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Abstract 

A multi-surface system brings together a variety of different devices – such as a tabletop, tablet, 

mobile phone and wall display – into a single cohesive system. This integration allows users to 

take advantage of the unique capabilities of each device in ways that would not be possible using 

those devices separately. But creating usable interactions for moving content and control 

between all these devices has proven a difficult problem. Spatially augmented gestures, which 

are gestures which incorporate the spatial layout of the room as well as the people and devices in 

it, might provide a solution to this problem. Building such gestures into a multi-surface systems 

is difficult and tedious to develop. It represents too large an investment of time and effort for 

developers to bear. To decrease the cost of developing such systems, we have created an API –

called MSE-API – that allows developers to quickly and efficiently add gestural interactions to 

multi-surface applications. In developing such an API we focused especially on making it usable 

for developers. Specifically we insured the API was learnable and discoverable for inexperienced 

developers but still an efficient tool for more experienced developers. 

This thesis presents the requirements and structure of an API for developing multi-surface 

systems with spatially augmented gestures. The result of two case studies, in which the API was 

used to develop real world multi-surface applications, are also presented.  
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Epigraph 

 In academia, the number one sin is plagiarism, not triviality. So much of the innovation is 

esoteric and not at all useful.  

Peter Thiel 
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Chapter One: Introduction 

For many years, users interacted with a computer with a mouse and keyboard. They worked on 

applications which ran on that computer or web-based systems through a web browser. Their 

files and applications lived on that computer alone and if they needed to be moved they were 

sent over a network or stored on physical media. This situation has changed drastically in the last 

decade; users today likely have a smartphone and/or a tablet in addition to a traditional computer. 

Their files live across these devices and are commonly synchronized between them. Users might 

now have access to large format wall displays for collaborative work and even newer 

technologies, such as digital tabletops, or position tracking systems. All these devices are rapidly 

reaching consumer level prices (i.e. measured in hundreds of dollars).  

In this new computing environment, the old reality of one application, one device is rapidly 

fading away and does not meet the needs of users anymore. In the old paradigm an application 

“lives”  on  a  single computer but in an environment with numerous connected devices, this 

paradigm is rapidly fading away. Such connected devices might include a mobile phones, tablets, 

large format wall display and even digital tabletops. Traditionally each of these devices was used 

separately with each application and its associated data being independent from other systems. 

As their use increases, users want to be able to use these devices in an integrated environment. 

But in order to support such an environment it is necessary to be able to move content between a 

device – a common task for users – which, in existing systems, is clumsy and difficult. 

Controlling one device from a more convenient device, another important capability, is rarely 

even supported. Consider the task of moving a document from a wall display to a mobile device 

during a presentation. Using the traditional paradigm this would typically involve sending the 

file over email or transferring it with a USB. While these information exchanges are 
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commonplace and occur many times in a given work session, the interactions for accomplishing 

them are poorly-supported, often take place outside the context of the application in which 

they’re  required,  and  are  time-consuming. To deal with these usability issues, designers need to 

reconsider the fundamental paradigm of applications which run on single device and adapt to 

multi-device computing.  Developers need to adapt to building applications which are, by design, 

spread across multiple devices. By this we mean applications where the movement of content 

and control between devices is so smooth and fluid that the application no longer appears to be 

localized to a specific device. 

While developers in industry have been slow to consider the new situation of multi-device 

systems, researchers working in the field of human-computer interaction have been investigating 

this paradigm for over two decades. Research has emphasized several important benefits which 

are provided by multi-display environments (MDEs) – environments containing multiple 

displays which may or may not be interactive. For our purposes, we define a multi-surface 

system (MSS) to be a system composed of multiple, tightly integrated, interactive devices. In 

applications running on an MSS users can switch seamlessly between the devices and the 

application appears to spread across the devices and is not localized to a single device. Under 

this definition therefore MSSs are a distinct subset of MDEs. Detailed definitions of terms are 

provided in Chapter Two. 

1.1 Research Questions  

This thesis proposes the creation of an API which supports gestural interactions in a multi-

surface environment. In addition to providing useful functionality to developers, the API is 

intended to be usable. This leads to the two major research question of this work: 
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1) Can an API for constructing multi-surface environments be built which uses only 

consumer level hardware? 

2) How learnable and discoverable can the API be made while still preserving efficiency? 

In answering these questions it will be necessary to confirm that the API provides all the features 

necessary to construct a multi-surface  system  with  spatially  augmented  gestures.  To  do  this  it’s  

necessary to show that such a system can be built and all the requirements discussed in Section 

1.3 have been met. To evaluate its usability it will be necessary to show that the API is learnable, 

discoverable and productive when used by developers and that they are satisfied with the API. 

This will be measured by a case study and a self-evaluation of the API. We will measure whether 

developers can learn to use the API in a reasonable time frame, how productive they are in 

building an MSS, and how satisfied with the API they were during various stages of their project. 

1.2 Goals 

This thesis has two main goals: to develop and evaluate the usability of an API which supports 

spatially augmented gestural interactions in a multi-surface system. In addition to supporting the 

creation of such systems, we intend to answer the previous research question. That is, we wish to 

determine if such an API can be built in a way such that it is usable for developers. 
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Chapter Two: Multi-Surface Systems and APIs 

2.1 Multi-surface Systems – Benefits & Overview 

An MSS allows users to take better advantage of the properties of its component devices. It 

allows users private space through the use of devices whose affordances – such as a small size or 

mobility – allow for work to be done discretely. It allows for the creation of public information 

radiators by incorporating large and highly visible devices. It also allows for the creation of 

specific and novel interactions which inherently involve the tight integration of several devices. 

These benefits are discussed in detail in the following sections.   

2.1.1 Effective Use of Device Properties 

One of the principle advantages of an MSS is that it can be made up of different types of devices, 

each of which can have properties that are useful for certain tasks. In a traditional application, a 

designer would have to compromise and choose the most appropriate device for the majority of 

tasks but which would not be ideal for other tasks. In an MSS, a designer can simply use the 

device best suited for whatever task or subtask is required. This added flexibility allows 

designers to build systems where users can switch between devices depending on the tasks and 

the properties required.  

Selecting the device with properties which best support a subtask is often a source of tension for 

designers. Because a traditional application only runs on a specific single device, a single device 

must  be  chosen  even  if  it’s  non-optimal for some of the subtasks, preventing designers from 

building an optimal application.  In an MSS, designers do not have this constraint, so a different 

device can be used for a separate subtask. This allows designers to choose a set of devices which 

are most appropriate for all the subtasks in an application.  
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Consider a system for presenting three dimensional models to a group. The most optimal device 

for displaying the models would be a large format, high resolution display placed at the front of a 

room. Controlling and exploring the model with such a display might, however, be awkward for 

the presenter. In an MSS, the designers could move the subtask of controlling the model to a 

more appropriate device such as a tablet while still maintaining the effectiveness of the large 

display  for  the  presentation  task.  As  an  MSS  can  incorporate  various  devices;;  it’s  possible  for  

system designers to assign devices which are more convenient for a specific task to the device 

which is most appropriate for that task.  

2.1.2 Public & Private Space 

Consider a user who is in the process of working out an incomplete idea or has only partially 

completed a solution to a particular problem. This user might prefer not to have this partial work 

accessible to other members of his team or available to a wider group. This desire might depend 

on a variety of factors but designers need to consider how the usability of their system would be 

affected by users who feel the lack of private space to work. A device, therefore, can provide a 

private space if a user can have a reasonable feeling of privacy while working on it.  

Alternatively, situations occur where users would prefer to have information available to their 

co-workers and group members. In such a situation it would be useful for users to be able to 

present information in a public space. This might occur in a task where some shared information 

needs to be available to different users, for example, a shared background map for some analysis 

task.  

In a traditional system, where applications run on devices which are isolated from one another, it 

would be difficult to choose a device which could provide both a public and a private space. A 

designer would therefore have to emphasize one type of space and this could cause usability 
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issues when users really desired the opposite type of space, such when doing preliminary work 

on a public display (if the public aspect was emphasize) or find it inconvenient to share 

information on a private laptop or tablet (if the private aspect was emphasized). 

An MSS can resolve this difficulty by dividing an application over devices which are appropriate 

for private work (e.g. a tablet) and those with public visibility (e.g. a large display).  Several 

systems have demonstrated this technique in which balance public and private space by using 

multiple devices. In one such system, users could browse web content using a PDA (which 

provided private space) and dispatch content to a shared wall display (which provided public 

space) [1]. Another application area where private and public spaces are both needed is in card 

games. In such games users must keep some cards private while others are made public, such as 

in the game Rummy. Researchers created a digital version of Rummy where users have an 

iPhone which displays their private cards and while an iPad is placed in the center of users to 

show    “runs”  and  placed  down  cards [2].  

These examples illustrate that applications sometimes require a private space for certain tasks 

and a public display for others.  It is difficult to reconcile these two goals in any system which 

must run on a single device. With an MSS, a system designer can simply use the device most 

appropriate to the task needed by users.  

2.1.3 Improved Collaboration 

In systems where multiple users will be using the system together, one of the goals of designers 

is to support collaboration among those users. Users collaborate in different ways and, and the 

use of an MSS can impact collaboration. The integration between devices in an MSS can support 

collaboration by improving communication, awareness, and coordination among users while they 

completed a specific task [3]. An MSS assists users by incorporating devices which could 
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improve awareness – such as a highly visible wall display. It supports communication by making 

it straightforward to share artifacts among group members, and it supports coordination by 

providing workspaces on which multiple group members complete and can integrate work 

products.   

One study has shown how an MDE, which involves passive displays as well as interactive 

devices, can impact communication, awareness and coordination [3]. In the study, participants 

used an MDE to build a schedule and each user was provided with a private tablet and could 

view a public display. It was found that using an MDE gave users a more sheltered interface 

which is less visually distracting. This shows how device choice impacts awareness. In a longer 

term study focusing on software development, researchers found that developers used an MDE in 

an opportunistic way to quickly share a specific problem or feature they were working on with  

their wider group of co-workers [4]. In the study users could quickly replicate a view from their 

own workstation to a larger shared display. The availability of a large display, which was well 

integrated with their existing system, directly supported communication between team members. 

This task is specifically interesting because collaboration was done opportunistically, that is, 

quickly transitioning between a collaborative task done with other users and then back towards 

an individual task.  

Another study extended these results to an MSS, considering what collaborative benefits would 

exist in a system composed of a multi-touch tabletop and personal tablets for each user [5]. The 

researchers found that when using such a system, the users fell into distinct strategies ranging 

from team-up (where the tablets were used to compare aspects of documents related to the task 

while the team members worked together) to divide-and-combine (where team members worked 

separately and in parallel on some task and then combined their progress afterwards). The 
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authors suggest that an MSS gives flexibility for a wide variety of collaborative strategies. These 

research studies suggest that an MSS can improve collaboration for software development and 

schedule making tasks. The MSS allowed designers to choose devices, such as a large format 

display, which improved communication and awareness and which in turn supported a variety of 

collaboration strategies which could not necessarily be supported by a traditional system.  

2.1.4 Novel Interactions 

The benefits discussed in the previous sections all improve usability by matching the appropriate 

device to the appropriate task. But an MSS can improve usability in other ways: it can create 

entirely new interactions by using devices in novel and interesting ways. Since these interactions 

involve several closely integrated devices, they could not be replicated by traditional applications 

running on isolated devices. We discuss two examples of such systems from our own research in 

the following sections. 

2.1.4.1 Seismic Slicing 

In oil and gas exploration, a common task for geophysicists is to analyze the area below the 

earth’s  surface  to  determine  if  the  area  may  contain  a  reservoir.  Analyzing  this  area  is  typically  

done by multiple different users with different backgrounds and skills. The analysis is typically 

supported by a visualization of the subsurface called seismic. Seismic is often organized into a 

three dimensional volume, the volume contains information about the structure of the subsurface. 

Visualizing this data is often done using a traditional application on a single desktop computer.  

A user selects a specific plane of the data (called a cutting plane), to reduce the three dimension 

volume to a two dimensional structure, which is more amenable to analysis. This process can be 

difficult for users who are not experts with the software and the process is often limited by the 

awkwardness of using a desktop computer with a large group of users. 
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An MSS application for visualizing this seismic data addresses these issues by making the 

visualization task more intuitive and natural. In this application the area of interest is presented 

using a map of the surface displayed on a digital tabletop. To explore the subsurface, a user 

manipulates a tablet by placing it vertically on the tabletop. When the tablet is placed down on 

the tabletop a slice of the seismic data, corresponding to the area under the tablet, is generated 

and then displayed on the tablet itself (see Figure 1) [6]. As a user rotates and manipulates the 

iPad, new slices are created and displayed. With this system, users can navigate the entire three 

dimensional structure in a natural way wherein the slice is presented in its original vertical 

dimension. In this system, the tablet device becomes a kind of physical slicer which a user can 

manipulate to explore the subsurface. 

 

Figure 1: iPad Seismic Slicing 
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This interaction improves on existing techniques of seismic navigation, because it allows users to 

navigate the subsurface in an intuitive way. Because it incorporates a digital tabletop, the 

exploration is visible to a wide group of people who can work around the tabletop. In this way 

the addition of an MSS can created an entirely new interaction, which is novel, and comes as a 

direct consequence of the paradigm of dividing an application between multiple devices. 

2.1.4.2 MRI Kinect 

Another system where an interesting and novel interaction is made possible by an MSS is the 

MRI Kinect application [7]. Medical volumetric data is a three dimensional model of the body, 

derived from medical imaging techniques.  Visualizing this data is an important practice in 

medicine. Typically this is exploration is done using traditional applications isolated to a single 

device. Users explore the medical volume by selecting planes to isolate a specific two-

dimensional slice from the overall three-dimensional model. While this task is often done by 

imaging experts, it can also be done by students studying anatomy or by clinicians preparing for 

surgery.  

An MSS application for exploring volumetric imaging data provides a more intuitive interaction. 

A tabletop display is used to provide a picture of a human body. This body acts as a reference to 

assist users in selecting a slice in their particular area of interest. To select a particular slice from 

the volumetric data, a user simply moves their tablet over the part of the body they wish to create 

a slice in. The appropriate slice is then created based on the position of the tablet and the two 

dimensional slice is displayed to the user (see Figure 2).  As the user moves the iPad up and 

down the reference body, a slice corresponding to the appropriate area of the body is displayed 

on the tablet. This technique is interesting because it gives the user a sense of exploring, in 
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physical space, the three-dimensional model of the human body. The interaction technique is 

novel and takes advantage of several different devices, integrated into single application.  

