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ABSTRACT 

This thesis presents a manufacturing cell control structure and fuzzy logic part 

dispatching method which represent original contributions to the field of manufacturing 

cell control. The control structure consists of a supervisor module comprised of primary 

and secondary control levels, and a scheduler module containing a fuzzy logic part 

dispatching method. The fuzzy logic part dispatching method considers many aspects of 

the shop floor and shows better performance in terms of the number of late parts and 

average buffer maximum loading than five common dispatching rules (EDD, LIFO, FIFO, 

SPT, Slack/OPNR). The control structure has proven to be very expandable and flexible, 

deals effectively with breakdowns and disruptions in real time, and also incorporates 

mechanisms whereby part dispatching can be optimized. The structure is portable and can 

be used at different control levels as well as in a decentralized control environment. 

Finally the structure supports the concept of intelligent part and machine entities. 

111 
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CHAPTER 1 

1. INTRODUCTION 

1.1 CONTROL AND SCHEDULING STRUCTURES 

The current trend of manufacturing is towards the production of a greater variety 

of parts in smaller volumes which is in direct contrast to the high rate, high volume, fixed 

production facilities of the past. Business trends towards shortened product life cycles, 

greater product customization and the need for a larger variety of products is driving 

production facilities away from fixed automation plants. As a result of these trends, the 

requirement for increased flexibility in manufacturing systems and control structures has 

been steadily increasing. Many of the facilities operating today utilize flexible 

manufacturing systems (FMS) which are integrated manufacturing systems consisting of 

a variety of automated pieces of manufacturing equipment linked together with 

communication and material handling systems. These present day flexible manufacturing 
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systems are often controlled through a highly integrated and interconnected computer 

controlled hierarchical structure. It has recently been suggested that as the current 

hierarchical control structures grow in size and complexity, they may not be able to 

effectively provide the necessary flexibility to deal with the degree of changes in product 

demand and product variety that are presently occurring. As a result, several authors have 

advocated the use of heterarchical control structures which purport to have increased 

flexibility and fault tolerance (Hatvany [13], Duffie and Piper [8], Jones and Saleh [17]). 

Furthermore, the degree of complexity of the control and scheduling problems have 

prompted a number of developments in the area of intelligent control and scheduling. 

These developments, which promise to ultimately improve the flexibility and power of 

manufacturing systems, have involved the application of expert systems (Wu and Wysk 

[43]), neural networks (Cho and Wysk [3]), fuzzy logic (Custodio et al. [6]) genetic 

algorithms (Herrmann et al. [14]) and Petri nets (Huang and Chang [15]). There are still, 

however, many difficulties that need to be overcome before a highly flexible, autonomous 

and possibly intelligent control system can be realised. 

One area of concern is the difficulty in dealing with disruptions in the 

manufacturing environment. Many of the existing and proposed control structures are 

very rigid and therefore encounter difficulties when things do not run smoothly. 

Schedules which are often developed under static shop floor conditions fall when those 

shop floor conditions change unexpectedly. Since there will always be dynamic changes 

in the manufacturing environment, systems for real time control and scheduling need to 
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be developed which can account for and deal with these changes and disruptions. The 

intent of this particular research is to develop a control package consisting of supervisory 

and scheduling aspects, which has the ability to deal with disruptions in real time and also 

which maintains a high degree of flexibility. The ultimate vision is to have a 

manufacturing system where all the entities such as parts or machines are independent of 

one another. These entities would possess certain knowledge, some degree of 

intelligence, and would be able to work and communicate in an autonomous way with the 

other entities in the manufacturing environment as they carry out their assigned tasks. 

This would result in very high level of flexibility; however, care must be taken that the 

overall goals of the system are still met and that they are met efficiently. It is unrealistic 

to expect that the implementation of independent entities can be done in this one project, 

but the concept is one of the underlying precepts used for developing the proposed control 

structure. A second underlying precept was the feeling that supervision and scheduling 

are often indistinguishable. Therefore, in this work both the scheduling and supervisory 

functions were, to a certain degree, blended together in a effort to find a more appropriate 

way to increase flexibility and fault tolerance in the manufacturing environment. 

The concept of intelligent supervision and scheduling has also been applied in this 

project. The idea of an intelligent system implies reasoning and the ability to make 

decisions even as conditions change. Furthermore, it implies the ability to learn, or to 

improve and optimize a decision strategy. The goal of this project is to develop a system 

which contains mechanisms for the system to be improved or optimized. Thus the system 
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may not follow a rigid structure or plan such as a fixed schedule or control sequence, but 

rather adjusts its function according to the current situation on the manufacturing floor. 

In a sense, this may make the system somewhat unpredictable; however, it will also make 

the system more flexible. It is anticipated that the unpredictability can be resolved using 

simulation techniques similar to those used when modelling a shop floor system with 

existing discrete event simulation techniques. 

One final intent of the proposed control structure is to provide a scheduling or part 

dispatching methodology that considers a wider range of constraints and variables than 

current dispatching rules. Dispatching rules typically have been developed to provide 

optimum performance for certain parameters given a specific cell or system configuration 

(Kusiak [27], French [9], Blackstone et al.[2]). Thus one dispatching rule may work very 

well given one type of shop floor configuration, , but may work very poorly under a 

different configuration. The goal of the proposed structure is to develop a more general, 

less sensitive approach. 

1.2 PROBLEM STATEMENT 

It has been proposed that as current scheduling and control structures grow in size 

and complexity, they become too inflexible to deal quickly and effectively with product 

changes, schedule changes or disruptions in the manufacturing environment. As a result, 

there is a need for the development of faster responding and more flexible real time 
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control structures. As well, in order to fully and successfully implement these new 

control structures, current scheduling methods need to be improved to account for 

multiple concurrent constraints and objectives. 

1.3 RESEARCH OBJECTIVE 

The overall goal is to develop a highly flexible real time control structure that can 

be applied at the manufacturing cell level and which is capable of dealing with shop floor 

disruptions. The intent is to build the structure with a framework able to ultimately 

support autonomous intelligent entities and which will fit into a distributed manufacturing 

control structure. In the cell control structure, supervisory aspects will be linked with 

scheduling considerations in order to provide real time scheduling and supervision which 

can account for changes in the manufacturing environment. The system will be designed 

to deal in real time with deviations to existing schedules caused by machine or tool 

breakages. In order to deal with breakdowns a new part dispatching method will be 

developed which will have increased flexibility and will consider more aspects of the 

manufacturing environment than several of the currently available dispatching methods. 

The control structure will be designed to provide regular ongoing control and part 

dispatching activities such as: part movement, part production, control of material 

handling equipment, control of machines, monitoring machine and tool status, error 

recovery, monitoring cell input and output buffers, and monitoring part inventory levels. 

The system will also incorporate the concept of virtual configuration and will be designed 
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to be expandable. 

The focus of this project will be at the manufacturing cell level. Specifically, the 

control of one cell will be addressed where the cell consists of a number of different part 

processing machines and a material handling system. The cell is considered to be buffer 

constrained. 

1.4 RESEARCH APPROACH 

The development of the cell control structure will follow a decentralized 

hierarchical. approach whereby the cell controller will operate autonomously and receive 

minimal supervision from other control levels. The goal is to have cell level distributed 

decision making and control throughout the shop floor while still ensuring compliance 

with a common plan or overall schedule. In order to do this, a cell controller consisting 

of a supervisor and a scheduler is envisioned, where the supervisor and scheduler work 

together to control a manufacturing cell with minimal interference from a higher level of 

control. The higher level of control would only be responsible for setting goals and not 

in controlling the ongoing activities of the, cell. Within the cell controller structure, the 

intention is to develop a framework whereby autonomous part and machine agents could 

ultimately interact in a heterarchical environment. The supervisor will have a two level 

structure consisting of a primary and secondary control level. The primary level will 

address general control issues, whereas the secondary level will address more detailed 
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control. This layering will provide some modularity to the structure which will make the 

inclusion of more elements into the system or modification of the system easier. The 

scheduler will include conventional dispatching rules for comparison purposes but will 

mainly operate using a new fuzzy logic dispatching method. 

The entire control structure will be developed using the object oriented paradigm, 

Smalltalk 80. The object oriented environment closely resembles the real world and 

facilitates the development of individual entities which are able to contain attributes, 

knowledge and reasoning abilities. A simplified discrete event simulation will also be 

developed in order to test the control structure. 

In order to restrict the scope of the project to a manageable level the following 

assumptions have been made: 

1) Each type of part is assumed to have its own process plan that has been 

developed elsewhere but is available for the structure to use. 

2) The system that will be modelled is a manufacturing cell consisting of a 

number of machines having finite buffer capacities. Two scenarios will be 

considered: a) material handling is included within the process plan and 

therefore part movement is not considered, and b) material handling and part 

movement are considered and controlled by the control structure. 

3) It is assumed that a master schedule exits and that due dates and part 

requirements have been given. 
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4) The simulation will model production of several different types of parts of 

given batch sizes. The cell begins empty and the simulation runs until all 

parts are completed and the cell is empty again. Since the intent of the 

project is simply to test new concepts, the issues regarding simulation warm 

up and statistical sampling will, to a large degree, be ignored. 

5) Blocking and deadlocking issues will not be addressed except to the extent 

that an error recovery message will be enabled. 

6) Machine and tools will be deterministically broken to show how the control 

structure resolves a breakdown. The control structure will not contain a 

breakdown recovery portion but will instead perform scheduling and control 

in a manner which will ensure that parts are still being produced. 

7) The control structure will not be optimized to any degree, but rather 

mechanisms for optimization will be developed and shown to work. 

8) The fuzzy logic dispatching method will be compared to certain dispatching 

rules with respect to several variables (defined later in this thesis). 

9) The focus is on minimizing part production time and the number of late parts 

while avoiding deadlocking problems. 

1.5 ORGANIZATION OF THE THESIS 

The thesis is organized into the following chapters. Chapter 2 consists of a 

literature review of a number of relevant control and scheduling methods. Chapter 3. 
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provides a brief overview of the proposed cell control structure. Chapter 4 lays the 

ground work for fuzzy logic and describes the fuzzy logic part dispatching method in 

detail. Chapter 5 provides an in depth discussion of the supervisor structure and its 

different control levels. The chapter also describes the various task requirements of the 

supervisor and how they are performed. Chapter 6 begins with a brief discussion of the 

object oriented programming system and continues with a fairly in depth description of 

how the control structure is implemented and how data is obtained. Chapter 7 presents 

a number of case studies and comparison studies which are designed to show how the 

various supervisory and scheduling aspects of the control structure work, and how the 

structure can be optimized. Chapter 8 provides some additional discussions about the 

control structure, presents some conclusions, and discusses future research possibilities. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 

2.1 INTRODUCTION 

The thrust of this project was to develop a new control structure which had more 

autonomy and flexibility than existing structures. In order to provide a base for 

comparison a number of existing techniques will be discussed which include hierarchical 

and heterarchical structures, artificial intelligence techniques and intelligent agents. Many 

of the papers that will be presented include concepts which were used in this project's 

control structure; those that do not, have been included for completeness and continuity. 

Ultimately, fuzzy logic was chosen to enable part dispatching, and a hierarchical control 

structure incorporating Petri nets was developed which supported the concept of 

intelligent objects (agents). The reasoning behind these choices will be left for discussion 

in later chapters, since this chapter is presented more as a grounding of available 
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techniques and concepts. The chapter will begin with an overview of some of the 

research done on general control systems, followed by discussions on the use of artificial 

intelligence in control systems and scheduling. 

2.2 CONTROL STRUCTURES 

Although the intent of this project is to move away from a centralized hierarchical 

control structure and to develop a more autonomous decentralized heterarchical structure, 

much work has been done on hierarchical structures and it is useful to review some of 

these efforts since they have provided important insights which can aid in the 

development of future systems. Several models have been developed to represent this 

hierarchical control structure, however, the most common model in use today is the 

Computer Integrated Manufacturing (CIM) reference model which contains the following 

five levels (from top to bottom): factory, shop floor/system, cell, workstation, and 

equipment (Joshi and Smith [18], Kals [19], Jones and McLean [16]). This type of 

structure allows for the development of an ever increasing detailed degree of control from 

the factory level down to the equipment level while maintaining a uniform plan of action. 

Some of the control systems which fit neatly into a hierarchical control structure 

of this type are those developed using Petri nets (PN). Kasturia et al. [22], modelled a 

cell controller using coloured Petri nets (CPN) which consisted of five separate blocks 

entitlçd: process orders, scheduler, dispatcher, system status and material manager. These 



12 

blocks get the order requests from the shop control level, schedule the orders according 

to the system status and material availability, and then dispatch the final schedule and 

material to the appropriate workstation for processing. The beauty of modelling a control 

system as a PN or CPN lies in the ability to mathematically analyze the model to ensure 

all operations are valid and that the system is deadlock free before actual implementation. 

After analysis, the CPN described above was used for real time control and scheduling 

of a cell consisting of a CNC (computer numerically controlled) machining workstation 

and an assembly workstation. 

Huang aid Chang [15] also sought to control a manufacturing cell using PNs and 

developed a coloured timed Petri net (CTPN) for this purpose. Their CTPN is 

characterized by inhibitor arcs and interrupt arcs where error diagnosis and concurrent 

processing can be carried out in deterministic time. The CTPN models the CNC 

machines and robots within a cell, controls the loading, unloading and processing of parts, 

deals with error recovery, and drives the overall simulation. A cell having a capacity of 

six jobs and consisting of one CNC lathe, one CNC milling machine, one robot, and 

pallet storage was successfully controlled by the CTPN model. Ten common dispatching 

rules were used to dispatch the parts. 

Teng and Black [39] used PNs to model a manufacturing cell consisting of three 

CNC machines, two decouplers, one inspection station and a robot. A decoupler was 

used to represent equipment placed in a cell to perform functions that workers would 
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normally perform such as: work-in-process inspection, inventory control, part 

manipulation and intercell transportation and provides a way of incorporating human 

activity into the control structure. The control system was developed to represent a pull 

system such as a Just In Time or Kanban system and it is unique in that it incorporates 

a number of message places which represent the pull system control. Furthermore, the 

PN includes defect detection and correction as well as tool failure or machine breakdown 

detection. Another PN model which deals with exception handling and breakdowns in 

manufacturing cell control was presented by Hasegawa et al. [12] They discussed a two 

layered PN structure consisting of a high (supervisory) layer which represents interruptive 

processes permitting exception handling, and a low (operation) layer which represents 

normal production processes. A mode token flows on the supervisory layer and is used 

to enable an operation layer. A process token flows on the operation layer thereby 

activating all detailed operations. The operation layer is connected to a place on the 

supervisory layer and is active only when a mode token exists in its supervisory place. 

The difference between an ordinary layered PN and this layered PN (LPN) lies in the 

behaviour of the tokens. In the ordinary PN, each PN can be decomposed to the lowest 

network and all networks are continuous. However the LPN is unique in that the 

networks among nodes are discrete and two kinds of tokens flow on different layers. 

As the above examples indicate, Petri nets can indeed be powerful tools which can 

be used to successfully model, analyze and control manufacturing systems. Several 

aspects of these examples have been incorporated into the proposed control structure; 
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however, in order to move away from centralized hierarchical structures, other forms of 

control must also be developed. 

Three systems which have been developed in an effort to move away from 

centralized control structures towards more decentralized structures are: the Production 

Control System (PCS) (Curtis and Tiemersma [5]) developed by the ESPRIT 809 project 

(European Strategic Program for Research and Development in Information Technology); 

the Production Activity Control system (PAC) (Bauer et al. [1]) developed by the ESPRIT 

477 (COSIMA) project, and a production cell control structure developed at Laboratoire 

Universitaire de Recherche en Production Automatisee (LURPA) (Gendreau et al. [10]). 

The PCS, system which deals with shop floor control at the cell, workstation and 

equipment level, consists of five main modules: scheduling, dispatching, workstation 

control, station control, and monitoring and diagnosis. Production orders and process 

plans are received from the system level of the CIM reference model and these are used 

by the scheduler to create a work plan, which is simply a sequence of jobs to be executed 

in the cell. The work plans developed by the scheduling module provide the commands 

which the dispatching module uses along with shop floor status information to release 

jobs to the different elements within the cell. The workstation control module supplies 

the workstation with job information, coordinates the tasks of the equipment within the 

workstation, and monitors the status of the workstation. The station control module 

provides the same functionality as the workstation control module but its focus is on 

auxiliary manufacturing functions such as tool, jig and fixture presetting, and material 
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storage. The monitoring and diagnostic module provides cell status information to other 

modules and also supplies performance data to the system level. In a normally 

functioning cell, scheduling is initiated when the ongoing work plan is almost finished; 

however, in the case of disturbances within the cell or the insertion of a high priority 

order, a rescheduling decision is taken by the cell supervisor and the scheduling module 

is used to predict problems which could propagate from the disturbance. Thus the PCS 

system provides a mechanism of converting system level production orders into action at 

the equipment level both under normal operating circumstances and during disruptions. 

The COSIMA project developed an architecture consisting of a factory 

coordination (FC) level and the Production Activity Control (PAC) level in an effort to 

ensure both flexibility and decentralization in shop floor control related activities. The 

PAC system sits at the cell control level and appears to have many aspects in common 

with the PCS. The PAC system consists of five modules: a scheduler, a dispatcher, a 

monitor, movers and producers. The scheduler accepts production requirements from a 

higher planning system (FC level) and develops a detailed plan which determines the 

precise use of the different facilities over a specified time frame. The scheduler checks 

the system capacity, generates a schedule and then releases the schedule to the dispatcher 

for implementation. The main purpose of the dispatcher is to react to the current state 

of the production environment and to select the best course of action in order to fulfil the 

plan developed by the scheduler. The dispatcher is the controlling element of the PAC 

and works in real time as it receives information, analyses the various alternatives and. 
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broadcasts its decisions to the movers and the producers. The movers and producers are 

the elements which effect movement and production of the various parts and jobs. The 

role of the monitor is to supply cell status information to the scheduler and dispatcher so 

they can carry out their respective planning and control tasks. Overall, the PAC has 

modularized the cell control structure into a form similar to the PCS. 

The third control structure that will be discussed is the LURPA production cell 

controller. The LURPA controller is made up of four functional components: a scheduler, 

a driver, a communicator and an information collector. The cell driver manages, in real 

time, the activities of each piece of equipment (or operating system) in the cell. It also 

monitors the behaviour of the cell using information gathered by the information collector. 

The combination of the driver, the information collector and the operating system 

controllers constitute the control loop of the cell. The role of the cell scheduler is to use 

the production requirements supplied by a higher control level, to build a schedule which 

is then implemented by the driver. The schedule is comprised of a series of operative and 

communication tasks and is developed using management production rules or sub-

contractor know-how. The communicator is used to send requests to service cells within 

the workshop in order to fulfil transportation or manual preparation needs. 

