
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2013-05-23

Developing a Usable API for

Multi-Surface Systems

Burns, Christopher

Burns, C. (2013). Developing a Usable API for Multi-Surface Systems (Master's thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/25621

http://hdl.handle.net/11023/727

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Developing a Usable API for Multi-Surface Systems

by

Christopher Charles Burns

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

MAY, 2013

© Christopher Charles Burns 2013

ii

Abstract

A multi-surface system brings together a variety of different devices – such as a tabletop, tablet,

mobile phone and wall display – into a single cohesive system. This integration allows users to

take advantage of the unique capabilities of each device in ways that would not be possible using

those devices separately. But creating usable interactions for moving content and control

between all these devices has proven a difficult problem. Spatially augmented gestures, which

are gestures which incorporate the spatial layout of the room as well as the people and devices in

it, might provide a solution to this problem. Building such gestures into a multi-surface systems

is difficult and tedious to develop. It represents too large an investment of time and effort for

developers to bear. To decrease the cost of developing such systems, we have created an API –

called MSE-API – that allows developers to quickly and efficiently add gestural interactions to

multi-surface applications. In developing such an API we focused especially on making it usable

for developers. Specifically we insured the API was learnable and discoverable for inexperienced

developers but still an efficient tool for more experienced developers.

This thesis presents the requirements and structure of an API for developing multi-surface

systems with spatially augmented gestures. The result of two case studies, in which the API was

used to develop real world multi-surface applications, are also presented.

iii

Acknowledgements

For bringing me out of a tutorial and into the lab, I would like to thank Tedd. His

countless hours of editing and revising made sure my papers and this thesis were even readable.

It was because of him that I pursued graduate school at all and it was because of him that I

finished.

For his mentorship and support I would like to thank Dr. Maurer. He made sure I never

got off track. His thoughts, feedback and advice were invaluable in completing this work.

For their humour, support and friendship I would like to thank Tulio and Abhi. Without

the support and approval provided by Tulio– especially for MRI Kinect– I doubt this important

project would have even been created. Without their presence, the lab would not have had such

an atmosphere of tolerance, respect, and professionalism.

For their work on developing MSE-API I would like to thank Arlo, Patrick and Daniel.

Without you my work would not have been possible.

For her patience with the long hours and stress, for her love and support I’d like to thank

my girlfriend Georgette.

For a four year partnership on classes, papers, research and projects, I’d like to the thank

Teddy. Our late nights and long hours paid off through two degrees. We will definitely go on to

accomplish even more.

For their love and support I’d like to thank my family. For my brother, whose hard work

and focus has always been an example. For my Mom, who never let me quit, even when things

were hard. If you hadn’t put those first books in my hands, I never would have written this one.

For my Dad, who set the bar high and always helped me meet it. Our long talks, your guidance

and support are visible in all my work and accomplishments.

iv

Dedication

To Mom and Dad

vi

Table of Contents

Abstract ... ii
Acknowledgements .. iii
Dedication .. iv
Table of Contents ... vi
List of Tables ...x
List of Figures and Illustrations ... xi
Epigraph ... xiii

CHAPTER ONE: INTRODUCTION ..1
1.1 Research Questions ..2
1.2 Goals ..3

CHAPTER TWO: MULTI-SURFACE SYSTEMS AND APIS ...4
2.1 Multi-surface Systems – Benefits & Overview ...4

2.1.1 Effective Use of Device Properties ...4
2.1.2 Public & Private Space ..5
2.1.3 Improved Collaboration ...6
2.1.4 Novel Interactions ...8

2.1.4.1 Seismic Slicing ..8
2.1.4.2 MRI Kinect ..10

2.1.5 Summary of Benefits ...11
2.2 Infrastructure to Support Multi-surface Systems – Content and Control Transfer ..12

2.2.1 Control & Content Transfer ...12
2.2.1.1 Content Transfer ..13
2.2.1.2 Control Transfer ...14

2.2.2 Spatially Augmented Gestures ..15
2.3 An API for Multi-Surface Systems ..17

2.3.1 Communication ...18
2.3.2 Spatial Tracking ...19
2.3.3 Summary of Requirements ..20

2.4 Usability of the API ...21
2.4.1 API Usability ...21

2.4.1.1 Learnability & Discoverability ..22
2.4.1.2 Efficiency ...23
2.4.1.3 Satisfaction ...23

CHAPTER THREE: RELATED WORK ..24
3.1 Interaction Techniques ...24

3.1.1 Graphical Interfaces ...25
3.1.1.1 Menu Based ...25
3.1.1.2 World in Miniature ..26

3.1.2 Physical & Proxemic Approaches ...27
3.1.2.1 Docking ..27
3.1.2.2 Conduits ...28

3.1.3 Gestural Approaches ...29

vii

3.1.3.1 With Device Gestures ..30
3.1.3.2 Gestures & Proximity ..32

3.1.4 Interactions Summary ..34
3.2 APIs Supporting Multi-surface Systems ..35

3.2.1 Device Communication ...36
3.2.1.1 3MF ..36
3.2.1.2 Event Heap ...37
3.2.1.3 MAGIC Broker ..38
3.2.1.4 ROSS ...39

3.2.2 Proximity & Location ..40
3.2.2.1 Proximity Toolkit ...40
3.2.2.2 Easy Living ..42
3.2.2.3 NearMe Server ...43
3.2.2.4 Shared Substance ...43

3.3 API Usability ...44
3.3.1 API Usability Issues ..44

3.3.1.1 Naming & Concepts ...45
3.3.1.2 Design ..45
3.3.1.3 Documentation ...46

3.3.2 Evaluation Strategies ...46
3.3.2.1 User Studies ...47
3.3.2.2 Review Processes ...48
3.3.2.3 Measurement Methodologies ...48

3.4 Conclusion ...51

CHAPTER FOUR: MSE-API..52
4.1 Requirements ...52

4.1.1 Constraints ...52
4.1.1.1 Consumer-Accessible Hardware ..53
4.1.1.2 Removing Markers ..53
4.1.1.3 Platform Support ..54

4.1.2 Functional Requirements ...55
4.1.2.1 Inter-Device Communication ..55
4.1.2.2 Spatial Information ..56

4.1.3 Usability Requirements ...57
4.2 API Components ..57

4.2.1 Locator ...58
4.2.1.1 Locating Devices ...60
4.2.1.2 Querying the Locator ...61
4.2.1.3 Locator Methods ..62

4.2.2 Client Libraries ..63
4.2.3 Visualizer ...64

4.2.3.1 Visualization of Devices ..64
4.2.3.2 Room Configuration ..65

4.3 API Usage Example – Pour Gesture ..65
4.3.1 Detection & Query ..65
4.3.2 Sending & Receiving the Image ..66

viii

4.3.3 Sequence of Messages ...66
4.3.4 Summary ..67

4.4 Feature Comparison ...68
4.4.1 Communication Features ...68
4.4.2 Spatial Locator Feature ..69

4.5 Conclusion ...70

CHAPTER SIX: SKYHUNTER CASE STUDY ..71
6.1 Skyhunter & Data Problems in Oil & Gas Exploration ...71

6.1.1 Types of Data ..72
6.1.1.1 Microseeps ...72
6.1.1.2 Subsurface Data ...72
6.1.1.3 Well Data ...73

6.1.2 Roles in the System ...74
6.1.3 Issues & Difficulties ..75

6.1.3.1 Data Entry and Exit ..75
6.1.3.2 Fluid Data Transfer ..75

6.2 Skyhunter MSS Application ..75
6.2.1 System Components ..76
6.2.2 Data Transfer Features ..77

6.2.2.1 Tablet to Tabletop ..77
6.2.2.2 Tablet to Tablet ..77
6.2.2.3 Tabletop to Tablet ..79

6.2.3 Issues Addressed ...79
6.2.3.1 Supporting Data Entry & Exit ...79
6.2.3.2 Fluid Data Movement ..82

6.3 Study Results ...82
6.3.1 Results ...82
6.3.2 Discussion ..84

6.3.2.1 Time to Completion ...84
6.3.2.2 Other Lessons Learned ..84

6.3.3 Threats to Validity ...85
6.4 Conclusion ...85

CHAPTER SEVEN: C4I CASE STUDY ..87
7.1 C4I & Emergency Planning ...87

7.1.1 Emergency Planning & Simulation ...88
7.1.2 Roles & Content ..88

7.2 C4I MSS Application ...89
7.2.1 Structure of the System ...89
7.2.2 Transfer Features ...90

7.3 Study ..92
7.4 Results ..94

7.4.1 Time Logs ..94
7.4.2 Code Analysis ..95
7.4.3 Questionnaire ...98
7.4.4 Discussion ..100

ix

7.4.5 Threats to Validity ...100
7.5 Conclusion ...101

CHAPTER EIGHT: CONCLUSIONS ..102
8.1 Thesis Contributions ..102
8.2 Future Work ...103

8.2.1 Improving the Spatial Engine ..103
8.2.2 Data Fusion ..104
8.2.3 Further Evaluation of the API ...104

REFERENCES ..105

x

List of Tables

Table 1: Summary of Interactions..34

Table 2: Routes Provided by the Locator ..62

Table 3: Comparison of Existing APIs on Communication Features69

Table 4: Comparison of Existing APIs on Spatial Location Features69

xi

List of Figures and Illustrations

Figure 1: iPad Seismic Slicing ...9

Figure 2: MRI Table Kinect Slicing ..11

Figure 3: Proposed Gestures from Elicitation Study [9] ..16

Figure 4: Menu Based Approach for Device Selection. [16] ...26

Figure 5: World in Miniature Approach for Device Selection. [8] ..27

Figure 6: Stitching as a Method for Content Transfer. [20] ..28

Figure 7: Physical Bridging as a Method for Content Transfer. [25]29

Figure 8: Throwing Gesture as a Method of Content Transfer. [26]31

Figure 9: Flicking Gesture as a Method of Content Transfer. [30] ...32

Figure 10: Pointing Gesture as a Method of Content Transfer. [30]33

Figure 11: MSE-API Components in an MSS ...58

Figure 12: Simplified Architecture of MSE-API Locator ...59

Figure 13: Pairing Gesture Performing With Device ..61

Figure 14: Visualizer displaying a paired person and device ..64

Figure 15: Detecting Pour Gesture & Querying Locator ...66

Figure 16: Sending & Receiving an Image ..67

Figure 17: Sequence of Pairing & Orientation Updates ..67

Figure 18: Sequence of Locator Query & Content Transfer ..68

Figure 19: Flight Grid Pattern ..73

Figure 20: Subsurface Contours...74

Figure 21: Role Selection in Skyhunter MSS ..76

Figure 22: Pour Gesture to Transfer Layers ..78

Figure 23: Flick Gesture to Transfer Layers ..80

Figure 24: Camera Gesture to Transfer Layers ..81

xii

Figure 25: Development Time (Person-Hours) by Category ...83

Figure 26: Examining Visible Layers Using a Web Browser..85

Figure 27: Pour Gesture to Transfer Annotations ..91

Figure 28: Button Press to Capture Entities ...93

Figure 29: Experience Level of Participants ..94

Figure 30: Time Spent on Tasks ..95

Figure 31: Initializing the API ...96

Figure 32: Sending & Receiving Extents...97

Figure 33: Requesting Entities ...98

xiii

Epigraph

 In academia, the number one sin is plagiarism, not triviality. So much of the innovation is

esoteric and not at all useful.

Peter Thiel

1

Chapter One: Introduction

For many years, users interacted with a computer with a mouse and keyboard. They worked on

applications which ran on that computer or web-based systems through a web browser. Their

files and applications lived on that computer alone and if they needed to be moved they were

sent over a network or stored on physical media. This situation has changed drastically in the last

decade; users today likely have a smartphone and/or a tablet in addition to a traditional computer.

Their files live across these devices and are commonly synchronized between them. Users might

now have access to large format wall displays for collaborative work and even newer

technologies, such as digital tabletops, or position tracking systems. All these devices are rapidly

reaching consumer level prices (i.e. measured in hundreds of dollars).

In this new computing environment, the old reality of one application, one device is rapidly

fading away and does not meet the needs of users anymore. In the old paradigm an application

“lives” on a single computer but in an environment with numerous connected devices, this

paradigm is rapidly fading away. Such connected devices might include a mobile phones, tablets,

large format wall display and even digital tabletops. Traditionally each of these devices was used

separately with each application and its associated data being independent from other systems.

As their use increases, users want to be able to use these devices in an integrated environment.

But in order to support such an environment it is necessary to be able to move content between a

device – a common task for users – which, in existing systems, is clumsy and difficult.

Controlling one device from a more convenient device, another important capability, is rarely

even supported. Consider the task of moving a document from a wall display to a mobile device

during a presentation. Using the traditional paradigm this would typically involve sending the

file over email or transferring it with a USB. While these information exchanges are

2

commonplace and occur many times in a given work session, the interactions for accomplishing

them are poorly-supported, often take place outside the context of the application in which

they’re required, and are time-consuming. To deal with these usability issues, designers need to

reconsider the fundamental paradigm of applications which run on single device and adapt to

multi-device computing. Developers need to adapt to building applications which are, by design,

spread across multiple devices. By this we mean applications where the movement of content

and control between devices is so smooth and fluid that the application no longer appears to be

localized to a specific device.

While developers in industry have been slow to consider the new situation of multi-device

systems, researchers working in the field of human-computer interaction have been investigating

this paradigm for over two decades. Research has emphasized several important benefits which

are provided by multi-display environments (MDEs) – environments containing multiple

displays which may or may not be interactive. For our purposes, we define a multi-surface

system (MSS) to be a system composed of multiple, tightly integrated, interactive devices. In

applications running on an MSS users can switch seamlessly between the devices and the

application appears to spread across the devices and is not localized to a single device. Under

this definition therefore MSSs are a distinct subset of MDEs. Detailed definitions of terms are

provided in Chapter Two.

1.1 Research Questions

This thesis proposes the creation of an API which supports gestural interactions in a multi-

surface environment. In addition to providing useful functionality to developers, the API is

intended to be usable. This leads to the two major research question of this work:

3

1) Can an API for constructing multi-surface environments be built which uses only

consumer level hardware?

2) How learnable and discoverable can the API be made while still preserving efficiency?

In answering these questions it will be necessary to confirm that the API provides all the features

necessary to construct a multi-surface system with spatially augmented gestures. To do this it’s

necessary to show that such a system can be built and all the requirements discussed in Section

1.3 have been met. To evaluate its usability it will be necessary to show that the API is learnable,

discoverable and productive when used by developers and that they are satisfied with the API.

This will be measured by a case study and a self-evaluation of the API. We will measure whether

developers can learn to use the API in a reasonable time frame, how productive they are in

building an MSS, and how satisfied with the API they were during various stages of their project.

1.2 Goals

This thesis has two main goals: to develop and evaluate the usability of an API which supports

spatially augmented gestural interactions in a multi-surface system. In addition to supporting the

creation of such systems, we intend to answer the previous research question. That is, we wish to

determine if such an API can be built in a way such that it is usable for developers.

4

Chapter Two: Multi-Surface Systems and APIs

2.1 Multi-surface Systems – Benefits & Overview

An MSS allows users to take better advantage of the properties of its component devices. It

allows users private space through the use of devices whose affordances – such as a small size or

mobility – allow for work to be done discretely. It allows for the creation of public information

radiators by incorporating large and highly visible devices. It also allows for the creation of

specific and novel interactions which inherently involve the tight integration of several devices.

These benefits are discussed in detail in the following sections.

2.1.1 Effective Use of Device Properties

One of the principle advantages of an MSS is that it can be made up of different types of devices,

each of which can have properties that are useful for certain tasks. In a traditional application, a

designer would have to compromise and choose the most appropriate device for the majority of

tasks but which would not be ideal for other tasks. In an MSS, a designer can simply use the

device best suited for whatever task or subtask is required. This added flexibility allows

designers to build systems where users can switch between devices depending on the tasks and

the properties required.

Selecting the device with properties which best support a subtask is often a source of tension for

designers. Because a traditional application only runs on a specific single device, a single device

must be chosen even if it’s non-optimal for some of the subtasks, preventing designers from

building an optimal application. In an MSS, designers do not have this constraint, so a different

device can be used for a separate subtask. This allows designers to choose a set of devices which

are most appropriate for all the subtasks in an application.

5

Consider a system for presenting three dimensional models to a group. The most optimal device

for displaying the models would be a large format, high resolution display placed at the front of a

room. Controlling and exploring the model with such a display might, however, be awkward for

the presenter. In an MSS, the designers could move the subtask of controlling the model to a

more appropriate device such as a tablet while still maintaining the effectiveness of the large

display for the presentation task. As an MSS can incorporate various devices;; it’s possible for

system designers to assign devices which are more convenient for a specific task to the device

which is most appropriate for that task.

2.1.2 Public & Private Space

Consider a user who is in the process of working out an incomplete idea or has only partially

completed a solution to a particular problem. This user might prefer not to have this partial work

accessible to other members of his team or available to a wider group. This desire might depend

on a variety of factors but designers need to consider how the usability of their system would be

affected by users who feel the lack of private space to work. A device, therefore, can provide a

private space if a user can have a reasonable feeling of privacy while working on it.

