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Abstract

Rank regression is a highly-efficient and robust approach to estimate regression coefficients

and to make inference in the presence of outlying survival times. Heller (2007) developed a

smoothed weighted rank regression function, which is used to estimate the regression param-

eter vector in an accelerated failure time model with right censored data. This function can

be expressed as a U -statistic. However, since inference is based on a normal approximation

approach, it could perform poorly when sample sizes are small and censoring rates are high.

To increase inference accuracy and robustness, we propose a jackknife empirical likelihood

method for the U -statistic obtained from the estimating function of Heller. The jackknife

empirical likelihood ratio is shown to be a standard Chi-squared statistic. Simulations were

conducted to compare the proposed method with the normal approximation method. As

expected, the new method gives better coverage probability for small samples with high cen-

soring rates. The Stanford Heart Transplant Data, Veterans Administration Lung Cancer

Data and Multiple Myeloma Data sets are used to illustrate the proposed method.
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Chapter 1

Introduction

1.1 An Overview of Regression Methods in Survival Analysis

Survival analysis is widely used in the areas of health, ecology, sociology, economics, insur-

ance, etc. The primary interest of survival analysis is often to understand the relationship

between survival times and covariates measured on study participants, such as physical and

biological measurements and medical conditions. Examples of survival times include time to

death, time until tumor recurrence, time at which a five-year term insurance policy termi-

nates, time until stockmarket crash, time until a machine part fails, and so on. Typically,

survival data are not fully observed on all subjects, but rather some values are censored. For

example, there may be subjects who choose to quit participating, who move too far away to

be followed, or who die from some unrelated event.

For i = 1, . . . , n, let Ti represent the survival time for the ith subject, Xi be the associated

p-dimensional vector of covariates, Ci denote the censoring time for the ith subject and δi

denote the event indicator, i.e., δi = I(Ti ≤ Ci), which takes value 1 if the event time is

observed, or 0 if the event time is censored. We define Yi as the minimum of the survival

time and the censoring time, i.e., Yi = min(Ti, Ci). Then, the observed data are in the

form (Yi, δi,Xi), i = 1, 2, . . . , n, which are assumed to be an independent and identically

distributed (i.i.d.) sample from (Y, δ,X). Survival analysis focuses on the distribution of

survival times and the association between survival time and risk factors or covariates. The

survival function at time t conditional on X is defined as

S(t|X) = P (T ≥ t|X).

The Cox proportional hazards (PH) model is the most prominent regression model used in
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survival analysis, especially when possible censoring exists. The conditional hazard function

for a subject with a p-dimensional covariate vector X is

λ(t|X) = λ0(t) exp(βTX),

where β is a p-dimensional regression parameter vector and λ0(t) is the baseline hazard, which

is usually left unspecified. The semiparametric approach taken in the Cox PH model allows

for no assumptions to be made about the functional form of the distribution of survival times.

But it does have the proportional hazards assumption, which is the hazards are proportional,

or the hazards ratio is assumed constant over the observed survival times.

Estimation and inference of the regression parameters from the Cox PH model are based

on the score function

Q̃n(β) =
n∑
i=1

δi

{
X i −

∑n
j=1XjI(Yj ≥ Yi) exp

[
βTXj

]∑n
j=1 I(Yj ≥ Yi) exp

[
βTXj

] }
,

which is derived from the partial likelihood under the proportional hazards assumption. The

parameter estimates, β̂, are computed as the zero solution to the score equation, Q̃n(β) = 0.

When the proportional hazards assumption is not satisfied, however, the Cox PH model

can produce incorrect regression parameter estimates. The most common alternative ap-

proach to the Cox PH model for survival times is the accelerated failure time (AFT) model

defined as

log(Ti) = βTX i + εi, i = 1, . . . , n,

where the εi’s are independent identically distributed random errors with an unknown distri-

bution function, and β is the regression parameter vector to be estimated. The log survival

from the regression residual εβ = log(T ) − βTX can be very large for small failure times,

which is an indication that estimation and inference are sensitive to small failure times.

Rank regression is one approach to regain robustness with respect to the outlying log sur-

vival times.

The following sections of the introduction will review some existing estimation and in-

ference approaches for the AFT model based on rank regression methods.
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1.2 Rank Estimation and Inference Methods

Prentice (1978) proposed a linear log-rank test statistic to test the hypothesis H0 : β = β0,

where β0 is the true value of the parameter of β. Tsiatis (1990) provided an estimating

equation based on linear rank tests, where the observed survival times in the log-rank statistic

are replaced by the observed residuals rβi = log(Yi)−βTX i. The regression estimate of β is

determined from the zero crossing of the estimating equation

˜̃
Qn(β) = n−1/2

n∑
i=1

δi

{
X i −

∑n
j=1XjI(rβj ≥ rβi )∑n
j=1 I(rβj ≥ rβi )

}
.

When β = β0, this rank estimating function,
˜̃
Qn(β), is asymptotically normally distributed

with mean zero.

Later, Tsiatis (1990) and Ying (1993) extended this function to a weighted rank estimat-

ing function

˜̃
Qn(β;w) = n−1/2

n∑
i=1

δiw(rβi )

{
X i −

∑n
j=1XjI(rβj ≥ rβi )∑n
j=1 I(rβj ≥ rβi )

}
,

where weights w(rβi ) can be chosen to increase the efficiency of the estimator β̂. The choice

of w(rβi ) = 1 corresponds to the log-rank type of weights, which is asymptotically efficient

when the error distribution is an extreme value distribution.

Fygenson and Ritov (1994) selected the weight function to be w(rβi ) = n−1
∑n

j=1 I(rβj ≥

rβi ) to produce a monotone rank estimating function

S̃n(β) = n−3/2
n∑
i=1

n∑
j=1

δi(X i −Xj)
[
1− I(rβj > rβi )

]
.

Because of the indicator function, I(rβj > rβi ), this estimating function is not continuous in

β. This discontinuity creates difficulties in the derivation of the asymptotic distribution and

computation of the estimator β̂.

To overcome these difficulties, recently, Heller (2007) developed a smoothed rank esti-

mating function, which is monotone and continuous with respect to the parameter vector.
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He established an inference procedure based on a normal approximation (NA) method. To

reduce the influence of outlying covariate values, he introduced a weight function in the

smoothed rank estimating function. His weighted estimating function is what we will use to

develop a new inference method in this thesis, which will be introduced in next subsection.

1.2.1 Smoothed Weighted Rank Regression with Censored Data

Heller’s smoothed weighted rank estimating function for estimating β is given by

Sn(β;w) = (Sn1(β;w), . . . , Snp(β;w))T ,

where the kth component is satisfied as

Snk(β;w) = n−3/2
n∑
i=1

n∑
j=1

δi(Xik −Xjk)wij ×

[
1− Φ

(
rβi − r

β
j

h

)]
, k = 1, . . . , p. (1.1)

Here wij is a weight function defined by

wij = min

{
1,

1

maxk(Xik −Xjk)2

}
,

which is symmetric and chosen to reduce the influence of outlying covariate values on the

estimator of β and its asymptotic variance. The local cumulative distribution function, Φ(·),

is a smooth approximation to the indicator function obtained by choosing a bandwidth, h,

to converge to zero; it is usually taken to be the standard normal distribution, which ensures

that Sn(β;w) is differentiable in β and has bounded influence. The bandwidth, h, is used

for smoothing purposes and is chosen such that as n → ∞, nh → ∞, and nh4 → 0.

Suppose the regression estimator, β̂, is the zero solution of this estimating equation. In

practice, as suggested by Heller (2007), h can be set equal to σ̂n−.26, where σ̂ is the sample

standard deviation of the residuals, rβ̂i , from uncensored observations. The exponent, -0.26,

of n provides the quickest rate of convergence while satisfying the bandwidth constraint of

nh4 → 0.

The estimating function given in (1.1) is monotone and continuous with respect to β.

Heller (2007) obtained the asymptotic normal distribution of β̂. Computation of β̂ becomes
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much easier than that of an estimator derived from a non-smoothed estimating equation,

and it may be implemented through the standard Newton-Raphson algorithm.

Heller (2007) assumed four regularity conditions (C1-C4) for the proof of the main the-

orems in his paper. We modify these conditions and use them in our new theorem.

C1. The parameter vector β lies in a p-dimensional bounded rectangle B and the covariate

vector, X, E(XXT ) < M <∞.

C2. The term, n−1/2Sn(β;w), has a bounded first derivative, n−1/2An(β;w), in a compact

neighborhood of β0, with n−1/2An(β;w) nonzero in that neighborhood.

C3. The local distribution function Φ(z) is continuous and its derivative φ(z) = ∂Φ(z)/∂z

is symmetric about zero with
∫
z2φ(z) <∞.

C4. The bandwidth, h, is chosen such that as n→∞, both nh→∞, and nh4 → 0.

Theorem 1. [See Heller (2007), Theorem 2.] For the AFT model, under conditions C1-

C4, the weighted rank estimating function vector Sn(β;w) is a monotone field, is differ-

entiable in β, and has bounded influence. Then n1/2(β̂ − β0) converges in distribution to

N(0, A−1(w)V (w)A−T (w)), where

A(w) = lim
n→∞

E
{
n−1/2∂Sn(β;w)/∂β

}
|β=β0

and

V (w) = lim
n→∞

n−1Var {Sn(β0;w)} .

