An Assessment of Eucalyptus Version 1.4
Tingxi Tan and Cameron Kiddle

Grid Research Centre, University of Calgary, Canada
{txtan,kiddlec}@cpsc.ucalgary.ca

May 4, 2009

1 Introduction

Cloud Computing is the emergent technology that promises on-demand, dynamic and easily accessible com-
puting power. The “pay-as-you-use” scheme is attractive for small to medium sized businesses as these
organizations are less inclined to purchase large amounts of physical machines to satisfy their immediate
computing needs. Various cloud services are already available on the market. Many of them implement
some form of dynamic provisioning of computing resources through the use of Virtual Machine (VM) tech-
nologies like Xen [13], VMWare [28] or KVM [16]. Among them, the Amazon Elastic Cloud (EC2) [3] can
be considered the most popular and mature solution.

Eucalyptus [20], a cloud enabling infrastructure is the result of a research project from the University
of California, Santa Barbara. Eucalyptus stands for “Elastic Utility Computing Architecture for Linking
Your Programs To Useful Systems”. It aims to provide a simple to set up cloud solution for the research
and development of cloud driven applications. By combining common web-service, Linux tools and the
Xen Virtual Machine Hypervisor, Eucalyptus successfully implemented partial functionality of the popular
Amazon EC2. As a consequence of recreating a “free” version of EC2, this open source project has attracted
much attention and it is scheduled to be included into Ubuntu 9.10 (code name Karmic Koala) [15], the
to-be-release version of a popular Linux distribution.

This document records a recent effort to evaluate Eucalyptus as a viable open source solution to cloud
computing. The evaluation focuses on the design, setup, usability and performance of Eucalyptus. In
Section 2, we discuss the general design goals and infrastructure layout of Eucalyptus. Section 3 documents
the process of setting up a Eucalyptus environment. Section 4 covers the usage and general impressions of
FEucalyptus’s functionalities. In Section 5, we developed a demonstrator to illustrate the potential real-world
usage of Eucalyptus v1.4. Finally in Section 7 and 8, we provide some related work and a conclusion to this
document.

2 Design

The initial design goal of Eucalyptus was to create an open source cloud computing platform where individ-
uals can deploy their own cloud computing infrastructure to develop or research cloud-driven applications.

The developers of Eucalyptus had chosen the Amazon EC2 interface as an interface to a Eucalyptus
cluster. This is to allow users already using EC2 easy adaptation to Eucalyptus. They have successfully
emulated many EC2 functionalities like security groups, elastic IPs, zones and even the Amazon Simple
Storage Service (S3). This emulation effort has effectively created a “free” version of EC2 and as mentioned
before, has gained much attention among the open source community. The increase in popularity has
widened the target audience for Eucalyptus; apart from computer scientist, IT professionals are also exploring
FEucalyptus as an all-in-one platform solution to build their own cloud.

Due to the very successful attempt at emulating Amazon EC2, the Eucalyptus design goals have also
deviated from their original plans. Now, most of Eucalyptus developments focus on implementing and
supporting EC2 functionalities rather than creating a general cloud computing platform.

2.1 Infrastructure

The Eucalyptus infrastructure (Figure 1) consists of four main components, the Cloud Controller (CLC),
the Cluster Controller (CC) the Node Controller (NC) and a storage service called Walrus. These
components are implemented as stand-alone web services. They leverage WS-Security policy for secure
communication via a well-defined WSDL API. They interact via SOAP and HTTP to dynamically provision
Virtual Machines (VMs) or manipulate VM images. Eucalyptus currently supports only Xen VMs but plans
to support other popular virtualization platforms like KVM/QEMU and VMWare.

Each physical machine in the cluster capable of hosting VMs is installed with a NC. The NC starts and
stops VM instances and monitors the health of those instances on that particular machine. The CLC is the
interface for external entities to communicate with the Eucalyptus environment. It receives requests to start
or stop VM instances and forwards these requests to the CC. The CC maintains resource information about
the entire Eucalyptus cluster by periodically polling the NCs. Based on the global resource availability, the
CC then decides which NC in the cluster should be contacted to start or stop a VM.

A typical set up of Eucalyptus on a single cluster consists of a head machine dedicated as the CLC
and CC, and multiple slave machines as NCs. The slave machines must support the starting of Xen VMs,
i.e., a Xen Hypervisor must be installed on each NC. In theory the CLC can communicate with multiple
FEucalyptus clusters via multiple CCs, however this aspect of Eucalyptus is not currently implemented. The
developers expect support for additional CCs to be in the next release of Eucalyptus.

Walrus is a storage service similar to that of Amazon S3. The primary use of Walrus is to store VM
images called Eucalyptus Machine Images (EMIs). The EMI format is used by Eucalyptus to encode
images which will in turn be used to start Xen VM instances. EMI is similar in concept to the Amazon
Machine Image (AMI) format that is used to start EC2 instances. Walrus can be accessed using Curl, a
popular command-line tool for interacting with HT'TP services. Other than storing EMIs, Eucalyptus users
can also use Walrus to store raw data the same way an EC2 user employs S3. Currently, Walrus must be
installed on the same physical machine as the CLC.

2.2 Usage

Access to start and stop VM instances in Eucalyptus is controlled through the Amazon EC2 API. This is a
set of command-line tools originally used for interacting with EC2. The Eucalyptus backend emulate the
SOAP and Query interface of the EC2 API to provide a common method for users to access both EC2 and
Eucalyptus through the same tool set. Similarly, the Amazon AMI API is used by Eucalyptus to provide VM
image creation functionality. Further discussions on these tools are provided in Section 3.4, 4.1 and 4.2.

A web portal at the CLC controls user creation and keys generation. From this portal, a Eucalyptus user
obtains their X.509 certificate and other secret keys to authenticate with the CLC and Walrus respectively.

3 Setup

In this section, we document the installation and configuration of a Eucalyptus cluster for our evaluation.
This environment is installed in the HP Labs Data Centre at the University of Calgary.