All three of these control structures (PCS, PAC, LURPA) have attempted to move 

away from a strictly centralized control structure. They have done so by providing each 

cell controller with the ability to control and schedule its own cell independently of other 



17 

cells while relying only upon a general schedule or production plan supplied by a higher 

control level. Each cell control structure is somewhat generic and can be used for a 

variety of different types of cells and this lends an aspect of portability to the control 

structure. As will be shown later, the control structure proposed in this thesis mimics a 

portable decentralized control structure. 

2.3 ARTIFICIAL INTELLIGENCE CONTROL TECHNIQUES 

Artificial intelligence (Al) techniques are playing an increasingly more important 

role in the control and scheduling of manufacturing systems. Expert systems, for 

example, are used to improve decision making procedures as well as to expand the 

flexibility of systems and have been used by a number of authors in their control systems. 

Maimon [31] developed a manufacturing system which incorporates a process sequencer 

that is driven by a small expert system. The actual control structure is made up of three 

hierarchical levels: a scheduler, a process sequencer, and a dynamic resource allocator. 

Based on the manufacturing status and the production state of the part, the process 

sequencer infers the next process, the appropriate material handling move and the 

production program to down load. The process sequencer expert system consists of 

knowledge base components containing facts, rules, a module which tracks the system 

status and production state, and an inference engine. As a result of using the expert 

system a feasible set of actions can be successfully developed both during normal 

operation and in the event of failures. Thus, the control system contains its own expertise 
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and can rely less on human operators for assistance. 

Domenikos and Tatsiopoulos [7] take the concept of an expert control system one 

step further. They represent an entire shop floor environment using four linked 

knowledge based systems (KBS) developed within an object oriented paradigm. Two 

knowledge based systems contain information and knowledge related to generic shop floor 

environments and specific production methods. The knowledge and experience of shop 

floor management is represented in a third KBS and is used to develop general production 

control requirements which are then used in a fourth KBS to create feasible instructions 

mnd control rules for carrying out the management of shop floor production operations. 

Their goal was to use expert system methodology to provide, in a suitable form, the 

needed shop floor control knowledge to allow a supervisory control system to perform 

its control tasks. This is somewhat different than the approach taken by Maimon where 

the expert system was used in a more direct way to control the activities on a shop floor. 

The KBOLS (Knowledge-Based On-Line Simulator) architecture developed by 

Manivannan and Banks [33] also uses expert systems to directly control the shop floor 

environment. The architecture includes: a knowledge based controller capable of 

interacting with the shop floor and a manufacturing simulator, a shared black board data 

structure, and a learning module. The knowledge based controller is especially designed 

for analyzing and dealing with interruptions due to machine breakdowns and rush orders. 

The controller consists of two inference engines; one whose primary purpose is to 

diagnose the fault and the second which is a forward chain inferencer that searches for 
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a control decision. A black board environment is used to link the various knowledge 

bases and the entire architecture uses simulation, knowledge, and learning to generate an 

effective applicable control decision. 

The black board environment is also used for intelligent control in a framework 

called PLATO-Z (Production Logistics And Timing OrganiZer). In PLATO-Z (O'Grady 

and Lee [35]) four black boards were developed to perform scheduling, dispatching, error 

handling and monitoring. O'Grady and Lee used a multi-black board/actor model in order 

to increase control flexibility because they felt that expert systems used on their own were 

too rigid. PLATO-Z uses knowledge sources (rule bases), heuristic algorithms, and 

optimizing procedures in this new environment in an effort to provide a control structure 

which has a certain degree of intelligence and promotes the use of autonomous actors that 

communicate through message passing. 

The concept of autonomous actors leads into the possibility of having independent 

agents which perform shop floor control. The black board/actor system developed by 

O'Grady and Lee was implemented using an object oriented language, which appears to 

be the language of choice when developing independent actor/agent systems. Since the 

object oriented programming language and autonomous agents seem to go hand in hand, 

they will be discussed next in the context of shop floor control. 

O'Grady and Seshadri [36] presented X-Cell, a cell control system which uses 
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object oriented programming to map cell control functions onto objects. X-Cell contains 

three main modules: a scheduler, an operation dispatcher and a monitor. Each of these 

modules were implemented as a collection of objects, with messages sent between objects 

within each module and also between objects within different modules. Several 

advantages of X-Cell include: a relatively straight forward adaption to control other cells, 

the provision of error handling, and, as a result of the object and message passing 

structure, an ability to easily transfer the system to a multi-processing environment. 

The independence of the various objects within an object oriented environment 

was even more fully utilized by Maley [32], and LeFrancois and Montreuil [29]. Maley 

introduces the use of negotiation between intelligent parts and intelligent workstations in 

order to manage the flow of parts throughout the system. Each part maintains its own 

data base containing quality control histories, performance measures, due dates, and 

process plans. The parts communicate with the workstation to determine the 

workstation's processing abilities, current load, historical quality control characteristics 

and estimated completion time in order to decide whether to request the workstation for 

processing or not. Workstations communicate with parts to determine the type of 

operation to be performed, the material being used, and the part's priority. Multiple parts 

undergo the negotiating procedure at the same time, but each part is in charge of its own 

negotiations and continually negotiates with the workstations as the need arises in order 

to fulfil its production plan. 
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LeFrancois and Montreuil introduced an object oriented knowledge representation 

framework which they developed for modelling, analyzing and controlling the operations 

of a workstation. The framework consists of a new class of objects called agents which 

have three types of reasoning: meta-reasoning to control the inference/search reasoning 

activities, a local reasoning level incorporating simple rule base procedures, and an 

extended reasoning level representing the reasoning activities that cannot be performed 

using simple procedures and thus require external knowledge agents to assist in the 

decision making process. This framework allows LeFrancois and Montreuil to provide 

objects with intelligence, and they have used the framework to assist in developing and 

validating the schedule and control strategies for a rolling mill workstation. 

A different type of framework was developed by Lin and Solberg [30]. Their 

adaptive control and scheduling framework was based on distributed information 

processing, distributed decision making, and a heterarchical market-like model. Each 

functional unit of parts and resources is equipped with an intelligent (software) agent and 

these agents communicate and negotiate in real time with each other to achieve mutual 

agreements for task sharing. Parts and machine agents go through a multi-step 

negotiating procedure before a part is committed to a machine for a certain operation. 

Using this framework, the part agents make decisions based on the objective functions of 

the part, while the resource agents make decisions based on the price evaluation system. 

The framework is implemented in an object oriented environment. 
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So far, we have seen a number of control structures which range from rigid 

hierarchical structures to very flexible structures using autonomous agents and negotiating 

procedures. The current research trend appears to be towards the development of 

heterarchical structures which have autonomy and self control, but also which have 

direction regarding global issues. In general, this is also the intent of the current project, 

but before going into a discussion of the proposed control structure, a review of 

scheduling techniques is in order since scheduling plays a great role in the ultimate 

control of a manufacturing system. 

2.4 ARTIFICIAL INTELLIGENCE SCHEDULING TECHNIQUES 

As the heading suggests, this section will focus on some of the various artificial 

intelligence approaches to scheduling. A significant amount of research has gone into the 

development of dispatching rules and algebraic techniques for scheduling, but these do 

not appear to have the flexibility or scope to deal with the large variety of manufacturing 

systems or to deal effectively with disruptions or changes. More and more researchers 

are investigating the application of artificial intelligence techniques to scheduling and it 

seems appropriate to review a few of those techniques here. 

Expert systems have been used in many instances not only for control purposes 

but also to assist in the scheduling of manufacturing systems. MADEMA 

(MAnufacturing DEcision MAking) is a framework described by Chryssolouris et al. [4] 
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which supports multi-criteria decision making and scheduling in a shop floor environment. 

MADEMA uses a small rule base system that performs backward chaining on rule bases 

in order to select the appropriate optimization criteria from candidates such as: flow time, 

wait time, operation cost, tardiness, and quality. Thus MADEMA uses an expert system 

to move away from modern dispatching and scheduling techniques which optimize only 

on one or two criteria, and instead considers a number of criteria which improves the 

flexibility and responsiveness to change. 

Wu and Wysk [43] presented an expert system, discrete event simulator 

combination called MPECS (Multi-Pass Expert Control System) which also uses multiple 

criteria to make scheduling decisions. The expert system looks at certain scheduling rules 

and principles, current cell conditions, and a number of criteria in order to select several 

good alternative scheduling rules (control policies). These rules are then fed into a 

discrete event simulator for assessment and the best scheduling rule is chosen based on 

a specified performance measure. As a result, the cell is scheduled and controlled in a 

way that is more representative of the ongoing cell conditions. Furthermore, a learning 

module has been added which allows MPECS to adapt itself to different systems and 

conditions by continually modifying its knowledge base. Cho and Wysk [3] developed 

1WC (Intelligent Workstation Controller) which operates along the same lines as MPECS. 

However, instead of using an expert system to select alternative scheduling rules, IWC 

uses a neural network. The neural network takes as input seven factors which represent 

the current workstation status, and as output, a choice of eight common dispatching rules. 
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The network was trained with ninety sets of input/output training vectors using a back 

propagation technique. Once trained, an input vector representing the current workstation 

status is applied to the network. The network selects the two best alternative dispatching 

rules, which are then fed into a discrete event simulator for evaluation and selection of 

the best strategy. The 1WC appears to be robust, adaptive and was able to deal with 

noisy input data. Even more significantly, once trained, the neural net decision making 

was very fast and therefore may be appropriate for the real time control of manufacturing 

systems. Unfortunately, as the number of input nodes, output nodes and training sets 

increase, so will the training time. 

Both MPECS and PVC find the one best dispatching rule based on simulation runs 

which are performed periodically whenever an event occurs. Alternatively, instead of 

relying on one rule, Grabot and Geneste [11] use a fuzzy logic method to combine a 

number of dispatching rules in order to obtain a compromise between the satisfaction of 

several criteria. Within the fuzzy logic method, a dispatching rule is expressed as two 

production rules covering a low and a high range of the antecedent and consequent (input 

and output) parts of the rules, where each range is represented by a membership function. 

A number of dispatching rules are developed in this format and combined using fuzzy 

logic techniques. As a result, criteria which are more important contribute to a greater 

degree to the outcome, whereas criteria having lesser importance are still considered 

instead of being completely ignored. Thus many factors and many rules can be taken into 

account at one time, thereby increasing the flexibility and robustness of the system. 



25 

Grabot and Geneste applied their fuzzy logic procedure to a conventional job shop 

scheduling problem. Custodio et al. [6], on the other hand, developed a more elaborate 

control and scheduling system which combined two levels of fuzzy logic control. One 

level applies fuzzy logic methodology to two aspects: 1) to routing rules in order to 

choose a resource for the next operation of a part, and 2) to dispatching rules to select 

the next part for processing from the parts waiting in the input buffer of a resource. 

Fuzzy logic allows for the combination of all the rules and several criteria in order to 

generate a decision about part movement. As a result, the movement of parts is more 

reflective of the ongoing status of the shop floor and of the current decision criteria. The 

second level applies fuzzy logic in a way that is similar to a more conventional fuzzy 

logic controller. A fuzzy scheduler was developed which tries to maintain a specific 

production rate based upon production levels and work in progress. The fuzzy scheduler 

uses fuzzy logic applied to the error between cumulative production and cumulative 

demand to set production rates for each part type. 

The fuzzy techniques of Grabot and Geneste, and Custodio et al. allow the use of 

multiple criteria and multiple rules in order to control and schedule systems which are 

constantly changing. These methods more fully take into account what is happening in 

the manufacturing environment than the other methods discussed so far and introduce a 

way of dealing with change and uncertainty. 

Before concluding the chapter, two artificial intelligence techniques which have 
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been used as search techniques to find optimum scheduling solutions will be presented: 

Petri nets and genetic algorithms. Lee and DiCesare [28] presented a method which uses 

a Petri net model to help find an optimum schedule. A Petri net model is constructed to 

represent the manufacturing system, and is used to track all the behaviours of the system 

with a reachability graph of the net. An optimal schedule is obtained by using a heuristic 

search technique to guide the generation of the reachability graph and to find an optimal 

path from the initial marking of the Petri net to the final marking. The schedule that is 

developed is an ordering of initiations and activities; therefore, the schedule is event 

driven, rather than time driven. The method they have developed appears to be quite 

powerful and can handle routing flexibility, shared resources, lot sizes and concurrency 

as well as being able to avoid potential deadlocks. 

Genetic algorithms have also been used by several researchers as search techniques 

to search for good schedules. Uckun et al. [42] describe a number of ways of arranging 

the chromosomes to include machines, machine schedules, job orders, or process plans. 

They use a schedule builder to create legal schedules after factoring in constraints such 

as machine set-up and down times. The genetic algorithm is used to search through these 

chromosome arrangements to achieve an optimum schedule with respect to machine 

utilization and work in progress criteria. In contrast to the search proposed by Uckun et 

al., Herrmann et al. [14] utilizes existing dispatching rules to devise a schedule. The idea 

is to assign a separate dispatching rule to each machine and it is the task of the genetic 

algorithm to search the space of machine rule combinations to ultimately find the 
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optimum scheduling rule for each machine. This technique provides better local and 

global results than obtained through the use of only one fixed dispatching rule for all 

machines. 

This then concludes the literature review and provides the basis from which ideas 

were drawn during the development of the proposed control structure and fuzzy logic 

dispatching method. Throughout the project, the underlying theme has been to 

incorporate autonomy and flexibility within a real time control structure. In developing 

the proposed structure, several new unique ideas have been incorporated into the control 

structure along with new ideas which are extensions of existing supervisory and 

scheduling concepts. 
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CHAPTER 3 

3. GENERAL OVERVIEW OF THE CONTROL STRUCTURE 

The overall primary goal of this research was to develop a real time control 

structure which has flexibility in dealing with disruptions, exhibits expandability, and will 

ultimately support the concept of autonomous agents. Ideally the control structure will 

also be portable in the sense that the structure could be used for a variety of different 

system configurations or even over a range of different control levels with only minor 

modifications. The primary focus of this particular piece of work was to develop a 

control structure specifically for application and testing at the manufacturing cell control 

level. 

It is often difficult to discern the difference between scheduling and control on a 

shop floor and this difficulty is very apparent at the cell level. At progressively finer 

levels of control, such as at the equipment control level, scheduling is less of a concern 
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since the issues are more often that of providing sequential control, and on controlling 

how actions can be accomplished rather than when. In direct contrast to this, at the cell 

level the control structure must take timing into account, not only within the cell but also 

when interacting with other cells or even the entire shop floor system. For example, a 

schedule for the shop floor dictating due dates and order sizes will directly translate into 

certain scheduling requirements for a given cell, and therefore scheduling part flow within 

a cell to meet these requirements is an important issue. Unfortunately, there is a large 

overlap between true scheduling, part dispatching and the control of the various elements 

within the cell such as part processing machines, material handling systems, or the parts 

themselves. Bearing this overlap in mind, a control structure was developed which was 

loosely broken into two sections: a scheduling section, ind a supervisory section as shown 

in Figure 3.1. This is a somewhat more compact control structure than those proposed 

by Curtis and Tiemersma (PCS), Gendreau et al. (LURPA), or Bauer et al. (PAC); 

however, as will be discussed more thoroughly in chapter 5, the activities performed by 

the dispatchers, drivers, monitors etc. in the control structures mentioned above are 

incorporated into the proposed structure. Even though these two sections exist in the 

proposed structure, the problem of cell control involves both scheduling and supervision 

operating in concert and therefore throughout this work there may not be a crystal clear 

distinction made between these two processes. In fact, it is the blending of scheduling 

and supervision that allows for a unified approach to cell control. With these thoughts 

in mind, the general overall control structure will now be presented; further details of the 

structure will be given in sections 4, 5 and 6 on scheduling, supervision, and 
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Figure 3.1: Cell Controller & Interactions 
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implementation respectively. 

The main responsibility of the scheduler is to generate priority levels for the parts 

waiting in the input buffer of a given machine. The level of priority of a part dictates 

when that part will be selected for processing. The scheduler is made up of two sub-

modules (Figure 3.2), one of which contains a series of common dispatching rules, and 

the other which contains the fuzzy logic part dispatching method. Conceptually, both 

sub-modules accomplish the same thing, that is identifying which part within an input 

buffer should be processed next; however, they are fundamentally different. Dispatching 

rules typically have been developed to provide optimum performance for certain 

parameters given a specific cell or system configuration (French [9], Kusiak [27], 

Blackstone et al. [2]). Thus, one dispatching rule may work very well given one type of 

shop floor configuration, but may work poorly under a different configuration. In fact, 

a change in the part mix may positively or negatively affect the ability of the dispatching 

rule to effectively schedule parts even if the system configuration has not changed. The 

fuzzy logic method attempts to provide a more general, less sensitive approach. The 

method looks at a wider range of parameters and incorporates a number of different rules 

as it develops priority levels. More importantly, the parameters under consideration, and 

the guiding rule structure can be easily changed within the method. Thus if there are 

certain aspects of a given shop floor which are unique, that uniqueness can easily be 

incorporated into the fuzzy logic method. So, instead of having one dispatching rule 

which may not apply for all cases, the fuzzy logic method allows customization of the 
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Figure 3.2: Supervisor and Scheduler Sub-modules 
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rule base which gives it the flexibility to schedule under a greater variety of 

circumstances. Dispatching rules have been incorporated into the proposed scheduler 

mainly for comparison purposes in order to evaluate the fuzzy logic method. 

The supervisor provides the main controlling element of the cell controller and as 

a result it has many tasks to perform. These include: part movement and part production, 

control of material handling, controlling the various machines, monitoring machine and 

tool status, error recovery, implementing virtual cell reconfiguration when necessary, 

monitoring cell input and output buffers, and monitoring part inventory levels. The 

general mode of operation of the supervisor is shown in Figure 3.2 which shows the 

interconnection between the supervisor's control and monitoring tasks, the primary control 

level, and the secondary control level. As events occur within the shop floor, the 

supervisor recognizes these events through the monitoring tasks and then initiates the 

appropriate control actions which are fulfilled through the use of the primary and 

secondary control level structure. The primary control level is the key link between the 

cell controller and the elements within the cell, such as the various machines. When a 

control task is required, the supervisor activates the primary control level, which in turn 

activates the secondary control level. The secondary control level is responsible for the 

more detailed control actions, for example: the planning and implementation of the actual 

robot movement. 

The supervisor and scheduler have been developed to work on a cooperative basis 
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within a modular cell control structure. The cell controller works autonomously to 

produce parts and to deal with issues within the cell. It is guided by goals set by 

alternate control systems rather than being controlled directly by those systems. The 

scheduling and supervisory methods used are generic and do not hinge upon the type of 

machines in the cell or on what type of cell it is. The structure will work equally well 

for a machining cell, assembly cell, inspection cell or combination. As will also be 

discussed later, the structure has been developed to ultimately allow parts and machines 

to interact and operate more autonomously. 

