
THE UNIVERSITY OF CALGARY

Real Time Control of Manufacturing Cells Utilizing

Fuzzy Logic Part Dispatching

by

Andre Joachim Naumann

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

CALGARY, ALBERTA

AUGUST, 1994

© Andre Joachim Naumann 1994

1+1
National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your file Voire rilfilrence

Our life Noire rillilrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CBTTE THESE A LA DISPOSITION DES
PERSONNE INTERES SEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NT LA THESE NI DES
EXTRAITS SUI3STANTIELS DE CELLE-
CI NE DOT VENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99434-7

Canadc!

Name A,hJVX1 1MV
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corçeponding four-digit code in the spaces provided.

-1l 6WA?Yt
r SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Ms 0357
Information Science 0723
Journalism 0391
Library Science 0399
Moss Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518 Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General 0473
Agronomy 0285
Animal Culture and

Nutrition 0475
Animal Pathology 0476
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777
Wood Technology 0746

y Biolog General 0306
Anatomy 0287
Biastatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Psychology 0525
Reading 0535
Religious 0527
Sciences 0714
Secondary 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology, 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Longuage

General 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geodesy 0370
Geology 0372
Geophysics 0373
Hydrology 0388
Mineralogy 0411
Paleobotany 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Palynology 0427
Physical Geography 0368 ,
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566.
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Phherapy 0382
Puybsliiccal T Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religion

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropology

Archaeology 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338 Canadian Studies 0385

Economics
General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology 0460
Toxicology 0383

Home Economics 0386

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic ' 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General 0605
Acoustics 0986
Astronomy and
Astrophysics 0606

Atmospheric Science 0608
Atomic 0748
Electronics and Electricity -----0607
Elementary Particles and
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0 c
SUBJECT CODE

UM1

Ancient 0579
Medieval 0581
Modern 0582
Block 0328
African 0331
Asia, Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family

Studies 0628
Industrial and Labor

Relations - 0629
Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

Engineering
General 0537
Aerospace 0538
Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544
Heat and Thermodynamics 0348
Hydraulic 0545
Industrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554
System Science 0790

Geotechnology 0428
Operations Research 0796
Plastics Technology 0795
Textile Technology 0994

PSYCHOLOGY
General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiolo9ical 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sulets. Veuillez s.v.p. choisir le sulet qui décrit le mieux votre
these et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

U-M -1
SUJET

Catégores par sujets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS•
Architecture 0729
Beaux-arts 0357
Bibliothéconomie. 0399
Cinema - 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de l'art 0377
Joumalisme 0391
Musique 0413
Sciences de l'inFormation 0723
Théâtre 0465

EDUCATION
Généralités 515
Administration 0514
Art 0273
Colleges communautaires 0275
Commerce 0688
conomie domestique 0278
Education permanente 0516
Education préscolaire 0518
Education sanitaire 0680
Enseignement agrico!e 0517
Enseignement bilingue et

multiculhirel 0282
Enseignement industriel 0521
Enseignement primaire. 0524
Enseignement proFessionnel 0747
Enseignement religieux 0527
Enseignement secondaire 0533
Enseignement special 0529
Enseignement supérieur 0745
Evaluation 0288
Finances 0277
Fornation des enseignants 0530
Histoire do l'éducation 0520
Longues et littérature 0279

Lecture 0535
Mathematiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de 'education 0998
Physique 0523
Programmes d'études et
ensegnement 0727

Psychologie 0525
Sciences 0714
Sciences sociales 0534
Sociologie de 'education 0340
Technologie 0710

LANGUE, LITTERATURE ET
LINGUISTIQUE
Lan gJes

Généralités 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littéroture
Géneralités 0401
Anciennes 0294
Comparée 0295
Mediévale 0297
Moderne 0298
Africaine 0316
Américaine 0591
Anglaise 0593
Asiatiuo 0305
Conadienne Anglaise) 0352
Conodienne Françoise) 0355
Gormanique 0311
Latinoaméricoine 0312
Moyenorientale 0315
Romane 0313
Slave et est-européenne 0314

SCIENCES ET INGENIERIE
SCIENCES BIOLOGIQUES
Agriculture

Généralités 0473
Agronomie. 0285
Alimentaton et technologie
alimentaire 0359

Culture 0479
Elevage 'et alimentation 0475
Exploitation des péturages 0777
Pothologie animale 0476
Pothologie véétale 0480
Physiologie vegétale 0817
Sylviculture et toune 0478
Technolo9ie du bois 0746

Biologie
Générolités 0306
Anatomie 0287
Biologie (Statistiques) 0308
Bioloie moléculaire 0307
Botonique 0309
Cellule 0379
Ecologie 0329
Entomologie 0353
Génétique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Océanographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Généralités 0786
Medicale 0760

SCIENCES DE LA TERRE
Biogéochimie 0425
Géochimie 0996
Géodésie 0370
Geographie physique 0368

Géologie 0372
Geophysuque 0373
Hydrologie 0388
Minéralogie 0411
Océanographie physique 0415
Poleobotanique 0345
Poleoecologie 0426
Paleontologie 0418
Paleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE ET DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de l'environnement 0768
Sciences de la sante

Généralités 0566
Administration des hipitaux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothérapie 0992
Dentisterie 0567
Developpement humain 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Medecine du travail et

thérapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtolmologie 0381
Orthophonie 0460
Patho!ogie 0571
Phormocie 0572
Pharmocologie 0419
Physiotherapie 0382
Radiologie 0574
Sante mentole 0347
Sante publiijue 0573
Soins inhirmiers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie 0422
Religjon

Générolités 0318
Cler9é 0319
Etudes bibliques 0321
Histoire des religions 0320
Philosophie de Ia religion 0322

Théologie 0469

SCIENCES SOCIALES
Anthropologie

Archeotogie 0324
Culturelle 0326
Physique 0327

roit 0398
Econornie

Génerolités 0501
Commerce-Affaires 0505
conomie ogricole 0503
Economie du travail 0510
Finances 0508
Histoire 0509
Théorie 0511

etudes oméricoines 0323
Etudes conodiennes 0385
Etudes Feministes 0453
Folklore 0358
Géogrophie 0366
Gérontologie 0351
Gestion des alfaires

Généralites 0310
Administration 0454
Ban' 0770
Complabilité 0272
Marketing 0338

Histoire
Histoire generale 0578

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genéralités 0485
Biochimie 487
Chimie agricole 0749
Chimie anol,ytique 0486
Chimie minerale 0488
Chimie nudeaire 0738
Chimie organique 0490
Chimie pharmaceutique 0491
Physique 0494
PolymCres 0495
Radiation 0754

Mathématiques 0405
Physique

Genérolités 0605
Acoustique 0986
Astronomie et
astrophysique 0606

Electronique et electricité 0607
Fluides et plasma 0759
Météorologie 0608
Optique 0752
Porticules (Physique

nucleaire) 0798
Physique atomique 0748
Physique de l'état solide 0611

- Physique moleculaire 0609
Physique nuclèaire 0610
Radiation 0756

Stotistiques 0463

Sciences Appliqués Et
Technologie
Informatique 0984
Ingénierie

Généralités 0537
Agricole 0539
Automobile 0540

CODE DE SUJET

Ancienne 0579
Médlévale 0581
Moderne 0582
Histoire des flairs 0328
Africaine 0331
Canadienne 0334
Etats-Unis 0337
Européenne 0335
Moyen-orientole 0333
Latino-américaine 0336
Asie, Austrolie et Océonie 0332

Histoire des sciences 0585
Loisirs 0814
Planification urboine et
régionole 0999

Science politique
Généralités 0615
Administration publique 0617
Droit et relations

internationales 0616
Sociologie

Générolités 0626
Aide et bien-àtre social 0630
Criminologie et

établissements
pénitentiaires 0627
emogrophie 0938

Etudes de I' individu et
- de Ia Farnille 0628
Etudes des relations
interethniques et
des relations racioles 0631

Structure et développement
social 0700

Théorie et méthodes. 0344
Travail et relations

industrielles 0629
Transports 0709
Travail social - 0452

Biomédicole 0541
Chaleur et ther
modynamique 0348

Condihonnement
(Embollage) 0549

Genie oerospatial 0538
Genie chimique 0542
Géne civil 0543
Genie électronique et

electrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucléaire 0552
Inénierie des systömes 0790
Mecanique navole 0547
Metollurgie 0743
Science des motériaux 0794
Technique du pétrole 0765
Technique miniére 0551
Techniques sanitaires et
municipales 0554

Technologie hydroulique 0545
Meconique appliquee 0346
Geotechnologie 0428
Motières plastiques

(Technologie) 0795
Recherche opérationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCHOLOGIE
Générolités 0621
Personnalité 0625
Psychobiologie 0349
Psychologie clinique 0622
Psychologie du comportement 0384
Psychologie du développement 0620
Psychologie expérimentale 0623
Psychologie industrielle 0624
Psychologie physiologique 0989
Psychologie sociale 0451
Psychometrie 0632

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Real Time Control of Manufacturing Cells

Utilizing Fuzzy Logic Part Dispatching" submitted by Andre Joachim Naumann in partial

fulfillment of the requirements for the degree of Master of Science in Mechanical

Engineering.

I Dr. P. Gu
Supervisor and Committee Chairman, Department of Mechanical Engineering

/7(-7---, .
Prof. A.A. Torvi

Department of Mechanical Engineering

Dr. P. Wojcik
Alberta Research Council, Adjunct to the Department of Mechanical Engineering

Dr. J. Balakrishnan
Faculty of Management

Dlte

11

ABSTRACT

This thesis presents a manufacturing cell control structure and fuzzy logic part

dispatching method which represent original contributions to the field of manufacturing

cell control. The control structure consists of a supervisor module comprised of primary

and secondary control levels, and a scheduler module containing a fuzzy logic part

dispatching method. The fuzzy logic part dispatching method considers many aspects of

the shop floor and shows better performance in terms of the number of late parts and

average buffer maximum loading than five common dispatching rules (EDD, LIFO, FIFO,

SPT, Slack/OPNR). The control structure has proven to be very expandable and flexible,

deals effectively with breakdowns and disruptions in real time, and also incorporates

mechanisms whereby part dispatching can be optimized. The structure is portable and can

be used at different control levels as well as in a decentralized control environment.

Finally the structure supports the concept of intelligent part and machine entities.

111

ACKNOWLEDGEMENTS

I extend a very special thank you to Dr. P. Gu for his professional guidance and

support throughout this work. I also wish to acknowledge him for his encouragement and

for the expressions of confidence in my abilities that he extended to me throughout the

project in order to support me in searching for answers and dealing with problems as they

arose.

Thanks are extended to Prof. A.A. Torvi, Dr. P. Wojcik, and Dr. J. Balakrishnan,

the examination committee members, for devoting their time and energy toward the thesis.

Finally, the financial support provided by the Alberta Heritage Scholarship Fund,

the Natural Sciences and Engineering Research Council of Canada (NSERC) through

grant #0GP0105754, Industry Canada through the Intelligent Manufacturing Systems

research program grants, and the Department of Mechanical Engineering through teaching

assistantships, has been very much appreciated and has made this endeavour possible for

me.

iv

Dedicated to my Parents

V

TABLE OF CONTENTS

Page

Approval Sheet

Abstract

Acknowledgements . iv

Dedication v

Table of Contents vi

List of Tables x

List of Figures xi

Chapter 1 Introduction . 1

1.1 Control and Scheduling Structures . . 1

1.2 Problem Statement . 4

1.3 Research Objective . 5

1.4 Research Approach 6

1.5. Organization of the Thesis 8

Chapter 2 Literature Review . 10

2.1 Introduction . 10

2.2 Control Structures 11

2.3 Artificial Intelligence Control Techniques 17

2.4 Artificial Intelligence Scheduling Techniques 22

vi

Chapter 3 General Overview of the Proposed Control Structure 28

Chapter 4 Scheduler . . . 37

4.1 Introduction . . . 37

4.2 Fuzzy Logic Method Sub-Module . 39

4.2.1 Background 39

4.2.2 Theory. . 40

4.2.3 Application and Example 51

4.3 Dispatching Rule Sub-Module . 64

Chapter 5 Supervisor . . . 68

5.1 General Functionality . 68

5.2 Supervisory Tasks . . . 72

5.2.1 Part Movement and Part Production . 72

5.2.2 Material Handling . . 73

5.2.3 Machine Control and Machine Status

Monitoring . . 74

5.2.4 Error Recovery . . 75

5.2.5 Virtual Reconfiguration . 75

5.2.6 Cell Buffer and Inventory Monitoring . 76

5.3 Secondary Control Level . . . 76

5.3.1 Petri Net Description . . 77

vii

5.3.2 Petri Net for Loading a Machine . 79

5.3.3 Petri Net for Operating a Machine . 82

5.3.4 Petri Net for Moving Parts . . . 84

5.3.5 Petri Net for Unloading a Machine . 84

Chapter 6 Implementation . . . 88

6.1 Introduction 88

6.2 Object Oriented Class Hierarchy . . 89

6.2.1 System Class . . . 90

6.2.2 Cell Class . 92

6.2.3 Equipment Class . 94

6.2.4 Tool Class . . 96

6.2.5 PartType Class . . 96

6.2.6 Part Class . . 99

6.2.7 Class Linkages . . 101

6.3 Methods and Message Passing . 103

6.3.1 Supervisor Methods 103

6.3.2 Scheduling Methods . . . 104

6.3.3 Fuzzy Logic Class Methods . . 105

6.4 Simulation Model . . . 106

6.5 Operation of the Simulation . . . 108

Chapter 7 Case Studies

7.1 Introduction

7.2 Case 1: Fuzzy Logic Base Case . 115

7.3 Case 2: Alternate Process Plan . . 125

7.4 Case 3: Large Cases . . . 128

7.5 Case 4: Finite Buffer Limit Study . . 135

7.6 Case 5: Machine Breakdown and Repair . 143

7.7 Case 6: Reconflgurable Case . 147

7.8 Case 7: Robot Movement . 149

7.9 Case 8: Weight Optimization . 151

Chapter 8 Conclusions 160

8.1 General Discussion . . . 160

8.2 Supervisor Discussion . . 161

8.3 Scheduler Discussion . . . 163

8.4 Original Contribution . 166

8.5 Final Summary . . 168

8.6 Future Research . . . 169

References . 171

Appendix A: Equipment Class Instances. . . 178

Appendix B: Tool Class Instances . . 181

Appendix C: PartType Class Instances . . 184

ix

LIST OF TABLES

Table 4.1:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.8:

Table 7.9:

Table 7.10:

Table 7.10:

Centroid Calculation Values

Base Case Machine Data

Base Case Part Data

Base Case Rule Comparison

Alternate Process Plan Case Machine Data

Alternate Process Plan Case Part Data

Alternate Process Plan Case Rule Comparison

Large Case 1 Machine Data

Large Case 1 Part Data

Large Case 1 Part Data (continued)

Large Case 2 Machine Data

Large Case 2 Part Data

Large Case 2 Part Data (continued)

x

Page

63

• 119

120

121

126

127

129

129

130

131

132

133

134

LIST OF FIGURES

Figure 3.1: Cell Controller & Interactions

Figure 3.2: Supervisor and Scheduler Sub-Modules

Figure 3.3:

Figure 4.1 a:

Figure 4.lb:

Figure 4.2a:

Figure 4.2b:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 5.1:

Figure 5.2:

Figure 5.3

Figure 5.4:

Figure 5.5:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:

Class Hierarchy

Crisp Set of Temperature.

Fuzzy Set of Temperature

Correlation Minimum Encoding

Correlation Product Encoding

Fuzzy Logic Rules

Fuzzy Logic Membership Functions

Application of Fuzzy Logic Methodology

Primary Control level

Petri Net for Loading a Machine

Petri Net for Operating a Machine

Petri Net for Moving Parts

Petri Net for Unloading a Machine

An Instance of Class 'System'

An Instance of Class 'Cell'

An Instance of Class. 'Equipment'

An Instance of Class 'Tool'

An Instance of Class 'PartType'

xi

Page

30

32

36

42

42

48

48

53

57

60

70

80

83

85

86

91

93

95

97

98

Figure 6.6:

Figure 6.7:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 7.5:

Figure 7.6:

Figure 7.7:

Figure 7.8:

Figure 7.9:

Figure 7.10:

Figure 7.11:

Figure 7.12:

Figure 7.13:

Figure 7.14:

Figure 7.15:

Figure 7.16:

Figure 7.17:

An Instance of Class 'Part' . 100

The Overall Class Structure . 102

Manufacturing Cell . . 112

Screen View at SimTime = 32 Minutes 117

Screen View at SimTime = 33 Minutes 118

Inventory Levels, Part Types D,H,I, and J 123

Buffer Level, VertMill2 . 124

Comparison of Number of Late Parts 136

Comparison of Maximum Part Lateness 137

Comparison of Average Tardiness 138

Comparison of Average Production Times . . 139

Comparison of Average Maximum Machine

Buffer Levels . 140

Buffer Levels of Drilil 144

Buffer Levels of Drill2 145

Inventory Levels (Drilli Normal and Broken) 146

Inventory Levels for Reconfigurable Case . 148

Screen View of Robot Action at SimTime = 66 Minutes 150

Effect of Scheduler and Process Step Weight

Modification on Number of Late Parts 153

Effect of Buffer Level and Process Step Weight

Modification on Number of Late Parts . 154

xl'

Figure 7.18:

Figure 7.19:

Figure 7.20:

Figure 7.21:

Effect of Scheduler and Buffer Level Weight

Modification on Number of Late Parts

Effect of Scheduler and Process Step Weight

Modification on Average Production Time

Effect of Buffer Level and Process Step Weight

Modification on Average Production Time

Effect of Scheduler and Buffer Level Weight

Modification on Average Production Time

155

156

157

158

1

CHAPTER 1

1. INTRODUCTION

1.1 CONTROL AND SCHEDULING STRUCTURES

The current trend of manufacturing is towards the production of a greater variety

of parts in smaller volumes which is in direct contrast to the high rate, high volume, fixed

production facilities of the past. Business trends towards shortened product life cycles,

greater product customization and the need for a larger variety of products is driving

production facilities away from fixed automation plants. As a result of these trends, the

requirement for increased flexibility in manufacturing systems and control structures has

been steadily increasing. Many of the facilities operating today utilize flexible

manufacturing systems (FMS) which are integrated manufacturing systems consisting of

a variety of automated pieces of manufacturing equipment linked together with

communication and material handling systems. These present day flexible manufacturing

2

systems are often controlled through a highly integrated and interconnected computer

controlled hierarchical structure. It has recently been suggested that as the current

hierarchical control structures grow in size and complexity, they may not be able to

effectively provide the necessary flexibility to deal with the degree of changes in product

demand and product variety that are presently occurring. As a result, several authors have

advocated the use of heterarchical control structures which purport to have increased

flexibility and fault tolerance (Hatvany [13], Duffie and Piper [8], Jones and Saleh [17]).

Furthermore, the degree of complexity of the control and scheduling problems have

prompted a number of developments in the area of intelligent control and scheduling.

These developments, which promise to ultimately improve the flexibility and power of

manufacturing systems, have involved the application of expert systems (Wu and Wysk

[43]), neural networks (Cho and Wysk [3]), fuzzy logic (Custodio et al. [6]) genetic

algorithms (Herrmann et al. [14]) and Petri nets (Huang and Chang [15]). There are still,

however, many difficulties that need to be overcome before a highly flexible, autonomous

and possibly intelligent control system can be realised.

One area of concern is the difficulty in dealing with disruptions in the

manufacturing environment. Many of the existing and proposed control structures are

very rigid and therefore encounter difficulties when things do not run smoothly.

Schedules which are often developed under static shop floor conditions fall when those

shop floor conditions change unexpectedly. Since there will always be dynamic changes

in the manufacturing environment, systems for real time control and scheduling need to

3

be developed which can account for and deal with these changes and disruptions. The

intent of this particular research is to develop a control package consisting of supervisory

and scheduling aspects, which has the ability to deal with disruptions in real time and also

which maintains a high degree of flexibility. The ultimate vision is to have a

manufacturing system where all the entities such as parts or machines are independent of

one another. These entities would possess certain knowledge, some degree of

intelligence, and would be able to work and communicate in an autonomous way with the

other entities in the manufacturing environment as they carry out their assigned tasks.

This would result in very high level of flexibility; however, care must be taken that the

overall goals of the system are still met and that they are met efficiently. It is unrealistic

to expect that the implementation of independent entities can be done in this one project,

but the concept is one of the underlying precepts used for developing the proposed control

structure. A second underlying precept was the feeling that supervision and scheduling

are often indistinguishable. Therefore, in this work both the scheduling and supervisory

functions were, to a certain degree, blended together in a effort to find a more appropriate

way to increase flexibility and fault tolerance in the manufacturing environment.

The concept of intelligent supervision and scheduling has also been applied in this

project. The idea of an intelligent system implies reasoning and the ability to make

decisions even as conditions change. Furthermore, it implies the ability to learn, or to

improve and optimize a decision strategy. The goal of this project is to develop a system

which contains mechanisms for the system to be improved or optimized. Thus the system

4

may not follow a rigid structure or plan such as a fixed schedule or control sequence, but

rather adjusts its function according to the current situation on the manufacturing floor.

In a sense, this may make the system somewhat unpredictable; however, it will also make

the system more flexible. It is anticipated that the unpredictability can be resolved using

simulation techniques similar to those used when modelling a shop floor system with

existing discrete event simulation techniques.

One final intent of the proposed control structure is to provide a scheduling or part

dispatching methodology that considers a wider range of constraints and variables than

current dispatching rules. Dispatching rules typically have been developed to provide

optimum performance for certain parameters given a specific cell or system configuration

(Kusiak [27], French [9], Blackstone et al.[2]). Thus one dispatching rule may work very

well given one type of shop floor configuration, , but may work very poorly under a

different configuration. The goal of the proposed structure is to develop a more general,

less sensitive approach.

1.2 PROBLEM STATEMENT

It has been proposed that as current scheduling and control structures grow in size

and complexity, they become too inflexible to deal quickly and effectively with product

changes, schedule changes or disruptions in the manufacturing environment. As a result,

there is a need for the development of faster responding and more flexible real time

5 .

control structures. As well, in order to fully and successfully implement these new

control structures, current scheduling methods need to be improved to account for

multiple concurrent constraints and objectives.

1.3 RESEARCH OBJECTIVE

The overall goal is to develop a highly flexible real time control structure that can

be applied at the manufacturing cell level and which is capable of dealing with shop floor

disruptions. The intent is to build the structure with a framework able to ultimately

support autonomous intelligent entities and which will fit into a distributed manufacturing

control structure. In the cell control structure, supervisory aspects will be linked with

scheduling considerations in order to provide real time scheduling and supervision which

can account for changes in the manufacturing environment. The system will be designed

to deal in real time with deviations to existing schedules caused by machine or tool

breakages. In order to deal with breakdowns a new part dispatching method will be

developed which will have increased flexibility and will consider more aspects of the

manufacturing environment than several of the currently available dispatching methods.

The control structure will be designed to provide regular ongoing control and part

dispatching activities such as: part movement, part production, control of material

handling equipment, control of machines, monitoring machine and tool status, error

recovery, monitoring cell input and output buffers, and monitoring part inventory levels.

