for a formal system to know about the

existence of the category true but not provable.

4.1 McCall’s Argument

McCalls argument may be put as follows:

(M1) Gödel’s incompleteness theorems show that for any formal system, M ,

if M is consistent, then its Gödel’s sentence, GM , is not provable (in

M) but true.

(M2) Gödel’s incompleteness theorems show that for any formal system, M ,

if M is inconsistent, then its Gödel sentence, GM , is provable (in M)

but false.

49See Footnote: 47
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(M3) So, Gödel’s incompleteness theorems show that truth and provability

diverge.

(M4) The statement “if M is consistent, then ¬GM is not provable (in M)”

(call it TNP) is true but not provable (in M).

(M5) McCall knows that TNP is true but not provable (in M) but M cannot

know that.

(M6) McCall knows about the existence of the category true but not provable

but M cannot.

(M7) Therefore, McCall is not exactly modeled by M .

Statement (M7) is supposed to follow independently from either statement

(M5) or (M6). If either claim is true, where M is supposed to exactly model

McCall’s mind, then his argument succeeds as a refutation of Mechanism.

Below I will examine each of these claims in turn and show that both are false

where M is supposed to exactly model McCall’s mind.

4.2 McCall’s First Claim: Statement (M5)

In statement (M5), McCall makes two crucial claims. Firstly, that he knows

that TNP is true but not provable (in M) and secondly that M does not know

that TNP is true but not provable (in M). With respect to the first claim,

McCall thinks that the truth of TNP appears to follow directly from G1. G1

shows that if M is consistent, then GM is undecidable in M . Hence, M cannot

prove ¬GM (if it is consistent). 50 So the statement, “If M is consistent then

50 Note: McCall is somewhat mistaken here. G1 implies that ¬GM is unprovable in M
with the stronger assumption that M is ω-consistent. This comes up in § 4.2.1.
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¬GM is not provable (in M)” (i.e. TNP) must be true. McCall then argues

that TNP is unprovable in M , though he does not give a decisive argument to

that effect. McCall insists merely that it is unlikely that M could produce a

proof of TNP. McCall uses PA to illustrate his point noting,

[T]he consequent...of [ConPA → ¬ProvPA(pProvPA(pGPAq)q)] is

a net strengthening of the consequent...of [ConPA → ¬ProvPA(pGPAq)]

and it is unlikely that the long and complex proof of [ConPA →

¬ProvPA(pGPAq)] in PA could be reworked so as to yield a proof

of [ConPA → ¬ProvPA(pProvPA(pGPAq)q)].51 (1999 p. 529)

Of course, this falls short of a proof that the PA-analog of TNP (i.e. ‘ConPA →

¬ProvPA(pProvPA(pGPAq)q)’) is not provable in PA, but I will not harp on

that point now. Instead, I will grant that McCall is right that PA cannot,

in fact, prove its analog of TNP. McCall goes on to claim that every formal

system which extends PA will have a TNP analog of its own. 52 Since it is

unlikely that PA can prove its TNP analog, it is also unlikely that any formal

system which extends PA will be able to prove its TNP analog (provided the

formal system is consistent). Hence, if one grants that PA cannot prove its

TNP analog, one should also grant that no formal system which extends PA

can prove its TNP analog either. Since McCall knows that M will at least

extend PA where M is supposed to exactly model his mind, McCall knows

that TNP is true but not provable for M where M is supposed to exactly

model his mind.

51I have changed McCall’s notation and omitted some of his abbreviations to better match
the notation used throughout this paper as well as to (I hope) better facilitate readability.
The content remains the same.

52(McCall 1999 p. 531)
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McCall thinks that, unlike him, M cannot know that TNP is true but not

provable in M (i.e. the second crucial claim of (M5) is true). The reason

is rather straight forward. McCall thinks that ‘knowability’ is identical with

‘provability’ when it comes to formal systems. He writes, “A [formal system]

can know what it can prove, that is, deduce from axioms using well-defined

rules of inference. Its axiomatic database may be large, and its rules of infer-

ence may be efficient and powerful. But for a [formal system], knowability =

provability.” (1999 p. 525) Granting him this equivalence, it would seem that

M cannot know that TNP is true but not provable in M (if M is consistent).

