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Abstract 

Hypertension is a common medical condition and is a significant risk factor for heart attack, 

stroke, kidney disease, and mortality. Developing a risk prediction model for hypertension 

incidence incorporating its risk factors can help identify high-risk individuals who should be 

targeted for healthy behavioral changes or medical treatment to prevent hypertension onset. This 

research aims to develop a robust hypertension prediction model for the general population. More 

specifically, we aimed to 1) conduct a comprehensive systematic review to identify risk factors 

and prediction models for hypertension incidence and perform a meta-analysis to evaluate the 

current model’s predictive performance. 2) develop a risk prediction model for incident 

hypertension in a Canadian cohort using a traditional modeling approach. 3) develop machine 

learning algorithms to predict hypertension incidence and compare their predictive performance 

with a traditional statistical model. 

We systematically searched MEDLINE, EMBASE, Web of Science, Scopus, and the grey 

literature for studies predicting the risk of hypertension among the general adult population. We 

identified 52 studies that presented 117 models, of which 75 were developed using traditional 

regression-based modeling and 42 using machine learning algorithms. No studies were from 

Canada where a hypertension prediction model was developed or validated.  Meta-analysis showed 

the overall pooled C-statistics 0.75 [0.73 – 0.77] for the traditional regression-based models and 

0.76 [0.72 – 0.79] for the machine learning-based models.  

The lack of a hypertension prediction model in a Canadian context motivated us to develop 

a new model.  We used the data of 18,322 participants on 29 candidate variables from the large 

Alberta’s Tomorrow Project (ATP) to develop traditional Cox proportional hazards (PH) model. 

Age, sex, body mass index (BMI), systolic blood pressure (SBP), diabetes, total physical activity 
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time, and cardiovascular disease were used as significant risk factors in the model. Our model 

showed good discrimination (Harrel’s C-statistic 0.77) and calibration (Grønnesby and Borgan 

test, 𝜒2 statistic = 8.75, p = 0.07; calibration slope 1.006). A risk score table to estimate 

hypertension risks at 2-, 3-, 5-, and 6-year were derived from the model to favor the model’s 

clinical implementation and workability.  

Five machine learning algorithms were also developed to predict hypertension incidence: 

penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient 

boosting (GB). The performance of machine learning algorithms was observed, similar to the 

traditional Cox PH model. Average C-indexes were 0.78, 0.78, 0.78, 0.76, 0.76, for Ridge, Lasso, 

Elastic Net, RSF, GB, respectively. Important features associated with each machine learning 

algorithms were also presented. 

We developed a simple yet practical prediction model to estimate the risk of incident 

hypertension for the Canadian population that relies on readily available variables. Our results 

showed little predictive performance difference between machine learning algorithms and the 

traditional Cox PH model in predicting hypertension incidence. Our newly developed model may 

help clinicians, and the general population assess their risks of new-onset hypertension and 

facilitate discussions on preventing this risk more effectively. 
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CHAPTER 1. INTRODUCTION 
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1.1 Brief Overview 

 

Hypertension is a common medical condition, affecting 1 in 5 Canadians1, and represents a 

major modifiable risk factor for several fatal diseases, including heart attack, stroke, kidney 

disease, and mortality2. Hypertension is responsible for 13% of global deaths3. Prevention and 

control of hypertension are considered a major public health and primary care concern4. 

Hypertension outset can be prevented or delayed with lifestyle modification5, drug treatment6, or 

both. Primary prevention strategies are most likely to be effective when targeted to individuals at 

the highest risk. Population health research is increasingly integrating the precision health 

paradigm with a focused approach toward such targeted intervention7, thus informing whom to 

target, what to target, where to target, and how to target personalized preventive initiatives8. 

Evidence suggests that the risk for hypertension progression depends on several factors, such as 

age, body mass index (BMI), waist-hip ratio, systolic blood pressure (BP), smoking, diabetes, 

family history, and level of physical inactivity9. Combining known risk factors into a multivariable 

model for risk classification would help identify high-risk individuals who should be targeted for 

healthy behavioral changes or medical treatment to prevent hypertension development10–12.   