The control structure has been implemented using the object oriented programming 

paradigm. The reasoning behind this choice is several fold. First, this paradigm most 

closely resembles the real world in the sense that the real world consists of individual 

unique objects which have their own attributes, may retain knowledge, and also may have 

varying degrees of intelligence or reasoning abilities. Second, in order to have the 

proposed control structure achieve maximum flexibility, the objects within the system 

should have a certain degree of intelligence and an ability to reason. The object oriented 

paradigm achieves both these goals because it allows the representation of real world 

objects and has facilities to assign attributes, knowledge and reasoning abilities to those 

objects. Although the storage of knowledge and reasoning does not naturally exist in 

inanimate objects such as machines or parts, these aspects can be artificially implemented 

using current computer technology. The object oriented environment is also structured 

to perform communication using message passing between objects. The objects could 
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then communicate with each other and therefore, in a small way, direct their own 

destinies according to certain rules. 

The overall object oriented class structure of the control system is shown in Figure 

3.3 and shows the inheritance of the various classes. Seven new classes; System, Fuzzy 

Logic, Cell, Equipment, PartType, Part and Tool have been developed and placed under 

the Smailtalk 80 Magnitude class. Separate objects are created as unique instances of 

each class and it is these objects which communicate with each other in the system in 

order to perform the various scheduling and supervising tasks. As more objects such as 

parts or machines are required, the object oriented programming structure simply allows 

the creation of new instances of each particular class. These instances then inherit all the 

appropriate attributes, knowledge and reasoning from the class structure. A more detailed 

discussion of each of the classes is given in chapter 6 on implementation. In the 

following two chapters more detail will be provided about the scheduler and supervisor 

functions. 
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Figure 3.3: Class Hierarchy 
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CHAPTER 4 

4. SCHEDULER 

4.1 INTRODUCTION 

The main thrust of the current work, and indeed the main area of original 

contribution, is contained within the scheduler module of the control structure. Here, 

fuzzy logic has been used in a unique way in order to provide a scheduling methodology 

which can consider many aspects of the shop floor while developing a schedule in real 

time. In the context of the current control system, the primary responsibility of the 

scheduler is to generate priority levels for parts waiting in the input buffer of a given 

machine. This is done using either the fuzzy logic method scheduling sub-module or the 

dispatching rule sub-module (see Figure 3.2). Since the dispatching rules have been 

included in the scheduler module mainly for comparison purposes, the bulk of the 

discussion will centre around the fuzzy logic method and its application, with only a short 
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review of the various dispatching rules. 

One of the main objectives of this thesis was to develop a control structure which 

can deal with disruptions and breakdowns within the system. Significant portions of the 

supervisor structure address this objective directly but one of the keys to implementing 

a complete control scheme is. to ensure a flexible scheduling technique. Various 

approaches have been applied to job shop scheduling including mathematical 

programming (French [9], Kusiak [27]), dispatching rules (Panwalkar and Iskander [37], 

Blackstone et al. [2]), neural networks (Cho and Wysk [3]), genetic algorithms (Herrmann 

et al. [14]), and expert systems (Chryssolouris et al. [4], Maimon [31], Wu and Wysk 

[43]); however, many of these techniques ultimately only develop a fixed schedule and 

are therefore inflexible. Although a number of different methods are used to optimize 

the final fixed schedule, with the most elaborate case being the use of a genetic algorithm, 

few of the fixed schedules account for unexpected changes or disruptions on the shop 

floor. Wu and Wysk, and Cho and Wysk, on the other hand, perform ongoing 

optimization techniques which develop very short term fixed schedules that are used only 

for a short finite time and are then updated as required if the system status changes. In 

this way, their systems account for disruptions in the shop floor. The proposed control 

structure has also been designed to deal with shop floor disruptions, but does so on a real 

time basis and incorporates fuzzy logic part dispatching to accomplish that task. The 

fuzzy logic dispatching method currently incorporates rule bases related to machines, such 

as machine buffer levels, and to parts, such as part inventory levels, due dates and process 
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plans. The intent of the method is to incorporate a wider range of scheduling issues than 

those considered by most current dispatching rule systems. Basically what the fuzzy logic 

dispatching module does is to assign priority values to each part in a manner which 

reflects current shop floor conditions, and as the shop floor conditions change, so do the 

relative priorities of the parts. The details of how this is accomplished using fuzzy logic 

will be discussed next. 

4.2 FUZZY LOGIC METHOD SUB-MODULE 

4.2.1 Background 

When conditions in the shop floor change and the current schedule in use no 

longer reflects an accurate plan, then it is often up to the individuals on the shop floor 

to make corrections to the schedule to allow part manufacture to continue. A shop floor 

can be a very complicated place; however, experienced individuals frequently have clear 

ideas about the best course of action under the given conditions. These individuals may 

even be able to formalize the reasoning behind their actions into a series of linguistic 

rules which could ultimately be used to help control and schedule the system. Using the 

linguistic rules developed by the individuals and applying them in. an automatic and 

formal way is one of the precepts of fuzzy logic reasoning. Alternatively, in some cases 

it may be possible to model and control the shop floor using mathematical programming. 

Unfortunately, it is often very difficult to represent a shop floor mathematically and in 
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those cases where the modelling can be successfully accomplished, the system often 

cannot be analyzed in a realistic time frame. Fuzzy logic methodology operating on 

linguistic rules may represent an avenue for real time control which allows the use of 

individuals' knowledge and avoids some of the difficulties involved with mathematical 

programming techniques. It was on this premise thatthe application of fuzzy logic to 

shop floor control and scheduling was undertaken. Before discussing the actual method 

of application, a review of fuzzy logic theory is in order. 

4.2.2 Theory 

The concept of fuzzy logic has been around for many years but it was Professor 

Lotif A. Zadeh who, in 1965, was the first to introduce mathematical tools which now 

allow imprecise and qualitative information to be expressed in more exact ways (Kaufman 

& Gupta [23], Zadeh [44]). Essentially, the idea of a fuzzy set was developed and 

introduced as a generalization of the ordinary notion of a set (Tong [40]). This basic idea 

has been used in many ways; however, it will be discussed here in a form which seems 

most applicable to the scheduling problem. 

An ordinary set, or a "crisp set", is precise in its meaning, having a definite 

transition from membership within the set to non-membership. The set has sharp 

boundaries; either an element belongs to a particular set or it does not. For example, 

consider the measurement of room temperature in the closed interval 15-40 °C where the 
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concern is to describe the linguistic term 'warm'. An ordinary set which defines this can 

be expressed in terms of a membership function t which can take values of either 0 or 

1. If g(T) = 0 then the temperature T is not a member of the set 'warm'; if t(T) = 1 then 

the temperature is a member. This is shown graphically in Figure 4.la where the 

membership function ji is represented by a rectangular function. Thus all the temperature 

values between 22.5 and 32.5 C, inclusive, represent 'warm'. A fuzzy set on the other 

hand allows the transition from non-membership to full membership to occur gradually 

rather than abruptly. This is also known as the concept of graded membership. To 

continue with the temperature example, a fuzzy set representing 'warm' might be as 

shown in Figure 4. lb. The fuzzy set. uses all the values between 0 and 1 where 1 

represents full enlistment into the term 'warm', 0 represents no enlistment, and values 

between 0 and 1 represent partial enlistment or partial membership. Therefore the 

qualitativeness of the measure (in this case temperature) is reflected as a gradual transition 

to full membership. 

The concept of fuzzy sets becomes important in situations where the precise 

mathematical definition of a process cannot be easily formulated or easily solved. This 

occurs frequently in very complex industrial processes such as batch reactors, blast 

furnaces, cements kilns, and steel making (King & Mamdani [25]), and in many other 

non-linear, time varying systems. While these processes are difficult to control 

automatically, they are often controlled quite satisfactorily by human operators. The 

operators' control strategy is often based on intuition and experience, and the challenge 



42 

Figure 4. la: Crisp Set of Temperature 

1.0 - 

15 20 
I I I I 

25 30 35 40 

Temperature (C) 

Figure 4.1b: Fuzzy Set of Temperature 

Temperature (C) 



43 

is to represent the control strategy in a form that can be automated. While difficult to do, 

it is often possible to represent the control strategy as a series of linguistic rules or 

statements. Two aspects which may hinder the development of linguistic rules are: 1) the 

operator actions are often inconsistent, erratic or prone to error and 2) the operator often 

responds to a complex pattern of measurements and observations of unmeasurable 

variables such as colour, consistency, etc. [25]. If these problems can be overcome and 

linguistic rules can be developed, then the theory of fuzzy sets and algorithms developed 

by Zadeh can be used to develop an automatic control structure based on the linguistic 

rules. The scheduling of a shop floor can be considered to be a problem which falls into 

the realm of fuzzy logic application due to its complexity and due to the difficulty of 

rescheduling in short time frames in order to adjust for changes on the shop floor. 

Fuzzy sets may be combined in a manner similar to conventional sets by means 

of several simple operations (Zadeh [44]). Three operations will be considered here: 

intersection, union, and compliment (or negation). First of all a fuzzy set is defined as 

follows. "A fuzzy subset A of a universe of discourse (support set) X is characterized 

by a membership function .tA(x). This function assigns to each element x € X a number 

1A(x) in the interval 0 to 1 which represents the grade of membership of x in At" (Kickert 

& Lemke [24]). Three basic operators which are commonly used can then be defined as 

follows [44]: 

a) The union of two fuzzy sets A and B of the universe of discourse X is denoted. 
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by AuB with a membership function defined by: 

tAUB(X) = max [tA(x); [1B(x)]. X E X (4.1) 

The union corresponds to the connective 'or' as in 'If A orB'. 

b) The intersection of two fuzzy sets A and B is denoted by Ar'B with a 

membership function defined by: 

t(x) = mm [JtA(x); PB(X)]. x e X (4.2) 

The intersection corresponds to the connective 'and' as in 'If A and B'. 

c) The complement of a fuzzy set A is denoted by -'A with a membership function 

defined by: 

LA(X) = 1 - VA(X)' x e X (4.3) 

Complementation corresponds to the negation 'not' as in 'If not A'. 

For the purpose of this thesis, the notation given in Kosko [26] is used to represent 

the various rules. Thus the rule 'If A and B then C', will be abbreviated by (A,B;C) 
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where A and B are called the antecedents, C is called the consequent and the comma 

represents the 'and' connective. 

The definition of a fuzzy set allows the representation of linguistic terms such as 

'high', 'medium', 'low' or 'not low' etc. as fuzzy subsets of a given universe of discourse 

such as 'temperature'. The above operators allow the manipulation of the various 

antecedent fuzzy subsets within the given rule in order to develop specific results. the 

next step now is to provide a mechanism whereby the results of the operations on the 

antecedents within a rule can be mapped to the consequent fuzzy set. How this is done 

is described as follows: "Given an implication statement 'If A then C', the implied 

relation R can be expressed in terms of the cartesian product of the subsets A and C (of 

universes of discourse X and Y) and is denoted by R = A x C't [25]. The implied 

relation matrix is defined by: 

p(x,y) = I.tAXc(x,y) = mm [1A(x); p(y)}. x E X, y € Y (4.4) 

This procedure is termed correlation minimum encoding and it is one of two 

commonly used encoding schemes which are used to develop the implied relation matrix. 

The second encoding scheme is called correlation product encoding. In correlation 

product encoding the implied relation matrix is defined by [26]: 

pR(x,y) = JtA(X) (y) x E X, y e Y (4.5) 
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The implied relation matrix represents the mapping between the antecedent fuzzy 

set(s) and the consequent fuzzy set. In other words, it defines the general relationship 

between the inputs and the outputs of a given rule. The next question is: what will be 

the output set given an input set differing somewhat from the one used to develop the 

relation matrix? In other words, given the rule: 'If A then C' and the input set A', what 

will be the output set C'? The implied relation R is used to infer the output set C' by the 

use of the compositional rule of inference [44]: 

C' = A' ° R = A' ° (AxC) (4.6) 

where 'o' denotes the composition operator. The compositional rule of inference is also 

known as the max-min composition relation whose membership function can be further 

defined by: 

= max 11[ A x); R(x,y)I (4.7) 
X 

and which gives the value of C' as a fuzzy output set. Thus, the max-min composition 

relation is used in conjunction with either correlation minimum encoding or correlation 

product encoding in order to generate a fuzzy output set for a certain rule, given a unique 

input , set. It should be noted that the two encoding schemes, correlation minimum 
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encoding and correlation product encoding, result in markedly different fuzzy output sets 

as can be seen in Figure 4.2. 

The correlation minimum encoding scheme produces clipped output sets as shown 

in Figure 4.2a. The scaled output sets (Figure 4.2b), developed using correlation product 

encoding, retain the same shape as the consequent sets whereas the clipped output sets 

are flat at a given level. In a sense the correlation product encoding preserves more 

information about the consequent set; information which may be of use when several 

output sets from several rules are combined. For this reason, correlation product encoding 

is often the chosen encoding scheme for current fuzzy logic applications [26]. 

Up to this point it has been shown how, when given a rule in the form 'If A 

and/or/not B then C', fuzzy logic can be applied to provide a fuzzy output set. The final 

important step is the amalgamation of all the output sets derived from the various control 

rules and the determination of a unique output. Once this is presented, an example will 

be given to help illustrate all the steps in the process. 

Generally a control structure is made up of a series of rules, not just one single 

rule and therefore a mechanism is required which incorporates all rule outputs. Consider 

a set of in rules with consequents C1 (i = 1 to m) for which a set of outputs C1' (i = 1 to 

m) have been developed where each output C1' is a fuzzy set having k elements. All these 

outputs need to be combined and then 'defuzzified' or converted into an appropriate 
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singular valued output. In order to combine all the output sets C1' the total output set C 

is given by: 

C = w,C1' (4.8) 

where wi is a non-negative weight representing the reliability or strength of the ith rule. 

Two defuzzification schemes will be discussed: the maximum-membership 

defuzzification scheme and the fuzzy centroid defuzification scheme. The simplest 

scheme is the maximum-membership scheme which simply chooses that element y that 

has maximum membership in the output fuzzy set C: 

C(y) = max C() 

1≤j≤k 
(4.9) 

The difficulty with the maximum-membership defuzzification scheme is two-fold. 

Firstly, the final output set C may not have a unique maximum. There may exist several 

positions of y containing the maximum or the maximum may be a broad plateau making 
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a unique choice of Ym impossible. This problem affects correlation-minimum encoding 

more than correlation-product encoding since the minimum encoding scheme clips off the 

final output set C resulting in larger flat plateaus. Secondly, the maximum-membership 

scheme ignores much of the information in the final output set C. Thus if C is highly 

asymmetrical, the maximal value may not be a true representation of all the rules. For 

example there may be one rule which produces a maximal value near the low range end 

of the output set C which is only slightly larger than all other values across the entire 

range of output set C. Using the maximum-membership scheme a defuzzified output 

taken from the low range end of the output set C would be chosen which ignores the 

affect of the remaining slightly weaker values. The defuzzified output would therefore 

be skewed towards the low range end as a result of the one slightly stronger rule while 

at the same time ignoring the effect of the other slightly weaker rules. As a result, the 

defuzzified output does not accurately reflect the affect of all the rules but only accounts 

for the strongest rule. 

To help overcome these problems the fuzzy centroid defuzzification scheme is 

used. In this scheme the centroid of the entire C final output set is determined and this 

value is used as the singular output. The centroid calculation is determined as follows: 

y1 C(y) 
= J=1 

k 

(4.10) 
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All the elements are now in place for the application of fuzzy logic, but before 

proceeding with an example, a summary is in order. Given a rule in the form: 'If A and 

B then C, the antecedents A and B can be evaluated using the 'minimum' operator to 

generate a combined antecedent set. Using correlation minimum encoding or correlation 

product encoding, an implied relation matrix can be developed which then defines the 

mapping between input and output fuzzy sets for the given rule. The relation matrix is 

used within the compositional rule of inference in order to provide output values for 

specified input values of the fuzzy sets. The result of applying the compositional rule of 

inference is an output fuzzy set. It should be noted that the entire encoding and 

compositional scheme can be represented graphically (as will be shown in the following 

example). Finally all the output fuzzy sets for all the rules are summed and an 

appropriate defuzzification scheme is employed to get a single unique output. 

4.2.3 Application and Example 

Fuzzy logic has been applied in this thesis to the problem of part dispatching. 

More specifically, the fuzzy logic methodology has been used to calculate a priority level 

for each part in the input buffer of a given machine. Thus when the machine wishes to 

process a new part, it can review the priority of each part in the input buffer and select 

the part with the highest priority as the part to be processed next. 

Of primary importance for the success of the dispatching algorithm was the 
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development of the rule structure. The rule base currently in use can be loosely divided 

into three rule sets: scheduling, machine considerations, and part considerations. These 

three rule sets were selected mainly because there are certain aspects which are often 

recognized as scheduling functions such as due dates and inventory levels, whereas other 

aspects are most often associated with machines such as buffer control and finally some 

aspects such as the process plan of parts can be associated mainly with parts. Therefore 

at this stage three separate sets of rules have been implemented to cover all three of these 

areas. It should be noted that the current rule set represents a starting place for the 

scheduling algorithm and is expected to grow and be refined as work continues in this 

area. 

The first set of rules deals with the relationship between inventory level and due 

date; the goal being to minimize part lateness while meeting inventory levels. Sixteen 

rules have been developed and are represented in matrix form as shown in Figure 4.3. 

Inventory level is given across the top of the matrix, time remaining is given along the 

side, and the priority level is given inside each element of the matrix. A rule is read as 

follows: 

.Rule 5: If inventory level is very low and time remaining is low then priority is 

high. 

or in condensed form: (VL,LO;HI) 
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Figure 4.3: Fuzzy Logic Rules 
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These sixteen rules develop a scheduling priority level which will be used in 

conjunction with the other rules to determine a total part priority level. There are no 

specific guidelines in the literature for defining the control rules of a fuzzy logic system, 

and therefore the sixteen scheduling rules shown here represent the application of intuition 

coupled with a certain degree of refinement through testing. They likely do not represent 

an optimum selection of rules; indeed an optimum set of rules will undoubtably be 

different for different shop floor configurations and part process plans. Optimization of 

the system will be discussed in greater detail in later chapters. 

Four rules were developed to help control the buffer level of the machines. This 

rule set is a "look ahead" rule set in that the buffer level of the machine after the current 

machine in the process plan is considered. Thus if the next machine's buffer is close to 

full, the priority of the part will be reduced and a part not going to that machine is more 

likely to be selected. 