The system will also incorporate the concept of virtual configuration and will be designed

6

to be expandable.

The focus of this project will be at the manufacturing cell level. Specifically, the

control of one cell will be addressed where the cell consists of a number of different part

processing machines and a material handling system. The cell is considered to be buffer

constrained.

1.4 RESEARCH APPROACH

The development of the cell control structure will follow a decentralized

hierarchical. approach whereby the cell controller will operate autonomously and receive

minimal supervision from other control levels. The goal is to have cell level distributed

decision making and control throughout the shop floor while still ensuring compliance

with a common plan or overall schedule. In order to do this, a cell controller consisting

of a supervisor and a scheduler is envisioned, where the supervisor and scheduler work

together to control a manufacturing cell with minimal interference from a higher level of

control. The higher level of control would only be responsible for setting goals and not

in controlling the ongoing activities of the, cell. Within the cell controller structure, the

intention is to develop a framework whereby autonomous part and machine agents could

ultimately interact in a heterarchical environment. The supervisor will have a two level

structure consisting of a primary and secondary control level. The primary level will

address general control issues, whereas the secondary level will address more detailed

7

control. This layering will provide some modularity to the structure which will make the

inclusion of more elements into the system or modification of the system easier. The

scheduler will include conventional dispatching rules for comparison purposes but will

mainly operate using a new fuzzy logic dispatching method.

The entire control structure will be developed using the object oriented paradigm,

Smalltalk 80. The object oriented environment closely resembles the real world and

facilitates the development of individual entities which are able to contain attributes,

knowledge and reasoning abilities. A simplified discrete event simulation will also be

developed in order to test the control structure.

In order to restrict the scope of the project to a manageable level the following

assumptions have been made:

1) Each type of part is assumed to have its own process plan that has been

developed elsewhere but is available for the structure to use.

2) The system that will be modelled is a manufacturing cell consisting of a

number of machines having finite buffer capacities. Two scenarios will be

considered: a) material handling is included within the process plan and

therefore part movement is not considered, and b) material handling and part

movement are considered and controlled by the control structure.

3) It is assumed that a master schedule exits and that due dates and part

requirements have been given.

8

4) The simulation will model production of several different types of parts of

given batch sizes. The cell begins empty and the simulation runs until all

parts are completed and the cell is empty again. Since the intent of the

project is simply to test new concepts, the issues regarding simulation warm

up and statistical sampling will, to a large degree, be ignored.

5) Blocking and deadlocking issues will not be addressed except to the extent

that an error recovery message will be enabled.

6) Machine and tools will be deterministically broken to show how the control

structure resolves a breakdown. The control structure will not contain a

breakdown recovery portion but will instead perform scheduling and control

in a manner which will ensure that parts are still being produced.

7) The control structure will not be optimized to any degree, but rather

mechanisms for optimization will be developed and shown to work.

8) The fuzzy logic dispatching method will be compared to certain dispatching

rules with respect to several variables (defined later in this thesis).

9) The focus is on minimizing part production time and the number of late parts

while avoiding deadlocking problems.

1.5 ORGANIZATION OF THE THESIS

The thesis is organized into the following chapters. Chapter 2 consists of a

literature review of a number of relevant control and scheduling methods. Chapter 3.

9

provides a brief overview of the proposed cell control structure. Chapter 4 lays the

ground work for fuzzy logic and describes the fuzzy logic part dispatching method in

detail. Chapter 5 provides an in depth discussion of the supervisor structure and its

different control levels. The chapter also describes the various task requirements of the

supervisor and how they are performed. Chapter 6 begins with a brief discussion of the

object oriented programming system and continues with a fairly in depth description of

how the control structure is implemented and how data is obtained. Chapter 7 presents

a number of case studies and comparison studies which are designed to show how the

various supervisory and scheduling aspects of the control structure work, and how the

structure can be optimized. Chapter 8 provides some additional discussions about the

control structure, presents some conclusions, and discusses future research possibilities.

10

CHAPTER 2

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

The thrust of this project was to develop a new control structure which had more

autonomy and flexibility than existing structures. In order to provide a base for

comparison a number of existing techniques will be discussed which include hierarchical

and heterarchical structures, artificial intelligence techniques and intelligent agents. Many

of the papers that will be presented include concepts which were used in this project's

control structure; those that do not, have been included for completeness and continuity.

Ultimately, fuzzy logic was chosen to enable part dispatching, and a hierarchical control

structure incorporating Petri nets was developed which supported the concept of

intelligent objects (agents). The reasoning behind these choices will be left for discussion

in later chapters, since this chapter is presented more as a grounding of available

11

techniques and concepts. The chapter will begin with an overview of some of the

research done on general control systems, followed by discussions on the use of artificial

intelligence in control systems and scheduling.

2.2 CONTROL STRUCTURES

Although the intent of this project is to move away from a centralized hierarchical

control structure and to develop a more autonomous decentralized heterarchical structure,

much work has been done on hierarchical structures and it is useful to review some of

these efforts since they have provided important insights which can aid in the

development of future systems. Several models have been developed to represent this

hierarchical control structure, however, the most common model in use today is the

Computer Integrated Manufacturing (CIM) reference model which contains the following

five levels (from top to bottom): factory, shop floor/system, cell, workstation, and

equipment (Joshi and Smith [18], Kals [19], Jones and McLean [16]). This type of

structure allows for the development of an ever increasing detailed degree of control from

the factory level down to the equipment level while maintaining a uniform plan of action.

Some of the control systems which fit neatly into a hierarchical control structure

of this type are those developed using Petri nets (PN). Kasturia et al. [22], modelled a

cell controller using coloured Petri nets (CPN) which consisted of five separate blocks

entitlçd: process orders, scheduler, dispatcher, system status and material manager. These

12

blocks get the order requests from the shop control level, schedule the orders according

to the system status and material availability, and then dispatch the final schedule and

material to the appropriate workstation for processing. The beauty of modelling a control

system as a PN or CPN lies in the ability to mathematically analyze the model to ensure

all operations are valid and that the system is deadlock free before actual implementation.

After analysis, the CPN described above was used for real time control and scheduling

of a cell consisting of a CNC (computer numerically controlled) machining workstation

and an assembly workstation.

Huang aid Chang [15] also sought to control a manufacturing cell using PNs and

developed a coloured timed Petri net (CTPN) for this purpose. Their CTPN is

characterized by inhibitor arcs and interrupt arcs where error diagnosis and concurrent

processing can be carried out in deterministic time. The CTPN models the CNC

machines and robots within a cell, controls the loading, unloading and processing of parts,

deals with error recovery, and drives the overall simulation. A cell having a capacity of

six jobs and consisting of one CNC lathe, one CNC milling machine, one robot, and

pallet storage was successfully controlled by the CTPN model. Ten common dispatching

rules were used to dispatch the parts.

Teng and Black [39] used PNs to model a manufacturing cell consisting of three

CNC machines, two decouplers, one inspection station and a robot. A decoupler was

used to represent equipment placed in a cell to perform functions that workers would

13

normally perform such as: work-in-process inspection, inventory control, part

manipulation and intercell transportation and provides a way of incorporating human

activity into the control structure. The control system was developed to represent a pull

system such as a Just In Time or Kanban system and it is unique in that it incorporates

a number of message places which represent the pull system control. Furthermore, the

PN includes defect detection and correction as well as tool failure or machine breakdown

detection. Another PN model which deals with exception handling and breakdowns in

manufacturing cell control was presented by Hasegawa et al. [12] They discussed a two

layered PN structure consisting of a high (supervisory) layer which represents interruptive

processes permitting exception handling, and a low (operation) layer which represents

normal production processes. A mode token flows on the supervisory layer and is used

to enable an operation layer. A process token flows on the operation layer thereby

activating all detailed operations. The operation layer is connected to a place on the

supervisory layer and is active only when a mode token exists in its supervisory place.

The difference between an ordinary layered PN and this layered PN (LPN) lies in the

behaviour of the tokens. In the ordinary PN, each PN can be decomposed to the lowest

network and all networks are continuous. However the LPN is unique in that the

networks among nodes are discrete and two kinds of tokens flow on different layers.

As the above examples indicate, Petri nets can indeed be powerful tools which can

be used to successfully model, analyze and control manufacturing systems. Several

aspects of these examples have been incorporated into the proposed control structure;

14

however, in order to move away from centralized hierarchical structures, other forms of

control must also be developed.

Three systems which have been developed in an effort to move away from

centralized control structures towards more decentralized structures are: the Production

Control System (PCS) (Curtis and Tiemersma [5]) developed by the ESPRIT 809 project

(European Strategic Program for Research and Development in Information Technology);

the Production Activity Control system (PAC) (Bauer et al. [1]) developed by the ESPRIT

477 (COSIMA) project, and a production cell control structure developed at Laboratoire

Universitaire de Recherche en Production Automatisee (LURPA) (Gendreau et al. [10]).

The PCS, system which deals with shop floor control at the cell, workstation and

equipment level, consists of five main modules: scheduling, dispatching, workstation

control, station control, and monitoring and diagnosis. Production orders and process

plans are received from the system level of the CIM reference model and these are used

by the scheduler to create a work plan, which is simply a sequence of jobs to be executed

in the cell. The work plans developed by the scheduling module provide the commands

which the dispatching module uses along with shop floor status information to release

jobs to the different elements within the cell. The workstation control module supplies

the workstation with job information, coordinates the tasks of the equipment within the

workstation, and monitors the status of the workstation. The station control module

provides the same functionality as the workstation control module but its focus is on

auxiliary manufacturing functions such as tool, jig and fixture presetting, and material

15

storage. The monitoring and diagnostic module provides cell status information to other

modules and also supplies performance data to the system level. In a normally

functioning cell, scheduling is initiated when the ongoing work plan is almost finished;

however, in the case of disturbances within the cell or the insertion of a high priority

order, a rescheduling decision is taken by the cell supervisor and the scheduling module

is used to predict problems which could propagate from the disturbance. Thus the PCS

system provides a mechanism of converting system level production orders into action at

the equipment level both under normal operating circumstances and during disruptions.

The COSIMA project developed an architecture consisting of a factory

coordination (FC) level and the Production Activity Control (PAC) level in an effort to

ensure both flexibility and decentralization in shop floor control related activities. The

PAC system sits at the cell control level and appears to have many aspects in common

with the PCS. The PAC system consists of five modules: a scheduler, a dispatcher, a

monitor, movers and producers. The scheduler accepts production requirements from a

higher planning system (FC level) and develops a detailed plan which determines the

precise use of the different facilities over a specified time frame. The scheduler checks

the system capacity, generates a schedule and then releases the schedule to the dispatcher

for implementation. The main purpose of the dispatcher is to react to the current state

of the production environment and to select the best course of action in order to fulfil the

plan developed by the scheduler. The dispatcher is the controlling element of the PAC

and works in real time as it receives information, analyses the various alternatives and.

16

broadcasts its decisions to the movers and the producers. The movers and producers are

the elements which effect movement and production of the various parts and jobs. The

role of the monitor is to supply cell status information to the scheduler and dispatcher so

they can carry out their respective planning and control tasks. Overall, the PAC has

modularized the cell control structure into a form similar to the PCS.

The third control structure that will be discussed is the LURPA production cell

controller. The LURPA controller is made up of four functional components: a scheduler,

a driver, a communicator and an information collector. The cell driver manages, in real

time, the activities of each piece of equipment (or operating system) in the cell. It also

monitors the behaviour of the cell using information gathered by the information collector.

The combination of the driver, the information collector and the operating system

controllers constitute the control loop of the cell. The role of the cell scheduler is to use

the production requirements supplied by a higher control level, to build a schedule which

is then implemented by the driver. The schedule is comprised of a series of operative and

communication tasks and is developed using management production rules or sub-

contractor know-how. The communicator is used to send requests to service cells within

the workshop in order to fulfil transportation or manual preparation needs.

All three of these control structures (PCS, PAC, LURPA) have attempted to move

away from a strictly centralized control structure. They have done so by providing each

cell controller with the ability to control and schedule its own cell independently of other

17

cells while relying only upon a general schedule or production plan supplied by a higher

control level. Each cell control structure is somewhat generic and can be used for a

variety of different types of cells and this lends an aspect of portability to the control

structure. As will be shown later, the control structure proposed in this thesis mimics a

portable decentralized control structure.

2.3 ARTIFICIAL INTELLIGENCE CONTROL TECHNIQUES

Artificial intelligence (Al) techniques are playing an increasingly more important

role in the control and scheduling of manufacturing systems. Expert systems, for

example, are used to improve decision making procedures as well as to expand the

flexibility of systems and have been used by a number of authors in their control systems.

Maimon [31] developed a manufacturing system which incorporates a process sequencer

that is driven by a small expert system. The actual control structure is made up of three

hierarchical levels: a scheduler, a process sequencer, and a dynamic resource allocator.

Based on the manufacturing status and the production state of the part, the process

sequencer infers the next process, the appropriate material handling move and the

production program to down load. The process sequencer expert system consists of

knowledge base components containing facts, rules, a module which tracks the system

status and production state, and an inference engine. As a result of using the expert

system a feasible set of actions can be successfully developed both during normal

operation and in the event of failures. Thus, the control system contains its own expertise

18

and can rely less on human operators for assistance.

Domenikos and Tatsiopoulos [7] take the concept of an expert control system one

step further. They represent an entire shop floor environment using four linked

knowledge based systems (KBS) developed within an object oriented paradigm. Two

knowledge based systems contain information and knowledge related to generic shop floor

environments and specific production methods. The knowledge and experience of shop

floor management is represented in a third KBS and is used to develop general production

control requirements which are then used in a fourth KBS to create feasible instructions

mnd control rules for carrying out the management of shop floor production operations.

Their goal was to use expert system methodology to provide, in a suitable form, the

needed shop floor control knowledge to allow a supervisory control system to perform

its control tasks. This is somewhat different than the approach taken by Maimon where

the expert system was used in a more direct way to control the activities on a shop floor.

The KBOLS (Knowledge-Based On-Line Simulator) architecture developed by

Manivannan and Banks [33] also uses expert systems to directly control the shop floor

environment. The architecture includes: a knowledge based controller capable of

interacting with the shop floor and a manufacturing simulator, a shared black board data

structure, and a learning module. The knowledge based controller is especially designed

for analyzing and dealing with interruptions due to machine breakdowns and rush orders.

The controller consists of two inference engines; one whose primary purpose is to

diagnose the fault and the second which is a forward chain inferencer that searches for

19

a control decision. A black board environment is used to link the various knowledge

bases and the entire architecture uses simulation, knowledge, and learning to generate an

effective applicable control decision.

The black board environment is also used for intelligent control in a framework

called PLATO-Z (Production Logistics And Timing OrganiZer). In PLATO-Z (O'Grady

and Lee [35]) four black boards were developed to perform scheduling, dispatching, error

handling and monitoring. O'Grady and Lee used a multi-black board/actor model in order

to increase control flexibility because they felt that expert systems used on their own were

too rigid. PLATO-Z uses knowledge sources (rule bases), heuristic algorithms, and

optimizing procedures in this new environment in an effort to provide a control structure

which has a certain degree of intelligence and promotes the use of autonomous actors that

communicate through message passing.

The concept of autonomous actors leads into the possibility of having independent

agents which perform shop floor control. The black board/actor system developed by

O'Grady and Lee was implemented using an object oriented language, which appears to

be the language of choice when developing independent actor/agent systems. Since the

object oriented programming language and autonomous agents seem to go hand in hand,

they will be discussed next in the context of shop floor control.

O'Grady and Seshadri [36] presented X-Cell, a cell control system which uses

20

object oriented programming to map cell control functions onto objects. X-Cell contains

three main modules: a scheduler, an operation dispatcher and a monitor. Each of these

modules were implemented as a collection of objects, with messages sent between objects

within each module and also between objects within different modules. Several

advantages of X-Cell include: a relatively straight forward adaption to control other cells,

the provision of error handling, and, as a result of the object and message passing

structure, an ability to easily transfer the system to a multi-processing environment.

The independence of the various objects within an object oriented environment

was even more fully utilized by Maley [32], and LeFrancois and Montreuil [29]. Maley

introduces the use of negotiation between intelligent parts and intelligent workstations in

order to manage the flow of parts throughout the system. Each part maintains its own

data base containing quality control histories, performance measures, due dates, and

process plans. The parts communicate with the workstation to determine the

workstation's processing abilities, current load, historical quality control characteristics

and estimated completion time in order to decide whether to request the workstation for

processing or not. Workstations communicate with parts to determine the type of

operation to be performed, the material being used, and the part's priority. Multiple parts

undergo the negotiating procedure at the same time, but each part is in charge of its own

negotiations and continually negotiates with the workstations as the need arises in order

to fulfil its production plan.

21

LeFrancois and Montreuil introduced an object oriented knowledge representation

framework which they developed for modelling, analyzing and controlling the operations

of a workstation. The framework consists of a new class of objects called agents which

have three types of reasoning: meta-reasoning to control the inference/search reasoning

activities, a local reasoning level incorporating simple rule base procedures, and an

extended reasoning level representing the reasoning activities that cannot be performed

using simple procedures and thus require external knowledge agents to assist in the

decision making process. This framework allows LeFrancois and Montreuil to provide

objects with intelligence, and they have used the framework to assist in developing and

validating the schedule and control strategies for a rolling mill workstation.

A different type of framework was developed by Lin and Solberg [30]. Their

adaptive control and scheduling framework was based on distributed information

processing, distributed decision making, and a heterarchical market-like model. Each

functional unit of parts and resources is equipped with an intelligent (software) agent and

these agents communicate and negotiate in real time with each other to achieve mutual

agreements for task sharing. Parts and machine agents go through a multi-step

negotiating procedure before a part is committed to a machine for a certain operation.

Using this framework, the part agents make decisions based on the objective functions of

the part, while the resource agents make decisions based on the price evaluation system.

The framework is implemented in an object oriented environment.

22

So far, we have seen a number of control structures which range from rigid

hierarchical structures to very flexible structures using autonomous agents and negotiating

procedures. The current research trend appears to be towards the development of

heterarchical structures which have autonomy and self control, but also which have

direction regarding global issues. In general, this is also the intent of the current project,

but before going into a discussion of the proposed control structure, a review of

scheduling techniques is in order since scheduling plays a great role in the ultimate

control of a manufacturing system.

2.4 ARTIFICIAL INTELLIGENCE SCHEDULING TECHNIQUES

As the heading suggests, this section will focus on some of the various artificial

intelligence approaches to scheduling. A significant amount of research has gone into the

development of dispatching rules and algebraic techniques for scheduling, but these do

not appear to have the flexibility or scope to deal with the large variety of manufacturing

systems or to deal effectively with disruptions or changes. More and more researchers

are investigating the application of artificial intelligence techniques to scheduling and it

seems appropriate to review a few of those techniques here.

Expert systems have been used in many instances not only for control purposes

but also to assist in the scheduling of manufacturing systems. MADEMA

(MAnufacturing DEcision MAking) is a framework described by Chryssolouris et al. [4]

23

which supports multi-criteria decision making and scheduling in a shop floor environment.

MADEMA uses a small rule base system that performs backward chaining on rule bases

in order to select the appropriate optimization criteria from candidates such as: flow time,

wait time, operation cost, tardiness, and quality. Thus MADEMA uses an expert system

to move away from modern dispatching and scheduling techniques which optimize only

on one or two criteria, and instead considers a number of criteria which improves the

flexibility and responsiveness to change.

Wu and Wysk [43] presented an expert system, discrete event simulator

combination called MPECS (Multi-Pass Expert Control System) which also uses multiple

criteria to make scheduling decisions. The expert system looks at certain scheduling rules

and principles, current cell conditions, and a number of criteria in order to select several

good alternative scheduling rules (control policies). These rules are then fed into a

discrete event simulator for assessment and the best scheduling rule is chosen based on

a specified performance measure. As a result, the cell is scheduled and controlled in a

way that is more representative of the ongoing cell conditions. Furthermore, a learning

module has been added which allows MPECS to adapt itself to different systems and

conditions by continually modifying its knowledge base. Cho and Wysk [3] developed

1WC (Intelligent Workstation Controller) which operates along the same lines as MPECS.

However, instead of using an expert system to select alternative scheduling rules, IWC

uses a neural network. The neural network takes as input seven factors which represent

the current workstation status, and as output, a choice of eight common dispatching rules.

24

The network was trained with ninety sets of input/output training vectors using a back

propagation technique. Once trained, an input vector representing the current workstation

status is applied to the network. The network selects the two best alternative dispatching

rules, which are then fed into a discrete event simulator for evaluation and selection of

the best strategy. The 1WC appears to be robust, adaptive and was able to deal with

noisy input data. Even more significantly, once trained, the neural net decision making

was very fast and therefore may be appropriate for the real time control of manufacturing

systems. Unfortunately, as the number of input nodes, output nodes and training sets

increase, so will the training time.

Both MPECS and PVC find the one best dispatching rule based on simulation runs

which are performed periodically whenever an event occurs. Alternatively, instead of

relying on one rule, Grabot and Geneste [11] use a fuzzy logic method to combine a

number of dispatching rules in order to obtain a compromise between the satisfaction of

several criteria. Within the fuzzy logic method, a dispatching rule is expressed as two

production rules covering a low and a high range of the antecedent and consequent (input

and output) parts of the rules, where each range is represented by a membership function.

A number of dispatching rules are developed in this format and combined using fuzzy

logic techniques. As a result, criteria which are more important contribute to a greater

degree to the outcome, whereas criteria having lesser importance are still considered

instead of being completely ignored. Thus many factors and many rules can be taken into

account at one time, thereby increasing the flexibility and robustness of the system.

25

Grabot and Geneste applied their fuzzy logic procedure to a conventional job shop

scheduling problem. Custodio et al. [6], on the other hand, developed a more elaborate

control and scheduling system which combined two levels of fuzzy logic control. One

level applies fuzzy logic methodology to two aspects: 1) to routing rules in order to

choose a resource for the next operation of a part, and 2) to dispatching rules to select

the next part for processing from the parts waiting in the input buffer of a resource.

Fuzzy logic allows for the combination of all the rules and several criteria in order to

generate a decision about part movement. As a result, the movement of parts is more

reflective of the ongoing status of the shop floor and of the current decision criteria. The

second level applies fuzzy logic in a way that is similar to a more conventional fuzzy

logic controller. A fuzzy scheduler was developed which tries to maintain a specific

production rate based upon production levels and work in progress. The fuzzy scheduler

uses fuzzy logic applied to the error between cumulative production and cumulative

demand to set production rates for each part type.

The fuzzy techniques of Grabot and Geneste, and Custodio et al. allow the use of

multiple criteria and multiple rules in order to control and schedule systems which are

constantly changing. These methods more fully take into account what is happening in

the manufacturing environment than the other methods discussed so far and introduce a

way of dealing with change and uncertainty.