3.1 Physical Environment

Three physical blades are used in the Eucalyptus installation (Figure 2). Each blade has 2 x 2.4 GHz AMD
Opteron 2216 HE processors, 8 GB of physical memory, 2 physical 1 Gb/s NICs, a 73 GB SCSI local disk
and is running Linux SUSE 10.3. One machine (b02b10) is configured as the CLC/CC. It is assigned two

Eucalyptus Eucalyptus Cluster A M

Environment

VI

-

M
Node Controller

VM

< < <

v

Cluster Controller
A

ﬁ\) : D Node Controller

Eucalyptus Cluster B
User Cloud Controller |:|
j——> VM

™\ —

Node Controller

N

VM

VM

-

Walrus
Cluster Controller

B Node Controller

Figure 1: Eucalyptus Environment

IP addresses, a public one for communicating with the outside world and an internal IP for communication
within the Eucalyptus cluster.

The remaining two machines (b02b09 and b02b11) are configured as NCs. They are responsible for
hosting Xen VMs instances and have Xen 3.2.1 installed. The nodes communicate with the CLC/CC via
internal IP addresses.

3.2 Installation

The Eucalyptus documentation [9] is well laid out and describes clearly the steps involved to set up the
environment. Installation can be performed via a Rocks roll (if a Rocks enabled cluster is available), pre-
packaged RPMs or from source. Installing from source was the method chosen for this evaluation. A few
software dependencies had to be fulfilled before the Eucalyptus source was compiled from source. These
dependencies are Apache, Ant, Axis2, Axis2/C, Rampart/C, Libvirt and Java Development Kit (JDK).
Once the dependencies were satisfied, the Eucalyptus source was compiled on the head node (b02b10) and
distributed via rsync to the the virtualization nodes (b02b09 and b02bl1). A configuration file called
eucalyptus.conf on each machine determines which Eucalyptus services to start. On b02b10, the CLC,
CC and Walrus web services will start whereas on b02b09 and b02b11, the NC web service will start.

3.3 Network

Eucalyptus supports three types of network setup, SYSTEM, STATIC and MANAGED. In SYSTEM
mode, each VM is assigned a random MAC address and obtains a dynamic IP address via a DHCP server.
This mode is the easiest and quickest way for a VM instance to obtain network. However it is limited as
there is no way for an administrator to assign a specific IP to a VM.

Eucalyptus

Test Environment
hostname: b02b09

hostname: b02b10 |:| j

D Node Controller 1

hostname: b02b11

Cloud Controller +
Cluster Controller +
4
Walrus -

Node Controller 2

Figure 2: Deployment of Eucalyptus Environment

In a cluster environment where greater control over IP allocation is desired, STATIC mode is more
suitable. In STATIC mode, an administrator defines a set of MAC to IP address pairs in the Eucalyptus
configuration file on the CLC. As a VM starts, Eucalyptus assigns an unused MAC and IP address pair to
it, ensuring that each VM in the system will obtain a unique IP address based on the range defined by the
administrator. This method provides more flexibility than STATIC mode but manifests some major bugs
which we will be discussing in Section 4.5.1.

MANAGED mode has the most function-rich networking setup. In MANAGED mode, each VM obtains
an IP from a DHCP server similar to STATIC mode. A Eucalyptus user can now define 'named networks’
where they wish to start their VM instances in. These private networks created using a VLAN allow users
to specify ingress rules that can be applied to all VMs in that network. For example, a user can block all
ping(ICMP) traffic from reaching a certain set of VMs he or she owns. This is similar in functionality to
Amazon EC2’s security groups. The administrator can also choose to define a list of public IP addresses
that users can request for their VMs. These public IPs can be attached or detached from VMs as the
user requires, allowing IPs to float between VM instances. This mimics the elastic IP functionality of EC2.
As a consequence of the particular VLAN set up in MANAGED mode, the VM network is isolated from
the physical machine network. This implies that a VM cannot communicate directly with other physical
machines in the Eucalyptus cluster, except to the CLC/CC.

All three network setups were tested in our Eucalyptus installation. We settled for STATIC mode as the
final setup. The following are the configuration parameters. A total of 9 MAC/IP address pairs are defined.
This implies that we can currently start up to a maximum of 9 VMs in the Eucalyptus cluster.

VNET_MODE="STATIC"

VNET_SUBNET="192.168.0.0"

VNET_NETMASK="255.255.0.0"

VNET_BROADCAST="192.168.255.255"

VNET_ROUTER="192.168.1.1"

VNET_DNS="192.168.101.1"

VNET_MACMAP="

0a:16:3f:2e:02:b£f=192.168.151.192 0a:16:3f:2e¢:02:c0=192.168.151.193

0a:16:3f:2e:02:¢c1=192.168.151.194 0a:16:3f:2e:02:¢c2=192.168.151.195
0a:16:3f:2e:02:¢3=192.168.151.196 0a:16:3f:2e:02:c4=192.168.151.197
0a:16:3f:2e:02:¢c5=192.168.151.198 0a:16:3f:2e:02:c6=192.168.151.199
0a:16:3f:2e:02:c7=192.168.151.200"

3.4 Admin and User Tools

The Eucalyptus installation configures a secure HT'TP portal on the CLC on port 8443. This web interface
is used mainly to manage users and configure the cluster. We will discuss more on the Eucalyptus web portal
in Sections 4.2 and 4.3.

Apart from the web portal, users interact with Eucalyptus services to start/stop VM instances or cre-
ate EMIs through third party software like the Amazon EC2 API and Amazon EC2 AMI tools. These java
command-line tools can be downloaded from the Amazon EC2 site and installed on any machine that a user
will be accessing the Eucalyptus services from.

To set up the tools, administrators or regular users need to download their authentication credentials
from the Eucalyptus web portal and set up appropriate paths and variables. The following .eucarc file
defines these variables. Each user and administrator of the Eucalyptus cluster will obtain a unique EC2_CERT,
EC2_PRIVATE KEY, EC2_ACCESS_KEY and EC2_SECRET KEY. This file should be sourced before using Eucalyptus.