Alternatively, situations occur where users would prefer to have information available to their

co-workers and group members. In such a situation it would be useful for users to be able to

present information in a public space. This might occur in a task where some shared information

needs to be available to different users, for example, a shared background map for some analysis

task.

In a traditional system, where applications run on devices which are isolated from one another, it

would be difficult to choose a device which could provide both a public and a private space. A

designer would therefore have to emphasize one type of space and this could cause usability

6

issues when users really desired the opposite type of space, such when doing preliminary work

on a public display (if the public aspect was emphasize) or find it inconvenient to share

information on a private laptop or tablet (if the private aspect was emphasized).

An MSS can resolve this difficulty by dividing an application over devices which are appropriate

for private work (e.g. a tablet) and those with public visibility (e.g. a large display). Several

systems have demonstrated this technique in which balance public and private space by using

multiple devices. In one such system, users could browse web content using a PDA (which

provided private space) and dispatch content to a shared wall display (which provided public

space) [1]. Another application area where private and public spaces are both needed is in card

games. In such games users must keep some cards private while others are made public, such as

in the game Rummy. Researchers created a digital version of Rummy where users have an

iPhone which displays their private cards and while an iPad is placed in the center of users to

show “runs” and placed down cards [2].

These examples illustrate that applications sometimes require a private space for certain tasks

and a public display for others. It is difficult to reconcile these two goals in any system which

must run on a single device. With an MSS, a system designer can simply use the device most

appropriate to the task needed by users.

2.1.3 Improved Collaboration

In systems where multiple users will be using the system together, one of the goals of designers

is to support collaboration among those users. Users collaborate in different ways and, and the

use of an MSS can impact collaboration. The integration between devices in an MSS can support

collaboration by improving communication, awareness, and coordination among users while they

completed a specific task [3]. An MSS assists users by incorporating devices which could

7

improve awareness – such as a highly visible wall display. It supports communication by making

it straightforward to share artifacts among group members, and it supports coordination by

providing workspaces on which multiple group members complete and can integrate work

products.

One study has shown how an MDE, which involves passive displays as well as interactive

devices, can impact communication, awareness and coordination [3]. In the study, participants

used an MDE to build a schedule and each user was provided with a private tablet and could

view a public display. It was found that using an MDE gave users a more sheltered interface

which is less visually distracting. This shows how device choice impacts awareness. In a longer

term study focusing on software development, researchers found that developers used an MDE in

an opportunistic way to quickly share a specific problem or feature they were working on with

their wider group of co-workers [4]. In the study users could quickly replicate a view from their

own workstation to a larger shared display. The availability of a large display, which was well

integrated with their existing system, directly supported communication between team members.

This task is specifically interesting because collaboration was done opportunistically, that is,

quickly transitioning between a collaborative task done with other users and then back towards

an individual task.

Another study extended these results to an MSS, considering what collaborative benefits would

exist in a system composed of a multi-touch tabletop and personal tablets for each user [5]. The

researchers found that when using such a system, the users fell into distinct strategies ranging

from team-up (where the tablets were used to compare aspects of documents related to the task

while the team members worked together) to divide-and-combine (where team members worked

separately and in parallel on some task and then combined their progress afterwards). The

8

authors suggest that an MSS gives flexibility for a wide variety of collaborative strategies. These

research studies suggest that an MSS can improve collaboration for software development and

schedule making tasks. The MSS allowed designers to choose devices, such as a large format

display, which improved communication and awareness and which in turn supported a variety of

collaboration strategies which could not necessarily be supported by a traditional system.

2.1.4 Novel Interactions

The benefits discussed in the previous sections all improve usability by matching the appropriate

device to the appropriate task. But an MSS can improve usability in other ways: it can create

entirely new interactions by using devices in novel and interesting ways. Since these interactions

involve several closely integrated devices, they could not be replicated by traditional applications

running on isolated devices. We discuss two examples of such systems from our own research in

the following sections.

2.1.4.1 Seismic Slicing

In oil and gas exploration, a common task for geophysicists is to analyze the area below the

earth’s surface to determine if the area may contain a reservoir. Analyzing this area is typically

done by multiple different users with different backgrounds and skills. The analysis is typically

supported by a visualization of the subsurface called seismic. Seismic is often organized into a

three dimensional volume, the volume contains information about the structure of the subsurface.

Visualizing this data is often done using a traditional application on a single desktop computer.

A user selects a specific plane of the data (called a cutting plane), to reduce the three dimension

volume to a two dimensional structure, which is more amenable to analysis. This process can be

difficult for users who are not experts with the software and the process is often limited by the

awkwardness of using a desktop computer with a large group of users.

9

An MSS application for visualizing this seismic data addresses these issues by making the

visualization task more intuitive and natural. In this application the area of interest is presented

using a map of the surface displayed on a digital tabletop. To explore the subsurface, a user

manipulates a tablet by placing it vertically on the tabletop. When the tablet is placed down on

the tabletop a slice of the seismic data, corresponding to the area under the tablet, is generated

and then displayed on the tablet itself (see Figure 1) [6]. As a user rotates and manipulates the

iPad, new slices are created and displayed. With this system, users can navigate the entire three

dimensional structure in a natural way wherein the slice is presented in its original vertical

dimension. In this system, the tablet device becomes a kind of physical slicer which a user can

manipulate to explore the subsurface.

Figure 1: iPad Seismic Slicing

10

This interaction improves on existing techniques of seismic navigation, because it allows users to

navigate the subsurface in an intuitive way. Because it incorporates a digital tabletop, the

exploration is visible to a wide group of people who can work around the tabletop. In this way

the addition of an MSS can created an entirely new interaction, which is novel, and comes as a

direct consequence of the paradigm of dividing an application between multiple devices.

2.1.4.2 MRI Kinect

Another system where an interesting and novel interaction is made possible by an MSS is the

MRI Kinect application [7]. Medical volumetric data is a three dimensional model of the body,

derived from medical imaging techniques. Visualizing this data is an important practice in

medicine. Typically this is exploration is done using traditional applications isolated to a single

device. Users explore the medical volume by selecting planes to isolate a specific two-

dimensional slice from the overall three-dimensional model. While this task is often done by

imaging experts, it can also be done by students studying anatomy or by clinicians preparing for

surgery.

An MSS application for exploring volumetric imaging data provides a more intuitive interaction.

A tabletop display is used to provide a picture of a human body. This body acts as a reference to

assist users in selecting a slice in their particular area of interest. To select a particular slice from

the volumetric data, a user simply moves their tablet over the part of the body they wish to create

a slice in. The appropriate slice is then created based on the position of the tablet and the two

dimensional slice is displayed to the user (see Figure 2). As the user moves the iPad up and

down the reference body, a slice corresponding to the appropriate area of the body is displayed

on the tablet. This technique is interesting because it gives the user a sense of exploring, in

11

physical space, the three-dimensional model of the human body. The interaction technique is

novel and takes advantage of several different devices, integrated into single application.

2.1.5 Summary of Benefits

As more devices become available to users, new applications and interactions will become

possible. The multi-surface paradigm allows designers to match devices of different sizes,

displays, and input mechanisms to the tasks which are most appropriate to them. This provides

several benefits, such as the ability to take advantage of specific properties of different devices

for increased usability, the distinction between public and private space, and the improvement to

collaboration that such systems provide and several examples of entirely new and novel

interactions which couldn’t exist in the single device paradigm.

Creating such applications, however, will engender additional costs: increased programmer effort

will be required to deal with distributed interfaces, synchronization, and other tasks. Since some

Figure 2: MRI Table Kinect Slicing

12

of the tasks are common to a wide variety of MDEs and MSSs, it’s possible that tool support

could be created to assist developers. The core tasks of such systems are discussed in the next

section.

2.2 Infrastructure to Support Multi-surface Systems – Content and Control Transfer

While an MSS provides a variety of benefits, such systems are not commonly found either in

consumer applications or in industry. We propose that this lack of support in industry is due to

the additional complexity that is involved in building an MSS. This complexity is translated into

additional development costs which make an MSS expensive to build and maintain. Before tools

can be developed to mitigate these additional costs, a clear understanding of the core common

problems related to building an MSS must be developed. Based on a review of several MSS

applications (see Chapter 2) and experience in developing prototype multi-surface systems, we

identified these core problems to be control and content transfer and the details of both are

discussed in the following sections.

2.2.1 Control & Content Transfer

The first obvious difference between an MSS and a traditional single device application is the

presence of additional devices. Creating an application which spans all these different devices

presents several difficulties compared with an application which must run on only a single

device. An MSS application requires developers to rethink how interfaces are designed, where

computation is performed, where data is stored, which interaction techniques to keep from

traditional applications and which to ignore etc. But while these problems might be solved in

different ways depending on the specific application, two problems specifically stand out as

being common to nearly every MSS. These common problems are the content and control

13

transfer tasks. These are both central to an MSS because they pertain to how an application is

spanned across multiple devices.

These problems are broader than simply a networking issue. They have several separate

dimensions depending on the perspective of the people involved in the MSS. From a user’s

perspective, the tasks must have an interaction or interface associated with them, to (a) initiate

control over another device or their own device and (b) initiate or accept content transfers from

other devices. We then discuss the types of interactions which, research suggests, might be most

usable. From a developer’s perspective the tasks involve how they design their applications to be

(a) controlled or commanded from other devices, and (b) how they can send and receive specific

content from other devices. Before interactions are proposed for users or tool support is

discussed for developers, we will review precisely what is meant by each task.

2.2.1.1 Content Transfer

In an MSS, it is possible that multiple users will be working simultaneously on different devices

in the system. In fact, this support for collaboration is one of the major benefits of an MSS over a

traditional software system. In such a situation it is likely that users will create or access different

content – by which we mean digital artifacts like images, documents, etc. – on different devices.

For example, in an MSS designed to visualize data related to oil and gas exploration, the content

might be a three-dimensional model of subsurface information, while in an MSS designed to

share web pages, the content might be a link to a website. As users work with this content they

will often want to transfer it to other devices as part of the task they are trying to complete. This

transfer might be to another mobile device in order to capture the data on a personal device, to

take advantage of the mobility of the device. The transfer might send the content to the device of

another user, to support collaborative work with that user. Or the transfer might to a large wall

14

display in order to take advantage of the displays size. Content transfer can also have two

directions: a user can send content from their device to another or they can retrieve content from

another device to their own device. From this we can see the content transfer is an integral task

to several desirable features of an MSS, such as making effective use of devices and

collaborating with other users.

Without the ability to move content – which is necessary to complete tasks – the full usefulness

of having multiple devices in the system is not realized. Content transfer must also be different in

an MSS from content transfer systems which merely synchronize data automatically. Triggering

content transfer, when used as part of a MSS to complete a task, should be a conscious decision

made by a user. This is especially so in an MSS where multiple users will bring in personal

devices as well as interact with public devices. To automatically synchronize all this data would

create issues around privacy and control.

While users and not developers will actually perform the content transfer, supporting content

transfer in an application can be made easier. Tools can be provided to support adding this

feature to an MSS.

2.2.1.2 Control Transfer

Similar to transferring content, a user might want to control other devices in an MSS. By control

transfer we mean remote application control – the control of one device by another device . This

is important in several scenarios such as controlling a device with an inconvenient input

mechanism or controlling applications on the device of a user who you are collaborating on a

task with.

The ability to pass commands between devices could be useful whenever a device’s available

interaction modes are less optimal than those available on another alternative device. Consider a

15

large wall display which – because of its large size – might be difficult to use with a mouse and

keyboard. A user might want to send instructions or command from their tablet (such as move up

or move down) rather than control the interface with the keyboard. In this way control is passed

from one device to another.

Consider an application which normally runs on a mobile phone. When the user is working

within the MSS he would like to be able to use a larger interface such as a digital tabletop. When

the user places his phone down on the tabletop, control is moved from the phone to the tabletop.

Interface and other controls on the tabletop could dispatch commands to the phone even while

computation and storage remained on the phone itself. .

The transfer of control is an important task in an MSS because it allows users to take full

advantage of their devices. Previous research has developed functionality which allows control

to be passed using screen replication approaches, but this has difficulties if the input mechanism,

screen size or resolution is different between devices. To support this task we believe that

commands should be passed between devices. Developers should write software to respond to

the commands in the manner which is most appropriate for the specific application keeping in

mind issues of security, privacy, and social conventions.

2.2.2 Spatially Augmented Gestures

In the previous sections, the content and control transfer task were presented as the core tasks

associated with an MSS. Developers could provide many different types of interactions and

interfaces to accomplish these tasks. But previous research has established that interaction

techniques which incorporate and leverage the spatial layout of component devices of an MDE

are more usable for the task of selecting devices [8]. This is important because selection of a

target device is part of both the content and control transfer tasks which have been identified as

16

important for an MSS. in the following, spatial gestures and the implications for implementation

of an MSS are discussed.

Studies which elicited gestures for content and control transfer tasks have identified a set of

gestures which users would like to use for content and control transfer [9]. In these studies, a

wide variety of gestural interactions were performed, but all incorporated spatial position (see

Figure 3). For example, to send a picture from an iPad to a wall display, users proposed a gesture

where they performed a flick on their iPad while it was facing the targeted wall display. From

this research we can conclude that these gestures could be an important and usable interaction for

accomplishing both the content and control transfer tasks.

Figure 3: Proposed Gestures from Elicitation Study [9]

17

We define this types of gestures as spatially augmented gestures, these are gestures which

incorporate the spatial layout of the system itself. Supporting spatially augmented gestures as a

mechanism of interfaces requires even larger development effort than a standard MSS alone. In

order to implement gestural interactions for content and control transfer, a developer would have

to maintain location information for every device in the system including mobile devices. Since

gestural interactions could dramatically improve the usability of an MSS it is necessary to

support developers in providing gestural interactions which incorporate spatial elements.

2.3 An API for Multi-Surface Systems

In Section 1.1, we have reviewed the benefits which an MSS can provide over more traditional

single device applications. Two general tasks – which every MSS must solve – were also

highlighted: transfer of control and content. Such tasks should be accomplished, we believe, by

providing gestural interactions which incorporate spatial information such as location and

orientation information. Implementing such a system, however, would require a developer with a

wide variety of skills a great deal of development effort. For example, to implement content

transfer a developer would need to have an understanding of networking protocols and data

encoding. Worse still, the developer would need to be able to implement this functionality across

a variety of platforms in order to support different devices (e.g. tabletop displays, small and

medium sized tablets, laptops, etc.). Multiplatform support is necessary because not every type

of device necessarily exists on the same platform and further still we would like to support a

wide range of devices within a specific type. However, the tasks being described are not specific

to a particular application but are common to every MSS and could be solved in a reusable way.

This approach could then be incorporated by other developers into their applications and a

substantial amount of developer work would be avoided. The API could then reduce the

18

developer effort required to build an MSS and potentially increase their prevalence. In this

section the high level requirements of the API will be discussed.

2.3.1 Communication

In order to implement content and control transfer it is necessary for the proposed API to assist

developers in supporting communication between devices. This communication must be simple

for developers to setup but at the same time extensible. Communication in an MSS must include

device discovery so that devices can find each other as well as message passing between devices.

Before communication can be made between devices, it is necessary for the devices to be visible

to one another. It must be possible for developers to programmatically discover devices which

are in the environment. Practically this is implemented by scanning for devices on a common

shared network. This is as a reasonable assumption as an MSS is expected to be contained within

a room.. Device discovery should, therefore, be a feature provided by the API. This will allow

developers to build an MSS in a flexible way, without having to hard-code specific names or

device types.

Once a device has been identified, it should be possible for developers to send a message to it in

a straightforward way. Likewise, it should be simple for developers to setup methods which are

called when a specific message is received. Many different formats for exchanging messages in a

system are available, but a protocol should be chosen which is familiar to developers. The API

should specifically choose a protocol because, once chosen, it would allow for tighter integration

with the other features provided by the API.

As content transfer is an important task, methods for sending specific types of data should be

provided directly by the API Common data types might include images, dictionary and binary

files. Developers should also be able to specify code to respond to these messages. Additional

19

metadata, such as the device that sent the message and what type of interaction was used to

trigger it, should be provided to the receiving application when a message is received.

2.3.2 Spatial Tracking

While communication alone would allow a developer to construct a basic MSS, research

suggests that spatial information can inform the design of these systems and improve their

usability [8]. This task can also be handled by the API so that developers do not need to

implement this functionality independently.

The gestures proposed by the elicitation study (see Figure 3) all require location and orientation

information to function properly. Consider a swipe-up gesture performed by a user to transfer an

image from a tablet to another tablet held by a user facing them (see Figure 4). In this gesture the

user is making a selection of which device they wish to send the image to by the orientation of

their device. If the user had wanted to transfer the image to another device, for example a wall

display, they would have pointed the device in that direction. In order to programmatically

determine which device a user is facing, it is necessary to know three pieces of proxemic or

spatial information, the location and orientation of the user’s device and the location of the target

device. Without this information a selection cannot be accurately made.