Four rules were also developed to account for the process plan of the part. Here 

the degree to which the part has completed its process plan is considered, and is used to 

keep the part progressing through the shop floor as quickly as possible. This rule seems 

to help reduce the early onset of machine blocking and deadlock for this particular control 

structure. The three rule sets (scheduling, buffer and process plan step) were each 

weighted and combined to provide a final priority level for each part. 
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A second important aspect when developing a fuzzy logic control scheme is the 

development of the fuzzy membership functions. Again there are no specific guidelines 

for the development of membership functions; however, the use of triangular or 

trapezoidal membership functions seem to be the most common. Triangular functions 

were used in this application because they would provide a tighter and more unique 

output function. The triangular functions can be defined by a triplet J1A = (a,b,c) [23] 

where: 

I. 

[La 

=0 
= X  
b  

- C  
c  

=0 

if  < a, 

f a ≤ x ≤ b, 

if b ≤ X ≤C, 

if  > C 

(4.11) 

and where x represents the current antecedent levels of time, inventory level, buffer level, 

process plan step, or the consequent level of priority, and where a represents the location 

of the left base of the triangle, b the location of the vertex and c the location of the right 

base. 

The overall range of the membership function is chosen to provide a steep 

transition between each fuzzy set while still allowing room for each antecedent or 

consequent fuzzy subset. It has also been suggested, as a rule of thumb, that the fuzzy 
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sets should overlap by approximately 25% [26]. The designations VL, LO, ME and Iii 

are somewhat arbitrary, but are commonly used as are designations such as NB (negative 

big), NS (negative small), PB (positive big) etc. The antecedent and consequent 

membership functions which are used in the current application are shown in Figure 4.4. 

Once the rule sets and the fuzzy membership functions have been defined, a 

solution methodology may be applied. The method used in this work consists of six 

separate steps: 

1. determine the value of the variable in question 

2. fuzzify the variable 

3. for each rule determine each antecedent fuzzy value 

4. for each rule determine the fuzzy output set 

5. calculate the net effect of all the fuzzy output sets 

6. defuzzify the total output set. 

By way of example, the methodology will be more clearly described. The 

example will be based on the following system configuration: 

inventory level: - current level at 15 parts 

- goal level is 100 parts 
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Figure 4.4: Fuzzy Logic Membership Functions 
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time remaining: - current level at 27 minutes 

- due date is 60 minutes 

buffer level: - current level at 4 parts 

- finite buffer limit is 10 parts 

process plan step: - current step is step 1 

- process plan size is 4 steps 

Step 1: determine the value of the variables 

inventory level = 15 parts 

time remaining = 27 minutes 

buffer level = 4 parts 

process plan step = step 1 

Step 2: fuzzify the variables 

The variables are fuzzified using the following general formula: 

fuzzy level ((variable level \ goal level ) (membership function range) + i) rounded (4.12) 
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Based on a fuzzy range of 1 to 19, the fuzzy levels are calculated as follows: 

fuzzy level of inventory = (((15/100) (19-1)) + 1) rounded = 4 

fuzzy level of time remaining = (((27/60) (19-1) + 1) rounded = 9 

fuzzy level of buffer level = (((4/10) (19-1) + 1) rounded = 8 

fuzzy level of process plan step = (((1/4) (19-1) + 1) rounded = 5 

Step 3: for each rule determine the antecedent fuzzy values 

Consider first the scheduling (inventory level/time remaining) rule set. 

Conceptually, all rules are accessed while running the fuzzy logic algorithm but 

realistically in this example only two rules are fired. Given a fuzzy inventory level of 

4 and referring to Figure 4.4, one can see that a fuzzy inventory level of 4 activates two 

fuzzy antecedent sets, VL (very low) and LO (low). Furthermore, the fuzzy time 

remaining level of 9 activates the fuzzy set LO (low). In reality all the other sets are 

activated to degree zero. Thus, referring to the rule matrix in Figure 4.3 one can see that 

two rules, rule 5 and rule 6 are fired. They are (VL,LO;HI) and (LO,LO;ME). 

The application of steps 3 to 6 are shown graphically in Figure 4.5. Consider first 

rule 5, which has the two antecedents, VL and LO, and the consequent, HI. The fuzzy 

inventory level of 4 activates the VL antecedent to degree 0.25 while the time remaining 

fuzzy level of 9 activates the LO antecedent to degree 0.5. Figure 4.5 shows graphically 
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Figure 4.5: Application of Fuzzy Logic Methodology 
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how the encoding and compositional inferencing scheme works. In the current scheduling 

configuration, the max-min composition scheme is used in conjunction with correlation 

minimum encoding resulting in a clipped output fuzzy set represented graphically as a 

trapezoid. Correlation minimum encoding was chosen for this application because for the 

current selection of rules and membership functions, correlation minimum encoding had 

a tendancy to generate unimodal total output sets for the inventory level/time remaining 

rule set. The correlation product encoding scheme on the other hand often created multi-

modal total output sets which were more difficult to analyse. 

In a similar fashion it can be determined that rule 2 of the buffer level rule set is 

fired and that the fuzzy buffer level of 8 activates the LO antecedent to degree 0.75. 

Rule 2 of the process plan rule set is also fired and the fuzzy process plan step level of 

5 activates the LO antecendent to degree 0.5. 

Step 4: for each rule determine the fuzzy output set 

Since the two antecedents VL and LO of rule 5 of the scheduling rule set are 

combined using the connective 'and', the 'minimum' operator is used on the antecedents 

thereby yielding a result of 0.25. This result is applied to the rule using correlation 

minimum encoding coupled with the max-min composition scheme to generate a HI 

priority level output fuzzy set ranging from -3 to 5 having a maximum value of 0.25 

(Figure 4.5). Similarly for scheduling rule 6, the inventory level LO antecedent is 
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aètivated to degree 0.25 while the time remaining LO antecedent is activated to degree 

0.5. The minimum operator is again used giving a result of 0.25 which is applied through 

the max-min composition scheme, using correlation minimum encoding, to give a ME 

priority level output scheduling fuzzy set ranging from 3 to 11 with a maximum value of 

0.25. 

Similarily a MB priority level output buffer level fuzzy set ranging from 3 to 11 

with a maximum value of 0.75 and a LO priority level output process plan step fuzzy set 

ranging from 9 to 17 with a maximum value of 0.5 were developed. 

Step 5: calculate the net effect of each of the output fuzzy sets 

As shown in Figure 4.5 the summation of the output sets ME and HI using unit 

weights results in a total scheduling output set ranging from -3 to 11 with a maximum 

of 0.5. Since there exists only one output fuzzy set for each of buffer level and process 

plan step, these output sets become the respective total output sets. 

Step 6: defuzzify the output set 

In the current system a centroid defuzzification scheme is used to calculate the 

singular output for each of the total output sets. The calculation for the scheduler total 

output set is considered first. For the fuzzy output set C the y and C(y) values for use 
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in equation 4.10 are as follows: 

Table 4.1: Centroid Calculation Values 

yj -3 -2 -1 0 1 2 3 4 

C(y3) 0 .25 .25 .25 .25 .25 .25 .5 

y 5 6 7 8 9 10 11 

C(y) .25 .25 .25 .25 .25 .25 0 

where yj represents the distance of element j from the origiti and C(y) represents the 

value of the output set at the location y. The above values when substituted into 

Equation 4.10 over the entire range of k = 15 elements results in a fuzzy centroid of 4.0. 

It is interesting to note that the fuzzy scheduling output set is unimodal, symmetrical and 

has a sharp maximum. As more scheduling rule sets are added or different rules are 

fired, this may not be the case. The fuzzy schedule centroid is then used as the part's 

scheduling rule set priority value. 

The buffer level and process plan step centroids are determined in a simliar 

manner to be 7.0 and 13.0 respectively. The final part priority level is then calculated 

as a weighted sum of the three separate rule set priority levels (centroids). The various 

rule sets are weighted as follows: 
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scheduler rule set weight = 3 

buffer level rule set weight = 1 

process plan step weight = 1 

The final priority level is then calculated to be: 

final priority level = (34 + 17 + 1 13) I (3 + 1 + 1) = 6.4 

The final priority value ranges from 1 to 19 where a 1 represents a high priority 

to process the part and 19 represents a low priority. Once priority levels have been 

generated for all the parts in the machine's input buffer, the machine selects the part with 

the highest priority, the part is loaded, and processing commences. 

4.3 DISPATCHING RULE SUB-MODULE 

In addition to the fuzzy logic method, the scheduler is equipped with several 

common dispatching rules which can also be chosen by the program operator to generate 

part priority levels. Currently there are five different dispatching rules to chose from: 

first in first out (FIFO), last in first out (LIFO), earliest due date (EDD), shortest 

processing time (SPT), and slack per operation remaining (SlackIOPNR). The main 

reason for including these five dispatching rules was to provide a basis for comparison 

with the fuzzy logic dispatching method. These rules are more rigorously defined below 
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and are used to select the part which will be processed on the machine next. The 

following symbols are used: 

i -part 

j - machine 

k - operation 

aij - arrival time of part i at the queue of machine j 

d1 - due date of part i 

zj - selection of the part for processing on machine j 

Sj - set of all parts in the input buffer of machine j 

Pik - processing time of operation k on part i 

t - current time 

q - current operation 

m1 - number of operations 

r1 - summation of remaining processing times 

The following mathematical formulations are used for each respective rule (or 

strategy) and are applied to all the parts in the machine's input buffer (Cho and Wysk [3], 

Blackstone et al. [2]). The part which best fulfills the particular strategy is the one 

chosen for processing. 
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This then concludes the discussion of the scheduler and its sub-modules. The 

main functional aspect of the scheduler is the fuzzy logic dispatching method which uses 

fuzzy logic inferencing to assign priority levels to the parts waiting in a particular 

machine's input buffer. The use of fuzzy logic allows the incorporation of a number of 
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different criteria and goals and therefore considers many aspects of the cell status before 

setting a priority level. The rule set and the membership functions increase the flexibility 

of the system, and as will be shown later, provide mechanisms for learning or 

optimization. The scheduler works closely with the supervisor in order to facilitate real 

time part dispatching and cell control. A discussion of the supervisor functions will be 

presented next in chapter 5. The actual implementation of the scheduler within the 

Smailtalk environment as well as the procedure used to access and utilize the scheduler 

will be discussed in the implementation section, Chapter 6. 
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CHAPTER 5 

5. SUPERVISOR 

5.1 GENERAL FUNCTIONALITY 

The ongoing cell control is performed by the supervisor. In the proposed control 

configuration the supervisor performs its function by monitoring the shop floor for 

specific types of events, and then reacts to these events by sending messages to the 

appropriate elements in the shop floor. The supervisor performs a number of tasks which, 

for the purposes of this system, can be separated into two areas: supervisory tasks and 

simulation tasks. The supervisory tasks are those tasks which are normally required of 

a supervisory system in a real shop floor. These tasks include: controlling the machines, 

monitoring for breakdowns, initiating error recovery routines, directing part movement 

and part production, controlling the material handling system, initiating the scheduling of 

parts, calling for part pick-up, monitoring inventory levels, monitoring the input buffer 
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and finally, virtually reconfiguring the cell when required. The simulation tasks are those 

tasks which the supervisor performs to allow the functioning of the current simulation 

system such as: file management, initialization, data collection and printing, and the 

control of simulation time. Some of the simulation functions such as file management, 

data collection, data evaluation and the printing of statistic data, would carry over into a 

real shop floor situation. The supervisory tasks are discussed below while the discussions 

about the control of the actual simulation and the detail on how each of the supervisory 

tasks have been implemented are left for the next section on implementation. 

Before going into the details of the supervisory tasks, a review of the general 

structure of the supervisor is in order. The supervisor structure is comprised of two 

levels; a primary and a secondary control level similar to the two level structure proposed 

by Hasegawa et al. [12]. The primary control level is represented as a group of control 

nodes as shown in Figure 5.1. Here ten nodes represent six part processing machines, 

three different types of material handling operations, and one set of error recovery 

procedures. A sequence of instructions is attached to each node and these instructions are 

considered to be the secondary control level which, for the purposes of this project, have 

been represented using Petri nets. The supervisory control structure was developed in 

this manner in order to provide a maximum amount of flexibility. Additional machines 

or processes can easily be added to the primary control level without affecting the 

secondary control level underneath. Similarly, a piece of equipment can be replaced with 

another type of equipment or the sequence of operations may be completely changed in 
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Figure 5.1: Primary Control Level 
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the secondary level without affecting the primary control level. 

The primary control level represents a key element of the supervisor control 

structure. This level represents the control link between the ongoing monitoring 

performed by the supervisor and the actual detailed control sequences which drive the 

various pieces of processing equipment and material handling equipment. As the• 

supervisor reacts to specific events within the shop floor it places tokens in the 

appropriate nodes of the primary level to activate the operations at the secondary level. 

Tokens of different attributes are used to designate a certain type of part or a certain type 

of error. When a token is removed from a node in the primary level, the underlying 

secondary control level is deactivated. 

The secondary control level is the detailed control required to perform a specific 

action such as loading or operating a machine. The focus of this research was not on this 

level of control; however, a brief discussion of the secondary control level is included 

below for completeness. The main discussion of this chapter will be on how the 

supervisor completes its required tasks. 
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5.2 SUPERVISORY TASKS 

5.2.1 Part Movement and Part Production 

Two of the primary tasks of the supervisor are to control and direct .the movement 

of parts and to facilitate part production throughout the shop floor. The application of 

these two tasks occurs primarily when a machine completes, processing a part. Once a 

machine has completed processing a part, the supervisor initiates a sequence of steps 

which will first, move the,part to its next destination and second, initiate selection of the 

next part for processing on the current machine. To determine the next destination of a 

newly completed part the supervisor accesses the part's process plan. The next step in 

the part's process plan dictates the next destination for the part and this destination could 

either be a machine or, if the part has been completely processed, the cell's output buffer. 

If the next destination is another machine the supervisor checks the machine status and 

the tool status to ensure everything is functioning properly. If so, the supervisor updates 

the part's process plan and has the part placed into the input buffer of the new machine. 

If everything is not working properly, then the supervisor goes through a series of steps 

which allows the part to be processed by an alternate machine. In the current system 

configuration each machine has one alternate machine and if a tool is broken or the entire 

machine is inoperative, then the part is redirected to the alternate machine. Prior to 

having the part moved, the supervisor also checks to ensure there is room in the next 

machine's input buffer. If so, the part is moved. If not, the supervisor makes a note 
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regarding the full buffer to ensure further blocking or deadlocking checks are carried out. 

As well, if the part cannot be moved then the machine is placed into a 'full but idle' 

status with the part sitting in the machine until room becomes available. 

Once the recently finished part has been removed, the supervisor contacts the 

scheduler to initiate the part selection process for the current machine. After a part is 

selected the supervisor has the part loaded into the machine and initiates processing. 

5.2.2 Material Handling 

The supervisor also directs and controls the material handling system whenever 

any type of part movement is required. Five part movement scenarios are currently 

included in the simulation: loading a machine, unloading a machine to another machine's 

input buffer, unloading a machine and placing the part in the cell's output buffer, loading 

a part from a cell input buffer into a machine input buffer, and moving a part from one 

machine input buffer into another. As discussed above, the supervisory control is done 

at the primary control level. The supervisor simply informs the material handling system, 

in this case a robot, where to move and also which part to move. As will be shown later, 

the secondary control structure takes care of all the other details. The supervisor is 

informed when the robot's movement is complete. 
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5.2.3 Machine Control and Machine Status Monitoring 

The supervisor is responsible for controlling all the machines. This includes 

ensuring that the appropriate tools and processing software are loaded and that the correct 

part is on the machine. The supervisor activates the machines at the correct time and 

monitors for part completion. The supervisor also monitors each machine for a change 

in status such as a breakdown or a repair event. In the case of a breakdown the 

supervisor coordinates removal of the part currently being processed, redistribution of any 

parts from the machine's input buffer to an alternate machine and sending out an error 

message indicating that the machine has broken down. The scope of the current project 

did not include the implementation of a machine repair routine or of a very elaborate part 

redistribution mechanism. The supervisor ensures that parts which would normally be 

processed on the broken machine are redirected to an alternate machine. If a machine has 

been repaired then the supervisor ensures that parts are no longer directed away from the 

machine but are instead processed in the normal fashion. Tool breakages are dealt with 

in a similar fashion. If a tool breaks, the parts are redirected to an alternate machine until 

the tool is repaired or replaced with a new one. A mechanism for alternate tools has not 

been put into place in the current simulation as it was felt that the redirection of the part 

was a more rigorous problem since selection of an alternate tool would not affect part 

movement or part scheduling. 
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5.2.4 Error Recovery 

One important task of the supervisor is to initiate error recovery routines if things 

go awry. Error recovery is an entire study in its own right and was not considered to be 

within the scope of this research except to the extent of dealing with machine or tool 

breakdown (which have been discussed) or system deadlocking. In the current stage of 

development, if deadlock occurs the system simply generates an error message and the 

simulation stops. However, it should be noted that the control structure goes through all 

the appropriate steps. For example, when a deadlock error is generated, error recovery 

is initiated at the primary control level and action is taken; in this case an error message 

is generated. The control structure, by its design, allows the later addition of a very basic 

or a very elaborate error recovery module at the secondary control level. 

5.2.5 Virtual Reconfiguration 

The concept of reconfigurability allows for the physical or virtual reconfiguration 

of a cell or system to allow either improvement of the system or to provide some other 

specific functions. One such specific function is the arrival of a special rush order which 

has priority over every other order currently within the system. In this situation the 

supervisor adjusts the current cell structure into a virtual structure which allows the 

special order to be processed as quickly as possible. The mechanism whereby the 

supervisor does this is by consistently ensuring that the special rush order parts have the 
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highest priority over all other parts within the system irrespective of due dates, process 

plan issues, buffer loading or inventory levels. Once the special order has completed 

processing the virtual cell is dismantled and the system operates as normal. 

5.2.6 Cell Buffer and Inventory Monitoring 

The supervisor must, on a continuous basis, monitor the input and output cell 

buffers as well as inventory levels. As parts arrive and as room becomes available within 

the system, the supervisor ensures that the parts get placed into the appropriate machine 

input buffer. Similarly the supervisor monitors the cell output buffer and calls for part 

pick-up when necessary. The supervisor dictates the output buffer level at which the 

buffer must be emptied and also the amount removed. As parts get placed into inventory, 

the supervisor updates inventory levels. 

5.3 SECONDARY CONTROL LEVEL 

The secondary control level has been represented using Petri nets (PN) in order 

to show some of the types of operations which occur at this control level. The following 

four Petri nets will be shown but not discussed in detail: loading, operating, and 

unloading a machine, and moving a part. First, however, a general description of Petri 

nets will be given. 
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5.3.1 Petri Net Description 

Petri nets provide a powerful tool for representing and analyzing asynchronous and 

concurrent systems. There are many advantages in modelling a system using Petri nets: 

(1) they describe the modelled system graphically, enabling easy visualization of complex 

systems, (2) they allow modelling of the system hierarchically, (3) a systematic and 

complete qualitative analysis of the system is possible using well-developed existing Petri 

net techniques, (4) well formulated Petri net synthesis schemes exist to aid development 

of Petri nets and (5) the performance evaluation of a system is possible using timed Petri 

nets (Kamath and Viswanadham, [20]). Petri nets have been used in many flexible 

manufacturing system applications including cell conirol applications (Teng and Black 

[39], Hasegawa et al. [12], Zhou [45], Ravichandran and Chakravarty [38], Merabet [34], 

Tzafestas [41]) and are used in this application to represent the detailed control of robot 

movement and machine operation. 