If M were to know that TNP is true but not provable in M , then M would

prove that it is not the case that there is an M -proof of TNP. It does not seem

that M could know that TNP is also true unless M proves TNP. Yet, if M

proves TNP then M will prove that there is an M -proof of TNP. M cannot

do this if it is consistent. 53 McCall concludes that M cannot know that TNP

is true but not provable in M . Hence, statement (M5) in his argument is true

and he cannot be exactly modeled by M .

4.2.1 Statement (M5) is False

Contrary to what McCall argues, statement (M5) is false where M is supposed

to exactly model McCall’s mind. The key to showing that (M5) is false (where

M is supposed to exactly model McCall’s mind) rests on McCall’s assertion

that knowability is identical with provability for formal systems. If McCall’s

argument is to convincingly show that Gödel’s theorems are (indirectly) incom-

53 The reason for this has to do with Σ1-completeness. The problem is analogous to the
one described on pp. 52–53 (also see footnotes 58 and 60).
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patible with Mechanism, then McCall needs to regard knowability as identical

with provability with respect to human subjects also. If McCall claims oth-

erwise (i.e. that knowability is not identical with provability with respect to

human subjects), then his conclusion, (M7) McCall is not exactly modeled by

M would no longer follow from (M5) (or (M6)). To show that McCall is not

exactly modeled by M , McCall must show that he can prove something which

M cannot (or vice versa I suppose). Since statement (M5) (and (M6)) claim

only that McCall has knowledge which M cannot have, in order for McCall’s

conclusion to follow knowability and provability must be identical for McCall

too (at least with respect to the knowledge claims made in (M5) and (M6)).

With this in mind, it is possible to show that statement (M5) is false.

Strictly speaking, statement (M5) is false where M is supposed to exactly

model McCall’s mind because McCall does not prove that TNP is true but

not provable in M . However, there is another reason to doubt (M5). McCall

defends (M5) by arguing that PA cannot prove its analog of TNP and that

he knows that the PA analog of TNP is true by G1. McCall then extends

this result to apply to all extensions of PA (which will include M where M

exactly models his mind). However, McCall’s defense of (M5) is problematic.

Alexander George and D. J. Velleman (2000) point out that McCall is not

actually capable of establishing the PA analog of TNP: if PA is consistent,

then ¬GPA is not provable (in PA) by G1. Rather, by G1 McCall is capable

of establishing TNP′: if PA is ω-consistent, then ¬GPA is not provable (in

PA). That ¬GPA is not provable in PA cannot be inferred from the mere

consistency of PA alone. The stronger assumption of ω-consistency is needed

to show that ¬GPA is not provable in PA. If PA were ω-inconsistent it could
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be possible for ¬GPA (i.e. ∃x(PrfPA(x, pGPAq))) to be derived in PA and yet

for each number n to fail to be the Gödel number of a PA-proof of GPA. 54 If

PA were ω-inconsistent, it would not entail that PA is inconsistent. That is, it

is possible for PA to be consistent and ω-inconsistent. 55 Thus, that ¬GPA is

not provable in PA cannot be inferred from the mere consistency of PA by G1.

Since McCall is only capable of establishing TNP′ and not (the PA analog of)

TNP (by G1), his defense of (M5) fails. 56 As (M5) is, strictly speaking, false

and McCall’s defense of (M5) fails, statement (M5) can be rejected.