To address this, the API should keep track of the positions of all the devices which make up the

MSS. This includes the positions of the fixed devices such as a wall display or tabletop. Some

mechanism should also be provided for users and administrators to alter these positions in the

event that the layout of the room changes. Because devices in an MSS could be mobile (such as

phones or tablets) it will be necessary for some sensor to track the location of these devices and

add this information to the spatial layout of the room. To improve the usability of the system, the

20

API should also provide developers with a visual layout of the room which can they can

incorporate into the interface of their application.

It is also necessary that the API expose this spatial layout so that it can be queried by developers.

These queries should allow developers to quickly determine which devices in the room the user

is facing (to support some of the gestures found in previous elicitation studies [9]) and queries

based on which devices are within a specified range. Methods for querying the server should be

provided on platforms common to typical devices (such as tabletops and tablets) specifically

.NET and iOS , but the server (where this information is stored) should expose its information in

manner that is consistent with web standards.

2.3.3 Summary of Requirements

In this thesis we propose the creation of an API to support developers in the creation of multi-

surface systems. Consistent with research that has found that spatial information provides an

interface which is potentially better than standard GUI based approaches, we have proposed that

the API should support the use of gestural interactions as an interface for accomplishing those

tasks.

The API must provide straightforward communication between devices, allowing developers to

discover devices, send messages, and define behavior when messages have been received. To

enable spatial tracking, the API must provide location and orientation information for devices in

the MSS. These requirements define the features which the API must have in order to be

effective in helping developers to build an MSS. In the next section the usability of this API is

discussed.

21

2.4 Usability of the API

Aside from meeting the requirements discussed in the previous section, what else is necessary

for the API? One important aspect is how usable the API is for developers. Just as the usability

of an interface can be evaluated from the perspective of a user, the usability of an API can be

evaluated from the perspective of a developer. This is an important distinction because it forces

API designers to consider the experience that developers will have when working with an API.

In assisting developers in building an MSS it is desirable that the API that is created is usable. A

more usable API widens the set of developers which is capable of using it and reduces the

frustrations and difficulties experienced by those developers. This in turn might make the

development of multi-surface systems more prevalent. In this section the definition and criteria

of usability which will be applied to the API will be discussed.

2.4.1 API Usability

In an early article on API Usability, Steven Pemberton asked API designers to “imagine

hypothetically, just for a moment, that programmers are humans” and “that their chief method of

communicating and interacting with computers was with programming languages” [10]. This

concern for developers using an API leads the authors to describe several aspects of API

usability – such as learnability, efficiency, memorability and misconceptions generated from the

API. They also make a close connection between the usability of an API and its documentation.

This is an important consideration which later studies could validate. In his canonical work on

API Usability, Jeffrey Stylos makes a clear distinction between the usability of an API and the

power of an API [11]. He further describes aspects of usability to include productivity, error

prevention, simplicity, consistency and conceptual integrity. These aspects mirror the initial

22

usability concepts proposed for user interfaces by Jacob Nielsen which are learnability,

efficiency, memorability, errors, and satisfaction [12].

On the other hand, it must also be recognized that optimizing certain usability aspects might have

a negative impact on other aspects or on other goals such as extensibility. Because of this, API

designers must make a trade-off between certain usability aspects. For our API, we have decided

to optimized learnability and discoverability while still maintaining efficiency. This is because

developers building an API must be aware of a variety of specific domains within software

development, such as networking, distributed systems and interactions with sensors. It would be

ambitious to assume that developers wishing to build an MSS will be experts in all these areas.

The entire set of usability goals for the API is outlined in the following sections.

2.4.1.1 Learnability & Discoverability

For an API to usable it must also be straightforward for a developer to learn and discover how to

use it properly. Learnability is a measure of how easy it is for a developer to learn the features

and functionality provided by an API. This aspect can be affected by design issues. For example,

if a class was poorly named, it would be difficult for developers to discover its purpose and

understand how to accomplish tasks which involve that class. Likewise, poor documentation

could impact learnability because too few examples were provided or poor explanations of

classes were given.

To assess the learnability of an API, researchers conduct user studies [13]. In these studies

developers (who don’t have previous experience with the API) are asked to perform a specific

task. Researchers then track whether or not the task was completed and what parts of the API

confused developers. We conduct this evaluation with a case study, which involves use over a

23

longer period of time. This provides a more realistic picture of the learnability and the

discoverability of our API.

2.4.1.2 Efficiency

Another important aspect of usability is how productive a developer is while using the API. By

productivity we mean how quickly a developer can accomplish the useful work that they desire

using the API [12]. An API might provide a large number of features but if it is time consuming

for a developer to complete a specific task, then it is less usable. To measure the productivity of

developers using our API a case study will be conducted with experienced developers. During

the study period, we will measure how long it takes developers to complete tasks.

2.4.1.3 Satisfaction

A final factor in the usability of the API is how much developers enjoy using it. This satisfaction

might be considered for the whole API or to some of its parts. While this aspect of usability is

qualitative, it is still important. It can indicate to designers if using the API is tedious or if they

have made a conceptual mismatch between the API and the mental model of developers. Based

on this indication, designers can follow up their inquiries to find the ultimate source of the

usability issues. Assessment of satisfaction should be performed with developers who have had

experience using the API over a longer period of time. Using our API, several developers will

attempt to build a multi-surface application during a period of several weeks. After each the

completion of the project, the developers will be asked to comment on their experiences using

the API.

24

Chapter Three: Related Work

As my work involves the construction and evaluation of an API for supporting multi-surface

systems augmented with gestural interactions, three general types of previous work must be

reviewed. First, research into interactions in multi-surface systems, specifically what interactions

researchers have proposed to solve the problem of (a) content transfer and (b) control transfer. A

summary of these interaction techniques, along with canonical examples, is provided in Table 1.

Second, existing APIs which relate to multi-surface systems – such as those providing device

communication and proximity information – are discussed in detail. Finally, work related to the

usability of APIs is reviewed, specifically the approaches used for evaluating an API and the

recommendations provided to API designers. These areas are presented respectively in Section

3.1, Section 3.2 and Section 3.3.

3.1 Interaction Techniques

Since an MSS or MDE is composed of several distinct devices, the core design challenge for

such systems is how to divide a single application across these displays. One paper specifies the

problem as how to create “interaction [which] spans input and output devices and can be

performed by several users simultaneously” [14]. Designing such interactions, which span across

multiple devices, is a difficult problem. Designers have narrowed their focus to provide solutions

for two tasks (a) transferring content – documents, images, etc. – between devices of the system

and (b) transferring control among devices. Numerous interactions have been proposed for

addressing these tasks during more than thirty years of research into MDEs. Since it would not

be feasible to review each of these systems, interaction categories are illustrated by specific

canonical examples. The general categories are as follows: a graphical interface (Section 3.1.1),

25

the use of proxemic and physical components (Section 3.1.2), and finally the use of gestural

interactions (Section 3.1.3).

3.1.1 Graphical Interfaces

Designing an interface for an MDE using the traditional GUI paradigm is the approach most

likely to be consistent with interfaces that users have previous experience with. These were

among the first approaches described for MDEs. Using such an approach, different devices can

be interacted with via a menu or list (Section 3.1.1.1) or the menu can be organized to include a

spatial layout or design of the room (Section 3.1.1.2).

3.1.1.1 Menu Based

A menu-based approach is a straightforward way to support both content transfer and control

transfer in an MDE. Users can select which device they want to interact with from a list, where

the device is represented by a name or icon. In one system, user laptops and public displays

composed the devices in an MDE. Users could create a binding between their laptop and one of

the displays co-located in the room [15]. A user initiated this binding to a display by selecting it

from a contextual menu or chose it from a list of icons. Once the binding was created, a user

could control the connected display. Menu based systems have also been created for an MSS and

address the issue of content transfer. In another system, a user could select a file or digital object

and drag it to an area or icon on the screen representing the other devices (see Figure 4) [16].

These menu-based approaches stick closely to the interface patterns users employ in other GUI-

based applications and would be familiar to most users. However, since each of the devices in

the system must be represented by a name or icon, distinguishing easily between a large number

of devices or between different types of devices might become difficult for users.

26

3.1.1.2 World in Miniature

To allow users to distinguish devices without the use of names and icons, some proposed

interactions have incorporated the spatial layout of a system into the interface. Usually this is

done in the form of a small map describing the layout of the system called a world in miniature.

The devices in an MSS have a spatial arrangement and users are familiar with this arrangement

from working within the system. Incorporating that layout into the system has been shown to

improve the ability of users to identify and select their desired device (see Figure 5) [8]. One

system with this interface presents the spatial layout in a simple diagram, users can select

specific commands to execute on those devices [17]. The spatial layout can be augmented to

show the applications currently running on each of the component devices [18] or with some

type of iconic design to help users identify it [19]. Often in these systems, after a user has

Figure 4: Menu Based Approach for Device Selection. [16]

27

selected the component device they wish to use, they can control that device using a keyboard

and mouse.

3.1.2 Physical & Proxemic Approaches

Extending the concept of using a spatial layout as part of the interface, designers have proposed

interactions that incorporate the physical room and its spatial relationships. The physical parts of

the system – fixed devices, mobile devices and people – are brought into to interactions for

transferring content and control.

3.1.2.1 Docking

Outside of interface design, contact is an important factor in human communication. This factor

can be mimicked in interaction design, so that contact (or docking) of two devices can be used as

a trigger to accomplish tasks in an MSS. To implement this interaction, however, it is necessary

to consistently detect when two objects are in contact. This poses some technical difficulties,

such as computing the location of two devices, determining whether they are touching, or

tracking their location; implementing this last part is often technically difficult and time

consuming. However, contact can also be inferred using proxy measures, for example when a

user performs an action simultaneously on two devices. Once the detection of contact is made,

content and control transfer can be initiated.

Figure 5: World in Miniature Approach for Device Selection. [8]

28

One method for detecting contact is for users to perform a continuous swipe on two touch

devices which are placed side by side (see Figure 6) [20]. Another system detects contact when

two devices are bumped together [21]. In these two systems once two devices are known to be

physically in contact or docked together, they form a shared display where content can be

dragged to either display. Docking has also been conceived as an interaction in systems equipped

with medium-sized tabletops [22]. These devices are mobile enough to be physically moved

across a room. When they are placed in such a way that the edges of their screens are together, a

customized sensor system detects the contact and creates a continuous shared display.

3.1.2.2 Conduits

Users have experience moving and handling physical objects in their normal experience. System

designers have proposed interactions based on this experience to accomplish content transfer.

These use the same actions that users are familiar with for transferring real world physical

Figure 6: Stitching as a Method for Content Transfer. [20]

29

objects. An early system allowed users to link a unique physical object to a data file [23]. The

object was identified by its weight and when it was physically moved to another device the

linked file was transferred to that device. In another early system a stylus could be used to select

or “pick” some content item and then, on a different device, transfer or “drop” that content [24]

Users themselves can be used as the conduit for content transfer. This is typically accomplished

by combining a MSS with a location tracking system that is able to track a user’s hand and arms.

One interaction creates this conduit by having a user place one hand on a large display and then

another down on a tabletop to create a “bridge” across these devices (see Figure 7) [25]. The

content selected by the user in the first half of the interaction is then transferred from the wall

display do the tabletop. In another interaction provided by the same system, a user selects

content on a tabletop and carries that content to another tabletop. During this interaction the

content itself is displayed constantly on the user’s hands, making it appear that the user is

“carrying” the content across the room.

3.1.3 Gestural Approaches

The physical interactions described previously all provide interactions for the content and control

transfer tasks. Since they mimic physical actions, they all inherently take advantage of the

Figure 7: Physical Bridging as a Method for Content Transfer. [25]

30

physical layout of the room. But it’s possible that some tasks would become tedious if constantly

performed in this way; consider the effort involved to physically carry a series of pictures from

one tabletop device to another. Gestural interactions also mimic physical interactions that users

would be familiar with from experience and involve the spatial layout of a room, but may

provide a more convenient interaction.

These interactions often involve spatial information, whether complete in the form of tracked

locations of all users and devices, or partially in the form of orientation information. Gestural

interactions often act as triggers to initiate control or content transfer. The direction of the

gesture can be used to indicate selection (i.e. which device is the intended target) while the

performed motion can be used to indicate the direction of transfer (i.e. whether the user wishes to

send or retrieve). For example, if a user performs a throw gesture towards another user, the

direction indicates they are selecting the user’s device as their target and they intend to send

content to that device.

3.1.3.1 With Device Gestures

Gestures can be performed by having a user physically manipulate the device itself. This is

appropriate for mobile devices because they are lightweight and manoeuvrable.

Many mobile devices are now equipped with an accelerometer or gyroscope, so it is possible to

get detailed information about the direction, intensity and structure of device motion. These

gestures are defined as with-device gestures.

31

A throw gesture is one type of with-device gesture that mimics the action of throwing a physical

object. This gesture has been proposed as a technique for initiating transfer between a mobile

device and a wall display (see Figure 8) [26]. This gesture reappears in other systems where it is

called the chuck gesture [27]. A different gesture for content transfer, which is appropriate for

the physical layout of a digital tabletop, is called the pour gesture. It is performed by rotating a

mobile device over top of a tabletop similar to pouring out a cup and then making contact with

the tabletop [28].

In in the above described gestures, the location of the user is not known, which means the

gesture cannot be used to indicate selection. Without knowing the location of the originating

device it’s not possible to determine the device that the user is gesturing towards. But if these

gestures were implemented in a system with location information, it could be used both to select

the device that is the target and to initiate transfer to that device.

Gesture elicitation studies for MDEs and MSSs, which attempt to gather candidate gestures for

use within an MDE, have elicited a wide variety of with-device gestures [9]. This provides

evidence that these gestures could improve the usability of an MSS and provides support for

these interactions.

Figure 8: Throwing Gesture as a Method of Content Transfer. [26]

32

3.1.3.2 Gestures & Proximity

Gestures performed on a device have gained wide usage as default parts of the user interface on

most modern phones and tablets. These on-device gestures – which are performed on the device

itself and – body gestures – which are performed with the user’s body, have been used in an

MSS. These gestures are often coupled with proxemics information, which is defined by

Ballendat et al. to include dimensions such as distance, orientation, movement, identify and

location [29]. Using the orientation and location dimensions especially, gestures have been used

to select and initiate content transfer in an MSS. These gestures are discussed in the following

section.

Detailed work has considered how proximity can be incorporated into applications including

how proxemic relationships can mediate device connectivity [29]. These ideas were later

extended to applications where content transfer is triggered by gestures. In one system, a user

selects an object of interest on their device and then performs an upward swipe gesture to initiate

the transfer of that content from their device to the wall display (see Figure 9) [30]. Alternatively

a user can send content to a display by selecting the desired location of interaction and then

performing an downward swipe to transfer some content from their display to the device.

Figure 9: Flicking Gesture as a Method of Content Transfer. [30]

33

Selecting a digital item and then dragging the object along the screen in the direction of the

intended recipient of the device is another gesture illustrated in another system [31].

Gestures can also be performed by users themselves; typically this is done by moving the hands

or arms which are tracked by some motion capturing system. This type of interaction can be

found early in the literature. One system proposed an interaction where a user could select some

content using a voice command or selection gesture performed using a finger [14]. This point

gesture could also be used to position the destination of the object. In this example the gesture

was used for selection while the voice action provided the distinct trigger. In a more recent

system a point gesture was used to select one digital object and direct it to another device by

pointing at the targeted device (see Figure 10) [30].

Gestures augmented with proximity have been supported by several gesture elicitation studies. In

these studies users have been asked to propose their own gestures for tasks. An elicitation study

focused on content transfer between tablet devices and tabletops replicated the flick and pour

gestures proposed by researchers and proposed several other gestures including a pull gesture

performed on the tabletop [32]. Other elicitation studies, investigating content transfer in a

complete MDE, have elicited numerous gestures performed on the device such as swipe up and

Figure 10: Pointing Gesture as a Method of Content Transfer. [30]

34

swipe down gestures as well as a wide variety of gestures performed in the air, such as point and

grab [9].

3.1.4 Interactions Summary

A summary of the interactions presented in the preceding sections is presented in Table 1. This

table describes the category of approach and briefly describes the gesture and interaction. Partial

implementation implies that some additional API might be needed to complete the task (e.g. a

gesture detection library to perform detection of gestures performed in the air).

Table 1: Summary of Interactions

Selection
Mechanism
Approach

System Selection Details
Input Output Content or Control

Transfer Details

Menu-Based

[15] User selects the desired device

from a list and

Laptop Public

Display

User could control the

public display as an

extension to their

laptop

Menu-Based

[16] User drags a window or file to an

area reserved on the screen for

device.

Laptop,

PDA

Public

Display,

Public

Tabletop

User can drag a

window or file to

another device.

World-In-

Miniature
[17]

Selection is done using a menu

presented as a spatial layout of the

room.

Laptop Public

Display,

Other

Laptops

User can drag a file or

digital object (e.g.

URL) to any device

which supports it

World-In-

Miniature
[18]

Selection from a spatial layout

augmented with updates on screen

activity.