The estimated variance-covariance matrix is given by Σn = A−1n (β̂;w)Vn(β̂;w)A−Tn (β̂;w),

where the (l,m) element of the second derivative matrix An(β;w) is

An(l,m)(β;w) = n−3/2
n∑
i=1

n∑
j=1

δiwijh
−1(Xil −Xjl)(Xim −Xjm)φ

(
rβi − r

β
j

h

)
,

and the (l,m) element of Vn(β;w) is

Vn(l,m)(β;w) = n−3
n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

(Xil −Xjl)(Xim −Xjm)wij(e
β
ij − e

β
ji)wik(e

β
ik − e

β
ki),
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where

eβij = δi

[
1− Φ

(
rβi − r

β
j

h

)]
.

So the (1− α)-level confidence region for β is

RNA =
{
β : (β̂ − β)T (Σn/n)−1(β̂ − β) ≤ χ2

α,p

}
,

where χ2
α,p is the upper quantile of the Chi-squared distribution with p degrees of freedom.

When p = 1, the confidence region, RNA, becomes the confidence interval given by

CINA =
{
β : β̂ − Zα/2

√
Σn/n ≤ β ≤ β̂ + Zα/2

√
Σn/n

}
,

where Zα/2 is the (α/2)th upper quantile of the standard normal distribution.

Taking wij ≡ 1, we obtain the smoothed unweighted estimating function Sn(β̂) given by

Heller (2007) in the following

Sn(β) = n−2/3
n∑
i=1

n∑
j=1

δi(X i −Xj)

[
1− Φ

(
rβi − r

β
j

h

)]
.

The estimator of β is the zero solution to this estimating equation and Theorem 1 in

Heller (2007) provides the asymptotic distribution of β̂.

By imposing weights in the smoothed rank estimating function, Heller (2007) showed that

it produced bounded influence in estimation, and the bounded influence provided stability

to the regression estimate β̂ in the presence of outlying survival times and covariate values.

1.3 Inference with U -statistics and Jackknife Empirical Likelihood Method

In contrast to the NA method, the empirical likelihood (EL) method is an attractive alterna-

tive approach to obtain confidence regions without requiring a variance calculation. The EL

method has many other nice features: it combines the reliability of nonparametric methods

with the effectiveness of the likelihood approach, it employs a simple and efficient algorithm

for the constrained maximization problem and confidence regions are invariant under trans-

formations. Its application can be found in many publications. Owen (1988, 1990) first
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introduced the EL method; Qin and Lawless (1994) established Wilks’ theorem for EL in an

estimating equation approach; Owen (1991) considered the empirical likelihood method for

linear regression; Zhou (2005) considered the EL in an AFT model and Zhao (2011) stud-

ied the EL based on Fygenson and Ritov’s (1994) estimating equation for the AFT model.

Recently, Jing et al. (2009) proposed a jackknife empirical likelihood (JEL) method, which

combines the jackknife and the empirical likelihood. The most important property of the

JEL method is its simplicity, which overcomes computational difficulty in an optimization

problem with many nonlinear equations when the sample size gets large. In this thesis, I will

develop the JEL method for the AFT model and use this method to analyze the smoothed

weighted or unweighted rank regression with censored data.

In the following subsections, we will give an overview about U -statistics, the empirical

likelihood and the jackknife method.

1.3.1 U -statistics

In nonparametric problems, U -statistics are often uniformly minimum-variance unbiased

estimators, so the use of U -statistics is an effective way of obtaining unbiased estimators.

The basic theory of U -statistics was developed by Hoeffding (1948). Let X1, . . . , Xn be

a random sample from a distribution function F . Let Un be a U -statistic with degree m

defined by

Un =

(
n

m

)−1 ∑
1≤i1<···<im≤n

k(Xi1 , . . . , Xim), (1.2)

where the kernel k is symmetric in Xi1 , . . . , Xim . Suppose θ = E[k(Xi1 , . . . , Xim)] is the

parameter of interest. An obvious property of U -statistics is that Un is an unbiased estimate

of θ. For l = 1, . . . ,m, let

kl(x1, . . . , xl) = E [k(X1, . . . , Xm)|X1 = x1, . . . , Xl = xl]

= E [k(x1, . . . , xl, Xl+1, . . . , Xm)] .
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Note that km = k. Define

k̃l = kl − E [k(X1, . . . , Xm)] = kl − θ,

and k̃ = k̃m. Then, for any Un defined by (1.2),

Un − E(Un) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

k̃(Xi1 , . . . , Xim).

By Hoeffding’s theorem, the variance of the U -statistic given by (1.2) is

Var(Un) =

(
n

m

)−1 m∑
l=1

(
m

l

)(
n−m
m− l

)
σ2
l ,

where

σ2
l = Var [kl(X1, . . . , Xl)]

= E
[
k̃l(X1, . . . , Xl)

]2
.

Several properties have been proven and can be found in the literature, such as when n→∞,

Var(Un) ∼ m2σ2
1

n
,

and

√
n(Un − θ)→ N(0,m2σ2

1),

where σ2
1 = Var [k1(X1)] = E

[
k̃1(X1)

]2
.

1.3.2 Empirical Likelihood

Let X1, . . . ,Xn be a random sample from a distribution function F . Suppose the Xi’s are

p-dimensional vectors. Empirical likelihood is a non-parametric statistical analysis approach

which does not impose any parametric assumptions on the common distribution F . Let

F ({xi}) = P (Xi = xi) = F (xi)− F (xi−), i = 1, . . . , n,

8



where F (·) is right continuous and xi is the observed value of Xi. Denote pi = F ({xi}).

Since the Xi’s are assumed to be independent, the empirical likelihood function becomes

Ln(F ) =
n∏
i=1

F ({xi})

=
n∏
i=1

pi, (1.3)

with constraints 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1. Notice that the empirical likelihood function

attains its maximum, Ln(Fn) = n−n, at pi = n−1. Fn is the empirical cumulative distribution

function of the sample data. Then the empirical likelihood ratio is given by

Rn(F ) =
Ln(F )

Ln(Fn)

=
n∏
i=1

(npi).

Usually, the targeted applications of the empirical likelihood are inferences on parameters

in the form of some functionals of the population distribution F , say θ = Q(F ). Here F is

known to be a member of nonparametric distribution family F , where, for example, F could

be a class of any distributions and θ could be the population mean. To make inference about

θ using a likelihood approach, a likelihood value at θ is needed. The idea behind profile

likelihood is to find the value of F at which the empirical likelihood attains the maximum

among the set of Q(F ) = θ. The profile likelihood function for θ is defined as

Ln(θ) = sup

{
Ln(F )|F (x) =

n∑
i=1

piI(xi ≤ x), Q(F ) = θ, F ∈ F

}

= max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

pixi = θ, pi ≥ 0

}
. (1.4)

Then the likelihood ratio function evaluated at θ is

Rn(θ) =
Ln(θ)

Ln(Fn)

=
Ln(θ)

n−n

= max

{
n∏
i=1

(npi) :
n∑
i=1

pi = 1,
n∑
i=1

pixi = θ, pi ≥ 0

}
. (1.5)
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For computation of the profile likelihood, since the log is a monotone transformation,

take the logarithms of (1.3) and (1.4), and we obtain

ln(F ) =
n∑
i=1

log pi,

ln(θ) = max

{
n∑
i=1

log pi :
n∑
i=1

pi = 1,
n∑
i=1

pixi = θ, pi ≥ 0

}
.

It is much more convenient to work with the log-empirical likelihood function. In fact, for

each given value of θ, ln(θ) is the maximum of ln(F ) for all F such that Q(F ) = θ. Then to

compute ln(θ), the numerical problem becomes:

maximize :
n∑
i=1

log pi

subject to : 0 < pi < 1,
n∑
i=1

pi = 1,

n∑
i=1

pixi = θ, i = 1, . . . , n.

In order to solve this maximization problem, we use the Lagrange multiplier method. Let

f(η, λ) =
n∑
i=1

log pi + η(
n∑
i=1

pi − 1)− nλT (
n∑
i=1

pixi − θ),

where η and λ = (λ1, . . . , λp)
T are Lagrange multipliers. After taking derivatives with respect

to pi, η and λ respectively and setting them equal to zero, we can get three equations to

determine the values of pi, η and λ. Then we have

η = nλT θ − n,

pi =
1

n {1 + λT (xi − θ)}
,

with λ satisfying

f(λ) =
n∑
i=1

xi − θ
1 + λT (xi − θ)

= 0.
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If we plug pi back into (1.5), Rn(θ) can be written as

Rn(θ) =
n∏
i=1

1

1 + λT (xi − θ)
.

If we then take the logarithm of Rn(θ) and multiply by -2, we obtain the empirical likelihood

statistics

−2 logRn(θ) = 2
n∑
i=1

log
{

1 + λT (xi − θ)
}
.

1.3.3 Jackknife

In statistical inference, we usually need to obtain variances of estimators to construct con-

fidence regions and to test hypotheses. But it is often difficult or impossible to determine

the distribution of these statistics, and to obtain estimates of the variances. Resampling

methods turn out to be useful in these settings, which enable inference across a wide range

of statistics under very general conditions. The jackknife method is one resampling approach

to assess the variability of statistics or estimators. It was introduced by Quenouille (1956)

to construct a bias estimator that could be used in very general situations. Tukey (1958)

suggested that the jackknife estimates be obtained by removing data and then recalculating

the estimator. The jackknife method provides a general purpose statistical tool that is easy

to implement.

LetDn be an estimator of θ based on n independent random variables X = {X1,X2, . . . ,Xn}

for some function f , denoted as

Dn = f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn).

Generate a jackknife sample X−i = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn} by leaving out the ith

observation. Then calculate the statistic D−in−1 by applying the estimation process to the

sample of (n− 1) variables formed from the original data set,

D−in−1 = f(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

11



Define the jackknife pseudo-values by

V̂i = nDn − (n− 1)D−in−1.