2.1.5 Summary of Benefits 

As more devices become available to users, new applications and interactions will become 

possible.  The multi-surface paradigm allows designers to match devices of different sizes, 

displays, and input mechanisms to the tasks which are most appropriate to them. This provides 

several benefits, such as the ability to take advantage of specific properties of different devices 

for increased usability, the distinction between public and private space, and the improvement to 

collaboration that such systems provide and several examples of entirely new and novel 

interactions  which  couldn’t  exist  in  the  single  device  paradigm. 

Creating such applications, however, will engender additional costs: increased programmer effort 

will be required to deal with distributed interfaces, synchronization, and other tasks. Since some 

 

Figure 2: MRI Table Kinect Slicing 

 



 

12 

of  the  tasks  are  common  to  a  wide  variety  of  MDEs  and  MSSs,  it’s  possible  that  tool  support  

could be created to assist developers. The core tasks of such systems are discussed in the next 

section. 

2.2 Infrastructure to Support Multi-surface Systems – Content and Control Transfer 

While an MSS provides a variety of benefits, such systems are not commonly found either in 

consumer applications or in industry. We propose that this lack of support in industry is due to 

the additional complexity that is involved in building an MSS. This complexity is translated into 

additional development costs which make an MSS expensive to build and maintain. Before tools 

can be developed to mitigate these additional costs, a clear understanding of the core common 

problems related to building an MSS must be developed.  Based on a review of several MSS 

applications (see Chapter 2) and experience in developing prototype multi-surface systems, we 

identified these core problems to be control and content transfer and the details of both are 

discussed in the following sections. 

2.2.1 Control & Content Transfer 

The first obvious difference between an MSS and a traditional single device application is the 

presence of additional devices. Creating an application which spans all these different devices 

presents several difficulties compared with an application which must run on only a single 

device. An MSS application requires developers to rethink how interfaces are designed, where 

computation is performed, where data is stored, which interaction techniques to keep from 

traditional applications and which to ignore etc. But while these problems might be solved in 

different ways depending on the specific application, two problems specifically stand out as 

being common to nearly every MSS. These common problems are the content and control 
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transfer tasks. These are both central to an MSS because they pertain to how an application is 

spanned across multiple devices.  

These problems are broader than simply a networking issue. They have several separate 

dimensions depending on the perspective of the people involved in the MSS. From a user’s  

perspective, the tasks must have an interaction or interface associated with them, to (a) initiate 

control over another device or their own device and (b) initiate or accept content transfers from 

other devices. We then discuss the types of interactions which, research suggests, might be most 

usable. From a developer’s  perspective the tasks involve how they design their applications to be 

(a) controlled or commanded from other devices, and (b) how they can send and receive specific 

content from other devices. Before interactions are proposed for users or tool support is 

discussed for developers, we will review precisely what is meant by each task. 

2.2.1.1  Content Transfer 

In an MSS, it is possible that multiple users will be working simultaneously on different devices 

in the system. In fact, this support for collaboration is one of the major benefits of an MSS over a 

traditional software system. In such a situation it is likely that users will create or access different 

content – by which we mean digital artifacts like images, documents, etc. – on different devices. 

For example, in an MSS designed to visualize data related to oil and gas exploration, the content 

might be a three-dimensional model of subsurface information, while in an MSS designed to 

share web pages, the content might be a link to a website. As users work with this content they 

will often want to transfer it to other devices as part of the task they are trying to complete. This 

transfer might be to another mobile device in order to capture the data on a personal device, to 

take advantage of the mobility of the device.  The transfer might send the content to the device of 

another user, to support collaborative work with that user.  Or the transfer might to a large wall 
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display in order to take advantage of the displays size. Content transfer can also have two 

directions: a user can send content from their device to another or they can retrieve content from 

another device to their own device.  From this we can see the content transfer is an integral task 

to several desirable features of an MSS, such as making effective use of devices and 

collaborating with other users.  

Without the ability to move content – which is necessary to complete tasks – the full usefulness 

of having multiple devices in the system is not realized. Content transfer must also be different in 

an MSS from content transfer systems which merely synchronize data automatically. Triggering 

content transfer, when used as part of a MSS to complete a task, should be a conscious decision 

made by a user. This is especially so in an MSS where multiple users will bring in personal 

devices as well as interact with public devices. To automatically synchronize all this data would 

create issues around privacy and control.  

While users and not developers will actually perform the content transfer, supporting content 

transfer in an application can be made easier. Tools can be provided to support adding this 

feature to an MSS. 

2.2.1.2 Control Transfer 

Similar to transferring content, a user might want to control other devices in an MSS. By control 

transfer we mean remote application control – the control of one device by another device . This 

is important in several scenarios such as controlling a device with an inconvenient input 

mechanism or controlling applications on the device of a user who you are collaborating on a 

task with. 

The ability to pass commands  between  devices  could  be  useful  whenever  a  device’s  available  

interaction modes are less optimal than those available on another alternative device. Consider a 
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large wall display which – because of its large size – might be difficult to use with a mouse and 

keyboard. A user might want to send instructions or command from their tablet (such as move up 

or move down) rather than control the interface with the keyboard. In this way control is passed 

from one device to another.  

Consider an application which normally runs on a mobile phone. When the user is working 

within the MSS he would like to be able to use a larger interface such as a digital tabletop. When 

the user places his phone down on the tabletop, control is moved from the phone to the tabletop. 

Interface and other controls on the tabletop could dispatch commands to the phone even while 

computation and storage remained on the phone itself. .  

The transfer of control is an important task in an MSS because it allows users to take full 

advantage of their devices. Previous research has developed functionality which allows control 

to be passed using screen replication approaches, but this has difficulties if the input mechanism, 

screen size or resolution is different between devices. To support this task we believe that 

commands should be passed between devices. Developers should write software to respond to 

the commands in the manner which is most appropriate for the specific application keeping in 

mind issues of security, privacy, and social conventions. 

2.2.2 Spatially Augmented Gestures 

In the previous sections, the content and control transfer task were presented as the core tasks 

associated with an MSS.  Developers could provide many different types of interactions and 

interfaces to accomplish these tasks. But previous research has established that interaction 

techniques which incorporate and leverage the spatial layout of component devices of an MDE 

are more usable for the task of selecting devices [8]. This is important because selection of a 

target device is part of both the content and control transfer tasks which have been identified as 
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important for an MSS. in the following, spatial gestures and the implications for implementation 

of an MSS are discussed. 

Studies which elicited gestures for content and control transfer tasks have identified a set of 

gestures which users would like to use for content and control transfer [9]. In these studies, a 

wide variety of gestural interactions were performed, but all incorporated spatial position (see 

Figure 3). For example, to send a picture from an iPad to a wall display, users proposed a gesture 

where they performed a flick on their iPad while it was facing the targeted wall display. From 

this research we can conclude that these gestures could be an important and usable interaction for 

accomplishing both the content and control transfer tasks.  

 

Figure 3: Proposed Gestures from Elicitation Study [9] 
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We define this types of gestures as spatially augmented gestures, these are gestures which 

incorporate the spatial layout of the system itself. Supporting spatially augmented gestures as a 

mechanism of interfaces requires even larger development effort than a standard MSS alone.  In 

order to implement gestural interactions for content and control transfer, a developer would have 

to maintain location information for every device in the system including mobile devices. Since 

gestural interactions could dramatically improve the usability of an MSS it is necessary to 

support developers in providing gestural interactions which incorporate spatial elements.  

2.3 An API for Multi-Surface Systems 

In Section 1.1, we have reviewed the benefits which an MSS can provide over more traditional 

single device applications. Two general tasks – which every MSS must solve – were also 

highlighted: transfer of control and content. Such tasks should be accomplished, we believe, by 

providing gestural interactions which incorporate spatial information such as location and 

orientation information. Implementing such a system, however, would require a developer with a 

wide variety of skills a great deal of development effort. For example, to implement content 

transfer a developer would need to have an understanding of networking protocols and data 

encoding. Worse still, the developer would need to be able to implement this functionality across 

a variety of platforms in order to support different devices (e.g. tabletop displays, small and 

medium sized tablets, laptops, etc.). Multiplatform support is necessary because not every type 

of device necessarily exists on the same platform and further still we would like to support a 

wide range of devices within a specific type. However, the tasks being described are not specific 

to a particular application but are common to every MSS and could be solved in a reusable way. 

This approach could then be incorporated by other developers into their applications and a 

substantial amount of developer work would be avoided. The API could then reduce the 
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developer effort required to build an MSS and potentially increase their prevalence. In this 

section the high level requirements of the API will be discussed. 

2.3.1 Communication 

In order to implement content and control transfer it is necessary for the proposed API to assist 

developers in supporting communication between devices. This communication must be simple 

for developers to setup but at the same time extensible. Communication in an MSS must include 

device discovery so that devices can find each other as well as message passing between devices.  

Before communication can be made between devices, it is necessary for the devices to be visible 

to one another. It must be possible for developers to programmatically discover devices which 

are in the environment. Practically this is implemented by scanning for devices on a common 

shared network. This is as a reasonable assumption as an MSS is expected to be contained within 

a room.. Device discovery should, therefore, be a feature provided by the API. This will allow 

developers to build an MSS in a flexible way, without having to hard-code specific names or 

device types.  

Once a device has been identified, it should be possible for developers to send a message to it in 

a straightforward way. Likewise, it should be simple for developers to setup methods which are 

called when a specific message is received. Many different formats for exchanging messages in a 

system are available, but a protocol should be chosen which is familiar to developers. The API 

should specifically choose a protocol because, once chosen, it would allow for tighter integration 

with the other features provided by the API.  

As content transfer is an important task, methods for sending specific types of data should be 

provided directly by the API Common data types might include images, dictionary and binary 

files. Developers should also be able to specify code to respond to these messages. Additional 
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metadata, such as the device that sent the message and what type of interaction was used to 

trigger it, should be provided to the receiving application when a message is received.   

2.3.2 Spatial Tracking 

While communication alone would allow a developer to construct a basic MSS, research 

suggests that spatial information can inform the design of these systems and improve their 

usability [8]. This task can also be handled by the API so that developers do not need to 

implement this functionality independently.  

The gestures proposed by the elicitation study (see Figure 3) all require location and orientation 

information to function properly. Consider a swipe-up gesture performed by a user to transfer an 

image from a tablet to another tablet held by a user facing them (see Figure 4). In this gesture the 

user is making a selection of which device they wish to send the image to by the orientation of 

their device. If the user had wanted to transfer the image to another device, for example a wall 

display, they would have pointed the device in that direction. In order to programmatically 

determine which device a user is facing, it is necessary to know three pieces of proxemic or 

spatial  information,  the  location  and  orientation  of  the  user’s  device  and  the  location  of  the  target 

device. Without this information a selection cannot be accurately made.  

To address this, the API should keep track of the positions of all the devices which make up the 

MSS. This includes the positions of the fixed devices such as a wall display or tabletop. Some 

mechanism should also be provided for users and administrators to alter these positions in the 

event that the layout of the room changes. Because devices in an MSS could be mobile (such as 

phones or tablets) it will be necessary for some sensor to track the location of these devices and 

add this information to the spatial layout of the room. To improve the usability of the system, the 



 

20 

API should also provide developers with a visual layout of the room which can they can 

incorporate into the interface of their application.  

It is also necessary that the API expose this spatial layout so that it can be queried by developers. 

These queries should allow developers to quickly determine which devices in the room the user 

is facing (to support some of the gestures found in previous elicitation studies [9]) and queries 

based on which devices are within a specified range. Methods for querying the server should be 

provided on platforms common to typical devices (such as tabletops and tablets) specifically 

.NET and iOS , but the server (where this information is stored) should expose its information in 

manner that is consistent with web standards.   

2.3.3 Summary of Requirements 

In this thesis we propose the creation of an API to support developers in the creation of multi-

surface systems. Consistent with research that has found that spatial information provides an 

interface which is potentially better than standard GUI based approaches, we have proposed that 

the API should support the use of gestural interactions as an interface for accomplishing those 

tasks.  

The API must provide straightforward communication between devices, allowing developers to 

discover devices, send messages, and define behavior when messages have been received. To 

enable spatial tracking, the API must provide location and orientation information for devices in 

the MSS. These requirements define the features which the API must have in order to be 

effective in helping developers to build an MSS. In the next section the usability of this API is 

discussed.  
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2.4 Usability of the API 

Aside from meeting the requirements discussed in the previous section, what else is necessary 

for the API? One important aspect is how usable the API is for developers. Just as the usability 

of an interface can be evaluated from the perspective of a user, the usability of an API can be 

evaluated from the perspective of a developer. This is an important distinction because it forces 

API designers to consider the experience that developers will have when working with an API. 

In assisting developers in building an MSS it is desirable that the API that is created is usable. A 

more usable API widens the set of developers which is capable of using it and reduces the 

frustrations and difficulties experienced by those developers. This in turn might make the 

development of multi-surface systems more prevalent. In this section the definition and criteria 

of usability which will be applied to the API will be discussed.   

2.4.1 API Usability 

In  an  early  article  on  API  Usability,  Steven  Pemberton  asked  API  designers  to  “imagine  

hypothetically,  just  for  a  moment,  that  programmers  are  humans”  and  “that  their  chief  method  of  

communicating and interacting with computers was with programming languages”  [10]. This 

concern for developers using an API leads the authors to describe several aspects of API 

usability – such as learnability, efficiency, memorability and misconceptions generated from the 

API. They also make a close connection between the usability of an API and its documentation. 

This is an important consideration which later studies could validate. In his canonical work on 

API Usability, Jeffrey Stylos makes a clear distinction between the usability of an API and the 

power of an API [11]. He further describes aspects of usability to include productivity, error 

prevention, simplicity, consistency and conceptual integrity.  These aspects mirror the initial 
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usability concepts proposed for user interfaces by Jacob Nielsen which are learnability, 

efficiency, memorability, errors, and satisfaction [12].  

On the other hand, it must also be recognized that optimizing certain usability aspects might have 

a negative impact on other aspects or on other goals such as extensibility. Because of this, API 

designers must make a trade-off between certain usability aspects. For our API, we have decided 

to optimized learnability and discoverability while still maintaining efficiency. This is because 

developers building an API must be aware of a variety of specific domains within software 

development, such as networking, distributed systems and interactions with sensors. It would be 

ambitious to assume that developers wishing to build an MSS will be experts in all these areas. 

The entire set of usability goals for the API is outlined in the following sections.  

2.4.1.1 Learnability & Discoverability 

For an API to usable it must also be straightforward for a developer to learn and discover how to 

use it properly.  Learnability is a measure of how easy it is for a developer to learn the features 

and functionality provided by an API. This aspect can be affected by design issues. For example, 

if a class was poorly named, it would be difficult for developers to discover its purpose and 

understand how to accomplish tasks which involve that class. Likewise, poor documentation 

could impact learnability because too few examples were provided or poor explanations of 

classes were given.  