EUCA_KEY_DIR=$(dirname $(readlink -f ${BASH_SOURCE}))

export EC2_HOME="/eucalyptus/ec2-api-tools-1.3-30349

export EC2_AMITOOL_HOME="/eucalyptus/ec2-ami-tools-1.3-26357

export S3_URL=http://10.0.0.1:8773/services/Walrus

export EC2_URL=http://10.0.0.1:8773/services/Eucalyptus

export EC2_PRIVATE_KEY=${EUCA_KEY_DIR}/euca2-txtan-0b539a0l-pk.pem
export EC2_CERT=${EUCA_KEY_DIR}/euca2-txtan-0b539a0l-cert.pem
export EUCALYPTUS_CERT=${EUCA_KEY_DIR}/cloud-cert.pem

export EC2_ACCESS_KEY=’DAY40epOTgYrAr8LERF-90’

export EC2_SECRET_KEY=’RmgY_MAVhQG8aDdIBRm4uLE707ruYG8KwXTZIg’

alias ec2-delete-bundle="ec2-delete-bundle -a ${EC2_ACCESS_KEY} -s
${EC2_SECRET_KEY} --url ${S3_URL}"

alias ec2-bundle-image="ec2-bundle-image --cert ${EC2_CERT} --privatekey
${EC2_PRIVATE_KEY} --user 000112525872 --ec2cert ${EUCALYPTUS_CERT}"
alias ec2-upload-bundle="ec2-upload-bundle -a ${EC2_ACCESS_KEY} -s
${EC2_SECRET_KEY} --url ${S3_URL} --ec2cert ${EUCALYPTUS_CERTZ}"

To facilitate easy access for interaction with Walrus, Amazon S3 Curl can be downloaded. This perl-
based command-line tool computes the appropriate signature to authenticate with S3 before invoking curl
calls. The only change required to make S3-curl work with Walrus is to define the HTTP endpoint in S3-curl
as the Eucalyptus CLC instead of Amazon S3. In our installation, this endpoint will be b02b10. All other
authentication keys should already be defined in the user’s .eucarc file as shown above.

4 Usability

This section covers the general usability of Eucalyptus from the point of view of both cluster administrator
and regular users. The functionalities are classified into three categories, Image and Storage Manage-
ment, Cluster and VM Management and User Management. We will also comment on the security
features, community support and bugs detected in the software.

4.1 Image and Storage Management

Walrus is a storage server employed by Eucalyptus to stored EMIs. It emulates the functionality and
interface of Amazon S3, using a single level storage hierarchy, putting “objects” into “buckets”. Other than
functioning as an image repository, Eucalyptus users can also use Walrus as a generic storage medium to
store raw data. However, unlike S3, which supports access through API programming for multiple languages,
Walrus only allows access via curl and S3-curl. Currently, Walrus must be installed on the CLC. By default,
the underlying storage device for Walrus will be the local hard disk. However due to storage requirements,
it is more practical to employ a network device exported from a large storage pool, for example a SAN.
Technically, this is feasible as we can simply point the Walrus directory to a network exported device.
However, we did not test this particular set up; we used the local hard drive on the CLC as the storage
backend for Walrus. As such, we do not guarantee that Walrus will function correctly with devices other
than a local disk. A distributed Walrus service is also being considered by the developers for a future version
of Eucalyptus.

The process to create and upload an image into the EMI format is similar to image creation for the AMI
format; using the Amazon EC2 AMI tools to bundle kernel and ramdisk images with operating system (OS)
images. Support for converting an AMI to an EMI is planned for the next release of Eucalyptus. Like an
AMI, before bundling an OS image into an EMI, the image itself needs to conform to 2 specific requirements:

1. The image must be Xen compatible. This implies that the user should first test the image by ensuring
that it can be manually started using Xen.

2. Eucalyptus will mount the image as partitions, whole disk images do not work. A specific partition
table is also expected. If a different partition layout is desired, the Eucalyptus source must be changed
to reflect the new partition table.

Once these requirements are satisfied, a user first bundles an image (optionally with a kernel and
ramdisk) into a EMI object using ec2-bundle-image. Then the images is uploaded to Walrus via the
ec2-upload-image command. Once the uploading is done, the user will register the image into Eucalyp-
tus with ec2-register. Both administrators and regular users can create and upload images. By de-
fault, the images uploaded by any user are publicly viewable and startable with ec2-describe-images and
ec2-run-instances. Often a user may choose to restrict the starting of his or her image by other users. This
can be achieve by setting the access control on that particular EMI using ec2-modify-image-attribute.
An administrator can also toggle image visibility through the Eucalyptus web portal (Section 4.3).

All EMIs uploaded to Walrus are considered “base” VM images. This means that these images are never
directly used to instantiate VMs. Before a VM is started (this starting process will be elaborated in Section
4.2), the CLC first determines if the destination NC has a local cache copy of the image requested for the
particular VM instance. If the image was not previously cached, the CLC will initiate a process to extract the
base image from Walrus and push it to the NC, where it will be cached. Once the NC verifies the integrity of
the cache copy, it will make another copy from the cache before starting a VM locally with the copy. From
our evaluation, a minimum of 8 GB of temporary files were generated on the CLC when distributing a single
4 GB image to a NC with a cold cache. A NC with a hot cache uses 4 GB of disk space for each additional
instance started from the cached image. We will quantify the time taking to start VM instances in the next
section.

To summarize, in the worst case, an instance using a 4 GB image require an initial investment of at least
20 GB of disk space globally. This enormous space requirement prohibited our Eucalyptus test environment
from storing a large repository of VM images; we constantly run out of disk space when starting multiple
instances simultaneously. Finally, we deviated from the initial Eucalyptus design by using an NF'S exported
directory from a large storage pool for a shared cached across all the NCs. This method will no doubt create
delays in image I/O when contention among the NCs to access the shared cache is high. However it is the
solution we employed to overcome the space requirement in our test environment.

The Eucalyptus developers will need to resolve these image storage and distribution issues before large-
scale deployment of Eucalyptus can match those offered by Amazon EC2.

4.2 Cluster and VM Management

The Eucalyptus web portal allows an administrator limited control over cluster and VM configuration. This
includes setting the network location for the Walrus service, the local path to Walrus on the CLC and the
network location of the zone in which VMs will start.