These pseudo-values assume the same role as the Xi’s in estimating θ, hence the jackknife

estimate of θ is given by the average of the pseudo-values

Dn,jack =
1

n

n∑
i=1

V̂i.

Shi (1984) showed that the pseudo-values V̂i are asymptotically independent under mild

conditions. Then the jackknife estimator Dn,jack can be viewed as a sample average of

approximately independent random variables V̂i’s. We can then use empirical likelihood to

make inference about the population parameter, θ.

1.3.4 JEL Method

Since the jackknife estimator Dn,jack of θ is a sample average of approximately independent

random variables, V̂i’s, then the empirical likelihood evaluated at θ is

Ln(θ) = max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i = θ, pi ≥ 0

}
.

Note that
∏n

i=1 pi still attains its maximum at pi = n−1. So we define the jackknife empirical

likelihood ratio at θ by

Rn(θ) = max

{
n∏
i=1

(npi) :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i = θ, pi ≥ 0

}
.

Using Lagrange multipliers, when

min
1≤i≤n

V̂i < θ < max
1≤i≤n

V̂i, (1.6)

we have

pi =
1

n
{

1 + λT (V̂i − θ)
} ,
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where λ satisfies

f(λ) =
n∑
i=1

V̂i − θ
1 + λT (V̂i − θ)

= 0.

The jackknife empirical log-likelihood ratio at θ becomes

logR(θ) = −
n∑
i=1

log
{

1 + λT (V̂i − θ)
}
.

When the dimension of θ is 1, i.e., θ is a scalar, under some regularity conditions, Jing et

al. (2009) showed that −2 logR(θ) converged to the standard Chi-squared distribution with

one degree of freedom. We postulate that their results also hold for a vector θ of dimension

p (p > 1).

13



Chapter 2

Methodology

In this chapter, we will express Heller’s (2007) smoothed weighted rank estimation function

as a U -statistic, then apply the JEL to the U -statistic and then derive and prove a new

theorem to show that the JEL ratio is a standard Chi-squared statistic, from which we are

able to calculate the confidence region of the unknown parameter vector β.

2.1 Smoothed Weighted Rank Estimating Function in the Form of U -statistics

Let Zi = (Yi, δi,Xi), i = 1, . . . , n. We re-express Heller’s (2007) smoothed weighted rank

estimating function Sn(β;w) as a U -statistic with a symmetric kernel function,

Sn(β;w)

= n−3/2
n∑
i=1

n∑
j=1

δi(X i −Xj)wij

[
1− Φ

(
rβi − r

β
j

h

)]

= n−3/2

{∑
i<j

δi(X i −Xj)wij

[
1− Φ

(
rβi − r

β
j

h

)]
+
∑
j<i

δi(X i −Xj)wij

[
1− Φ

(
rβi − r

β
j

h

)]}

= n−3/2

{∑
i<j

δi(X i −Xj)wij

[
1− Φ

(
rβi − r

β
j

h

)]
+
∑
i<j

δj(Xj −X i)wji

[
1− Φ

(
rβj − r

β
i

h

)]}

= n−3/2
∑
i<j

{
(X i −Xj)wij

{
δi

[
1− Φ

(
rβi − r

β
j

h

)]
+ δj

[
1− Φ

(
rβj − r

β
i

h

)]}}

=

[
n−3/2

(
n

2

)][(
n

2

)−1 ∑
1≤i<j≤n

k(Zi,Zj;β)

]

≡ n− 1

2n1/2
S∗n(β;w), (2.1)

where S∗n(β;w) is a U -statistic of degree 2

S∗n(β;w) =

(
n

2

)−1 ∑
1≤i<j≤n

k(Zi,Zj;β) ≡ Un(β) (2.2)
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with the kernel function

k(Zi,Zj;β) = (X i −Xj)wij

{
δi

[
1− Φ

(
rβi − r

β
j

h

)]
+ δj

[
1− Φ

(
rβj − r

β
i

h

)]}
. (2.3)

The kernel has zero expectation, i.e., θ = E[k(Zi,Zj;β)] = 0.

2.2 JEL Method for the Smoothed Weighted Estimating Function

To apply JEL to this U -statistic, the jackknife pseudo-values become

V̂i(β) = nUn(β)− (n− 1)U
(−i)
n−1 (β), (2.4)

where U
(−i)
n−1 (β) = U(Z1, . . . ,Zi−1,Zi+1, . . . ,Zn) is the statistic Un−1(β) computed on the

sample of n − 1 variables formed from the original data set by deleting the ith data value.

The population parameter of interest is β, satisfying E[k(Zi,Zj;β)] = 0.

Taking the expectation of (2.4), we get

E
[
V̂i(β)

]
= E

[
nUn(β)− (n− 1)U

(−i)
n−1 (β)

]
= E [nUn(β)]− E

[
(n− 1)U

(−i)
n−1 (β)

]
= nE [Un(β)]− (n− 1)E

[
U

(−i)
n−1 (β)

]
= n

(
n

2

)−1 ∑
1≤i<j≤n

E [k(Zi,Zj;β)]−

(n− 1)

(
n− 1

2

)−1 ∑
1≤i<j≤n−1

E [k(Zi,Zj;β)]

= n× 0− (n− 1)× 0

= 0.

Then the jackknife estimator of θ ≡ E [k(Zi,Zj;β)] = 0 is defined as

Un(β) =
1

n

n∑
i=1

V̂i(β).

As previously mentioned in Chapter 1, the log-rank test based on the residuals, rβi =

log(Yi)− βTX i, is obtained from these hypotheses:

H0 : β = β0 vs. Ha : β 6= β0.
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In our smoothed weighted rank estimation problem, this test is equivalent to the test

H0 : E
[
V̂i(β)

]∣∣∣
β=β0

= 0 vs. Ha : E
[
V̂i(β)

]∣∣∣
β=β0

6= 0.

Now apply the empirical likelihood method to V̂i(β)’s to obtain the empirical likelihood

statistics at the value of β. The empirical likelihood function at the value of β is given by,

L(β) = max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(β) = 0, pi ≥ 0

}
.

Then define the JEL ratio at β by

R(β) =
L(β)

n−n

= max

{
n∏
i=1

(npi) :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(β) = 0, pi ≥ 0

}
.

Using Lagrange multipliers, when 0 is contained in the convex hull of V̂i(β)’s, we have

pi =
1

n
{

1 + λT V̂i(β)
} , (2.5)

where λ satisfies

f(λ) =
n∑
i=1

V̂i(β)

1 + λT V̂i(β)
= 0. (2.6)

The jackknife empirical log-likelihood ratio at β becomes

logR(β) = −
n∑
i=1

log
{

1 + λT V̂i(β)
}
,

then we get

− 2 logR(β) = 2
n∑
i=1

log
{

1 + λT V̂i(β)
}
. (2.7)

Jing et al. (2009) proposed a JEL for one-dimensional U -statistics and obtained asymptotic

results. We first extend their method to p-dimensional U -statistics and then apply JEL for

the smoothed weighted rank regression estimating function.

Define

g(z;β) = E [k(z,Z2;β)]− θ = E [k(z,Z2;β)]− 0 = E [k(z,Z2;β)]
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and

σ2
g = Var [g(Z1;β)] .

Theorem 2. Assume that −∞ < E [k2(Z1,Z2;β)] < ∞ and σ2
g > 0, under the conditions

of Heller (2007) for the normal approximation of the distribution of β̂, when β = β0, we

have

−2 logR(β)
d→ χ2

p,

as n→∞,
d→ denotes convergence in distribution.

Based on this result, a (1− α)-level confidence region for β is

RJEL =
{
β : −2 logR(β) ≤ χ2

α,p

}
,

where χ2
α,p is the upper quantile of Chi-squared distribution with p degrees of freedom.

Notice that when constructing this confidence region, there is no need to solve any estimating

equation nor to estimate the variance matrix.

Proof. We will give a detailed proof under the case of one-dimensional β first, and later, we

will provide an outline for the proof of multi-dimensional case. We need several technical

lemmas to show the results, following Jing et al.’s (2009) arguments, we show them first.

Lemma 1. Suppose that E [k2(Z1,Z2; β)] < ∞ and σ2
g > 0. Then as n → ∞, we have

P (min1≤i≤n V̂i(β) < 0 < max1≤i≤n V̂i(β)) −→ 1.

Proof. First check E [k2(Z1,Z2; β)] < ∞. Since 0 < wij ≤ 1, δi = 0 or 1 and 0 ≤ Φ(·) ≤ 1,

17



from (2.3), we have

k2(Zi,Zj; β) = (Xi −Xj)
2w2

ij

{
δi

[
1− Φ

(
rβi − r

β
j

h

)]
+ δj

[
1− Φ

(
rβj − r

β
i

h

)]}2

≤ (Xi −Xj)
2 × 1×

{
δi

[
1− Φ

(
rβi − r

β
j

h

)]
+ δj

[
1− Φ

(
rβj − r

β
i

h

)]}2

≤ (Xi −Xj)
2 {1 + 1}2

= 4(Xi −Xj)
2

≤ 8(X2
i +X2

j ).

Taking the expectation of k2(Zi,Zj; β),

E
[
k2(Zi,Zj; β)

]
≤ 8E(X2

i +X2
j )

= 8× 2E(X2
1 )

= 16E(X2
1 ) <∞.

By some similar arguments and tedious calculation, we can show that σ2
g > 0.

When p = 1, Xi is scalar. It suffices to show that P (min1≤i≤n V̂i(β) ≥ 0) → 0 and

P (max1≤i≤n V̂i(β) ≤ 0)→ 0. We will only prove P (max1≤i≤n V̂i(β) ≤ 0)→ 0 since the proof

of P (min1≤i≤n V̂i(β) ≥ 0)→ 0 can be done similarly.