To assess the learnability of an API, researchers conduct user studies [13].  In these studies 

developers  (who  don’t have previous experience with the API) are asked to perform a specific 

task. Researchers then track whether or not the task was completed and what parts of the API 

confused developers. We conduct this evaluation with a case study, which involves use over a 
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longer period of time. This provides a more realistic picture of the learnability and the 

discoverability of our API.   

2.4.1.2 Efficiency 

Another important aspect of usability is how productive a developer is while using the API. By 

productivity we mean how quickly a developer can accomplish the useful work that they desire 

using the API [12]. An API might provide a large number of features but if it is time consuming 

for a developer to complete a specific task, then it is less usable. To measure the productivity of 

developers using our API a case study will be conducted with experienced developers. During 

the study period, we will measure how long it takes developers to complete tasks. 

2.4.1.3 Satisfaction  

A final factor in the usability of the API is how much developers enjoy using it. This satisfaction 

might be considered for the whole API or to some of its parts. While this aspect of usability is 

qualitative, it is still important. It can indicate to designers if using the API is tedious or if they 

have made a conceptual mismatch between the API and the mental model of developers. Based 

on this indication, designers can follow up their inquiries to find the ultimate source of the 

usability issues. Assessment of satisfaction should be performed with developers who have had 

experience using the API over a longer period of time. Using our API, several developers will 

attempt to build a multi-surface application during a period of several weeks. After each the 

completion of the project, the developers will be asked to comment on their experiences using 

the API.  
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Chapter Three: Related Work 

As my work involves the construction and evaluation of an API for supporting multi-surface 

systems augmented with gestural interactions, three general types of previous work must be 

reviewed. First, research into interactions in multi-surface systems, specifically what interactions 

researchers have proposed to solve the problem of (a) content transfer and (b) control transfer. A 

summary of these interaction techniques, along with canonical examples, is provided in Table 1. 

Second, existing APIs which relate to multi-surface systems – such as those providing device 

communication and proximity information – are discussed in detail. Finally, work related to the 

usability of APIs is reviewed, specifically the approaches used for evaluating an API and the 

recommendations provided to API designers. These areas are presented respectively in Section 

3.1, Section 3.2 and Section 3.3. 

3.1 Interaction Techniques 

Since an MSS or MDE is composed of several distinct devices, the core design challenge for 

such systems is how to divide a single application across these displays. One paper specifies the 

problem  as  how  to  create  “interaction [which] spans input and output devices and can be 

performed  by  several  users  simultaneously” [14]. Designing such interactions, which span across 

multiple devices, is a difficult problem. Designers have narrowed their focus to provide solutions 

for two tasks (a) transferring content – documents, images, etc. – between devices of the system 

and (b) transferring control among devices. Numerous interactions have been proposed for 

addressing these tasks during more than thirty years of research into MDEs. Since it would not 

be feasible to review each of these systems, interaction categories are illustrated by specific 

canonical examples. The general categories are as follows: a graphical interface (Section 3.1.1), 
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the use of proxemic and physical components (Section 3.1.2), and finally the use of gestural 

interactions (Section 3.1.3).  

3.1.1 Graphical Interfaces  

Designing an interface for an MDE using the traditional GUI paradigm is the approach most 

likely to be consistent with interfaces that users have previous experience with. These were 

among the first approaches described for MDEs. Using such an approach, different devices can 

be interacted with via a menu or list (Section 3.1.1.1) or the menu can be organized to include a 

spatial layout or design of the room (Section 3.1.1.2). 

3.1.1.1 Menu Based  

A menu-based approach is a straightforward way to support both content transfer and control 

transfer in an MDE. Users can select which device they want to interact with from a list, where 

the device is represented by a name or icon. In one system, user laptops and public displays 

composed the devices in an MDE. Users could create a binding between their laptop and one of 

the displays co-located in the room [15]. A user initiated this binding to a display by selecting it 

from a contextual menu or chose it from a list of icons.  Once the binding was created, a user 

could control the connected display. Menu based systems have also been created for an MSS and 

address the issue of content transfer. In another system, a user could select a file or digital object 

and drag it to an area or icon on the screen representing the other devices  (see Figure 4) [16]. 

These menu-based approaches stick closely to the interface patterns users employ in other GUI-

based applications and would be familiar to most users. However, since each of the devices in 

the system must be represented by a name or icon, distinguishing easily between a large number 

of devices or between different types of devices might become difficult for users.    
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3.1.1.2 World in Miniature 

To allow users to distinguish devices without the use of names and icons, some proposed 

interactions have incorporated the spatial layout of a system into the interface. Usually this is 

done in the form of a small map describing the layout of the system called a world in miniature. 

The devices in an MSS have a spatial arrangement and users are familiar with this arrangement 

from working within the system. Incorporating that layout into the system has been shown to 

improve the ability of users to identify and select their desired device (see Figure 5) [8]. One 

system with this interface presents the spatial layout in a simple diagram, users can select 

specific commands to execute on those devices [17]. The spatial layout can be augmented to 

show the applications currently running on each of the component devices [18] or with some 

type of iconic design to help users identify it [19]. Often in these systems, after a user has 

 

Figure 4: Menu Based Approach for Device Selection. [16] 
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selected the component device they wish to use, they can control that device using a keyboard 

and mouse.  

3.1.2 Physical & Proxemic Approaches 

Extending the concept of using a spatial layout as part of the interface, designers have proposed 

interactions that incorporate the physical room and its spatial relationships. The physical parts of 

the system – fixed devices, mobile devices and people – are brought into to interactions for 

transferring content and control. 

3.1.2.1 Docking  

Outside of interface design, contact is an important factor in human communication. This factor 

can be mimicked in interaction design, so that contact (or docking) of two devices can be used as 

a trigger to accomplish tasks in an MSS. To implement this interaction, however, it is necessary 

to consistently detect when two objects are in contact.  This poses some technical difficulties, 

such as computing the location of two devices, determining whether they are touching, or 

tracking their location; implementing this last part is often technically difficult and time 

consuming. However, contact can also be inferred using proxy measures, for example when a 

user performs an action simultaneously on two devices. Once the detection of contact is made, 

content and control transfer can be initiated. 

 

Figure 5: World in Miniature Approach for Device Selection. [8] 
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One method for detecting contact is for users to perform a continuous swipe on two touch 

devices which are placed side by side (see Figure 6) [20]. Another system detects contact when 

two devices are bumped together [21]. In these two systems once two devices are known to be 

physically in contact or docked together, they form a shared display where content can be 

dragged to either display. Docking has also been conceived as an interaction in systems equipped 

with medium-sized tabletops [22]. These devices are mobile enough to be physically moved 

across a room. When they are placed in such a way that the edges of their screens are together, a 

customized sensor system detects the contact and creates a continuous shared display.  

3.1.2.2 Conduits 

Users have experience moving and handling physical objects in their normal experience. System 

designers have proposed interactions based on this experience to accomplish content transfer. 

These use the same actions that users are familiar with for transferring real world physical 

 

Figure 6: Stitching as a Method for Content Transfer. [20] 
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objects. An early system allowed users to link a unique physical object to a data file [23]. The 

object was identified by its weight and when it was physically moved to another device the 

linked file was transferred to that device. In another early system a stylus could be used to select 

or  “pick”  some  content  item  and  then,  on  a  different  device,  transfer  or  “drop”  that  content [24] 

Users themselves can be used as the conduit for content transfer. This is typically accomplished 

by  combining  a  MSS  with  a  location  tracking  system  that  is  able  to  track  a  user’s  hand  and  arms.  

One interaction creates this conduit by having a user place one hand on a large display and then 

another  down  on  a  tabletop  to  create  a  “bridge”  across  these  devices  (see  Figure 7) [25]. The 

content selected by the user in the first half of the interaction is then transferred from the wall 

display do the tabletop. In another interaction provided by the same system, a user selects 

content on a tabletop and carries that content to another tabletop. During this interaction the 

content  itself  is  displayed  constantly  on  the  user’s  hands,  making  it  appear  that  the  user  is  

“carrying”  the  content  across  the  room.  

3.1.3 Gestural Approaches 

The physical interactions described previously all provide interactions for the content and control 

transfer tasks. Since they mimic physical actions, they all inherently take advantage of the 

 

Figure 7: Physical Bridging as a Method for Content Transfer. [25] 
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physical  layout  of  the  room.  But  it’s  possible  that  some  tasks  would  become  tedious  if  constantly  

performed in this way; consider the effort involved to physically carry a series of pictures from 

one tabletop device to another. Gestural interactions also mimic physical interactions that users 

would be familiar with from experience and involve the spatial layout of a room, but may 

provide a more convenient interaction. 

These interactions often involve spatial information, whether complete in the form of tracked 

locations of all users and devices, or partially in the form of orientation information. Gestural 

interactions often act as triggers to initiate control or content transfer. The direction of the 

gesture can be used to indicate selection (i.e. which device is the intended target) while the 

performed motion can be used to indicate the direction of transfer (i.e. whether the user wishes to 

send or retrieve).   For example, if a user performs a throw gesture towards another user, the 

direction  indicates  they  are  selecting  the  user’s  device  as  their  target  and  they  intend  to  send  

content to that device.  

3.1.3.1 With Device Gestures 

Gestures can be performed by having a user physically manipulate the device itself. This is 

appropriate for mobile devices because they are lightweight and manoeuvrable. 

Many mobile devices are now equipped with an accelerometer or gyroscope, so it is possible to 

get detailed information about the direction, intensity and structure of device motion. These 

gestures are defined as with-device gestures.  
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A throw gesture is one type of with-device gesture that mimics the action of throwing a physical 

object. This gesture has been proposed as a technique for initiating transfer between a mobile 

device and a wall display (see Figure 8) [26]. This gesture reappears in other systems where it is 

called the chuck gesture [27]. A different gesture for content transfer, which is appropriate for 

the physical layout of a digital tabletop, is called the pour gesture. It is performed by rotating a 

mobile device over top of a tabletop similar to pouring out a cup and then making contact with 

the tabletop [28].  

In in the above described gestures, the location of the user is not known, which means the 

gesture cannot be used to indicate selection. Without knowing the location of the originating 

device  it’s  not  possible  to  determine  the  device  that  the  user  is  gesturing  towards.  But  if  these  

gestures were implemented in a system with location information, it could be used both to select 

the device that is the target and to initiate transfer to that device. 

Gesture elicitation studies for MDEs and MSSs, which attempt to gather candidate gestures for 

use within an MDE, have elicited a wide variety of with-device gestures [9]. This provides 

evidence that these gestures could improve the usability of an MSS and provides support for 

these interactions. 

 

Figure 8: Throwing Gesture as a Method of Content Transfer. [26] 
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3.1.3.2 Gestures & Proximity 

Gestures performed on a device have gained wide usage as default parts of the user interface on 

most modern phones and tablets. These on-device gestures – which are performed on the device 

itself and – body gestures – which  are  performed  with  the  user’s  body,  have  been  used  in  an  

MSS. These gestures are often coupled with proxemics information, which is defined by 

Ballendat et al. to include dimensions such as distance, orientation, movement, identify and 

location [29]. Using the orientation and location dimensions especially, gestures have been used 

to select and initiate content transfer in an MSS. These gestures are discussed in the following 

section. 

Detailed work has considered how proximity can be incorporated into applications including 

how proxemic relationships can mediate device connectivity [29]. These ideas were later 

extended to applications where content transfer is triggered by gestures. In one system, a user 

selects an object of interest on their device and then performs an upward swipe gesture to initiate 

the transfer of that content from their device to the wall display (see Figure 9) [30]. Alternatively 

a user can send content to a display by selecting the desired location of interaction and then 

performing an downward swipe to transfer some content from their display to the device. 

 

Figure 9: Flicking Gesture as a Method of Content Transfer. [30] 
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Selecting a digital item and then dragging the object along the screen in the direction of the 

intended recipient of the device is another gesture illustrated in another system [31].  

Gestures can also be performed by users themselves; typically this is done by moving the hands 

or arms which are tracked by some motion capturing system. This type of interaction can be 

found early in the literature. One system proposed an interaction where a user could select some 

content using a voice command or selection gesture performed using a finger [14]. This point 

gesture could also be used to position the destination of the object. In this example the gesture 

was used for selection while the voice action provided the distinct trigger. In a more recent 

system a point gesture was used to select one digital object and direct it to another device by 

pointing at the targeted device (see Figure 10) [30]. 

Gestures augmented with proximity have been supported by several gesture elicitation studies. In 

these studies users have been asked to propose their own gestures for tasks. An elicitation study 

focused on content transfer between tablet devices and tabletops replicated the flick and pour  

gestures proposed by researchers and proposed several other gestures including a pull gesture 

performed on the tabletop [32]. Other elicitation studies, investigating content transfer in a 

complete MDE, have elicited numerous gestures performed on the device such as swipe up and 

 

Figure 10: Pointing Gesture as a Method of Content Transfer. [30] 
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swipe down gestures as well as a wide variety of gestures performed in the air, such as point and 

grab [9].  

3.1.4 Interactions Summary 

A summary of the interactions presented in the preceding sections is presented in Table 1. This 

table describes the category of approach and briefly describes the gesture and interaction. Partial 

implementation implies that some additional API might be needed to complete the task (e.g. a 

gesture detection library to perform detection of gestures performed in the air).  

Table 1: Summary of Interactions  

Selection 
Mechanism  
Approach 

System Selection Details 
Input  Output Content or Control 

Transfer Details 

Menu-Based 

 

[15] User selects the desired device 

from a list and  

Laptop Public 

Display 

User could control the 

public display as an 

extension to their 

laptop 

Menu-Based 

 

[16] User drags a window or file to an 

area reserved on the screen for 

device. 

Laptop, 

PDA 

 

Public 

Display, 

Public 

Tabletop 

User can drag a 

window or file to 

another device. 

World-In-

Miniature 
[17] 

Selection is done using a menu 

presented as a spatial layout of the 

room. 

Laptop Public 

Display, 

Other 

Laptops 

 

User can drag a file or 

digital object (e.g. 

URL) to any device 

which supports it 

World-In-

Miniature 
[18] 

Selection from a spatial layout 

augmented with updates on screen 

activity.  

Laptops, 

PDA, 

Tablets 

Wall 

Displays, 

Other 

Laptops 

Users can control a 

remote display as an 

extended display. Can 
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3.2 APIs Supporting Multi-surface Systems 

Since no single toolkit or API provides all the functionality for adding gestural interactions to an 

MSS it is necessary to review several types of APIs which each supply some useful feature. As 

there are only a small number of APIs in this space they are reviewed individually and in detail. 

drag windows onto 

remote displays. 