Laptops,

PDA,

Tablets

Wall

Displays,

Other

Laptops

Users can control a

remote display as an

extended display. Can

35

3.2 APIs Supporting Multi-surface Systems

Since no single toolkit or API provides all the functionality for adding gestural interactions to an

MSS it is necessary to review several types of APIs which each supply some useful feature. As

there are only a small number of APIs in this space they are reviewed individually and in detail.

drag windows onto

remote displays.

Docking [20]

A continuous swipe across two

screens, which have been placed

next to each other, identifies the

devices interacting and their

relative orientations.

Pen

Enabled

Tablet

Pen

Enabled

Tablet

Users can drag files

from one tablet to

another.

Conduit [23]

An object is bound to a unique file

and triggers a dispatch when

placed down.

Tabletop Tabletop Item is transferred

between tabletops

automatically.

Conduit [24]

Users can select an item on one

display and then touch down to

drop it on another.

Wall

Display,

Tabletop

Wall

Display,

Tabletop

Item is transferred

between devices

automatically.

With-

Device-

Gesture

[26]

User transfers content to a wall

display by performing a throwing

gesture with a device.

Tablet,

Mobile

Phone

Wall

Display

Item is transferred

between devices

automatically.

With-

Device-

Gesture

[28]

User transfers content to a

tabletop by performing a pouring

gesture with a device.

Tablet Tabletop Web page is

transferred

automatically.

On-Device-

Gesture
[30]

User transfer content by

performing a swipe up gesture on

a mobile device.

Tablet,

Mobileph

one

Wall

Display

Item is transferred

automatically.

Person-

Gesture
[30]

Users transfer content from the

device to a wall display by

pointing.

Tablet Wall

Display

Item is transferred

automatically.

36

Some APIs which provide support for device communication, such as message passing and

device discovery, are reviewed in Section 3.2.1 while APIs which provide spatial or location

information are presented in Section 3.2.2.

3.2.1 Device Communication

Several API which have been developed specifically to support communication between devices

in a MDE or MSS will be reviewed in this section. These APIs provide two kinds of features, (a)

device discovery – where all the devices currently active in the system are collected and made

available, (b) message passing – where messages of some format are transmitted between

devices and (c) application division – tools which supporting a single application divided over

multiple devices. Typically APIs offer solutions that provide message passing or application

division, but not both.

3.2.1.1 3MF

3MF is a framework developed to “expose rich device functionalities which are currently

available only through local frameworks” [33]. It was developed by Kaufmann et al. around the

goal of exposing as services many of the functionalities found on a mobile device, such as

accelerometer or touch data. Such functionality can normally only be accessed through local

APIs. Exposing this functionality would be useful for creating an application whose interface is

distributed over several devices. For example, an interface displaying a map on a large wall

display could be controlled by subscribing to orientation data provided by a tablet’s gyroscope.

3MF is written to work in a peer-to-peer environment without any centralized server to route

activities. The API is integrated into each application running through the MSS. Devices are

discovered on a shared network using the Bonjour protocol. When a device is discovered its

37

capabilities (or provided services) are announced to other devices. These can then be consumed

(or subscribed to).

3MF is an API that is designed to support shared access to specific services provided by various

devices. Since these services are predetermined, developers would need to alter the API to

provide additional services and no general method for exposing them, such as routes, is

supported by 3MF. Since 3MF does not provide a direct mechanism for content exchange (i.e.

the exchange of data types such as images and dictionaries) developers would also have to add

this functionality themselves. Finally, the services provided by 3MF do not conform to a REST-

ful interface which would allow other clients, without using a client library, to access their

services using HTTP formatted messages. Support for REST-ful interfaces is an important

feature as it allows for compatibility with any device which is able to generate HTTP messages,

this improves the extensibility of the API. It also allows testing and debugging to be done in a

straightforward way (e.g. testing can even be done using a web browser).

3.2.1.2 Event Heap

Event Heap is an API used to “coordinate the interactions of applications running on […]

devices that will be common in ubiquitous computing environments”. It was implemented by

Johanson and Fox along with an MSS system called the iRoom [34]. The designers of the system

initially assert that most realistic MSS will be utilizing traditional applications that will be

coordinated together into an ensemble. Therefore, their API does not force users to change their

tools and styles of development.

The API itself is written around a programming paradigm called TupleSpace where applications

coordinate with each other by sharing access to a set of tuples (key value pairs) and where each

application can read or write to this space as desired. Applications poll Event Heap and query

38

tuples which they are interested in. Client libraries exist which can work with Java, C++ and,

through a proxying mechanism, web applications.

As Event Heap was designed over ten years ago, it preceded the widespread use of standard web

based technologies such as REST-ful APIs. Since the designers envisioned that API to be used

on wide range of devices (even projectors and mechanical controls) it might not be feasible to

run a full HTTP server. The practice of constantly polling a shared space would create a large

amount of communication overhead within an MSS composed of only a few devices. To support

the content transfer task it would also be necessary for their API to explicitly deal with data

(such as images, files, dictionaries, etc.) but the API explicitly leaves this task to another

middleware layer called DataHeap.

3.2.1.3 MAGIC Broker

MAGIC Broker is an API which explicitly uses modern web technologies and REST-ful APIs

[35]. It was designed by Erbad et al. specifically to support communication between mobile

devices and a large public display, which is an additional constraint on the class of general MSS.

The framework exposes functionality on the large display using a REST-ful API that mobile

devices can then consume. In one system, built using their API, users could enter tags on their

mobile devices and see pictures related to those tags (derived from Flickr) displayed on that

public display.

Two components make up the design of MAGIC Broker, a broker server that provides the

exposed API and an application server that communicates with the broker. As the system was

developed to support mobile phones, the broker component will also accept information in the

form of SMS and XML messages. The designers do not describe in detail how the application

39

server running on the public display would receive and process the messages coming from the

broker.

As MAGIC Broker exposes the functionality of the interactive display using a REST-ful

interface, it is possible for developers to query the server without the need to use a client based

API. But because the mobile devices are not themselves exposed using a REST-ful API, it’s not

clear how bidirectional communication could be supported. This is important for applications

with support for gestural interactions because it must be possible to send content from and to any

device in the system. Finally, the developers do not describe any convenience methods for

helping developers who are not familiar with networking to accomplish straightforward tasks,

such as sending an image or dictionary between devices.

3.2.1.4 ROSS

ROSS is a toolkit which the designers describe as being a “way for applications to run across a

variety of platforms and devices: tabletop computers, touch-screen mobile devices and

responsive walls” [36].

To support such MSSs, the designers propose a novel nested structure to their API. To model the

structure of the MSS, each object in the room is represented by an RObject, which itself can

contain additional objects in a tree like structure. For example, an RObject might contain an

RSurface which specifically represents an interactive surface, while the RSurface contains a

mobile phone, a finger touch, and a puck – all of which are on the display and are themselves

RObjects. Developers configure the initial structure using an XML configuration file.

Communication between the actual devices is handled through XML based message passing,

specifically Open Sound Control messages.

40

ROSS is a novel approach to organizing a MSS because it allows developers to structure their

application in a nested way with each node being an object in an MSS. However, such an

approach does not substantially improve the previously described tasks in an MSS, the transfer

of content and control. Messages in the system are still sent as XML and developers would need

to send and respond to these manually. One difficulty with this framework is that it forces

developers to change the tools and frameworks traditionally used in developing an application

(such as UI frameworks and toolkits).

3.2.2 Proximity & Location

Many of the gestural interactions envisioned for a MSS (see 3.1.3) involve knowledge of

proxemic dimensions (location, orientation, etc.). APIs which provide this type of proximity

information, such as Proximity Toolkit, NearMe and SharedSubstance are reviewed.

3.2.2.1 Proximity Toolkit

Proximity Toolkit, developed by Marquardt et al., is a toolkit for building applications with

proxemic interactions [31]. Research into proxemic interaction involves a larger scope then

content and control transfer in an MSS. As such, their toolkit was designed to support a wide

range of applications. For example, Proximity Toolkit was used to create an application where

the interface was adjusted to accommodate for the distance between the user and the application.

Because of the difference in focus, some architectural and design decisions are not necessarily

optimal for the content and control transfer in an MSS.

Proximity Toolkit itself is composed of a centralized server that provides proxemic information

to clients. This server is supplied with proxemic information from a sensor requiring markers

being placed on objects; specialized modules convert the sensor data into a format

41

understandable to the main server. A visualizer provides a 3D visualization of the tracked items

and specific libraries provide event-based updates to clients via a distributed data structure.

Proximity Toolkit is primarily used in conjunction with the VICON tracking system, which is

able to track objects and people with a high degree of accuracy and range. Unfortunately the cost

of such a system is prohibitive and not within the range of consumers. To function the sensor

also requires users and devices to wear physical markers, this is acceptable for prototyped

applications but not realistic in real world situations. While it is possible to use Proximity Toolkit

with a Kinect sensor, which is more affordable, a developing building a MSS would still need to

maintain a relationship between the devices and the users who are holding them so that the

person’s location can be used as a proxy value for the device. This would be a substantial

investment of developer effort. Likewise they would also need to integrate data from other

sensors, like a gyroscope, themselves.

Proximity Toolkit is also an event driven toolkit, meaning that developers can request updates

for particular pieces of proxemic information or relationships. For example, a developer writing

an application could request continual updates on the location of a specific person or whenever a

user was facing towards a distinct direction. This is a good design choice for systems where

rapid updates of proxemic information are used as the basis for specific actions (e.g. updating an

interface). However, in supporting gestural interactions a developer wishes to query the spatial

state of the room at a given time. For example, if a developer wishes to allow a user to direct a

photo to all devices in his field of view, the developer would simply query which devices existed

in the user’s field of view at that time. Queries rather than events would be more convenient for

this task. The server component in Proximity Toolkit provides updates to client APIs using a

distributed data model based on the TCP protocol. This is effective given the event driven

42

approach mentioned above. When using queries, a more natural architecture style is to follow a

REST approach as described by Fielding [37]. This architecture allows information known to the

locator server to be queried using HTTP and is structured in a style that is consistent with APIs

based on web technologies.

3.2.2.2 Easy Living

The Easy Living system is a framework developed at Microsoft Research by Brummit et al. and

it attempts to support systems where there is a “dynamic aggregation of diverse I/O devices into

a single coherent user experience” [38]. While this focus is larger in scope then an MSS, the API

could be used to construct such a system. The system provides person tracking based on stereo

cameras.

The system is built around the Easy Living Geometric Model or (EZLGM) which provides a

geometric layout of devices in the room. Developers define each entity in this layout to have

measurements for position and extent, as well as uncertainly values for those particular

measurements. Developers can query this to determine the geometric relationships between

entities and which entities fall within a certain radius of another entity. EZLGM captures this

information using stereo cameras which are not described in detail.

Since Easy Living was developed before consumer level tracking systems were widely available

it relies on stereoscopic cameras for positioning. Similar to Proximity Toolkit, the API provides

information about people but cannot reliably track devices such as a tablet. Developers using

Easy Living would need to directly implement a relationship between devices and people to

query the locations of mobile devices.

43

Querying the system is done using SOAP, but since the creation of Easy Living this technique

has been replaced by REST-ful interfaces, the designers do not mention if a client library to

make these queries more convenient for developers.

3.2.2.3 NearMe Server

The NearMe project describes a server that provides proximity information gathered from

wireless networking [39]. Usually such systems require calibration where signal strength is

correlated to specific distances. In this server, users can accomplish this calibration by pairing

this strength information to known locations themselves. Because this information is based on

network signal strength it cannot provide location but only proximity. The system is intended for

a larger range (about 30 – 100 m) and would not be accurate enough for positions within a room

where an MSS might be located. This work shows an early example of a central server that

provides proxemic information to clients.

3.2.2.4 Shared Substance

Shared Substance describes a middleware layer for supporting multi-surface systems. The API

provides a set of tools for organizing applications across devices as well as sharing resources

inside this application. Specifically, it provides shared access to a VICON tracking system which

provides highly accurate location tracking.

The middleware follows the data-oriented programming paradigm, a rarely-used alternative to

object oriented programming. This construct works at a lower level than other frameworks for

sharing proximity information, developers create applications on a specific device by attaching it

a tree representing the application.

It is not clear how applications built using this approach would work with other popular GUI

toolkits for constructing applications such as Window Presentation Framework or Cocoa. The

44

developers do not describe their middleware as providing any interface or augmentation to the

raw information provided by the VICON cameras. Developers would need to access this

information directly from the cameras themselves.

3.3 API Usability

As one of the goals of MSE-API is to produce a usable API, it would be useful to here review

some of the research work into API Usability. This research is the application of usability

research – such as that typically done for user interfaces– to APIs.

In our methodology, developers that use the API are treated as users and the API itself like a

system whose usability can be evaluated and improved. In Section 3.3.1 the common issues

affecting API usability are discussed and in Section 3.3.2 the methodologies and methods used to

evaluate an API are presented.

3.3.1 API Usability Issues

Several studies have attempted to identify the main problem categories that cause API usability

problems. These issues were found to be (a) naming and conceptual issues, (b) design issues, and

(c) documentation and supporting material issues. Studies identified these problem categories in

different ways, such as usability studies on a particular API [40], through a survey given to a

group of developers [41]and through manual analysis on newsgroup comments related to a

specific framework [42]. Two studies attempted to categorize and summarize existing literature

published on the field of API Usability [43,44]. And another study analyzed the bug reports

associated with large open-source APIs [45]. Detailed discussion of these core problem

categories are presented in the follow sections.

45

3.3.1.1 Naming & Concepts

Since developers primarily interact with an API through exposed functions, interfaces, and

classes, the names that a designer chooses for these artifacts will have an impact on the

learnability and discoverability of the API. Names in the API need to map well to the underlying

concepts of the domain. One paper studied the relationship between internal-representation of

domain concepts and the usability of an API and proposed metrics to help developers improve

the relationship between these [46]. Another work considered the entire API as a communication

artifact and investigates how specific choices, including the names of classes and interfaces,

affect this communication [47]. Other work has discussed how excessively generic or abstract

names lead to names with poor expressiveness which do not convey any information about the

role and purpose of the artefact [48].

3.3.1.2 Design

The design of an API can influence its usability and studies have investigated how certain design

patterns and styles impact the usability of an API. User studies found that a standard constructor

was better for instantiating a class then a static method [49] and a factory method [50]. It was

also found that requiring developers to provide parameters to a constructor was not as usable as

allowing them to instantiate the class and then set the parameters [51]. APIs with a large number

of classes require more searching time before developers can find the class they need, its

recommended that important classes be presented separately from utility classes [49]. When

considering the entire design space for an API, work has recommend separating the architectural

design decisions from those related to language level decisions [52].

46

3.3.1.3 Documentation

The relationship between the usability of an API and its documentation has been subject to a

great deal of research. A large-scale field study conducted at Microsoft, using interviews and

surveys, found that developers felt that poor documentation and learning resources were the

major cause of poor API usability [53]. A qualitative analysis of the data collected highlighted

several common issues with documentation; these include issues with code examples, intent of

documentation, penetrability, and the format used for presentation. Another study investigated

the usefulness of API documentation for users missing domain knowledge related to the API

[54]. They suggest that documentation should include background information for users without

experience in the domain. Studies around API documentation repeatedly stress the importance of

providing quality code examples [55,56]. But creating and maintaining a large set of code

examples is expensive. Researchers have proposed methods to assist API designers with this

task, evaluating the idea of using unit tests as examples [57] and synthesizing or suggesting the

examples from open-source software in public repositories using the API [58,59]. Finally,

researchers have proposed a series of tools for improving the exploration of API documentation

[60,61].

3.3.2 Evaluation Strategies

Several methods have been proposed for evaluating a specific API. The most widely used is a

user study, where a user is asked to complete a task with an API. The usability can then be

assessed based on the experience of the developers and whether or not they completed the

required tasks. Reviews of an API can be conducted where a developer “walks through” an API

with an API designer and provides feedback similar to a design critique. Finally, several

techniques attempt to evaluate an API by defining precise usability metrics.

47

3.3.2.1 User Studies

A relatively straightforward way to evaluate the usability of an API is to ask other developers to

complete a task using the API, track the number of users who completed the task and what errors

or difficulties they encountered, and measure how long it took developers to complete a task.

Typically the tasks chosen must be reasonable in size so that developers can complete them

during the time appropriate for a user study. User studies must have tasks of this size as

longitudinal studies are more expensive and time consuming to conduct. The results of user

studies, therefore, focus on learnability and not the usability for long-term users. When

attempting to assess the learnability of an API, it is necessary the developers participating in the

study do not have previous experience using the API before.

One study applied this approach as a part of a study on the usability of service-oriented APIs

[62]. During their study developers were required to complete a task using a specific real-world

service oriented library. While they were completing this task they were asked to follow the

“think-aloud” protocol by describing their actions and reasoning as they worked. The authors

organized and classified the types of errors that users encountered while using the software and

presented those that would be common to many service oriented APIs.

Another user study was conducted at SAP as part of an ongoing effort to redesign an API for

creating and updating business rules [63]. The designers proposed a prototype API and then

asked developers to perform three tasks (during a limited time) to assess its usability. During

this process developers were also asked to use the “think aloud” protocol. The authors propose

that this method, evaluating a prototype API using repeated reviews over several months, is an

effective process for developing a usable API.