Let ξni = ψ(V̂i(β)), where ψ(s) is a nondecreasing, twice differentiable function with

bounded first and second derivatives such that

ψ(s) =


0, if s ≤ 0

a(s), if 0 < s < ε

1, if s ≥ ε,

(2.8)
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with 0 < a(s) < 1 for 0 < s < ε. Then,

P ( max
1≤i≤n

V̂i(β) ≤ 0) = P (V̂1(β) ≤ 0, . . . , V̂n(β) ≤ 0)

= P (ξn1 = 0, . . . , ξnn = 0)

= P

(
n∑
i=1

ξni = 0

)

= P

(
n∑
i=1

(ξni − Eξn1) = −nEξn1

)

≤ P

(∣∣∣∣∣
n∑
i=1

(ξni − Eξn1)

∣∣∣∣∣ ≥ nEξn1

)

≤ E [
∑n

i=1(ξni − Eξn1)]
2

n2(Eξn1)2

≤ nVar(ξn1) + n(n− 1)Cov(ξn1, ξn2)

n2(Eξn1)2
.

It suffices to show that

(a) Var(ξn1) ≤ 1,

(b) limn→∞Eξn1 ≥ c > 0 for some constant c,

(c) Cov(ξn1, ξn2)→ 0.

Proof of (a). Var(ξn1) ≤ Eξ2n1 ≤ 1.

Proof of (b). By the Hoeffding decomposition, Un(β) = 2n−1
∑n

i=1 g(Zi; β)+
(
n
2

)−1∑n
i<j ϕ(Zi,Zj; β),

where g(z; β) = E [k(z,Z1; β)] and ϕ(z,y; β) = k(z,y; β)−g(z; β)−g(y; β). Then after some

algebraic calculations, we have

V̂i(β) = 2g(Zi; β) +
2

n− 2

n∑
l=1,l 6=i

ϕ(Zi,Zl; β)−
(
n− 1

2

)−1 n∑
i<j

ϕ(Zi,Zj; β)

= 2g(Zi; β) +Rni,

where Rni is the remainder term. Using a Taylor series expansion

ξni = ψ(V̂i(β))

= ψ [2g(Zi; β) +Rni]

= ψ [2g(Zi; β)] + ψ′ [2g(Zi; β)]Rni + ηiR
2
ni,
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where |ηi| < M for some constant M > 0. Here and after, M stands for some generic

constant, which could be different for each occasion. Since

E
[
R2
ni

]
≤Mn−1Eϕ2(Z1,Z2; β) +Mn−2Eϕ2(Z1,Z2; β) −→ 0, (2.9)

this implies that Rni → 0 in probability. This implies that

Eξni = E {ψ [2g(Zi; β)]}+ E {ψ′ [2g(Zi; β)]Rni}+ E
[
ηiR

2
ni

]
→ E {ψ [2g(Zi; β)]} . (2.10)

Notice that E [g(Zi; β)] = 0 and σ2
g > 0, we get P (g(Zi; β) > 0) > 0, which implies that

E {ψ [2g(Zi; β)]} > 0. This proves (b).

Proof of (c). Note that Cov(ξn1, ξn2) = E(ξn1ξn2) − E(ξn1)E(ξn2). By a Taylor series

expansion, we have

ξni = ψ(V̂i(β)) = ψ [2g(Zi; β) +Rni] = ψ [2g(Zi; β)] + λiRni,

where |λi| < M for some constant M > 0. Therefore,

E(ξn1ξn2) = E {(ψ [2g(Z1; β)] + λ1Rn1)(ψ [2g(Z2; β)] + λ2Rn2)}

→ (E {(ψ [2g(Z1; β)]})2 ,

since

|E {Rn1ψ [2g(Z2; β)]}| = |E {Rn2ψ [2g(Z1; β)]}| ≤ME |Rni| ≤M(ER2
ni)

1/2 → 0

and |ERn1Rn2| ≤ ER2
n1 → 0 from (2.9). Thus (c) follows from this and (2.10).

Lemma 2. [See Hoeffding (1948).] If E [k2(Z1,Z2; β)] < ∞, we have
√
nUn(β)/(2σg)

d→

N(0, 1).

Lemma 3. Let G = n−1
∑n

i=1 V̂
2
i (β), if E [k2(Z1,Z2; β)] <∞, then we have G = 4σ2

g + o(1)

with probability one.

20



Proof. Since E [k2(Z1,Z2; β)] <∞, notice that

G =
1

n

n∑
i=1

V̂ 2
i (β) =

1

n

n∑
i=1

[
V̂i(β)− Un(β) + Un(β)

]2
=

1

n

n∑
i=1

[
V̂i(β)− Un(β)

]2
+ U2

n(β).

From Theorem 1.3 of Lee (1990), we have Var [Un(β)] = n−1
[
4σ2

g +O(n−1)
]
. Denote the

jackknife estimate of Var(Un(β)) by V̂ar(JACK). Then we have

1

n

n∑
i=1

[
V̂i(β)− Un(β)

]2
= (n− 1)V̂ar(JACK) = (n− 1)

[
Var(Un(β)) + o(n−1)

]
= 4σ2

g + o(1)

with probability one. In addition, the strong law of large number for U -statistics results in

Un(β) = o(1) a.s. Therefore, G = 4σ2
g + o(1) a.s, which completes the proof.

Lemma 4. Let Hn = max1≤i 6=j≤n |k(Z1,Z2; β)|, if E [k2(Z1,Z2; β)] <∞, then Hn = o(n1/2)

with probability one.

Proof. By a chaining argument, it suffices to prove that 2−n/2 max1≤j<2n |k(Zj,Z2n ; β)| → 0

a.s. For each ε > 0, we have

∞∑
n=1

P

{
max

1≤j<2n
|k(Zj,Z2n ; β)| ≥ ε2n/2

}
≤

∞∑
n=1

2nP
{
|k(Zj,Z2n ; β)| ≥ ε2n/2

}
=

∞∑
n=1

∞∑
m=n

2nP
{

2(m+1)/2 > ε−1 |k(Z1,Z2; β)| ≥ 2m/2
}

=
∞∑
m=1

m∑
n=1

2nP
{

2(m+1)/2 > ε−1 |k(Z1,Z2; β)| ≥ 2m/2
}

≤
∞∑
m=1

2m+1P
{

2(m+1)/2 > ε−1 |k(Z1,Z2; β)| ≥ 2m/2
}

≤ 2ε−2E |k(Z1,Z2; β)|2

< ∞.

By the Borel-Cantelli lemma, we obtain the result.
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Corollary 1. Let Wn = max1≤i≤n

∣∣∣V̂i(β)
∣∣∣, if E [k2(Z1,Z2; β)] <∞, then Wn = o(n1/2) and

n−1
∑n

i=1

∣∣∣V̂i(β)
∣∣∣3 = o(n1/2).

Proof. It is easy to check that

Un(β) =
1

n(n− 1)

n∑
l=1

n∑
j=1,j 6=l

k(Zl,Zj; β)

=
2

n(n− 1)

n∑
j=1,j 6=i

k(Zi,Zj; β) +
n− 2

n
U

(−i)
n−1 (β).

Then for any 1 ≤ i ≤ n,∣∣∣V̂i(β)
∣∣∣ =

∣∣∣∣∣ 2

n− 1

n∑
j=1,j 6=i

k(Zi,Zj; β)− U (−i)
n−1 (β)

∣∣∣∣∣
≤ 3 max

1≤i 6=j≤n
|k(Zi,Zj; β)| = 3Hn.

By Lemma 4, Wn = o(n1/2) a.s. From this and Lemma 3, we have

1

n

n∑
i=1

∣∣∣V̂i(β)
∣∣∣3 ≤ Wn ×

1

n

n∑
i=1

V̂ 2
i (β)

= o(n1/2)× (4σ2
g + o(1)) = o(n1/2).

Proof of Theorem 2. Lemma 1 has already showed that when min1≤i≤n V̂i(β) < 0 <

max1≤i≤n V̂i(β) with probability one, the solution of (2.5) and (2.6) exists and is unique. We

now show that the root of (2.6) satisfies |λ| = Op(n
−1/2).

0 = |f(λ)| =
1

n

∣∣∣∣∣
n∑
i=1

V̂i(β)− λ
n∑
i=1

V̂ 2
i (β)

1 + λV̂i(β)

∣∣∣∣∣
≥ |λ|

n

n∑
i=1

V̂ 2
i (β)

1 + λV̂i(β)
− 1

n

∣∣∣∣∣
n∑
i=1

V̂i(β)

∣∣∣∣∣
≥ |λ|G

1 + |λ|Wn

−

∣∣∣∣∣ 1n
n∑
i=1

V̂i(β)

∣∣∣∣∣ .
By Lemma 2, the second term is Op(n

−1/2). From Lemma 3, G = 4σ2
g + o(1) a.s., it follows

that |λ| /(1 + |λ|Wn) = Op(n
−1/2), and hence from Corollary 1,

|λ| = Op(n
−1/2). (2.11)
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Write γi = λV̂i(β). Then from Corollary 1 and (2.11),

max
1≤i≤n

|γi| = Op(n
−1/2)o(n1/2) = op(1). (2.12)

Expanding (2.6) by a Taylor series expansion,

0 = f(λ) =
1

n

n∑
i=1

V̂i(β)(1− γi + γ2i /(1 + γi))

=
1

n

n∑
i=1

V̂i(β)−Gλ+
1

n

n∑
i=1

V̂i(β)γ2i /(1 + γi),

where the last term is bounded by

1

n

n∑
i=1

∣∣∣V̂i(β)
∣∣∣3 λ2 |1 + γi|−1 = o(n1/2)Op(n

−1)Op(1) = op(n
−1/2).