Before concluding the chapter, two artificial intelligence techniques which have

26

been used as search techniques to find optimum scheduling solutions will be presented:

Petri nets and genetic algorithms. Lee and DiCesare [28] presented a method which uses

a Petri net model to help find an optimum schedule. A Petri net model is constructed to

represent the manufacturing system, and is used to track all the behaviours of the system

with a reachability graph of the net. An optimal schedule is obtained by using a heuristic

search technique to guide the generation of the reachability graph and to find an optimal

path from the initial marking of the Petri net to the final marking. The schedule that is

developed is an ordering of initiations and activities; therefore, the schedule is event

driven, rather than time driven. The method they have developed appears to be quite

powerful and can handle routing flexibility, shared resources, lot sizes and concurrency

as well as being able to avoid potential deadlocks.

Genetic algorithms have also been used by several researchers as search techniques

to search for good schedules. Uckun et al. [42] describe a number of ways of arranging

the chromosomes to include machines, machine schedules, job orders, or process plans.

They use a schedule builder to create legal schedules after factoring in constraints such

as machine set-up and down times. The genetic algorithm is used to search through these

chromosome arrangements to achieve an optimum schedule with respect to machine

utilization and work in progress criteria. In contrast to the search proposed by Uckun et

al., Herrmann et al. [14] utilizes existing dispatching rules to devise a schedule. The idea

is to assign a separate dispatching rule to each machine and it is the task of the genetic

algorithm to search the space of machine rule combinations to ultimately find the

27

optimum scheduling rule for each machine. This technique provides better local and

global results than obtained through the use of only one fixed dispatching rule for all

machines.

This then concludes the literature review and provides the basis from which ideas

were drawn during the development of the proposed control structure and fuzzy logic

dispatching method. Throughout the project, the underlying theme has been to

incorporate autonomy and flexibility within a real time control structure. In developing

the proposed structure, several new unique ideas have been incorporated into the control

structure along with new ideas which are extensions of existing supervisory and

scheduling concepts.

28

CHAPTER 3

3. GENERAL OVERVIEW OF THE CONTROL STRUCTURE

The overall primary goal of this research was to develop a real time control

structure which has flexibility in dealing with disruptions, exhibits expandability, and will

ultimately support the concept of autonomous agents. Ideally the control structure will

also be portable in the sense that the structure could be used for a variety of different

system configurations or even over a range of different control levels with only minor

modifications. The primary focus of this particular piece of work was to develop a

control structure specifically for application and testing at the manufacturing cell control

level.

It is often difficult to discern the difference between scheduling and control on a

shop floor and this difficulty is very apparent at the cell level. At progressively finer

levels of control, such as at the equipment control level, scheduling is less of a concern

29

since the issues are more often that of providing sequential control, and on controlling

how actions can be accomplished rather than when. In direct contrast to this, at the cell

level the control structure must take timing into account, not only within the cell but also

when interacting with other cells or even the entire shop floor system. For example, a

schedule for the shop floor dictating due dates and order sizes will directly translate into

certain scheduling requirements for a given cell, and therefore scheduling part flow within

a cell to meet these requirements is an important issue. Unfortunately, there is a large

overlap between true scheduling, part dispatching and the control of the various elements

within the cell such as part processing machines, material handling systems, or the parts

themselves. Bearing this overlap in mind, a control structure was developed which was

loosely broken into two sections: a scheduling section, ind a supervisory section as shown

in Figure 3.1. This is a somewhat more compact control structure than those proposed

by Curtis and Tiemersma (PCS), Gendreau et al. (LURPA), or Bauer et al. (PAC);

however, as will be discussed more thoroughly in chapter 5, the activities performed by

the dispatchers, drivers, monitors etc. in the control structures mentioned above are

incorporated into the proposed structure. Even though these two sections exist in the

proposed structure, the problem of cell control involves both scheduling and supervision

operating in concert and therefore throughout this work there may not be a crystal clear

distinction made between these two processes. In fact, it is the blending of scheduling

and supervision that allows for a unified approach to cell control. With these thoughts

in mind, the general overall control structure will now be presented; further details of the

structure will be given in sections 4, 5 and 6 on scheduling, supervision, and

30

Figure 3.1: Cell Controller & Interactions

I Communication
I I With System 4 .4 Controller

Cell
Controller

Pallet Pick-up

Scheduler

Cell Input

Buffer Status

Supervisor

Data
Base

 Human
Operator

Robot
Controller

Robot
Trajectory
Planner

CNC Controller

V

Robot Movement
Code Generator

Robot
Trajectory
Data Base

CNC
Machine Code
Data Base

I—
CNC
Motion
Planner

CNC Code
Generator

4-
External Source
(Such as SmartCAM)

31

implementation respectively.

The main responsibility of the scheduler is to generate priority levels for the parts

waiting in the input buffer of a given machine. The level of priority of a part dictates

when that part will be selected for processing. The scheduler is made up of two sub-

modules (Figure 3.2), one of which contains a series of common dispatching rules, and

the other which contains the fuzzy logic part dispatching method. Conceptually, both

sub-modules accomplish the same thing, that is identifying which part within an input

buffer should be processed next; however, they are fundamentally different. Dispatching

rules typically have been developed to provide optimum performance for certain

parameters given a specific cell or system configuration (French [9], Kusiak [27],

Blackstone et al. [2]). Thus, one dispatching rule may work very well given one type of

shop floor configuration, but may work poorly under a different configuration. In fact,

a change in the part mix may positively or negatively affect the ability of the dispatching

rule to effectively schedule parts even if the system configuration has not changed. The

fuzzy logic method attempts to provide a more general, less sensitive approach. The

method looks at a wider range of parameters and incorporates a number of different rules

as it develops priority levels. More importantly, the parameters under consideration, and

the guiding rule structure can be easily changed within the method. Thus if there are

certain aspects of a given shop floor which are unique, that uniqueness can easily be

incorporated into the fuzzy logic method. So, instead of having one dispatching rule

which may not apply for all cases, the fuzzy logic method allows customization of the

32

Figure 3.2: Supervisor and Scheduler Sub-modules

Fuzzy Logic Method

Scheduler

Dispatching Rules

Supervisor

Control
and
Monitoring
Tasks

Primary
 I Control

Level

$
Secondary
Control
Level

33

rule base which gives it the flexibility to schedule under a greater variety of

circumstances. Dispatching rules have been incorporated into the proposed scheduler

mainly for comparison purposes in order to evaluate the fuzzy logic method.

The supervisor provides the main controlling element of the cell controller and as

a result it has many tasks to perform. These include: part movement and part production,

control of material handling, controlling the various machines, monitoring machine and

tool status, error recovery, implementing virtual cell reconfiguration when necessary,

monitoring cell input and output buffers, and monitoring part inventory levels. The

general mode of operation of the supervisor is shown in Figure 3.2 which shows the

interconnection between the supervisor's control and monitoring tasks, the primary control

level, and the secondary control level. As events occur within the shop floor, the

supervisor recognizes these events through the monitoring tasks and then initiates the

appropriate control actions which are fulfilled through the use of the primary and

secondary control level structure. The primary control level is the key link between the

cell controller and the elements within the cell, such as the various machines. When a

control task is required, the supervisor activates the primary control level, which in turn

activates the secondary control level. The secondary control level is responsible for the

more detailed control actions, for example: the planning and implementation of the actual

robot movement.

The supervisor and scheduler have been developed to work on a cooperative basis

34

within a modular cell control structure. The cell controller works autonomously to

produce parts and to deal with issues within the cell. It is guided by goals set by

alternate control systems rather than being controlled directly by those systems. The

scheduling and supervisory methods used are generic and do not hinge upon the type of

machines in the cell or on what type of cell it is. The structure will work equally well

for a machining cell, assembly cell, inspection cell or combination. As will also be

discussed later, the structure has been developed to ultimately allow parts and machines

to interact and operate more autonomously.

The control structure has been implemented using the object oriented programming

paradigm. The reasoning behind this choice is several fold. First, this paradigm most

closely resembles the real world in the sense that the real world consists of individual

unique objects which have their own attributes, may retain knowledge, and also may have

varying degrees of intelligence or reasoning abilities. Second, in order to have the

proposed control structure achieve maximum flexibility, the objects within the system

should have a certain degree of intelligence and an ability to reason. The object oriented

paradigm achieves both these goals because it allows the representation of real world

objects and has facilities to assign attributes, knowledge and reasoning abilities to those

objects. Although the storage of knowledge and reasoning does not naturally exist in

inanimate objects such as machines or parts, these aspects can be artificially implemented

using current computer technology. The object oriented environment is also structured

to perform communication using message passing between objects. The objects could

35

then communicate with each other and therefore, in a small way, direct their own

destinies according to certain rules.

The overall object oriented class structure of the control system is shown in Figure

3.3 and shows the inheritance of the various classes. Seven new classes; System, Fuzzy

Logic, Cell, Equipment, PartType, Part and Tool have been developed and placed under

the Smailtalk 80 Magnitude class. Separate objects are created as unique instances of

each class and it is these objects which communicate with each other in the system in

order to perform the various scheduling and supervising tasks. As more objects such as

parts or machines are required, the object oriented programming structure simply allows

the creation of new instances of each particular class. These instances then inherit all the

appropriate attributes, knowledge and reasoning from the class structure. A more detailed

discussion of each of the classes is given in chapter 6 on implementation. In the

following two chapters more detail will be provided about the scheduler and supervisor

functions.

36

Figure 3.3: Class Hierarchy

Magnitude

System

Fuzzy
Logic Cell

Equipment

PartType

Part

Tool

37

CHAPTER 4

4. SCHEDULER

4.1 INTRODUCTION

The main thrust of the current work, and indeed the main area of original

contribution, is contained within the scheduler module of the control structure. Here,

fuzzy logic has been used in a unique way in order to provide a scheduling methodology

which can consider many aspects of the shop floor while developing a schedule in real

time. In the context of the current control system, the primary responsibility of the

scheduler is to generate priority levels for parts waiting in the input buffer of a given

machine. This is done using either the fuzzy logic method scheduling sub-module or the

dispatching rule sub-module (see Figure 3.2). Since the dispatching rules have been

included in the scheduler module mainly for comparison purposes, the bulk of the

discussion will centre around the fuzzy logic method and its application, with only a short

38

review of the various dispatching rules.

One of the main objectives of this thesis was to develop a control structure which

can deal with disruptions and breakdowns within the system. Significant portions of the

supervisor structure address this objective directly but one of the keys to implementing

a complete control scheme is. to ensure a flexible scheduling technique. Various

approaches have been applied to job shop scheduling including mathematical

programming (French [9], Kusiak [27]), dispatching rules (Panwalkar and Iskander [37],

Blackstone et al. [2]), neural networks (Cho and Wysk [3]), genetic algorithms (Herrmann

et al. [14]), and expert systems (Chryssolouris et al. [4], Maimon [31], Wu and Wysk

[43]); however, many of these techniques ultimately only develop a fixed schedule and

are therefore inflexible. Although a number of different methods are used to optimize

the final fixed schedule, with the most elaborate case being the use of a genetic algorithm,

few of the fixed schedules account for unexpected changes or disruptions on the shop

floor. Wu and Wysk, and Cho and Wysk, on the other hand, perform ongoing

optimization techniques which develop very short term fixed schedules that are used only

for a short finite time and are then updated as required if the system status changes. In

this way, their systems account for disruptions in the shop floor. The proposed control

structure has also been designed to deal with shop floor disruptions, but does so on a real

time basis and incorporates fuzzy logic part dispatching to accomplish that task. The

fuzzy logic dispatching method currently incorporates rule bases related to machines, such

as machine buffer levels, and to parts, such as part inventory levels, due dates and process

39

plans. The intent of the method is to incorporate a wider range of scheduling issues than

those considered by most current dispatching rule systems. Basically what the fuzzy logic

dispatching module does is to assign priority values to each part in a manner which

reflects current shop floor conditions, and as the shop floor conditions change, so do the

relative priorities of the parts. The details of how this is accomplished using fuzzy logic

will be discussed next.

4.2 FUZZY LOGIC METHOD SUB-MODULE

4.2.1 Background

When conditions in the shop floor change and the current schedule in use no

longer reflects an accurate plan, then it is often up to the individuals on the shop floor

to make corrections to the schedule to allow part manufacture to continue. A shop floor

can be a very complicated place; however, experienced individuals frequently have clear

ideas about the best course of action under the given conditions. These individuals may

even be able to formalize the reasoning behind their actions into a series of linguistic

rules which could ultimately be used to help control and schedule the system. Using the

linguistic rules developed by the individuals and applying them in. an automatic and

formal way is one of the precepts of fuzzy logic reasoning. Alternatively, in some cases

it may be possible to model and control the shop floor using mathematical programming.

Unfortunately, it is often very difficult to represent a shop floor mathematically and in

40

those cases where the modelling can be successfully accomplished, the system often

cannot be analyzed in a realistic time frame. Fuzzy logic methodology operating on

linguistic rules may represent an avenue for real time control which allows the use of

individuals' knowledge and avoids some of the difficulties involved with mathematical

programming techniques. It was on this premise thatthe application of fuzzy logic to

shop floor control and scheduling was undertaken. Before discussing the actual method

of application, a review of fuzzy logic theory is in order.

4.2.2 Theory

The concept of fuzzy logic has been around for many years but it was Professor

Lotif A. Zadeh who, in 1965, was the first to introduce mathematical tools which now

allow imprecise and qualitative information to be expressed in more exact ways (Kaufman

& Gupta [23], Zadeh [44]). Essentially, the idea of a fuzzy set was developed and

introduced as a generalization of the ordinary notion of a set (Tong [40]). This basic idea

has been used in many ways; however, it will be discussed here in a form which seems

most applicable to the scheduling problem.

An ordinary set, or a "crisp set", is precise in its meaning, having a definite

transition from membership within the set to non-membership. The set has sharp

boundaries; either an element belongs to a particular set or it does not. For example,

consider the measurement of room temperature in the closed interval 15-40 °C where the

41

concern is to describe the linguistic term 'warm'. An ordinary set which defines this can

be expressed in terms of a membership function t which can take values of either 0 or

1. If g(T) = 0 then the temperature T is not a member of the set 'warm'; if t(T) = 1 then

the temperature is a member. This is shown graphically in Figure 4.la where the

membership function ji is represented by a rectangular function. Thus all the temperature

values between 22.5 and 32.5 C, inclusive, represent 'warm'. A fuzzy set on the other

hand allows the transition from non-membership to full membership to occur gradually

rather than abruptly. This is also known as the concept of graded membership. To

continue with the temperature example, a fuzzy set representing 'warm' might be as

shown in Figure 4. lb. The fuzzy set. uses all the values between 0 and 1 where 1

represents full enlistment into the term 'warm', 0 represents no enlistment, and values

between 0 and 1 represent partial enlistment or partial membership. Therefore the

qualitativeness of the measure (in this case temperature) is reflected as a gradual transition

to full membership.

The concept of fuzzy sets becomes important in situations where the precise

mathematical definition of a process cannot be easily formulated or easily solved. This

occurs frequently in very complex industrial processes such as batch reactors, blast

furnaces, cements kilns, and steel making (King & Mamdani [25]), and in many other

non-linear, time varying systems. While these processes are difficult to control

automatically, they are often controlled quite satisfactorily by human operators. The

operators' control strategy is often based on intuition and experience, and the challenge

42

Figure 4. la: Crisp Set of Temperature

1.0 -

15 20
I I I I

25 30 35 40

Temperature (C)

Figure 4.1b: Fuzzy Set of Temperature

Temperature (C)

43

is to represent the control strategy in a form that can be automated. While difficult to do,

it is often possible to represent the control strategy as a series of linguistic rules or

statements. Two aspects which may hinder the development of linguistic rules are: 1) the

operator actions are often inconsistent, erratic or prone to error and 2) the operator often

responds to a complex pattern of measurements and observations of unmeasurable

variables such as colour, consistency, etc. [25]. If these problems can be overcome and

linguistic rules can be developed, then the theory of fuzzy sets and algorithms developed

by Zadeh can be used to develop an automatic control structure based on the linguistic

rules. The scheduling of a shop floor can be considered to be a problem which falls into

the realm of fuzzy logic application due to its complexity and due to the difficulty of

rescheduling in short time frames in order to adjust for changes on the shop floor.

Fuzzy sets may be combined in a manner similar to conventional sets by means

of several simple operations (Zadeh [44]). Three operations will be considered here:

intersection, union, and compliment (or negation). First of all a fuzzy set is defined as

follows. "A fuzzy subset A of a universe of discourse (support set) X is characterized

by a membership function .tA(x). This function assigns to each element x € X a number

1A(x) in the interval 0 to 1 which represents the grade of membership of x in At" (Kickert

& Lemke [24]). Three basic operators which are commonly used can then be defined as

follows [44]:

a) The union of two fuzzy sets A and B of the universe of discourse X is denoted.

44

by AuB with a membership function defined by:

tAUB(X) = max [tA(x); [1B(x)]. X E X (4.1)

The union corresponds to the connective 'or' as in 'If A orB'.

b) The intersection of two fuzzy sets A and B is denoted by Ar'B with a

membership function defined by:

t(x) = mm [JtA(x); PB(X)]. x e X (4.2)

The intersection corresponds to the connective 'and' as in 'If A and B'.

c) The complement of a fuzzy set A is denoted by -'A with a membership function

defined by:

LA(X) = 1 - VA(X)' x e X (4.3)

Complementation corresponds to the negation 'not' as in 'If not A'.

For the purpose of this thesis, the notation given in Kosko [26] is used to represent

the various rules. Thus the rule 'If A and B then C', will be abbreviated by (A,B;C)

45

where A and B are called the antecedents, C is called the consequent and the comma

represents the 'and' connective.

The definition of a fuzzy set allows the representation of linguistic terms such as

'high', 'medium', 'low' or 'not low' etc. as fuzzy subsets of a given universe of discourse

such as 'temperature'. The above operators allow the manipulation of the various

antecedent fuzzy subsets within the given rule in order to develop specific results. the

next step now is to provide a mechanism whereby the results of the operations on the

antecedents within a rule can be mapped to the consequent fuzzy set. How this is done

is described as follows: "Given an implication statement 'If A then C', the implied

relation R can be expressed in terms of the cartesian product of the subsets A and C (of

universes of discourse X and Y) and is denoted by R = A x C't [25]. The implied

relation matrix is defined by:

p(x,y) = I.tAXc(x,y) = mm [1A(x); p(y)}. x E X, y € Y (4.4)

This procedure is termed correlation minimum encoding and it is one of two

commonly used encoding schemes which are used to develop the implied relation matrix.

The second encoding scheme is called correlation product encoding. In correlation

product encoding the implied relation matrix is defined by [26]:

pR(x,y) = JtA(X) (y) x E X, y e Y (4.5)

46

The implied relation matrix represents the mapping between the antecedent fuzzy

set(s) and the consequent fuzzy set. In other words, it defines the general relationship

between the inputs and the outputs of a given rule. The next question is: what will be

the output set given an input set differing somewhat from the one used to develop the

relation matrix? In other words, given the rule: 'If A then C' and the input set A', what

will be the output set C'? The implied relation R is used to infer the output set C' by the

use of the compositional rule of inference [44]:

C' = A' ° R = A' ° (AxC) (4.6)

where 'o' denotes the composition operator. The compositional rule of inference is also

known as the max-min composition relation whose membership function can be further

defined by:

= max 11[A x); R(x,y)I (4.7)
X

and which gives the value of C' as a fuzzy output set. Thus, the max-min composition

relation is used in conjunction with either correlation minimum encoding or correlation

product encoding in order to generate a fuzzy output set for a certain rule, given a unique

input , set. It should be noted that the two encoding schemes, correlation minimum

47

encoding and correlation product encoding, result in markedly different fuzzy output sets

as can be seen in Figure 4.2.

The correlation minimum encoding scheme produces clipped output sets as shown

in Figure 4.2a. The scaled output sets (Figure 4.2b), developed using correlation product

encoding, retain the same shape as the consequent sets whereas the clipped output sets

are flat at a given level. In a sense the correlation product encoding preserves more

information about the consequent set; information which may be of use when several

output sets from several rules are combined. For this reason, correlation product encoding

is often the chosen encoding scheme for current fuzzy logic applications [26].

Up to this point it has been shown how, when given a rule in the form 'If A

and/or/not B then C', fuzzy logic can be applied to provide a fuzzy output set. The final

important step is the amalgamation of all the output sets derived from the various control

rules and the determination of a unique output. Once this is presented, an example will

be given to help illustrate all the steps in the process.

Generally a control structure is made up of a series of rules, not just one single

rule and therefore a mechanism is required which incorporates all rule outputs. Consider

a set of in rules with consequents C1 (i = 1 to m) for which a set of outputs C1' (i = 1 to

m) have been developed where each output C1' is a fuzzy set having k elements. All these

outputs need to be combined and then 'defuzzified' or converted into an appropriate

48

49

singular valued output. In order to combine all the output sets C1' the total output set C

is given by:

C = w,C1' (4.8)

where wi is a non-negative weight representing the reliability or strength of the ith rule.

Two defuzzification schemes will be discussed: the maximum-membership

defuzzification scheme and the fuzzy centroid defuzification scheme. The simplest

scheme is the maximum-membership scheme which simply chooses that element y that

has maximum membership in the output fuzzy set C:

C(y) = max C()

1≤j≤k
(4.9)

The difficulty with the maximum-membership defuzzification scheme is two-fold.

Firstly, the final output set C may not have a unique maximum. There may exist several

positions of y containing the maximum or the maximum may be a broad plateau making

50

a unique choice of Ym impossible. This problem affects correlation-minimum encoding

more than correlation-product encoding since the minimum encoding scheme clips off the

final output set C resulting in larger flat plateaus. Secondly, the maximum-membership

scheme ignores much of the information in the final output set C. Thus if C is highly

asymmetrical, the maximal value may not be a true representation of all the rules. For

example there may be one rule which produces a maximal value near the low range end

of the output set C which is only slightly larger than all other values across the entire

range of output set C. Using the maximum-membership scheme a defuzzified output

taken from the low range end of the output set C would be chosen which ignores the

affect of the remaining slightly weaker values. The defuzzified output would therefore

be skewed towards the low range end as a result of the one slightly stronger rule while

at the same time ignoring the effect of the other slightly weaker rules. As a result, the

defuzzified output does not accurately reflect the affect of all the rules but only accounts

for the strongest rule.

To help overcome these problems the fuzzy centroid defuzzification scheme is

used. In this scheme the centroid of the entire C final output set is determined and this

value is used as the singular output. The centroid calculation is determined as follows:

y1 C(y)
= J=1

k

(4.10)

51

All the elements are now in place for the application of fuzzy logic, but before

proceeding with an example, a summary is in order. Given a rule in the form: 'If A and

B then C, the antecedents A and B can be evaluated using the 'minimum' operator to

generate a combined antecedent set. Using correlation minimum encoding or correlation

product encoding, an implied relation matrix can be developed which then defines the

mapping between input and output fuzzy sets for the given rule. The relation matrix is

used within the compositional rule of inference in order to provide output values for

specified input values of the fuzzy sets. The result of applying the compositional rule of

inference is an output fuzzy set. It should be noted that the entire encoding and

compositional scheme can be represented graphically (as will be shown in the following

example). Finally all the output fuzzy sets for all the rules are summed and an

appropriate defuzzification scheme is employed to get a single unique output.

4.2.3 Application and Example

Fuzzy logic has been applied in this thesis to the problem of part dispatching.