A PN is comprised of a set of places, a set of transitions and a set of directed arcs 

which connect the places to the transitions. Pictorially, the places are represented by 

circles and the transitions by bars. Places may contain tokens (shown as dots) which then 

create a marked PN; the 'marking' of a PN represents the current state of the system 

being modelled. Generally, places represent conditions and transitions represent events 

where the presence of a token in a place represents a positive (true) condition while an 

empty place represents a negative (false) condition. The occurrence of an event is. 
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represented by firing a transition and this results in the movement of a token from the 

input place (a place from which the arc is directed to the transition) to an output place 

(a place to which the arc is directed from the transition). This results in a change in the 

system state of the Petri net. A transition can be fired only if all the input places to that 

transition are enabled and when it fires, a token is removed from each of the input places 

and a token is added to each of the output places. A transition may also be inhibited 

through the use of inhibitor arcs. An inhibitor arc from a place to a transition is drawn 

with a circle at the end instead of an arrow and causes the transition to be disabled if a 

token is located in the place connected to the arc. 

A reachability tree can be developed for Petri nets and it describes if all markings 

can be reached. If so, the Petri net is considered live. This is an important feature as it 

indicates that the PN and therefore the system being modelled is free of deadlock and will 

perform as modelled. Boundedness is another important property of a PN. It defines if 

a section of the system is bounded; for example a buffer may be bounded in that it may 

hold only a certain number of parts. All these aspects of PNs can be analyzed 

mathematically or simulated, allowing systems to be analyzed in great detail. Timed Petri 

net simulations have been developed which allow real time simulation of the process. 

Timed PNs have transitions which are fired at appropriately timed intervals, thereby 

simulating the time required for each event. Coloured PNs have also been developed to 

help model several identical processes and to reduce the size and complexity of the PN. 

In a coloured PN, a colour is associated with each token as well as with each place and 
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transition. The reader is referred to the above references for more detailed descriptions 

of Petri nets and their applications. Next, each of the four Petri nets developed, for this 

project will be described. 

5.3.2 Petri Net for Loading a Machine 

The PN depicting the sequence of operations for loading a machine is given in 

Figure 5.2. To initiate the loading action the supervisor places a token (with a certain 

attribute representing the type of part) in the "Load Machine" node of the primary level. 

The robot determines the appropriate trajectory path depending upon the location of the 

part pick-up point in the input buffer and the type of part (represented by the token 

attribute). The methodology is as follows (refer to Figure 3.1): The part type and location 

are given to the robot controller which then passes this information on to the trajectory 

planner. The trajectory planner accesses the data base and if it has the appropriate path 

on file it simply loads the path to the code generator, which generates the code and passes 

the completed code to the controller for execution. If the path does not exist then the 

trajectory planner will plan the trajectory based upon its information of the work cell, part 

type and part location in conjunction with part grasping information. The work cell lay 

out and part grasping information are contained within the data base and can be updated 

manually or via the cell controller when it requests production of a new part. 

Alternatively the part position can be determined using sensors or a vision system and this 

information could be given to the robot controller. The new trajectory is then saved and 
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A = robot collision or breakdown I 

problem 
B = robot grasp or release problem I path () 
C = clamping or unclamping problem determined 
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passed on to the code generator for processing. 

Once the path is determined, if the robot is ready (has completed all other 

movements) then the robot will move to the pick-up location opening its gripper on the 

way. At the pick-up location the robot will grasp the object and while doing so, the 

controller will initiate action to determine the trajectory path to the set down location in 

the machine. Once the trajectory is determined (similar procedure to that described 

above), and the part is gripped, and the machine is ready, the robot will move and place 

the part in the machine. The robot will signal the machine to clamp the part and while 

the clamping is taking place the robot controller will access the trajectory path to the clear 

position. As soon as the part is clamped, the robot releases the part and moves to the 

clear position. The robot then signals the supervisor and places itself in ready mode. 

The capital letters A, B and C at the various transitions in Figure 5.2 (and the 

subsequent figures) indicate error checking (Teng and Black [39]). The error checking 

Petri net is also shown in Figure 5.2 and operates as follows. First the operation token 

is fired from the previous transition thereby initiating the task. If an error condition 

occurs while executing the task to which the error check is attached, a token is placed 

into the status place thereby disabling the task execution. The tokens in the operation and 

status places now activate the error correction. When the error has been corrected a token 

is removed from the status place and another is placed into the operation place thereby 

enabling task execution. 
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5.3.3 Petri Net for Operating a Machine 

The generic PN depicting the sequence of operations for operating a machine is 

given in Figure 5.3. First the supervisor signals the machine by placing a token in the 

node of the particular machine to be activated. The attributes of the token determine the 

type of part to be machined. A sub task element of the supervisor gets the correct 

program code and tool requirements from the data base, down loads the program to the 

machine controller and initiates action to load the required tools if they are not already 

loaded. Once the tools and program are loaded, the robot is clear, the machine is ready, 

the part is ready and no error conditions exist, the part can be machined. The error 

conditions for tool and operation work in the same manner as described above. Once the 

part is machined, the machine controller informs the supervisor and places the machine 

in ready mode. As noted in Figure .3.1, motion planning for the machine tools and 

program code generation is in an isolated module. It is anticipated that these activities 

will have occurred during the design stage at locations away from the shop floor using 

appropriate software packages such as SmartCAM. The resulting code and tool 

requirement specifications have then been loaded into the data base to be accessed by the 

supervisor sub task element. 
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Figure 5.3: Petri Net for Operating a Machine 
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5.3.4 Petri Net for Moving Parts 

The Petri net for moving the parts is given in Figure 5.4. As before, the procedure 

is initiated by placing a token in the "Parts Movement" node of the primary level. The 

attributes of the token indicate to the robot controller the type of part and the procedure 

followed is similar to that given above for loading a machine (except for clamping). 

5.3.5 Petri Net for Unloading a Machine 

The Petri net is given in Figure 5.5. The operation is initiated with a token in the 

"Unload Machine" node of the primary level. This Initiates trajectory planning by the 

robot controller. Once the trajectory path is determined and the machine and robot are 

ready, the robot will move in to pick up the part. When the part is properly grasped the 

robot will signal the controller to unclamp the part, after which the robot will move the 

part to the set down location. While part grasping and unclamping is taking place, the 

robot controller determines the trajectory path. Upon completion of the task the robot 

places itself in the ready mode and informs the supervisor. The error detection is similar 

to the method mentioned above. 

This then completes the description of the supervisor module of the cell controller. 

The supervisor structure, with its two levels of control, exhibits flexibility due to its 

modularity and ease with which modifications may be made to either of the two control. 
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Figure 5.5: Petri Net for Unloading a Machine 
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levels. The supervisor has been designed to deal with the many required tasks of cell 

supervision and has also been designed to work interactively with the scheduler module. 

Utilizing cooperation between the supervisory and scheduling modules allows for 

coordinated real time control to take place. The actual implementation and mechanics of 

the supervisor and scheduler will be discussed next. The emphasis will be on the general 

operation of the controller and the linkages which drive the decision making process 

rather than an in depth detailed discussion of the actual object oriented programming 

code. This falls in line with the purpose of this thesis which is to develop and test new 

concepts rather than very specific detailed applications. 
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CHAPTER 6 

6. IMPLEMENTATION 

6.1 INTRODUCTION 

The proposed control structure has been implemented in the object oriented 

programming environment, Smalitalk 80. The object oriented environment is particularly 

suited for this type of application since it allows for a relatively straight forward 

representation of a manufacturing environment as a group of objects having certain 

attributes, knowledge and reasoning abilities. These objects communicate with each other 

in order to fulfil their own separate functions. 

This chapter will review in detail the overall class hierarchy of the cell control 

structure. It will discuss where the scheduler and controller methods are imbedded, and 

it will also describe the methods which exist in the fuzzy logic class structure and how 
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they are accessed. Finally the chapter will conclude by giving a description of the 

simulation which is driven by the control structure and will also present an overview of 

the data gathering facilities. 

6.2 OBJECT ORIENTED CLASS HIERARCHY 

As shown in Figure 3.2, the class hierarchy is made up of seven new classes: 

System, Fuzzy Logic, Cell, Equipment, PartType, Part, and Tool, all of which have 

been placed under the Smalitalk 80 Magnitude class. The class hierarchy has been 

developed in this manner in order to use the concept of inheritance as much as possible, 

thereby allowing attributes and methods to be passed down to classes lower in the 

hierarchy. The hierarchy has also been developed to represent the physical organization 

of parts, equipment, and cells within a manufacturing system as realistically as possible 

and although the main thrust of this work is cell control, the class hierarchy was 

developed, in three levels to include three separate groups of elements: system, cell, and 

equipment. Including a system class in the hierarchy provides a place where global 

decisions can be made and passed down to the various cell controllers. Each cell 

controller, as will be discussed in more detail later, is imbedded mainly at the cell level 

but interacts heavily with equipment; hence the inclusion of cell and equipment classes. 

The class hierarchy can be thought of as a mechanism to separate the system, cell, 

equipment, and part objects, and provide containers in which to place unique knowledge 

or functional abilities. 
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6.2.1 System Class 

The System class represents the shop floor of a manufacturing system. Each 

instance of the System class has the following instance variables or attributes: name, 

toolLib, stationLib, assignTo, status, and description. An example of an instance of 

System and all its instance variables is shown in Figure 6.1. The instance variable name 

is Systemi, which is simply the name assigned to the current instance of the System 

class. ToolLib contains a dictionary made up of Tool class instances. ToolLib can be 

thought of as a container for all the various tools available to Systemi and could 

represent the shop floor's tool inventory. The instance variable stationLib contains a 

dictionary which is made up of instances of the Cell class. Thus, stationLib is a container 

representing all the manufacturing cells grouped within the particular system. In this case 

only one cell, Celli, and one system, Systemi have been represented. AssignTo is used 

to designate the structure or element in the class hierarchical level above the current class 

level to which Systemi belongs; in this case Planti. The instance variable status denotes 

the operating status of the system. The system is either 'Ok' meaning that everything is 

functioning properly, or 'Broken'. Description simply provides a linguistic representation 

of what the system is or does. All of these instance variables are inherited by all the 

subclasses of the class hierarchy, and although the actual values contained in the instance 

variables will differ, conceptually the functional representation of the instance variables 

will not change. It should also be noted that in some subclasses, not all of the instance 

variables developed in previous classes are used. 
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Figure 6.1: An Instance of Class 'System' 
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6.2.2 Cell Class 

The next class in the class hierarchy is the Cell class. As shown in Figure 6.2, 

the six instance variables developed in the System class have been inherited by the Cell 

class. The instance variables name, assignTo, status, and description are self explanatory. 

ToolLib still consists of a dictionary containing instances of tools, but now these tools' 

represent the tools used by Celil and not by the whole shop floor. As before, stationLib 

is a container of instances but in this case the instances are Equipment instances (or 

objects). All of these Equipment objects are considered to be the elements making up 

the Cell instance Celli. Three more instance variables have been added at this level: 

outputBufferLib, palletRemovalLevel, and palletRemovalAmt. These three instance 

variables are concerned with the control of completed parts and how they leave the cell. 

OutputBufferLib is a listing which tracks the number of completed parts of each part type 

that arrives at the cell output buffer. The instance variables palletRemovalLevel and 

palletRemovalAmt dictate the cell's output buffer inventory level at which pallets (parts) 

need to be removed and also how many should be removed at one time. 

The Cell class also contains a number of methods and class variables. The bulk 

of the methods deal with the initialization of cells, tool, parts etc. as well as with certain 

aspects of running the entire simulation. All the methods for the different classes will be 

discussed later in Section 6.3. The class variables are variables which are accessible to 

all instances of the class and all instances of the subclasses. Certain class variables at the 
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Figure 6.2: An Instance of Class 'Cell' 
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Cell level are used to store information required to run the simulation. The remaining 

class variables store data on equipment, parts and certain data for the fuzzy logic 

algorithm. 

6.2.3 Equipment Class 

Five instance variables (name, toolLib, assignTo, status and description) have been 

inherited by this class from the various super classes. The remaining instance variables 

from the super classes are not used at the Equipment class level at this time and 

therefore will not be discussed further. Three new instance variables have been added at 

this level (see Figure 6.3): alternateStationLib, inputBufferLib, and currentProcess. 

AlternateStationLib contains the name of an alternate machine to which parts are 

redirected if the current machine breaks down. At the current stage of development only 

one alternate machine is specified; however, in the future it is anticipated that multiple 

machines could be used which can either fully or partially take over the current machine's 

function. The instance variable inputBufferLib consists of a dictionary which contains 

instances of the Part class. In the real world this would represent all the parts waiting 

in the input buffer of the machine. CurrentProcess contains an instance of the Part class 

which represents the part that is currently being processed on the machine. A listing of 

the Equipment class instances used in this project is given in Appendix A. 
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Figure 6.3: An Instance of Class 'Equipment' 
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6.2.4 Tool Class 

The Tool class provides all the instance variables for the tools that are used in the 

entire system. All the instance variables (shown in Figure 6.4) are inherited from the 

System class. The instance variable assignTo in this case designates the particular 

machine or piece of equipment that will have access to each particular tool. A listing of 

the Tool class instances used in this project is given in Appendix B. 

6.2.5 PartType Class 

In order to maintain some uniformity in the parts being processed by the system, 

the class PartType was developed to define the attributes of several specific types or 

groups of parts. The simulation as it currently stands is able to represent groups of 

similar parts, individual parts of each group, or in an extreme case, a group of parts which 

contain only one part. Thus, situations ranging from a few large groups of parts to a 

large number of single parts could ultimately be modelled. The PartType class uses only 

one inherited instance, name. The rest of the instance variables shown in Figure 6.5 are 

unique to the class PartType and its subclasses. The instance variable processPlan 

contains a two dimensional array which describes the process plan for each type of part. 

The process plan currently includes the tool required, the machine on which a particular 

process will be performed, and the time the process will take. InventoryLevel keeps track 

of the number of completed parts of a given part type. TimeLevel tracks the time that has 
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Figure 6.4: An Instance of Class 'Tool' 
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Figure 6.5: An Instance of Class 'PartType' 
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passed since work on a given type of part (batch) has begun and batchTime denotes the 

due date for the batch. BatchAmount defines the size of the batch in terms of a number 

of parts. The instance variable partLotNumber tracks which part of the given part type 

is currently entering the system and is used mainly to generate and identify new parts. 

Status denotes if the part type is regular or special. A special part type is one which is 

considered to be a rush part type. If the status of a part type is special then the system• 

is virtually reconfigured to allow the part type to have priority over other parts. A 

mechanism also exists within the PartType class which allows the program operator to 

use an alternate process plan for a specified part. A listing of the PartType class 

instances used in this project is given in Appendix C. 

6.2.6 Part Class 

The Part class represents the actual parts which are processed by the system. The 

instance variables for Part are shown in Figure 6.6. The new instance variable partType 

defines the generic part type or group to which that part belongs. As before, processPlan 

denotes the process plan of the part, and this process plan is the same as the process plan 

for the part type. ProcessStep defines the next process that the part needs to undergo. 

The instance variable priority stores the current priority level of the part. AssignTo 

specifies the piece of equipment where the part is currently located. Finally, 

partLotNumber is used to identify a certain part in a given part type batch. All other 

inherited instance variables are unused at this time. 
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Figure 6.6: An Instance of Class 'Part' 
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6.2.7 Class Linkages 

Figure 6.7 shows a little more clearly how all the classes are linked together to 

provide a coherent shop floor representation. The bolded path shows the interconnections 

between all the classes beginning with the System class instance Systemi and ending 

with the Tool and PartType classes. System 1 stationLib is the container holding all the 

Cell instances for System 1; in this case there is only one cell, Cell!. Celli is connected 

to the Equipment class through Celli stationLib which contains all the different 

Equipment class instances for Celli; one example of which is VertMilll. Each 

equipment instance has a toolLib instance variable which contains all the Tool class 

instances representing all the various tools that each piece of equipment can use; for 

example tool T023. The inputBufferLib instance variable of each piece of equipment 

contains instances of the Part class. These instances represent the actual parts which are 

awaiting processing on the machine. One of the parts awaiting processing on VertMilll 

is partAl. Each of the Part instances belongs to a certain PartType which is designated 

by the Part instance variable partType. Thus, partAl is of part type partA. 

The only linkages which are not shown here are the linkages to the FuzzyLogic 

class. The FuzzyLogic class consists only of a number of methods which are linked to 

the rest of the structure using message passing. The fuzzy logic methods and the other 

methods in the structure are the real driving force behind scheduling and control and are 

discussed next. 
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6.3 METHODS AND MESSAGE PASSING 

The methods in an object oriented environment are the drivers behind any action. 

In this particular control structure there are methods which do control, scheduling, fuzzy 

logic analysis, and many other tasks. The methods are accessed when objects (including 

class instances) send messages to one another. These messages can send information, 

return information, or simply invoke a specific procedure. It is beyond the scope of this 

write-up to review all the different messages and methods that have been developed in 

any detail. Instead only the most important methods will be discussed and then only in 

a relatively superficial manner in order to provide an overview of how the overall control 

structure behaves. 

6.3.1 Supervisor Methods 

Most of the supervisor methods are imbedded within the Cell class level. This is 

appropriate since the controller at this stage has been designed to provide control for 

manufacturing cells. The supervisor methods include: ongoing monitoring of the cell for 

breakdown or repair events, blocking or deadlocking checking, control of part movement, 

control of material handling equipment, error recovery, virtual reconfiguration, and data 

collection. In short, the supervisor methods at the Cell class level coordinate the general 

running of the cell. Several supervisor methods are situated at the Equipment class level, 

but these are normally accessed using messages from the Cell class level methods. The 
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supervisor methods at the Equipment class level do the following: update equipment 

status as parts are moved around, update the blocking or deadlocking events, identify 

which scheduling method is to be used (chosen by operator), check the equipment buffer 

status (availability of space in the buffer), and select the highest priority part when part 

selection is required. There are also a few methods at the Equipment level which help 

in facilitating part scheduling. 

6.3.2 Scheduling Methods 

The bulk of the scheduling methods reside at the Equipment class level at this 

time mainly because the scheduling aspect of the control structure deals with the 

dispatching of parts from a machine's input buffer through the machine. The supervisor 

at the Cell class level initiates the scheduling process when it is informed that the 

machine is ready for a part. The scheduling methods include methods for each scheduling 

rule: FIFO, LIFO, EDD, SPT, Slack/OPNR and Fuzzy (the fuzzy logic part dispatching 

method), as well as methods which calculate and allocate the final priority level of each 

part. 