Therefore we can write

λ = G−1

(
1

n

n∑
i=1

V̂i(β)

)
+ ρ

= G−1Un(β) + ρ, (2.13)

where |ρ| = op(n
−1/2). Using a Taylor series expansion,

log(1 + γi) = γi − γ2i /2 + ηi,

here for some finite B > 0, we have P (|ηi| ≤ B |γi|3 , 1 ≤ i ≤ n)→ 1 as n→∞. Then

− 2 logR(β) = −2
n∑
i=1

log(npi) = 2
n∑
i=1

log(1 + γi)

= 2
n∑
i=1

γi −
n∑
i=1

γ2i + 2
n∑
i=1

ηi

= 2nλUn(β)− nGλ2 + 2
n∑
i=1

ηi

=
nU2

n(β)

G
− nGρ2 + 2

n∑
i=1

ηi. (2.14)

For the first term, we have

nU2
n(β)

G

d→ χ2
1
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by Lemmas 2 and 3. For the second term, it follows from Lemma 3 and (2.13), that

∣∣nGρ2∣∣ = n(4σ2
g + o(1))op(n

−1) = op(1).

For the last term, from Corollary 1 and (2.11), we have∣∣∣∣∣
n∑
i=1

ηi

∣∣∣∣∣ ≤
n∑
i=1

|ηi| ≤ B |λ|3
n∑
i=1

∣∣∣V̂i(β)
∣∣∣3

= Op(n
−3/2)o(n3/2) = op(1).

Then it follows that −2 logR(β)
d→ χ2

1.

For the p-dimensional β case, using arguments similar to those in Owen (2001), we have

‖λ‖ = Op(n
−1/2)

and

max
1≤i≤n

∥∥∥V̂i(β)
∥∥∥ = o(n1/2).

Equation (2.14) can be expanded as

− 2 logR(β) = −2
n∑
i=1

log(npi) = 2
n∑
i=1

log(1 + γi)

= 2
n∑
i=1

γi −
n∑
i=1

γ2i + 2
n∑
i=1

ηi

= 2nλTUn(β)− nλTGλ+ 2
n∑
i=1

ηi

= nUT
n (β)G−1Un(β)− nρTG−1ρ+ 2

n∑
i=1

ηi.

For the first term, in the limit as n→∞,

nUT
n (β)G−1Un(β)

d→ χ2
p.

For the second term,

nρTG−1ρ = nop(n
−1/2)Op(1)op(n

−1/2) = op(1).
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For the last term, ∣∣∣∣∣
n∑
i=1

ηi

∣∣∣∣∣ ≤
n∑
i=1

|ηi| ≤ B ‖λ‖3
n∑
i=1

∥∥∥V̂i(β)
∥∥∥3

= Op(n
−3/2)o(n3/2) = op(1).

Therefore, −2 logR(β)
d→ χ2

p.
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Chapter 3

Simulation Studies

In this chapter, simulations are conducted to compare the performance of the JEL method

and the NA method for conducting inference for β. In the first simulation study, we will fit

a model with a one-dimensional continuous covariate, and then compare the coverage prob-

ability and average length of the confidence intervals of these two different methods. In the

second simulation study, a model with two-dimensional covariate is fit, and the performance

of the proposed JEL method is compared with the NA method in terms of joint coverage

probabilities.

In the case of one-dimensional parameter β, each sample Z
(j)
1 , . . . ,Z(j)

n , j = 1, . . . , B,

is drawn from some underlying population Z = (Y, δ,X). We calculate the (1 − α)-level

confidence intervals ĈIj =
{
β : −2 logR(β) ≤ χ2

α,1

}
, j = 1, . . . , B, and denote the length of

ĈIj by
∣∣∣ĈIj∣∣∣. Define the indicator function

I
{
β ∈ ĈIj

}
=

 1 if the parameter value β falls in the (1− α)-level confidence interval,

0 otherwise.

The coverage probability and average length are calculated by B−1
∑B

j=1 I(β ∈ ĈIj) and

B−1
∑B

j=1

∣∣∣ĈIj∣∣∣, respectively. In the case of the p-dimensional (p > 1) parameter vector

β, the (1 − α)-level confidence regions are calculated by ĈRj =
{
β : −2 logR(β) ≤ χ2

α,p

}
.

Then the joint coverage probability is given by B−1
∑B

j=1 I(β ∈ ĈRj).

Using the NA approach, the (1 − α)-level confidence interval for β is calculated as(
β̂ − Zα/2se(β̂), β̂ + Zα/2se(β̂)

)
, where se(β̂) is the standard error of β̂. Denote the in-
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dicator function

I
{
β ∈

(
β̂i − Zα/2se(β̂i), β̂i + Zα/2se(β̂i)

)}
=

 1 if the parameter value β falls in the (1− α)-level confidence interval,

0 otherwise.

So the average length of the (1−α)-level confidence interval is given by B−1
∑B

i=1 2Zα/2se(β̂i),

and the coverage probability is B−1
∑B

i=1 I
{
β ∈

(
β̂i − Zα/2se(β̂i), β̂i + Zα/2se(β̂i)

)}
.

3.1 JEL and NA based on One-dimensional Covariate in Smoothed Weighted

Rank Regression with Censored Data

In the following AFT model with only a one-dimensional parameter and covariate

log(Ti) = βXi + εi, i = 1, . . . , n,

we set the true regression coefficient, β, to two. The censoring time Ci was generated from a

uniform distribution U(0, τ), where τ determines the censoring rate (cr). In the simulations

we chose τ to produce cr = {0, 25%, 50%, 75%}.

In this simulation set, four different simulation scenarios are introduced. In the first

scenario, the univariate covariate Xi was generated from the standard normal distribution

N(0, 1). The error term εi was generated from the normal distribution with mean 1 and

standard deviation σ. Here, σ represents the strength of the relationship between the co-

variate Xi and the survival time Ti, which ranged from 1 to 4. These simulations were

implemented to examine the performance of the regression estimator when the error distri-

bution is symmetric. The second scenario was similarly structured except the error term εi

was generated from a Chi-squared distribution with 6 degrees of freedom. These simulations

were run to explore the properties of the regression estimator when the error distribution is

asymmetric. In the third scenario, the covariate Xi was also generated from the standard
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normal distribution N(0, 1), but the error term εi was generated from a contaminated normal

distribution. The contaminated normal distribution was obtained by generating 95% of the

errors, εi, from the normal distribution with mean 1 and standard deviation σ and 5% of the

errors, εi, was generated from the normal distribution with mean 1 and standard deviation

2σ. In the fourth scenario, a data set with a contaminated covariate and a contaminated

normal error distribution were generated to test the robustness of the rank based regression

estimates. Ninety-five percent of the values of the covariate Xi were generated from the stan-

dard normal distribution N(0, 1) and 95% of error term εi values were generated from the

normal distribution with mean 1 and standard deviation σ. The other 5% of the covariate

Xi values were generated from the normal distribution N(−5, 1) and 5% of the error term εi

values were generated from a normal distribution with mean 1 and standard deviation 2σ.

Two different sample sizes were considered: n = 50 and 100, and there were B = 5000

replications for each simulation setting. Weighted and unweighted rank regression estimates

were investigated for both uncontaminated and contaminated data. The results are reported

in Tables 3.1 - 3.4.

Heller (2007) has shown that the NA based on the smoothed weighted rank estimating

equation can reduce the influence of outlying covariate values on β̂ and its asymptotic vari-

ance. Without losing the robustness of the NA approach, in Tables 3.1 - 3.4, we demonstrate

that the coverage probabilities of JEL are greater and closer to the nominal level 95% than

those of NA in most cases, including contaminated data. This is particularly true for smaller

sample sizes (e.g. n = 50) and higher censoring rates (e.g. cr = 75%). This implies that

JEL generally has better coverage than NA. On the other hand, the average length of JEL

is slightly longer than that of NA. Also, when the sample size increases or the censoring

rate decreases, the average length shortens. This may be a result of a larger sample size

and lower censoring rate, where less information is susceptible to being lost. The confidence

interval based on the NA is symmetric whereas the confidence interval based on the JEL is
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Table 3.1: Coverage probabilities and average lengths (in parentheses) of the 95% confidence
intervals for the regression parameter, β. Here, β = 2 when ε ∼ N(1, σ2), τ is the censoring
parameter, cr is the censoring rate, the sample size, n, is 50 or 100 and the number of
replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.943(0.620) 0.953(0.646) 0.942(0.624) 0.956(0.639)

36.9 25 0.936(0.771) 0.950(0.813) 0.930(0.721) 0.944(0.749)
7.05 50 0.936(1.009) 0.950(1.084) 0.908(0.915) 0.931(0.975)
1.4 75 0.898(1.510) 0.924(1.829) 0.867(1.327) 0.912(1.783)

2 ∞ 0 0.942(1.239) 0.952(1.292) 0.933(1.139) 0.946(1.171)
54.5 25 0.940(1.424) 0.953(1.504) 0.922(1.313) 0.937(1.364)
7.12 50 0.929(1.724) 0.941(1.846) 0.911(1.563) 0.926(1.646)
0.965 75 0.901(2.368) 0.915(2.626) 0.865(2.048) 0.894(2.365)

4 ∞ 0 0.942(2.477) 0.952(2.584) 0.929(2.275) 0.942(2.339)
163 25 0.942(2.696) 0.954(2.857) 0.927(2.485) 0.945(2.591)
7.25 50 0.937(3.075) 0.948(3.306) 0.918(2.800) 0.935(2.951)
0.333 75 0.916(3.958) 0.925(4.336) 0.878(3.442) 0.895(3.764)

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.941(0.429) 0.946(0.437) 0.945(0.429) 0.956(0.435)