More specifically, the fuzzy logic methodology has been used to calculate a priority level

for each part in the input buffer of a given machine. Thus when the machine wishes to

process a new part, it can review the priority of each part in the input buffer and select

the part with the highest priority as the part to be processed next.

Of primary importance for the success of the dispatching algorithm was the

52

development of the rule structure. The rule base currently in use can be loosely divided

into three rule sets: scheduling, machine considerations, and part considerations. These

three rule sets were selected mainly because there are certain aspects which are often

recognized as scheduling functions such as due dates and inventory levels, whereas other

aspects are most often associated with machines such as buffer control and finally some

aspects such as the process plan of parts can be associated mainly with parts. Therefore

at this stage three separate sets of rules have been implemented to cover all three of these

areas. It should be noted that the current rule set represents a starting place for the

scheduling algorithm and is expected to grow and be refined as work continues in this

area.

The first set of rules deals with the relationship between inventory level and due

date; the goal being to minimize part lateness while meeting inventory levels. Sixteen

rules have been developed and are represented in matrix form as shown in Figure 4.3.

Inventory level is given across the top of the matrix, time remaining is given along the

side, and the priority level is given inside each element of the matrix. A rule is read as

follows:

.Rule 5: If inventory level is very low and time remaining is low then priority is

high.

or in condensed form: (VL,LO;HI)

53

Figure 4.3: Fuzzy Logic Rules

Inventory Level

VL LO ME HI

Time
Remaining

VL

LO

ME

HI

VL = very low
LO = low
ME = medium
liE = high

1

HI

2

HI

3

HI

4

HI

5

Ill

6

ME

7

ME

8

ME

9

ME

10

ME ME LO

13

LO

14

LO

15

LO

16

VL

Buffer Level

VL LO ME HI

1 2 3 4
HI ME LO VL

Process Plan Step

VL LO ME HI

1 2 3 P'4

VL LO ME HI

Priority
Level

Priority
Level

54

These sixteen rules develop a scheduling priority level which will be used in

conjunction with the other rules to determine a total part priority level. There are no

specific guidelines in the literature for defining the control rules of a fuzzy logic system,

and therefore the sixteen scheduling rules shown here represent the application of intuition

coupled with a certain degree of refinement through testing. They likely do not represent

an optimum selection of rules; indeed an optimum set of rules will undoubtably be

different for different shop floor configurations and part process plans. Optimization of

the system will be discussed in greater detail in later chapters.

Four rules were developed to help control the buffer level of the machines. This

rule set is a "look ahead" rule set in that the buffer level of the machine after the current

machine in the process plan is considered. Thus if the next machine's buffer is close to

full, the priority of the part will be reduced and a part not going to that machine is more

likely to be selected.

Four rules were also developed to account for the process plan of the part. Here

the degree to which the part has completed its process plan is considered, and is used to

keep the part progressing through the shop floor as quickly as possible. This rule seems

to help reduce the early onset of machine blocking and deadlock for this particular control

structure. The three rule sets (scheduling, buffer and process plan step) were each

weighted and combined to provide a final priority level for each part.

55

A second important aspect when developing a fuzzy logic control scheme is the

development of the fuzzy membership functions. Again there are no specific guidelines

for the development of membership functions; however, the use of triangular or

trapezoidal membership functions seem to be the most common. Triangular functions

were used in this application because they would provide a tighter and more unique

output function. The triangular functions can be defined by a triplet J1A = (a,b,c) [23]

where:

I.

[La

=0
= X
b

- C
c

=0

if < a,

f a ≤ x ≤ b,

if b ≤ X ≤C,

if > C

(4.11)

and where x represents the current antecedent levels of time, inventory level, buffer level,

process plan step, or the consequent level of priority, and where a represents the location

of the left base of the triangle, b the location of the vertex and c the location of the right

base.

The overall range of the membership function is chosen to provide a steep

transition between each fuzzy set while still allowing room for each antecedent or

consequent fuzzy subset. It has also been suggested, as a rule of thumb, that the fuzzy

56

sets should overlap by approximately 25% [26]. The designations VL, LO, ME and Iii

are somewhat arbitrary, but are commonly used as are designations such as NB (negative

big), NS (negative small), PB (positive big) etc. The antecedent and consequent

membership functions which are used in the current application are shown in Figure 4.4.

Once the rule sets and the fuzzy membership functions have been defined, a

solution methodology may be applied. The method used in this work consists of six

separate steps:

1. determine the value of the variable in question

2. fuzzify the variable

3. for each rule determine each antecedent fuzzy value

4. for each rule determine the fuzzy output set

5. calculate the net effect of all the fuzzy output sets

6. defuzzify the total output set.

By way of example, the methodology will be more clearly described. The

example will be based on the following system configuration:

inventory level: - current level at 15 parts

- goal level is 100 parts

-3 -1 1 3 5 7 9 11 13 15 17 19 21 23

Consequent Membership Functions

57

Figure 4.4: Fuzzy Logic Membership Functions

Pa

1.0

/ 0.0

3 5 7 9 11 13 15 17 19 21 23

Antecedent Membership Functions

-3 -1 1

VL LO ME HI
(.3,1,5) (3,7,11) (9,13,17) (15,19,23)

x

Triangular fuzzy membership functions are each defined by a
triplet Pa = (a,b,c) where:

a° ifx<a,

-- ifa<x<b
b - a - -

c-x
3b ifb<x<c

=0 ifx>c

and x represents the current
antecedent level of time,
inventory level, buffer level,
or process plan step, or the
consequent level of priority

VL = very low
LO = low
ME = medium
HI = high

ME LO VL
(3,7,11) (9,13,17) (15,19,23)

x

58

time remaining: - current level at 27 minutes

- due date is 60 minutes

buffer level: - current level at 4 parts

- finite buffer limit is 10 parts

process plan step: - current step is step 1

- process plan size is 4 steps

Step 1: determine the value of the variables

inventory level = 15 parts

time remaining = 27 minutes

buffer level = 4 parts

process plan step = step 1

Step 2: fuzzify the variables

The variables are fuzzified using the following general formula:

fuzzy level ((variable level \ goal level) (membership function range) + i) rounded (4.12)

59

Based on a fuzzy range of 1 to 19, the fuzzy levels are calculated as follows:

fuzzy level of inventory = (((15/100) (19-1)) + 1) rounded = 4

fuzzy level of time remaining = (((27/60) (19-1) + 1) rounded = 9

fuzzy level of buffer level = (((4/10) (19-1) + 1) rounded = 8

fuzzy level of process plan step = (((1/4) (19-1) + 1) rounded = 5

Step 3: for each rule determine the antecedent fuzzy values

Consider first the scheduling (inventory level/time remaining) rule set.

Conceptually, all rules are accessed while running the fuzzy logic algorithm but

realistically in this example only two rules are fired. Given a fuzzy inventory level of

4 and referring to Figure 4.4, one can see that a fuzzy inventory level of 4 activates two

fuzzy antecedent sets, VL (very low) and LO (low). Furthermore, the fuzzy time

remaining level of 9 activates the fuzzy set LO (low). In reality all the other sets are

activated to degree zero. Thus, referring to the rule matrix in Figure 4.3 one can see that

two rules, rule 5 and rule 6 are fired. They are (VL,LO;HI) and (LO,LO;ME).

The application of steps 3 to 6 are shown graphically in Figure 4.5. Consider first

rule 5, which has the two antecedents, VL and LO, and the consequent, HI. The fuzzy

inventory level of 4 activates the VL antecedent to degree 0.25 while the time remaining

fuzzy level of 9 activates the LO antecedent to degree 0.5. Figure 4.5 shows graphically

60

Figure 4.5: Application of Fuzzy Logic Methodology

Inventory Level Time Remaining Priority Level

-3 S 3 11 -3

Rule 6

VL

LO

\ 0.25

LO

LO

 0.5

HI

S

ME

0.25

3 :11 3
T

fuzzy level = 4

11

fuzz' level = 9

3 11

 0.5

Fuzzy Output Set •A A \

Rule 5: •1,0,LQME) VL,LO;}ll) .3 3 4 5 11.Rule 6:

Inventory Level: goal = 100 fuzzy centroid =4
current level = 15
fuzzy level =4

deadline =60 minutes
current time remaining = 27 minutes
fuzzy level =9

Time Remaining:

Priority Level: fuzzy centroid =4
priority =4

61

how the encoding and compositional inferencing scheme works. In the current scheduling

configuration, the max-min composition scheme is used in conjunction with correlation

minimum encoding resulting in a clipped output fuzzy set represented graphically as a

trapezoid. Correlation minimum encoding was chosen for this application because for the

current selection of rules and membership functions, correlation minimum encoding had

a tendancy to generate unimodal total output sets for the inventory level/time remaining

rule set. The correlation product encoding scheme on the other hand often created multi-

modal total output sets which were more difficult to analyse.

In a similar fashion it can be determined that rule 2 of the buffer level rule set is

fired and that the fuzzy buffer level of 8 activates the LO antecedent to degree 0.75.

Rule 2 of the process plan rule set is also fired and the fuzzy process plan step level of

5 activates the LO antecendent to degree 0.5.

Step 4: for each rule determine the fuzzy output set

Since the two antecedents VL and LO of rule 5 of the scheduling rule set are

combined using the connective 'and', the 'minimum' operator is used on the antecedents

thereby yielding a result of 0.25. This result is applied to the rule using correlation

minimum encoding coupled with the max-min composition scheme to generate a HI

priority level output fuzzy set ranging from -3 to 5 having a maximum value of 0.25

(Figure 4.5). Similarly for scheduling rule 6, the inventory level LO antecedent is

62

aètivated to degree 0.25 while the time remaining LO antecedent is activated to degree

0.5. The minimum operator is again used giving a result of 0.25 which is applied through

the max-min composition scheme, using correlation minimum encoding, to give a ME

priority level output scheduling fuzzy set ranging from 3 to 11 with a maximum value of

0.25.

Similarily a MB priority level output buffer level fuzzy set ranging from 3 to 11

with a maximum value of 0.75 and a LO priority level output process plan step fuzzy set

ranging from 9 to 17 with a maximum value of 0.5 were developed.

Step 5: calculate the net effect of each of the output fuzzy sets

As shown in Figure 4.5 the summation of the output sets ME and HI using unit

weights results in a total scheduling output set ranging from -3 to 11 with a maximum

of 0.5. Since there exists only one output fuzzy set for each of buffer level and process

plan step, these output sets become the respective total output sets.

Step 6: defuzzify the output set

In the current system a centroid defuzzification scheme is used to calculate the

singular output for each of the total output sets. The calculation for the scheduler total

output set is considered first. For the fuzzy output set C the y and C(y) values for use

63

in equation 4.10 are as follows:

Table 4.1: Centroid Calculation Values

yj -3 -2 -1 0 1 2 3 4

C(y3) 0 .25 .25 .25 .25 .25 .25 .5

y 5 6 7 8 9 10 11

C(y) .25 .25 .25 .25 .25 .25 0

where yj represents the distance of element j from the origiti and C(y) represents the

value of the output set at the location y. The above values when substituted into

Equation 4.10 over the entire range of k = 15 elements results in a fuzzy centroid of 4.0.

It is interesting to note that the fuzzy scheduling output set is unimodal, symmetrical and

has a sharp maximum. As more scheduling rule sets are added or different rules are

fired, this may not be the case. The fuzzy schedule centroid is then used as the part's

scheduling rule set priority value.

The buffer level and process plan step centroids are determined in a simliar

manner to be 7.0 and 13.0 respectively. The final part priority level is then calculated

as a weighted sum of the three separate rule set priority levels (centroids). The various

rule sets are weighted as follows:

64

scheduler rule set weight = 3

buffer level rule set weight = 1

process plan step weight = 1

The final priority level is then calculated to be:

final priority level = (34 + 17 + 1 13) I (3 + 1 + 1) = 6.4

The final priority value ranges from 1 to 19 where a 1 represents a high priority

to process the part and 19 represents a low priority. Once priority levels have been

generated for all the parts in the machine's input buffer, the machine selects the part with

the highest priority, the part is loaded, and processing commences.

4.3 DISPATCHING RULE SUB-MODULE

In addition to the fuzzy logic method, the scheduler is equipped with several

common dispatching rules which can also be chosen by the program operator to generate

part priority levels. Currently there are five different dispatching rules to chose from:

first in first out (FIFO), last in first out (LIFO), earliest due date (EDD), shortest

processing time (SPT), and slack per operation remaining (SlackIOPNR). The main

reason for including these five dispatching rules was to provide a basis for comparison

with the fuzzy logic dispatching method. These rules are more rigorously defined below

65

and are used to select the part which will be processed on the machine next. The

following symbols are used:

i -part

j - machine

k - operation

aij - arrival time of part i at the queue of machine j

d1 - due date of part i

zj - selection of the part for processing on machine j

Sj - set of all parts in the input buffer of machine j

Pik - processing time of operation k on part i

t - current time

q - current operation

m1 - number of operations

r1 - summation of remaining processing times

The following mathematical formulations are used for each respective rule (or

strategy) and are applied to all the parts in the machine's input buffer (Cho and Wysk [3],

Blackstone et al. [2]). The part which best fulfills the particular strategy is the one

chosen for processing.

66

FIFO:

LIFO:

EDD:

SPT:

S/OPNR:

where:

z min[a]
iESJ

z1 max[a]
EES.

Z 4- min[d]
iES1

Z,! min1p,1
jesi

ZI, 4- mint(d1-t-r) I r]
iES1

?ng

= E "
k=q1

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

This then concludes the discussion of the scheduler and its sub-modules. The

main functional aspect of the scheduler is the fuzzy logic dispatching method which uses

fuzzy logic inferencing to assign priority levels to the parts waiting in a particular

machine's input buffer. The use of fuzzy logic allows the incorporation of a number of

67

different criteria and goals and therefore considers many aspects of the cell status before

setting a priority level. The rule set and the membership functions increase the flexibility

of the system, and as will be shown later, provide mechanisms for learning or

optimization. The scheduler works closely with the supervisor in order to facilitate real

time part dispatching and cell control. A discussion of the supervisor functions will be

presented next in chapter 5. The actual implementation of the scheduler within the

Smailtalk environment as well as the procedure used to access and utilize the scheduler

will be discussed in the implementation section, Chapter 6.

68

CHAPTER 5

5. SUPERVISOR

5.1 GENERAL FUNCTIONALITY

The ongoing cell control is performed by the supervisor. In the proposed control

configuration the supervisor performs its function by monitoring the shop floor for

specific types of events, and then reacts to these events by sending messages to the

appropriate elements in the shop floor. The supervisor performs a number of tasks which,

for the purposes of this system, can be separated into two areas: supervisory tasks and

simulation tasks. The supervisory tasks are those tasks which are normally required of

a supervisory system in a real shop floor. These tasks include: controlling the machines,

monitoring for breakdowns, initiating error recovery routines, directing part movement

and part production, controlling the material handling system, initiating the scheduling of

parts, calling for part pick-up, monitoring inventory levels, monitoring the input buffer

69

and finally, virtually reconfiguring the cell when required. The simulation tasks are those

tasks which the supervisor performs to allow the functioning of the current simulation

system such as: file management, initialization, data collection and printing, and the

control of simulation time. Some of the simulation functions such as file management,

data collection, data evaluation and the printing of statistic data, would carry over into a

real shop floor situation. The supervisory tasks are discussed below while the discussions

about the control of the actual simulation and the detail on how each of the supervisory

tasks have been implemented are left for the next section on implementation.

Before going into the details of the supervisory tasks, a review of the general

structure of the supervisor is in order. The supervisor structure is comprised of two

levels; a primary and a secondary control level similar to the two level structure proposed

by Hasegawa et al. [12]. The primary control level is represented as a group of control

nodes as shown in Figure 5.1. Here ten nodes represent six part processing machines,

three different types of material handling operations, and one set of error recovery

procedures. A sequence of instructions is attached to each node and these instructions are

considered to be the secondary control level which, for the purposes of this project, have

been represented using Petri nets. The supervisory control structure was developed in

this manner in order to provide a maximum amount of flexibility. Additional machines

or processes can easily be added to the primary control level without affecting the

secondary control level underneath. Similarly, a piece of equipment can be replaced with

another type of equipment or the sequence of operations may be completely changed in

70

Figure 5.1: Primary Control Level

VertMill2

VertMilll

Parts
Movement

Error
Recovery

Unload
Machine

Load
Machine

Drilli

Drill2

TurnCentrel

'IirnCentre2

Tokens

71

the secondary level without affecting the primary control level.

The primary control level represents a key element of the supervisor control

structure. This level represents the control link between the ongoing monitoring

performed by the supervisor and the actual detailed control sequences which drive the

various pieces of processing equipment and material handling equipment. As the•

supervisor reacts to specific events within the shop floor it places tokens in the

appropriate nodes of the primary level to activate the operations at the secondary level.

Tokens of different attributes are used to designate a certain type of part or a certain type

of error. When a token is removed from a node in the primary level, the underlying

secondary control level is deactivated.

The secondary control level is the detailed control required to perform a specific

action such as loading or operating a machine. The focus of this research was not on this

level of control; however, a brief discussion of the secondary control level is included

below for completeness. The main discussion of this chapter will be on how the

supervisor completes its required tasks.

72

5.2 SUPERVISORY TASKS

5.2.1 Part Movement and Part Production

Two of the primary tasks of the supervisor are to control and direct .the movement

of parts and to facilitate part production throughout the shop floor. The application of

these two tasks occurs primarily when a machine completes, processing a part. Once a

machine has completed processing a part, the supervisor initiates a sequence of steps

which will first, move the,part to its next destination and second, initiate selection of the

next part for processing on the current machine. To determine the next destination of a

newly completed part the supervisor accesses the part's process plan. The next step in

the part's process plan dictates the next destination for the part and this destination could

either be a machine or, if the part has been completely processed, the cell's output buffer.

If the next destination is another machine the supervisor checks the machine status and

the tool status to ensure everything is functioning properly. If so, the supervisor updates

the part's process plan and has the part placed into the input buffer of the new machine.

If everything is not working properly, then the supervisor goes through a series of steps

which allows the part to be processed by an alternate machine. In the current system

configuration each machine has one alternate machine and if a tool is broken or the entire

machine is inoperative, then the part is redirected to the alternate machine. Prior to

having the part moved, the supervisor also checks to ensure there is room in the next

machine's input buffer. If so, the part is moved. If not, the supervisor makes a note

73

regarding the full buffer to ensure further blocking or deadlocking checks are carried out.

As well, if the part cannot be moved then the machine is placed into a 'full but idle'

status with the part sitting in the machine until room becomes available.

Once the recently finished part has been removed, the supervisor contacts the

scheduler to initiate the part selection process for the current machine. After a part is

selected the supervisor has the part loaded into the machine and initiates processing.

5.2.2 Material Handling

The supervisor also directs and controls the material handling system whenever

any type of part movement is required. Five part movement scenarios are currently

included in the simulation: loading a machine, unloading a machine to another machine's

input buffer, unloading a machine and placing the part in the cell's output buffer, loading

a part from a cell input buffer into a machine input buffer, and moving a part from one

machine input buffer into another. As discussed above, the supervisory control is done

at the primary control level. The supervisor simply informs the material handling system,

in this case a robot, where to move and also which part to move. As will be shown later,

the secondary control structure takes care of all the other details. The supervisor is

informed when the robot's movement is complete.

74

5.2.3 Machine Control and Machine Status Monitoring

The supervisor is responsible for controlling all the machines. This includes

ensuring that the appropriate tools and processing software are loaded and that the correct

part is on the machine. The supervisor activates the machines at the correct time and

monitors for part completion. The supervisor also monitors each machine for a change

in status such as a breakdown or a repair event. In the case of a breakdown the

supervisor coordinates removal of the part currently being processed, redistribution of any

parts from the machine's input buffer to an alternate machine and sending out an error

message indicating that the machine has broken down. The scope of the current project

did not include the implementation of a machine repair routine or of a very elaborate part

redistribution mechanism. The supervisor ensures that parts which would normally be

processed on the broken machine are redirected to an alternate machine. If a machine has

been repaired then the supervisor ensures that parts are no longer directed away from the

machine but are instead processed in the normal fashion. Tool breakages are dealt with

in a similar fashion. If a tool breaks, the parts are redirected to an alternate machine until

the tool is repaired or replaced with a new one. A mechanism for alternate tools has not

been put into place in the current simulation as it was felt that the redirection of the part

was a more rigorous problem since selection of an alternate tool would not affect part

movement or part scheduling.

75

5.2.4 Error Recovery

One important task of the supervisor is to initiate error recovery routines if things

go awry. Error recovery is an entire study in its own right and was not considered to be

within the scope of this research except to the extent of dealing with machine or tool

breakdown (which have been discussed) or system deadlocking. In the current stage of

development, if deadlock occurs the system simply generates an error message and the

simulation stops. However, it should be noted that the control structure goes through all

the appropriate steps. For example, when a deadlock error is generated, error recovery

is initiated at the primary control level and action is taken; in this case an error message

is generated. The control structure, by its design, allows the later addition of a very basic

or a very elaborate error recovery module at the secondary control level.

5.2.5 Virtual Reconfiguration

The concept of reconfigurability allows for the physical or virtual reconfiguration

of a cell or system to allow either improvement of the system or to provide some other

specific functions. One such specific function is the arrival of a special rush order which

has priority over every other order currently within the system. In this situation the

supervisor adjusts the current cell structure into a virtual structure which allows the

special order to be processed as quickly as possible. The mechanism whereby the

supervisor does this is by consistently ensuring that the special rush order parts have the

76

highest priority over all other parts within the system irrespective of due dates, process

plan issues, buffer loading or inventory levels. Once the special order has completed

processing the virtual cell is dismantled and the system operates as normal.

5.2.6 Cell Buffer and Inventory Monitoring

The supervisor must, on a continuous basis, monitor the input and output cell

buffers as well as inventory levels. As parts arrive and as room becomes available within

the system, the supervisor ensures that the parts get placed into the appropriate machine

input buffer. Similarly the supervisor monitors the cell output buffer and calls for part

pick-up when necessary. The supervisor dictates the output buffer level at which the

buffer must be emptied and also the amount removed. As parts get placed into inventory,

the supervisor updates inventory levels.

5.3 SECONDARY CONTROL LEVEL

The secondary control level has been represented using Petri nets (PN) in order

to show some of the types of operations which occur at this control level. The following

four Petri nets will be shown but not discussed in detail: loading, operating, and

unloading a machine, and moving a part. First, however, a general description of Petri

nets will be given.

77

5.3.1 Petri Net Description

Petri nets provide a powerful tool for representing and analyzing asynchronous and

concurrent systems. There are many advantages in modelling a system using Petri nets:

(1) they describe the modelled system graphically, enabling easy visualization of complex

systems, (2) they allow modelling of the system hierarchically, (3) a systematic and

complete qualitative analysis of the system is possible using well-developed existing Petri

net techniques, (4) well formulated Petri net synthesis schemes exist to aid development

of Petri nets and (5) the performance evaluation of a system is possible using timed Petri

nets (Kamath and Viswanadham, [20]). Petri nets have been used in many flexible

manufacturing system applications including cell conirol applications (Teng and Black

[39], Hasegawa et al. [12], Zhou [45], Ravichandran and Chakravarty [38], Merabet [34],

Tzafestas [41]) and are used in this application to represent the detailed control of robot

movement and machine operation.