The Zone system in Eucalyptus is a similar concept borrowed from Amazon EC2. While in EC2, a zone
means a specific geographical region, in Eucalyptus, it denotes a particular cluster of machines controlled
under a CC. As mentioned in Section 2.1, the Eucalyptus design incorporate multiple CCs reporting to
a CLC. Therefore, in theory, multiple zones can be enabled in a FEucalyptus environment. However this
particular feature is not currently implemented. This limitation is reflected in the web portal where an
administrator can only specify the network location of a single cluster/zone.

From the web portal, the administrator can also specify pre-defined resource description for VM types.
For example, VM type m1.small consumes 1 CPU and 512 MB of RAM while c1.xlarge consumes 4 CPU
and 4 GB of RAM. A total of 5 VM types can be defined. As VMs start in the cluster, the administrator
can monitor the total resources consumed by executing the ec2-describe-availability-zones verbose
command. This command will output the number of free “slices” left in the zone to start instances of
each type. However, it does not tell the administrator which VM is running on which NC. The lack of
detail in monitoring information on VM deployment can potentially hinder an administrator from effectively
managing a large Eucalyptus cluster.

From a user’s perspective, VM control as well as monitoring resource availability are limited to command-
line tools. Before a user starts an instance, he or she will execute the ec2-describe-availability-zones
command (the verbose option is not available to regular users). If the zone is online, the command will
output the name of the zone, otherwise it will return an error message denoting the unavailability of any
resources. Unlike an administrator, the user does not know exactly how many more instances he or she can
start in a zone, only if the zone is online or not.

Next, the user will execute ec2-describe-images to find out the EMIs visible to him or her. To start a
VM, the user will specify the type of VM, the number of instances and the EMI ID from which the instances
will start through the ec2-start-instances command. At this point, the CC will determine if there are
enough resources in the zone to start the instances. If there are, it will select a NC that can accommodate the
resource requests and perform the image distribution process as mentioned in Section 4.1. The selection of
the candidate NC is based on a greedy or round robin deployment policy. This policy can be specified by the
administrator in the Eucalyptus configuration file. If no suitable NCs are found, the ec2-start-instances
command will return a failed message to the user denoting an unavailability of resources. In our preliminary
measurements specific to the setup in our test environment, the provisioning time' for an instance from a 4
GB image to a NC with a cold cache is approximately 5 mins 30 seconds. The provisioning time is reduced to
approximate 1 min 50 seconds when the instance is deployed onto a NC with a hot cache?. We speculate that
the provisioning time will increase significantly when multiple ec2-start-instances command is executed
concurrently. This is due to the multiple copies of images and temporary files created during the image
distribution process (Section 4.1).

During the life time of an instance, a user can run the ec2-describe-instances command to poll the
current status of the VM. This command will also show the IP address(es) and type of all VM instances
owned by the user. If the network is in MANAGED mode, a user can also requests for public IP addresses
and allocate them to their VMs using the ec2-allocate-address and ec2-associate-address commands.
In MANAGED mode, the user can also define ingress rules using ec2-authorize to limit connectivities to
particular VMs they own.

To terminate a VM, the user issues an ec2-terminate-instances command. Once a VM is terminated,
all changes made to the VM during its life time is lost. In Amazon EC2, an image saving mechanism
(ec2-bundle-vol) is used to bundle the current state of a VM during execution into a new AMI, therefore

I The provisioning time is defined to be the submission of the ec2-start-instances command to xend starting the VM. This
does not include the time the VM takes to boot after being started by xend. The boot time of a VM can range from a few
seconds to minutes depending on the number of services to be started in the VM.

2Recall that the image cache in our Eucalyptus environment is an NFS exported directory shared among all the NCs

preserving all changes made in the VM. This bundling mechanism is not available in Eucalyptus but is being
planned in the next stable release.

In addition to saving a VM image, storing other persistent data is a crucial requirement. Eucalyptus
lacks in this aspect. Unlike Amazon’s Elastic Block Store (EBS) which allows an EC2 user to attach external
persistent storage to running VM instances, a Eucalyptus user will need to find other ways of exporting their
persistent data out from the instance. This can be achieved by either manually copying the data out using
scp, or moving them to a network directory attached in the instance, or uploading them to external storage
services like Walrus (we demonstrate this storage methodology in Section 5) and S3.

4.3 User Management

Eucalyptus has been designed for its user management system to be fully web-based. A user first requests
access to the Eucalyptus installation through its secure web portal by filling out a web form describing his
or her profile. This request will generate an email to the administrator who will in turn log in to the web
portal to grant the user access. Along with the creation of a new user, X.509 credentials and secret keys
will be generated for the user to authenticate with the Eucalyptus services. A user will download these keys
through the web portal and set up their local . eucarc file with the appropriate paths to the local installation
of the Amazon API and AMI tools. Through the web portal, an administrator can also update user profiles
as well as delete or disable user accounts.

Users can request for a password reset by confirming their profile email address. This system has a
potential security flaw as email highjacking can easily compromise the entire user authentication scheme.
A high jacker can reset the password through email and gain access to the user’s account to download
all credential information. Alas, this type of password reset scheme is common among most web portals,
including Amazon EC2.

4.4 Support

The Eucalyptus developers provide comprehensive support service on their wiki. In addition to clearly
structured installation and configuration documentations, an online forum is also available. While evaluating
FEucalyptus, we also took part in active discussions on the forum. The developers and forum moderators
are keen in answering questions about installation, usage, debugging and also their current development
progress. The forum also serves as a medium for users to request for features they wish to see in upcoming
releases of Eucalyptus.

4.5 Bugs and Limitations

In this section, we describe some of the bugs encountered in our installation and summarizes the limitations
of Eucalyptus from our experience with the software.

4.5.1 Bugs

Throughout our evaluation effort, we found a number bugs with Eucalyptus v1.4. Apart from the design and
usability issues that were highlighted in the previous sections, these bugs are a prohibiter from employing
Eucalyptus as a full scale cloud solution to any production-type environment. Below we enumerate the major
bugs detected.

1. In the STATIC network mode, after the CLC restarts, it loses all information about previous MAC or
IP address assignments. A user that calls ec2-describe-instances after the CLC restarts will see
the IP address field of all his or her running instances as 0.0.0.0. At this point, if more VM instances
are started, they will be assigned MAC and IP address combination that were previously assigned to
running VMs and consequently resulting in conflicting IP address in the Eucalyptus cluster.