36.9 25 0.942(0.534) 0.949(0.547) 0.935(0.502) 0.943(0.512)
7.05 50 0.940(0.698) 0.947(0.724) 0.928(0.648) 0.939(0.669)
1.4 75 0.930(1.052) 0.941(1.119) 0.909(0.957) 0.925(1.018)

2 ∞ 0 0.941(0.857) 0.946(0.874) 0.938(0.800) 0.947(0.812)
54.5 25 0.941(0.980) 0.948(1.005) 0.935(0.918) 0.941(0.937)
7.12 50 0.944(1.192) 0.951(1.233) 0.933(1.107) 0.940(1.140)
0.965 75 0.928(1.645) 0.938(1.736) 0.910(1.493) 0.918(1.554)

4 ∞ 0 0.941(1.715) 0.946(1.749) 0.938(1.600) 0.947(1.624)
163 25 0.942(1.848) 0.947(1.890) 0.933(1.729) 0.941(1.769)
7.25 50 0.941(2.113) 0.946(2.186) 0.930(1.967) 0.936(2.024)
0.333 75 0.930(2.697) 0.942(2.852) 0.913(2.469) 0.927(2.562)
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Table 3.2: Coverage probabilities and average lengths (in parentheses) of the 95% confidence
intervals for the regression parameter, β. Here, β = 2 with ε ∼ χ2

df=6, τ is the censoring
parameter, cr is the censoring rate, the sample size, n, is 50 or 100 and the number of
replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.949(0.550) 0.955(0.576) 0.934(0.585) 0.940(0.611)

36.2 25 0.942(0.638) 0.953(0.672) 0.938(0.604) 0.949(0.631)
6.96 50 0.935(0.796) 0.947(0.854) 0.917(0.716) 0.936(0.770)
1.407 75 0.905(1.156) 0.939(1.514) 0.879(1.027) 0.930(1.472)

2 ∞ 0 0.944(1.097) 0.950(1.149) 0.939(1.016) 0.947(1.061)
47.7 25 0.944(1.153) 0.954(1.209) 0.937(1.041) 0.948(1.080)
6.25 50 0.934(1.297) 0.947(1.367) 0.915(1.143) 0.930(1.205)
0.94 75 0.906(1.666) 0.931(1.941) 0.879(1.450) 0.914(1.811)

4 ∞ 0 0.944(2.194) 0.950(2.299) 0.933(2.025) 0.941(2.116)
103 25 0.944(2.198) 0.954(2.308) 0.928(1.990) 0.943(2.066)
7.46 50 0.943(2.231) 0.956(2.336) 0.931(1.975) 0.942(2.050)
0.293 75 0.912(2.482) 0.928(2.688) 0.882(2.119) 0.904(2.389)

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.950(0.379) 0.954(0.385) 0.934(0.397) 0.938(0.404)

36.2 25 0.951(0.440) 0.956(0.448) 0.948(0.413) 0.953(0.419)
6.96 50 0.946(0.547) 0.956(0.561) 0.934(0.497) 0.945(0.509)
1.407 75 0.933(0.788) 0.949(0.837) 0.916(0.712) 0.935(0.766)

2 ∞ 0 0.949(0.757) 0.953(0.769) 0.942(0.708) 0.948(0.720)
47.7 25 0.950(0.795) 0.956(0.810) 0.941(0.724) 0.946(0.733)
6.25 50 0.943(0.892) 0.951(0.910) 0.934(0.798) 0.941(0.811)
0.94 75 0.931(1.154) 0.942(1.196) 0.913(1.024) 0.929(1.068)

4 ∞ 0 0.949(1.514) 0.953(1.538) 0.942(1.416) 0.947(1.440)
103 25 0.951(1.515) 0.956(1.548) 0.940(1.391) 0.950(1.411)
7.46 50 0.952(1.533) 0.956(1.564) 0.936(1.375) 0.947(1.394)
0.293 75 0.929(1.724) 0.940(1.770) 0.916(1.503) 0.925(1.544)
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Table 3.3: Coverage probabilities and average lengths (in parentheses) of the 95% confidence
intervals for the regression parameter, β. Here, β = 2 based on the model with a contami-
nated normal error distribution, τ is the censoring parameter, cr is the censoring rate, the
sample size, n, is 50 or 100 and the number of replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.945(0.640) 0.955(0.670) 0.944(0.638) 0.955(0.658)

43 25 0.937(0.781) 0.949(0.826) 0.928(0.753) 0.943(0.790)
7.1 50 0.935(1.042) 0.946(1.130) 0.909(0.953) 0.928(1.021)
1.22 75 0.895(1.661) 0.914(2.259) 0.857(1.457) 0.903(1.999)

2 ∞ 0 0.944(1.279) 0.954(1.339) 0.933(1.177) 0.944(1.218)
63 25 0.941(1.455) 0.951(1.543) 0.928(1.345) 0.939(1.409)

7.18 50 0.930(1.780) 0.942(1.926) 0.913(1.629) 0.928(1.734)
0.84 75 0.898(2.583) 0.913(2.893) 0.863(2.244) 0.889(2.623)

4 ∞ 0 0.944(2.557) 0.954(2.678) 0.930(2.350) 0.940(2.433)
187.5 25 0.943(2.766) 0.955(2.943) 0.929(2.554) 0.945(2.682)
7.28 50 0.941(3.174) 0.951(3.444) 0.921(2.906) 0.938(3.103)
0.287 75 0.914(4.224) 0.924(4.730) 0.881(3.729) 0.895(4.128)

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.943(0.445) 0.948(0.455) 0.953(0.440) 0.960(0.448)

43 25 0.942(0.543) 0.948(0.557) 0.938(0.512) 0.945(0.525)
7.1 50 0.940(0.724) 0.947(0.755) 0.929(0.678) 0.939(0.706)
1.22 75 0.929(1.159) 0.931(1.254) 0.906(1.066) 0.916(1.143)

2 ∞ 0 0.943(0.891) 0.948(0.910) 0.939(0.832) 0.946(0.847)
63 25 0.942(1.005) 0.948(1.032) 0.936(0.944) 0.942(0.967)

7.18 50 0.944(1.234) 0.951(1.282) 0.930(1.155) 0.940(1.202)
0.84 75 0.933(1.786) 0.936(1.929) 0.914(1.654) 0.919(1.748)

4 ∞ 0 0.943(1.781) 0.948(1.819) 0.939(1.664) 0.946(1.695)
187.5 25 0.943(1.906) 0.947(1.962) 0.937(1.786) 0.943(1.823)
7.28 50 0.939(2.187) 0.944(2.270) 0.930(2.043) 0.936(2.119)
0.287 75 0.933(2.868) 0.944(3.095) 0.914(2.661) 0.928(2.830)
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Table 3.4: Coverage probabilities and average lengths (in parentheses) of the 95% confidence
intervals for the regression parameter, β. Here, β = 2 based on the model with a contami-
nated covariate and a contaminated normal error distribution, τ is the censoring parameter,
cr is the censoring rate, the sample size n, is 50 or 100 and the number of replications, B, is
5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.947(0.593) 0.954(0.617) 0.886(0.779) 0.890(0.754)

33.06 25 0.944(0.736) 0.956(0.778) 0.873(0.836) 0.921(0.770)
5.98 50 0.933(0.951) 0.942(1.051) 0.809(0.844) 0.895(0.824)
1.03 75 0.892(1.328) 0.919(1.637) 0.702(0.832) 0.889(1.419)

2 ∞ 0 0.946(1.185) 0.953(1.233) 0.896(1.174) 0.928(1.112)
47.7 25 0.941(1.368) 0.954(1.445) 0.871(1.325) 0.926(1.245)
5.85 50 0.938(1.661) 0.949(1.838) 0.824(1.442) 0.908(1.409)
0.66 75 0.886(2.283) 0.906(2.913) 0.717(1.411) 0.888(2.067)

4 ∞ 0 0.946(2.370) 0.953(2.466) 0.868(2.228) 0.905(2.128)
133.5 25 0.948(2.598) 0.955(2.750) 0.868(2.434) 0.923(2.329)
5.33 50 0.934(2.986) 0.950(3.267) 0.833(2.694) 0.913(2.565)
0.185 75 0.902(3.942) 0.915(4.810) 0.741(2.708) 0.894(3.311)

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.945(0.406) 0.950(0.414) 0.913(0.515) 0.937(0.557)

33.06 25 0.945(0.500) 0.952(0.514) 0.932(0.562) 0.951(0.586)
5.98 50 0.942(0.638) 0.947(0.668) 0.895(0.632) 0.919(0.625)
1.03 75 0.908(0.890) 0.916(1.002) 0.825(0.744) 0.871(0.712)

2 ∞ 0 0.949(0.812) 0.950(0.830) 0.930(0.812) 0.944(0.837)
47.7 25 0.947(0.931) 0.950(0.954) 0.911(0.914) 0.927(0.941)
5.85 50 0.940(1.124) 0.947(1.171) 0.876(1.073) 0.913(1.058)
0.66 75 0.909(1.541) 0.920(1.730) 0.780(1.304) 0.841(1.217)

4 ∞ 0 0.949(1.625) 0.950(1.656) 0.906(1.586) 0.920(1.632)
133.5 25 0.947(1.766) 0.952(1.812) 0.901(1.707) 0.923(1.768)
5.33 50 0.941(2.025) 0.949(2.097) 0.881(1.939) 0.914(1.951)
0.185 75 0.921(2.661) 0.932(2.904) 0.783(2.437) 0.863(2.216)
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asymmetric, because the latter method constructed from the data set instead of a specified

distribution. These results indicate that JEL does not require estimation of the variance

and can automatically adjust the orientation of the confidence region by contouring a log

likelihood ratio. At the same time, JEL achieves better coverage probability than NA at

a cost of having longer confidence interval. In the cases of uncontaminated covariates, us-

ing weights or not using does not affect results too much when the censoring rate is not too

high. However, in the cases of contaminated covariates, the weighted methods perform much

better than the unweighted methods.