Hypertension risk assessment is an important mainstay for preventive efforts against the 

condition. Several hypertension prediction models have been developed4,13–18, but their 

performance in accurately forecasting incident hypertension, reflected in the models' predictive 

ability, varies. Based on the underlying population characteristics and data from which they are 

derived, each model has its strengths and weaknesses. Notably, efforts are needed to improve risk 

prediction to inform individual risk, clinical care, and policymaking.  

Despite their advantages, the application of hypertension prediction models in clinical practice 

is rare. This is mainly due to the model's complexity, lack of enough validation and impact studies 



3 
 

to make the models trustworthy, and inadequate understanding of the models and their predicted 

probabilities among health professionals and patients. A properly developed accurate hypertension 

prediction model, which is easy to use and has multiple validation and impact studies, should be 

used in clinical settings. It supplements clinical information used in decision-making.  

1.2 Hypertension and Its Symptoms 

 

Hypertension (or high BP) refers to a condition where long-term high pressure in the arterial 

system results in damaged blood vessels, creating health problems. When the heart pumps blood 

more, arteries become narrower, resulting in a higher BP. BP is measured in millimeters of mercury 

(mm Hg) and is recorded as two numbers (first, the systolic number and then the diastolic number) 

generally written one above the other. The top refers to the maximum pressure in blood vessels, is 

called the systolic blood pressure (SBP), and reflects the peak pressure within the artery when the 

heart contracts or beats. The number at the bottom refers to the minimum pressure in blood vessels 

in between heartbeats. It is called diastolic blood pressure (DBP) and coincides with the heart 

muscle's relaxation. Normal adult BP is defined as an SBP of 120 mm Hg and a DBP of 80 mm 

Hg. Hypertension is generally defined as SBP ≥ 140 mm Hg and DBP ≥ 90 mm Hg19, but a lower 

threshold of SBP ≥ 130 mm Hg and DBP ≥ 80 mm Hg has been proposed recently20. Nevertheless, 

recent medical guidelines from the American College of Cardiology/American Heart Association 

Task Force suggests categorizing BP as normal, elevated, or stage 1 or 2 hypertension to prevent 

and treat high BP20. The range for different categories of BP are: SBP < 120 mm Hg and DBP < 

80 mm Hg (normal BP), SBP 120-129 mm Hg and DBP < 80 mm Hg (elevated BP), SBP 130-139 

mm Hg or DBP 80-89 mm Hg (stage 1 hypertension), and SBP ≥ 140 mm Hg or DBP ≥ 90 mm 

Hg (stage 2 hypertension)20. An average of ≥ 2 careful readings taken on ≥ 2 occasions was used 

to determine the above-recommended BP measurements. According to Hypertension Canada's 
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2017 guideline, for using Automated Office Blood Pressure (AOBP), a mean SBP ≥ 135 mm Hg 

or DBP ≥ 85 mm Hg; for non-AOBP, a mean SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg; for 

ambulatory BP monitoring, a mean SBP ≥ 135 mm Hg or DBP ≥ 85 mm Hg; and for home BP 

monitoring, a mean SBP ≥ 135 mm Hg or the DBP ≥ 85 mm Hg is considered as high BP21. 

Currently, the cutoffs used by Hypertension Canada to define hypertension are different from U.S. 

guidelines. 

High BP generally develops over many years and can affect anyone, but it becomes more 

common as people get older. The lifetime risk for developing hypertension in older adults has been 

estimated to be 90%22. People can have high BP for years without any signs or symptoms, and 

most hypertensive people have no symptoms at all19. Occasionally, people with high BP may 

experience headaches, shortness of breath, dizziness, chest pain, heart palpitations, and nosebleeds. 

Nevertheless, these signs and symptoms are not specific and usually do not occur until high BP 

has reached a severe or life-threatening stage19. High BP is a serious warning sign and can be a 

silent killer. BP readings should be checked in regular doctor's appointments. Uncontrolled and 

undiagnosed high BP can lead to serious health problems, including heart attack, stroke, kidney 

disease, blindness, ruptured blood vessels, and cognitive impairment. 