Docking [20] 

A continuous swipe across two 

screens, which have been placed 

next to each other, identifies the 

devices interacting and their 

relative orientations. 

Pen 

Enabled 

Tablet 

Pen  

Enabled 

Tablet 

 

Users can drag files 

from one tablet to 

another. 

Conduit [23] 

An object is bound to a unique file 

and triggers a dispatch when 

placed down. 

Tabletop Tabletop Item is transferred 

between tabletops 

automatically. 

Conduit [24] 

Users can select an item on one 

display and then touch down to 

drop it on another. 

Wall 

Display, 

Tabletop 

Wall 

Display, 

Tabletop 

Item is transferred 

between devices 

automatically. 

With-

Device-

Gesture 

[26] 

User transfers content to a wall 

display by performing a throwing 

gesture with a device. 

Tablet, 

Mobile 

Phone 

 

Wall 

Display 

Item is transferred 

between devices 

automatically. 

With-

Device-

Gesture 

[28] 

User transfers content to a 

tabletop by performing a pouring 

gesture with a device.  

Tablet Tabletop Web page is 

transferred 

automatically. 

On-Device-

Gesture 
[30] 

User transfer content by 

performing a swipe up gesture on 

a mobile device. 

Tablet, 

Mobileph

one 

Wall 

Display 

Item is transferred 

automatically. 

Person-

Gesture 
[30] 

Users transfer content from the 

device to a wall display by 

pointing. 

Tablet Wall 

Display 

Item is transferred 

automatically. 
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Some APIs which provide support for device communication, such as message passing and 

device discovery, are reviewed in Section 3.2.1 while APIs which provide spatial or location 

information are presented in Section 3.2.2. 

3.2.1 Device Communication 

Several API which have been developed specifically to support communication between devices 

in a MDE or MSS will be reviewed in this section. These APIs provide two kinds of features, (a) 

device discovery – where all the devices currently active in the system are collected and made 

available, (b) message passing – where messages of some format are transmitted between 

devices and (c) application division – tools which supporting a single application divided over 

multiple devices. Typically APIs offer solutions that provide message passing or application 

division, but not both.  

3.2.1.1 3MF 

3MF is  a  framework  developed  to  “expose  rich  device  functionalities  which  are  currently  

available  only  through  local  frameworks” [33]. It was developed by Kaufmann et al. around the 

goal of exposing as services many of the functionalities found on a mobile device, such as 

accelerometer or touch data. Such functionality can normally only be accessed through local 

APIs. Exposing this functionality would be useful for creating an application whose interface is 

distributed over several devices. For example, an interface displaying a map on a large wall 

display  could  be  controlled  by  subscribing  to  orientation  data  provided  by  a  tablet’s  gyroscope.   

3MF is written to work in a peer-to-peer environment without any centralized server to route 

activities. The API is integrated into each application running through the MSS. Devices are 

discovered on a shared network using the Bonjour protocol. When a device is discovered its 
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capabilities (or provided services) are announced to other devices. These can then be consumed 

(or subscribed to). 

3MF is an API that is designed to support shared access to specific services provided by various 

devices. Since these services are predetermined, developers would need to alter the API to 

provide additional services and no general method for exposing them, such as routes, is 

supported by 3MF. Since 3MF does not provide a direct mechanism for content exchange (i.e. 

the exchange of data types such as images and dictionaries) developers would also have to add 

this functionality themselves. Finally, the services provided by 3MF do not conform to a REST-

ful interface which would allow other clients, without using a client library, to access their 

services using HTTP formatted messages. Support for REST-ful interfaces is an important 

feature as it allows for compatibility with any device which is able to generate HTTP messages, 

this improves the extensibility of the API. It also allows testing and debugging to be done in a 

straightforward way (e.g. testing can even be done using a web browser).  

3.2.1.2 Event Heap 

Event Heap is  an  API  used  to  “coordinate  the  interactions  of  applications  running  on  […]  

devices that will be common in ubiquitous computing  environments”.  It  was  implemented by 

Johanson and Fox along with an MSS system called the iRoom [34]. The designers of the system 

initially assert that most realistic MSS will be utilizing traditional applications that will be 

coordinated together into an ensemble. Therefore, their API does not force users to change their 

tools and styles of development.  

The API itself is written around a programming paradigm called TupleSpace where applications 

coordinate with each other by sharing access to a set of tuples (key value pairs) and where each 

application can read or write to this space as desired. Applications poll Event Heap and query 
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tuples which they are interested in. Client libraries exist which can work with Java, C++ and, 

through a proxying mechanism, web applications. 

As Event Heap was designed over ten years ago, it preceded the widespread use of standard web 

based technologies such as REST-ful APIs. Since the designers envisioned that API to be used 

on wide range of devices (even projectors and mechanical controls) it might not be feasible to 

run a full HTTP server. The practice of constantly polling a shared space would create a large 

amount of communication overhead within an MSS composed of only a few devices. To support 

the content transfer task it would also be necessary for their API to explicitly deal with data 

(such as images, files, dictionaries, etc.) but the API explicitly leaves this task to another 

middleware layer called DataHeap.    

3.2.1.3 MAGIC Broker 

MAGIC Broker is an API which explicitly uses modern web technologies and REST-ful APIs 

[35]. It was designed by Erbad et al. specifically to support communication between mobile 

devices and a large public display, which is an additional constraint on the class of general MSS. 

The framework exposes functionality on the large display using a REST-ful API that mobile 

devices can then consume.  In one system, built using their API, users could enter tags on their 

mobile devices and see pictures related to those tags (derived from Flickr) displayed on that 

public display. 

Two components make up the design of MAGIC Broker, a broker server that provides the 

exposed API and an application server that communicates with the broker. As the system was 

developed to support mobile phones, the broker component will also accept information in the 

form of SMS and XML messages. The designers do not describe in detail how the application 
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server running on the public display would receive and process the messages coming from the 

broker.  

As MAGIC Broker exposes the functionality of the interactive display using a REST-ful 

interface, it is possible for developers to query the server without the need to use a client based 

API. But because the mobile devices are not themselves exposed using a REST-ful  API,  it’s  not  

clear how bidirectional communication could be supported. This is important for applications 

with support for gestural interactions because it must be possible to send content from and to any 

device in the system. Finally, the developers do not describe any convenience methods for 

helping developers who are not familiar with networking to accomplish straightforward tasks, 

such as sending an image or dictionary between devices.  

3.2.1.4 ROSS 

ROSS is  a  toolkit  which  the  designers  describe  as  being  a  “way  for  applications  to  run  across  a  

variety of platforms and devices: tabletop computers, touch-screen mobile devices and 

responsive  walls” [36].  

To support such MSSs, the designers propose a novel nested structure to their API. To model the 

structure of the MSS, each object in the room is represented by an RObject, which itself can 

contain additional objects in a tree like structure.  For example, an RObject might contain an 

RSurface which specifically represents an interactive surface, while the RSurface contains a 

mobile phone, a finger touch, and a puck – all of which are on the display and are themselves 

RObjects. Developers configure the initial structure using an XML configuration file. 

Communication between the actual devices is handled through XML based message passing, 

specifically Open Sound Control messages. 
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ROSS is a novel approach to organizing a MSS because it allows developers to structure their 

application in a nested way with each node being an object in an MSS. However, such an 

approach does not substantially improve the previously described tasks in an MSS, the transfer 

of content and control. Messages in the system are still sent as XML and developers would need 

to send and respond to these manually. One difficulty with this framework is that it forces 

developers to change the tools and frameworks traditionally used in developing an application 

(such as UI frameworks and toolkits).  

3.2.2 Proximity & Location 

Many of the gestural interactions envisioned for a MSS (see 3.1.3) involve knowledge of 

proxemic dimensions (location, orientation, etc.). APIs which provide this type of proximity 

information, such as Proximity Toolkit, NearMe and SharedSubstance are reviewed.  

3.2.2.1 Proximity Toolkit 

Proximity Toolkit, developed by Marquardt et al., is a toolkit for building applications with 

proxemic interactions [31]. Research into proxemic interaction involves a larger scope then 

content and control transfer in an MSS. As such, their toolkit was designed to support a wide 

range of applications. For example, Proximity Toolkit was used to create an application where 

the interface was adjusted to accommodate for the distance between the user and the application. 

Because of the difference in focus, some architectural and design decisions are not necessarily 

optimal for the content and control transfer in an MSS.  

Proximity Toolkit itself is composed of a centralized server that provides proxemic information 

to clients. This server is supplied with proxemic information from a sensor requiring markers 

being placed on objects; specialized modules convert the sensor data into a format 
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understandable to the main server. A visualizer provides a 3D visualization of the tracked items 

and specific libraries provide event-based updates to clients via a distributed data structure. 

Proximity Toolkit is primarily used in conjunction with the VICON tracking system, which is 

able to track objects and people with a high degree of accuracy and range. Unfortunately the cost 

of such a system is prohibitive and not within the range of consumers. To function the sensor 

also requires users and devices to wear physical markers, this is acceptable for prototyped 

applications but not realistic in real world situations. While it is possible to use Proximity Toolkit 

with a Kinect sensor, which is more affordable, a developing building a MSS would still  need to 

maintain a relationship between the devices and the users who are holding them so that the 

person’s  location  can  be  used  as  a  proxy  value  for  the  device.  This  would  be  a  substantial  

investment of developer effort. Likewise they would also need to integrate data from other 

sensors, like a gyroscope, themselves.  

Proximity Toolkit is also an event driven toolkit, meaning that developers can request updates 

for particular pieces of proxemic information or relationships. For example, a developer writing 

an application could request continual updates on the location of a specific person or whenever a 

user was facing towards a distinct direction. This is a good design choice for systems where 

rapid updates of proxemic information are used as the basis for specific actions (e.g. updating an 

interface). However, in supporting gestural interactions a developer wishes to query the spatial 

state of the room at a given time. For example, if a developer wishes to allow a user to direct a 

photo to all devices in his field of view, the developer would simply query which devices existed 

in  the  user’s  field  of  view  at  that  time.  Queries  rather  than  events  would  be  more  convenient  for  

this task. The server component in Proximity Toolkit provides updates to client APIs using a 

distributed data model based on the TCP protocol. This is effective given the event driven 
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approach mentioned above. When using queries, a more natural architecture style is to follow a 

REST approach as described by Fielding [37]. This architecture allows information known to the 

locator server to be queried using HTTP and is structured in a style that is consistent with APIs 

based on web technologies.  

3.2.2.2 Easy Living 

The Easy Living system is a framework developed at Microsoft Research by Brummit et al. and 

it  attempts  to  support  systems  where  there  is  a  “dynamic  aggregation  of  diverse  I/O  devices  into  

a  single  coherent  user  experience” [38]. While this focus is larger in scope then an MSS, the API 

could be used to construct such a system. The system provides person tracking based on stereo 

cameras. 

The system is built around the Easy Living Geometric Model or (EZLGM) which provides a 

geometric layout of devices in the room. Developers define each entity in this layout to have 

measurements for position and extent, as well as uncertainly values for those particular 

measurements. Developers can query this to determine the geometric relationships between 

entities and which entities fall within a certain radius of another entity. EZLGM captures this 

information using stereo cameras which are not described in detail.  

Since Easy Living was developed before consumer level tracking systems were widely available 

it relies on stereoscopic cameras for positioning. Similar to Proximity Toolkit, the API provides 

information about people but cannot reliably track devices such as a tablet. Developers using 

Easy Living would need to directly implement a relationship between devices and people to 

query the locations of mobile devices.  
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Querying the system is done using SOAP, but since the creation of Easy Living this technique 

has been replaced by REST-ful interfaces, the designers do not mention if a client library to 

make these queries more convenient for developers. 

3.2.2.3 NearMe Server 

The NearMe project describes a server that provides proximity information gathered from 

wireless networking [39]. Usually such systems require calibration where signal strength is 

correlated to specific distances. In this server, users can accomplish this calibration by pairing 

this strength information to known locations themselves. Because this information is based on 

network signal strength it cannot provide location but only proximity. The system is intended for 

a larger range (about 30 – 100 m) and would not be accurate enough for positions within a room 

where an MSS might be located. This work shows an early example of a central server that 

provides proxemic information to clients.   

3.2.2.4 Shared Substance 

Shared Substance describes a middleware layer for supporting multi-surface systems. The API 

provides a set of tools for organizing applications across devices as well as sharing resources 

inside this application. Specifically, it provides shared access to a VICON tracking system which 

provides highly accurate location tracking.  

The middleware follows the data-oriented programming paradigm, a rarely-used alternative to 

object oriented programming. This construct works at a lower level than other frameworks for 

sharing proximity information, developers create applications on a specific device by attaching it 

a tree representing the application.  

It is not clear how applications built using this approach would work with other popular GUI 

toolkits for constructing applications such as Window Presentation Framework or Cocoa. The 



 

44 

developers do not describe their middleware as providing any interface or augmentation to the 

raw information provided by the VICON cameras. Developers would need to access this 

information directly from the cameras themselves.  

3.3 API Usability 

As one of the goals of MSE-API is to produce a usable API, it would be useful to here review 

some of the research work into API Usability. This research is the application of usability 

research – such as that typically done for user interfaces– to APIs.  

In our methodology, developers that use the API are treated as users and the API itself like a 

system whose usability can be evaluated and improved. In Section 3.3.1 the common issues 

affecting API usability are discussed and in Section 3.3.2 the methodologies and methods used to 

evaluate an API are presented.  

3.3.1 API Usability Issues 

Several studies have attempted to identify the main problem categories that cause API usability 

problems. These issues were found to be (a) naming and conceptual issues, (b) design issues, and 

(c) documentation and supporting material issues. Studies identified these problem categories in 

different ways, such as usability studies on a particular API [40], through a survey given to a 

group of developers [41]and through manual analysis on newsgroup comments related to a 

specific framework [42]. Two studies attempted to categorize and summarize existing literature 

published on the field of API Usability [43,44]. And another study analyzed the bug reports 

associated with large open-source APIs [45]. Detailed discussion of these core problem 

categories are presented in the follow sections.  
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3.3.1.1 Naming & Concepts 

Since developers primarily interact with an API through exposed functions, interfaces, and 

classes, the names that a designer chooses for these artifacts will have an impact on the 

learnability and discoverability of the API. Names in the API need to map well to the underlying 

concepts of the domain. One paper studied the relationship between internal-representation of 

domain concepts and the usability of an API and proposed metrics to help developers improve 

the relationship between these [46]. Another work considered the entire API as a communication 

artifact and investigates how specific choices, including the names of classes and interfaces, 

affect this communication [47]. Other work has discussed how excessively generic or abstract 

names lead to names with poor expressiveness which do not convey any information about the 

role and purpose of the artefact [48].   