3.2 JEL and NA based on Two-dimensional Covariate in Smoothed Weighted

Rank Regression with Censored Data

In this set of simulation studies, we simulated the model with a two-dimensional covariate

as

log(Ti) = βTX i + εi

= β1X1i + β2X2i + εi, i = 1, . . . , n.

where β = (β1, β2)
T = (2,−1)T . Similar to the one-dimensional simulations, this simulation

set also has four scenarios. In the first scenario, X1i andX2i were generated from the standard

normal distribution N(0, 1), X1i and X2i are independent; the error term εi was generated

from the normal distribution N(1, σ2). In the second scenario, the independent X1i and X2i

were also generated from the standard normal distribution N(0, 1); the error term εi was

generated from a Chi-squared distribution with degree freedom of 6. In the third scenario,

covariates X1i and X2i were generated the same as previous two scenarios, however now the

error term εi was generated from a contaminated normal distribution. Ninety-five percent of

εi values were generated from the normal distribution with mean 1 and standard deviation σ,

5% of εi was generated from the normal distribution with mean 1 and standard deviation 2σ.
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In the fourth scenario, 95% of the covariates X1i and X2i were generated from the standard

normal distribution N(0, 1), and 95% of εi was generated from the normal distribution with

mean 1 and standard deviation σ; the other 5% of the X1i and X2i were generated from

the normal distribution N(−5, 1), and 5% of εi was generated from the normal distribution

with mean 1 and standard deviation 2σ. All other information was the same as that in the

one-dimensional case.

We report the joint coverage probability from NA and JEL respectively in Tables 3.5 -

3.8. The results show that in most cases, JEL has better performance than NA. The joint

coverage probabilities under NA are smaller than those under JEL. When the sample size

increases, from 50 to 100, the joint coverage probability increases as well. Especially when

the censoring rate gets large, the coverage probability based on JEL is much closer to the

nominal level than the NA. This again indicates that JEL has greater inference precision than

the NA approach. When the covariates distributions are contaminated, the weighted NA

and JEL methods work better than the corresponding unweighted methods. The weighted

methods perform better even when there is no contamination in the covariates and when the

censoring rate is high.

3.3 Summary of Simulation Studies

Based on the simulation studies, we summarize the properties of the proposed JEL method in

comparison to NA method as follows. Firstly, when the sample size n increases, the coverage

probability becomes closer to the nominal level and the average length becomes shorter under

both the JEL and NA approaches. Secondly, as the censoring rate increases, the performance

of both the JEL and NA methods deteriorates. However, the JEL method apparently has

better coverage probability than NA. Thirdly, like the NA method, the JEL method based

on a smoothed weighted rank estimating equation, in contrast to a smoothed unweighted

(w ≡ 1) rank estimating equation, can reduce the influence of outlying covariate values on
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Table 3.5: Joint coverage probabilities of the 95% confidence region for the regression pa-
rameter, β. Here, β = (2,−1)T when ε ∼ N(1, σ), τ is the censoring parameter, cr is the
censoring rate, the sample size, n, is 50 or 100 and the number of replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.942 0.958 0.924 0.943

42.04 25 0.930 0.950 0.912 0.940
7.06 50 0.918 0.939 0.874 0.912
1.225 75 0.856 0.931 0.782 0.921

2 ∞ 0 0.926 0.946 0.917 0.939
60.5 25 0.931 0.951 0.911 0.932
7.13 50 0.922 0.938 0.885 0.913
0.865 75 0.873 0.909 0.812 0.879

4 ∞ 0 0.926 0.946 0.907 0.929
171 25 0.932 0.949 0.906 0.928
7.23 50 0.934 0.946 0.892 0.922
0.309 75 0.886 0.900 0.838 0.867

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.943 0.954 0.920 0.935

42.04 25 0.933 0.948 0.926 0.942
7.06 50 0.927 0.945 0.908 0.929
1.225 75 0.905 0.930 0.869 0.911

2 ∞ 0 0.936 0.947 0.924 0.941
60.5 25 0.936 0.947 0.923 0.934
7.13 50 0.929 0.943 0.916 0.928
0.865 75 0.913 0.923 0.883 0.898

4 ∞ 0 0.936 0.947 0.923 0.940
171 25 0.941 0.950 0.923 0.939
7.23 50 0.932 0.943 0.915 0.930
0.309 75 0.909 0.920 0.882 0.897
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Table 3.6: Joint coverage probabilities of 95% confidence region for the regression parameter
β. Here, β = (2,−1)T with ε ∼ χ2

df=6, τ is the censoring parameter, cr is the censoring rate,
the sample size, n, is 50 or 100 and the number of replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.954 0.965 0.919 0.947

41.7 25 0.943 0.957 0.927 0.947
6.93 50 0.919 0.948 0.881 0.928
1.225 75 0.860 0.954 0.794 0.946

2 ∞ 0 0.933 0.951 0.922 0.943
54.3 25 0.932 0.949 0.915 0.944
6.26 50 0.925 0.950 0.892 0.926
0.832 75 0.869 0.931 0.808 0.912

4 ∞ 0 0.933 0.950 0.907 0.931
111.3 25 0.931 0.953 0.901 0.933
4.36 50 0.924 0.946 0.896 0.925
0.271 75 0.878 0.908 0.830 0.886

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.956 0.961 0.933 0.942

41.7 25 0.946 0.956 0.933 0.947
6.93 50 0.937 0.951 0.920 0.943
1.225 75 0.916 0.948 0.881 0.931

2 ∞ 0 0.946 0.953 0.931 0.945
54.3 25 0.941 0.952 0.926 0.939
6.26 50 0.938 0.952 0.916 0.939
0.832 75 0.913 0.935 0.882 0.917

4 ∞ 0 0.946 0.953 0.930 0.943
111.3 25 0.939 0.949 0.922 0.941
4.36 50 0.939 0.953 0.922 0.943
0.271 75 0.916 0.935 0.883 0.911
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Table 3.7: Joint coverage probabilities of the 95% confidence region for the regression pa-
rameter β. Here, β = (2,−1)T based on the model with a contaminated normal error
distribution, τ is the censoring parameter, cr is the censoring rate, the sample size, n, is 50
or 100 and the number of replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.941 0.956 0.929 0.945

43 25 0.929 0.950 0.913 0.940
7.08 50 0.919 0.937 0.878 0.912
1.22 75 0.863 0.924 0.790 0.913

2 ∞ 0 0.927 0.945 0.916 0.934
63 25 0.930 0.950 0.912 0.930

7.15 50 0.926 0.937 0.892 0.912
0.842 75 0.879 0.907 0.818 0.878

4 ∞ 0 0.927 0.945 0.907 0.926
187.5 25 0.932 0.950 0.907 0.928
7.3 50 0.936 0.946 0.898 0.921

0.287 75 0.897 0.902 0.840 0.870

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.943 0.954 0.931 0.940

43 25 0.936 0.947 0.926 0.941
7.08 50 0.930 0.944 0.910 0.927
1.22 75 0.908 0.925 0.874 0.903

2 ∞ 0 0.937 0.949 0.925 0.939
63 25 0.940 0.947 0.922 0.935

7.15 50 0.934 0.942 0.921 0.930
0.842 75 0.918 0.921 0.890 0.897

4 ∞ 0 0.937 0.949 0.924 0.938
187.5 25 0.939 0.950 0.923 0.939
7.3 50 0.935 0.945 0.920 0.930

0.287 75 0.921 0.921 0.892 0.896
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Table 3.8: Joint coverage probabilities of the 95% confidence region for the regression pa-
rameter β. Here, β = (2,−1)T based on the model with contaminated covariates and a
contaminated normal error distribution, τ is the censoring parameter, cr is the censoring
rate, the sample size, n, is 50 or 100 and the number of replications, B, is 5000.

n = 50
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.947 0.961 0.858 0.899

38.3 25 0.928 0.947 0.833 0.901
6.09 50 0.915 0.933 0.780 0.889
0.955 75 0.857 0.927 0.659 0.905

2 ∞ 0 0.933 0.951 0.859 0.909
55.2 25 0.935 0.950 0.840 0.908
6.23 50 0.924 0.936 0.791 0.896
0.685 75 0.868 0.896 0.682 0.876

4 ∞ 0 0.933 0.951 0.828 0.890
162 25 0.936 0.953 0.832 0.906
6.37 50 0.937 0.945 0.802 0.904
0.24 75 0.887 0.896 0.716 0.864

n = 100
weighted unweighted

σ τ cr(%) NA JEL NA JEL
1 ∞ 0 0.944 0.954 0.882 0.913

38.3 25 0.935 0.947 0.905 0.929
6.09 50 0.936 0.943 0.869 0.906
0.955 75 0.911 0.924 0.789 0.862

2 ∞ 0 0.938 0.949 0.892 0.920
55.2 25 0.938 0.952 0.888 0.916
6.23 50 0.933 0.940 0.867 0.901
0.685 75 0.914 0.916 0.795 0.862

4 ∞ 0 0.938 0.949 0.877 0.905
162 25 0.942 0.952 0.876 0.915
6.37 50 0.937 0.944 0.862 0.904
0.24 75 0.920 0.920 0.799 0.869
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the estimator of unknown parameter when contaminated covariate values are present; see

Table 3.4 and Table 3.8. Fourthly, when covariates are not contaminated, but the error values

are contaminated, the NA and JEL methods based on smoothed weighted rank estimation

equations also perform better than those based on smoothed unweighted estimation equations

in most cases; see Table 3.3 and Table 3.7.
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Chapter 4

Application to Case Studies

In this chapter, three real data sets were analyzed to illustrate our proposed method and to

make comparisons with other methods. The data sets include the Stanford Heart Transplant

Data, the Veterans Administration Lung Cancer Data and the Multiple Myeloma Data.