1.3 Risk Factors for Hypertension 

 

Hypertension has been identified as a multi-factorial trait resulting from environmental and 

biological factors9,23. Multiple factors may cause and increase the risk of hypertension, including 

physical, hereditary, or behavioral. Broadly, these risk factors belong to two major categories, 

modifiable and non-modifiable. Conditions that can be altered or controlled by making specific 

lifestyle changes are modifiable risk factors. In contrast, non-modifiable risk factors consist of 

those conditions that a person cannot change or control. Having one of these risk factors will not 
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necessarily lead to the development of hypertension; however, the presence of more risk factors in 

a person will increase the likelihood of developing hypertension. 

1.3.1 Modifiable Risk Factors 

 

Lack of Physical Activity. Body movement generated by the skeletal muscles' contraction that 

eventually raises energy expenditure over resting levels is described as physical activity24,25. 

Physical activity includes routine daily tasks such as occupational tasks, commuting, household 

activities, and planned and repetitive movements to improve and maintain health24,25. Inadequate 

physical activity increases the risk of high BP. Although precise mechanisms by which physical 

activity reduces BP and prevents hypertension are not clear25, several studies have demonstrated a 

positive effect of physical activity on the risk of developing hypertension26. Current guidelines 

suggest increasing physical activity as a crucial lifestyle modification to prevent hypertension27,28. 

Lack of physical activity is also responsible for the increased risk of being overweight. 

Overweight or Obesity. Excess weight generates an additional strain on the heart and circulatory 

system. Generally, more blood is required to supply oxygen and nutrients to the tissues of an 

overweight person. This increased volume of blood circulation through the blood vessels creates 

extra pressure on the artery walls. Maintaining healthy body weight is vital for hypertension 

prevention29–31. 

An Unhealthy Diet. Having good healthy nutrition from different sources is crucial for health. As 

indicated by the Dietary Approaches to Stop Hypertension (DASH) trials, a diet that emphasizes 

vegetables, fruits, and low-fat dietary products; includes whole grains, fish, poultry, and nuts; and 

is reduced in fat, red meat, sweets, and sugar-containing beverages substantially lower BP in both 

hypertensive and normotensive individuals32,33. Excess salt (sodium) in the food can cause the 

body to hold fluid, which eventually raises BP. Reduction of salt intake is often recommended as 
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a critical measure to prevent hypertension34. Foods that contain high potassium are important for 

managing and controlling high BP because potassium reduces sodium impacts. The significance 

of potassium intake in controlling BP has been demonstrated in numerous epidemiological and 

clinical studies, and an inverse association between potassium intake and high BP has been 

identified35,36. Many DASH foods serve as natural sources of potassium. The reduction of sodium 

intake, combined with the DASH diet, is highly recommended for hypertension prevention33, and 

making healthy food choices can help lower BP. 

Too Much Alcohol Consumption. Regular, excess (more than two drinks per day) alcohol 

consumption can lead to hypertension because it activates the body's adrenergic nervous system, 

resulting in constriction of blood vessels and a concurrent increase in blood flow and heart rate. A 

positive association between alcohol consumption and high BP was observed in many studies37,38. 

Alcohol consumption should not exceed 14 and 9 standard drinks per week for men and women, 

respectively, to prevent hypertension21.  

Stress. Increased stress can cause a temporary but considerable rise in BP. Besides, excess stress 

can contribute to poor diet, physical inactivity, and using tobacco or drinking excess alcohol that 

eventually increases BP. Stress does not cause hypertension directly, but it can affect its 

development39,40. 

Smoking and Tobacco Use. Smoking or tobacco use can also temporarily increase BP. However, 

tobacco chemicals can harm the lining of artery walls and cause the arteries to narrow, increasing 

BP. Secondhand smoke (exposure to other people's smoke) also can increase BP. Epidemiological 

studies on healthy subjects, hypertensive subjects, and diabetic and renal patients have 

demonstrated that smokers have higher BP than nonsmokers41,42. 