2. Starting multiple instances of different VM types will eventually render the system unresponsive,
prohibiting it from creating new instances. The error message returned from the CLC during this
situation is: Server: SERVICE: FinishedVerify PROBLEM: null MSG-TYPE: RunInstancesType.
The solution to this is to restrict instances to only one VM type. A restart of Eucalyptus is required
at this point to resume functionality.

3. Continuous SOAP calls (approximately 1 every 5 seconds) will eventually render the system unrespon-
sive within 1 day. We detected this bug during the development of our demonstrator (Section 5) where
we made ec2-describe-instances calls to the CLC every few seconds to poll the status of running
VMs. After a day, the calls will all timeout with no errors or informative messages in the Eucalyptus
logs. A restart of Eucalyptus is required at this point to resume functionality.

All the above mentioned bugs have been reported to the Eucalyptus developers.

4.5.2 Limitations

There are various limitations to Eucalyptus v1.4 due to its designs and development maturity. We have
discussed most of these limitations in different sections throughout the document, here we fully enumerate
them.

1. Eucalyptus v1.4 supports only one cluster of physical machines (Section 2.1).
Support Xen VMs only (Section 2.1).

A more comprehensive API should be developed to interface with Walrus(Section 4.1).

=~ W

Storing and distributing EMIs requires a very large amount of storage space. In our case, this severely
limited the number of base images we can store in Walrus (Section 4.1).

5. Both users and administrator do not have good information about the resource availability in the
cluster (Section 4.2).

6. Images takes a long time to be provisioned. From our test, a 4 GB image takes approximately 5 min
30 seconds to provision to a cold cache and 1 min 50 seconds to provision to a hot cache. This time
will significantly increase when multiple instances are provisioned simultaneously. Also note that the
provisioning time does not include the time taken to boot the VM (Section 4.2).

7. Images cannot be saved. Once a VM is terminated, all changes made within the VM are lost (Section
4.2).

Some of the limitations described above are confined to v1.4. As we shall see in Section 6, new features
in the first release candidate of Eucalyptus v1.5 addresses some of these limitations.

5 Demonstrator

We had previously developed an online animation rendering service as a demonstrator to illustrate potential
real-world usage of cloud technology for social networking applications. Initially, this rendering service was
used to showcase our own cloud solution, ASPEN/ (Section 7.4). For this evaluation, we have ported the
demonstrator to Eucalyptus in order to highlight how one can employ the EC2 interface and Eucalyptus
instances to deploy web applications.

5.1 Rendering Service Environment

Figure 3 illustrates the rendering service environment. It consists of 2 components: 1) the service frontend as
an interface to rendering users, and 2) a service backend that communicates with Eucalyptus to dynamically
provision rendering nodes (VMs). A screen shot of the service frontend is shown in Figure 4.

Eucalyptus Cluster

- Condor Worker

- Condor Master

- Service Provider Agent (SPA) - Povray

- Condor Worker
- Povray

VM, non Eucalyptus instance

VM, Eucalyptus instance

00

- Condor Worker
- Povray

- Webserver

Rendering User

Figure 3: Rendering Service Environment

Dashboard Tools ¥

All rendering projects

Chess - Large

tarch Cameron Kiddle comments {
|2

Your rendering Animation of a spinning chess board.
projects Edit Delete

Friends' rendering
s

Chess
2\l rendarngipralacts tarch cameron kiddle comments (0)
Create a rendering |2
pivlect Animation of @ spinning chess board
Manage Files S RS

CHESS2

ebruary 25, 2 Administrator comments (0}
|2 i

Rotating chess board.
Edit Delete

Slinky

ebruary 26, 21 Administrator comments (0]
|1 IS

The slinky dermo
Edit Delete

Glass Chess Demo

B ebruary 26, 2t Administrator comments (0}
o test

This s a rotating chess board made of glass

Edit Delete

Spotlight

| Friends | Latest activity | EDM Dermo | |

Powered by Elgg, the leading open sol al networking platform

| pe148:79 acs.ucalyaryca 8| 4|

Figure 4: Rendering service frontend in Elgg

10

5.1.1 Service Frontend

Elgg [22] is an open source social networking platform supporting many aspects of building and customizing
a social networking site. The Grid Research Center has used Elgg extensively to built social networking sites
catered to research communities. Therefore the rendering service frontend is also built in the Elgg environ-
ment to leverage previous knowledge the group has in developing web applications. For this demonstrator,
we use the original frontend from our previous rendering service making changes only to the backend where
we will be communicating with Eucalyptus instead of ASPEN and using Walrus as storage for the rendering
results.

The service frontend or Elgg is served via an Apache webserver. This webserver is a VM. However it is not
a Eucalyptus instance. We choose to host this long-lived VM outside of the Eucalyptus environment because
Eucalyptus does not currently support persistent images, therefore if the webserver VM is terminated, all
information and changes made within the VM (and to its image) will be lost. This is an unfortunate
limitation of the current version of Eucalyptus that restricts it from being production-ready. A similar
limitation can be also observed in Amazon EC2. Regardless of the image saving mechanism, since Amazon
makes no guarantees to the uptime of a VM instance, if an EC2 instance crashes or terminates before the
user saved the image, all changes will be lost unless written to EBS.

A second reason why we host this VM outside Eucalyptus is because we need it to have a permanent IP.
Due to the bug described in Section 4.5.1, when Eucalyptus restarts, it loses all IP information associated
with already running VMs and assigns them again to new VMs. This behaviour is not acceptable for a
long-lived VM like the web server.

The frontend interacts with rendering users, allowing them to upload rendering files and specify rendering
descriptors. The frontend then passes the descriptors to the service backend for processing. It also displays
rendered frames and movies to the user.

5.1.2 Service Backend

The service backend is the brain of the rendering service. It runs in a long-lived non-Eucalyptus VM. We
choose to host this VM outside of Eucalyptus for the same reasons as in the service frontend, 1) we need a
persistent image, 2) we want the VM to have a permanent IP.