4.3 McCall’s Second Claim: Statement (M6)

McCall can respond to the criticism that (M5) is false by pointing out that

his argument does not need (M5) in order to show that Gödel’s theorems

are (indirectly) incompatible with Mechanism. Indeed, McCall thinks that

the main thrust of his argument comes from (M6), McCall knows about (the

existence of) the category ‘true but not provable’ but M cannot. He writes,

“Recognition of the existence of such a category therefore marks the difference

in principle between human and machine thinking.” (1999 p. 529) If McCall

is correct, it is (M6) which shows that Mechanism is false. Like statement

(M5), statement (M6) is made up of two parts. Firstly, that McCall knows

54A theory T , is ω-inconsistent just in case for some open formula, F (x) T proves ∃xF (x),
yet for each number, n, T proves ¬F (n). So if PA were ω-inconsistent it could prove
∃x(PrfPA(x, pGPAq)) and for each number n, PA could prove ¬PrfPA(n, pGPAq).

55 This can be illustrated by considering a theory T , which is PA plus ¬GPA as an
additional axiom. If PA is consistent, then so is T (but T is ω-inconsistent). If T is not
consistent, then PA plus ¬GPA implies a contradiction. So, PA proves GPA, but if PA
is consistent, then that is not possible (by G1). Hence, if PA is consistent, then so is T .
But T proves ∃x(PrfPA(x, pGPAq)) (i.e.¬GPA) and since T has all of PA’s axioms it must
also prove for each number n, that ¬PrfPA(n, pGPAq). Hence, T is ω-inconsistent and
consistent (if PA is consistent). (This illustration is adapted from (Smith 2007 p. 144))

56(George & Velleman 2000 pp. 548–549); also see (Tennant 2001)
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about the existence of the category true but not provable and secondly that

no formal system can know about the existence of that category. The first

part of statement (M6) is meant to be uncontroversial, given the fact that

McCall understands Gödel’s incompleteness theorems. Gödel’s theorems show

that truth and provability diverge and McCalls recognition of this divergence

makes him aware of the existence of the category true but not provable.

It seems fairly obvious that the human mind knows about the existence

of the category true but not provable; however, it is perhaps less obvious that

M cannot know about the existence of that category. One can construct a

predicate within the language of M , call it L, which expresses the concept of

‘provability’. If one could also construct an L-predicate which expresses the

concept of ‘truth’, then M could know about the category true but not provable

by proving that the former (proof) predicate does not apply to (the Gödel

number of) some formula, while the latter (truth) predicate does. McCall

argues that this is impossible. He claims that Tarski’s theorem proves that,

The notion of “truth” in PA is...on quite a different footing from

that of “provability.” The latter concept is represented by an

open arithmetical formula; no analogous formula expresses (much

less represents) the former, thus reinforcing the hypothesis that

“truth,” though meaningful to humans is a closed book to a [for-

mal system]. (1999 p. 530)

McCall is correct (in a sense). Tarski’s theorem demonstrates two things.

First that no formal system (which is consistent, p.r. axiomatized and extends

Robinson arithmetic (Q)) can define ‘truth’ (i.e. a truth predicate) for its own

language, and second that no language, L, rich enough to formulate (a theory
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equivalent to) Q can express the property of numbering an L-truth. It seems

to me that McCall’s appeal is to the first.

If M cannot define ‘truth’ in the same way that it can define ‘provability’,

then M cannot know about the category of true but not provable because M

will be unable to prove of any sentence that it is both true and not provable.

Tarski proved that no formal system (which is consistent, p.r. axiomatized

and extends Q) can define ‘truth’ for its own language. Hence, M cannot

define ‘truth’ for its own language. 57 To see why suppose otherwise. Let M

be a consistent, p.r. axiomatized formal system which extends Q and which

has a language L and suppose that M can define ‘truth’ for L. So, there is a

predicate of L, call it Tru(x) such that for any sentence of L, ϕ:

M ` ϕ↔ Tru(pϕq)

M is strong enough to prove the diagonalization lemma, so there is a fixed

point, λ, for ¬Tru(x) such that

M ` λ↔ ¬Tru(pλq)

Since λ is a sentence of L and since, by supposition, M proves ϕ↔ Tru(pϕq)

for all sentences of L:

M ` λ↔ Tru(pλq)

It follows that M cannot be consistent, contra the initial supposition. Ergo,

M cannot define ‘truth’ for its own language. Therefore, McCall contends, it

is not possible for M to know about the category true but not provable.