1.3.2 Non-modifiable Risk Factors 
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Age. Age is a predisposing factor for hypertension due to the wear and tear the body undergoes 

over time (i.e., making it more vulnerable to chronic illness). With increasing age, the body is 

exposed to various strains and stressors and free radicals generated in the body, which accelerate 

the breakdown of cell and organ functions43. Our blood vessels slowly lose some of their elastic 

quality with age, potentially leading to increased BP. Women are as likely as men to develop high 

BP between the ages of 45-64 years. For individuals younger than 45 years, however, the disease 

affects more men than women. For people 65 years or older, high BP affects more women than 

men44. However, the risk for prehypertension and high BP is increasing in children and teens, 

possibly due to the rising overweight. 

Sex/Gender. Research has revealed that men have a higher prevalence of hypertension than 

women, particularly men younger than 65, who consistently have higher hypertension levels than 

women of the same age group45,46. According to one study among 18- to 29-year-old white adults, 

only 1.5% of women but over 5% of men reported hypertension (for black women and men, the 

proportions were 4% and 10%, respectively)47. In all World Health Organization (WHO) regions, 

including Canada, men have a higher prevalence of hypertension than women48. Such observed 

gender differences in hypertension are due to both biological (sex hormones, chromosomal 

differences, and other biological sex differences that are protective against hypertension in women) 

and behavioral factors (high BMI, smoking, and physical activity)45,49.  

Race/Ethnicity. High BP is more common among blacks than people of any other racial 

background and often occurs in blacks at an earlier age than whites44,50. It also tends to be more 

severe in blacks, which is even less likely to achieve target BP goals with treatment51. 

Family History. A family history of high BP raises the risk of developing high BP. High BP tends 

to run in families, as family members share similar genes, predisposing a person to high BP. There 



8 
 

is also the possibility that people with a family history of high BP share common environments 

and other relevant factors like behaviors and lifestyles that can increase their risk of 

hypertension22,52.  

Certain Underlying Conditions and Medications. Certain underlying conditions can also cause 

and increase the risk of high BP. This type of high BP, called secondary hypertension, makes up 

only a tiny fraction (5% to 10%) of hypertensive cases53,54. Several conditions can lead to 

secondary hypertension, including chronic kidney disease, obstructive sleep apnea, tumors, 

coarctation of the aorta, other disorders of the adrenal gland, pregnancy, thyroid dysfunction, and 

Cushing syndrome. Also, certain medications that people need to take to manage different diseases 

and conditions, such as birth control pills, cold remedies, decongestants, over-the-counter pain 

relievers, and some prescription drugs including non-steroidal anti-inflammatory drugs, can lead 

to secondary hypertension54. 

1.4 Hypertension Consequences 

 

Individuals with hypertension are at higher risk for the development of not only life-changing 

but also possibly life-threatening conditions55.  Left uncontrolled or undetected, high BP can lead 

to dangerous health complications and poor quality of life.  Vascular damage produced by high 

BP generally starts small and then gradually builds over time.  

Blood, which supplies nutrients and oxygen to vital organs and tissue, is carried throughout 

the body by blood vessels and major arteries. When BP becomes high, it begins to damage artery 

walls. Typically, damage in artery walls starts as small tears. When these tears start forming, bad 

cholesterol starts to attach itself to the tears while flowing through the vessels. Over time, more 

and more cholesterol builds up, and as a result, arteries become narrow with reduced blood flow. 
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When there is insufficient blood flow, tissue or organ damage can occur, such as heart attack and 

stroke55. 

There are many potentially devastating complications of hypertension. In the heart, 

uncontrolled high BP can cause several symptoms and signs such as chest pain, irregular heartbeat, 

coronary artery disease, enlarged left heart, heart attack, and heart failure56.  In the brain (which 

depends on a nourishing blood supply to work properly and survive), high BP can cause several 

problems, including transient ischemic attack (TIA), stroke, dementia, and cognitive impairment56. 

Kidneys need healthy blood vessels to filter excess fluid and waste from the blood. High BP can 

damage blood vessels in and around the kidneys resulting in kidney disease and kidney failure. 

High BP can also damage blood vessels in the eyes, causing vision difficulties, such as distorted 

vision, blurred vision, and complete vision loss56. Further, high BP can also be responsible for 

sexual dysfunction because of blockages to the blood vessels that lead to the sexual organs.  