48

3.3.2.2 Review Processes

While a user study typically involves a small task which a developer performs, an API review is

more detailed and does not necessarily involve the independent completion of a task. One kind of

review, called an API peer review, has been proposed by researchers at Microsoft as a

methodology for reviewing the usability of an API [64]. During this process a feature owner (i.e.

the API designer) walks a group of developers through a specific code sample where the API is

used to perform a concrete task. These developers provide feedback aimed specifically to

improve the learnability and discoverability of the API. Elements that might affect those

qualities, such as poor name choices and inadequate exposure of methods might be raised by the

developers. The study proposing this method found that it compared favorably for finding

usability “bugs” compared to the cognitive dimensions framework.

3.3.2.3 Measurement Methodologies

Another way to determine the usability of an API is to apply a set of metrics and attempt to

“measure” the usability of the API. One set of metrics is called the cognitive dimensions of

notations framework. Its authors describe it as “a broad-brush evaluation technique … [which]

sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of

structure” [65]. Originally it was designed to highlight the aspects that affect the usability of an

interface or programming language. Each of the dimensions can be stated in the form of a

question to designers of the given system, for example, to evaluate the consistency dimension the

question is asked “when some of the language has been learnt, how much of the rest can be

inferred?”.

The cognitive dimensions approach was first applied to the development of APIs at Microsoft

[66]. The authors decided to modify the original cognitive dimensions framework to make it

49

more appropriate to the task of APIs, adding new dimensions such as API Viscosity which

measures “the barriers to change” which an API faces. Describing their process in more detail in

a later work, the authors show how API designers must balance the dimensions based target

develop for their API. [67].

The cognitive dimensions framework is a useful tool for thinking about the aspects that impact

the usability of APIs. But since each dimension is qualitative, it’s difficult to aggregate the

responses. Performing the evaluation over time (such as in a longitudinal case study) or in a

group setting (such as during an API review) might improve the impact that the cognitive

dimensions framework has.

Another methodology that has been applied to the evaluation of APIs is concept maps [68].

These maps are a directed graph where concepts related to some general field are represented as

nodes and their relationships between concepts as a directed edge. This tool was originally

proposed as an instructional tool for teaching science to children.

Researchers adapted this mechanism to help evaluate the usability of an API. While developing

an application using a specific API, the developers on the project create a concept map relating

aspects of API to different parts of their system. During each week developer spent a 30 – 60

min session (done once a week for five weeks) updating their map. By studying the changes

made to these concept maps designers can determine the mental model of the developers and

attempt to understand which areas of the API might be problematic. For example, if a

relationship was repeatedly altered or if a relationship had to be changed even after weeks of

development it might indicate that concepts involved are difficult for developers to properly

understand.

50

This technique envisions that using an API typically involves a long term learning process that

extends past the few hours usually allocated to a user study. It also gives designers a specific

view of the mental model of their developer-users. However, analysis of the changing map

would need to be done carefully so that confounding issues do not impact the usability analysis

of the API. Likewise it is also more difficult to control the environment completely in a

longitudinal study and confounding variables (e.g. developer training, staff changes,

requirements changes, etc.) could impact the study.

Many of the methods so far proposed to measure the usability of an API have been highly

qualitative. It’s possible the different users will answer questions related to the cognitive

dimensions differently or construct a concept map in different ways. Researchers have attempted

to reduce some quality measurements to quantifiable metrics.

One work proposed a systematic approach for assessing the usability of software components

[69]. In their procedure, they attempted to reduce concepts to specific attributes and then assign

those attributes a derived measure. For example, to determine the “quality of documentation”

they would calculate coverage metrics for the manual such as “the percentage of functional

elements described in the manuals”. This procedure has construct validity issues because it’s

difficult to associate the quality present in the API to the specific metrics they suggest. For

example, how can we know that the quality of documentation is proportional to the number of

functional elements described in it? Further, the calculation of these metrics would also be prone

to interpretation issues and would be a tedious task.

Other metrics based approaches have attempted to assess the complexity of an API on the

inference that highly complex APIs would be less usable [70]. Using metrics designed to

measure the cognitive complexity of code the authors compute the complexity of all the exposed

51

interfaces and classes provided by the API. The paper does not attempt to validate this method

by comparing it to qualitative interpretations of complexity.

3.4 Conclusion

In this section, a set of interaction methods were discussed for implementing content and control

transfer in an MSS. Some of these are gestural interactions that involve proxemics and take

advantage of the spatial layout of the MSS. It is a central goal of MSE-API to support these types

of interactions. Existing APIs which provide features that could be used to build these gestural

interactions are then discussed. Finally, since the goal of MSE-API is to be a usable API, some

results from the field of API usability were presented.

52

Chapter Four: MSE-API

In Section 1, the motivation for MSE-API was discussed. It was found that using a multi-surface

approach provides several benefits for users. It allows users to take full advantage of their

devices, supports collaboration, and allows for novel interaction s. But the absence of such

systems in industrial and consumer settings was also noted. It was speculated that this might be

due to the increased developer effort required to build an MSS. This work proposed the creation

of an API, called MSE-API (Multi-Surface Enviroment API), to support developers in this task

and to concentrate especially on the control and content transfer tasks. The API was intended to

be usable for developers. In this section we will review the requirements for the API in detail,

discuss the structure of the API, and compare MSE-API with other APIs in this space.

4.1 Requirements

The requirements for MSE-API can be divided into three general types: constraints which are

imposed by the practical needs of its intended users; the functional requirements which include

the major functionality the API needs to provide; and the non-functional qualities which the API

needs to have.

4.1.1 Constraints

MSE-API was designed in order to be used. This means that the API must be accessible to the

majority of developers who would be interested in creating and maintaining an MSS. This leads

to constraints which are not related to features of the API but to the needs of the users of the API

themselves – the designers and developers who will build multi-surface applications. Because

the designers of the API have experience building an MSS, these constraints are derived from

their experience. Through the experience of building applications and through discussions and

demonstrations to prospective end users, several constraints were derived. These constraints are

53

related to the type of hardware required, the preferences of users, the platforms which are

supported, and how this support is accomplished.

4.1.1.1 Consumer-Accessible Hardware

The first major constraint placed on the API is that it must not require developers to purchase or

use any hardware that is not consumer grade. Providing an exact definition for consumer grade

hardware is difficult, but in order to meet this goal we have aimed not to absolutely require any

hardware which is not marketed or directed towards consumers. Because MSE-API allows users

to choose which component devices to use in the system (such as tablets, laptops, wall displays,

etc.), this constraint applied mostly to the tracking system. This limited us to using tracking

systems which are associated with consumer applications, such as the Microsoft Kinect and Intel

Perceptual Computing Camera, which cost between one to two hundred dollars. This is in

contrast with professional-grade motion capture cameras which can cost upwards of fifty-

thousand dollars. We consider a camera system which costs less than one-thousand dollars to be

a consumer level price. This requirement can be summarized as:

1. MSE-API will work with hardware available at consumer-level prices.

4.1.1.2 Removing Markers

Since MSE-API is intended to support consumer applications, the type of hardware used cannot

impose barriers which prevent users from being able to enter the system and begin using it

immediately. Like the earlier constraint, this applies entirely to the type of tracking system used

with the API. Some of the available spatial tracking systems require the use of digital markers

which assist the camera in detecting and tracking the position of users. These markers, however,

are not likely to be acceptable in an industrial situation or in a casual “walk up to use” situation.

54

Cameras such as the Vicon system or the OptiTrack system, which require such markers, would

not be suitable for MSE-API. This requirement is stated as:

2. MSE-API will use marker-less hardware.

4.1.1.3 Platform Support

The API should eventually be portable to platforms which are common to the hardware which is

envisioned for use in an MSS. Since tabletops such as the Microsoft SUR-40 and the SMART

Table both run Windows environments and their touch frameworks require native applications it

is necessary for the API to work using C# and .NET. Since many tablets run iOS, and the iPad is

the market leader in this space, the API must work in Objective-C and iOS. In the future we plan

to expand the support to additional platforms. This leads to the next major constraint which is

stated as:

3. MSE-API will be portable to important platforms for tabletops, tablets smartphones, and

wall displays, which are the principal devices used in an MSS.

Another issue relates to how the API integrates with the given platforms. It is important that the

usual workflows and techniques which developers use to create applications not be interrupted

by the use of the API. By this we mean that the API should not make it difficult to use standard

interface and other libraries and shouldn’t create incompatibilities with standard tools and IDEs.

This means that:

4. MSE-API must integrate with commonly used toolkits needed to build applications on the

supported platforms.

With these constraints, which govern design decisions made in the development of the API, it’s

now possible to consider what features or functions the API must provide to a developer.

55

4.1.2 Functional Requirements

The functional requirements for MSE-API are derived from the original vision of an MSS

described in Chapter 1. Since an MSS is a system that is composed of multiple independent

devices, communicating between devices will be a major task faced by developers. It is therefore

crucial for usability that communication between those devices be simple for developers to

implement, in terms of setting up the communication, initiation of transfers, etc. Therefore,

support for inter-device communication is a necessary part of the API. Further, since the

usability of an MSS can potentially be improved by the use of spatially augmented gestures, the

API must also support developers to incorporate these gestures into the interactions supplied by

their systems. The requirements for each are discussed in the next sections.

4.1.2.1 Inter-Device Communication

An MSS must enable developers to accomplish communication between devices, but several

unique requirements exist for an MSS. One specific requirement is that the devices must be able

to identify the devices they wish to communicate with before they can dispatch messages. This

can be accomplished by providing each device with a unique identifier, but the process of hard-

coding names introduces brittleness into the system when new devices are added or devices do

not exist when the system expects them to. To account for this, the API should provide “device

discovery”, which allows devices to broadcast themselves to other devices on the network. This

leads to the first requirement related to inter-device communication:

5. Devices running MSE-API will automatically announce themselves on their network to

discover one another.

Another concern is how the API will send and receive messages. A major inconvenience when

dealing with message passing is the process of serializing and de-serializing specific data types.

56

It should be possible for developers to exchange the most common data types without having to

write much code. However, this should not be the only mechanism provided as it constrain

developers who wish to create more complex features. The message passing system should both

provide support to less experienced developers while not unnecessarily constraining more

experienced developers. This leads to the next requirement:

6. MSE-API should provide a straightforward way to exchange common data types

without writing a large amount of code.

4.1.2.2 Spatial Information

To support gestures augmented with spatial information as described in Chapter 2, it is necessary

to maintain a collection proxemic values for certain objects within the MSS and allow developers

to query this collection.

Early constraints, such as (1) and (2), place limits on the type of tracking which can be

accomplished. As only consumer level and marker-less tracking systems are appropriate for the

application scenarios that we want to support, it is necessary to find an approach which allows

for mobile devices to be tracked. Since an MSS is primarily composed of devices, the API needs

to insure that mobile devices are tracked in a room. This leads to the first requirement related to

spatial information:

7. MSE-API will provide spatial information (location and orientation) for devices.

Once the proxemic information (location and orientation) is collected for devices, it is next

necessary to provide an interface which developers can use to query this information and use it

within their applications. Following the principle mentioned several times before, it would be

nice to provide developers who are not familiar with networking with the ability to access this

data without forcing them to write networking code. However, we wish to leave open the

57

possibility of interacting with the API on non-supported platforms. This leads to another

requirement for Spatial Information:

8. MSE-API will expose the collection of devices to queries using HTTP, but will also

provide client libraries which provide these queries automatically to supported

platforms.

4.1.3 Usability Requirements

The last requirement for the API relate to the usability of the API itself. As mentioned in Chapter

1, usability is often defined as being composed of several dimensions. As these dimensions are

not independent of each other, it is possible that improvements to one dimension detract from

another dimension. It is necessary therefore to focus on which aspects of usability are the most

important for the API. This leads to the only requirement related to usability:

9. MSE-API will provide a learnable and discoverable API to inexperienced developers

while still remaining an efficient tool for experienced developers.

This will ensure that novice developers can begin using the tool without a great deal of

experience with spatial tracking systems or networking, but at the same time ensure that

experienced developers can continue to use the tool in a flexible and efficient way.

4.2 API Components

MSE-API is made up of three components: the locator, which collects and provides location

information; the visualizer, which displays a representation of the room as seen from the locator;

and the client libraries, which provide functions for developers to use on the devices in the

system. In a given room all these components are active (see Figure 11). Each of these

components is discussed in the following sections.

58

4.2.1 Locator

The locator collects location and orientation information for devices in the room. A sensor is

used to detect the position of users in the system while internal mechanisms in the devices

themselves supply orientation information. Location information for static devices, such as a

tabletop or wall display, is entered in by users when configuring the multi-surface system. The

locator information can be queried by devices when they need location information for some

task. It is this location information which devices use to support spatially augmented gestures.

An architectural diagram describing the locators connection to other classes can be seen in

Figure X. The service provided by the locator is discussed in the following sections.

Figure 11: MSE-API Components in an MSS

59

Figure 12: Simplified Architecture of MSE-API Locator

60

4.2.1.1 Locating Devices

In collecting mobile device information, the constraints limiting the cost of the sensor (1) and the

use of markers (2) make it impractical to track devices directly. This is because the accuracy of

sensors in the consumer range cannot track the devices directly without the use of markers.

However, spatially-augmented gestures can still be used even without precise positional

information if the gesture only needs to know the intended target device to be useful. Therefore,

the API utilizes the position of the user holding the device – which consumer level sensors can

accurately detect– as a proxy measure for the position of the device itself. As a proxy measure

this position is likely accurate enough because users will likely target the person holding the

device (when they wish to send content) rather than the device they are holding. The heuristic

therefore takes advantage of a kind mental model in which users associate the person holding a

device with the device itself. The limitation of this approach occurs whenever the implicit

connection between the device and the person breaks down, such as when they device is placed

down or exchanged with another users.

However, for this heuristic to work, it must be possible to know which device is being held by

which person. To accomplish this, we created a pairing between device and person by having a

user perform a waving gesture (see Figure 13). This gesture is simultaneously detected by the

sensor and the device, allowing for a correct match.

To collect orientation information (i.e. which direction is a device pointing), we use the internal

gyroscope available on many devices. When a user first begins using the system they calibrate

the gyroscope towards the Kinect, this provides an absolute orientation relative to the room.

Current hardware cannot provide this absolute orientation without this calibration step. This

61

information is sent from the device to the locator. Developers only need to start the API for this

information to be collected automatically.

Some devices in an MSS are not mobile and their position need only be determined once and not

continuously throughout a session. Devices such as a digital tabletop or a wall display fall into

this category. To position these devices, the visualizer (see Section 3.2.3) allows the user to

move the device into its correct position. The updated position value is persisted on the static

device and will remain unchanged until the room is reconfigured. This process requires some

user intervention while positioning mobile devices is done automatically.

4.2.1.2 Querying the Locator

Queries on the locator come in two forms: view-based and proximity-based. A view-based query

allows the device to determine which other devices it is facing. A proximity-based query allows

Figure 13: Pairing Gesture Performing With Device

62

the device to determine which devices it is close to. These queries are necessary to support

different types of spatially augmented gestures.

4.2.1.3 Locator Methods

The functionality provided by the locator is exposed using as routes. A route is a unique path

defining a specific resource being exchanged. To access the functionality an HTTP request is

sent to this route and a response is issues by the locator. Some routes return information about a

resource and these are defined using a GET method while other are designed to receive

information and these use a POST method. The routes provided by the Locator service are

summarized in Table 2. Note that updates to location are provided by accessing the information

directly from the sensor.

Table 2: Routes Provided by the Locator

Functionality Route Method Parameters Output

Update the pairing
status of the device
when a waving
gesture is detected

{identifier}/pairingStatus POST Status =
Attempting Pair

None

Update the
orientation of a
device

{identifier}/orientation POST Orientation =
Orientation in
Degrees

None

Request all devices
in the current view
of the device

/devices/view/{identifier} GET None Collection
of Devices
in View

Request all devices
in a specified range

/devices/view/{identifier} GET None Collection
of devices
in range

63

4.2.2 Client Libraries

Specific client libraries are provided for iOS and .NET to assist developers in integrating devices

into an MSS. The client libraries accomplish three tasks: (a) detecting and coordinate the process

of pairing a device (b) collecting the orientation information required by the locator; and (c)

supporting common data exchange tasks in the API.

Before a mobile device is usable in an MSS, several tasks must be handled by that device. Each

device using MSE-API is responsible for detecting the pairing motion and communicating this

information to the server. Once the pairing is completed, the device begins calculating its

orientation using its internal gyroscope and dispatching this to the locator. This is done every

50ms to allow users to visually see their orientation (on the Visualizer) and to determine if

calibration is needed.

Developers must themselves decide when their application performs a query, when it sends

content and requests with other device and how their device will respond to requests and content

from other devices. To assist developers the API provides an additional networking layer that

simplifies the process of sending and receiving specific data types. These allow a novice

developer to perform simple content transfer tasks without understanding the details of

networking issues. These convenience methods allow developers to send and receive

dictionaries, images and binary data to another device without needing to understand the details

of serialization, message encoding or deserialization. When developers wish to go beyond these

convenience methods they are able to work directly with lower-level networking details.