57I take it that McCall thinks that if M is supposed to exactly model his mind, then M
will be such that Tarski’s theorem will apply to it. Of course, as has been discussed before,
the mechanist has the option of saying that McCall’s mind is inconsistent and so the formal
system which exactly models his mind is inconsistent too.
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There is an additional problem, which McCall does not mention. It seems

that even if M could define the concept of ‘truth’ (for a language other than its

own), it would not be able to consistently know about the concept of true but

not provable (that is, ‘true but not M -provable’) provided M is Σ1-complete.

58 Presumably, M would be Σ1-complete if it is supposed to exactly model

McCall’s mind because M should, at least extend PA. To see why this leads

to problems suppose M can define ‘truth’ for a language L′ (i.e. a language

other than its own language, L), and that M knows about the concept ‘true

but not (M -)provable’. So, for all L′-sentences ϕ, M proves ϕ ↔ Tru(pϕq)

and of some L′-sentence ψ, M proves that:

(i) Tru(pψq) ∧ ¬ProvM(pψq)59

That is, that ψ is true and not provable (in M). Since M proves (i), M also

proves each conjunct of (i). So M proves:

Tru(pψq)

And

¬ProvM(pψq)

Since ψ is an L′-sentence and M proves ϕ↔ Tru(pϕq) for all L′-sentences ϕ,

M proves:

ψ ↔ Tru(pψq)

58M is Σ1-complete just in case for any Σ1-sentence ϕ, if ϕ is true, then M proves ϕ.
A Σ1-sentence is (or is logically equivalent to) a sentence which begins with one or more
unbounded existential quantifiers (followed by a ∆0 wff).

59Given McCall’s stipulation that knowability is identical with provability for M , if M is
to know about the category ‘true but not provable (in M)’, McCall thinks that M needs to
prove (i) or something equivalent.
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Hence, M proves ψ. Since M proves ψ, there is an M -proof of ψ and so M

will prove:

ProvM(pψq)60

Hence, M proves a contradiction and so, even if M could define ‘truth’ for L′,

M cannot both be consistent and know about the concept ‘true but not (M -

)provable’. McCall concludes that M is unable to know about the category of

‘true but not provable’, and so there is a fundamental difference between M

and McCall. Namely, exactly what statement (M6) expresses: McCall knows

about (the existence of) the category ‘true but not provable’ but M cannot.

Therefore, McCall’s argument shows that Gödel’s theorems are (indirectly)

incompatible with Mechanism.

4.3.1 Statement (M6) is False

McCall’s arguments do not show that it is impossible for M to know about the

existence of the category true but not provable. McCall is right that M cannot

define ‘truth’ for its own language without violating Tarski’s theorem and it

is not possible for M to consistently know about the category ‘true but not

(M-)provable’ (provided M is Σ1-complete). However, neither of those facts

imply that M is incapable of knowing about the category true but not provable

altogether. McCall seems to ignore the possibility that M can know about the

existence of the category true but not provable provided it is doing so with

respect to a language (and formal system) less rich than its own (and other

than itself). To illustrate, let M ’s language, L include a language L∗. Let the

60This is because M is Σ1-complete and ProvM (pψq) is a true Σ1-sentence (it expresses:
∃x(PrfM (x, pψq))).
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open L well formed formula Tru(x) be a formal truth-predicate for L∗ such

that for every L∗-sentence ψ, Tru(pψq) ↔ ψ is true. Let M be a truth-theory

for L∗ such that M proves Tru(pψq) ↔ ψ for every L∗-sentence ψ. Let M1 be

a consistent formal system with language, L∗, and let M be richer than M1.

61 With this in mind, it is entirely possible that for some L∗-sentence, λ, M

proves:

(i′) Tru(pλq) ∧ ¬ProvM1(pλq)

That is, it is possible for M to prove that λ is true but not provable in M1

without resulting in contradiction. (i′) does not represent a violation of Tarski’s

theorem nor does (i′) lead to contradiction based on M ’s Σ1-completeness.