A PN is comprised of a set of places, a set of transitions and a set of directed arcs

which connect the places to the transitions. Pictorially, the places are represented by

circles and the transitions by bars. Places may contain tokens (shown as dots) which then

create a marked PN; the 'marking' of a PN represents the current state of the system

being modelled. Generally, places represent conditions and transitions represent events

where the presence of a token in a place represents a positive (true) condition while an

empty place represents a negative (false) condition. The occurrence of an event is.

78

represented by firing a transition and this results in the movement of a token from the

input place (a place from which the arc is directed to the transition) to an output place

(a place to which the arc is directed from the transition). This results in a change in the

system state of the Petri net. A transition can be fired only if all the input places to that

transition are enabled and when it fires, a token is removed from each of the input places

and a token is added to each of the output places. A transition may also be inhibited

through the use of inhibitor arcs. An inhibitor arc from a place to a transition is drawn

with a circle at the end instead of an arrow and causes the transition to be disabled if a

token is located in the place connected to the arc.

A reachability tree can be developed for Petri nets and it describes if all markings

can be reached. If so, the Petri net is considered live. This is an important feature as it

indicates that the PN and therefore the system being modelled is free of deadlock and will

perform as modelled. Boundedness is another important property of a PN. It defines if

a section of the system is bounded; for example a buffer may be bounded in that it may

hold only a certain number of parts. All these aspects of PNs can be analyzed

mathematically or simulated, allowing systems to be analyzed in great detail. Timed Petri

net simulations have been developed which allow real time simulation of the process.

Timed PNs have transitions which are fired at appropriately timed intervals, thereby

simulating the time required for each event. Coloured PNs have also been developed to

help model several identical processes and to reduce the size and complexity of the PN.

In a coloured PN, a colour is associated with each token as well as with each place and

79

transition. The reader is referred to the above references for more detailed descriptions

of Petri nets and their applications. Next, each of the four Petri nets developed, for this

project will be described.

5.3.2 Petri Net for Loading a Machine

The PN depicting the sequence of operations for loading a machine is given in

Figure 5.2. To initiate the loading action the supervisor places a token (with a certain

attribute representing the type of part) in the "Load Machine" node of the primary level.

The robot determines the appropriate trajectory path depending upon the location of the

part pick-up point in the input buffer and the type of part (represented by the token

attribute). The methodology is as follows (refer to Figure 3.1): The part type and location

are given to the robot controller which then passes this information on to the trajectory

planner. The trajectory planner accesses the data base and if it has the appropriate path

on file it simply loads the path to the code generator, which generates the code and passes

the completed code to the controller for execution. If the path does not exist then the

trajectory planner will plan the trajectory based upon its information of the work cell, part

type and part location in conjunction with part grasping information. The work cell lay

out and part grasping information are contained within the data base and can be updated

manually or via the cell controller when it requests production of a new part.

Alternatively the part position can be determined using sensors or a vision system and this

information could be given to the robot controller. The new trajectory is then saved and

80

A = robot collision or breakdown I

problem
B = robot grasp or release problem I path ()
C = clamping or unclamping problem determined

81

passed on to the code generator for processing.

Once the path is determined, if the robot is ready (has completed all other

movements) then the robot will move to the pick-up location opening its gripper on the

way. At the pick-up location the robot will grasp the object and while doing so, the

controller will initiate action to determine the trajectory path to the set down location in

the machine. Once the trajectory is determined (similar procedure to that described

above), and the part is gripped, and the machine is ready, the robot will move and place

the part in the machine. The robot will signal the machine to clamp the part and while

the clamping is taking place the robot controller will access the trajectory path to the clear

position. As soon as the part is clamped, the robot releases the part and moves to the

clear position. The robot then signals the supervisor and places itself in ready mode.

The capital letters A, B and C at the various transitions in Figure 5.2 (and the

subsequent figures) indicate error checking (Teng and Black [39]). The error checking

Petri net is also shown in Figure 5.2 and operates as follows. First the operation token

is fired from the previous transition thereby initiating the task. If an error condition

occurs while executing the task to which the error check is attached, a token is placed

into the status place thereby disabling the task execution. The tokens in the operation and

status places now activate the error correction. When the error has been corrected a token

is removed from the status place and another is placed into the operation place thereby

enabling task execution.

82

5.3.3 Petri Net for Operating a Machine

The generic PN depicting the sequence of operations for operating a machine is

given in Figure 5.3. First the supervisor signals the machine by placing a token in the

node of the particular machine to be activated. The attributes of the token determine the

type of part to be machined. A sub task element of the supervisor gets the correct

program code and tool requirements from the data base, down loads the program to the

machine controller and initiates action to load the required tools if they are not already

loaded. Once the tools and program are loaded, the robot is clear, the machine is ready,

the part is ready and no error conditions exist, the part can be machined. The error

conditions for tool and operation work in the same manner as described above. Once the

part is machined, the machine controller informs the supervisor and places the machine

in ready mode. As noted in Figure .3.1, motion planning for the machine tools and

program code generation is in an isolated module. It is anticipated that these activities

will have occurred during the design stage at locations away from the shop floor using

appropriate software packages such as SmartCAM. The resulting code and tool

requirement specifications have then been loaded into the data base to be accessed by the

supervisor sub task element.

83

Figure 5.3: Petri Net for Operating a Machine

Supervisor Signal

load required
tools

tools loaded

get programming code from data
base & download to machine

program code loaded

part ready \ / 5_) robot clear
//

error
correction

status

Make machine operational

Machine operational

status

machine

error generation

part error
correction

error generation

machining
completed

_!.... inform supervisor

supervisor informed,
(.) CNC machine in ready

mode

84

5.3.4 Petri Net for Moving Parts

The Petri net for moving the parts is given in Figure 5.4. As before, the procedure

is initiated by placing a token in the "Parts Movement" node of the primary level. The

attributes of the token indicate to the robot controller the type of part and the procedure

followed is similar to that given above for loading a machine (except for clamping).

5.3.5 Petri Net for Unloading a Machine

The Petri net is given in Figure 5.5. The operation is initiated with a token in the

"Unload Machine" node of the primary level. This Initiates trajectory planning by the

robot controller. Once the trajectory path is determined and the machine and robot are

ready, the robot will move in to pick up the part. When the part is properly grasped the

robot will signal the controller to unclamp the part, after which the robot will move the

part to the set down location. While part grasping and unclamping is taking place, the

robot controller determines the trajectory path. Upon completion of the task the robot

places itself in the ready mode and informs the supervisor. The error detection is similar

to the method mentioned above.

This then completes the description of the supervisor module of the cell controller.

The supervisor structure, with its two levels of control, exhibits flexibility due to its

modularity and ease with which modifications may be made to either of the two control.

85

A = robot collision or breakdown
problem

B = mbot grasp or release problem
C = clamping or unclamping

problem

86

Figure 5.5: Petri Net for Unloading a Machine

Supervisor Signal (T)

Machine in
ready mode

at PU location

determine
setdown position

setdown determined

A, B, or C Error Correction

previous transition

error generation

A = robot collision or breakdown
problem

B = robot grasp or release problem
C = clamping or unclamping

problem

determine
trajectory path

 path
determined

machine
empty &
robot clear
(inform
supervisor)

move to
clear position

at clear position

V
- plan trajectory

trajectory planned

,.- robot in ready mode

A move to pick-up
location & open
gripper

at PU location

B grasp part

part grasped

signal machine
to unclamp part

machine signalled

C unclamp part

part inclamped

A move part to
setdown location

at setdown location

B release part

part released

A

inform supervisor

87

levels. The supervisor has been designed to deal with the many required tasks of cell

supervision and has also been designed to work interactively with the scheduler module.

Utilizing cooperation between the supervisory and scheduling modules allows for

coordinated real time control to take place. The actual implementation and mechanics of

the supervisor and scheduler will be discussed next. The emphasis will be on the general

operation of the controller and the linkages which drive the decision making process

rather than an in depth detailed discussion of the actual object oriented programming

code. This falls in line with the purpose of this thesis which is to develop and test new

concepts rather than very specific detailed applications.

88

CHAPTER 6

6. IMPLEMENTATION

6.1 INTRODUCTION

The proposed control structure has been implemented in the object oriented

programming environment, Smalitalk 80. The object oriented environment is particularly

suited for this type of application since it allows for a relatively straight forward

representation of a manufacturing environment as a group of objects having certain

attributes, knowledge and reasoning abilities. These objects communicate with each other

in order to fulfil their own separate functions.

This chapter will review in detail the overall class hierarchy of the cell control

structure. It will discuss where the scheduler and controller methods are imbedded, and

it will also describe the methods which exist in the fuzzy logic class structure and how

89

they are accessed. Finally the chapter will conclude by giving a description of the

simulation which is driven by the control structure and will also present an overview of

the data gathering facilities.

6.2 OBJECT ORIENTED CLASS HIERARCHY

As shown in Figure 3.2, the class hierarchy is made up of seven new classes:

System, Fuzzy Logic, Cell, Equipment, PartType, Part, and Tool, all of which have

been placed under the Smalitalk 80 Magnitude class. The class hierarchy has been

developed in this manner in order to use the concept of inheritance as much as possible,

thereby allowing attributes and methods to be passed down to classes lower in the

hierarchy. The hierarchy has also been developed to represent the physical organization

of parts, equipment, and cells within a manufacturing system as realistically as possible

and although the main thrust of this work is cell control, the class hierarchy was

developed, in three levels to include three separate groups of elements: system, cell, and

equipment. Including a system class in the hierarchy provides a place where global

decisions can be made and passed down to the various cell controllers. Each cell

controller, as will be discussed in more detail later, is imbedded mainly at the cell level

but interacts heavily with equipment; hence the inclusion of cell and equipment classes.

The class hierarchy can be thought of as a mechanism to separate the system, cell,

equipment, and part objects, and provide containers in which to place unique knowledge

or functional abilities.

90

6.2.1 System Class

The System class represents the shop floor of a manufacturing system. Each

instance of the System class has the following instance variables or attributes: name,

toolLib, stationLib, assignTo, status, and description. An example of an instance of

System and all its instance variables is shown in Figure 6.1. The instance variable name

is Systemi, which is simply the name assigned to the current instance of the System

class. ToolLib contains a dictionary made up of Tool class instances. ToolLib can be

thought of as a container for all the various tools available to Systemi and could

represent the shop floor's tool inventory. The instance variable stationLib contains a

dictionary which is made up of instances of the Cell class. Thus, stationLib is a container

representing all the manufacturing cells grouped within the particular system. In this case

only one cell, Celli, and one system, Systemi have been represented. AssignTo is used

to designate the structure or element in the class hierarchical level above the current class

level to which Systemi belongs; in this case Planti. The instance variable status denotes

the operating status of the system. The system is either 'Ok' meaning that everything is

functioning properly, or 'Broken'. Description simply provides a linguistic representation

of what the system is or does. All of these instance variables are inherited by all the

subclasses of the class hierarchy, and although the actual values contained in the instance

variables will differ, conceptually the functional representation of the instance variables

will not change. It should also be noted that in some subclasses, not all of the instance

variables developed in previous classes are used.

91

Figure 6.1: An Instance of Class 'System'

name

Systemi

'System 1'

toolLib

stationLib

assignTo

'Plant!'

status

'Ok'

description

'control system'

T023

T016

0
0
0

T007

Celil

92

6.2.2 Cell Class

The next class in the class hierarchy is the Cell class. As shown in Figure 6.2,

the six instance variables developed in the System class have been inherited by the Cell

class. The instance variables name, assignTo, status, and description are self explanatory.

ToolLib still consists of a dictionary containing instances of tools, but now these tools'

represent the tools used by Celil and not by the whole shop floor. As before, stationLib

is a container of instances but in this case the instances are Equipment instances (or

objects). All of these Equipment objects are considered to be the elements making up

the Cell instance Celli. Three more instance variables have been added at this level:

outputBufferLib, palletRemovalLevel, and palletRemovalAmt. These three instance

variables are concerned with the control of completed parts and how they leave the cell.

OutputBufferLib is a listing which tracks the number of completed parts of each part type

that arrives at the cell output buffer. The instance variables palletRemovalLevel and

palletRemovalAmt dictate the cell's output buffer inventory level at which pallets (parts)

need to be removed and also how many should be removed at one time.

The Cell class also contains a number of methods and class variables. The bulk

of the methods deal with the initialization of cells, tool, parts etc. as well as with certain

aspects of running the entire simulation. All the methods for the different classes will be

discussed later in Section 6.3. The class variables are variables which are accessible to

all instances of the class and all instances of the subclasses. Certain class variables at the

93

Figure 6.2: An Instance of Class 'Cell'

name

Ceill

'Ceill'

too1Lib

S

I
T023

stationLib

assignTo

'System!'

status

'Ok'

description

'machining cell'

outputBufferLib

T016

0
0

0

T007
\ 1

VertMilll

VertMill2

0
0

0

TumCentre2

palletRemovalLevel

1

pa11etRemovaIAmt

1

'partA',O
'partB',O
'partC', 0

0
0

0

'partJ', 0
 1

94

Cell level are used to store information required to run the simulation. The remaining

class variables store data on equipment, parts and certain data for the fuzzy logic

algorithm.

6.2.3 Equipment Class

Five instance variables (name, toolLib, assignTo, status and description) have been

inherited by this class from the various super classes. The remaining instance variables

from the super classes are not used at the Equipment class level at this time and

therefore will not be discussed further. Three new instance variables have been added at

this level (see Figure 6.3): alternateStationLib, inputBufferLib, and currentProcess.

AlternateStationLib contains the name of an alternate machine to which parts are

redirected if the current machine breaks down. At the current stage of development only

one alternate machine is specified; however, in the future it is anticipated that multiple

machines could be used which can either fully or partially take over the current machine's

function. The instance variable inputBufferLib consists of a dictionary which contains

instances of the Part class. In the real world this would represent all the parts waiting

in the input buffer of the machine. CurrentProcess contains an instance of the Part class

which represents the part that is currently being processed on the machine. A listing of

the Equipment class instances used in this project is given in Appendix A.

95

Figure 6.3: An Instance of Class 'Equipment'

name

'VertMilll'

VertMilll

toolLib

assignTo

'Celli'

status

'Ok'

alternateStationLib

'VertMill2'

description

'milling machine'

inputBufferLib

T023

T016

0
0

0

T007

currentProcess

partD2

partAl

partB2

0
0

0

partEl

96

6.2.4 Tool Class

The Tool class provides all the instance variables for the tools that are used in the

entire system. All the instance variables (shown in Figure 6.4) are inherited from the

System class. The instance variable assignTo in this case designates the particular

machine or piece of equipment that will have access to each particular tool. A listing of

the Tool class instances used in this project is given in Appendix B.

6.2.5 PartType Class

In order to maintain some uniformity in the parts being processed by the system,

the class PartType was developed to define the attributes of several specific types or

groups of parts. The simulation as it currently stands is able to represent groups of

similar parts, individual parts of each group, or in an extreme case, a group of parts which

contain only one part. Thus, situations ranging from a few large groups of parts to a

large number of single parts could ultimately be modelled. The PartType class uses only

one inherited instance, name. The rest of the instance variables shown in Figure 6.5 are

unique to the class PartType and its subclasses. The instance variable processPlan

contains a two dimensional array which describes the process plan for each type of part.

The process plan currently includes the tool required, the machine on which a particular

process will be performed, and the time the process will take. InventoryLevel keeps track

of the number of completed parts of a given part type. TimeLevel tracks the time that has

97

Figure 6.4: An Instance of Class 'Tool'

name

'T023'

description

T023

'HSS studEndMill;

D2.O x LO.75in.'

assignTo

status

'Ok'

 I 'Vertltvlilll'
VertMi112'1

98

Figure 6.5: An Instance of Class 'PartType'

name

'partA'

partA

processPlan

inventoryLevel

0

timeLevel

3

batchTime

240

batchAmount

10

partLotNumber

2

status

'Regular'

'T023', 'VertMilll', 4
'T016', 'VertMill2', 6
'T041', 'TurnCentrel', 4
'T009', 'Drill V, 8
 -I

99

passed since work on a given type of part (batch) has begun and batchTime denotes the

due date for the batch. BatchAmount defines the size of the batch in terms of a number

of parts. The instance variable partLotNumber tracks which part of the given part type

is currently entering the system and is used mainly to generate and identify new parts.

Status denotes if the part type is regular or special. A special part type is one which is

considered to be a rush part type. If the status of a part type is special then the system•

is virtually reconfigured to allow the part type to have priority over other parts. A

mechanism also exists within the PartType class which allows the program operator to

use an alternate process plan for a specified part. A listing of the PartType class

instances used in this project is given in Appendix C.

6.2.6 Part Class

The Part class represents the actual parts which are processed by the system. The

instance variables for Part are shown in Figure 6.6. The new instance variable partType

defines the generic part type or group to which that part belongs. As before, processPlan

denotes the process plan of the part, and this process plan is the same as the process plan

for the part type. ProcessStep defines the next process that the part needs to undergo.

The instance variable priority stores the current priority level of the part. AssignTo

specifies the piece of equipment where the part is currently located. Finally,

partLotNumber is used to identify a certain part in a given part type batch. All other

inherited instance variables are unused at this time.

100

Figure 6.6: An Instance of Class 'Part'

name

'partAl'

part1ype

'partA'

partAl

processPlan

processStep

1

priority

7

assignTo

'VertMilll'

partLotNumber

1

'T023', 'VertMilll', 4
'T016', 'VertMill2', 6
'T041', 'TurnCentrel', 4
'T009', 'Drilil', 8
 I

101

6.2.7 Class Linkages

Figure 6.7 shows a little more clearly how all the classes are linked together to

provide a coherent shop floor representation. The bolded path shows the interconnections

between all the classes beginning with the System class instance Systemi and ending

with the Tool and PartType classes. System 1 stationLib is the container holding all the

Cell instances for System 1; in this case there is only one cell, Cell!. Celli is connected

to the Equipment class through Celli stationLib which contains all the different

Equipment class instances for Celli; one example of which is VertMilll. Each

equipment instance has a toolLib instance variable which contains all the Tool class

instances representing all the various tools that each piece of equipment can use; for

example tool T023. The inputBufferLib instance variable of each piece of equipment

contains instances of the Part class. These instances represent the actual parts which are

awaiting processing on the machine. One of the parts awaiting processing on VertMilll

is partAl. Each of the Part instances belongs to a certain PartType which is designated

by the Part instance variable partType. Thus, partAl is of part type partA.

The only linkages which are not shown here are the linkages to the FuzzyLogic

class. The FuzzyLogic class consists only of a number of methods which are linked to

the rest of the structure using message passing. The fuzzy logic methods and the other

methods in the structure are the real driving force behind scheduling and control and are

discussed next.

Systemi

J

name

'System!'

toolLib

T023,T016...

stationLib

Cell

assignTo

'Planti'.

description

'control system'

status

'Ok'

name

'Cell!'

name

'VertMill!'

toolLib

T023,'016

stationLib assignTo

'Systemi'

I VertMilll VertMill2

toolLib

. .

assignTo

'Celli'

T023 T016

name

'T023'

status

'Ok'

[T008

description
'HSS studEndMill;
D2.0 x LO.75in.'

assignTo

VertMill1', 'VertMill2'

T007

description
'machining

cell'

TurnCentre2

description
'milling
machine'

status

'Ok'

•in ut]BufferLib idleTime

1

status

'Ok'

outputBufferLib
'partA', 0;
'partB',O;...

palletRemoval palletRemoval
Level Amount
1

alternateStationLib

'VertMill2'

partT1 partB2
 I

name

'partAl'

partType

I
partA

0 0I partEl

1

currentProcess

partD2

processPlan
'T023', 'VertMilll', 4;
'T016', 'VertMill2', etc...

processStep

1

Priority

7

assignTo

'VertMill1'

name

'partA'
processPlan

'T023', 'VertMill1', 4;
'T016', 'VertMill2', etc...

Figure 6.7: The Overall Class Structure

timeLevel

3

batchTime
60

inventoryLevel

0

partLot
Number
2

batchAmount

10

partLot
Number
1

status

'Regular'

103

6.3 METHODS AND MESSAGE PASSING

The methods in an object oriented environment are the drivers behind any action.

In this particular control structure there are methods which do control, scheduling, fuzzy

logic analysis, and many other tasks. The methods are accessed when objects (including

class instances) send messages to one another. These messages can send information,

return information, or simply invoke a specific procedure. It is beyond the scope of this

write-up to review all the different messages and methods that have been developed in

any detail. Instead only the most important methods will be discussed and then only in

a relatively superficial manner in order to provide an overview of how the overall control

structure behaves.

6.3.1 Supervisor Methods

Most of the supervisor methods are imbedded within the Cell class level. This is

appropriate since the controller at this stage has been designed to provide control for

manufacturing cells. The supervisor methods include: ongoing monitoring of the cell for

breakdown or repair events, blocking or deadlocking checking, control of part movement,

control of material handling equipment, error recovery, virtual reconfiguration, and data

collection. In short, the supervisor methods at the Cell class level coordinate the general

running of the cell. Several supervisor methods are situated at the Equipment class level,

but these are normally accessed using messages from the Cell class level methods. The

104

supervisor methods at the Equipment class level do the following: update equipment

status as parts are moved around, update the blocking or deadlocking events, identify

which scheduling method is to be used (chosen by operator), check the equipment buffer

status (availability of space in the buffer), and select the highest priority part when part

selection is required. There are also a few methods at the Equipment level which help

in facilitating part scheduling.

6.3.2 Scheduling Methods

The bulk of the scheduling methods reside at the Equipment class level at this

time mainly because the scheduling aspect of the control structure deals with the

dispatching of parts from a machine's input buffer through the machine. The supervisor

at the Cell class level initiates the scheduling process when it is informed that the

machine is ready for a part. The scheduling methods include methods for each scheduling

rule: FIFO, LIFO, EDD, SPT, Slack/OPNR and Fuzzy (the fuzzy logic part dispatching

method), as well as methods which calculate and allocate the final priority level of each

part.

The fuzzy logic control rules representing the equipment buffer levels are stored

as an Equipment class method. Those rules dealing with part aspects such as inventory

level, due dates, and process plan step, are stored as PartType class methods. Separating

the various control rule sets in this manner was done in order to provide the parts and

105

machines with their own internal knowledge which was independent of other machines

and parts and also independent of the main controlling structure. Furthermore, it allows

knowledge of a machine's buffer level to reside with the machine, and knowledge of part

aspects to reside with the parts. The various methods are also structured in a manner

which gives each machine a certain degree of independent control over its own input

buffer, and gives each part a certain degree of independent control over process and

scheduling concerns. The emphasis in the current scheduling methodology is for the parts

to gather information and to develop their own detailed priority levels with respect to

their own internal knowledge (rule bases). Therefore methods have been included in the

PartType class level which provide the necessary message passing and reasoning ability

to accomplish this task. Overall, the structure of the methods has been designed to

reinforce the concept of independent part and machine entities.