1.5  Hypertension Burden 

 

High BP has long been recognized as a significant health burden that affects all segments of 

the population. Globally, hypertension causes 17.8% (9.4 million) of deaths each year and 7% of 

the disease burden, making it a leading risk factor for global mortality and disease burden48,57. The 

global prevalence of hypertension in adults aged 18 years and over was around 22% in 201448. The 

age-standardized prevalence of hypertension was 24.1% in men and 20.1% in women in 201558. 

Hypertension is believed to be responsible for roughly 50% of deaths due to stroke and heart 

disease19. According to randomized trials and epidemiological studies, a BP reduction of 10 mm 

Hg systolic or 5 mm Hg diastolic is associated with a 22% reduction in coronary heart disease 

events, 41% reduction in stroke events, and a 41%–46% reduction in cardiometabolic mortality59–

61. Hypertension prevalence among adults aged 25 and over is highest in Africa (30%) and lowest 
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in America (18%)48. Overall, countries with high incomes have a lower prevalence of hypertension 

(35%) than other countries (40%)19,62,63. 

The prevalence of hypertension in Canadian adults was 22.6% in 2012-13 and affected more 

than 6 million Canadians1. Self-reported hypertension prevalence has also increased in Canada 

roughly two-fold over nearly two decades1. An estimate shows that if Canadians live an average 

lifespan, over 90% will develop hypertension64. In Canada, hypertension is considered among the 

top risk factors for death, years of life lost (YLL), and disability-adjusted life years (DALYs)65. In 

Alberta, the prevalence of hypertension among adults was 21% in 2010, with a projected increase 

to 27% by 202066. 

According to studies, hypertension-related disease costs US$ 370 billion globally, accounts 

for approximately 10% of all expenditures in healthcare, and, if indirect costs such as welfare 

losses due to premature death are included, the costs could be nearly 20 times greater67. Over ten 

years, hypertension can cost about US$ 1,000 billion globally in health spending67. In Canada, 

hypertension cost a total of $13.9 billion in direct healthcare spending in 2010, and projected costs 

are estimated to be $20.5 billion in 202066. Hypertension results in over 20 million physician visits 

annually in Canada68. There were over 85 million antihypertensive drug prescriptions in Canada 

in 2014, with a cost of $2 billion1. In Alberta, the estimated cost associated with hypertension was 

$1.42 billion in 2010; however, a projected increase to $2.8 billion in 2020 is also reported66. 

1.6 Hypertension Prevention: Risk Prediction Model at the Core 

 

Due to the high prevalence and global burden of hypertension, prevention and control 

strategies need to be a top priority. Prevention of hypertension creates an opportunity to halt and 

prevent the continuing costly cycle of hypertension management and its associated 

complications69. Hypertension can be prevented by the complementary application of strategies 
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that target the general population and individuals and groups at higher risk for hypertension. The 

need for early identification of at-risk individuals who could benefit from preventive interventions 

has led to a growing interest in hypertension risk prediction. To identify individuals apparently 

free of hypertension but at risk, health professionals need reliable tools to implement preventive 

strategies effectively. Prediction of disease outcome through modeling is a tool that can provide 

reasonable estimates about the future course of an illness, serve as an important adjunct in clinical 

practice, and help clinicians deliver better care to avoid adverse events. 

1.7 Overview of Risk Prediction Models 

 

One priority of health and clinical research is identifying people at higher risk of developing 

an adverse health outcome targeted for early preventative strategies and treatment70. For instance, 

individuals who are healthy but are found to have an increased risk of developing hypertension 

could be recommended to change their lifestyle and behaviors (e.g., physical activity, dietary 

pattern, alcohol consumption, smoking, etc.) to reduce their risk. Prediction modeling can play a 

vital role in identifying high-risk individuals. Prediction models can be used to estimate the risk 

of future occurrence of a health condition in an individual by utilizing different underlying 

demographic and clinical characteristics called risk factors that are believed to be associated with 

the health outcome of interest. Prediction models help predict the chance of experiencing a health 

outcome by an individual with a given set of risk factors. 