The job of the backend is to create rendering jobs from rendering descriptors and submit the jobs into a
Condor queue. We used Condor [6], a high throughput computing scheduler and job resource manager, to
manage rendering jobs and maintain the availability of rendering nodes to run render jobs. The rendering
nodes are Eucalyptus instances started from a custom EMI installed with the Condor software and the
animation software Povray [21]. A monitoring agent called the Service Provider Agent (SPA) [8] monitors
the Condor queue. As new rendering jobs arrive, it requests Eucalyptus to provision rendering nodes to run
the jobs. It also requests Eucalyptus to terminate rendering nodes when no jobs are found in the Condor
queue. In other words, the SPA serves as an entity to communicate resource requirements to a cloud provider
(Eucalyptus in the current implementation) to achieve a dynamic resource provisioning environment to fully
profit from the cloud computing paradigm.

5.2 Render Workflow

In Figure 5, we see an example of the rendering process. First, a rendering user uploads his or her Povray
render description files, (Figure 6). These files are uploaded directly from the frontend interface to Walrus.
The user then specifies some runtime rendering parameters to the frontend (Figure 7). The rendering
descriptors are forwarded to the backend which creates and submits Condor Povray rendering jobs into the
Condor Pool. One render job corresponds to one frame to be rendered. As new jobs appear in the queue,
the SPA requests Eucalyptus to allocate rendering VMs to run the jobs. The SPA will only request up to
a pre-defined number of instances. In the current demonstrator, this value is set to 8 (restricted by the 2
virtualization machines we have in our cluster). This implies that as long as there are render jobs in the
queue, the SPA will request VMs from Eucalyptus, up to a maximum of 8 VMs.

11

4) SPA see new
Service Backend jobs in Condor

queue

3) generate and SPA I~
submit render
Condor jobs

5) request to
provision render
VMs

8) request to
remove render
VMs when jobs
are done

Condor Queue

Eucalyptus

Render VMs

2) send render descriptors

Walrus
/ Render VMs
Service Frontend 9) get rendered

frames and movie

from Walrus
6) render jobs run on VMs
7) VMs send rendered
frames to store in
1) get render inputs 10) display rendering Walrus

Figure 5: Rendering Workflow

After the rendering VMs start, they automatically register themselves as Condor workers to the Condor
Master. Subsequently, the render jobs in the queue will be launched on to the rendering VMs. Each
job downloads from Walrus the rendering files particular to its rendering session. As a job completes its
rendering, the frame rendered will be uploaded automatically to Walrus before the job terminates. This step
is needed because the render VMs (started as Eucalyptus instances) do not have access to local persistent
storage, therefore the frames have to be transfered out of the VMs if they want to be accessed at a later
time.

As the number of jobs finishes and the queue size decreases, the SPA will request for Eucalyptus to
deallocate the instances. For example, if the number of queue jobs reduces from 8 to 7, 1 VM will be
deallocated by Eucalyptus from the maximum of 8 running VMs. This dynamic provisioning scheme ensures
that no VMs are idling at any point in time. When the entire rendering is completed, a final job will be
submitted into Condor to assemble the rendered frames into a movie. This movie will also be uploaded into
Walrus. The frontend will download the frames and movies from Walrus to be displayed to the user at a
later time (Figure 8).

6 Eucalyptus Version 1.5rcl

During the writing of this document, the first release candidate for Eucalyptus v1.5 was announced. This
version introduces changes to old features and added a significant amount of new features. Although we
did not install this version, from the official change log, we can see that some of the limitations described
in Section 4.5.2 have been lifted. However, we do not know if the bugs reported in Section 4.5.1 have been
fixed. Below is the official change log verbatim from the Eucalyptus support website.

6.1 Version 1.5rcl Change Log
e Elastic Block Store (EBS) support (volumes & snapshots)

e Walrus improvements

— Support for groups in ACLS

12

Ele

@

Edt View Higtory Bookmarks

MR

board Tools

Tools Help

httpsi/jpc148-79. I

EDM Studio

A administrator 4 JumpLoader
TTprome
T recentiii
B irecermeu

Admini:
render

All rendering proje.
Manage Files chess.ini chess pov
B ssessionzd
[asn2t02mal
[chess.ini
[} ehess pov.
[} image059.
D mG_2043
[MG_2047.
[nautiius-de
[octave-core
[points

[y pres.ppt
D) renderaion
[)To2.TeAL
[} thesis-pag

Spotlight [thesis. por

[thesis_pag 2 files 07)
[thesis_pag: v | RenderEnv(EUCA) |
[0 wrapped.t

(1 >

social networking platform

Applet jumpLoaderapplet started | pe148-79.acs ucalgaryca | 4|

Figure 6: Uploading Povray rendering description files

Fle Edt View History Bookmarks Tools Help

P

6O @|

https://pc148-79 32 [=]1 | Goo &)

EDM Studio

- Start frame:
Administrator

End frame:

Image height:

Administrator's ren|

Administratar's friel Irriags wiekh

render
Session

All rendering proje

Manage Files Prioritize:

skip

Render || Cancel

Fhal_Frame= 120
Initial_Clock=0
Final Clock

| B cycic_animation=on
Upload | | Remove | Download | Pause_when Done=off

Assemble | Monitor

Save

[Render}

Spotlight

no | RenderEnv | RenderEnv(EU!

ding open s ocial net

Applet jumpLoaderApplet started | pel4s-79.acs ucalgaryca (| 47|

Figure 7: Rendering parameters submission form

13

Fle Edt View History Bookmarks Tools Help

@ - & ® [l httpsipcr4s-79. l9g

EDM Studio

Administrator

Administrator's render
Ad rator's friends'
render

Al rendering projects

Manage Files

Glass Chess Demo
E ebruary 26, 2 by Administrator comments (0)
test

This is @ rotating chess board made of glass

Edit_Delete

Directory:
Glass Chess Demo (ID:32)

glasschess-4162-28.log
glasschess-4162-017.png
glasschess-4162-5 1 error
glasschess-4162-85.log
glasschess-4162-50.0ut
glasschess-4162-81.out
lasschess-4162-54 o

glasschess-4162-115 error

Upload Rernove | Download

Assemble | Monitor

Spotlight

Applet jumpLoaderApplet started

Figure 8: Viewing rendering frames

— Fixed issues with meta data support

Object copying

Query string authentication

— Compressed image downloads and fixes to image caching

— Reduced memory requirement

e Network improvement: new MANAGED-NOVLAN mode

e Node-side improvements:

— Support for the KVM hypervi

Support for arbitrary key names

sor

Web browser form-based uploads via HTTP POST

— Compression & retries on Walrus downloads

— Reworked caching (now with configurable limit)

e Web Ul improvements:

— Cloud registration with Rightscale (from admin’s ‘Credentials’ tab)

— New configuration options for

— Better screening of usernames

Walrus

— Fixed account confirmation glitches

e Building and installation improvements

14

pcl148-79 acs ucalgary.ca | 47|

Better Java installation checking
— New command-line administration: euca_conf -addcluster ... -addnode ...
— Non-root user deployment of Eucalyptus

— Binary packages for more distributions (Ubuntu et al)

From these changes, we see that a new method of compressing images and image caching is introduced.
This has the potential to decrease both the storage requirements and distribution time of EMIs which may in
turn result in faster provisioning time for instances. We also note that an implementation of EBS has been
introduced, thus allowing Eucalyptus users to attach and detach external block devices to store persistent
data from within the VM. However, there is currently still no support for saving images. Support for KVM
is also enabled in this version and a new network mode that does not use vlan is implemented.

7 Related Work

Eucalyptus is just one of the many cloud computing platforms available on the market today. In this section,
we present a brief survey of other cloud contributions from both commercial and academic organizations. We
will focus on the comparison of key features and functionality of research-based platforms, giving minimal
treatment to the proprietary solutions.

7.1 Amazon Web Services

Amazon is considered a fore-runner in offering a reliable and simple solution to access the cloud. Amazon
Web Services (AWS) [24], as the name implies, is a suite of web services providing on demand computing
power, storage and networking for businesses to grow their computing requirements elastically in the cloud.
We have already referred to some of these services throughout the document. Specifically, we described how
the Simple Storage Service (S3) and Elastic Cloud (EC2) is emulated within Eucalyptus.

AWS is a proprietary product. Due to its early involvement, it is considered the de facto standard in
cloud computing. Most other emerging open source cloud platforms provide some functionality to integrate
with AWS. For example, both Open Nebula (Section 7.2) and Nimbus (Section 7.3) supports starting of
Amazon instances within their infrastructure. Eucalyptus on the other hand based their entire design on
emulating Amazon EC2 and S3.

7.2 Open Nebula

Open Nebula [18] is an open source cloud platform developed and maintained at the Universidad Com-
plutense de Madrid. It is part of Reservoir [23], a major EU-funded research project for resources and
services virtualization. Open Nebula is based on a highly modular design featuring components that per-
form scheduling, VM management, image management and network management. Internally it uses Sun
Grid Engine (SGE) [11] for resource management and scheduling. Users interact with Open Nebula through
a command line interface (CLI). VM instances are created by specifying their properties via “VM tem-
plates”. Currently, users can create both Xen and KVM VMs. They can also start EC2 instances via the
Open Nebula interface by using a EC2-defined VM template.

The image management component in Open Nebula is similar to Eucalyptus. VM images are first
“cloned” from a base image. Like Eucalyptus, the cloning process is basically executing a cp command on
the raw image file. The cloned images are then copied using ssh or shared via NFS onto the virtualization
nodes. However, in Open Nebula, images are not deleted after an instance terminates. This preserves the
state of a VM even after it shuts down.

The time taken to provision an instance is on the same order as Eucalyptus since they are both using
similar image management strategies. An API is also available to allow Open Nebula to talk to external
storage services. This potentially means that a more efficient method can be used for image distribution.

15

Another component is the scheduling module. Internally, Open Nebula uses a simple queueing system?
to prioritize VM creations. However the default scheduling behaviour can be changed by integrating with
a more sophisticated scheduler. The Haizea Lease Manager [25] is one scheduler that has been successfully
integrated with Open Nebula via its scheduler API. Using Haizea, advanced reservation and preemption can
be implemented.

7.3 Nimbus

Nimbus [19], previously called Virtual Workspace Service, is an open source Globus [2] product for creation
of virtual clusters. It is similar in many aspects to Open Nebula for creation and management of Xen VM
instances. Current ongoing efforts are to include support for both KVM and VMWare within Nimbus. The
main difference comparing Nimbus to Open Nebula is that Nimbus uses grid credentials to authenticate user
requests. A user can also start EC2 instances via the same set of credentials making it easier than Open
Nebula to interact with EC2. Image management is similar to Open Nebula and Eucalyptus, raw file copies
are a common methodology among these platforms. The state of a VM can be “saved” by making a copy of
the current image. There is also the notion of an image repository where each user can upload VM images
to his or her individual repository.

7.4 ASPEN

The Automated Service Provisioning ENvironment or ASPEN [8] is a research project of the Grid Research
Centre. We developed this cloud platform to provide a dynamic provisioning environment for both batch
and interactive workloads. We have used ASPEN extensively to provision virtual environments for both
commercial and academic projects. ASPEN currently supports Xen VMs, but there are plans to support
other virtualization technology like KVM in the near future.

ASPEN is similar in many ways to the other cloud platforms discussed before. It supports dynamic VM
creation, VM resizing in terms of CPU and memory, and persistent storage. However ASPEN differs in two
major aspects. First, ASPEN introduced a novel approach to image management. Using Sun’s ZFS as the
underlying file system of an ASPEN image server, fast VM image cloning and snapshotting functionalities
can be implemented. VM images are created using ZFS’s Copy-On-Write (CoW) mechanism, saving time
and space requirements for the provisioning of VM instances. ASPEN also supports more image formats
than other platforms. These include file based, blocked based and even network rooted images.

The second advantage that ASPEN has over existing cloud platform is its sophisticated VM scheduling
technology. By integrating with the Moab Workload Manager [17], ASPEN can utilize advanced reservations,
preemption, backfill and a highly customizable priority system for flexible scheduling of VM instances based
on different user and group policies. It can also harness the resizing, suspension and checkpointing capabil-
ities of VMs to automatically optimize VMs to physical machine deployment. For example, automatically
migrating VMs for load balancing or packing VMs across fewer physical machines to reduce energy, cooling
and other operational costs [26].