6.3.3 Fuzzy Logic Class Methods

As was mentioned earlier, the fuzzy logic class has no instance variables, but

consists only of a series of methods. There are two groups of methods: those that

perform the fuzzy logic reasoning and calculations, and those that define the fuzzy logic

membership functions. The reasoning methods include: reading the rules, accessing the

appropriate membership functions, developing the consequent fuzzy sets, determining the

output fuzzy set and finally calculating the centroid of the output fuzzy set. The

membership function methods simply define all the antecedent and consequent

106

membership functions.

6.4 SIMULATION MODEL

In order to test the control system and to demonstrate its effectiveness, a number

of methods were developed to build a simple, but effective simulation model. The model

is a very basic discrete event simulation incorporating a next event list for the control of

time. All aspects of the simulation are deterministic (in the sense that they were chosen

randomly before the simulation began versus generated randomly as the simulation was

running) including part due dates, process plans, alternate process plans, breakdowns,

repairs etc. The simulation methods have been inserted at the cell level and include:

initializing the entire shop floor representation (cells, machines, parts, tools etc.),

initializing and controlling the next event list, coordinating part arrivals, initializing

machine and tool breakdowns and repairs, data collection and presentation to screen and

files, fuzzy logic rule and membership function initialization, reconfigurable initialization,

and initializing alternate process plans if requested. A number of instance variables have

also been added to the existing instance variables of the various Cell, Equipment,

PartType, and Part classes strictly for the purposes of data collection. Data is collected

for machines for items such as: idle time, utilization and input buffer maximums; and for

parts: number of parts completed, batch completion time, part production time, lateness,

tardiness, number of late parts, mean lateness, mean tardiness, average time in buffers,

and average machining time. The simulation also maintains data files with continuous

107

data on buffer levels, inventory levels and the part processing sequence for each machine.

The purpose of this simulation was to test the control structure to see if the various new

concepts worked. It was beyond the scope of this project to develop a fully blown

simulation package with different part arrival mechanisms, complete stochastic

representations, and statistical analysis elements. The simulation as it is currently built,

provides enough fundamentals to do an analysis of the new concepts and to provide

sufficient data for analysis purposes. Although the simulation is set up deterministicâlly,

in a sense it is also random because many of the elements may be modified randomly by

the operator of the simulation at the start of the simulation.

The simulation offers the ability to adjust and test a number of different things.

Clearly, machines, parts and tools can be added and modified. Process plans and alternate

process plans can be changed. The fuzzy logic rules can be modified, new rules can be

added or the membership functions can be changed. The relative rule set weights can

also be adjusted either for one run or a series of runs for comparison purposes. Different

input buffer constraints can be tested. Repair and breakdown events can be added,

deleted, or changed. Rush priority parts can be identified which then allows simulation

of a reconfigurable case. Finally, robot control and movement can be simulated.

108

6.5 OPERATION OF THE SIMULATION

The simulation begins by initializing the shop floor. All the machines, part types

and tools are defined and the shop floor model is set up in the simulation. Any

immediate breakdown events are initialized as are any future breakdown and repair

events. A next event list is set up which contains the time when an event is complete and

a description of the event. All the fuzzy logic rule bases and fuzzy data requirements are

initialized and the actual simulation is set in motion by generating arrivals of parts. One

part of each part type is created and placed in the input buffer of the machine which is

identified in the first step of the part's process plan. It has been assumed for this project

that there will always be parts waiting to be processed by the cell until an amount of parts

equal to the batch size have been placed into the cell. Furthermore, whenever a part

which is on its first process step is selected for processing from the input buffer of the

machine, the arrival of a part of the equivalent part type is generated. Priority levels are

generated for all the parts at each machine. The high priority parts are selected, loaded

into the machines, and the next event list is updated. The simulation then proceeds in

discrete time intervals through the next event list. Events (tasks) are performed, new

parts arrive when appropriate, and the next event list is continually updated. Throughout

the simulation process, breakdown events and repair events are processed as they occur.

Part priority levels are calculated according to the scheduling rule that is currently in

effect. If the fuzzy logic method is activated, the scheduler sends messages to the parts

in the input buffer of the machine under consideration requesting the parts to generate

109

detailed priority levels. The parts get information from other machines regarding buffer

levels, access their own process plans for process information, and also access inventory

levels and due dates for scheduling information. The parts then initiate the fuzzy logic

procedure and determine priority levels for the buffer limit, process plan step and the

scheduling rule sets. The part then passes the priority level information to the scheduler

at which time the scheduler determines a final priority level and assigns this level to the

part. Finally, the machine looks through the input buffer and selects the appropriate part.

Subsequent loading of the part onto the machine is controlled by the supervisor. The

simulation run is completed when all the parts required to fill the batch sizes have been

processed by the system. Throughout the simulation, data is gathered and stored in files

and at the end of the simulation a number of statistics are generated and stored.

Chapter 6 has provided an overview of how the proposed control structure has

been implemented in an object oriented environment. The object oriented environment

provides a mechanism whereby parts and machines can be given certain attributes and an

ability to direct their own actions. Although the parts do not control their own destinies

entirely in the proposed control structure, the structure has been developed to ultimately

allow this. The cell controller has also been developed in a somewhat modular form.

Thus, if more cell controllers are required by the system, new instances of the Cell class

need only to be generated. The actual structure of the controller also lends itself to being

used at other levels of control. For example, a shop floor could be controlled using the

proposed supervisor and a scheduler structure. In this situation the scheduler may

110

dispatch parts from cell to cell instead of from machine to machine. The supervisor's

primary control level could then represent different cells instead of different machines,

and the secondary control level could represent the detailed operations within each cell.

The message passing between parts and machines could now be between part types or

parts, and cells, thereby dictating the priority of a part type or part to enter a cell. Thus

the same conceptual control structure could be used at different control levels. Care has

also been taken to allow the proposed control structure to perform and to react to

problems in real time. This will be shown in the next chapter along with additional

examples which are used to demonstrate all the workings of the supervisor and scheduler.

A study comparing dispatching rules and the fuzzy logic dispatching method will also be

presented as well as a technique for selecting the best combination of rule set weights.

111

CHAPTER 7

7. CASE STUDIES

7.1 INTRODUCTION

In order to show how the various aspects of the control structure work, a number

of test cases will now be presented. All the test cases consider the control and scheduling

of a manufacturing cell similar to the one shown in Figure 7.1 which consists of six

machines serviced by a material handling system (represented here by a robot). Each

machine has its own finite capacity input buffer and the cell has one input buffer and one

output buffer. The part movement and machine loading times are included in the total

processing time in all but one of the case studies. In one case study the full movement

and loading times are presented and the robots actions are fully documented. Certain

assumptions were made to restrict the scope of the overall project to a manageable level

and these assumptions were outlined in chapter 1. The following conditions were also

112

Figure 7.1: Manufacturing Cell

VertMi1l2

Machines

00 VertMffll

Cell
OOuuttppuutt
Buffer

Cell

ci- Input Buffer

TurnCentre2

Input
Buffers

113

applied during the case studies:

1. each part type has its own process plan

2. part routings and processing times are deterministic and are given by the

part type process plan

3. each operation in the process plan must be done in the sequence given in the•

process plan

4. each operation must be completed before the next operation can begin

5. each machine has a finite buffer limit

6. due dates and part requirements are available from a master schedule and

are fixed

7. due dates are different for each part type while part batch sizes are set at ten

parts

8. each machine has one alternate machine

9. machine and tool breakdowns will be considered and parts rerouted to

alternate machines

10. blocking and deadlocking will result in error messages only

11. no pre-emption is allowed

12. each machine can perform only one operation at a time

13. each part can be processed by only one machine at a time

14. the part is considered to have completed processing when a tool or machine

breakdown occurs

114

15. the part is removed after each operation is completed even if the next

operation is on the same machine

16. 'fuzzy logic optimized' implies a certain degree of optimization or

improvement, not global optimization

17. each machine has the appropriate tooling

Eight different case studies will be presented which will emphasize the various

aspects of the fuzzy logic dispatching method. The cases will also show how the various

functions of the supervisor operate in conjunction with the fuzzy logic dispatching

method. Throughout this study, there were two primary objectives: 1) to minimize or

eliminate late parts, and 2) to control and minimize buffer levels in order to avoid or

reduce deadlocking situations. The rule sets were developed with these two operations

in mind; however, data was collected for other possible objectives such as minimizing

maximum lateness, mean lateness, or tardiness etc. as discussed in chapter 6. The results

of the additional data will also be presented and discussed even though the rule base has

not been specifically developed for these additional objectives. Case 1 will show

generally how the control structure works and presents some typical types of output.

Case 2 represents a run using alternate part process plans. Case 3 presents two large size

cases: one with six machines and twenty part types (a total of 200 parts and 800

operations), and one with ten machines and twenty part types (200 parts, 800 operations).

Case 4 summarizes the results of a finite buffer limit study and shows the effect that

varying the finite buffer limit has on the various dispatching rules and the fuzzy logic

115

method for a number of objectives. Case 5 presents an example of a machine breakdown

and repair. Case 6 presents a reconfigurable case. Case 7 is an example which includes

part movement time and also provides a description of the robot's activities. Finally, case

8 presents a methodology for selecting the best rule set weights.

7.2 CASE 1: FUZZY LOGIC BASE CASE

The intent of this case study is to show that the fuzzy logic method works and to

provide some base line data for succeeding cases. For the remainder of this chapter, case

1 will represent the 'base case' and models the following situation:

six machines as shown in Figure 7.1

part movement is assumed to be included in processing times

material handling is not considered

ten part types, each having a batch size of ten parts

each part's process plan consists of four operations

there are no breakdowns

finite buffer limits for each machine are set at ten parts (a maximum of ten

parts allowed in the machine's input buffer)

there are no priority parts

no alternate process plans are used

the fuzzy logic rule set weights have been optimized to 1:3:1 for buffer,

116

scheduler, and process step rules respectively

Figure 7.2 shows a typical screen view presented by the simulation; this particular

view shows events at a simulation time of 32 minutes. The screen view shows the

operation or process which is currently under way in Peach machine and also indicates

which parts are waiting in each machine's input buffer. The screen view is updated

whenever a new event occurs. This is shown in Figure 7.3 where the simulation time has

been updated to 33 minutes. The event that caused the update was the completion of the

processing of partB2 on VertMil12. As soon as partB2 completed processing it was

placed in the input buffer of Drilli which is the next machine in partB2's process plan.

The removal of partB2 also triggered the fuzzy logic scheduling method described earlier,

which then generated priority levels for all the parts in the input buffer of VertMill2.

PartB3 had the highest priority and was therefore loaded into VertMill2 as shown in the

figure.

A variety of data is collected during each simulation run and this data is

summarized in Table 7.1 (machine data) and Table 7.2 (part data) for an optimized fuzzy

logic run. As seen from the tables, part type A only had one part which was late, and all

the machines had input buffer maximum levels less than the finite buffer limit of ten

parts. A small study was also done which compared the optimized fuzzy logic method

with the non-optimized fuzzy logic method and two dispatching rules, LIFO and FIFO.

The results are presented in Table 7.3. Here, the maximum buffer size represents the

117

Figure 7.2: Screen View of Machine Process and Buffer
Status at SimTime = 32 Minutes

VertMilll Process

partG2

Buffer

partG3
partA5

Drill2 Process

partl2

Buffer

partC3
partl3

VertMill2 Process

partB2

Buffer

partJ3
partJ4
partA4
partA3
partB3
partEl

TurnCentrel Process

partJ2

Buffer

partF2
partA2

Drilil Process

partGl

Buffer

partC2
partH3

TurnCentre2 Process

partDl

Buffer

partJ5
partD2

118

Figure 7.3: Screen View of Machine Process and Buffer
Status at SimTime = 33 Minutes

VertMilll Process

partG2

Buffer

partG3
partA5

Dri112 Process

partl2

Buffer

partC3
partl3

VertMill2 Process

partB3

Buffer

partJ3
partJ4
partA4
partA3
partB4
partEl

TurnCentrel Process

partJ2

Buffer

partF2
partA2

Drilil Process

partGl

Buffer

partB2
partC2
partH3

TurnCentre2 Process

partDl

Buffer

partJ5
partD2

119

maximum of all the machine input buffer maximums shown in Table 7.1. All the parts

of all the part types are considered when calculating mean tardiness given tardy, average

production time, and maximum lateness and all the machines are considered when

determining maximum and minimum machine utilization. Table 7.3 clearly shows the

improved performance of the optimized fuzzy logic method over the other three selection

rules in terms of the number of late parts. Upon reviewing a number of test cases,

several trends have become apparent. First, the fuzzy logic method generally maintains

Table 7.1: Base Case Machine Data

Machine Input Buffer
Maximum

Idle Time
(minutes)

Machine
Utilization (%)

VertMilll. 7 13 96.0

VertMill2 9 73 77.4

Drilli 9 13 96.0

Drill2 8 63 80.5

TurnCentrel 5 23 92.9

TurnCentre2 4 103 68.1

a lower buffer level in more machines than the other three methods. Second, FIFO and

LIFO very often have a number of machines with input buffers filled to capacity whereas

the fuzzy logic method will only have one or two machines at the maximum finite buffer

limit. Third, the optimized fuzzy logic method tends to have higher buffer maximums

(therefore fuller buffers) than the fuzzy logic method, which is likely a result of the

overall higher average production time. An explanation for the overall higher average

Table 7.2: Base Case Part Data

Part
Type

Due Date
(mm)

Completion
Time (mm)

Maximum
Lateness

Number of Tardy
Parts

MTGT
(mm)

Average Prod'n Time
(mm)

A 240 255 15 1 15 73.9

B 200 200 0 0 0 48.1

C 300 245 0 0 0 69.8

D 300 270 0 0 0 92.9

B 240 236 0 0 0 54.7

F 320 286 0 0 0 104.7

G 320 319 0 0 0 68.2

H 340 323 0 0 0 52.0

I 260 238 0 0 0 49.3

J 240 159 0 0 0 40.8

121

production time for the optimized fuzzy logic method is as follows. The rule set for

process plan step tends to help move the parts through the system and when the weight

of the process step rule set is reduced relative to the schedule rule set (by increasing the

schedule rule set weight) the parts do not move as quickly through the system resulting

in a longer production time.

Table 7.3: Base Case Rule Comparison

Selection Rule

Fuzzy Optimized
Fuzzy

FIFO LIFO

No. of Tardy Parts 4 1 23 11

Mean Tardiness Given
Tardy (minutes)

37.5 15 40.3 34.6

Average Production
Time (minutes)

60.2 65.4 124.4 59.5

Maximum Lateness
(minutes)

Maximum Buffer Size
(units)

62 15 74 70

9 9 10 10

Maximum Machine
Utilization (%)

96 97.2 98.1 97.2

Minimum Machine
Utilization (%)

68.1 69 69.6 69

Since the base case fuzzy logic method is optimized by increasing the scheduler

rule set weight from one to three (in the base case fuzzy logic method all weights are set

at one), it follows that the average part production time will be greater for the optimized

122

fuzzy dispatching case. Further comparisons between optimized fuzzy logic, non-

optimized fuzzy logic and five dispatching rules will be presented in case 4.

Whereas Table 7.1 and 7.2 provide a simulation summary, Figure 7.4 and Figure

7.5 provide an ongoing view of four part type inventory levels and one machine's buffer

level. Figure 7.4 clearly shows how each part type is given priority according to its due

date. Part type J has the earliest due date of 240 minutes (Table 7.2) and therefore is

processed in advance of other part types such as part type H which has a later due date

of 340 minutes. Although not all ten part types are shown, it can be seen that as a part

type approaches its due date, the urgency to place uncompleted parts in inventory

increases and therefore the part type's priority increases.. For example, part type D has

a due date of 300 minutes but at a time of 245 minutes only six of the required ten parts

had been completed. This increased part type D's priority level resulting in the quick

completion of the remaining four parts instead of allowing the parts to remain idle in a

machine input buffer. With reference to the completion times and due dates shown in

Table 7.2, it is apparent that the fuzzy logic scheduling method selects the appropriate

part consistently, and in this particular optimized case, only one part is late.

One of the primary goals of the fuzzy logic method was to keep buffer levels

reasonable. VertMill2 was one of the machines that had a high buffer maximum (nine

parts); however, as one can see from Figure 7.5, this maximum was reached for only a

short time frame early on in the simulation run. The machine buffer level fluctuates

Figure 7.4: Inventory Levels
Part Types D, H, I, and J

10

Pa
rt
 T
yp

e
In
ve
nt
or
y
Le
ve
l
(u
ni
ts
)

9

7 -

5 -

4 -

3 -

2

0

r__ Part Type

i r
Part Type I Part Type D

r
I

fJ Part Type H

II II III

0 25 50 75 100 125 150 175 200 225 250 275 300 325

Time (miiiutes)

Figure 7.5: Buffer Level
VertMill2

10

9 -

8

7 -

Bu
ff

er
 L
ev

el
 (
un
it
s)

S

4 -

3 -

2

0 I I I I { I I I I I I I I I I I I I I

0 25 50 75 100 125 150 175 200 225 250 275 300 325

Time (minutes)

125

continuously, but on the whole the buffer level of VertMill2 was maintained at an average

of about three parts. Furthermore, judging by the buffer levels of other machines and

cases (not shown) the buffer level maximums seem to vary both in magnitude and in

location depending upon the part mix and part process plans. Further on in the chapter

it will be shown that the fuzzy logic method is quite effective in controlling buffer levels

and avoiding deadlock, especially with respect to some common dispatching rules.

Overall, case 1 shows generally what is occurring throughout a simulation run and also

shows the various methods and types of data capture and presentation. Case 1 presents

the base results to which other cases will be compared. It should be noted that although

the eight cases presented in this thesis represent only a small fraction of the total test

cases, they are representative of the functions that the control system can perform and

representative of the overall trends.

7.3 CASE 2: ALTERNATE PROCESS PLAN

Each part type has been provided with one alternate process plan in order to

increase the flexibility in the manufacture of the part and to provide a method for

improving part flow throughout the shop floor. Case 2 uses all the alternate process plans

for each part type to generate an optimized fuzzy logic comparison case to the base case.

Tables 7.4 and 7.5 present the part type and machine data for the alternate process plan

case. These tables show that four parts were late and that all the machines except for

126

VertMihl had buffer maximums less than the finite buffer capacity limit of ten parts.

Table 7.6 also shows a comparison of the optimized fuzzy logic method with the non-

optimized fuzzy logic method and two dispatching rules, L1FO and FIFO. In this

particular case, the finite buffer limit of ten parts was too small for the dispatching rule

FIFO and therefore the system deadlocked. Other than that, the trends described in the

base case held for this case. The optimized fuzzy logic method had the least number of

late parts and the smallest maximum lateness value, but as before, it had a longer average

production time than the non-optimized fuzzy logic method.

Table 7.4: Alternate Process Plan Case Machine Data

Machine . Input Buffer
Maximum

Idle Time
(minutes)

Machine Utilization
(%)

VertMihl 10 6 98.2

VertMil2 7 76 76.7

Drilil 7 66 79.8

Drill2 8 6 98.2

TurnCentrel 8 46 85.9

TumCentre2 4 106 67.5

Table 7.5: Alternate Process Plan Case Part Data

Part
Type

Due Date
(mm)

Completion
Time (mm)

Maximum
Lateness

Number of Tardy
Parts

MTGT
(mm)

Average Prod'n Time
(mm)

A 240 218 0 0 0 54.0

B 200 220 20 1 20 49.4

C 300 230 0 0 0 65.1

D 300 265 0 0 0 110.0

E 240 254 14 2 8 54.9

F 320 282 0 0 0 67.3

G 320 306 0 0 0 60.5

H 340 326 0 0 0 139.8

I 260 261 1 1 1 63.8

J 240 188 0 0 0 66.5

128

7.4 CASE 3: LARGE CASES

Two large cases will be presented here with the intention of showing that the

fuzzy logic method is capable of dealing with many machines and many parts. Both

cases consist of non-optimized fuzzy logic method simulation runs having a finite buffer

limit set at ten parts. The first case, Large Case 1, consists of the same six machines as

the base case but now twenty part types of ten parts each are being processed. Table 7.7

shows that although the six machines are able to handle the additional load, the input

buffer maximums have increased substantially. Never-the-less, the fuzzy logic method

is able to maintain production with the result that only 18 of the 200 parts were late

(Table 7.8).

The second case, Large Case 2, consists of ten machines as shown in Table 7.9,

and twenty part types. No real effort was made to set up the part type process plans in

a way which balanced the loading on the machines and this is made evident by some very

low machine utilizations. Again, the intent was simply to show that the fuzzy logic

method worked and was capable of dealing with many machines and many parts. Table

7.10 shows some part data and it is clear from the number of tardy parts (45) that

significant optimization for this case is required both in terms of optimizing the fuzzy

logic method and also in balancing the machine loading to increase machine utilization

and reduce input buffer maximums. Furthermore, there may be one or two bottleneck

machines causing large maximum lateness values of a number of parts types especially

129

Table 7.6: Alternate Process Plan Case Rule Comparison

Selection Rule

Fuzzy Optimized
Fuzzy

FIFO LIFO

No. of Tardy Parts

Mean Tardiness Given
Tardy (minutes)

Average Production
Time (minutes)

Maximum Lateness
(minutes)

Maximum Buffer Size
(units)

Maximum Machine
Utilization (%)

Minimum Machine
Utilization (%)

14 4 11

5.3 7.3 D
E

5.3

58.8 73.1 A
D

56.5

'37 20 L
0

34

8 10 C
K

10

97.3 98.2 E
D

97.3

66.9 67.5 66.9

Table 7.7: Large Case 1 Machine Data

Machine Input Buffer
Maximum

Idle Time
(minutes)

Machine Utilization
(%)

VertMihl 10 23 96.4

VertMill2 9 143 77.8

Drilli 10 23 96.4

Drill2 10 123 80.9

TurnCentrel 7 43 93.3

TumCentre2 6 203 68.4

Table 7.8 Large Case 1 Part Data

Part
Type

Due Date
(mm)

Completion
Time (min)

Maximum
Lateness

Number of Tardy
Parts

MTGT
(mm)

Average Prod'n Time
(mm)

A 480 510 30 4 18 88.7

B 400 342 0 0 0 57.2

C 600 538 0 0 0 131.9

D 600 536 0 0 0 112.6

E 480 504 28 5 19.2 121.5

F 640 590 0 0 0 199.4

G 640 643 3 1 3 98.3

H 640 421 0 0 0 61.4

I 520 573 53 1 53 78.7

J 480 305 0 0 0 50.6

* MTGT - Mean Tardiness Given Tardy

Table 7.8 Large Case 1 Part Data (continued)

Part
Type

Due Date
(mm)

Completion
Time (mm)

Maximum
Lateness

Number of Tardy
Parts

MTGT*

(mm)
Average Prod'n Time

(mm)

K 480 518 38 1 38 82.5

L 400 210 0 0 0 50.5

M 600 377 0 0 0 94.1

N 600 318 0 0 0 71.3

0 480 404 0 0 0 69.8

P 640 430 0 0 0 116.5

Q 640 615 0 0 0 110.9

R 680 540 0 0 0 99.1

S 520 568 48 6 34.8 139.4

T 480 247 0 0 0 61.8

* MTGT - Mean Tardiness Given Tardy

132

Table 7.9: Large Case 2 Machine Data

Machine Input Buffer
Maximum

Idle Time
(minutes)

Machine Utilization
(%)

VertMihl 5 112 74.7

VertMil2 10 112 74.7

VertMil3 6 152 65.6

HorMilli 3 292 33.9

HorMil2 6 122 72.4

Drilil 8 52 88.2

Drill2 10 42 90.5

Drill3 10 72 83.7

TumCentrel 10 2 99.5

TurnCentre2 5 162 63.3

Table 7.10: Large Case 2 Part Data

Part
Type

Due Date
(mm)

Completion
Time (mm)

Maximum
Lateness

Number of Tardy
Parts

MTGT
(mm)

Average Prod'n Time
(mm)

A 240 246 6 1 6 94.5

B 200 179 0 0 0 52.5

C 300 428 128 9 67 74.6

D 300 296 0 0 0 81.4

E 240 225 0 0 0 52.2

F 320 442 122 8 78.5 78.1

G 320 311 0 0 0 116.4

H 320 302 0 0 0 58.2

I 260 406 146 7 112.3 59.0

J 240 217 0 0 0 50.7

Table 7.10: Large Case 2 Part Data (continued)

Part
Type

Due Date
(mm)

Completion
Time (mm)

Maximum
Lateness

Number of Tardy
Parts

MTGT
(mm)

Average Prod'n Time
(mm)

K 240 307 67 1 67 70.2

L 200 262 62 4 52 64.4

M 300 294 0 0 0 39.41

•N 300 292 0 0 0 62.7

0 240 228 0 0 0 69.1

P 320 358 38 2 22.5 85.2

Q 310 178 0 0 0 54.6

R 340 325 0 0 0 84.9

S 260 385 125 6 102.7 68.5

T 240 281 41 7 24.7 118.8

135

part type C, part type F, part type I and part type S.