The fuzzy logic control rules representing the equipment buffer levels are stored 

as an Equipment class method. Those rules dealing with part aspects such as inventory 

level, due dates, and process plan step, are stored as PartType class methods. Separating 

the various control rule sets in this manner was done in order to provide the parts and 
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machines with their own internal knowledge which was independent of other machines 

and parts and also independent of the main controlling structure. Furthermore, it allows 

knowledge of a machine's buffer level to reside with the machine, and knowledge of part 

aspects to reside with the parts. The various methods are also structured in a manner 

which gives each machine a certain degree of independent control over its own input 

buffer, and gives each part a certain degree of independent control over process and 

scheduling concerns. The emphasis in the current scheduling methodology is for the parts 

to gather information and to develop their own detailed priority levels with respect to 

their own internal knowledge (rule bases). Therefore methods have been included in the 

PartType class level which provide the necessary message passing and reasoning ability 

to accomplish this task. Overall, the structure of the methods has been designed to 

reinforce the concept of independent part and machine entities. 

6.3.3 Fuzzy Logic Class Methods 

As was mentioned earlier, the fuzzy logic class has no instance variables, but 

consists only of a series of methods. There are two groups of methods: those that 

perform the fuzzy logic reasoning and calculations, and those that define the fuzzy logic 

membership functions. The reasoning methods include: reading the rules, accessing the 

appropriate membership functions, developing the consequent fuzzy sets, determining the 

output fuzzy set and finally calculating the centroid of the output fuzzy set. The 

membership function methods simply define all the antecedent and consequent 
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membership functions. 

6.4 SIMULATION MODEL 

In order to test the control system and to demonstrate its effectiveness, a number 

of methods were developed to build a simple, but effective simulation model. The model 

is a very basic discrete event simulation incorporating a next event list for the control of 

time. All aspects of the simulation are deterministic (in the sense that they were chosen 

randomly before the simulation began versus generated randomly as the simulation was 

running) including part due dates, process plans, alternate process plans, breakdowns, 

repairs etc. The simulation methods have been inserted at the cell level and include: 

initializing the entire shop floor representation (cells, machines, parts, tools etc.), 

initializing and controlling the next event list, coordinating part arrivals, initializing 

machine and tool breakdowns and repairs, data collection and presentation to screen and 

files, fuzzy logic rule and membership function initialization, reconfigurable initialization, 

and initializing alternate process plans if requested. A number of instance variables have 

also been added to the existing instance variables of the various Cell, Equipment, 

PartType, and Part classes strictly for the purposes of data collection. Data is collected 

for machines for items such as: idle time, utilization and input buffer maximums; and for 

parts: number of parts completed, batch completion time, part production time, lateness, 

tardiness, number of late parts, mean lateness, mean tardiness, average time in buffers, 

and average machining time. The simulation also maintains data files with continuous 
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data on buffer levels, inventory levels and the part processing sequence for each machine. 

The purpose of this simulation was to test the control structure to see if the various new 

concepts worked. It was beyond the scope of this project to develop a fully blown 

simulation package with different part arrival mechanisms, complete stochastic 

representations, and statistical analysis elements. The simulation as it is currently built, 

provides enough fundamentals to do an analysis of the new concepts and to provide 

sufficient data for analysis purposes. Although the simulation is set up deterministicâlly, 

in a sense it is also random because many of the elements may be modified randomly by 

the operator of the simulation at the start of the simulation. 

The simulation offers the ability to adjust and test a number of different things. 

Clearly, machines, parts and tools can be added and modified. Process plans and alternate 

process plans can be changed. The fuzzy logic rules can be modified, new rules can be 

added or the membership functions can be changed. The relative rule set weights can 

also be adjusted either for one run or a series of runs for comparison purposes. Different 

input buffer constraints can be tested. Repair and breakdown events can be added, 

deleted, or changed. Rush priority parts can be identified which then allows simulation 

of a reconfigurable case. Finally, robot control and movement can be simulated. 
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6.5 OPERATION OF THE SIMULATION 

The simulation begins by initializing the shop floor. All the machines, part types 

and tools are defined and the shop floor model is set up in the simulation. Any 

immediate breakdown events are initialized as are any future breakdown and repair 

events. A next event list is set up which contains the time when an event is complete and 

a description of the event. All the fuzzy logic rule bases and fuzzy data requirements are 

initialized and the actual simulation is set in motion by generating arrivals of parts. One 

part of each part type is created and placed in the input buffer of the machine which is 

identified in the first step of the part's process plan. It has been assumed for this project 

that there will always be parts waiting to be processed by the cell until an amount of parts 

equal to the batch size have been placed into the cell. Furthermore, whenever a part 

which is on its first process step is selected for processing from the input buffer of the 

machine, the arrival of a part of the equivalent part type is generated. Priority levels are 

generated for all the parts at each machine. The high priority parts are selected, loaded 

into the machines, and the next event list is updated. The simulation then proceeds in 

discrete time intervals through the next event list. Events (tasks) are performed, new 

parts arrive when appropriate, and the next event list is continually updated. Throughout 

the simulation process, breakdown events and repair events are processed as they occur. 

Part priority levels are calculated according to the scheduling rule that is currently in 

effect. If the fuzzy logic method is activated, the scheduler sends messages to the parts 

in the input buffer of the machine under consideration requesting the parts to generate 
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detailed priority levels. The parts get information from other machines regarding buffer 

levels, access their own process plans for process information, and also access inventory 

levels and due dates for scheduling information. The parts then initiate the fuzzy logic 

procedure and determine priority levels for the buffer limit, process plan step and the 

scheduling rule sets. The part then passes the priority level information to the scheduler 

at which time the scheduler determines a final priority level and assigns this level to the 

part. Finally, the machine looks through the input buffer and selects the appropriate part. 

Subsequent loading of the part onto the machine is controlled by the supervisor. The 

simulation run is completed when all the parts required to fill the batch sizes have been 

processed by the system. Throughout the simulation, data is gathered and stored in files 

and at the end of the simulation a number of statistics are generated and stored. 

Chapter 6 has provided an overview of how the proposed control structure has 

been implemented in an object oriented environment. The object oriented environment 

provides a mechanism whereby parts and machines can be given certain attributes and an 

ability to direct their own actions. Although the parts do not control their own destinies 

entirely in the proposed control structure, the structure has been developed to ultimately 

allow this. The cell controller has also been developed in a somewhat modular form. 

Thus, if more cell controllers are required by the system, new instances of the Cell class 

need only to be generated. The actual structure of the controller also lends itself to being 

used at other levels of control. For example, a shop floor could be controlled using the 

proposed supervisor and a scheduler structure. In this situation the scheduler may 
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dispatch parts from cell to cell instead of from machine to machine. The supervisor's 

primary control level could then represent different cells instead of different machines, 

and the secondary control level could represent the detailed operations within each cell. 

The message passing between parts and machines could now be between part types or 

parts, and cells, thereby dictating the priority of a part type or part to enter a cell. Thus 

the same conceptual control structure could be used at different control levels. Care has 

also been taken to allow the proposed control structure to perform and to react to 

problems in real time. This will be shown in the next chapter along with additional 

examples which are used to demonstrate all the workings of the supervisor and scheduler. 

A study comparing dispatching rules and the fuzzy logic dispatching method will also be 

presented as well as a technique for selecting the best combination of rule set weights. 
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CHAPTER 7 

7. CASE STUDIES 

7.1 INTRODUCTION 

In order to show how the various aspects of the control structure work, a number 

of test cases will now be presented. All the test cases consider the control and scheduling 

of a manufacturing cell similar to the one shown in Figure 7.1 which consists of six 

machines serviced by a material handling system (represented here by a robot). Each 

machine has its own finite capacity input buffer and the cell has one input buffer and one 

output buffer. The part movement and machine loading times are included in the total 

processing time in all but one of the case studies. In one case study the full movement 

and loading times are presented and the robots actions are fully documented. Certain 

assumptions were made to restrict the scope of the overall project to a manageable level 

and these assumptions were outlined in chapter 1. The following conditions were also 
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applied during the case studies: 

1. each part type has its own process plan 

2. part routings and processing times are deterministic and are given by the 

part type process plan 

3. each operation in the process plan must be done in the sequence given in the• 

process plan 

4. each operation must be completed before the next operation can begin 

5. each machine has a finite buffer limit 

6. due dates and part requirements are available from a master schedule and 

are fixed 

7. due dates are different for each part type while part batch sizes are set at ten 

parts 

8. each machine has one alternate machine 

9. machine and tool breakdowns will be considered and parts rerouted to 

alternate machines 

10. blocking and deadlocking will result in error messages only 

11. no pre-emption is allowed 

12. each machine can perform only one operation at a time 

13. each part can be processed by only one machine at a time 

14. the part is considered to have completed processing when a tool or machine 

breakdown occurs 
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15. the part is removed after each operation is completed even if the next 

operation is on the same machine 

16. 'fuzzy logic optimized' implies a certain degree of optimization or 

improvement, not global optimization 

17. each machine has the appropriate tooling 

Eight different case studies will be presented which will emphasize the various 

aspects of the fuzzy logic dispatching method. The cases will also show how the various 

functions of the supervisor operate in conjunction with the fuzzy logic dispatching 

method. Throughout this study, there were two primary objectives: 1) to minimize or 

eliminate late parts, and 2) to control and minimize buffer levels in order to avoid or 

reduce deadlocking situations. The rule sets were developed with these two operations 

in mind; however, data was collected for other possible objectives such as minimizing 

maximum lateness, mean lateness, or tardiness etc. as discussed in chapter 6. The results 

of the additional data will also be presented and discussed even though the rule base has 

not been specifically developed for these additional objectives. Case 1 will show 

generally how the control structure works and presents some typical types of output. 

Case 2 represents a run using alternate part process plans. Case 3 presents two large size 

cases: one with six machines and twenty part types (a total of 200 parts and 800 

operations), and one with ten machines and twenty part types (200 parts, 800 operations). 

Case 4 summarizes the results of a finite buffer limit study and shows the effect that 

varying the finite buffer limit has on the various dispatching rules and the fuzzy logic 
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method for a number of objectives. Case 5 presents an example of a machine breakdown 

and repair. Case 6 presents a reconfigurable case. Case 7 is an example which includes 

part movement time and also provides a description of the robot's activities. Finally, case 

8 presents a methodology for selecting the best rule set weights. 

7.2 CASE 1: FUZZY LOGIC BASE CASE 

The intent of this case study is to show that the fuzzy logic method works and to 

provide some base line data for succeeding cases. For the remainder of this chapter, case 

1 will represent the 'base case' and models the following situation: 

six machines as shown in Figure 7.1 

part movement is assumed to be included in processing times 

material handling is not considered 

ten part types, each having a batch size of ten parts 

each part's process plan consists of four operations 

there are no breakdowns 

finite buffer limits for each machine are set at ten parts (a maximum of ten 

parts allowed in the machine's input buffer) 

there are no priority parts 

no alternate process plans are used 

the fuzzy logic rule set weights have been optimized to 1:3:1 for buffer, 
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scheduler, and process step rules respectively 

Figure 7.2 shows a typical screen view presented by the simulation; this particular 

view shows events at a simulation time of 32 minutes. The screen view shows the 

operation or process which is currently under way in Peach machine and also indicates 

which parts are waiting in each machine's input buffer. The screen view is updated 

whenever a new event occurs. This is shown in Figure 7.3 where the simulation time has 

been updated to 33 minutes. The event that caused the update was the completion of the 

processing of partB2 on VertMil12. As soon as partB2 completed processing it was 

placed in the input buffer of Drilli which is the next machine in partB2's process plan. 

The removal of partB2 also triggered the fuzzy logic scheduling method described earlier, 

which then generated priority levels for all the parts in the input buffer of VertMill2. 

PartB3 had the highest priority and was therefore loaded into VertMill2 as shown in the 

figure. 

A variety of data is collected during each simulation run and this data is 

summarized in Table 7.1 (machine data) and Table 7.2 (part data) for an optimized fuzzy 

logic run. As seen from the tables, part type A only had one part which was late, and all 

the machines had input buffer maximum levels less than the finite buffer limit of ten 

parts. A small study was also done which compared the optimized fuzzy logic method 

with the non-optimized fuzzy logic method and two dispatching rules, LIFO and FIFO. 

The results are presented in Table 7.3. Here, the maximum buffer size represents the 
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Figure 7.2: Screen View of Machine Process and Buffer 
Status at SimTime = 32 Minutes 
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Figure 7.3: Screen View of Machine Process and Buffer 
Status at SimTime = 33 Minutes 
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maximum of all the machine input buffer maximums shown in Table 7.1. All the parts 

of all the part types are considered when calculating mean tardiness given tardy, average 

production time, and maximum lateness and all the machines are considered when 

determining maximum and minimum machine utilization. Table 7.3 clearly shows the 

improved performance of the optimized fuzzy logic method over the other three selection 

rules in terms of the number of late parts. Upon reviewing a number of test cases, 

several trends have become apparent. First, the fuzzy logic method generally maintains 

Table 7.1: Base Case Machine Data 

Machine Input Buffer 
Maximum 

Idle Time 
(minutes) 

Machine 
Utilization (%) 

VertMilll. 7 13 96.0 

VertMill2 9 73 77.4 

Drilli 9 13 96.0 

Drill2 8 63 80.5 

TurnCentrel 5 23 92.9 

TurnCentre2 4 103 68.1 

a lower buffer level in more machines than the other three methods. Second, FIFO and 

LIFO very often have a number of machines with input buffers filled to capacity whereas 

the fuzzy logic method will only have one or two machines at the maximum finite buffer 

limit. Third, the optimized fuzzy logic method tends to have higher buffer maximums 

(therefore fuller buffers) than the fuzzy logic method, which is likely a result of the 

overall higher average production time. An explanation for the overall higher average 



Table 7.2: Base Case Part Data 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (mm) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT 
(mm) 

Average Prod'n Time 
(mm) 

A 240 255 15 1 15 73.9 

B 200 200 0 0 0 48.1 

C 300 245 0 0 0 69.8 

D 300 270 0 0 0 92.9 

B 240 236 0 0 0 54.7 

F 320 286 0 0 0 104.7 

G 320 319 0 0 0 68.2 

H 340 323 0 0 0 52.0 

I 260 238 0 0 0 49.3 

J 240 159 0 0 0 40.8 
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production time for the optimized fuzzy logic method is as follows. The rule set for 

process plan step tends to help move the parts through the system and when the weight 

of the process step rule set is reduced relative to the schedule rule set (by increasing the 

schedule rule set weight) the parts do not move as quickly through the system resulting 

in a longer production time. 

Table 7.3: Base Case Rule Comparison 

Selection Rule 

Fuzzy Optimized 
Fuzzy 

FIFO LIFO 

No. of Tardy Parts 4 1 23 11 

Mean Tardiness Given 
Tardy (minutes) 

37.5 15 40.3 34.6 

Average Production 
Time (minutes) 

60.2 65.4 124.4 59.5 

Maximum Lateness 
(minutes) 

Maximum Buffer Size 
(units) 

62 15 74 70 

9 9 10 10 

Maximum Machine 
Utilization (%) 

96 97.2 98.1 97.2 

Minimum Machine 
Utilization (%) 

68.1 69 69.6 69 

Since the base case fuzzy logic method is optimized by increasing the scheduler 

rule set weight from one to three (in the base case fuzzy logic method all weights are set 

at one), it follows that the average part production time will be greater for the optimized 
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fuzzy dispatching case. Further comparisons between optimized fuzzy logic, non-

optimized fuzzy logic and five dispatching rules will be presented in case 4. 

Whereas Table 7.1 and 7.2 provide a simulation summary, Figure 7.4 and Figure 

7.5 provide an ongoing view of four part type inventory levels and one machine's buffer 

level. Figure 7.4 clearly shows how each part type is given priority according to its due 

date. Part type J has the earliest due date of 240 minutes (Table 7.2) and therefore is 

processed in advance of other part types such as part type H which has a later due date 

of 340 minutes. Although not all ten part types are shown, it can be seen that as a part 

type approaches its due date, the urgency to place uncompleted parts in inventory 

increases and therefore the part type's priority increases.. For example, part type D has 

a due date of 300 minutes but at a time of 245 minutes only six of the required ten parts 

had been completed. This increased part type D's priority level resulting in the quick 

completion of the remaining four parts instead of allowing the parts to remain idle in a 

machine input buffer. With reference to the completion times and due dates shown in 

Table 7.2, it is apparent that the fuzzy logic scheduling method selects the appropriate 

part consistently, and in this particular optimized case, only one part is late. 

One of the primary goals of the fuzzy logic method was to keep buffer levels 

reasonable. VertMill2 was one of the machines that had a high buffer maximum (nine 

parts); however, as one can see from Figure 7.5, this maximum was reached for only a 

short time frame early on in the simulation run. The machine buffer level fluctuates 
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Figure 7.5: Buffer Level 
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continuously, but on the whole the buffer level of VertMill2 was maintained at an average 

of about three parts. Furthermore, judging by the buffer levels of other machines and 

cases (not shown) the buffer level maximums seem to vary both in magnitude and in 

location depending upon the part mix and part process plans. Further on in the chapter 

it will be shown that the fuzzy logic method is quite effective in controlling buffer levels 

and avoiding deadlock, especially with respect to some common dispatching rules. 

Overall, case 1 shows generally what is occurring throughout a simulation run and also 

shows the various methods and types of data capture and presentation. Case 1 presents 

the base results to which other cases will be compared. It should be noted that although 

the eight cases presented in this thesis represent only a small fraction of the total test 

cases, they are representative of the functions that the control system can perform and 

representative of the overall trends. 

7.3 CASE 2: ALTERNATE PROCESS PLAN 

Each part type has been provided with one alternate process plan in order to 

increase the flexibility in the manufacture of the part and to provide a method for 

improving part flow throughout the shop floor. Case 2 uses all the alternate process plans 

for each part type to generate an optimized fuzzy logic comparison case to the base case. 

Tables 7.4 and 7.5 present the part type and machine data for the alternate process plan 

case. These tables show that four parts were late and that all the machines except for 
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VertMihl had buffer maximums less than the finite buffer capacity limit of ten parts. 

Table 7.6 also shows a comparison of the optimized fuzzy logic method with the non-

optimized fuzzy logic method and two dispatching rules, L1FO and FIFO. In this 

particular case, the finite buffer limit of ten parts was too small for the dispatching rule 

FIFO and therefore the system deadlocked. Other than that, the trends described in the 

base case held for this case. The optimized fuzzy logic method had the least number of 

late parts and the smallest maximum lateness value, but as before, it had a longer average 

production time than the non-optimized fuzzy logic method. 