7.5 Feature Chart

In this section, we summarize the features of each cloud technology. Open Nebula can be considered among
all, to be a very comprehensive cloud platform by supporting most aspects of cloud computing requirements.
However it is also known to take upwards of minutes to provision a single Open Nebula instance. Globus
Nimbus allows easy VM creation of both Nimbus and EC2 instances using a common set of grid credentials.
ASPEN provides a highly sophisticated VM scheduling system customizable to meet site specific needs. It
also employs advance CoW and snapshotting capabilities for fast image cloning. An image cloning operation
in ASPEN is in the order of seconds compared to minutes by the other cloud platforms.

31t is unclear to what extend SGE’s scheduling capabilities are incorporated into Open Nebula.

16

Except for Eucalyptus v1.4, all these platforms allow saving of images. However as we saw in Section 6,
Eucalyptus is addressing crucial issues on persistent data storage. This means that as of v1.5, Eucalyptus
will be in a better position as a cloud platform for deployment in production environments. Table 1 compares
the main features of each open source cloud solution described.

7.6 Other Cloud Platforms

All the cloud technologies covered above are offering services that builds on demand and dynamic resource
provisioning infrastructures. This computing paradigm is called Infrastructure-as-a-Service (IaaS). There are
many other platforms that provide IaaS. For example, two recent startups, Abiquo and Enomaly Inc offers
elastic computing and infrastructure management services respectively through their open source cloud
platforms, AbiCloud [1] and Enomaly [12]. Other companies that have a longer history and are offering
closed source solutions are Platform Computing with their Virtual Machine Orchestrator [27], VMWare
with Virtual Center [7] and 3Tera with AppLogic [4].

Apart from TaaS, Platform-as-a-Service (PaaS) offers an integration computing and development environ-
ment driven by cloud infrastructures. Companies like Google offers Paa$S through its Google App Engine [10].
Customers using Google App Engine can build and maintain scalable web applications in the Google hosting
environment. Microsoft’s Azure [5] is a similar service that promises scalable and dynamic hosting of inter-
net applications. Force.com [14] is another PaaS provider offering an integrated web development platform
driven by the cloud.

8 Conclusion

We have investigated the Eucalyptus cloud computing platform as a general solution to deploying cloud
infrastructures. We documented the design, installation and usability of the version 1.4 platform. We have
also developed a demonstrator that illustrates a real-world use case of the Eucalyptus cloud. The general
impression of Eucalyptus is that it is easy to install and configure. It has a well-defined interface that is
borrowed from Amazon EC2. The functionality that Eucalyptus supports matches closely with what EC2 is
offering, however a lack of certain features and major bugs in the current version proves that Eucalyptus is
not yet ready for deployment on production-type environments. The first release candidate for Eucalyptus
version 1.5 was announced during the writing of this document. With this version and its new features,
FEucalyptus is in a better position as a major competitor in the cloud market.

17

3T

Cloud VM Type | Interface | Image Management | Networking VM Functions Scheduling
Eucalyptus Xen CLI, web | local file copy, dis- | security groups, | none first-fit, round robin
portal tribute images via | elastic IP
SOAP
Open Nebula | Xen, KVM | CLI local file copy, dis- | none save, pause, resize, | queueing system, ad-
tribute via ssh or live migrate vanced reservation,
NFS preemption
Nimbus Xen CLI file copy, un- | none save unknown
known distribution
method
ASPEN Xen CLI CoW, snapshots, | none save, pause, resize advanced reservation,

distribute over NFS

backfill, preemption,
customizable prior-
ity queueing system,
policy

Table 1: Feature comparison between different cloud platforms

References

abiCloud. http://www.abiquo.com/en/products/abicloud.

Globus Alliance. http://www.globus.org.

Elastic Compute Cloud Amazon Web Services. http://aws.amazon.com/ec2.
3Tera AppLogic. http://www.3tera.com/applogic/.

Microsoft Azure. http://www.microsoft.com/azure.

Jim Basney, Miron Livny, and Todd Tannenbaum. High throughput computing with Condor. HPCU
news, 1, 1997.

VMware Virtual Center. http://www.vimware.com/products/vi/vc/.

R. Curry, C. Kiddle, N. Markatchev, R. Simmonds, T. Tan, M. Arlitt, and B. Walker. ASPEN: an
automated service provisioning environment for data centres. Proceedings of the 15th HP Software
University Association Workshop, 2008.

Eucalyptus Documentation. http://eucalyptus.cs.ucsb.edu/wiki/documentation.
Google App Engine. http://code.google.com/appengine.

Sun Grid Engine. http://http://gridengine.sunsource.net.

Enomaly. http://www.enomaly.com/.

N. Fallenbeck, H.J. Picht, M. Smith, and B. Freisleben. Xen and the art of cluster scheduling. Proceedings
of 1st International Workshop on Virtualization Technology in Distributed Computing, 2006.

Force.com. http://developer.force.com/.

Eucalyptus in Karmic Koala. https://lists.ubuntu.com/archives/ubuntu-devel-announce/2009-
february/000536.html.

Kernel Virtual Machine. http://kvm.qumranet.com/kvmwiki.

Moab Workload Manager. http://www.clusterresources.com/pages/products /moab-cluster-suite.php.
Open Nebula. http://www.opennebula.org.

Nimbus. http://workspace.globus.org.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus open-source cloud-computing system. Proceedings of Cloud Computing and Its Application,
2008.

Persistence of Vision Raytracer. http://www.povray.org.

Elgg Social Networking Platform. http://www.elgg.org.

Resources and Services Virtualization without Barriers. http://www.reservoir-fp7.eu/.
Amazon Web Services. http://aws.amazon.com.

B Sotomayor, K Keahey, and I. Foster. Combining batch execution and leasing using virtual machines.
Proceedings of the ACM/IEEE International Symposium on High Performance Distributed Computing,
2008.

19

[26] Tingxi Tan. Scheduling Virtual Machines in Data Centres. Masters Thesis, University of Calgary, 2009.
[27] Platform Computing VMO. http://www.platform.com/products/platform-vm-orchestrator/.
[28] VMWare. http://www.vimware.com/.

20