7.5 CASE 4: FINITE BUFFER LIMIT STUDY

The first three case studies dealt with situations where the finite buffer limit was

set at ten parts. As the finite buffer limit is increased or decreased from this value it is

very possible that the part flow through the system will change resulting in either poorer

or improved performance measures. In order to test the effect of the finite buffer limit,

a study was conducted where the finite buffer limit was varied from a low of three parts

to a high of twenty four parts. A number of performance measures were monitored and

include: the number of late parts, maximum lateness, average tardiness given tardy,

average production time and average machine maximum buffer levels. Also within the

study, a comparison was made between the performance of the fuzzy logic method and

the performance of five common dispatching rules; namely, FIFO, LIFO, EDD, SPT, and

Slack/OPNR. The base case attributes were all used except for the finite buffer limit.

The results are shown in Figures 7.6, 7.7, 7.8, 7.9, and 7.10. Figure 7.6 depicts

the affect that changing the finite buffer limit has on the total number of late parts. There

are several things to note regarding the output. First, many of the dispatching rules

caused the simulation to deadlock. The lowest shown value of finite buffer limit for a

given rule represents the minimum buffer size that was required to prevent deadlock.

None of the rules including the fuzzy and fuzzy optimized methods prevented deadlock

Figure 7.7: Comparison of Maximum Part Lateness
M
a
x
i
m
u
m
 L
at
en
es
s
(m
in
ut
es
)

130

120 -

110 -E

100 -

90

80

70

60

50

40

30

20

10

0
5 10 15

Finite Buffer Limit (# parts)

20 25

Figure 7.8: Comparison of Average Tardiness

50

SPT

Av
er

ag
e
Ta

rd
in

es
s
(m
in
ut
es
)

40 -

30

20 -

10 -

Fuzzy Optimized SIackJOPNR

0 5

FIFO

Fuzzy

I I I I I I

10 15

Finite Buffer Limit (# parts)

20 25

Figure 7.9: Comparison of Average Production Times
Av
er
ag
e
Pr
od
uc
ti
on
 T
im
e
(m

in
ut

es
)

200 -

180 -

160

140

120 -:

10 15

Finite Buffer Limit (# parts)
20 5 25

Figure 7.10: Comparison of Average Maximum

Machine Buffer Levels
Av

er
ag

e
M
a
x
i
m
u
m
 B
uf
fe
r
Le
ve
l
(#

 p
ar

ts

10 15

Finite Buffer Limit (# parts)
20 0 5 25

141

at finite buffer limits less than four parts. For the particular mixture of part types and

process plans it can be seen that the optimized fuzzy logic method and LIFO performed

equally well with respect to preventing deadlock and that Slack/OPNR performed the

poorest. Second, it is clear from Figure 7.6 that fuzzy optimized performed better (fewer

late parts) than all other dispatching rules over a large range of finite buffer limits. As

expected, EDD performed the best as the finite buffer limit size was increased greatly.

It should also be noted that for certain rules (LIFO, FIFO and Slack/OPNR) increasing

the finite buffer limit above a certain point does not provide a decrease in the number of

late parts. Third, it is also apparent from this case, and from some of the data presented

earlier, that the fuzzy logic method requires optimization or tuning to consistently out-

perform the other rules.

Minimizing part lateness was one of the primary goals of the current fuzzy rule

sets; however, data was also gathered for the performance measures of maximum lateness,

average production time, and average tardiness given tardy. Although no effort was made

to refine the rule structure to improve the results based on these three performance

measures, it will still be useful to see how the fuzzy logic method fares against the other

rules. Figure 7.7 shows how maximum part lateness varies for each rule across the range

of finite buffer limits. It can be seen that the optimized fuzzy logic method fares better

(has lower maximum part lateness) than most of the other rules over a wide range of

finite buffer limits. The same cannot be said for average tardiness given tardy. Given

the results shown in Figure 7.8, it is not possible to say that the fuzzy optimized method

142

is necessarily better or worse than the other rules; in fact, in some instances the non-

optimized fuzzy method performs better than the optimized fuzzy method. Clearly, for

the fuzzy method to give improved results for average tardiness given tardy, changes or

additions to the rule sets are required. The situation is somewhat better for the average

production time performance measure shown in Figure 7.9. At least here, fuzzy

optimized competes favourably with fuzzy and LIFO to provide results consistently and

dramatically better than the remaining four rules. When all four performance measures

are taken into consideration the optimized fuzzy logic method seems to provide overall

better performance than the remaining dispatching rules, in spite of the fact that the rule

sets have not been specifically developed to take all the performance measures into

account.

One final goal of the current fuzzy rule sets was to minimize the machine buffer

levels. Figure 7.10 looks at the average of the maximum buffer levels of each machine

for the various rules over a range of finite buffer limits. Thus, a low average will

indicate that the peak loadings within each of the machines' buffer was low and provides

some indication of the ability of the particular dispatching rule (or method) to control

buffer loading. As seen in Figure 7.10 the fuzzy and fuzzy optimized methods compare

well with LIFO and show a better ability to control maximum buffer levels than the

remaining four rules.

143

7.6 CASE 5: MACHINE BREAKDOWN AND REPAIR

One of the overall goals of the control structure was to deal with disruptions and

breakdowns on the manufacturing floor on a real time basis. Case 5 presents a base case

situation, without optimization, having breakdown and repair events. The machine Drill 1

begins the simulation run broken, is repaired after 30 minutes, breaks down after 60

minutes and finally is repaired again after 130 minutes. During the time periods that

Drill was broken, the supervisor rerouted the parts to an alternate machine, Drill2, where

they awaited scheduling in the normal manner by the fuzzy logic scheduling sub-module.

Figure 7.11 shows the buffer level of Drill 1 throughout the simulation and one can clearly

see the difference between a normal case (no breakdown or repair events) and the broken

case. When the breakdown event at 60 minutes occurs, there are two parts left in the

input buffer of Drilli. The supervisor coordinates removal of these parts and by 66

minutes the parts have been removed and placed in the buffer of the alternate machine

Drill2 causing its buffer to fill completely to the finite buffer limit of ten parts (Figure

7.12). All subsequent parts destined for processing on Drilli are rerouted to Drill2 until

Drilli is repaired again at a time of 130 minutes. Figure 7.12 shows the effect that the

rerouting of parts from Drilli has on Drill2. The buffer levels of Drill2 are consistently

higher during the Drill 1 broken case than during a case were Drilli is functioning

normally. Drill2 is often overloaded with a buffer that is completely full, yet the fuzzy

logic scheduler is able to maintain production, and as shown in Figure 7.13, continues to

try and reduce late parts. Part I has a due date of 260 minutes and Part H has a due date

Figure 7.11: Buffer Levels of Drilli
Normal and Broken Cases

10

9 -

8

7 -

Bu
ff

er
 L
ev

el
 (
un
it
s)

6
Normal

5 - 1I

L.

2 j

u4 iL,: Ut! •t
1 Broken

0 tiiiiiiii IllIllIll

0 25 50 75 100

1

1 I
A I LLJ1LJ i rjrn t

125 150 175 200 225 250 275 300 325 350 375

Time (minutes)

Figure 7.12: Buffer Levels of Drill2
Drilil Normal and Broken Cases

Bu
ff

er
 L
ev
el
 (
un
it
s)

10

9 -

8

. 7

6

5

4 -

3

2

A
1

V

Drill Normal

I Drill Broken

i

Li

I
0
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Time (minutes)

Figure 7.13: Inventory Levels of Part Type H and I
(Drill! Normal and Broken)

10

In
ve
nt
or
y
Le
ve
l

(u
ni
ts
)

9 -

8

7 -

5

4 -

3 -

2

0

Part Type I Normal Part Type! Brokenjj

Part Type H Normal

F I Part Type H Broken

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Time (minutes)

147

of 340 minutes, both of which were met in the non-broken case. Part I and H each have

one operation that needs to be done on Drilli and therefore a breakdown of Drilli causes

production of these parts to slow down. As a result, Part I has four parts which are late

by a maximum of 30 minutes and Part H has five parts which are late by a maximum of

25 minutes. As was mentioned in the introduction, the emphasis of this project was to

develop a procedure which could deal with breakdowns in a manner which would keep

part production going versus providing an optimum rescheduling/rerouting mechanism.

It is clear from the Case 5 example that the current supervisor and fuzzy logic scheduling

structure can do that and one future step may be to incorporate an optimizing procedure

to help minimize late parts during a breakdown scenario.

7.7 CASE 6: RECONFIGURABLE CASE

As discussed in chapter 5, the control structure has been developed to allow the

representation of virtual reconfiguration in the situation where special rush orders need

to be processed. Case 6 presents a non-optimized fuzzy logic base case where two part

types: part type H and part type B, have special rush priority. As a result of. the rush

priority, the supervisor adjusts the current cell structure into a virtual structure which

allows the special parts to be processed as quickly as possible. This is done by

consistently ensuring that the special rush orders have the highest priority over all other

parts within the system. The results of the reconfiguration can be seen in Figure 7.14.

Part type B which would normally complete processing at 200 minutes, was finished in

Figure 7.14: Inventory Levels-Reconfigurable Case
Parts B and H Have Priority

In
ve
nt
or
y
Le
ve
l
(u
ni
ts
)

10

9 -

8

7 -

6

5

4

3 -

2

Part B Priority

I.

JPart B Normal

.1
Part H Normal

0 25 50 75 100 125 150 175 200 225 250 275 300 325

Time (minutes)

149

about 85 minutes. Similarly, part type H finished in about 125 minutes, or about 200

minutes earlier than in the non-reconfigurable case. Thus it can be seen that

reconfiguring the system in this manner has very positive results and that the control and

scheduling structure is capable of operating with the reconfigurability aspect in place.

7.8 CASE 7: ROBOT MOVEMENT

All the cases discussed so far have assumed that the part movement times have

been incorporated into the processing times and that sufficient material handling resources

exist to prevent any parts from waiting. Case 7, on the other hand, considers movement

times and also utilizes the services of a robot to move the parts. The test case consists

of three machines: VertMilll, VertMill2, and Drilli, and one part handling robot. Five

part types (A,B,C,D, and E) are considered, each having a batch size of ten parts. The

non-optimized fuzzy logic method is used and no machine or tool breakdowns are

considered. Furthermore, each movement of the robot is assumed to take one minute and

the robot has only a single manipulator which can handle only one part at a time.

The robot is under the control of the supervisor which activates the robot and

indicates the action required. Figure 7.15 shows a screen view of the simulation at a

SimTime of 66 minutes. The screen view shows a short chronology of the robot's actions

over the previous 16 minutes. Generally speaking, the robot appears to be fast enough

that the parts do not often have to wait. One example of a part waiting occurs at a

150

Figure 7.15: Screen View of Machine Process, Buffer Status
and Robot Action at SimTime =66 Minutes

VertMill1 Process

partEl

Buffer

partDl
parA4

VertMill2 Process

partA2

SimTime Robot Action

Buffer

partA3
partBl
partC2
partC3
partE2

50partEl loaded into VertMill2
51 partD 1 unloaded from Drill 1 into the input buffer of Drill 1
(machining completed at time 49)
52 partDl loaded into Drill I.
53 partAl unloaded from VertMilll into the input buffer of Drilli
(machining completed at time 52)
54 partA3 loaded into VertMilll
55 partA4 loaded into the input buffer of VertMill1
56 partEl unloaded from VertMill2 into the input buffer of VertMilll
(machining completed at time 55)
57 pattA2 loaded into VertMilI2
63 partDl unloaded from Drill into the input buffer of VertMilll
(machining completed at time 62)
64 partAl loaded into Drill I.
65 partA3 unloaded from VertMill1 into input buffer of VertMill2
(machining completed at time 64)
66partEl loaded into VertMilll

Drill 1 Process

partAl

Buffer

partC4
partD2

SimTime

66

151

SimTime of 51 minutes. At 51 minutes the robot completes unloading partDl from

Drilil; however, partDl completed processing at SimTime 49 minutes and therefore has

been waiting on machine Drill 1 for one minute resulting in extra machine idle time. Only

three machines were modelled in this case study because it was found that with the

current part and process plan mix, any more machines resulted in excessive machine idle

times due to parts waiting for the robot. Therefore more machines would require a

second robot, the inclusion of which is beyond the scope of this project. This small

example does however show that the control structure is capable of incorporating and

controlling a material handling system.

7.9 CASE 8: WEIGHT OPTIMIZATION

Throughout this thesis it has been shown that the fuzzy logic dispatching method

requires a certain degree of optimization before it begins to outperform existing

dispatching rules. The optimization procedure currently in use involves applying a weight

to each of the process step, schedule and buffer level rule sets. This weight is then used

to develop an overall priority level for a part. Case 8 will discuss how a weight can be

chosen in an effort to provide more optimum results. All the examples run in this section

conform to the base case with the exception that the weights are modified. Three separate

groups of simulations were run. In the first, the buffer level weight was set at one and

both the process step and scheduler weights were incrementally varied in unit steps from

one to ten resulting in a set of 100 cases. In the second group, the scheduler weight was

152

set at one while the buffer level and process step weights were varied in unit increments

from one to ten. Similarly, in the third group, the process step weights were set at one

and the other two varied. This resulted in three groups of data, each consisting of 100

simulation runs. Of primary importance was minimizing the performance measure related

to the number of late parts and therefore the number of late parts was plotted on three

dimensional graphs for the 300 cases as shown on Figures 7.16, 7.17, and 7.18. These

three figures give a clear pictorial representation of how the number of late parts are

affected as the relative weightings of the three rule sets are changed. If the weights are

expressed in the form process step weights:scheduler weights:buffer level weights, it can

be seen from Figure 7.16 that the optimum weight setting to minimize the number of late

parts would be 1:3:1, resulting in only one late part. Similarly for Figure 7.17, the

optimum is 1:1:2 with three late parts and for Figure 7.18, the optimum is 1:3:1 with one

late part. From this type of analysis it is clear that the most optimum combination of

weights to be used for the fuzzy logic base Case is 1:3:1 if one wishes to minimize the

number of late parts, and this is the combination that was used whenever the optimized

fuzzy method was referenced. On the other hand, if minimizing the performance measure

of average production time is considered, then this performance measure can be plotted

for the 300 cases as shown in Figure 7.19, 7.20 and 7.21. Figure 7.19 indicates an

average production time optimum of 52 minutes at 2:1:1. Figure 7.20 indicates the same

optimum of 52 minutes in a number of places; firstly in the range (6-10):1:(2-4) and

secondly at 2:1:1 (hidden behind a crest). The optimum shown in Figure 7.21 is 57

minutes located at 1:2:1, thus the best overall combination with respect to average

Figure 7.16: Effect of Scheduler and Process Step Weight
Modification on the Number of Late Parts

Figure 7.17: Effect of Buffer Level and Process Step
Weight Modification on the Number of Late Parts

it'll

Figure 7.18: Effect of Scheduler and Buffer Level Weight
Modification on the Number of Late Parts

Figure 7.19: Effect of Scheduler and Process Step Weight
Modification on Average Production Time

Figure 7.20: Effect of Buffer Level and Process Step
Weight Modification on Average Production Time

Figure 7.21: Effect of Scheduler and Buffer Level Weight
Modification on Average Production Time

85

g 80

'65

14
. 60

55

CV

-01

90

-55

159

production time is 2:1:1 yielding a time of 52 minutes.

Very often in production facilities there are a number of primary performance

measures which need to be met. In case 8, if both the performance measures of late parts

and average production time were equally important then there would be a conflict

because 1:3:1 results in few late parts but a high average production time whereas 2:1:1

results in a low average production time and more late parts. The issue of resolving this

type of conflict has not been dealt with in this project. However, case 8 clearly shows

that the correct selection of weights can have a significant impact on the outcome of

various performance measures. The procedure used here to find the optimum would

become prohibitively time consuming if a large search space exists but alternate searching

strategies exist which may converge onto a solution in a much quicker fashion.

This concludes chapter 7. Several test cases have been presented which show that

the control structure is very effective in controlling and scheduling a simulated

manufacturing cell. The cases have shown how the control structure dispatches parts,

how it deals with breakdown and repair events, how it reconfigures for special parts, and

how robot movement is performed. Examples have also shown that the system can deal

with very large cases, and that the optimized fuzzy logic method appears to work better

for certain performance measures than a number of dispatching rules over a large finite

buffer limit range. Finally, it has been shown how the rule set weights can be modified

in order to optimize the system for a specific performance measure.

160

CHAPTER 8

8. CONCLUSIONS

8.1 GENERAL DISCUSSION

The cell control structure, its implementation and a number of test cases have now

been presented. The control structure's modular design incorporates an internal

supervisory and scheduler structure and provides a great degree of flexibility during

implementation and operating. This modular design, combined with the development of

the system in an object oriented environment, allows the control structure to be very

portable and expandable. Thus additional machines and part objects can be created and

easily introduced into the system. The control structure can also work effectively in a

manufacturing cell, an inspection cell or an assembly cell; the type of parts or machines

are not important and do not affect the control structure. Furthermore, the structure has

been implemented at the cell level; however, the concept could be used at other levels,

161

such as the shop floor level. The procedure for selecting part types which should be

processed by a certain cell is not that much different than selecting parts for processing

on a specific machine, and therefore the fuzzy logic method could still apply. There will

still be scheduling considerations (due dates, inventory goals), buffer considerations (room

in the cell), and other unique considerations which could easily be added to the fuzzy

logic scheduling rule base. The Only differentiation in using the control structure at

different levels may be a different fuzzy logic rule base and different elements under the

control of the supervisor. For example, at the shop floor level, the nodes of the primary

level may represent cells instead of machines and the secondary control level would be

the detailed operation of the cell. The control structure could be implemented

hierarchically or autonomously. If implemented autonomously the parts and machines

would be considered to be independent entities and the message passing that is currently

done through the scheduler module could be done directly from one entity to another.

All in all, the combination of the two layer supervisory structure and the -fuzzy logic

dispatching method has provided a very flexible and portable control environment.

8.2 SUPERVISOR DISCUSSION

As described in chapter 5, the supervisor is made up of primary and secondary

control levels. The division of the control structure into these two levels has simplified

implementation of the control system and also provided the flexibility to easily make

changes. Elements at the primary control level can easily be added or removed without

162

affecting the existing elements or the detailed operational instructions in the secondary

layer. Additionally, elements of the secondary level can be modified without affecting

other portions of the secondary control level or the primary level. This type of two level

modular structure reduces the complexity of the computer code and therefore makes

development or refinement of the code easier.

The sample cases given in chapter 7 show the ability of the supervisor to perform

all the required tasks; namely, controlling the machines, monitoring for breakdowns,

initiating error recovery routines (breakdown, deadlock messages), directing part

movement and part production, controlling the material handling system (robot), initiating

the scheduling of parts, calling for part pick-up, monitoring inventory levels, monitoring

the cell input buffer, and virtually reconfiguring the cell. The supervisor structure is set

up in a manner that can deal with changes and disruptions. Alternate machines exist to

allow the rerouting of parts in the event of machine or tool breakdowns, and alternate

process plans can be used to redistribute part flow. The supervisor works closely with

the scheduler module in order to dispatch parts, and it is clear from the examples given

that the supervisor structure can react in real time using a variety of dispatching

strategies.

163

8.3 SCHEDULER DISCUSSION

The heart of the control structure is the fuzzy logic dispatching method. The

fuzzy logic method provides the mechanism whereby a number of different constraints

and conditions within the shop floor can be considered at once. Current dispatching rules

typically focus on only a few aspects of the shop floor whereas the fuzzy logic method

is restricted only by the rule set, which can be expanded or customized to suit each

particular job shop. Thus, scheduling aspects as well as control considerations can be

included in the rule sets and this ultimately provides a great deal of power and flexibility

when it comes to dispatching parts. Currently the rule base includes scheduling aspects

such as due dates and inventory levels and as well as control aspects such as buffer level

and part process plans. The extent and degree of the rule set is limited only by an ability

to generate realistic rules and to develop methods of defuzzifying the appropriate

variables.

The fuzzy dispatching method has been shown to be a very powerful and useful

method. The examples given in chapter 7 show quite clearly that the optimized fuzzy

logic method often performs significantly better than the five dispatching rules considered

(FIFO, LIFO, EDD, SPT, and Slack/OPNR) especially in terms of minimizing the number

of late parts and in preventing deadlocking. Furthermore, even though specific rules have

not been developed for the performance measures of maximum lateness and average

production time, the fuzzy logic method still shows equivalent or improved performance

164

relative to the dispatching rules.

One of the keys to having a successful fuzzy logic method is optimization. In this

project, weights were assigned to each rule set and these weights were adjusted until an

"optimum" was reached with respect to a certain performance measure (mainly number

of late parts). The optimization procedure that was described in chapter 7 consisted

mainly of conducting a number of trials and selecting the best result. As more rule sets

are implemented, this strategy would become too time consuming and ineffective.

Therefore alternative search strategies can be used such as neural networks or genetic

algorithms to, either find an optimum prior to implementing the system on the shop floor,

or to search for an optimum on an ongoing basis while the control system is actually in

operation. It is clear, however, from the results obtained thus far, that optimization is

very important since there is a large difference between the performance of the optimized

and non-optimized fuzzy logic methods.