Table 7.4: Alternate Process Plan Case Machine Data 

Machine . Input Buffer 
Maximum 

Idle Time 
(minutes) 

Machine Utilization 
(%) 

VertMihl 10 6 98.2 

VertMil2 7 76 76.7 

Drilil 7 66 79.8 

Drill2 8 6 98.2 

TurnCentrel 8 46 85.9 

TumCentre2 4 106 67.5 



Table 7.5: Alternate Process Plan Case Part Data 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (mm) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT 
(mm) 

Average Prod'n Time 
(mm) 

A 240 218 0 0 0 54.0 

B 200 220 20 1 20 49.4 

C 300 230 0 0 0 65.1 

D 300 265 0 0 0 110.0 

E 240 254 14 2 8 54.9 

F 320 282 0 0 0 67.3 

G 320 306 0 0 0 60.5 

H 340 326 0 0 0 139.8 

I 260 261 1 1 1 63.8 

J 240 188 0 0 0 66.5 
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7.4 CASE 3: LARGE CASES 

Two large cases will be presented here with the intention of showing that the 

fuzzy logic method is capable of dealing with many machines and many parts. Both 

cases consist of non-optimized fuzzy logic method simulation runs having a finite buffer 

limit set at ten parts. The first case, Large Case 1, consists of the same six machines as 

the base case but now twenty part types of ten parts each are being processed. Table 7.7 

shows that although the six machines are able to handle the additional load, the input 

buffer maximums have increased substantially. Never-the-less, the fuzzy logic method 

is able to maintain production with the result that only 18 of the 200 parts were late 

(Table 7.8). 

The second case, Large Case 2, consists of ten machines as shown in Table 7.9, 

and twenty part types. No real effort was made to set up the part type process plans in 

a way which balanced the loading on the machines and this is made evident by some very 

low machine utilizations. Again, the intent was simply to show that the fuzzy logic 

method worked and was capable of dealing with many machines and many parts. Table 

7.10 shows some part data and it is clear from the number of tardy parts (45) that 

significant optimization for this case is required both in terms of optimizing the fuzzy 

logic method and also in balancing the machine loading to increase machine utilization 

and reduce input buffer maximums. Furthermore, there may be one or two bottleneck 

machines causing large maximum lateness values of a number of parts types especially 
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Table 7.6: Alternate Process Plan Case Rule Comparison 

Selection Rule 

Fuzzy Optimized 
Fuzzy 

FIFO LIFO 

No. of Tardy Parts 

Mean Tardiness Given 
Tardy (minutes) 

Average Production 
Time (minutes) 

Maximum Lateness 
(minutes) 

Maximum Buffer Size 
(units) 

Maximum Machine 
Utilization (%) 

Minimum Machine 
Utilization (%) 

14 4 11 

5.3 7.3 D 
E 

5.3 

58.8 73.1 A 
D 

56.5 

'37 20 L 
0 

34 

8 10 C 
K 

10 

97.3 98.2 E 
D 

97.3 

66.9 67.5 66.9 

Table 7.7: Large Case 1 Machine Data 

Machine Input Buffer 
Maximum 

Idle Time 
(minutes) 

Machine Utilization 
(%) 

VertMihl 10 23 96.4 

VertMill2 9 143 77.8 

Drilli 10 23 96.4 

Drill2 10 123 80.9 

TurnCentrel 7 43 93.3 

TumCentre2 6 203 68.4 



Table 7.8 Large Case 1 Part Data 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (min) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT 
(mm) 

Average Prod'n Time 
(mm) 

A 480 510 30 4 18 88.7 

B 400 342 0 0 0 57.2 

C 600 538 0 0 0 131.9 

D 600 536 0 0 0 112.6 

E 480 504 28 5 19.2 121.5 

F 640 590 0 0 0 199.4 

G 640 643 3 1 3 98.3 

H 640 421 0 0 0 61.4 

I 520 573 53 1 53 78.7 

J 480 305 0 0 0 50.6 

* MTGT - Mean Tardiness Given Tardy 



Table 7.8 Large Case 1 Part Data (continued) 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (mm) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT* 

(mm) 
Average Prod'n Time 

(mm) 

K 480 518 38 1 38 82.5 

L 400 210 0 0 0 50.5 

M 600 377 0 0 0 94.1 

N 600 318 0 0 0 71.3 

0 480 404 0 0 0 69.8 

P 640 430 0 0 0 116.5 

Q 640 615 0 0 0 110.9 

R 680 540 0 0 0 99.1 

S 520 568 48 6 34.8 139.4 

T 480 247 0 0 0 61.8 

* MTGT - Mean Tardiness Given Tardy 
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Table 7.9: Large Case 2 Machine Data 

Machine Input Buffer 
Maximum 

Idle Time 
(minutes) 

Machine Utilization 
(%) 

VertMihl 5 112 74.7 

VertMil2 10 112 74.7 

VertMil3 6 152 65.6 

HorMilli 3 292 33.9 

HorMil2 6 122 72.4 

Drilil 8 52 88.2 

Drill2 10 42 90.5 

Drill3 10 72 83.7 

TumCentrel 10 2 99.5 

TurnCentre2 5 162 63.3 



Table 7.10: Large Case 2 Part Data 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (mm) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT 
(mm) 

Average Prod'n Time 
(mm) 

A 240 246 6 1 6 94.5 

B 200 179 0 0 0 52.5 

C 300 428 128 9 67 74.6 

D 300 296 0 0 0 81.4 

E 240 225 0 0 0 52.2 

F 320 442 122 8 78.5 78.1 

G 320 311 0 0 0 116.4 

H 320 302 0 0 0 58.2 

I 260 406 146 7 112.3 59.0 

J 240 217 0 0 0 50.7 



Table 7.10: Large Case 2 Part Data (continued) 

Part 
Type 

Due Date 
(mm) 

Completion 
Time (mm) 

Maximum 
Lateness 

Number of Tardy 
Parts 

MTGT 
(mm) 

Average Prod'n Time 
(mm) 

K 240 307 67 1 67 70.2 

L 200 262 62 4 52 64.4 

M 300 294 0 0 0 39.41 

•N 300 292 0 0 0 62.7 

0 240 228 0 0 0 69.1 

P 320 358 38 2 22.5 85.2 

Q 310 178 0 0 0 54.6 

R 340 325 0 0 0 84.9 

S 260 385 125 6 102.7 68.5 

T 240 281 41 7 24.7 118.8 
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part type C, part type F, part type I and part type S. 

7.5 CASE 4: FINITE BUFFER LIMIT STUDY 

The first three case studies dealt with situations where the finite buffer limit was 

set at ten parts. As the finite buffer limit is increased or decreased from this value it is 

very possible that the part flow through the system will change resulting in either poorer 

or improved performance measures. In order to test the effect of the finite buffer limit, 

a study was conducted where the finite buffer limit was varied from a low of three parts 

to a high of twenty four parts. A number of performance measures were monitored and 

include: the number of late parts, maximum lateness, average tardiness given tardy, 

average production time and average machine maximum buffer levels. Also within the 

study, a comparison was made between the performance of the fuzzy logic method and 

the performance of five common dispatching rules; namely, FIFO, LIFO, EDD, SPT, and 

Slack/OPNR. The base case attributes were all used except for the finite buffer limit. 

The results are shown in Figures 7.6, 7.7, 7.8, 7.9, and 7.10. Figure 7.6 depicts 

the affect that changing the finite buffer limit has on the total number of late parts. There 

are several things to note regarding the output. First, many of the dispatching rules 

caused the simulation to deadlock. The lowest shown value of finite buffer limit for a 

given rule represents the minimum buffer size that was required to prevent deadlock. 

None of the rules including the fuzzy and fuzzy optimized methods prevented deadlock 
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Figure 7.8: Comparison of Average Tardiness 
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Figure 7.9: Comparison of Average Production Times 
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Figure 7.10: Comparison of Average Maximum 
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at finite buffer limits less than four parts. For the particular mixture of part types and 

process plans it can be seen that the optimized fuzzy logic method and LIFO performed 

equally well with respect to preventing deadlock and that Slack/OPNR performed the 

poorest. Second, it is clear from Figure 7.6 that fuzzy optimized performed better (fewer 

late parts) than all other dispatching rules over a large range of finite buffer limits. As 

expected, EDD performed the best as the finite buffer limit size was increased greatly. 

It should also be noted that for certain rules (LIFO, FIFO and Slack/OPNR) increasing 

the finite buffer limit above a certain point does not provide a decrease in the number of 

late parts. Third, it is also apparent from this case, and from some of the data presented 

earlier, that the fuzzy logic method requires optimization or tuning to consistently out-

perform the other rules. 

Minimizing part lateness was one of the primary goals of the current fuzzy rule 

sets; however, data was also gathered for the performance measures of maximum lateness, 

average production time, and average tardiness given tardy. Although no effort was made 

to refine the rule structure to improve the results based on these three performance 

measures, it will still be useful to see how the fuzzy logic method fares against the other 

rules. Figure 7.7 shows how maximum part lateness varies for each rule across the range 

of finite buffer limits. It can be seen that the optimized fuzzy logic method fares better 

(has lower maximum part lateness) than most of the other rules over a wide range of 

finite buffer limits. The same cannot be said for average tardiness given tardy. Given 

the results shown in Figure 7.8, it is not possible to say that the fuzzy optimized method 
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is necessarily better or worse than the other rules; in fact, in some instances the non-

optimized fuzzy method performs better than the optimized fuzzy method. Clearly, for 

the fuzzy method to give improved results for average tardiness given tardy, changes or 

additions to the rule sets are required. The situation is somewhat better for the average 

production time performance measure shown in Figure 7.9. At least here, fuzzy 

optimized competes favourably with fuzzy and LIFO to provide results consistently and 

dramatically better than the remaining four rules. When all four performance measures 

are taken into consideration the optimized fuzzy logic method seems to provide overall 

better performance than the remaining dispatching rules, in spite of the fact that the rule 

sets have not been specifically developed to take all the performance measures into 

account. 

One final goal of the current fuzzy rule sets was to minimize the machine buffer 

levels. Figure 7.10 looks at the average of the maximum buffer levels of each machine 

for the various rules over a range of finite buffer limits. Thus, a low average will 

indicate that the peak loadings within each of the machines' buffer was low and provides 

some indication of the ability of the particular dispatching rule (or method) to control 

buffer loading. As seen in Figure 7.10 the fuzzy and fuzzy optimized methods compare 

well with LIFO and show a better ability to control maximum buffer levels than the 

remaining four rules. 
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7.6 CASE 5: MACHINE BREAKDOWN AND REPAIR 

One of the overall goals of the control structure was to deal with disruptions and 

breakdowns on the manufacturing floor on a real time basis. Case 5 presents a base case 

situation, without optimization, having breakdown and repair events. The machine Drill 1 

begins the simulation run broken, is repaired after 30 minutes, breaks down after 60 

minutes and finally is repaired again after 130 minutes. During the time periods that 

Drill  was broken, the supervisor rerouted the parts to an alternate machine, Drill2, where 

they awaited scheduling in the normal manner by the fuzzy logic scheduling sub-module. 

Figure 7.11 shows the buffer level of Drill 1 throughout the simulation and one can clearly 

see the difference between a normal case (no breakdown or repair events) and the broken 

case. When the breakdown event at 60 minutes occurs, there are two parts left in the 

input buffer of Drilli. The supervisor coordinates removal of these parts and by 66 

minutes the parts have been removed and placed in the buffer of the alternate machine 

Drill2 causing its buffer to fill completely to the finite buffer limit of ten parts (Figure 

7.12). All subsequent parts destined for processing on Drilli are rerouted to Drill2 until 

Drilli is repaired again at a time of 130 minutes. Figure 7.12 shows the effect that the 

rerouting of parts from Drilli has on Drill2. The buffer levels of Drill2 are consistently 

higher during the Drill 1 broken case than during a case were Drilli is functioning 

normally. Drill2 is often overloaded with a buffer that is completely full, yet the fuzzy 

logic scheduler is able to maintain production, and as shown in Figure 7.13, continues to 

try and reduce late parts. Part I has a due date of 260 minutes and Part H has a due date 



Figure 7.11: Buffer Levels of Drilli 
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Figure 7.12: Buffer Levels of Drill2 
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Figure 7.13: Inventory Levels of Part Type H and I 
(Drill! Normal and Broken) 
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of 340 minutes, both of which were met in the non-broken case. Part I and H each have 

one operation that needs to be done on Drilli and therefore a breakdown of Drilli causes 

production of these parts to slow down. As a result, Part I has four parts which are late 

by a maximum of 30 minutes and Part H has five parts which are late by a maximum of 

25 minutes. As was mentioned in the introduction, the emphasis of this project was to 

develop a procedure which could deal with breakdowns in a manner which would keep 

part production going versus providing an optimum rescheduling/rerouting mechanism. 

It is clear from the Case 5 example that the current supervisor and fuzzy logic scheduling 

structure can do that and one future step may be to incorporate an optimizing procedure 

to help minimize late parts during a breakdown scenario. 

7.7 CASE 6: RECONFIGURABLE CASE 

As discussed in chapter 5, the control structure has been developed to allow the 

representation of virtual reconfiguration in the situation where special rush orders need 

to be processed. Case 6 presents a non-optimized fuzzy logic base case where two part 

types: part type H and part type B, have special rush priority. As a result of. the rush 

priority, the supervisor adjusts the current cell structure into a virtual structure which 

allows the special parts to be processed as quickly as possible. This is done by 

consistently ensuring that the special rush orders have the highest priority over all other 

parts within the system. The results of the reconfiguration can be seen in Figure 7.14. 

Part type B which would normally complete processing at 200 minutes, was finished in 



Figure 7.14: Inventory Levels-Reconfigurable Case 
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about 85 minutes. Similarly, part type H finished in about 125 minutes, or about 200 

minutes earlier than in the non-reconfigurable case. Thus it can be seen that 

reconfiguring the system in this manner has very positive results and that the control and 

scheduling structure is capable of operating with the reconfigurability aspect in place. 

7.8 CASE 7: ROBOT MOVEMENT 

All the cases discussed so far have assumed that the part movement times have 

been incorporated into the processing times and that sufficient material handling resources 

exist to prevent any parts from waiting. Case 7, on the other hand, considers movement 

times and also utilizes the services of a robot to move the parts. The test case consists 

of three machines: VertMilll, VertMill2, and Drilli, and one part handling robot. Five 

part types (A,B,C,D, and E) are considered, each having a batch size of ten parts. The 

non-optimized fuzzy logic method is used and no machine or tool breakdowns are 

considered. Furthermore, each movement of the robot is assumed to take one minute and 

the robot has only a single manipulator which can handle only one part at a time. 

The robot is under the control of the supervisor which activates the robot and 

indicates the action required. Figure 7.15 shows a screen view of the simulation at a 

SimTime of 66 minutes. The screen view shows a short chronology of the robot's actions 

over the previous 16 minutes. Generally speaking, the robot appears to be fast enough 

that the parts do not often have to wait. One example of a part waiting occurs at a 
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Figure 7.15: Screen View of Machine Process, Buffer Status 
and Robot Action at SimTime =66 Minutes 
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SimTime of 51 minutes. At 51 minutes the robot completes unloading partDl from 

Drilil; however, partDl completed processing at SimTime 49 minutes and therefore has 

been waiting on machine Drill 1 for one minute resulting in extra machine idle time. Only 

three machines were modelled in this case study because it was found that with the 

current part and process plan mix, any more machines resulted in excessive machine idle 

times due to parts waiting for the robot. Therefore more machines would require a 

second robot, the inclusion of which is beyond the scope of this project. This small 

example does however show that the control structure is capable of incorporating and 

controlling a material handling system. 

7.9 CASE 8: WEIGHT OPTIMIZATION 

Throughout this thesis it has been shown that the fuzzy logic dispatching method 

requires a certain degree of optimization before it begins to outperform existing 

dispatching rules. The optimization procedure currently in use involves applying a weight 

to each of the process step, schedule and buffer level rule sets. This weight is then used 

to develop an overall priority level for a part. Case 8 will discuss how a weight can be 

chosen in an effort to provide more optimum results. All the examples run in this section 

conform to the base case with the exception that the weights are modified. Three separate 

groups of simulations were run. In the first, the buffer level weight was set at one and 

both the process step and scheduler weights were incrementally varied in unit steps from 

one to ten resulting in a set of 100 cases. In the second group, the scheduler weight was 
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set at one while the buffer level and process step weights were varied in unit increments 

from one to ten. Similarly, in the third group, the process step weights were set at one 

and the other two varied. This resulted in three groups of data, each consisting of 100 

simulation runs. Of primary importance was minimizing the performance measure related 

to the number of late parts and therefore the number of late parts was plotted on three 

dimensional graphs for the 300 cases as shown on Figures 7.16, 7.17, and 7.18. These 

three figures give a clear pictorial representation of how the number of late parts are 

affected as the relative weightings of the three rule sets are changed. If the weights are 

expressed in the form process step weights:scheduler weights:buffer level weights, it can 

be seen from Figure 7.16 that the optimum weight setting to minimize the number of late 

parts would be 1:3:1, resulting in only one late part. Similarly for Figure 7.17, the 

optimum is 1:1:2 with three late parts and for Figure 7.18, the optimum is 1:3:1 with one 

late part. From this type of analysis it is clear that the most optimum combination of 

weights to be used for the fuzzy logic base Case is 1:3:1 if one wishes to minimize the 

number of late parts, and this is the combination that was used whenever the optimized 

fuzzy method was referenced. On the other hand, if minimizing the performance measure 

of average production time is considered, then this performance measure can be plotted 

for the 300 cases as shown in Figure 7.19, 7.20 and 7.21. Figure 7.19 indicates an 

average production time optimum of 52 minutes at 2:1:1. Figure 7.20 indicates the same 

optimum of 52 minutes in a number of places; firstly in the range (6-10):1:(2-4) and 

secondly at 2:1:1 (hidden behind a crest). The optimum shown in Figure 7.21 is 57 

minutes located at 1:2:1, thus the best overall combination with respect to average 



Figure 7.16: Effect of Scheduler and Process Step Weight 
Modification on the Number of Late Parts 



Figure 7.17: Effect of Buffer Level and Process Step 
Weight Modification on the Number of Late Parts 
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Figure 7.18: Effect of Scheduler and Buffer Level Weight 
Modification on the Number of Late Parts 



Figure 7.19: Effect of Scheduler and Process Step Weight 
Modification on Average Production Time 



Figure 7.20: Effect of Buffer Level and Process Step 
Weight Modification on Average Production Time 
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production time is 2:1:1 yielding a time of 52 minutes. 

Very often in production facilities there are a number of primary performance 

measures which need to be met. In case 8, if both the performance measures of late parts 

and average production time were equally important then there would be a conflict 

because 1:3:1 results in few late parts but a high average production time whereas 2:1:1 

results in a low average production time and more late parts. The issue of resolving this 

type of conflict has not been dealt with in this project. However, case 8 clearly shows 

that the correct selection of weights can have a significant impact on the outcome of 

various performance measures. The procedure used here to find the optimum would 

become prohibitively time consuming if a large search space exists but alternate searching 

strategies exist which may converge onto a solution in a much quicker fashion. 