Hence, it is possible for M to know about the existence of the category ‘true

but not provable’ with respect to a language (and formal system) less rich

than its own (and other than itself). Therefore, statement (M6) is, strictly

speaking, false.

McCall may respond by insisting that it is not the knowledge of the exis-

tence of a narrow category of true but not provable which he has in mind. That

is, showing that (M6) is false requires more than showing that it is possible

for M to know about the existence of the category true but not provable with

respect to a language (and formal system) less rich than its own (and other

than itself). In order to show that statement (M6) is false it must be demon-

strated that M knows about the existence of the category true but not provable

with respect to every language and every (consistent) formal system. After

all, it seems that the human mind recognizes that this is a category which

61M must be rich enough to prove that λ is not provable in M1 and rich enough to prove
λ.
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exists with respect to every language and for every (consistent) formal system.

It is McCall’s ability to recognize the existence of the category in this broad

sense which marks the difference between his mind and M . Thus, McCall is

not really claiming (M6) but (M6∗) McCall knows that the category true but

not provable exists for every language and every (consistent) formal system

(including for M where M exactly models his mind), but M cannot. (M6*) is

not shown to be false by M ’s ability to prove (i′). Moreover, since McCall’s

conclusion (M7) follows from (M6∗), (M7) stands, McCall is not exactly mod-

eled by M . Therefore, McCall’s argument shows that Gödel’s theorems are

(indirectly) incompatible with Mechanism.

If McCall changes (M6) to (M6∗) his argument still fails to convincingly

demonstrate that Gödel’s theorems are (indirectly) incompatible with Mecha-

nism. It is not clear that (M6∗) is true. It seems plausible that McCall might

“know” that the category true but not provable exists for every formal system

in some kind of semantic sense, but that is not what McCall needs. To show

that (M6∗) is true, McCall must prove that there is a sentence in M ’s language

such that it is true but not provable in M where M is supposed to exactly

model McCall’s mind. McCall does not do this. Moreover, if Mechanism is

true, then Tarski’s theorem holds for McCall’s mind (if he is consistent). Thus,

if Mechanism is true, it is impossible for McCall to prove that there is a sen-

tence in M ’s language such that it is true but not provable in M where M is

supposed to exactly model his mind. Hence, changing (M6) to (M6∗) seems

to be unjustified at best and question begging at worst. Therefore, if McCall

changes (M6) to (M6∗) his argument still fails to convincingly demonstrate

that Gödel’s theorems are (indirectly) incompatible with Mechanism.
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4.4 Concluding Remarks on McCall’s Argument

McCall’s argument fails to show that Gödel’s incompleteness theorems are

(indirectly) incompatible with Mechanism. Both of the major claims McCall

makes in support of his conclusion that he is not exactly modeled by M ,

(M5) and (M6), turn out to be false. Statement (M5) is false because McCall

does not actually prove that TNP is true but not provable in M where M is

supposed to exactly model his mind. Moreover, McCall’s argument that TNP

is true but not provable in M is entirely unconvincing. Statement (M6) is

false because it is possible for M to know about the existence of the category

true but not provable with respect to a language (and formal system) less rich

than its own (and other than itself). Hence, McCall’s argument fails to show

that he is not exactly modeled by M . Therefore, McCall’s argument fails to

show that Gödel’s incompleteness theorems are (indirectly) incompatible with

Mechanism.

5 Conclusions

Each of the three arguments which I have examined has failed to demonstrate

that Gödel’s incompleteness theorems are incompatible (directly or indirectly)

with Mechanism. Lucas’s approach fails because he is unable to demonstrate

that he can consistently formally (Lucas-)prove ConM or make use of a formal

(non-Lucas-)proof of ConM in a way that M cannot. Penrose attempts to

overcome these difficulties by arguing that he is able to deduce a contradic-

tion from the mere assumption that he is modeled by some formal system M .