3.3.1.2 Design 

The design of an API can influence its usability and studies have investigated how certain design 

patterns and styles impact the usability of an API. User studies found that a standard constructor 

was better for instantiating a class then a static method [49] and a factory method [50]. It was 

also found that requiring developers to provide parameters to a constructor was not as usable as 

allowing them to instantiate the class and then set the parameters [51]. APIs with a large number 

of classes require more searching time before developers can find the class they need, its 

recommended that important classes be presented separately from utility classes [49]. When 

considering the entire design space for an API, work has recommend separating the architectural 

design decisions from those related to language level decisions [52].  



 

46 

3.3.1.3 Documentation 

The relationship between the usability of an API and its documentation has been subject to a 

great deal of research. A large-scale field study conducted at Microsoft, using interviews and 

surveys, found that developers felt that poor documentation and learning resources were the 

major cause of poor API usability [53]. A qualitative analysis of the data collected highlighted 

several common issues with documentation; these include issues with code examples, intent of 

documentation, penetrability, and the format used for presentation. Another study investigated 

the usefulness of API documentation for users missing domain knowledge related to the API 

[54]. They suggest that documentation should include background information for users without 

experience in the domain. Studies around API documentation repeatedly stress the importance of 

providing quality code examples [55,56]. But creating and maintaining a large set of code 

examples is expensive. Researchers have proposed methods to assist API designers with this 

task, evaluating the idea of using unit tests as examples [57] and synthesizing or suggesting the 

examples from open-source software in public repositories using the API [58,59]. Finally, 

researchers have proposed a series of tools for improving the exploration of API documentation 

[60,61]. 

3.3.2 Evaluation Strategies 

Several methods have been proposed for evaluating a specific API. The most widely used is a 

user study, where a user is asked to complete a task with an API. The usability can then be 

assessed based on the experience of the developers and whether or not they completed the 

required  tasks.  Reviews  of  an  API  can  be  conducted  where  a  developer  “walks  through”  an  API  

with an API designer and provides feedback similar to a design critique. Finally, several 

techniques attempt to evaluate an API by defining precise usability metrics.   
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3.3.2.1 User Studies 

A relatively straightforward way to evaluate the usability of an API is to ask other developers to 

complete a task using the API, track the number of users who completed the task and what errors 

or difficulties they encountered, and measure how long it took developers to complete a task. 

Typically the tasks chosen must be reasonable in size so that developers can complete them 

during the time appropriate for a user study.  User studies must have tasks of this size as 

longitudinal studies are more expensive and time consuming to conduct. The results of user 

studies, therefore, focus on learnability and not the usability for long-term users.  When 

attempting to assess the learnability of an API, it is necessary the developers participating in the 

study do not have previous experience using the API before. 

One study applied this approach as a part of a study on the usability of service-oriented APIs 

[62]. During their study developers were required to complete a task using a specific real-world 

service oriented library. While they were completing this task they were asked to follow the 

“think-aloud”  protocol by describing their actions and reasoning as they worked. The authors 

organized and classified the types of errors that users encountered while using the software and 

presented those that would be common to many service oriented APIs.  

Another user study was conducted at SAP as part of an ongoing effort to redesign an API for 

creating and updating business rules [63]. The designers proposed a prototype API and then 

asked developers to perform three tasks (during a limited time) to assess its usability.   During 

this  process  developers  were  also  asked  to  use  the  “think  aloud”  protocol.  The  authors  propose  

that this method, evaluating a prototype API using repeated reviews over several months, is an 

effective process for developing a usable API. 
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3.3.2.2 Review Processes 

While a user study typically involves a small task which a developer performs, an API review is 

more detailed and does not necessarily involve the independent completion of a task. One kind of 

review, called an API peer review, has been proposed by researchers at Microsoft as a 

methodology for reviewing the usability of an API [64]. During this process a feature owner (i.e. 

the API designer) walks a group of developers through a specific code sample where the API is 

used to perform a concrete task. These developers provide feedback aimed specifically to 

improve the learnability and discoverability of the API. Elements that might affect those 

qualities, such as poor name choices and inadequate exposure of methods might be raised by the 

developers. The study proposing this method found that it compared favorably for finding 

usability  “bugs”  compared  to  the  cognitive  dimensions  framework.  

3.3.2.3 Measurement Methodologies 

Another way to determine the usability of an API is to apply a set of metrics and attempt to 

“measure”  the  usability  of  the  API.  One  set  of  metrics  is  called  the  cognitive  dimensions  of  

notations framework. Its authors describe  it  as  “a  broad-brush  evaluation  technique  …  [which]  

sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of 

structure” [65]. Originally it was designed to highlight the aspects that affect the usability of an 

interface or programming language. Each of the dimensions can be stated in the form of a 

question to designers of the given system, for example, to evaluate the consistency dimension the 

question is asked  “when  some  of  the  language  has  been  learnt,  how  much  of  the  rest  can  be  

inferred?”.   

The cognitive dimensions approach was first applied to the development of APIs at Microsoft 

[66]. The authors decided to modify the original cognitive dimensions framework to make it 
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more appropriate to the task of APIs, adding new dimensions such as API Viscosity which 

measures  “the  barriers  to  change”  which  an  API  faces.  Describing  their  process  in  more  detail  in 

a later work, the authors show how API designers must balance the dimensions based target 

develop for their API. [67]. 

The cognitive dimensions framework is a useful tool for thinking about the aspects that impact 

the  usability  of  APIs.  But  since  each  dimension  is  qualitative,  it’s  difficult  to  aggregate  the  

responses. Performing the evaluation over time (such as in a longitudinal case study) or in a 

group setting (such as during an API review) might improve the impact that the cognitive 

dimensions framework has.  

Another methodology that has been applied to the evaluation of APIs is concept maps [68]. 

These maps are a directed graph where concepts related to some general field are represented as 

nodes and their relationships between concepts as a directed edge. This tool was originally 

proposed as an instructional tool for teaching science to children.  

Researchers adapted this mechanism to help evaluate the usability of an API. While developing 

an application using a specific API, the developers on the project create a concept map relating 

aspects of API to different parts of their system. During each week developer spent a 30 – 60 

min session (done once a week for five weeks) updating their map. By studying the changes 

made to these concept maps designers can determine the mental model of the developers and 

attempt to understand which areas of the API might be problematic. For example, if a 

relationship was repeatedly altered or if a relationship had to be changed even after weeks of 

development it might indicate that concepts involved are difficult for developers to properly 

understand. 
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This technique envisions that using an API typically involves a long term learning process that 

extends past the few hours usually allocated to a user study. It also gives designers a specific 

view of the mental model of their developer-users. However, analysis of the changing map 

would need to be done carefully so that confounding issues do not impact the usability analysis 

of the API.  Likewise it is also more difficult to control the environment completely in a 

longitudinal study and confounding variables (e.g. developer training, staff changes, 

requirements changes, etc.) could impact the study. 

Many of the methods so far proposed to measure the usability of an API have been highly 

qualitative.  It’s  possible  the  different  users  will  answer  questions  related  to  the  cognitive 

dimensions differently or construct a concept map in different ways. Researchers have attempted 

to reduce some quality measurements to quantifiable metrics.  

One work proposed a systematic approach for assessing the usability of software components 

[69]. In their procedure, they attempted to reduce concepts to specific attributes and then assign 

those  attributes  a  derived  measure.  For  example,  to  determine  the  “quality  of  documentation”  

they would calculate coverage metrics for the manual  such  as  “the  percentage  of  functional  

elements  described  in  the  manuals”.  This  procedure  has  construct  validity  issues  because  it’s  

difficult to associate the quality present in the API to the specific metrics they suggest. For 

example, how can we know that the quality of documentation is proportional to the number of 

functional elements described in it? Further, the calculation of these metrics would also be prone 

to interpretation issues and would be a tedious task.  

Other metrics based approaches have attempted to assess the complexity of an API on the 

inference that highly complex APIs would be less usable [70]. Using metrics designed to 

measure the cognitive complexity of code the authors compute the complexity of all the exposed 
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interfaces and classes provided by the API. The paper does not attempt to validate this method 

by comparing it to qualitative interpretations of complexity.   

3.4 Conclusion 

In this section, a set of interaction methods were discussed for implementing content and control 

transfer in an MSS. Some of these are gestural interactions that involve proxemics and take 

advantage of the spatial layout of the MSS. It is a central goal of MSE-API to support these types 

of interactions. Existing APIs which provide features that could be used to build these gestural 

interactions are then discussed. Finally, since the goal of MSE-API is to be a usable API, some 

results from the field of API usability were presented.  
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Chapter Four: MSE-API 

In Section 1, the motivation for MSE-API was discussed. It was found that using a multi-surface 

approach provides several benefits for users. It allows users to take full advantage of their 

devices, supports collaboration, and allows for novel interaction s. But the absence of such 

systems in industrial and consumer settings was also noted. It was speculated that this might be 

due to the increased developer effort required to build an MSS. This work proposed the creation 

of an API, called MSE-API (Multi-Surface Enviroment API), to support developers in this task 

and to concentrate especially on the control and content transfer tasks. The API was intended to 

be usable for developers. In this section we will review the requirements for the API in detail, 

discuss the structure of the API, and compare MSE-API with other APIs in this space.  

4.1 Requirements 

The requirements for MSE-API can be divided into three general types: constraints which are 

imposed by the practical needs of its intended users; the functional requirements which include 

the major functionality the API needs to provide; and the non-functional qualities which the API 

needs to have.  

4.1.1 Constraints 

MSE-API was designed in order to be used. This means that the API must be accessible to the 

majority of developers who would be interested in creating and maintaining an MSS. This leads 

to constraints which are not related to features of the API but to the needs of the users of the API 

themselves – the designers and developers who will build multi-surface applications. Because 

the designers of the API have experience building an MSS, these constraints are derived from 

their experience. Through the experience of building applications and through discussions and 

demonstrations to prospective end users, several constraints were derived. These constraints are 
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related to the type of hardware required, the preferences of users, the platforms which are 

supported, and how this support is accomplished.  

4.1.1.1 Consumer-Accessible Hardware 

The first major constraint placed on the API is that it must not require developers to purchase or 

use any hardware that is not consumer grade. Providing an exact definition for consumer grade 

hardware is difficult, but in order to meet this goal we have aimed not to absolutely require any 

hardware which is not marketed or directed towards consumers. Because MSE-API allows users 

to choose which component devices to use in the system (such as tablets, laptops, wall displays, 

etc.), this constraint applied mostly to the tracking system. This limited us to using tracking 

systems which are associated with consumer applications, such as the Microsoft Kinect and Intel 

Perceptual Computing Camera, which cost between one to two hundred dollars. This is in 

contrast with professional-grade motion capture cameras which can cost upwards of fifty-

thousand dollars. We consider a camera system which costs less than one-thousand dollars to be 

a consumer level price. This requirement can be summarized as: 

1. MSE-API will work with hardware available at consumer-level prices. 

4.1.1.2 Removing Markers 

Since MSE-API is intended to support consumer applications, the type of hardware used cannot 

impose barriers which prevent users from being able to enter the system and begin using it 

immediately. Like the earlier constraint, this applies entirely to the type of tracking system used 

with the API. Some of the available spatial tracking systems require the use of digital markers 

which assist the camera in detecting and tracking the position of users. These markers, however, 

are not likely to  be  acceptable  in  an  industrial  situation  or  in  a  casual  “walk  up  to  use”  situation.  
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Cameras such as the Vicon system or the OptiTrack system, which require such markers, would 

not be suitable for MSE-API. This requirement is stated as: 

2. MSE-API will use marker-less hardware. 

4.1.1.3 Platform Support 

The API should eventually be portable to platforms which are common to the hardware which is 

envisioned for use in an MSS. Since tabletops such as the Microsoft SUR-40 and the SMART 

Table both run Windows environments and their touch frameworks require native applications it 

is necessary for the API to work using C# and .NET. Since many tablets run iOS, and the iPad is 

the market leader in this space, the API must work in Objective-C and iOS. In the future we plan 

to expand the support to additional platforms. This leads to the next major constraint which is 

stated as: 

3. MSE-API will be portable to important platforms for tabletops, tablets smartphones, and 

wall displays, which are the principal devices used in an MSS. 

Another issue relates to how the API integrates with the given platforms. It is important that the 

usual workflows and techniques which developers use to create applications not be interrupted 

by the use of the API. By this we mean that the API should not make it difficult to use standard 

interface  and  other  libraries  and  shouldn’t  create  incompatibilities  with  standard  tools  and  IDEs.  

This means that:  

4. MSE-API must integrate with commonly used toolkits needed to build applications on the 

supported platforms.  

With  these  constraints,  which  govern  design  decisions  made  in  the  development  of  the  API,  it’s  

now possible to consider what features or functions the API must provide to a developer.  
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4.1.2 Functional Requirements 

The functional requirements for MSE-API are derived from the original vision of an MSS 

described in Chapter 1. Since an MSS is a system that is composed of multiple independent 

devices, communicating between devices will be a major task faced by developers. It is therefore 

crucial for usability that communication between those devices be simple for developers to 

implement, in terms of setting up the communication, initiation of transfers, etc. Therefore, 

support for inter-device communication is a necessary part of the API. Further, since the 

usability of an MSS can potentially be improved by the use of spatially augmented gestures, the 

API must also support developers to incorporate these gestures into the interactions supplied by 

their systems.  The requirements for each are discussed in the next sections. 

4.1.2.1 Inter-Device Communication 

An MSS must enable developers to accomplish communication between devices, but several 

unique requirements exist for an MSS. One specific requirement is that the devices must be able 

to identify the devices they wish to communicate with before they can dispatch messages. This 

can be accomplished by providing each device with a unique identifier, but the process of hard-

coding names introduces brittleness into the system when new devices are added or devices do 

not exist when  the  system  expects  them  to.  To  account  for  this,  the  API  should  provide  “device  

discovery”,  which  allows  devices  to  broadcast  themselves  to  other  devices  on  the  network.  This  

leads to the first requirement related to inter-device communication:  

5.   Devices running MSE-API will automatically announce themselves on their network to 

discover one another.  

Another concern is how the API will send and receive messages. A major inconvenience when 

dealing with message passing is the process of serializing and de-serializing specific data types. 



 

56 

It should be possible for developers to exchange the most common data types without having to 

write much code. However, this should not be the only mechanism provided as it constrain 

developers who wish to create more complex features. The message passing system should both 

provide support to less experienced developers while not unnecessarily constraining more 

experienced developers. This leads to the next requirement:  

6.   MSE-API should provide a straightforward way to exchange common data types 

without writing a large amount of code.  