We considered a single continuous covariate in the first two data sets and two continuous

covariates in the third data set. The weighted and unweighted methods were used in all the

cases.

4.1 Stanford Heart Transplant Data

The Stanford Heart Transplant data can be found in Miller and Halpern (1982), and is

obtained by using attach(stanford2) inside the R survival package. In short, the Stanford

heart transplant program began in October 1967 and a total of 184 patients received heart

transplants. The information in the data set includes: survival time in days; an indicator

of whether the patient was dead or alive by February 1980; the age of the patient in years

at the time of transplant; and the T5 mismatch score, which made a distinction between

deaths primarily due to rejection of the donor heart by the recipient’s immune system and

non-rejection related deaths. For 27 of the 184 transplant patients, the T5 mismatch scores

were missing because the tissue typing was never completed. The 5 patients with survival

times less than 10 days were deleted. In the end, there were 152 cases with a complete data

record, which we used to fit this model

log10(Ti) = βXi + εi,

where Ti is the survival time, and Xi is the age of the ith patient at heart transplant. In

this data set, the censoring rate was cr = 36% with 55 people still alive at the end of the
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observation period and 97 deceased individuals.

We used box plots to check the outliers of the observed response Yi and covariate Xi.

An outlier is an element of a data set that distinctly stands out from the rest of the data.

Figure 4.1 clearly shows that there were some outliers of the observed survival time and the

age of the patients. In the box plot of the observed survival time, the outliers are identified

as the largest couple of values in the data set, and appear as the circles to the top of the box

plot. And in the box plot of the age of the patients at transplant, the outliers are identified

as some small values in the data set, and appear as the circles to the bottom of the box

plot. As we discussed in the previous chapters, rank regression is robust to outlying survival

times in estimating regression coefficients, and the weight function can reduce the influence

of outlying covariate values on the estimator. We used the NA and JEL based methods and

both the weighted and unweighted rank estimation equations to obtain results.

Using weighted rank estimation equation, the regression parameter estimate was β̂ =

−0.0537 with se(β̂) = 0.0171. The 95% confidence interval for β is (−0.0890,−0.0210)

by JEL and (−0.0872,−0.0202) by NA, respectively, which indicates, by both the NA and

JEL methods, a significant negative association exists between age and survival time in this

patient population.

Using the unweighted method, we obtained β̂ = −0.0255 with se(β̂) = 0.0107. The 95%

JEL confidence interval for β was (−0.0436,−0.0035) and 95% NA confidence interval for

β was (−0.0465,−0.0044). These results were quite different from those based on weighted

method. However, the result obtained from the unweighted method is very similar to that

of Zhou (2005): β̂ = −0.0253 with a 95% confidence interval based on the NA method of

(−0.0446,−0.0030). This is not surprising, since Zhou’s method does not take outliers into

consideration and it is an unweighted method as well. In this data set, the box plots show

that the covariate Age at transplant has outliers, so the result from the weighted method is

preferred.
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Figure 4.1: Box Plots of the Observed Survival Time and the Age of the Patients in the
Stanford Heart Transplant Data set.

42



4.2 Veterans Administration Lung Cancer Data

The data were derived from a clinical trial of 137 male patients with advanced inoperable

lung cancer. The end point was time to death and there were eight variables measured at

randomization: treatment, cell type, survival time, censoring status, Karnofsky performance

status, age in years, time in months from diagnosis to the start of therapy, and prior therapy.

The data set can be found in Kalbfleisch and Prentice (1980), and also can be retrieved by

attach(veteran) inside the R survival package. Nine of the 137 observations were censored,

yielding a censoring rate of 6.57%.

We also drew box plots of the observed survival time and the covariate, Karnofsky per-

formance status. Figure 4.2 displays that there were outliers among the observed survival

time, while Karnofsky performance status didn’t appear to have any outliers. We used both

weighted and unweighted methods to estimate the regression coefficient of the Karnofsky

performance status.

Based on the weighted method, Heller (2007) examined the relationship between Karnof-

sky performance status and time to death using the AFT model with one covariate. He

obtained β̂ = 0.0383 with se(β̂) = 0.0046. The 95% JEL confidence interval we calculated

was (0.0292,0.0478), which is quite close to the 95% NA confidence interval (0.0293,0.0473).

These results imply that higher Karnofsky performance status could prolong the life time of

the patients using either method.

Based on the unweighted method, we obtained β̂ = 0.0397 with se(β̂) = 0.0041, the

Karnofsy performance status appears to be associated with survival time. The ninety-five

percent confidence interval for β was (0.0316,0.0483) by JEL and (0.0318,0.0477) by NA.

The results of weighted and unweighted estimation equations did not differ by much. This

makes sense, because the weight function is used to reduce the influence of outlying covariate

values on the estimator. If the covariate did not include outliers, we wouldn’t expect a big

difference between these two methods.
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Figure 4.2: Box Plots of the Observed Survival Time and Karnofsky Performance Status in
the Veterans Administration Lung Cancer Data set.
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4.3 Multiple Myeloma Data

The Multiple Myeloma data were reported by Krall et al. (1975), and also can be obtained

from SAS/STAT User’s Guide (1999): HW 14.25 data. The data contained information

for two response variables and nine covariates: survival time, censoring status, logarithm

of blood urea nitrogen (LogBUN), haemoglobin (HGB), Platelet, Age, LogWBC, Frac,

LogPBM, Protein, SCalc. Out of total of 65 observations, 17 were censored.

Following Jin et al. (2003), we fit the model with these two covariates: the logarithm of

blood urea nitrogen and haemoglobin. As Jin et al. (2003) suggested, to improve numerical

efficiencies, we standardized these two covariates Log(BUN) and HGB in our analysis. This

standardization will transform the original covariates to have zero mean and unit variance.

The fitted model is

log(Ti) = β1X1i + β2X2i + εi,

where X1i is the standardized score of Log(BUN), and X2i is the standardized score of HGB.

From box plots 4.3 we noticed that the standardized score of HGB didn’t show any

outliers, while the observed survival time and the standardized score of Log(BUN) both had

outliers. Again, we used the weighted and unweighted methods in our model estimation.

The smoothed weighted rank estimates of regression coefficients were (β̂1, β̂2) = (−0.4622, 0.2714)

with estimated standard errors (0.1626, 0.1753). The 95% Chi-square test statistic with 2

degrees of freedom for (β1, β2) based on JEL method and NA method were 11.34 and 11.21,

and the corresponding p-values are 0.003 and 0.004, respectively, which are very close to

each other, indicating a jointly significant effect of Log(BUN) and HGB.

The unweighted rank estimates of regression coefficients were (β̂1, β̂2) = (−0.5142, 0.2839)

with estimated standard errors (0.1399, 0.1732). The 95% Chi-square test statistic with 2

degrees of freedom for (β1, β2) based on JEL method and NA method were 16.909 and

16.666, and the corresponding p-values are 0.00021 and 0.00024, respectively. The esti-

mated regression coefficients are similar to Jin et al.’s (2003) results which did not consider
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Figure 4.3: Box Plots of the Observed Survival Time, the Standardized Score of LogBUN
and the Standardized Score of HGB in the Multiple Myeloma Data set.
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outliers: their parameters estimates were (−0.532, 0.292) with estimated standard errors

(0.146, 0.169). These results once again substantiate our claim that when covariates have

outliers (e.g. standardized score of LogBUN), the rank estimates of regression coefficients

under the weighted and unweighted methods may be quite different, and the result under the

weighted method is recommended, since it takes the outliers in the covariates into account.
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Chapter 5

Conclusion and Discussion

In this thesis, we applied the JEL to Heller (2007)’s smoothed weighted rank regression

with censored data. Empirical likelihood and jackknife have been integrated to yield the

new method. Our purpose is to conduct inference for the regression parameter β in the

AFT model while maintaining the robustness of smoothed weighted rank regression and

the simplicity of JEL. The key idea of this thesis is to turn the U -statistic of interest into a

sample mean based on jackknife pseudo-values. We proved a new theorem, Theorem 2, which

can be widely and effectively used in a general class of AFT models in survival analysis. The

proposed JEL method preserves some important features of empirical likelihood including

the Wilks property of Chi-squared limiting distribution. When using the JEL to carry out

inference, there is no need to solve estimating equations or to estimate covariance matrices.

Implementation becomes easy in a standard software environment, for example, R package

such as emplik already exists to maximize the empirical likelihood functions and obtain the

values of the test statistics.

Simulation studies indicate that the proposed JEL method not only carries over superior

properties of the NA method such as easy computation and robustness to covariate outliers,

but it also improves the accuracy of inferences for regression parameters. This is especially

evident when sample size gets smaller or censoring rate gets higher, the JEL method pro-

vides more accurate coverage probability than the NA method. Moreover, the JEL method

possesses the desirable feature that the shape and orientation of the resulting confidence

regions are determined by the data.

There is still much to explore for extending the empirical likelihood method to other types

of data such as current status data and interval censored data. It is also likely worthwhile
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to apply the JEL method to other types of models such as transformation models. It is also

an interesting possibility to apply the adjusted empirical likelihood proposed by Chen et

al. (2008) to further improve the accuracy and reduce the computation burden of the JEL

method. All of these topics will be of interest in our future research.
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