Specifically they can define a route, which is a unique path defining a specific resource being

exchanged. Such routes are the target of an HTTP request and are common to web development

64

and programming. Developers can specific their own routes directly and handle the process of

serialization, deserialization and responses directly.

4.2.3 Visualizer

4.2.3.1 Visualization of Devices

The visualizer provides a graphical interface showing the location of devices in the system as

seen by the locator (see Figure 14). This information is presented as a top-down layout of the

system. Devices are presented as squares and are placed outside the room space if they are not

currently paired. When these devices are paired they connected to the circles which represent

users in the room. To help facilitate pairing, pairing status is indicated on the device and the user.

Figure 14: Visualizer displaying a paired person and device

65

4.2.3.2 Room Configuration

In addition to providing a visualization the visualizer can also be used to configure the layout of

the room. By layout we mean the location of fixed devices such as tabletops and wall displays.

These devices aren’t tracked by the location sensor, so a user must define their location. This is

done by dragging a static device as representing by a square on the visualizer. To indicate its

position the location is displayed underneath the device.

4.3 API Usage Example – Pour Gesture

To demonstrate how the various components of MSE-API work together, we will consider in this

section how to implement the pour gesture demonstrated in previous work [9]. The pour gesture

can be used to trigger content transfer when a user rotates a mobile device in a way analogous to

pouring out a liquid. In our example, a user will use a pour gesture to transfer an image to a

digital tabletop from his mobile device. To accomplish this task, we will need to detect the pour

gesture and query the locator to determine whether any devices are nearby. Once these devices

are detected, we will dispatch an image to them. For completeness, we will also show how a

developer can define responses to the arrival of the image.

4.3.1 Detection & Query

The detection of the pour requires the device to monitor the gyroscope to determine if the device

is rotated to the relevant position. While this is not provided by the device directly, MSE-API

provides utility methods to support the detection of a pouring motion. Once the pour has been

detected, it is necessary to begin the query to the locator for other devices in a close proximity.

The client library provides convenience methods for querying by proximity and the user provides

a callback method to be run when the detection is completed. Both these steps are illustrated in

Figure 15

66

4.3.2 Sending & Receiving the Image

Once a device has been detected it is then necessary to send the image. For simplicity, we have

illustrated this in a separate method. MSE-API provides a convenience method for sending

images because images are a common data type which developers will likely wish to send.

Developers must simply create the appropriate image object and then send the object to the

device (see Figure 16). On the other device – a tabletop in this example – the developer must

define the behaviour that should occur when an image is received (see Figure 16). It is clear that,

once the image has been received, the developer is free to treat it in any manner considered

appropriate.

4.3.3 Sequence of Messages

In order to implement this scenario several messages must be exchanged between the devices

and the locator. Figure 17 indicates the sequence of messages related to pairing and orientation

updates which must take place before a user can begin using the system. After this has happened

shows the sequence by which devices in range are found and content transferred to it.

Figure 15: Detecting Pour Gesture & Querying Locator

67

4.3.4 Summary

From this example we can see that with less than 100 lines of code it is possible to implement an

important, spatially-augmented gesture. MSE-API provides useful and appropriate convenience

which are useful for carrying out this task.

Figure 16: Sending & Receiving an Image

Figure 17: Sequence of Pairing & Orientation Updates

68

4.4 Feature Comparison

Given these constraints and requirements it is reasonable to ask if any existing API provides

these features. In this section the existing APIs which were presented in detail earlier are

compared which MSE-API. These comparisons are done separately for APIs that support

communication tasks only and those which provide spatial information.

4.4.1 Communication Features

In order to support developers in building multi-surface systems it is necessary that the API

assist developers with communication between devices. This support is connected to the main

task in an MSS, the content and control transfer task. In order to accomplish this transfer, some

form of communication is necessary. In Table 3 several communication APIs are compared

based on their support for these features.

Figure 18: Sequence of Locator Query & Content Transfer

69

4.4.2 Spatial Locator Feature

The spatial location features for MSE-API allow developers to support spatially augmented

gestures. Supporting these gestures is a major goal of the API. In Table 4 several APIs and

toolkits are compared based on their support for features related to spatial location.

Table 3: Comparison of Existing APIs on Communication Features

Feature 3MF Event Heap Magic
Broker

ROSS

Automatic Device Discovery YES PARTIAL NO YES

Straightforward exchange of
common data types

NO NO NO NO

Extensible mechanism for other
exchanges.

NO YES PARTIAL PARTIAL

Familiarity with common networking
approaches and tools

PARTIAL PARTIAL YES NO

Table 4: Comparison of Existing APIs on Spatial Location Features

Feature Proximity
Toolkit
(VICON)

Proximity
Toolkit
(Kinect)

Easy
Living

Near Me

Shared
Substance

Requires only consumer
level hardware NO YES NO YES NO

Marker free tracking NO YES YES YES NO
Provides position and
orientation information
for mobile devices

YES PARTIAL PARTIAL PARTIAL YES

Allows the use of
standard toolkits and
libraries

YES YES NO NO NO

Toolkit provides
convenience methods
for accessing spatial
information

YES YES NO NO PARTIAL

70

4.5 Conclusion

MSE-API was designed as an API for supporting multi-surface systems that are augmented with

spatial gestures. Since MSE-API was designed to support practical and realistic scenarios, a

number of constraints apply to the API. These constraints on the underlying sensors related to

cost and practicality, end users cannot be expected to buy extremely expensive hardware or use

awkward physical markers. Other requirements were defined related to features and the usability

of the API. The components of the API were reviewed, confirming that it meets the requirements

laid out earlier. Finally, a usage example was provided to demonstrate how MSE-API’s

functionality can be used.

71

Chapter Six: Skyhunter Case Study

As part of the overall evaluation, I wanted to determine how efficient developers were in

building applications which used the API. Efficiency is a separate facet of usability which is

different from learnability or discoverability. In order to assess this facet, we wanted to

determine how long it would take for experienced developers to complete a medium-sized

application using the API. Since only the authors of the API were sufficiently experienced with

the API to conduct this study, it was decided to pursue a self-evaluation of the API. Two

developers, the author of this thesis and a colleague, developed the application over a one-month

period. During that time, time logs and qualitative experiences were collected.

In this chapter the requirements and issues which the application needed to solve will be

presented, along with a description of the features provided by the application. Following this is

a breakdown of the time spent developing the application. Finally, we’ll present an argument

that the time spent is low considering the application built and propose that the evaluation

indicates that the API supports efficient development.

6.1 Skyhunter & Data Problems in Oil & Gas Exploration

Skyhunter is a local industrial partner working in the area of oil and gas exploration. They have

developed technology that can detect chemicals in the air that can indicate the presence of

underground reservoirs. The output of this technology is maps which indicate the likelihood of

an underground reservoir existing at a given location. To be useful, these maps must be

combined with other data from other oil and gas specialities, data such as seismic data, well logs,

land use information, etc. This integrated data is also usually analyzed and presented to a group

of specialists from different disciplines. Building an application to support this analysis process

requires that several different data types be supported. Further, it is necessary to support a multi-

72

user, multi-device scenario with different users have different roles within the system. Issues

related to content transfer are important in this type of environment and so we felt a multi-

surface application would be appropriate.

6.1.1 Types of Data

Several types of information are necessary as part of oil and gas exploration. Some of this data is

provided directly by Skyhunter and others are collected through other means. All of this

information is geographical in nature and is stored and prepared using a GIS system. Three types

of map data were considered particularly important by Skyhunter: microseep data, subsurface

data, and well data.

6.1.1.1 Microseeps

The surveys conducted by Skyhunter involved the use of specialized sensors fitted to the nose of

an aircraft. The aircraft flies near to the ground in a specific grid pattern. The captured sensor

information is then interpolated and compiled into a map, which indicates the areas where

microseeps (trace hydrocarbons that are aerosolized above and indicate the presence of an

underground reservoir) exist and their level of intensity. A grid pattern flown for a particular

survey conducted in Australia was chosen as the example dataset for this application; (as seen in

Figure 19).

6.1.1.2 Subsurface Data

According to the information provided by Skyhunter, microseeps alone are not sufficient to make

accurate predictions regarding the location of oil and gas reservoirs. It is necessary to combine

this information with data about the subsurface. This data was provided as iso-depth contours,

73

which provide a topographic representation of the subsurface area for specific geological zones.

This information is shown as contours in Figure 20.

6.1.1.3 Well Data

Well data, information about previously drilled wells, is the last type of data needed for the

system. This information is a kind of ground truth because it reveals whether or not the particular

well was successful (i.e. intersected a reservoir) and which were dry (i.e. did not intersect a

reservoir). This information is provided for many wells within the geographical area of the

conducted survey.

Figure 19: Flight Grid Pattern

74

6.1.2 Roles in the System

Exploration for oil and gas data, according to Skyhunter, involves several different specialities

such as geologists, geophysicists, reservoir engineers, and landmen. Each of these specialties has

its own data and analysis techniques. Traditionally, the analysis by these different specialities

was handled separately. But bringing these roles together during the analysis and exploration

phase has been a major goal in the oil and gas industry. Supporting collaborative analysis by

these separate roles is a major objective of the application.

Figure 20: Subsurface Contours

75

6.1.3 Issues & Difficulties

Building an application to support the exploration of oil and gas reservoirs, with a special

emphasis on a multi-role environment, raised many issues. Because the system must work for

different roles, it must be straightforward to bring data into the system and take it out. Because

the analysis would involve a group of users working, sometimes individual and sometimes in

subset groups, data would need to be moved fluidly between different users during the course of

analysis.

6.1.3.1 Data Entry and Exit

One of the major issues raised by Skyhunter was the difficulty of bringing data (such as the

above mentioned data types) into and out of the system. They mentioned that specialists would

store data on their computers and tablets, but that bringing this data into the system was often

tedious and time consuming. Likewise, if some final work products were created during the

analysis it should be easy to capture them for later review.

6.1.3.2 Fluid Data Transfer

In scenarios described by Skyhunter, analysis would often take place with the entire group and

sometimes with individual or subset groups. To support this, we suggested the use of tablets and

a tabletop in the system. They mentioned that these groups should be able to move data between

themselves and the main group fluidly.

6.2 Skyhunter MSS Application

Given the scenario and requirements described above, we suggested to Skyhunter that their

application would be an excellent candidate for a multi-surface system. As the major problems

faced by the users related to fluid transfer of information between devices, the application

appeared to be a good opportunity to use MSE-API to build a multi-surface system around the

76

exchange of oil and gas data. An application was designed to address the previously-mentioned

issues. The application, its components and features, and how it addresses the issues raised by

Skyhunter are discussed in this section.

6.2.1 System Components

To support collaboration we decided to use a tabletop as the central hub for information in the

system. Specifically the tabletop was a Microsoft SUR-40 running a custom map display

application. In addition to the tabletop, several Apple iPads were used – also running custom

software. The tablet application was designed to switch between roles, with separate data for

geologists, landmen, and geophysicists (see Figure 21).

Figure 21: Role Selection in Skyhunter MSS

77

6.2.2 Data Transfer Features

Another major issue raised by Skyhunter was regarding fluid data transfer during analysis tasks.

This is connected to the content transfer task, which was discussed earlier. The content in this

case was different types of geological data. All this data was geographical and could be

represented as a map. Therefore, the core feature in the system would be transferring maps

between the different component devices. Different spatially-augmented gestures were chosen

for several distinctive transfer tasks.

6.2.2.1 Tablet to Tabletop

Assuming the users arrived with some relevant data on their tablet device, it was necessary to

support transfers from tablet to tabletop. To trigger this transfer, we chose to use a pour gesture.

In this gesture, the user stands over top of the tabletop and inverts their tablet. This is done in a

manner similar to how someone might pour the contents of a binder onto a table. To distinguish

which layers a user wished to transfer, a special layer dock panel was created on the tablet

application. Once the layers were selected, the user could approach the tabletop and perform the

pour gesture (see Figure 22). Since the screen of the tablet is not visible during the gesture, audio

feedback is used to indicate whether the transfer was completed successfully.

6.2.2.2 Tablet to Tablet

Another design issue mentioned by Skyhunter was the need for smooth and fluid transfer of data

between users or groups of users. To support this, we provide a gesture, suggested by previous

studies, called the flick gesture. In this gesture the user performs a swiping motion towards the

target of the transfer. In our application the map, which is panned and zoomed using swiping

actions, would normally interfere with such a swiping action. Therefore, the gesture is performed

in the separate dock panel. On the targeted iPad the map appears as a notification on

78

Figure 22: Pour Gesture to Transfer Layers

79

the bottom of the screen. Once selected, the map is then added to the current map view (see

Figure 23).

6.2.2.3 Tabletop to Tablet

Once data has been added to the tabletop and analyzed, it is necessary that users are able to

capture that data on their tablets. To do this, we provide a gesture called the camera gesture,

which like the previous gestures was elicited from users in a previous study [7]. To use this

gesture, the user aims their tablet as if they intended to capture a picture. Pressing the camera

icons provides a list of layers which are currently loaded on that device. Users can select

whichever layers they want to capture. The layers are then loaded onto their own device (see

Figure 24).

6.2.3 Issues Addressed

The application created for Skyhunter used MSE-API to solve issues related to supporting

analysis tasks oil and gas reservoir exploration. The application requirements were derived from

Skyhunter and were defined as (a) straightforward data entry and exit from the system, (b) fluid

data transfer during analysis.

6.2.3.1 Supporting Data Entry & Exit

To support this task, we allow users to bring data with them on their own devices. When the

tablet application loads, it grabs this data based on a configuration file, but this could be

extended easily to use the file system directly, meaning that users could add data from other

sources at their convenience. Once their tablet is brought into the Skyhunter MSS, they can move

data to other users and to the tablet using the previously mentioned flick and pour gestures. Once

data has been analyzed and brought together from various sources, it can be captured back to the

tablet using the camera gesture.

80

Figure 23: Flick Gesture to Transfer Layers

81

Figure 24: Camera Gesture to Transfer Layers

82

6.2.3.2 Fluid Data Movement

As the users are working together, it’s possible for them to move data around the system easily.

Data can be transferred to other users using the flick gesture, transferred to the tabletop using the

pour gesture and capture from the tabletop using the camera gesture.

6.3 Study Results

The Skyhunter application was developed over the course of a month and involved roughly

forty-two hours of work. When development began all of the required data was currently

processed and stored in a cloud based GIS system. However, the applications had to be created to

use this GIS data. It involved two software applications, one running on a Microsoft SUR-40

tabletop and the other running on an Apple iPad. For each component of work completed the

time and details of the task were logged. Each of these logged tasks were categorized as utility

tasks, interface tasks, or API tasks. In this section we’ll review the time allocated for the project

and some qualitative lessons learned. The threats to the validity of this study will also be

addressed.

6.3.1 Results

Several categories of tasks were completed in the Skyhunter project. Interface tasks were defined

to be those which involved creating interface elements. This usually meant customizing standard

controls or adding in third party controls. Utility tasks were those which involved adding or

configuring third party libraries, such as the GIS library used for presenting maps. Finally API

tasks were defined widely as any task which involved the use of the MSE-API library. Of the

forty-two hours spent on the application, twenty-two hours were spent on interface elements,

twelve were spent on the API, and eight on utility tasks. A breakdown of these can be seen in

Figure 25.

83

Figure 25: Development Time (Person-Hours) by Category

84

6.3.2 Discussion

6.3.2.1 Time to Completion

Two developers worked developing the API, sometimes pairing and sometimes working

individually. The time spent on the API accounts for only 28% of the total time on the project.

This figure is broadly defined it includes any task that involved the use of MSE-API. For

example, the task of serializing the map data to be sent via the API is included in this category.

We consider this value to be quite low considering the size and complexity of the project and the

number of features supported. The total person-hours of the project amount to a single full time

week of work. On this basis we see supporting evidence that MSE-API is an efficient tool for

building multi-surface systems. However, we concede that our results cannot definitely show

this.

6.3.2.2 Other Lessons Learned

While the developers of the Skyhunter MSS project were knowledgeable about the API, some

interesting lessons were learned while developing this project. The most interesting of these was

the relative importance of using standard web technologies. Because the communication used in

MSE-API is based on standard HTTP messaging, it is very straightforward to test and debug

applications. For example, in the camera gesture described earlier, the targeting iPad performs a

GET request on the currently available layers on whatever device it is targeting. To debug this

feature it is necessary to just enter the correct URL into a web browser (see Figure 26). This

design decision turned out to be quite useful during the course of development.

Another major benefit was the decision to provide the convenience of helper functions for

sending and receiving common types of data objects. By encoding the necessary information for

loading a map into a dictionary (a set of key-value pairs), we were able to accomplish nearly all

85

the data transfer tasks. However, for the camera feature it was necessary provide data for a

specific request. To accomplish this we took advantage of the lower level networking

functionality exposed by the API.