A clinical prediction model has many practical uses, such as detecting or screening high-risk 

subjects for asymptomatic disease (which helps to prevent developing diseases with early 

interventions); predicting disease (which helps facilitate patient-doctor communication based on 

more objective information); and assisting in medical decision-making, as well as assisting patients 

in making an informed choice regarding their treatment (which helps patients make better 
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decisions, leading to better outcomes for them)71,72. Prediction models also can assist healthcare 

services with planning and quality management. 

1.7.1 Examples of Well-Known Risk Prediction Models 

 

Various models have been developed that mathematically combine multiple predictors to 

estimate the risk of the future occurrence of different health outcomes in asymptomatic subjects in 

the population. The majority of models predict the occurrence of a specific disease. A well-known 

example is the Framingham risk score, one of the most widely used prediction tools that predict 

an individual's 10-year cardiovascular disease (CVD) risk. This gender-specific risk score was first 

developed based on age, sex, low-density lipoproteins (LDL) cholesterol, high-density lipoprotein 

(HDL) cholesterol, BP, diabetes, and smoking to estimate the 10-year risk for coronary heart 

disease (CHD) using data from the Framingham Heart Study73. Subsequently, other disease 

outcomes, such as general CVD and individual CVD events (coronary, cerebrovascular, and 

peripheral arterial disease and heart failure), were added in the modified version of the 

Framingham Risk Score74. The United Kingdom Prospective Diabetes Study (UKPDS) Risk 

Engine is a widely used type 2 diabetes-specific risk tool that delivers risk estimates for coronary 

heart disease and stroke. Several risk factors: current age, sex, ethnicity, smoking status, presence 

or absence of atrial fibrillation, levels of HbA1c, SBP, total cholesterol, and HDL cholesterol were 

considered in this model while calculating risk, using data from the U.K. Prospective Diabetes 

Study75,76. Gail et al. presented a risk prediction model for developing breast cancer that combines 

information on age, age at first live birth, family history, age at menarche, breast biopsy number, 

and menopause to provide the probability of developing breast cancer in healthy women77. The 

diabetes risk score, also known as the Finnish Diabetes Risk Score (FINDRISC), is a prediction 

tool to identify patients at risk of developing diabetes. FINDRISC uses age, BMI, physical activity, 
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vegetable and fruit intake, medical treatment of hypertension, history of hyperglycemia, and family 

history to determine the risk of developing diabetes78. Numerous other prediction models have 

been used in many different areas, including public health, clinical practice, diagnostic work-up 

(test ordering, starting treatment), therapeutic decision-making (surgical decision making, the 

intensity of treatment, delaying treatment), and research (inclusion and confounding adjustment in 

a randomized control trial). 

1.7.2 Methods in Risk Prediction Models 

 

While specific details may vary between clinical risk prediction models, the goals and 

processes of developing prediction models are mostly similar. A research question or objective is 

defined first, and relevant data are collected from the study population, usually longitudinal cohort 

data. The collected data should contain information on everyone’s intended outcome status, 

demographics, health status, relevant risk factors for the outcome, and any other relevant aspects 

of the study question. The selection of candidate variables as potential predictors for analysis is 

based on clinical and statistical viability from all available variables. A predictive model is derived 

using an appropriate modeling strategy from the chosen candidate variables, and its utility is 

internally validated. 

The conventional approach to developing prediction models is to build a single model from a 

dataset of individuals with known outcomes and then apply the developed model to predict future 

individuals' outcomes79. The choice of model to be fitted often depends on the nature of the 

endpoint. Regression methods, such as logistic regression (for binary endpoint/outcome) and Cox 

regression (for time-to-event endpoint/outcomes), are the most frequently used algorithms to fit 

prediction models. Many risk prediction models have been developed using logistic regression to 

identify individuals at high risk for type 2 diabetes78,80, breast cancer81, CVD in type 2 diabetes 
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patients82,83, chronic kidney disease84,85, etc. Many risk prediction models also have been 

developed using the Cox regression algorithm to assess general CVD and individual CVD events 

risk74, the absolute risk of CHD75 and stroke76 in people with type 2 diabetes, and predicting the 

risk of breast cancer77. Over the last few years, machine learning algorithms achieved significant 

successes across a broad range of fields because of their advantages, such as their ability to model 

nonlinear relations and the accuracy of their overall predictions86. Decision trees, random forest, 

penalized regression models, neural networks, and support vector machines are examples of 

machine learning algorithms87. However, machine-learning algorithms sometimes struggle with 

reliable probabilistic estimation and interpretability88,89. Moreover, in clinical applications, 

machine-learning methods often demonstrate mixed performance90–94. Once the modeling 

approach is defined and the data are collected, the prediction model can be fitted to the data using 

statistical software.  