4.1.2.2 Spatial Information 

To support gestures augmented with spatial information as described in Chapter 2, it is necessary 

to maintain a collection proxemic values for certain objects within the MSS and allow developers 

to query this collection.  

Early constraints, such as (1) and (2), place limits on the type of tracking which can be 

accomplished. As only consumer level and marker-less tracking systems are appropriate for the 

application scenarios that we want to support, it is necessary to find an approach which allows 

for mobile devices to be tracked. Since an MSS is primarily composed of devices, the API needs 

to insure that mobile devices are tracked in a room. This leads to the first requirement related to 

spatial information:  

7.   MSE-API will provide spatial information (location and orientation) for devices. 

Once the proxemic information (location and orientation) is collected for devices, it is next 

necessary to provide an interface which developers can use to query this information and use it 

within their applications. Following the principle mentioned several times before, it would be 

nice to provide developers who are not familiar with networking with the ability to access this 

data without forcing them to write networking code. However, we wish to leave open the 
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possibility of interacting with the API on non-supported platforms. This leads to another 

requirement for Spatial Information: 

8.   MSE-API will expose the collection of devices to queries using HTTP, but will also 

provide client libraries which provide these queries automatically to supported 

platforms.  

4.1.3 Usability Requirements 

The last requirement for the API relate to the usability of the API itself. As mentioned in Chapter 

1, usability is often defined as being composed of several dimensions. As these dimensions are 

not independent of each other, it is possible that improvements to one dimension detract from 

another dimension. It is necessary therefore to focus on which aspects of usability are the most 

important for the API. This leads to the only requirement related to usability: 

9.   MSE-API will provide a learnable and discoverable API to inexperienced developers 

while still remaining an efficient tool for experienced developers.   

This will ensure that novice developers can begin using the tool without a great deal of 

experience with spatial tracking systems or networking, but at the same time ensure that 

experienced developers can continue to use the tool in a flexible and efficient way.  

4.2 API Components 

MSE-API is made up of three components: the locator, which collects and provides location 

information; the visualizer, which displays a representation of the room as seen from the locator; 

and the client libraries, which provide functions for developers to use on the devices in the 

system. In a given room all these components are active (see Figure 11). Each of these 

components is discussed in the following sections.  
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4.2.1 Locator 

The locator collects location and orientation information for devices in the room. A sensor is 

used to detect the position of users in the system while internal mechanisms in the devices 

themselves supply orientation information. Location information for static devices, such as a 

tabletop or wall display, is entered in by users when configuring the multi-surface system. The 

locator information can be queried by devices when they need location information for some 

task. It is this location information which devices use to support spatially augmented gestures. 

An architectural diagram describing the locators connection to other classes can be seen in 

Figure X.  The service provided by the locator is discussed in the following sections.  

  

 

Figure 11: MSE-API Components in an MSS 
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Figure 12: Simplified Architecture of MSE-API Locator 
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4.2.1.1 Locating Devices 

In collecting mobile device information, the constraints limiting the cost of the sensor (1) and the 

use of markers (2) make it impractical to track devices directly. This is because the accuracy of 

sensors in the consumer range cannot track the devices directly without the use of markers. 

However, spatially-augmented gestures can still be used even without precise positional 

information if the gesture only needs to know the intended target device to be useful. Therefore, 

the API utilizes the position of the user holding the device – which consumer level sensors can 

accurately detect– as a proxy measure for the position of the device itself. As a proxy measure 

this position is likely accurate enough because users will likely target the person holding the 

device (when they wish to send content) rather than the device they are holding. The heuristic 

therefore takes advantage of a kind mental model in which users associate the person holding a 

device with the device itself. The limitation of this approach occurs whenever the implicit 

connection between the device and the person breaks down, such as when they device is placed 

down or exchanged with another users.  

However, for this heuristic to work, it must be possible to know which device is being held by 

which person. To accomplish this, we created a pairing between device and person by having a 

user perform a waving gesture (see Figure 13). This gesture is simultaneously detected by the 

sensor and the device, allowing for a correct match. 

To collect orientation information (i.e. which direction is a device pointing), we use the internal 

gyroscope available on many devices. When a user first begins using the system they calibrate 

the gyroscope towards the Kinect, this provides an absolute orientation relative to the room. 

Current hardware cannot provide this absolute orientation without this calibration step. This 
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information is sent from the device to the locator. Developers only need to start the API for this 

information to be collected automatically. 

Some devices in an MSS are not mobile and their position need only be determined once and not 

continuously throughout a session. Devices such as a digital tabletop or a wall display fall into 

this category. To position these devices, the visualizer (see Section 3.2.3) allows the user to 

move the device into its correct position. The updated position value is persisted on the static 

device and will remain unchanged until the room is reconfigured. This process requires some 

user intervention while positioning mobile devices is done automatically.    

4.2.1.2 Querying the Locator  

Queries on the locator come in two forms: view-based and proximity-based. A view-based query 

allows the device to determine which other devices it is facing. A proximity-based query allows 

 

Figure 13: Pairing Gesture Performing With Device 
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the device to determine which devices it is close to. These queries are necessary to support 

different types of spatially augmented gestures. 

4.2.1.3 Locator Methods 

The functionality provided by the locator is exposed using as routes. A route is a unique path 

defining a specific resource being exchanged. To access the functionality an HTTP request is 

sent to this route and a response is issues by the locator. Some routes return information about a 

resource and these are defined using a GET method while other are designed to receive 

information and these use a POST method. The routes provided by the Locator service are 

summarized in Table 2. Note that updates to location are provided by accessing the information 

directly from the sensor.  

 

Table 2: Routes Provided by the Locator 

Functionality Route Method Parameters Output 

Update the pairing 
status of the device 
when a waving 
gesture is detected 

{identifier}/pairingStatus POST Status = 
Attempting Pair 

None 

Update the 
orientation of a 
device 

{identifier}/orientation POST Orientation = 
Orientation in 
Degrees 

None 

Request all devices 
in the current view 
of the device 

/devices/view/{identifier} GET None Collection 
of Devices 
in View 

Request all devices 
in a specified range 

/devices/view/{identifier} GET None Collection 
of devices 
in range 
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4.2.2 Client Libraries 

Specific client libraries are provided for iOS and .NET to assist developers in integrating devices 

into an MSS. The client libraries accomplish three tasks: (a) detecting and coordinate the process 

of pairing a device (b) collecting the orientation information required by the locator; and (c) 

supporting common data exchange tasks in the API.   

Before a mobile device is usable in an MSS, several tasks must be handled by that device. Each 

device using MSE-API is responsible for detecting the pairing motion and communicating this 

information to the server. Once the pairing is completed, the device begins calculating its 

orientation using its internal gyroscope and dispatching this to the locator. This is done every 

50ms to allow users to visually see their orientation (on the Visualizer) and to determine if 

calibration is needed.  

Developers must themselves decide when their application performs a query, when it sends 

content and requests with other device and how their device will respond to requests and content 

from other devices. To assist developers the API provides an additional networking layer that 

simplifies the process of sending and receiving specific data types. These allow a novice 

developer to perform simple content transfer tasks without understanding the details of 

networking issues. These convenience methods allow developers to send and receive 

dictionaries, images and binary data to another device without needing to understand the details 

of serialization, message encoding or deserialization.  When developers wish to go beyond these 

convenience methods they are able to work directly with lower-level networking details. 

Specifically they can define a route, which is a unique path defining a specific resource being 

exchanged. Such routes are the target of an HTTP request and are common to web development 
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and programming. Developers can specific their own routes directly and handle the process of 

serialization, deserialization and responses directly.  

4.2.3 Visualizer 

4.2.3.1 Visualization of Devices 

The visualizer provides a graphical interface showing the location of devices in the system as 

seen by the locator (see Figure 14). This information is presented as a top-down layout of the 

system. Devices are presented as squares and are placed outside the room space if they are not 

currently paired. When these devices are paired they connected to the circles which represent 

users in the room. To help facilitate pairing, pairing status is indicated on the device and the user.  

 

Figure 14: Visualizer displaying a paired person and device 
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4.2.3.2 Room Configuration  

In addition to providing a visualization the visualizer can also be used to configure the layout of 

the room. By layout we mean the location of fixed devices such as tabletops and wall displays. 

These  devices  aren’t  tracked  by  the  location  sensor,  so  a  user  must  define  their  location.  This  is  

done by dragging a static device as representing by a square on the visualizer. To indicate its 

position the location is displayed underneath the device.  

4.3 API Usage Example – Pour Gesture 

To demonstrate how the various components of MSE-API work together, we will consider in this 

section how to implement the pour gesture demonstrated in previous work [9]. The pour gesture 

can be used to trigger content transfer when a user rotates a mobile device in a way analogous to 

pouring out a liquid. In our example, a user will use a pour gesture to transfer an image to a 

digital tabletop from his mobile device. To accomplish this task, we will need to detect the pour 

gesture and query the locator to determine whether any devices are nearby. Once these devices 

are detected, we will dispatch an image to them. For completeness, we will also show how a 

developer can define responses to the arrival of the image.  

4.3.1 Detection & Query 

The detection of the pour requires the device to monitor the gyroscope to determine if the device 

is rotated to the relevant position. While this is not provided by the device directly, MSE-API 

provides utility methods to support the detection of a pouring motion. Once the pour has been 

detected, it is necessary to begin the query to the locator for other devices in a close proximity. 

The client library provides convenience methods for querying by proximity and the user provides 

a callback method to be run when the detection is completed. Both these steps are illustrated in 

Figure 15 
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4.3.2 Sending & Receiving the Image 

Once a device has been detected it is then necessary to send the image. For simplicity, we have 

illustrated this in a separate method. MSE-API provides a convenience method for sending 

images because images are a common data type which developers will likely wish to send. 

Developers must simply create the appropriate image object and then send the object to the 

device (see Figure 16). On the other device – a tabletop in this example – the developer must 

define the behaviour that should occur when an image is received (see Figure 16). It is clear that, 

once the image has been received, the developer is free to treat it in any manner considered 

appropriate.  

4.3.3 Sequence of Messages 

In order to implement this scenario several messages must be exchanged between the devices 

and the locator. Figure 17 indicates the sequence of messages related to pairing and orientation 

updates which must take place before a user can begin using the system. After this has happened 

shows the sequence by which devices in range are found and content transferred to it.  

 

Figure 15: Detecting Pour Gesture & Querying Locator 
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4.3.4 Summary  

From this example we can see that with less than 100 lines of code it is possible to implement an 

important, spatially-augmented gesture. MSE-API provides useful and appropriate convenience 

which are useful for carrying out this task.  

 

 

Figure 16: Sending & Receiving an Image 

 

Figure 17: Sequence of Pairing & Orientation Updates 
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4.4 Feature Comparison 

Given these constraints and requirements it is reasonable to ask if any existing API provides 

these features. In this section the existing APIs which were presented in detail earlier are 

compared which MSE-API. These comparisons are done separately for APIs that support 

communication tasks only and those which provide spatial information.  

4.4.1 Communication Features 

In order to support developers in building multi-surface systems it is necessary that the API 

assist developers with communication between devices. This support is connected to the main 

task in an MSS, the content and control transfer task. In order to accomplish this transfer, some 

form of communication is necessary. In Table 3 several communication APIs are compared 

based on their support for these features.   

 

Figure 18: Sequence of Locator Query & Content Transfer 
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4.4.2 Spatial Locator Feature 

The spatial location features for MSE-API allow developers to support spatially augmented 

gestures. Supporting these gestures is a major goal of the API. In Table 4 several APIs and 

toolkits are compared based on their support for features related to spatial location.  

Table 3: Comparison of Existing APIs on Communication Features 

Feature 3MF Event Heap Magic 
Broker 

ROSS 

Automatic Device Discovery YES PARTIAL NO YES 

Straightforward exchange of 
common data types 

NO NO NO NO 

Extensible mechanism for other 
exchanges. 

NO YES PARTIAL PARTIAL 

Familiarity with common networking 
approaches and tools 

PARTIAL PARTIAL YES NO 

 

Table 4: Comparison of Existing APIs on Spatial Location Features 

Feature Proximity 
Toolkit 
(VICON) 
 

Proximity 
Toolkit 
(Kinect) 
 

Easy 
Living 

Near Me 
 

Shared 
Substance 
 

Requires only consumer 
level hardware NO YES NO YES NO 

Marker free tracking NO YES YES YES NO 
Provides position and 
orientation information 
for mobile devices 

YES PARTIAL PARTIAL PARTIAL YES 

Allows the use of 
standard toolkits and 
libraries 

YES YES NO NO NO 

Toolkit provides 
convenience methods 
for accessing spatial 
information 

YES YES NO NO PARTIAL 
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4.5 Conclusion 

MSE-API was designed as an API for supporting multi-surface systems that are augmented with 

spatial gestures. Since MSE-API was designed to support practical and realistic scenarios, a 

number of constraints apply to the API. These constraints on the underlying sensors related to 

cost and practicality, end users cannot be expected to buy extremely expensive hardware or use 

awkward physical markers. Other requirements were defined related to features and the usability 

of the API. The components of the API were reviewed, confirming that it meets the requirements 

laid out earlier.  Finally, a usage example was provided to demonstrate how MSE-API’s  

functionality can be used.  
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Chapter Six: Skyhunter Case Study 

As part of the overall evaluation, I wanted to determine how efficient developers were in 

building applications which used the API. Efficiency is a separate facet of usability which is 

different from learnability or discoverability. In order to assess this facet, we wanted to 

determine how long it would take for experienced developers to complete a medium-sized 

application using the API. Since only the authors of the API were sufficiently experienced with 

the API to conduct this study, it was decided to pursue a self-evaluation of the API. Two 

developers, the author of this thesis and a colleague, developed the application over a one-month 

period. During that time, time logs and qualitative experiences were collected.  

In this chapter the requirements and issues which the application needed to solve will be 

presented, along with a description of the features provided by the application. Following this is 

a  breakdown  of  the  time  spent  developing  the  application.    Finally,  we’ll  present  an  argument  

that the time spent is low considering the application built and propose that the evaluation 

indicates that the API supports efficient development.  

6.1 Skyhunter & Data Problems in Oil & Gas Exploration  

Skyhunter is a local industrial partner working in the area of oil and gas exploration. They have 

developed technology that can detect chemicals in the air that can indicate the presence of 

underground reservoirs. The output of this technology is maps which indicate the likelihood of 

an underground reservoir existing at a given location. To be useful, these maps must be 

combined with other data from other oil and gas specialities, data such as seismic data, well logs, 

land use information, etc. This integrated data is also usually analyzed and presented to a group 

of specialists from different disciplines. Building an application to support this analysis process 

requires that several different data types be supported. Further, it is necessary to support a multi-
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user, multi-device scenario with different users have different roles within the system. Issues 

related to content transfer are important in this type of environment and so we felt a multi-

surface application would be appropriate.  