Ultimately, however, Penrose’s attempt fails. The success of Penrose’s argu-
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ment relies crucially on his ability to demonstrate his own soundness. Penroses

method for demonstrating his own soundness either leads to inconsistency, or

else blocks the inferences to essential premises in his argument, or can be re-

jected as unconvincing because Penrose merely stipulates his own soundness,

he does not prove it. McCall is able to (in part) overcome the major difficul-

ties associated with the Penrose and Lucas arguments surrounding consistency

and soundness proofs. McCall argues that Gödel’s incompleteness theorems

give him knowledge of the existence of the category true but not provable. He

argues that it is impossible for any formal system (which extends PA) to have

such knowledge; yet, it was shown that it is possible for a formal system to

know about the category true but not provable with respect to a language (and

formal system) less rich than its own (and other than itself).

The above three attempts to demonstrate that Gödel’s theorems are incom-

patible with Mechanism have each failed, but I think something more general

can be said. Each of the arguments takes a different approach to the issue, yet

they all share a common feature. They each attempt to demonstrate that given

Gödel’s results, the human mind is capable of proving some sentence which

no formal system M is capable of proving. Indeed, it seems that, minimally,

any argument which purports to show that Gödel’s theorems are incompatible

with Mechanism (directly or indirectly) must demonstrate precisely that. The

trouble is that any such argument (which could currently exist) will likely be

too imprecise to yield any real or definitive conclusions in this matter.

Any argument which purports to show that Gödel’s theorems are incom-

patible with Mechanism, and which could currently exist, will likely be too

imprecise to yield any real or definitive conclusions. The arguments examined
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above serve as a good illustration of why this is the case. Each author made

use of sentences like ‘ConM ’ and ‘GM ’, but how are these sentences to be un-

derstood? The authors seem only to define these sentences in terms of what

they indirectly state (and/or for being like their analogs in defined theories

like PA). Namely, there is no n which is the Gödel’s number of an M-proof of

a contradiction or of GM . But what is an ‘M -proof’? What are M ’s axioms?

What are M ’s inference rules? Without answering questions like these, sen-

tences like ‘ConM ’ and ‘GM ’ remain, essentially, undefined. In his criticism of

Lucas’s argument Benacerraf writes:

If given a black box and told not to peek inside, then what reason

is there to suppose that Lucas or I can determine its program by

watching its output? But I must be able to determine its program

(if that makes sense) if I am to carry out Gödel’s argument in con-

nection with it...If the machine is not designated in such a way

that there is an effective procedure for recovering the machine’s

program from the designation, one may well know that one is pre-

sented with a machine but yet be unable to do anything about

finding the Gödel’s sentence for it. (1967 p. 28)

He goes on to say:

In a relevant sense, if I am a Turing machine, then perhaps I

cannot ascertain which one. In the absence of such knowledge, I

can cheerfully go around ‘proving’ my own consistency, but not in

an arithmetic waynot using my own proof predicate. (1967 p. 29)

Benacerraf’s point is that without the benefit of clear definitions, in partic-
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ular of ‘provability-in-M’ or ‘provability-in-one’s mind’, it is not possible to

definitively show that Gödel’s incompleteness theorems are incompatible with

Mechanism. Even if a Gödelean argument against Mechanism does not contain

any other problems, as long as it appeals to undefined provability predicates,

the argument will be too hypothetical to yield any real results.

Showing that there is a real incompatibility between Gödel’s theorems and

Mechanism requires using defined notions of provability. One’s claiming to

be able to formally prove ConM , for instance, will not be very convincing, let

alone have any obvious implications, unless one can define what ‘ConM ’ means.

Therefore, until such time as someone can define a provability predicate for

the human mind or for the formal system alleged to exactly model the human

mind (which may be decades, centuries, or perhaps never), it will remain

improbable that Gödel’s theorems can be definitively shown to be incompatible

with Mechanism.
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Cambridge University Press.

Tennant, N. (2001). “On Turing Machines Knowing Their Own
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