6.3.3 Threats to Validity

Several issues threaten the validity of this study. First, because the authors of the API were

evaluating the API themselves, their knowledge of the internal structures of the API and its

implementation gave them an advantage over other developers who were new to the API. It is

also possible that the task chosen was not a good representative of a general multi-surface

system. To address the first issue, a second study will be performed with novice developers over

the course of several weeks, this study is presented in Chapter 6. Because the developers

previous experience building application prototypes for Skyhunter this might have also caused

less time to be expended building the system then might have otherwise been required. Likewise

the experience of the Skyhunter applications helped influence the design of the API and this too

might have caused a reduction in development time.

6.4 Conclusion

One of the main goals of MSE-API is to provide an API which is learnable and discoverable to

novice developers while still being efficient for experienced developers. To assess this second

criteria, we built a relatively complex application prototype using MSE-API. Two developers,

one of whom was the lead developer of the API, created the application in forty-two person-

hours of work. Of this, only twelve hours were spent directly on work with the API. We consider

Figure 26: Examining Visible Layers Using a Web Browser

86

that this number is relatively low for such a complex application and that this suggests, but

doesn’t definitely show, that the API is an efficient tool for experienced developers. This

argument is based on the fact that the developers conducting the study were experienced with the

API.

87

Chapter Seven: C4I Case Study

As one of the goals of the API was ensure that it was both learnable and discoverable, we

conducted a limited and initial case study with several student intern developers. Studying how

inexperienced developers use the API will allow us to assess its learnability and discoverability.

Using a case study rather than controlled experiment allows for a more realistic assessment of

the API’s usability. It insures that the features that developers are asked to create are realistic and

part of a real world multi-surface application. Since development normally takes place in several

sessions over a period of weeks, using a case study provides a better approximation of how

developers would actually use the API.

During this case study, several developers used MSE-API to add multi-surface features to an

application already under development. This study took place during a single iteration of the

project which lasted three weeks. The application is a real world system being actively

developed with an industrial partner for emergency planning and simulation. During

development, detailed time logs were kept for each feature added and a questionnaire was

completed by the developers at the end of the study.

In this chapter, some background regarding the application, the issues which it intended to solve,

and the features added during the case study will be presented. Results will then be presented

from the study itself, including time logs and qualitative metrics. We then argue based on this

evidence that the API is discoverable and learnable to novice developers.

7.1 C4I & Emergency Planning

C4I Consulting is a Calgary area company working in the area of emergency planning. As part of

their business they have developed software which supports planning and simulating emergency

scenarios. This software allows governments and businesses to create and validate plans for

88

dealing with emergency situations. Current versions of their software currently run only on

desktop PCs. C4I expressed an interest in creating a multi-surface prototype of their software.

Since emergency simulations involve small groups of working together within a single room, this

application is a good candidate for a multi-surface application.

7.1.1 Emergency Planning & Simulation

In order to deal with emergency situations such as chemical spills, major fires and other

accidents, governments and businesses create plans in advance. These plans provide instructions

and steps for various emergency responders to follow in the event of an emergency. But how can

these agencies feel confident that these plans are good? Software that can simulate both an

emergency and the planned response allow teams to validate their plan.

Once the plan has been created it is simulated in the most realistic manner possible. This

typically occurs in a command centre or control room. This would be the environment where a

real emergency would be managed. During the simulation, different users are present

representing different agencies, such as police, fire, EMS and hazardous materials (HAZMAT).

As events happen in the simulation, new data and information is made available to the

participants. Typically, these external events are driven by a director who causes the events to

appear on the simulation system. As different users respond to events and carry out the plan it is

possible to find defects in the plan itself – such as unrealistic assumptions – and to gauge its

practicality.

7.1.2 Roles & Content

During the simulation different users will have different roles. Some of these roles are external to

the application such as the user driving the various events in the simulation. As mentioned before

each agency involved in an emergency will be represented by a user. During a real emergency,

89

each of these users would be responsible for communicating with their own agency, bringing in

new data and representing the concerns of that agency. In a practical sense this means that each

user has their own concerns and data which they will sometimes wish to share with other users or

with the whole group – one of the ideal use cases of MSSs described earlier.

The majority of data in an emergency simulation is geospatially referenced and is stored in a

GIS. Some of this data may be the location of specific entities, such as police cars, emergency

vehicles, and other responders. This might also include the location of the incident and the

exclusion zone created around it. In addition to this, users might also wish to create annotations

either for their own agency or for the whole group. Because this data is confined to a relatively

small geographical area it is important it does not become confusing or clustered.

7.2 C4I MSS Application

A multi-surface application was created to support emergency response planning and simulation.

The application is an MSS-based tool designed to run on an MSS composed of one Microsoft

SUR-40 tabletop and many iPad tablets. The tabletop and the iPads display relevant GIS

information which is pulled from an ArcGIS Server. While the system provides many features

related to emergency planning, we will focus specifically in this section on the data transfer

features which use MSE-API. The general structure of the system is described along with the

features of the application.

7.2.1 Structure of the System

The system is divided into two separate applications: the tabletop application and the tablet

application. During an emergency planning session we envision the tabletop being placed at the

centre room while users, each holding a tablet, work around it.

90

7.2.1.1 Tablet Application

Depending on the role of the users, ePlan MSS will display different content on their tablet and

different functionality will be available. Users must choose their role before using the

application, the appropriate data is the loaded for that tablet. Depending on their role, users can

annotate as well as pan and zoom the map.

7.2.1.2 Tabletop Application

The tabletop application provides a public space in the centre of the control room. The

application displays entities and annotations which have been transferred to it by users. It is also

possible to perform other functionality, such as choosing a path for a specific entity to travel and

annotating the map directly on the tabletop.

7.2.2 Transfer Features

In order to address the usability issues mentioned earlier, several data transfer features were

added. It was decided by the industrial partner that transfers between devices in the room was not

a high priority, so transfer features target the tabletop.

7.2.2.1 Pouring Annotations to Tabletop

Annotations can be created by users on their tablet application. While these annotations are

usually visible only to the role which created them, it’s sometimes desirable that annotations

might be made visible to the entire group. To do this, the annotation layer can be transferred

from the tablet to the tabletop. This transfer is initiated by a pour gesture which mimics the

action of pouring content out onto the tabletop and which was discussed in detail in Chapter 2. A

user performs this transfer by standing near the tabletop and performing the pour action with

their tablet. Once this action has been performed, the annotation layer appears on the tabletop

(see Figure 27).

91

Figure 27: Pour Gesture to Transfer Annotations

92

7.2.2.2 Capturing Entities from Tabletop

By default, the tablet application displays only those entities which are related to a specific role.

That is, the location of police cars are visible only to users with the police role. If a user wishes

to see more entities, he can capture those currently visible on the tabletop. To do this, a user

points his device towards the tabletop and presses a button to retrieve the entities. Once captured,

these entities are displayed on the tablet (see Figure 28).

7.2.2.3 Sending Extent to Tabletop

In exploring or navigating through geographical data, it’s often necessary to pan or zoom to

specific area of a map. This position and the degree to switch the map is zoomed is called an

extent. If a user had to navigate to a specific area to show other users some important feature of

that area he would need to repeat the process of panning and zooming on the tabletop. To avoid

this inconvenience, we allow users to dispatch their current extent to the tabletop. This is done

using a button: a user points towards the tabletop, presses the button, and the map is moved to

the extent of the users device.

7.3 Study

Our study occurred during a single iteration of the C4I project, encompassing about three weeks

of development. The participants had been working on the C4I project during previous iterations

before the study. All the participants were intern developers in the lab and undergraduate

students in Computer Science or Software Engineering. Three male and one female participant

made up the development team. The participants had moderate to minimal experience using

Objective-C and C# languages, being comfortable with the syntax of the language but having

some difficulties with the associated frameworks (see Figure 29).

93

Figure 28: Button Press to Capture Entities

94

During this iteration other features were implemented, but only those related to MSE-API were

logged and recorded. The study involved implementing the three previously described features

for transferring data using MSE-API.

 In this section, we’ll review the time that was expended completing these features and the

feedback provided by the intern developers.

7.4 Results

7.4.1 Time Logs

During the study, developers were asked to record the time they spent working on each feature.

In total, eight person-hours were spent on of three features involving the API. The time spent on

each feature is summarized in (Figure 30).

Figure 29: Experience Level of Participants

95

During the development process different developers worked in pairs and not every feature was

worked on exclusively by the same developers.

7.4.2 Code Analysis

Because the output of the study was code written for the application. It is possible to analyze and

review the code to see if the API is being used in the correct manner. We will analyze the code

written for the tablet application and the tabletop application separately.

7.4.2.1 Initialization & Setup (Tablet)

Several aspects are important when setting up MSE-API on tablet environment. The most

important aspect is that all code for responding to messages must be setup before the application

loads, so that other can see which messages are supported. The developers writing the

initialization code realized this and setup their response handlers before the application finished

its initial setup (see Figure 31).

Figure 30: Time Spent on Tasks

96

7.4.2.2 Sending Extents (Tablet & Tabletop)

Another major feature in the application was sending the extent from the tablet device to the

tabletop. In this feature the developers use the API correctly. As can be seen in Figure 32 the

developers correctly check that the device is currently paired before sending out a dictionary.

They use the serialization mechanism provided by the API to store the information regarding the

extent and use the error blocks correctly. They are also able to deserialize the dispatched object

correctly and load the layers as the appropriate UI element on C#.

7.4.2.3 Capturing Entities (Tablet & Tabletop)

One of the feature developed for on iOS, allows the tablet to capture the entities currently

available on the tabletop. To accomplish this the developer must dispatch a message to the

tabletop so he can determine information about the entities layer. This is subtly different the

earlier features where the developer can just dispatch information to his target. In this feature the

developer must query and retrieve information. For this feature the developers recognized this

problem but used the convenience methods provided rather than the more advanced

functionality. As can be seen in Figure 33 the developers send an empty dictionary to

Figure 31: Initializing the API

97

 the device being targeted. When this dictionary is received the entity information is then sent

back to the device which sent the empty dictionary. A more advanced developer might have

accomplished this by creating a route on the target device and responding to the request using the

entity information. While the developers didn’t use the advanced functionality they still

completed the feature successfully.

Figure 32: Sending & Receiving Extents

98

7.4.3 Questionnaire

In addition to the time logs, developers were asked to complete a short questionnaire at the end

of the iteration. This questionnaire asked general questions about their experiences with the API,

such as how easy to use the API was compared with other APIs they had worked with in the past,

how long it took them to become comfortable using the API what issues and problem they had

while working with the API.

Figure 33: Requesting Entities

99

7.4.3.1 Experience & Language Issues

The development team did not have a great deal of experience using either the C# or Objective-C

languages and their associated frameworks. Many only began using this languages as part of the

C4I development project. As such several developers complained that they ran into difficulties

using the language while trying to use the API. Developer 2 commented that they “didn’t run

into any difficulties other than with the Objective C language”.

7.4.3.2 Feedback on Usability

All the developers using the API felt that it was easy to use. They generally claimed that they

were able to start using the API quickly. Developer 1 commented that “ I felt comfortable using

the API after the second time [work session]” while Developer 4 said “compared to other API's

that I have used in the past (i.e. ESRI's API), the MSE API is far more straightforward”.

Developer 3 commented that methods and objects exposed by the API were logical, saying that

“the different publicly facing functions are easy to understand and they do what you expect”.

7.4.3.3 Feedback on Documentation & Examples

The developers were also asked to comment specifically about their experience with the

documentation provided by MSE-API. The participants were broadly positive about the

documentation but some participants felt that the documentation was not equally complete for

both the two languages supported. On this topic Developer 2 said “the Objective C and C#

documentation was different, and one was more helpful than the other (the C# being the most

helpful.”.

7.4.3.4 Criticism of the API

When the developers were asked if they ran into any problems with the API they responded with

some issues. One developer felt that the approach used for responding to messages which

100

contained a dictionary (i.e. a set of key-value pairs) was confusing. Developer 1 said “I think I

would change how you send a request to receive data because it is a bit weird to send a

dictionary as if you are sending information to the device”. Developer 2 pointed out that the

serialization functionality included in the API is limited, saying “I found it annoying to only be

able to send strings in a dictionary element”. By this they are referring to that fact that

dictionaries sent between devices must have both the key and the value as a string and that no

automatic conversion exists for other types or objects.

7.4.4 Discussion

Given the functionality of the system, we were encouraged to see how quickly the developers

were able to begin using the API to implement features. While many of the features were

straightforward and within the intended scope supported by the API, they were able to

implement them very quickly. We argue that this is supporting evidence that the API is learnable

and discoverable by developers. Further evidence is found in the feedback provided by the

developers which was universally positive. Developers claimed to have quickly become

comfortable using the API and their complaints focused generally on language issues and

features they would like added to the API. Developers requested, for example, better support for

serialization, support for additional platforms and support for 64 bit systems.

7.4.5 Threats to Validity

Several issues threaten the validity of the study. Because the features were derived from the

needs of an industrial partner, it was not possible to carefully control what work was completed

by whom. It’s possible, therefore, that easier features were completed by stronger developers,

causing the total time spent on the features to fall. Since the developers were co-workers and

colleagues of the main developer of the API, it’s possible that some conflict of interest occurred

101

in their qualitative feedback. This might have caused a positive bias in the qualitative results that

were provided. The study itself was also limited in scope, providing a relatively small number of

features which were themselves quite basic. Only a small number of developers participated in

the study and each feature worked on was not comparable to the other features. This could mean

that the results presented are not generalizable to a larger group of developers.

7.5 Conclusion

The main research question of this study has been to show that MSE-API is a learnable and

discoverable API. To assess this, a team of developers completed several features in an ongoing

application using MSE-API. The time spent completing these features was recorded and

qualitative feedback was provided through a questionnaire. This team of developers was able to

quickly add several useful features related to data transfer to their application in a relatively short

period of time. In addition, the developers provided positive feedback on its usability and felt

they were able to quickly become comfortable using the API. We feel this provides initial but not

conclusive evidence that the API is learnable and discoverable by developers.

102

Chapter Eight: Conclusions

This thesis presents an API called MSE-API for building multi-surface applications with

spatially augmented gestures. First, multi-surface systems were placed in their correct context,

developing out of an environment with new types of devices and the desire for new types of

interactions. Spatially-augmented gestures were explained, and their origin contextualized within

previous research projects and elicitation studies. We then proposed that the lack of such multi-

surface applications in the real world might be due to insufficient developer tools, specifically a

lack of APIs to assist developers with tasks common to multi-surface systems. The requirements

for such an API were explained, and our API, called MSE-API, was presented. In addition to

meeting the requirements of the API, we wished for the API to be usable. That is, MSE-API

must be both learnable and discoverable to novice developers while still being efficient for

experienced developers. Two case studies were then presented: one conducted by the author as a

self-evaluation and the other a traditional case study with independent developers to evaluate the

usability of the API. Based on the evidence provided by these case studies, we feel that the API

has met its goals regarding usability.

8.1 Thesis Contributions

The first contribution of this work was a careful literature review of previous work in the area of

multi-surface systems. This review provides a clear path that shows how multi-surface systems

developed, what core problems were encountered in this area, and how they gradually grew in

complexity to involve more complex interactions, including spatially-augmented gestures. A

smaller literature review collected previous work in the field of API usability, highlighting

previous attempts to measure API usability and issues which have been described by previous

researchers working in the area.

103

The next major contribution provided is MSE-API itself. This API meets all the major

constraints and requirements documented in detail in Chapter 3, the API also provides a tool to

configure a room dynamically with an arbitrary collection of devices. This is an important

advance over existing APIs.

In addition to the API itself, several case studies were conducted providing evidence that the API

is both learnable and discoverable while still allowing experienced developers to be efficient.

Taken together, this answers the major research goal presented in the Introduction. To our

knowledge, this is the only API for supporting multi-surface systems with spatially-augmented

gestures without requiring expensive specialized hardware.

8.2 Future Work

There are several directions for continuing work on MSE-API. The first involves improving the

spatial engine, or the core components of the locator which determines which devices intersect

with which other devices. Another major goal would be to achieve the fusion and integration of

multiple sensors to expand the range and accuracy of the API. Finally the evaluation of the API

could be expanded and used to guide the further development of the API.

8.2.1 Improving the Spatial Engine

The spatial engine of the API is responsible for computing the intersections between devices and

determine what devices are in view when queried. The current system has several drawbacks.

Since it doesn’t store the width and depth of objects in the room, they all appear to occupy the

same physical space. This can cause issues if a device is extremely large, such as a wall display

which encompasses the entire wall of a room. To address this issue, the way that spatial

calculations are performed could modified. Each device could be given an appropriate width and

depth and calculations could base based on intersections with this object. This would have the

104

added benefit of computing an intersection point between the device and its target. This could be

useful for animating or providing visual feedback to transfers.

8.2.2 Data Fusion

Another area of future work would be to incorporate additional sensors into the system. This

would be especially useful if additional Kinect sensors could be fused together, as this would

expand the range in which MSE-API works. In addition, other sensors such as the LEAP Motion

could be incorporated to provide higher accuracy within a small area inside the larger area

tracked by the Kinect.