6.1.1 Types of Data 

Several types of information are necessary as part of oil and gas exploration. Some of this data is 

provided directly by Skyhunter and others are collected through other means. All of this 

information is geographical in nature and is stored and prepared using a GIS system. Three types 

of map data were considered particularly important by Skyhunter: microseep data, subsurface 

data, and well data.  

6.1.1.1 Microseeps 

The surveys conducted by Skyhunter involved the use of specialized sensors fitted to the nose of 

an aircraft. The aircraft flies near to the ground in a specific grid pattern. The captured sensor 

information is then interpolated and compiled into a map, which indicates the areas where 

microseeps (trace hydrocarbons that are aerosolized above and indicate the presence of an 

underground reservoir) exist and their level of intensity. A grid pattern flown for a particular 

survey conducted in Australia was chosen as the example dataset for this application; (as seen in 

Figure 19).  

6.1.1.2 Subsurface Data 

According to the information provided by Skyhunter, microseeps alone are not sufficient to make 

accurate predictions regarding the location of oil and gas reservoirs. It is necessary to combine 

this information with data about the subsurface. This data was provided as iso-depth contours, 
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which provide a topographic representation of the subsurface area for specific geological zones. 

This information is shown as contours in Figure 20.  

6.1.1.3 Well Data  

Well data, information about previously drilled wells, is the last type of data needed for the 

system. This information is a kind of ground truth because it reveals whether or not the particular 

well was successful (i.e. intersected a reservoir) and which were dry (i.e. did not intersect a 

reservoir). This information is provided for many wells within the geographical area of the 

conducted survey. 

 

Figure 19: Flight Grid Pattern 
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6.1.2 Roles in the System  

Exploration for oil and gas data, according to Skyhunter, involves several different specialities 

such as geologists, geophysicists, reservoir engineers, and landmen. Each of these specialties has 

its own data and analysis techniques. Traditionally, the analysis by these different specialities 

was handled separately. But bringing these roles together during the analysis and exploration 

phase has been a major goal in the oil and gas industry. Supporting collaborative analysis by 

these separate roles is a major objective of the application. 

 

Figure 20: Subsurface Contours 
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6.1.3 Issues & Difficulties  

Building an application to support the exploration of oil and gas reservoirs, with a special 

emphasis on a multi-role environment, raised many issues. Because the system must work for 

different roles, it must be straightforward to bring data into the system and take it out. Because 

the analysis would involve a group of users working, sometimes individual and sometimes in 

subset groups, data would need to be moved fluidly between different users during the course of 

analysis.  

6.1.3.1 Data Entry and Exit 

One of the major issues raised by Skyhunter was the difficulty of bringing data (such as the 

above mentioned data types) into and out of the system. They mentioned that specialists would 

store data on their computers and tablets, but that bringing this data into the system was often 

tedious and time consuming. Likewise, if some final work products were created during the 

analysis it should be easy to capture them for later review.  

6.1.3.2 Fluid Data Transfer  

In scenarios described by Skyhunter, analysis would often take place with the entire group and 

sometimes with individual or subset groups. To support this, we suggested the use of tablets and 

a tabletop in the system. They mentioned that these groups should be able to move data between 

themselves and the main group fluidly.  

6.2 Skyhunter MSS Application  

Given the scenario and requirements described above, we suggested to Skyhunter that their 

application would be an excellent candidate for a multi-surface system.  As the major problems 

faced by the users related to fluid transfer of information between devices, the application 

appeared to be a good opportunity to use MSE-API to build a multi-surface system around the 
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exchange of oil and gas data. An application was designed to address the previously-mentioned 

issues. The application, its components and features, and how it addresses the issues raised by 

Skyhunter are discussed in this section.  

6.2.1 System Components  

To support collaboration we decided to use a tabletop as the central hub for information in the 

system. Specifically the tabletop was a Microsoft SUR-40 running a custom map display 

application. In addition to the tabletop, several Apple iPads were used – also running custom 

software. The tablet application was designed to switch between roles, with separate data for 

geologists, landmen, and geophysicists (see Figure 21).  

 

Figure 21: Role Selection in Skyhunter MSS 
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6.2.2 Data Transfer Features  

Another major issue raised by Skyhunter was regarding fluid data transfer during analysis tasks. 

This is connected to the content transfer task, which was discussed earlier. The content in this 

case was different types of geological data. All this data was geographical and could be 

represented as a map. Therefore, the core feature in the system would be transferring maps 

between the different component devices.  Different spatially-augmented gestures were chosen 

for several distinctive transfer tasks.  

6.2.2.1 Tablet to Tabletop  

Assuming the users arrived with some relevant data on their tablet device, it was necessary to 

support transfers from tablet to tabletop. To trigger this transfer, we chose to use a pour gesture.  

In this gesture, the user stands over top of the tabletop and inverts their tablet. This is done in a 

manner similar to how someone might pour the contents of a binder onto a table. To distinguish 

which layers a user wished to transfer, a special layer dock panel was created on the tablet 

application. Once the layers were selected, the user could approach the tabletop and perform the 

pour gesture (see Figure 22). Since the screen of the tablet is not visible during the gesture, audio 

feedback is used to indicate whether the transfer was completed successfully. 

6.2.2.2 Tablet to Tablet  

Another design issue mentioned by Skyhunter was the need for smooth and fluid transfer of data 

between users or groups of users. To support this, we provide a gesture, suggested by previous 

studies, called the flick gesture. In this gesture the user performs a swiping motion towards the 

target of the transfer.  In our application the map, which is panned and zoomed using swiping 

actions, would normally interfere with such a swiping action. Therefore, the gesture is performed 

in the separate dock panel. On the targeted iPad the map appears as a notification on  
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Figure 22: Pour Gesture to Transfer Layers 
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the bottom of the screen. Once selected, the map is then added to the current map view (see 

Figure 23).  

6.2.2.3 Tabletop to Tablet  

Once data has been added to the tabletop and analyzed, it is necessary that users are able to 

capture that data on their tablets. To do this, we provide a gesture called the camera gesture, 

which like the previous gestures was elicited from users in a previous study [7]. To use this 

gesture, the user aims their tablet as if they intended to capture a picture. Pressing the camera 

icons provides a list of layers which are currently loaded on that device. Users can select 

whichever layers they want to capture. The layers are then loaded onto their own device (see 

Figure 24).  

6.2.3 Issues Addressed 

The application created for Skyhunter used MSE-API to solve issues related to supporting 

analysis tasks oil and gas reservoir exploration. The application requirements were derived from 

Skyhunter and were defined as (a) straightforward data entry and exit from the system, (b) fluid 

data transfer during analysis.  

6.2.3.1 Supporting Data Entry & Exit 

To support this task, we allow users to bring data with them on their own devices. When the 

tablet application loads, it grabs this data based on a configuration file, but this could be 

extended easily to use the file system directly, meaning that users could add data from other 

sources at their convenience. Once their tablet is brought into the Skyhunter MSS, they can move 

data to other users and to the tablet using the previously mentioned flick and pour gestures. Once 

data has been analyzed and brought together from various sources, it can be captured back to the 

tablet using the camera gesture.   
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Figure 23: Flick Gesture to Transfer Layers 
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Figure 24: Camera Gesture to Transfer Layers 
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6.2.3.2 Fluid Data Movement  

As the users are working  together,  it’s  possible  for  them  to  move  data  around  the  system  easily.  

Data can be transferred to other users using the flick gesture, transferred to the tabletop using the 

pour gesture and capture from the tabletop using the camera gesture. 

6.3 Study Results  

The Skyhunter application was developed over the course of a month and involved roughly 

forty-two hours of work. When development began all of the required data was currently 

processed and stored in a cloud based GIS system. However, the applications had to be created to 

use this GIS data. It involved two software applications, one running on a Microsoft SUR-40 

tabletop and the other running on an Apple iPad. For each component of work completed the 

time and details of the task were logged. Each of these logged  tasks were categorized as utility 

tasks,  interface  tasks,  or  API  tasks.  In  this  section  we’ll  review  the  time  allocated  for  the  project  

and some qualitative lessons learned. The threats to the validity of this study will also be 

addressed.  

6.3.1 Results 

Several categories of tasks were completed in the Skyhunter project. Interface tasks were defined 

to be those which involved creating interface elements. This usually meant customizing standard 

controls or adding in third party controls. Utility tasks were those which involved adding or 

configuring third party libraries, such as the GIS library used for presenting maps. Finally API 

tasks were defined widely as any task which involved the use of the MSE-API library. Of the 

forty-two hours spent on the application, twenty-two hours were spent on interface elements, 

twelve were spent on the API, and eight on utility tasks. A breakdown of these can be seen in 

Figure 25. 
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Figure 25: Development Time (Person-Hours) by Category 
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6.3.2 Discussion 

6.3.2.1 Time to Completion 

Two developers worked developing the API, sometimes pairing and sometimes working 

individually. The time spent on the API accounts for only 28% of the total time on the project. 

This figure is broadly defined it includes any task that involved the use of MSE-API. For 

example, the task of serializing the map data to be sent via the API is included in this category. 

We consider this value to be quite low considering the size and complexity of the project and the 

number of features supported. The total person-hours of the project amount to a single full time 

week of work. On this basis we see supporting evidence that MSE-API is an efficient tool for 

building multi-surface systems. However, we concede that our results cannot definitely show 

this.  

6.3.2.2 Other Lessons Learned 

While the developers of the Skyhunter MSS project were knowledgeable about the API, some 

interesting lessons were learned while developing this project. The most interesting of these was 

the relative importance of using standard web technologies. Because the communication used in 

MSE-API is based on standard HTTP messaging, it is very straightforward to test and debug 

applications. For example, in the camera gesture described earlier, the targeting iPad performs a 

GET request on the currently available layers on whatever device it is targeting. To debug this 

feature it is necessary to just enter the correct URL into a web browser (see Figure 26). This 

design decision turned out to be quite useful during the course of development.  

Another major benefit was the decision to provide the convenience of helper functions for 

sending and receiving common types of data objects. By encoding the necessary information for 

loading a map into a dictionary (a set of key-value pairs), we were able to accomplish nearly all 
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the data transfer tasks. However, for the camera feature it was necessary provide data for a 

specific request. To accomplish this we took advantage of the lower level networking 

functionality exposed by the API. 

6.3.3 Threats to Validity  

Several issues threaten the validity of this study. First, because the authors of the API were 

evaluating the API themselves, their knowledge of the internal structures of the API and its 

implementation gave them an advantage over other developers who were new to the API.  It is 

also possible that the task chosen was not a good representative of a general multi-surface 

system. To address the first issue, a second study will be performed with novice developers over 

the course of several weeks, this study is presented in Chapter 6. Because  the developers 

previous experience building application prototypes for Skyhunter this might have also caused 

less time to be expended building the system then might have otherwise been required. Likewise 

the experience of the Skyhunter applications helped influence the design of the API and this too 

might have caused a reduction in development time. 

6.4 Conclusion  

One of the main goals of MSE-API is to provide an API which is learnable and discoverable to 

novice developers while still being efficient for experienced developers. To assess this second 

criteria, we built a relatively complex application prototype using MSE-API. Two developers, 

one of whom was the lead developer of the API, created the application in forty-two person-

hours of work. Of this, only twelve hours were spent directly on work with the API. We consider 

 

Figure 26: Examining Visible Layers Using a Web Browser 
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that this number is relatively low for such a complex application and that this suggests, but 

doesn’t  definitely  show,  that  the  API  is  an  efficient  tool  for  experienced  developers. This 

argument is based on the fact that the developers conducting the study were experienced with the 

API. 
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Chapter Seven: C4I Case Study 

As one of the goals of the API was ensure that it was both learnable and discoverable, we 

conducted a limited and initial case study with several student intern developers.  Studying how 

inexperienced developers use the API will allow us to assess its learnability and discoverability. 

Using a case study rather than controlled experiment allows for a more realistic assessment of 

the  API’s  usability.  It  insures  that  the  features  that  developers  are  asked  to  create  are  realistic  and  

part of a real world multi-surface application. Since development normally takes place in several 

sessions over a period of weeks, using a case study provides a better approximation of how 

developers would actually use the API.  

During this case study, several developers used MSE-API to add multi-surface features to an 

application already under development. This study took place during a single iteration of the 

project which lasted three weeks. The application is a real world system being actively 

developed with an industrial partner for emergency planning and simulation. During 

development, detailed time logs were kept for each feature added and a questionnaire was 

completed by the developers at the end of the study.  

In this chapter, some background regarding the application, the issues which it intended to solve, 

and the features added during the case study will be presented. Results will then be presented 

from the study itself, including time logs and qualitative metrics. We then argue based on this 

evidence that the API is discoverable and learnable to novice developers.  

7.1 C4I & Emergency Planning 

C4I Consulting is a Calgary area company working in the area of emergency planning. As part of 

their business they have developed software which supports planning and simulating emergency 

scenarios. This software allows governments and businesses to create and validate plans for 
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dealing with emergency situations. Current versions of their software currently run only on 

desktop PCs. C4I expressed an interest in creating a multi-surface prototype of their software. 

Since emergency simulations involve small groups of working together within a single room, this 

application is a good candidate for a multi-surface application.  

7.1.1 Emergency Planning & Simulation 

In order to deal with emergency situations such as chemical spills, major fires and other 

accidents, governments and businesses create plans in advance. These plans provide instructions 

and steps for various emergency responders to follow in the event of an emergency. But how can 

these agencies feel confident that these plans are good? Software that can simulate both an 

emergency and the planned response allow teams to validate their plan. 

Once the plan has been created it is simulated in the most realistic manner possible. This 

typically occurs in a command centre or control room. This would be the environment where a 

real emergency would be managed. During the simulation, different users are present 

representing different agencies, such as police, fire, EMS and hazardous materials (HAZMAT). 

As events happen in the simulation, new data and information is made available to the 

participants. Typically, these external events are driven by a director who causes the events to 

appear on the simulation system. As different users respond to events and carry out the plan it is 

possible to find defects in the plan itself – such as unrealistic assumptions – and to gauge its 

practicality.  

7.1.2 Roles & Content 

During the simulation different users will have different roles. Some of these roles are external to 

the application such as the user driving the various events in the simulation. As mentioned before 

each agency involved in an emergency will be represented by a user. During a real emergency, 
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each of these users would be responsible for communicating with their own agency, bringing in 

new data and representing the concerns of that agency. In a practical sense this means that each 

user has their own concerns and data which they will sometimes wish to share with other users or 

with the whole group – one of the ideal use cases of MSSs described earlier.  