Two other important aspects of having a successful fuzzy logic method are the

rule bases and the membership functions. As mentioned in chapter 4, the rule bases were

developed mainly through intuition and experimentation. Unfortunately no hard and fast

guidelines exist in the current literature which can aid in the generation of rule sets. Two

possible sources of rules are to consult with the people on the shop floor or to implement

various versions of existing dispatching rules. In addition to selecting appropriate rules,

it is also important to select the degree of activation of the rules such as low, very low,

165

medium, etc. Again there are no straight forward answers; however, expert systems,

genetic algorithms, or neural networks can be used to help adjust the rules and the rule

activations until an optimum or at least an improved rule structure has been developed.

Similarly, the development of the membership functions is more of an art than a science,

although some guidelines are given in Kosko [26]. As well, Karr and Gentry [21] have

advocated the use of genetic algorithms and/or heuristics to help tune and modify the

membership functions to make them more effective for the problem at hand.

Although the selection of weights, rules and membership functions is not always

clear, a number of methods exist which can refine the selection of all these elements and

therefore it becomes less critical to make perfect selections immediately. Furthermore,

the ability to change the weights, rules or membership functions, opens up a large variety

of optimization techniques which makes the control and scheduling structure very flexible.

As conditions change on the shop floor, so to must the control structure change, and to

have a large variety of adjustment options at hand is very powerful. The manner in

which fuzzy logic is implemented enables changes to occur in real time (adaptively) or

to be implemented more reactively by an operator.

166

8.4 ORIGINAL CONTRIBUTION

The main area of original contribution lies in the unique utilization of fuzzy logic

for part dispatching. Fuzzy logic has been used for scheduling by other authors in several

ways: controlling the flow of parts among resources (Custodio et al. [6]), production rate

computation in order to maintain a set production level [6], and combining several

dispatching rules (Grabot and Geneste [11]). As described in chapter 2, Custodio et al.

uses four decision factors or routing rules to choose a resource for the next operation of

a part and uses three decision functions (dispatching rules) to select the next part for

processing. Fuzzy logic is then used on -these routing and dispatching rules to do the final

selections of parts and machines. The proposed fuzzy logic dispatching method is similar

to the method presented by Custodio et al. in that it uses a number of rules or criteria for

part dispatching; however, unlike Custodio et al. the proposed method includes scheduling

considerations.

The proposed fuzzy logic method also attempts to move away from using common

dispatching rules such as those implemented by Grabot and Geneste, and provides a

method where any applicable rules related to parts, machines, scheduling or other critical

elements, can be incorporated into the decision making process. Thus, the method

becomes more all encompassing than the one proposed by Custodio et al. or Grabot and

Geneste. Custodio et al. also uses fuzzy logic as a control method to select production

rates which maintain specified production levels. In the early development of the fuzzy

167

logic dispatching scheme described in this thesis, a scheduler to meet a specified demand

rate was also created and it operated in a fashion that was similar to the one described

by Custodio. The scheduler was required to maintain a specified target inventory level

and as the inventory level approached or exceeded the target, the fuzzy scheduler adjusted

the production rate accordingly. The development and application of the rate based fuzzy

scheduler has not been discussed here since it was felt that the scheduling (dispatching)

of a due date, batch order driven shop floor was a more important and difficult problem.

There is also d certain degree of original contribution within the actual control

structure that has been proposed.. Several different control structures were discussed in

chapter 2, but none of them combine a two level supervisor with a scheduler in the

manner proposed here. The two level supervisor provides an increased degree of

flexibility when it comes to adding or modifying the structure. The proposed control

structure also describes how the supervisor and scheduler uniquely interact to dispatch

parts, deal with broken machines and tools, and implement the concept of

reconfigurability.

To summarize, the proposed fuzzy logic dispatching method provides a more all

encompassing approach to part dispatching. It includes a full range of issues beyond

common dispatching rules and it provides a scheduling methodology for a due date, batch

order driven problem. The method improves greatly on the goal attainment of various

performance measures as compared to several common dispatching rules. Furthermore,

168

the dispatching method shows great flexibility when combined with the proposed control

structure and incorporates many options for optimization.

8.5 FINAL SUMMARY

The main objective of this research was to develop a highly flexible real time

control structure that can be applied at the manufacturing cell level and which is capable

of dealing with shop floor disruptions. The scheduling portion of the control structure is

an integral part of meeting the above objective but it was also intended to consider a

wider range of constraints and performance measures. One further requirement for the

scheduling method was the inclusion of mechanisms for improvement or optimization.

The intent was also to develop a framework which supported the concept of autonomous

agents, decentralized control and provided a high degree of expandability and portability.

The above goals have all been met. The control structure deals effectively with

machine and tool breakages and has the flexibility to deal with a wide range of numbers

of parts and machines. The two level supervisor structure allows for the easy• addition

and modification of elements and the object oriented environment promotes the easy

creation of those new shop floor elements. The dispatching of parts occurs in real time

utilizing priority levels established from a number of different criteria, thereby considering

a broad perspective of shop floor conditions. Optimization mechanisms exist such as rule

weight modification, rule addition or modification, or membership function adjustments.

169

The fuzzy logic dispatching method has been shown to be more effective in minimizing

the number of late parts than several dispatching rules and is certainly competitive with

respect to minimizing average maximum buffer levels. As far as preventing deadlocking,

the optimized fuzzy logic method was equivalent to LIFO but out-performed all the other

rules that were investigated.

The control structure is a self contained modular unit needing only certain specific

due date/inventory level goals to operate. Thus it would be effective in a decentralized

control environment. Parts and machines have been developed as independent entities to

a certain degree and the control structure could be converted easily to an environment

where parts and machines could operate autonomously. The control structure• is

expandable and portable. As described in the general discussion of this chapter, the

structure could easily represent different types of cells or different control levels. Finally,

the control structure incorporates a unique combination of elements which provide a high

degree of flexibility, autonomy, portability, and an ability to deal with disturbances.

8.6 FUTURE RESEARCH

There are many directions that future research can take with respect to this project.

The most important one is to investigate methods of optimizing the rule set weights, the

membership functions, or the rules themselves. It is suggested that neural networks,

expert systems, genetic algorithms or a combination of all three be reviewed and

170

considered as potential optimization procedures.

Another important aspect is to develop a rule structure which can attain the goals

of a number of additional performance measures such as maximum lateness, average

lateness, earliness, mean tardiness given tardy, and average production time. At the same

time, methods need to be developed which allow the system to achieve the best overall

results given that some of the performance measures can often be conflicting.

Finally, the current simulation needs to be made more user friendly and

interactive. Also consideration should be given to linking the control structure to a

commercial simulation package which can provide a much better base for the

development of test cases and the capture of statistical data.

171

REFERENCES

1. Bauer A., Bowden R., Browne J., Duggan J., Lyons G., Shop Floor Control

Systems From Design to Implementation, Chapman & Hall, Cornwall, Great

Britain, 1991.

2. Blackstone Jr. J.H., Phillips D.T., Hogg G.L., "A State-of-the-art Survey of

Dispatching Rules for Manufacturing Job Shop Operations", International Journal

of Production Research, Vol 20, No. 1, 1982, pp. 27-45.

3. Cho H., Wysk R.A., "A Robust Adaptive Scheduler for an Intelligent Workstation

Controller", International Journal of Production Research, Vol. 31, No. 4, 1993,

pp. 771-789.

4. Chryssolouris G., Wright K., Pierce J., Cobb W., "Manufacturing Systems

Operation: Dispatch Rules Versus Intelligent Control", Robotics & Computer-

Integrated Manufacturing, Vol. 4, No. 3/4, 1988, pp. 531-544.

5. Curtis W., Tiemersma Ir.J.J., "A Real Time Control Network for Small Batch Part

Manufacturing", Computer Integrated Manufacturing, Proc. of the Seventh CIM-

Europe Annual Conference, May 29-31, 1991, pp. 115-125.

6. Custodio L.M.M., Sentierio J.J.S., Bispo C.F.G., "Production Planning and

Scheduling Using a Fuzzy Decision System", IEEE Transactions on Robotics and

Automation, Vol. 10, No. 2, April 1994, pp. 160-167.

172

7. Domenikos H.G., Tatsiopoulos I.P., "Intelligent Design of Shop-floor Management

Within a Supervisory Control System", Computer Integrated Manufacturing, Proc.

of the Seventh CIM-Europe Annual Conference, May 29-31, 1991, pp. 127-138.

8. Duffle N.A., Piper R.S., "Non-Hierarchical Control of A Flexible Manufacturing

Cell", Robotics & Computer-Integrated Manufacturing, Vol. 3, No. 2, 1987, pp.

175-179.

9. French S., Sequencing and Scheduling, An Introduction to the Mathematics of the

Job-Shop, Ellis Horwood Ltd., Chichester, England, 1987.

10. Gendreau D., Lesage J.J., Timon G., "An Integration of Production Management

Rules and Fabrication Know-how for Real Time Cell Production Control",

Robotics & Computer-Integrated Manufacturing, Vol. 10, No. 1/2, 1993, pp. 115-

122.

11. Grabot B., Geneste L., "Dispatching Rules In Scheduling: A Fuzzy Approach",

International Journal of Production Research, Vol. 32, No. 4., 1994, pp. 903-915.

12. Hasegawa M., Masayuki T, Temmyo T., Matsuka H., "Modelling of Exception

Handling in Manufacturing Cell Control and Its Application to PLC

Programming", Proceedings 1990 IEEE mt. Conf. on Robotics and Automation,

Cincinnati, Ohio, Vol. 1, May 13-18, 1990, pp. 514-519.

13. Hatvany J., "Intelligence and Cooperation in Heterarchical Manufacturing

Systems", Robotics & Computer-Integrated Manufacturing, Vol. 2, No. 2, 1985,

pp. 101-104.

173

14. Herrmann J.W., Lee C., Hinchman J., "Global Job Shop Sceduling with a Genetic

Algorithm", Research Report 93-26, Department of Industrial & Systems

Engineering, University of Florida, Gainsville, FE., September 1993.

15. Huang H., Chang P., "Specification, Modelling and Control of a Flexible

Manufacturing Cell", International Journal of Production Research, Vol. 30, No.

11, 1992, pp. 2515-2543.

16. Jones A.T., McLean C.R., "A Proposed Hierarchical Control Model for Automated

Manufacturing Systems", Journal of Manufacturing Systems, Vol 5., No. 1, 1986,

pp. 15-25.

17. Jones A., Saleh A., "A Decentralized Control Architecture for Computer Integrated

Manufacturing", Proceeding of the IEEE International Symposium on Intelligent

Control, 1989, pp. 44-49.

18. Joshi S.B., Smith J.S., "Intelligent Control of Manufacturing Systems". In A.

Kusiak (Ed.) Intelligent Design and Manufacturing, John Wiley & Sons Inc., 1992,

pp. 491-520.

19. Kals H.J.J., "Advanced Manufacturing in Small Batch Part Production", Computer

Applications in Production and Engineering: Proceedings of the Fourth

International IFIP TC5 Conference on Computer Applications in Production and

Engineering - Integration Aspects, CAPE '91, Bordeaux, France, September 10-12,

1991, pp. 85-94.

174

20. Kamath M., Viswanadham N., "Applications of Petri Net Based Models in the

Modelling and Analysis of Flexible Manufacturing Systems", Proceedings of the

IEEE International Conference on Robotics and Automation, San Francisco, 1986,

pp. 312-317.

21. Karr C.L., Gentry E.J., "Fuzzy Control of pH Using Genetic Algorithms", IEEE

Transactions on Fuzzy Systems, Vol. 1, No. 1, February 1993, pp. 46-53.

22. Kasturia E., DiCesare F., Desrochers A., "Real Time Control of Multilevel

Manufacturing Systems Using Colored Petri Nets", IEEE Conference on Robotics

and Automatiob, 1988, pp. 1114-1119.

23. Kaufmann A, Gupta M.M., Fuzzy Mathematical Models in Engineering and

Management Science, Elsevier Science Publishing Company Inc., New York,

N.Y., 1991.

24. Kickert W.J.M., Van Nauta Lemke H.R., "Application of a Fuzzy Controller in

a Warm Water Plant", Automatica, Vol. 12, 1976, pp. 301-308.

25. King P.J., Mamdani E.H., "The Application of Fuzzy Control Systems to •

Industrial Processes", Automatica, Vol. 13, 1977, pp. 235-242.

26. Kosko B., Neural Networks and Fuzzy Systems, A Dynamical Systems Approach

To Machine Intelligence, Prentice Hall, Englewood Cliffs, N.J., 1992.

27. Kusiak A., Intelligent Manufacturing Systems, Prentice Hall Inc., Englewood

Cliffs, New Jersey, 1990.

175

28. Lee D.Y., DiCesare F., "Scheduling Flexible Manufacturing Systems Using Petri

Nets and Heuristic Search", IEEE Transactions on Robotics and Automation, Vol.

10, No. 2, April 1994, pp. 123-132.

29. LeFrancois P., Montreuil B., "An Object-Oriented Knowledge Representation For

Intelligent Control of Manufacturing Workstations", lIE Transactions, Vol. 26, No.

1, January 1994, pp. 11-26.

30. Lin G.Y., Solberg J.J., "Integrated Shop Floor Control Using Autonomous

Agents", HE Transactions, Vol. 24, No. 3, July 1992, pp. 57-7 1.

31. Maimon O.Z., "Real-time Operational Control of Flexible Manufacturing

Systems", Journal of Manufacturing Systems, Vol. 6, No. 2, 1987, pp. 125-136.

32. Maley J.G., "Managing the Flow of Intelligent Parts", Robotics & Computer-

Integrated Manufacturing, Vol. 4, No. 3/4, 1988, pp. 525-530.

33. Manivannan S., Banks J.,"Design of a Knowledge-based On-line Simulation

System to Control a Manufacturing Shop Floor", HE Transactions, Vol. 24, No.

3, July 1992, pp. 72-83.

34. Merabet A.A., "Synchronization of Operations in a Flexible Manufacturing Cell:

The Petri Net Approach", Journal of Manufacturing Systems, Vol. 5, No. 3, 1986,

pp. 161-169.

35. O'Grady P.J., Lee K.H., "An Intelligent Cell Control System for Automated

Manufacturing". In A. Kusiak (Ed.), Knowledge-Based Systems in Manufacturing,

Taylor & Francis Inc., Philadelphia, 1989, pp. 151-172.

176

36. O'Grady P.J., Seshadri R., "Operation of X-Cell - An Intelligent Cell Control

System", Computer Integrated Manufacturing Systems, Vol. 5, No. 1, February

1992, pp. 21-30.

37. Panwalkar S.S, Iskander W., "A Survey of Dispatching Rules", Operations

Research, Vol. 25, No. 1, January-February 1977, pp. 45-61.

38. Ravichandran R., Chakravarty A.K., "Decision Support in Flexible Manufacturing

Systems Using Timed Petri Nets", Journal of Manufacturing Systems, Vol. 5, No.

2, 1986, pp. 89-100.

39. Teng S., Black J.T., "Cellular Manufacturing Systems Modelling: The Petri Net

Approach", Journal of Manufacturing Systems, Vol. 9, No. 1, 1990, pp. 45-53.

40. Tong R.M., "A Control Engineering Review of Fuzzy Systems", Automatica, Vol.

13, 1977, pp. 559-569.

41. Tzafestas S., "Petri-net and Knowledge-based Methodologies in Manufacturing

Systems Modelling Simulation and Control", Proceedings of the 5th CIM Europe

Conference, May 17-19, 1989, pp. 39-50.

42. Uckun S., Bagchi S., Kawamura K., Miyabe Y., "Managing Genetic Search in Job

Shop Scheduling", IEEE Expert, October 1993, pp. 15-24.

43. Wu S.D., Wysk R.A., "Multi-pass Expert Control System - A Control/Scheduling

Structure for Flexible Manufacturing Cells", Journal of Manufacturing Systems,

Vol. 7, No. 2, 1988, pp. 107-120.

44. Zadeh L.A., "Knowledge Representation in Fuzzy Logic", IEEE Transactions on

Knowledge and Data Engineering, Vol. 1, No. 1, March 1989, pp. 89-99.

177

45. Zhou M.C., "Combination of Petri Nets and Intelligent Decision Makers for

Manufacturing Systems Control", Proceedings of the 1991 IEEE International

Symposium on Intelligent Control", Arlington, Virginia, August 13-15, 1991, pp.

146-151.

178

APPENDIX A: EQUIPMENT CLASS, INSTANCES

VertMilll

name: 'VertMihl'

toolLib: T023, T016, T008, T007, T025

assignTo: 'Cell'

status: 'Ok'

alternateStationLib: 'VertMill2'

description: 'milling machine'

inputBufferLib: empty

currentProcess: empty

\TertMffl2

name: 'VertMill2'

toolLib: T023, TOM T008, T007, T025

assignTo: 'Celil'

status: 'Ok'

altemateStationLib: 'yertMilll'

description: 'milling machine'

inputBufferLib: empty

currentProcess: empty

179

Drill

name: 'Drill'

toolLib: T008, T007, T010, T009, T030

assignTo: 'Celil'

status: 'Ok'

alternateStationLib: 'Drill2'

description: 'drill'

inputBufferLib: empty

currentProcess: empty

Drill2

name: 'Dnill2'

toolLib: T008, T007, TO1O, T009, T030

assignTo: 'Ceill'

status: 'Ok'

alternateS tationLib: 'Drill'

description: 'drill'

inputBufferLib: empty

currentProcess: empty

180

TurnCentrel

name: 'TurnCentrel'

toolLib: T008, TOOl, TO1O, T040, T041

assignTo: 'Cell'

status: 'Ok'

alternatéStationLib: 'TurnCentre2'

description: 'CNC turning centre'

inputBufferLib: empty

currentProcess: empty

TurnCentre2

name: 'TurnCentre2'

toolLib: T008, T007, TO1O, T040, T041

assignTo: 'Ceill'

status: 'Ok'

alternateStationLib: 'TurnCentrel'

description: 'CNC turning centre'

inputBufferLib: empty

currentProcess: empty

181

APPENDIX B: TOOL CLASS INSTANCES

T007

name: 'T007'

description: 'HSS drill; DO.5 x L2.25in.'

assignTo: 'VertMilll', 'VertMill2', 'Drill', 'Dril12',

'TurnCentrel', 'TurnCentre2'

status: 'Ok'

T008

name: 'T008'

description: 'HSS drill; D1.5 x L4.875in.'

assignTo: 'VertMilll', 'VertMill2', 'Drill 1', 'Drill2',

'TurnCentrel', 'TurnCentre2'

status: 'Ok'

T009

name: 'T009'

description: 'HSS drill; DO.375 x L2.25in.'

assignTo: 'Drill', 'Drill2'

status: 'Ok'

TO1O

name: 'TOlO'

description: 'HSS drill; DO.75 x L2.5in.'

assignTo: 'Drill 1', 'Dril12', 'TumCentre 1', 'TurnCentre2'

status: 'Ok'

182

T016

name: 'T016'

description: 'HSS fourFluteEndMil; D1.5 x L3.Oin.'

assignTo: 'VertMilll', 'VertMill2'

status: 'Ok'

T023

name: 'T023'

description: 'HSS studEndMil; D2.O x LO.75in.'

assignTo: 'VertMilll', 'VertMill2'

status: 'Ok'

T025

name: 'T025'

description: 'HSS twoFluteEndMlll; DO.5 x L1.Oin.'

assignTo: 'VertMilll', 'VertMil12'

status: 'Ok'

T030

name: 'T030'

description: 'tap; DO.375-UNC x L2.25in.'

assignTo: 'Drilil', 'Drill2'

status: 'Ok'

T040

name: 'T040'

description: 'TC narrow gauge bit.'

assignTo: 'TurnCentrel', 'TurnCentre2'

status: 'Ok'

183

T041

name: 'T041'

description: 'TC roughing bit.'

assignTo: 'TurnCentrel', 'TumCentre2'

status: 'Ok'

184

APPENDIX C: PARTTYPE CLASS INSTANCES

partA

partB

name: 'partA'

processPlan: 'T023',

'T016',

'T041',

'T009',

inventoryLevel: 0

timeLevel: 0

batchTime: 240

batchAmount: 10

partLotNumber: 1

status: 'Regular'

name: 'partB'

processPlan: 'T023',

'T008',

'T041',

'T007',

inventoryLevel: 0

timeLevel: 0

batchTime: 200

batchAmount: 10

partLotNumber: 1

status: 'Regular'

'VertMilhl', 4

'VertMill2', 6

'TurnCentrel', 4

'Drill V, 8

'VertMill2', 4

'Drilli', 6

'TurnCentre2', 4

'Drill2', 2

185

partC

partD

name: 'partC'

processPlan: 'T007',

'T041',

'T030',

'T023',

inventoryLevel: 0

timeLevel: 0

batchTime: 300

batchAmount: 10

partLotNumber: 1

status: 'Regular'

name: 'partC'

processPlan: 'T041',

'T008',

'T023',

'TO 16',

inventoryLevel: 0

timeLevel: 0

batchTime: 300

batchAmount: 10

partLotNumber: 1

status: 'Regular'

'Dril12', 3

'TurnCentrel', 4

'Drill!', 5

'VertMill2', 2

'TumCentre2', 7

'Drill2', 4

'Vertivlilll', 8

'VertMill2', 2

186

name: 'partE'

processPlan: 'T023',

'TO 16',

'T007',

'T040',

inventoryLevel: 0

timeLevel: 0

batchTime: 240

batchAmount: 10

partLotNumber: 1

status: 'Regular'

name: 'partF

processPlan: 'T007',

'T023',

'T008',

'T041',

inventoryLevel: 0

timeLevel: 0

batchTime: 320

batchAmount: 10

partLotNumber: 1

status: 'Regular'

'VertMill2', 4

'VertMilhl', 6

'Drill2',4

'TumCentrel', 2

'TurnCentrel', 5

'VertMill2', 3

'Drilll', 4

'TurnCentrel', 6

187

partO

partH

name: 'partG'

processPlan: 'T023',

'T040',

'T007',

'T041',

inventoryLevel: 0

timeLevel: 0

batchTime: 320

batchAmount: 10

partLotNumber: 1

status: 'Regular'

name: 'partH'

processPlan: 'TOlO',

'T041',

T030',

'T016',

inventoryLevel: 0

timeLevel: 0

batchTime: 340

batchAmount: 10

partLotNumber: 1

status: 'Regular'

'VertMilll', 5

'TurnCentrel', 4

'Drilil', 3

'TumCentre2', 2

'Drill', 3

'TurnCentre2', 5

'Dnill2',4

'VertMffll', 1

188

pard

part!

name: 'part!'

processPlan: 'T009',

'T008',

'T016',

'T007',

inventoryLevel: 0

timeLevel: 0

batchTime: 260

batchAmount: 10

partLotNumber: 1

status: 'Regular'

name: 'part!'

processPlan: 'T007',

70 16',

'T041',

'T025',

inventoryLevel: 0

timeLevel: 0

batchTime: 240

batchAmount: 10

partLotNumber: 1

status: 'Regular'

'Drill2', 4

'Drill2', 5

'VertMilll', 4

'Drill', 2

'TumCentre2', 4

'VertMill2', 4

'TumCentrel', 5

'VeriMill1', 2