8.2.3 Further Evaluation of the API

As the API is developed further to add more features, it would be useful to incorporate regular

API evaluations to guide the design. New features and API changes should be evaluated by

developers in usability studies in the same way that new features to a traditional application are

evaluated by users. This could be done using traditional user studies and with case studies of

development teams using the API as part of development practice. In order to conduct such

studies it would be necessary that additional developers use the API. Building a community of

developers using MSE-API is therefore also a major goal.

105

References

[1] Brad Johanson, Shankar Ponnekanti, Casear Sengupta, and Armando Fox, "Multibrowsing:

Moving Web Content across Multiple Displays," in Proceedings of the Conference on

Ubiquitous Computing, Atlanta, USA, 2001, pp. 346-353.

[2] Andruid Kerne, William A Hamilton, and Zachary O Toups, "Culturally based design:

embodying trans-surface interaction in rummy," in Proceedings of the Conference on

Computer Supported Cooperative Work, Seattle, USA, 2012, pp. 509-518.

[3] James R Wallace, Stacey D Scott, Taryn Stutz, Tricia Enns, and Kori Inkpen,

"Investigating teamwork and taskwork in single- and multi-display groupware systems,"

Journal of Personal and Ubiquitous Computing, vol. 13, no. 8, pp. 569-581, November

2009.

[4] Jacob T Biehl et al., "IMPROMPTU: A New Interaction Framework for Supporting

Collaboration in Multiple Display Environments and Its Field Evaluation for Co-located

Software Development ," in Proceeding of the Conference on Human Factors in

Computing Systems, Florence, Italy, 2008, pp. 939-948.

[5] Stefan Bachl, Martin Tomitsch, Karin Kappel, and Thomas Grechenig, "The Effects of

Personal Displays and Transfer Techniques on Collaboration Strategies in Multi-touch

Based Multi-Display Environments," in Proceedings of the Confernce on Human-

Computer Interaction, Lisbon, Portugal, 2011, pp. 373-390.

[6] Chris Burns et al., "Interpretative Visualization of Fused Hydrocarbon Microseep and

Resevoir Data," in Geoconvention, Calgary, Canada, 2012.

106

[7] Teddy Seyed et al., "MRI Table Kinect: A multi-surface application for exploring

volumetric medical imagery," in Proceedings of the Workshop on Safer Interaction in

Medical Devices , Paris, France, 2013.

[8] Roswitha Gostner, Enrico Rukzio, and Hans Gellersen, "Usage of spatial information for

selection of co-located devices," in Proceedings of the 10th international conference on

Human computer interaction with mobile devices and services, Amsterdam, Netherlands,

2008, pp. 427-430.

[9] Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank Maurer, and Anthony Tang,

"Eliciting usable gestures for multi-display environments," in Proceedings of the 2012

ACM international conference on Interactive tabletops and surfaces, Cambridge, USA,

2012, pp. 41-50.

[10] Samuel G McLellan, Alvin W Roesler, and Joseph T Tempest, "Building More Usable

APIs," IEEE Software, vol. 15, no. 3, pp. 78-86, May 1998.

[11] Jeffrey Stylos, "Making APIs More Usable with Improved API Designs, Documentation

and Tools," Carnegie Mellon University, Pittsburgh, USA, Doctoral Thesis CMU-CS-09-

130, 2009.

[12] Jakob Nielsen and Jo Ann T Hackos, Usability Engineering. San Diego, USA: Academic

Press, 1993.

[13] Jeffrey Stylos and Brad A Myers, "The implications of method placement on API

learnability," in Proceedings of the Symposium on Foundations of Software Engineering,

Atlanta, USA, 2008, pp. 105-112.

107

[14] Richard A Bolt, "“Put-that-there”: Voice and gesture at the graphics interface," in

Proceedings of the 7th annual conference on Computer graphics and interactive

techniques, Seattle, USA, 1980, pp. 262-270.

[15] Jim Wallace, Vicki Ha, Ryder Ziola, and Kori Inkpen, "Swordfish: user tailored

workspaces in multi-display environments," in CHI '06 Extended Abstracts on Human

Factors in Computing Systems, Montreal, Canada, 2006, pp. 1487-1489.

[16] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood,

"Dynamo: a public interactive surface supporting the cooperative sharing and exchange of

media," in Proceedings of the 16th annual ACM symposium on User interface software and

technology, Vancouver, Canada, 2003, pp. 159-168.

[17] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd,

"ICrafter: A Service Framework for Ubiquitous Computing Environments," in Proceedings

of the 3rd international conference on Ubiquitous Computing, Atlanta, USA, 2001, pp. 56-

75.

[18] Jacob T Biehl and Brian P Bailey, "ARIS: an interface for application relocation in an

interactive space," in Proceedings of Graphics Interface, London, Canada, 2004, pp. 107-

116.

[19] Jacob T Biehl and Brian P Bailey, "Improving interfaces for managing applications in

multiple-device environments," in Proceedings of the working conference on Advanced

visual interfaces, Venezia, Italy, 2006, pp. 35-42.

108

[20] Ken Hinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baudisch, and Marc Smith,

"Stitching: pen gestures that span multiple displays," in Proceedings of the working

conference on Advanced visual interfaces, Gallipoli,Italy, 2004, pp. 23-31.

[21] Ken Hinckley, "Synchronous gestures for multiple persons and computers," in Proceedings

of the 16th annual ACM symposium on User interface software and technology,

Vancouver, Canada, 2003, pp. 149-153.

[22] Peter Tandler, Thorsten Prante, Christian Müller-Tomfelde, Norbert Streitz, and Ralf

Steinmetz , "Connectables: dynamic coupling of displays for the flexible creation of shared

workspaces," in Proceedings of the 14th annual ACM symposium on User interface

software and technology, Orlando, USA, 2001, pp. 11-20.

[23] Norman Streitz et al., "i-LAND: an interactive landscape for creativity and innovation," in

Proceedings of the SIGCHI conference on Human Factors in Computing Systems,

Pittsburg, USA, 1999, pp. 120-127.

[24] Jun Rekimoto, "Pick-and-drop: a direct manipulation technique for multiple computer

environments," in Proceedings of the 10th annual ACM symposium on User interface

software and technology, Banff, Canada, 1997, pp. 31-39.

[25] Andrew Wilson and Hrvoje Benko, "Combining multiple depth cameras and projectors for

interactions on, above and between surfaces," in Proceedings of the 23nd annual ACM

symposium on User interface software and technology, New York, USA, 2010, pp. 273-

282.

109

[26] Raimund Dachselt and Robert Buchholz, "Natural throw and tilt interaction between

mobile phones and distant displays," in CHI '09 Extended Abstracts on Human Factors in

Computing Systems, Boston, USA, 2009, pp. 3253-3258.

[27] Nabeel Hassan, Md Rahman, Irani Pourang, and Peter Graham, "Chucking: A One-Handed

Document Sharing Technique.," in Proceedings of Interact, Uppsala, Sweden, 2009, pp.

264-278.

[28] Julian Seifert et al., "MobiSurf: improving co-located collaboration through integrating

mobile devices and interactive surfaces," in Proceedings of the 2012 ACM international

conference on Interactive tabletops and surfaces, Cambridge, USA, 2012, pp. 51-60.

[29] Till Ballendat, Nicolai Marquardt, and Sault Greenberg, "Proxemic interaction: designing

for a proximity and orientation-aware environment," in ACM International Conference on

Interactive Tabletops and Surfaces, Saarbrücken, Germany, 2010, pp. 121-130.

[30] Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel Morris, "Code space:

touch + air gesture hybrid interactions for supporting developer meetings," in Proceedings

of the ACM International Conference on Interactive Tabletops and Surfaces, Kobe, Japan,

2011, pp. 212-221.

[31] Nicolai Marquardt, Ken Hinckley, and Saul Greenberg, "Cross-device interaction via

micro-mobility and f-formations," in Proceedings of the 25th annual ACM symposium on

User interface software and technology, Cambridge, USA, 2012, pp. 13-22.

110

[32] Ekaterina Kurdyukova, Matthias Redlin, and Elisabeth André , "Studying user-defined iPad

gestures for interaction in multi-display environment," in Proceedings of the 2012 ACM

international conference on Intelligent User Interfaces, Lisbon, Portugal, 2012, pp. 93-96.

[33] Bonifaz Kaufmann, Martin Grazer, and Martin Hitz, "A Service-Oriented Mobile

Multimodal Interaction Framework," in Proceedings of the Workshop on infrastructure and

design challenges of coupled display visual interfaces (PPD'12), Capri, Italy, 2012.

[34] B Johanson, A Fox, and T Winograd, "The Interactive Workspaces project: experiences

with ubiquitous computing rooms," IEEE Pervasive Computing, vol. 1, no. 2, pp. 67-74,

Apr-Jun 2002.

[35] Aiman Erbad, Michael Blackstock, Adrian Friday, Rodger Lea, and Jalal Al-Muhtadi,

"MAGIC Broker: A Middleware Toolkit for Interactive Public Displays," in Proceedings

of the conference on Pervasive Computing and Communications, Hong Kong, 2008, pp.

509-514.

[36] Andy Wu, Sam Mendenhall, Jayraj Jog, Loring Scotty Hoaq, and Ali Mazalek, "A nested

API structure to simplify cross-device communication," in Proceedings of the Conference

on Tangible, Embedded and Embodied Interaction, Kingston, Canada, 2012, pp. 225-232.

[37] Roy Fielding, "Architectural styles and the design of network-based software

architectures," University of California, Doctoral Thesis 2000.

[38] Barry Brummit, Brian Meyers, John Krumm, Amanda Kern, and Steven A Shafer,

"EasyLiving: Technologies for Intelligent Environments," in Proceedings of the

111

International Symposium on Handheld and Ubiquitous Computing, Bristol, UK, 2000, pp.

12-29.

[39] John Krumm and Ken Hinckley, "The NearMe Wireless Proximity Server," UbiComp

2004: Ubiquitous Computing, pp. 283-300, 2004.

[40] Thomas Grill, Ondrej Polacek, and Manfred Tscheligi, "Methods towards API Usability: A

Structural Analysis of Usability Problem Categories," in Human-Centered Software

Engineering, Marco Winckler, Peter Forbrig, and Regina Bernhaupt, Eds. Berlin,

Germany: Springer Berlin Heidelberg, 2012, pp. 164-180.

[41] Martin P Robillard, "What Makes APIs Hard to Learn? Answers from Developers," IEEE

Software, vol. 26, no. 6, pp. 27-34, November 2009.

[42] Hou Daqing, "Obstacles in Using Frameworks and APIs: An Exploratory Study of

Programmers' Newsgroup Discussions," in Proceedings of the Conference on Program

Comprehension, Kingston, Canada, 2011, pp. 91-100.

[43] Minhaz F Zibran, "What Makes APIs Difficult to Use? ," International Journal of

Computer Science and Network Security, vol. 8, no. 4, pp. 255-261, April 2008.

[44] Chris Burns, Jennifer Ferreira, Theodore D Hellmann, and Frank Maurer, "Usable results

from the field of API usability: A systematic mapping and further analysis," in Proceedings

of the IEEE Symposium on Visual Languages and Human-Centric Computer, Innsbruck,

Austria, 2012, pp. 179-182.

112

[45] Minhaz Fahim Zibran, "Useful, But Usable? Factors Affecting the Usability of APIs," in

Proceedings of the Working COnference on Reverse Engineering, Limerick, Ireland, 2011,

pp. 141-155.

[46] Daniel Ratiu and Jan Jurjens, "Evaluating the Reference and Representation of Domain

Concepts in APIs," in Proceedings of the IEEE Conference on Program Comprehension,

Amsterdam, Netherlands, 2008, pp. 242-247.

[47] Marques Luiz Afonso, F. de G. Renato Cerqueira, and Clarisse Sieckenius de Souza,

"Evaluating application programming interfaces as communication artefacts," in

Proceedings of the Psychology of Programming Interest Group, London, UK, 2012, pp. 8-

31.

[48] Alan F Blackwell, Luke Church, and Thomas Green, "The Abstract is 'an Enemy':

Alternative perspectives to computational thinking," in Proceedings on the Workshop of

the Psychology of Programming Interest Group, Lancaster, UK, 2008.

[49] Thomas Scheller and Eva Kuhn, "Influencing Factors on the Usability of API Classes and

Methods," in Proceedings the Conference on Engineering of Computer-Based Systems,

2012, 2012, pp. 232-241.

[50] Brad Ellis, Jeffrey Stylos, and Brad Myers, "The factory pattern in API design: A usability

evaluation," in Proceedings of the Conference on Software Engineering, Minneapolis,

USA, 2007, pp. 302-312.

113

[51] Brian Ellis, Jeffrey Stylos, and Brad Myers, "The Factory Pattern in API Design: A

Usability Evaluation," in Proceedings of the Conference on Software Engineering,

Minneapolis, USA, 2007, pp. 302-312.

[52] Jeffrey Stylos and Brad Myers, "Mapping the Space of API Design Decisions," in

Proceedings of the Symposium on Visual Languages and Human-Centric Computing,

Coeur d'Alene, USA, 2007, pp. 50-60.

[53] Martin P Robillard and Robert DeLine, "A field study of API learning obstacles,"

Empirical Software Engineering, vol. 16, no. 6, pp. 703-732, December 2011.

[54] Andrew J Ko and Yanne Riche, "The Role of Conceptual Knowledge in API Usability," in

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computer,

Pittsburgh, USA, 2011, pp. 173-176.

[55] Brad A Myers et al., "Studying the Documentation of an API for Entreprise Service-

Oriented Architectures," Journal of Organization and End User Programming, vol. 22, no.

1, pp. 23-51, January 2010.

[56] Janet Nykaza et al., "What programmers really want: results of a needs assessment for

SDK documentation," in Proceedings of the Conference on Computer Documentation,

Toronto, Canada, 2002, pp. 133-141.

[57] Seyed Mehdi Nasehi and Frank Maurer, "Unit Tests as API Usage Examples," in

Proceedings of the Conference on Software Maintenance , Timișoara, Romania, 2010, pp.

1-10.

114

[58] Raymond P.L Buse and Westley Weimer, "Synthesizing API usage examples," in

Proceedings of the Conference on Software Engineering, Zurich, Switzerland, 2012, pp.

782-792.

[59] Lee Wei Mar, Ye-Chi Wu, and Hewijin Christine Jiau, "Recommending Proper API Code

Examples for Documentation Purpose," in Proceedings of the Asia-Pacific Conference on

Software Engineering, Saigon, Vietnam, 2011, pp. 331-338.

[60] Daniel S Eisenberg, Jeffrey Stylos, and A Brad Myers, "Apatite: a new interface for

exploring APIs," in Proceedings of the Conference on Human-Factors in Computer

Systems, Atlanta, USA, 2010, pp. Apatite: a new interface for exploring APIs.

[61] Jeffrey Stylos, Brad A Myers, and Zizhuang Yang, "Jadeite: improving API documentation

using usage information," in Proceedings of Extended Abstracts on Human Factors in

Computer Systems, Boston, USA, 2009, pp. 4429-4434.

[62] Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, and Brad A Myers, "Usability

challenges for enterprise service-oriented architecture APIs," in Proceedings of the

Symposium on Visual Language and Human-Centric Computing, Herrsching am

Ammersee, Germany, 2008, pp. 193-196.

[63] Jeffrey Stylos et al., "A Case Study of API Redesign for Improved Usability ," in

Proceedings on Visual Languages and Human-Centric Computing, Pittsburgh, USA, 2008,

pp. 189-192.

115

[64] Umer Farooq and Dieter Zirkler, "API peer reviews: a method for evaluating usability of

application programming interfaces," in Proceedings of the 2010 ACM conference on

Computer supported cooperative work, Savannah, USA, 2010, pp. 201-210.

[65] Thomas Green and Marian Petre, "Usability Analysis of Visual Programming

Environments: a `cognitive dimensions' framework," Journal of Visual Languages &

Computing, vol. 7, no. 2, pp. 131-174, June 1996.

[66] Steven Clarke and Curtis Becker, "Using the Cognitive Dimensions Framework to evaluate

the usability of a class library," in Proceedings of the First Joint Conference of EASE

PPIG, Keele, UK, 2003, pp. 359-366.

[67] Steven Clarke, "Measuring API Usability," Dr. Dobbs Journal, vol. 29, pp. 6-9, January

2004.

[68] J. Gerken, H. Jetter, M. Zöllner, M Mader, and H Reiterer, "The concept maps method as a

tool to evaluate the usability of APIs," in International Conference on Human Factors in

Computing Systems, 2011, Vancouver, BC, 2010, pp. 3373-3382.

[69] Manuel Bertoa, José Troya, and Antonio Vallecillo, "Measuring the usability of software

components," Journal of Systems and Software, vol. 79, no. 3, pp. 427-439, March 2006.

[70] Cleidson R. B. deSouza and David L. M. Bentolila, "Automatic Evaluation of API

Usability using Complexity Metrics and Visualizations," in Proceedings of the Interational

Conference on Software Engineering, Vancouver, Canada, 2009, pp. 299-302.