The majority of data in an emergency simulation is geospatially referenced and is stored in a 

GIS. Some of this data may be the location of specific entities, such as police cars, emergency 

vehicles, and other responders. This might also include the location of the incident and the 

exclusion zone created around it. In addition to this, users might also wish to create annotations 

either for their own agency or for the whole group. Because this data is confined to a relatively 

small geographical area it is important it does not become confusing or clustered.    

7.2 C4I MSS Application 

A multi-surface application was created to support emergency response planning and simulation. 

The application is an MSS-based tool designed to run on an MSS composed of one Microsoft 

SUR-40 tabletop and many iPad tablets. The tabletop and the iPads display relevant GIS 

information which is pulled from an ArcGIS Server. While the system provides many features 

related to emergency planning, we will focus specifically in this section on the data transfer 

features which use MSE-API. The general structure of the system is described along with the 

features of the application.  

7.2.1 Structure of the System  

The system is divided into two separate applications: the tabletop application and the tablet 

application. During an emergency planning session we envision the tabletop being placed at the 

centre room while users, each holding a tablet, work around it. 
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7.2.1.1 Tablet Application  

Depending on the role of the users, ePlan MSS will display different content on their tablet and 

different functionality will be available. Users must choose their role before using the 

application, the appropriate data is the loaded for that tablet. Depending on their role, users can 

annotate as well as pan and zoom the map.  

7.2.1.2 Tabletop Application  

The tabletop application provides a public space in the centre of the control room. The 

application displays entities and annotations which have been transferred to it by users. It is also 

possible to perform other functionality, such as choosing a path for a specific entity to travel and 

annotating the map directly on the tabletop.  

7.2.2 Transfer Features  

In order to address the usability issues mentioned earlier, several data transfer features were 

added. It was decided by the industrial partner that transfers between devices in the room was not 

a high priority, so transfer features target the tabletop.  

7.2.2.1 Pouring Annotations to Tabletop  

Annotations can be created by users on their tablet application. While these annotations are 

usually  visible  only  to  the  role  which  created  them,  it’s  sometimes  desirable  that  annotations 

might be made visible to the entire group. To do this, the annotation layer can be transferred 

from the tablet to the tabletop. This transfer is initiated by a pour gesture which mimics the 

action of pouring content out onto the tabletop and which was discussed in detail in Chapter 2. A 

user performs this transfer by standing near the tabletop and performing the pour action with 

their tablet. Once this action has been performed, the annotation layer appears on the tabletop 

(see Figure 27). 
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Figure 27: Pour Gesture to Transfer Annotations 
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7.2.2.2 Capturing Entities from Tabletop  

By default, the tablet application displays only those entities which are related to a specific role. 

That is, the location of police cars are visible only to users with the police role. If a user wishes 

to see more entities, he can capture those currently visible on the tabletop. To do this, a user 

points his device towards the tabletop and presses a button to retrieve the entities. Once captured, 

these entities are displayed on the tablet (see Figure 28 ).  

7.2.2.3 Sending Extent to Tabletop  

In  exploring  or  navigating  through  geographical  data,  it’s  often  necessary  to  pan  or  zoom  to  

specific area of a map. This position and the degree to switch the map is zoomed is called an 

extent. If a user had to navigate to a specific area to show other users some important feature of 

that area he would need to repeat the process of panning and zooming on the tabletop. To avoid 

this inconvenience, we allow users to dispatch their current extent to the tabletop. This is done 

using a button: a user points towards the tabletop, presses the button, and the map is moved to 

the extent of the users device. 

7.3 Study  

Our study occurred during a single iteration of the C4I project, encompassing about three weeks 

of development. The participants had been working on the C4I project during previous iterations 

before the study. All the participants were intern developers in the lab and undergraduate 

students in Computer Science or Software Engineering. Three male and one female participant 

made up the development team. The participants had moderate to minimal experience using 

Objective-C and C# languages, being comfortable with the syntax of the language but having 

some difficulties with the associated frameworks (see Figure 29). 
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Figure 28: Button Press to Capture Entities 
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During this iteration other features were implemented, but only those related to MSE-API were 

logged and recorded. The study involved implementing the three previously described features 

for transferring data using MSE-API. 

 In  this  section,  we’ll  review  the  time  that  was  expended  completing  these  features  and  the  

feedback provided by the intern developers.  

7.4 Results  

7.4.1 Time Logs 

During the study, developers were asked to record the time they spent working on each feature. 

In total, eight person-hours were spent on of three features involving the API. The time spent on 

each feature is summarized in (Figure 30). 

 

 

Figure 29: Experience Level of Participants 
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During the development process different developers worked in pairs and not every feature was 

worked on exclusively by the same developers.  

7.4.2 Code Analysis 

Because the output of the study was code written for the application. It is possible to analyze and 

review the code to see if the API is being used in the correct manner. We will analyze the code 

written for the tablet application and the tabletop application separately.  

7.4.2.1 Initialization & Setup (Tablet) 

Several aspects are important when setting up MSE-API on tablet environment. The most 

important aspect is that all code for responding to messages must be setup before the application 

loads, so that other can see which messages are supported. The developers writing the 

initialization code realized this and setup their response handlers before the application finished 

its initial setup (see Figure 31).  

 

 

Figure 30: Time Spent on Tasks 
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7.4.2.2 Sending Extents (Tablet & Tabletop)  

Another major feature in the application was sending the extent from the tablet device to the 

tabletop. In this feature the developers use the API correctly. As can be seen in Figure 32 the 

developers correctly check that the device is currently paired before sending out a dictionary. 

They use the serialization mechanism provided by the API to store the information regarding the 

extent and use the error blocks correctly.  They are also able to deserialize the dispatched object 

correctly and load the layers as the appropriate UI element on C#.  

7.4.2.3 Capturing Entities (Tablet & Tabletop) 

One of the feature developed for on iOS, allows the tablet to capture the entities currently 

available on the tabletop. To accomplish this the developer must dispatch a message to the 

tabletop so he can determine information about the entities layer. This is subtly different the 

earlier features where the developer can just dispatch information to his target. In this feature the 

developer must query and retrieve information. For this feature the developers recognized this 

problem but used the convenience methods provided rather than the more advanced 

functionality. As can be seen in Figure 33  the developers send an empty dictionary to 

 

Figure 31: Initializing the API 
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 the device being targeted. When this dictionary is received the entity information is then sent 

back to the device which sent the empty dictionary. A more advanced developer might have 

accomplished this by creating a route on the target device and responding to the request using the 

entity  information.  While  the  developers  didn’t  use  the  advanced  functionality  they  still  

completed the feature successfully.  

 

 

Figure 32: Sending & Receiving Extents 
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7.4.3 Questionnaire 

In addition to the time logs, developers were asked to complete a short questionnaire at the end 

of the iteration. This questionnaire asked general questions about their experiences with the API, 

such as how easy to use the API was compared with other APIs they had worked with in the past,  

how long it took them to become comfortable using the API what issues and problem they had 

while working with the API.  

 

 

Figure 33: Requesting Entities 



 

99 

7.4.3.1 Experience & Language Issues 

The development team did not have a great deal of experience using either the C# or Objective-C 

languages and their associated frameworks. Many only began using this languages as part of the 

C4I development project. As such several developers complained that they ran into difficulties 

using the language while trying to use the API. Developer 2 commented that they “didn’t  run  

into any difficulties other than with the Objective  C  language”. 

7.4.3.2 Feedback on Usability 

All the developers using the API felt that it was easy to use. They generally claimed that they 

were able to start using the API quickly. Developer 1 commented that “  I  felt  comfortable  using  

the  API  after  the  second  time  [work  session]” while Developer 4 said “compared  to  other  API's  

that  I  have  used  in  the  past  (i.e.  ESRI's  API),  the  MSE  API  is  far  more  straightforward”. 

Developer 3 commented that methods and objects exposed by the API were logical, saying that 

“the  different  publicly  facing  functions  are  easy  to  understand  and  they  do  what  you  expect”.  

7.4.3.3 Feedback on Documentation & Examples 

The developers were also asked to comment specifically about their experience with the 

documentation provided by MSE-API. The participants were broadly positive about the 

documentation but some participants felt that the documentation was not equally complete for 

both the two languages supported. On this topic Developer 2 said “the  Objective C and C# 

documentation was different, and one was more helpful than the other (the C# being the most 

helpful.”.   

7.4.3.4 Criticism of the API  

When the developers were asked if they ran into any problems with the API they responded with 

some issues. One developer felt that the approach used for responding to messages which 
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contained a dictionary (i.e. a set of key-value pairs) was confusing. Developer 1 said “I  think  I  

would change how you send a request to receive data because it is a bit weird to send a 

dictionary  as  if  you  are  sending  information  to  the  device”.  Developer 2 pointed out that the 

serialization functionality included in the API is limited, saying “I  found  it  annoying  to  only  be  

able to send strings  in  a  dictionary  element”. By this they are referring to that fact that 

dictionaries sent between devices must have both the key and the value as a string and that no 

automatic conversion exists for other types or objects.  

7.4.4 Discussion  

Given the functionality of the system, we were encouraged to see how quickly the developers 

were able to begin using the API to implement features. While many of the features were 

straightforward and within the intended scope supported by the API, they were able to 

implement them very quickly. We argue that this is supporting evidence that the API is learnable 

and discoverable by developers. Further evidence is found in the feedback provided by the 

developers which was universally positive. Developers claimed to have quickly become 

comfortable using the API and their complaints focused generally on language issues and 

features they would like added to the API. Developers requested, for example, better support for 

serialization, support for additional platforms and support for 64 bit systems. 

7.4.5 Threats to Validity   

Several issues threaten the validity of the study. Because the features were derived from the 

needs of an industrial partner, it was not possible to carefully control what work was completed 

by  whom.  It’s  possible,  therefore, that easier features were completed by stronger developers, 

causing the total time spent on the features to fall. Since the developers were co-workers and 

colleagues  of  the  main  developer  of  the  API,  it’s  possible  that  some  conflict  of  interest  occurred 
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in their qualitative feedback. This might have caused a positive bias in the qualitative results that 

were provided. The study itself was also limited in scope, providing a relatively small number of 

features which were themselves quite basic. Only a small number of developers participated in 

the study and each feature worked on was not comparable to the other features. This could mean 

that the results presented are not generalizable to a larger group of developers.  

7.5 Conclusion 

The main research question of this study has been to show that MSE-API is a learnable and 

discoverable API. To assess this, a team of developers completed several features in an ongoing 

application using MSE-API. The time spent completing these features was recorded and 

qualitative feedback was provided through a questionnaire. This team of developers was able to 

quickly add several useful features related to data transfer to their application in a relatively short 

period of time. In addition, the developers provided positive feedback on its usability and felt 

they were able to quickly become comfortable using the API. We feel this provides initial but not 

conclusive evidence that the API is learnable and discoverable by developers.  
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Chapter Eight: Conclusions 

This thesis presents an API called MSE-API for building multi-surface applications with 

spatially augmented gestures. First, multi-surface systems were placed in their correct context, 

developing out of an environment with new types of devices and the desire for new types of 

interactions. Spatially-augmented gestures were explained, and their origin contextualized within 

previous research projects and elicitation studies. We then proposed that the lack of such multi-

surface applications in the real world might be due to insufficient developer tools, specifically a 

lack of APIs to assist developers with tasks common to multi-surface systems. The requirements 

for such an API were explained, and our API, called MSE-API, was presented. In addition to 

meeting the requirements of the API, we wished for the API to be usable. That is, MSE-API 

must be both learnable and discoverable to novice developers while still being efficient for 

experienced developers. Two case studies were then presented: one conducted by the author as a 

self-evaluation and the other a traditional case study with independent developers to evaluate the 

usability of the API. Based on the evidence provided by these case studies, we feel that the API 

has met its goals regarding usability.  

8.1 Thesis Contributions 

The first contribution of this work was a careful literature review of previous work in the area of 

multi-surface systems. This review provides a clear path that shows how multi-surface systems 

developed, what core problems were encountered in this area, and how they gradually grew in 

complexity to involve more complex interactions, including spatially-augmented gestures. A 

smaller literature review collected previous work in the field of API usability, highlighting 

previous attempts to measure API usability and issues which have been described by previous 

researchers working in the area.  
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The next major contribution provided is MSE-API itself. This API meets all the major 

constraints and requirements documented in detail in Chapter 3, the API also provides a tool to 

configure a room dynamically with an arbitrary collection of devices. This is an important 

advance over existing APIs.  

In addition to the API itself, several case studies were conducted providing evidence that the API 

is both learnable and discoverable while still allowing experienced developers to be efficient. 

Taken together, this answers the major research goal presented in the Introduction. To our 

knowledge, this is the only API for supporting multi-surface systems with spatially-augmented 

gestures without requiring expensive specialized hardware.   

8.2 Future Work  

There are several directions for continuing work on MSE-API. The first involves improving the 

spatial engine, or the core components of the locator which determines which devices intersect 

with which other devices. Another major goal would be to achieve the fusion and integration of 

multiple sensors to expand the range and accuracy of the API. Finally the evaluation of the API 

could be expanded and used to guide the further development of the API.   

8.2.1 Improving the Spatial Engine  

The spatial engine of the API is responsible for computing the intersections between devices and 

determine what devices are in view when queried. The current system has several drawbacks. 

Since  it  doesn’t  store  the  width  and  depth of objects in the room, they all appear to occupy the 

same physical space. This can cause issues if a device is extremely large, such as a wall display 

which encompasses the entire wall of a room. To address this issue, the way that spatial 

calculations are performed could modified. Each device could be given an appropriate width and 

depth and calculations could base based on intersections with this object. This would have the 
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added benefit of computing an intersection point between the device and its target. This could be 

useful for animating or providing visual feedback to transfers.    

8.2.2 Data Fusion 

Another area of future work would be to incorporate additional sensors into the system. This 

would be especially useful if additional Kinect sensors could be fused together, as this would 

expand the range in which MSE-API works. In addition, other sensors such as the LEAP Motion 

could be incorporated to provide higher accuracy within a small area inside the larger area 

tracked by the Kinect. 

8.2.3 Further Evaluation of the API  

As the API is developed further to add more features, it would be useful to incorporate regular 

API evaluations to guide the design. New features and API changes should be evaluated by 

developers in usability studies in the same way that new features to a traditional application are 

evaluated by users. This could be done using traditional user studies and with case studies of 

development teams using the API as part of development practice. In order to conduct such 

studies it would be necessary that additional developers use the API. Building a community of 

developers using MSE-API is therefore also a major goal.  
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