This concludes chapter 7. Several test cases have been presented which show that 

the control structure is very effective in controlling and scheduling a simulated 

manufacturing cell. The cases have shown how the control structure dispatches parts, 

how it deals with breakdown and repair events, how it reconfigures for special parts, and 

how robot movement is performed. Examples have also shown that the system can deal 

with very large cases, and that the optimized fuzzy logic method appears to work better 

for certain performance measures than a number of dispatching rules over a large finite 

buffer limit range. Finally, it has been shown how the rule set weights can be modified 

in order to optimize the system for a specific performance measure. 
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CHAPTER 8 

8. CONCLUSIONS 

8.1 GENERAL DISCUSSION 

The cell control structure, its implementation and a number of test cases have now 

been presented. The control structure's modular design incorporates an internal 

supervisory and scheduler structure and provides a great degree of flexibility during 

implementation and operating. This modular design, combined with the development of 

the system in an object oriented environment, allows the control structure to be very 

portable and expandable. Thus additional machines and part objects can be created and 

easily introduced into the system. The control structure can also work effectively in a 

manufacturing cell, an inspection cell or an assembly cell; the type of parts or machines 

are not important and do not affect the control structure. Furthermore, the structure has 

been implemented at the cell level; however, the concept could be used at other levels, 
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such as the shop floor level. The procedure for selecting part types which should be 

processed by a certain cell is not that much different than selecting parts for processing 

on a specific machine, and therefore the fuzzy logic method could still apply. There will 

still be scheduling considerations (due dates, inventory goals), buffer considerations (room 

in the cell), and other unique considerations which could easily be added to the fuzzy 

logic scheduling rule base. The Only differentiation in using the control structure at 

different levels may be a different fuzzy logic rule base and different elements under the 

control of the supervisor. For example, at the shop floor level, the nodes of the primary 

level may represent cells instead of machines and the secondary control level would be 

the detailed operation of the cell. The control structure could be implemented 

hierarchically or autonomously. If implemented autonomously the parts and machines 

would be considered to be independent entities and the message passing that is currently 

done through the scheduler module could be done directly from one entity to another. 

All in all, the combination of the two layer supervisory structure and the -fuzzy logic 

dispatching method has provided a very flexible and portable control environment. 

8.2 SUPERVISOR DISCUSSION 

As described in chapter 5, the supervisor is made up of primary and secondary 

control levels. The division of the control structure into these two levels has simplified 

implementation of the control system and also provided the flexibility to easily make 

changes. Elements at the primary control level can easily be added or removed without 
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affecting the existing elements or the detailed operational instructions in the secondary 

layer. Additionally, elements of the secondary level can be modified without affecting 

other portions of the secondary control level or the primary level. This type of two level 

modular structure reduces the complexity of the computer code and therefore makes 

development or refinement of the code easier. 

The sample cases given in chapter 7 show the ability of the supervisor to perform 

all the required tasks; namely, controlling the machines, monitoring for breakdowns, 

initiating error recovery routines (breakdown, deadlock messages), directing part 

movement and part production, controlling the material handling system (robot), initiating 

the scheduling of parts, calling for part pick-up, monitoring inventory levels, monitoring 

the cell input buffer, and virtually reconfiguring the cell. The supervisor structure is set 

up in a manner that can deal with changes and disruptions. Alternate machines exist to 

allow the rerouting of parts in the event of machine or tool breakdowns, and alternate 

process plans can be used to redistribute part flow. The supervisor works closely with 

the scheduler module in order to dispatch parts, and it is clear from the examples given 

that the supervisor structure can react in real time using a variety of dispatching 

strategies. 
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8.3 SCHEDULER DISCUSSION 

The heart of the control structure is the fuzzy logic dispatching method. The 

fuzzy logic method provides the mechanism whereby a number of different constraints 

and conditions within the shop floor can be considered at once. Current dispatching rules 

typically focus on only a few aspects of the shop floor whereas the fuzzy logic method 

is restricted only by the rule set, which can be expanded or customized to suit each 

particular job shop. Thus, scheduling aspects as well as control considerations can be 

included in the rule sets and this ultimately provides a great deal of power and flexibility 

when it comes to dispatching parts. Currently the rule base includes scheduling aspects 

such as due dates and inventory levels and as well as control aspects such as buffer level 

and part process plans. The extent and degree of the rule set is limited only by an ability 

to generate realistic rules and to develop methods of defuzzifying the appropriate 

variables. 

The fuzzy dispatching method has been shown to be a very powerful and useful 

method. The examples given in chapter 7 show quite clearly that the optimized fuzzy 

logic method often performs significantly better than the five dispatching rules considered 

(FIFO, LIFO, EDD, SPT, and Slack/OPNR) especially in terms of minimizing the number 

of late parts and in preventing deadlocking. Furthermore, even though specific rules have 

not been developed for the performance measures of maximum lateness and average 

production time, the fuzzy logic method still shows equivalent or improved performance 
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relative to the dispatching rules. 

One of the keys to having a successful fuzzy logic method is optimization. In this 

project, weights were assigned to each rule set and these weights were adjusted until an 

"optimum" was reached with respect to a certain performance measure (mainly number 

of late parts). The optimization procedure that was described in chapter 7 consisted 

mainly of conducting a number of trials and selecting the best result. As more rule sets 

are implemented, this strategy would become too time consuming and ineffective. 

Therefore alternative search strategies can be used such as neural networks or genetic 

algorithms to, either find an optimum prior to implementing the system on the shop floor, 

or to search for an optimum on an ongoing basis while the control system is actually in 

operation. It is clear, however, from the results obtained thus far, that optimization is 

very important since there is a large difference between the performance of the optimized 

and non-optimized fuzzy logic methods. 

Two other important aspects of having a successful fuzzy logic method are the 

rule bases and the membership functions. As mentioned in chapter 4, the rule bases were 

developed mainly through intuition and experimentation. Unfortunately no hard and fast 

guidelines exist in the current literature which can aid in the generation of rule sets. Two 

possible sources of rules are to consult with the people on the shop floor or to implement 

various versions of existing dispatching rules. In addition to selecting appropriate rules, 

it is also important to select the degree of activation of the rules such as low, very low, 
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medium, etc. Again there are no straight forward answers; however, expert systems, 

genetic algorithms, or neural networks can be used to help adjust the rules and the rule 

activations until an optimum or at least an improved rule structure has been developed. 

Similarly, the development of the membership functions is more of an art than a science, 

although some guidelines are given in Kosko [26]. As well, Karr and Gentry [21] have 

advocated the use of genetic algorithms and/or heuristics to help tune and modify the 

membership functions to make them more effective for the problem at hand. 

Although the selection of weights, rules and membership functions is not always 

clear, a number of methods exist which can refine the selection of all these elements and 

therefore it becomes less critical to make perfect selections immediately. Furthermore, 

the ability to change the weights, rules or membership functions, opens up a large variety 

of optimization techniques which makes the control and scheduling structure very flexible. 

As conditions change on the shop floor, so to must the control structure change, and to 

have a large variety of adjustment options at hand is very powerful. The manner in 

which fuzzy logic is implemented enables changes to occur in real time (adaptively) or 

to be implemented more reactively by an operator. 
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8.4 ORIGINAL CONTRIBUTION 

The main area of original contribution lies in the unique utilization of fuzzy logic 

for part dispatching. Fuzzy logic has been used for scheduling by other authors in several 

ways: controlling the flow of parts among resources (Custodio et al. [6]), production rate 

computation in order to maintain a set production level [6], and combining several 

dispatching rules (Grabot and Geneste [11]). As described in chapter 2, Custodio et al. 

uses four decision factors or routing rules to choose a resource for the next operation of 

a part and uses three decision functions (dispatching rules) to select the next part for 

processing. Fuzzy logic is then used on -these routing and dispatching rules to do the final 

selections of parts and machines. The proposed fuzzy logic dispatching method is similar 

to the method presented by Custodio et al. in that it uses a number of rules or criteria for 

part dispatching; however, unlike Custodio et al. the proposed method includes scheduling 

considerations. 

The proposed fuzzy logic method also attempts to move away from using common 

dispatching rules such as those implemented by Grabot and Geneste, and provides a 

method where any applicable rules related to parts, machines, scheduling or other critical 

elements, can be incorporated into the decision making process. Thus, the method 

becomes more all encompassing than the one proposed by Custodio et al. or Grabot and 

Geneste. Custodio et al. also uses fuzzy logic as a control method to select production 

rates which maintain specified production levels. In the early development of the fuzzy 
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logic dispatching scheme described in this thesis, a scheduler to meet a specified demand 

rate was also created and it operated in a fashion that was similar to the one described 

by Custodio. The scheduler was required to maintain a specified target inventory level 

and as the inventory level approached or exceeded the target, the fuzzy scheduler adjusted 

the production rate accordingly. The development and application of the rate based fuzzy 

scheduler has not been discussed here since it was felt that the scheduling (dispatching) 

of a due date, batch order driven shop floor was a more important and difficult problem. 

There is also d certain degree of original contribution within the actual control 

structure that has been proposed.. Several different control structures were discussed in 

chapter 2, but none of them combine a two level supervisor with a scheduler in the 

manner proposed here. The two level supervisor provides an increased degree of 

flexibility when it comes to adding or modifying the structure. The proposed control 

structure also describes how the supervisor and scheduler uniquely interact to dispatch 

parts, deal with broken machines and tools, and implement the concept of 

reconfigurability. 

To summarize, the proposed fuzzy logic dispatching method provides a more all 

encompassing approach to part dispatching. It includes a full range of issues beyond 

common dispatching rules and it provides a scheduling methodology for a due date, batch 

order driven problem. The method improves greatly on the goal attainment of various 

performance measures as compared to several common dispatching rules. Furthermore, 
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the dispatching method shows great flexibility when combined with the proposed control 

structure and incorporates many options for optimization. 

8.5 FINAL SUMMARY 

The main objective of this research was to develop a highly flexible real time 

control structure that can be applied at the manufacturing cell level and which is capable 

of dealing with shop floor disruptions. The scheduling portion of the control structure is 

an integral part of meeting the above objective but it was also intended to consider a 

wider range of constraints and performance measures. One further requirement for the 

scheduling method was the inclusion of mechanisms for improvement or optimization. 

The intent was also to develop a framework which supported the concept of autonomous 

agents, decentralized control and provided a high degree of expandability and portability. 

The above goals have all been met. The control structure deals effectively with 

machine and tool breakages and has the flexibility to deal with a wide range of numbers 

of parts and machines. The two level supervisor structure allows for the easy• addition 

and modification of elements and the object oriented environment promotes the easy 

creation of those new shop floor elements. The dispatching of parts occurs in real time 

utilizing priority levels established from a number of different criteria, thereby considering 

a broad perspective of shop floor conditions. Optimization mechanisms exist such as rule 

weight modification, rule addition or modification, or membership function adjustments. 
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The fuzzy logic dispatching method has been shown to be more effective in minimizing 

the number of late parts than several dispatching rules and is certainly competitive with 

respect to minimizing average maximum buffer levels. As far as preventing deadlocking, 

the optimized fuzzy logic method was equivalent to LIFO but out-performed all the other 

rules that were investigated. 

The control structure is a self contained modular unit needing only certain specific 

due date/inventory level goals to operate. Thus it would be effective in a decentralized 

control environment. Parts and machines have been developed as independent entities to 

a certain degree and the control structure could be converted easily to an environment 

where parts and machines could operate autonomously. The control structure• is 

expandable and portable. As described in the general discussion of this chapter, the 

structure could easily represent different types of cells or different control levels. Finally, 

the control structure incorporates a unique combination of elements which provide a high 

degree of flexibility, autonomy, portability, and an ability to deal with disturbances. 

8.6 FUTURE RESEARCH 

There are many directions that future research can take with respect to this project. 

The most important one is to investigate methods of optimizing the rule set weights, the 

membership functions, or the rules themselves. It is suggested that neural networks, 

expert systems, genetic algorithms or a combination of all three be reviewed and 
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considered as potential optimization procedures. 

Another important aspect is to develop a rule structure which can attain the goals 

of a number of additional performance measures such as maximum lateness, average 

lateness, earliness, mean tardiness given tardy, and average production time. At the same 

time, methods need to be developed which allow the system to achieve the best overall 

results given that some of the performance measures can often be conflicting. 

Finally, the current simulation needs to be made more user friendly and 

interactive. Also consideration should be given to linking the control structure to a 

commercial simulation package which can provide a much better base for the 

development of test cases and the capture of statistical data. 
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APPENDIX A: EQUIPMENT CLASS, INSTANCES 

VertMilll 

name: 'VertMihl' 

toolLib: T023, T016, T008, T007, T025 

assignTo: 'Cell' 

status: 'Ok' 

alternateStationLib: 'VertMill2' 

description: 'milling machine' 

inputBufferLib: empty 

currentProcess: empty 

\TertMffl2 

name: 'VertMill2' 

toolLib: T023, TOM T008, T007, T025 

assignTo: 'Celil' 

status: 'Ok' 

altemateStationLib: 'yertMilll' 

description: 'milling machine' 

inputBufferLib: empty 

currentProcess: empty 
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Drill 

name: 'Drill' 

toolLib: T008, T007, T010, T009, T030 

assignTo: 'Celil' 

status: 'Ok' 

alternateStationLib: 'Drill2' 

description: 'drill' 

inputBufferLib: empty 

currentProcess: empty 

Drill2 

name: 'Dnill2' 

toolLib: T008, T007, TO1O, T009, T030 

assignTo: 'Ceill' 

status: 'Ok' 

alternateS tationLib: 'Drill' 

description: 'drill' 

inputBufferLib: empty 

currentProcess: empty 
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TurnCentrel 

name: 'TurnCentrel' 

toolLib: T008, TOOl, TO1O, T040, T041 

assignTo: 'Cell' 

status: 'Ok' 

alternatéStationLib: 'TurnCentre2' 

description: 'CNC turning centre' 

inputBufferLib: empty 

currentProcess: empty 

TurnCentre2 

name: 'TurnCentre2' 

toolLib: T008, T007, TO1O, T040, T041 

assignTo: 'Ceill' 

status: 'Ok' 

alternateStationLib: 'TurnCentrel' 

description: 'CNC turning centre' 

inputBufferLib: empty 

currentProcess: empty 
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APPENDIX B: TOOL CLASS INSTANCES 

T007 

name: 'T007' 

description: 'HSS drill; DO.5 x L2.25in.' 

assignTo: 'VertMilll', 'VertMill2', 'Drill', 'Dril12', 

'TurnCentrel', 'TurnCentre2' 

status: 'Ok' 

T008 

name: 'T008' 

description: 'HSS drill; D1.5 x L4.875in.' 

assignTo: 'VertMilll', 'VertMill2', 'Drill 1', 'Drill2', 

'TurnCentrel', 'TurnCentre2' 

status: 'Ok' 

T009 

name: 'T009' 

description: 'HSS drill; DO.375 x L2.25in.' 

assignTo: 'Drill', 'Drill2' 

status: 'Ok' 

TO1O 

name: 'TOlO' 

description: 'HSS drill; DO.75 x L2.5in.' 

assignTo: 'Drill 1', 'Dril12', 'TumCentre 1', 'TurnCentre2' 

status: 'Ok' 
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T016 

name: 'T016' 

description: 'HSS fourFluteEndMil; D1.5 x L3.Oin.' 

assignTo: 'VertMilll', 'VertMill2' 

status: 'Ok' 

T023 

name: 'T023' 

description: 'HSS studEndMil; D2.O x LO.75in.' 

assignTo: 'VertMilll', 'VertMill2' 

status: 'Ok' 

T025 

name: 'T025' 

description: 'HSS twoFluteEndMlll; DO.5 x L1.Oin.' 

assignTo: 'VertMilll', 'VertMil12' 

status: 'Ok' 

T030 

name: 'T030' 

description: 'tap; DO.375-UNC x L2.25in.' 

assignTo: 'Drilil', 'Drill2' 

status: 'Ok' 

T040 

name: 'T040' 

description: 'TC narrow gauge bit.' 

assignTo: 'TurnCentrel', 'TurnCentre2' 

status: 'Ok' 
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T041 

name: 'T041' 

description: 'TC roughing bit.' 

assignTo: 'TurnCentrel', 'TumCentre2' 

status: 'Ok' 
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APPENDIX C: PARTTYPE CLASS INSTANCES 

partA 

partB 

name: 'partA' 

processPlan: 'T023', 

'T016', 

'T041', 

'T009', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 240 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

name: 'partB' 

processPlan: 'T023', 

'T008', 

'T041', 

'T007', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 200 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

'VertMilhl', 4 

'VertMill2', 6 

'TurnCentrel', 4 

'Drill V, 8 

'VertMill2', 4 

'Drilli', 6 

'TurnCentre2', 4 

'Drill2', 2 
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partC 

partD 

name: 'partC' 

processPlan: 'T007', 

'T041', 

'T030', 

'T023', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 300 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

name: 'partC' 

processPlan: 'T041', 

'T008', 

'T023', 

'TO 16', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 300 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

'Dril12', 3 

'TurnCentrel', 4 

'Drill!', 5 

'VertMill2', 2 

'TumCentre2', 7 

'Drill2', 4 

'Vertivlilll', 8 

'VertMill2', 2 
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name: 'partE' 

processPlan: 'T023', 

'TO 16', 

'T007', 

'T040', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 240 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

name: 'partF 

processPlan: 'T007', 

'T023', 

'T008', 

'T041', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 320 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

'VertMill2', 4 

'VertMilhl', 6 

'Drill2',4 

'TumCentrel', 2 

'TurnCentrel', 5 

'VertMill2', 3 

'Drilll', 4 

'TurnCentrel', 6 
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partO 

partH 

name: 'partG' 

processPlan: 'T023', 

'T040', 

'T007', 

'T041', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 320 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

name: 'partH' 

processPlan: 'TOlO', 

'T041', 

T030', 

'T016', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 340 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

'VertMilll', 5 

'TurnCentrel', 4 

'Drilil', 3 

'TumCentre2', 2 

'Drill', 3 

'TurnCentre2', 5 

'Dnill2',4 

'VertMffll', 1 
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pard 

part! 

name: 'part!' 

processPlan: 'T009', 

'T008', 

'T016', 

'T007', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 260 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

name: 'part!' 

processPlan: 'T007', 

70 16', 

'T041', 

'T025', 

inventoryLevel: 0 

timeLevel: 0 

batchTime: 240 

batchAmount: 10 

partLotNumber: 1 

status: 'Regular' 

'Drill2', 4 

'Drill2', 5 

'VertMilll', 4 

'Drill', 2 

'TumCentre2', 4 

'VertMill2', 4 

'TumCentrel', 5 

'VeriMill1', 2 