Most fundamental steps are common in all prediction modeling despite their variations in the 

modeling process. We outline here, in brief, some necessary steps of prediction modeling 

regardless of their kind. 

1. Identify the appropriate data source and format a cohort. For developing prediction 

models, generally, longitudinal data are used where there is follow-up information. This 

follow-up data provides information on participants who are free of the outcome at 

baseline, but after a specific follow-up time, either have or have not developed the outcome. 

When there is no follow-up information, like ours, one approach can be linking the cohort 

data with a data source from where follow-up information can be captured. Our study did 

that by linking a population-based prospective cohort Alberta's tomorrow project (ATP)95 

data with two other data sources from Alberta's administrative health data--hospital 
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discharge abstract data and physician/practitioner claims data. Administrative health data 

was linked to ATP data using encrypted personal health numbers common to all data 

sources. Once the data source is identified, a cohort is formatted using a set of inclusion-

exclusion criteria as per the study's requirements. For our study, the cohort consists of 

participants enrolled in ATP, adults aged 35-69 years at enrollment, free of hypertension 

at baseline, and consented to have their data linked with Alberta's administrative health 

data. 

2. Assess the required sample size. Prediction models should be developed to reflect the 

patterns existing in the underlying data accurately96. A small sample or small dataset often 

leads to inaccuracy in the model. If the sample is too small, analysis results will have wide 

confidence intervals, low statistical power, low precision, and biased results. There are 

various sample size formulae available, but no consensus on the best approach97,98. Events 

per variable (EPV) defined as the ratio of the number of individuals with the outcome event 

to the number of candidate variables (precisely, the number of regression coefficients), is 

a frequently used approach to determine the sample size in the predictive modeling99. It is 

recommended, if a variable selection is performed, the number of regression coefficients 

should refer to the initial set of variables before variable selection100. Different simulation 

studies had suggested a minimum EPV of 5 to 20 to provide reliable results when prediction 

models are developed using logistic and Cox regression101–105. An EPV of 10 is often used 

as the thumb rule and is widely recommended for multivariable logistic and Cox regression 

models99. However, these EPV recommendations primarily emphasize the regression 

coefficients' precision and accuracy instead of predictive ability measures. Ogundimu et 

al.99 suggested considering an EPV ≥ 20 when a dataset includes low-prevalence binary 
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variables. Their suggestion was based on the regression coefficients' stability and precision 

and their effect on the models' predictive performance (e.g., the C-statistic, D-statistic, and 

R2) using Cox regression. Since our cohort (sample) included all available incident 

hypertension cases within the study period, the cohort (sample) size is already maximized. 

However, to ensure that our cohort is sufficiently large for our model building purpose, we 

applied the EPV ≥ 20 rule.  

3. Select candidate variables. Before commencing the analysis, a list of all available 

potential candidate variables needs to be compiled. These candidate variables are generally 

selected based on a literature search, variables used in the past, and discussion with content 

experts. In addition to those, we also considered the following set of criteria for selecting 

candidate variables in our analysis106–108:  

o clinical availability in a timely and cost-effective manner at the time when a patient 

visited a physician or clinic/hospital, such that availability does not require a time-

consuming or costly procedure. 

o whether the variable was relevant in predicting the outcome and 

o whether the variable is likely to add substantial prognostic information beyond what 

other variables provide.  

4. Deal with missing data. Missing data values is a common phenomenon, and conclusions 

drawn from the data can be heavily affected by missing values109. Missing data creates 

several problems, including reduced statistical power, biased estimated parameters, 

reduced sample representation, and complicacy in the analysis, which leads to invalid 

conclusions110. Among the many reasons for missing data, nonresponse and dropouts are 

most common. Missing data can also occur because of improper data collection or mistakes 
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made in data entry. It is imperative to know why the data are missing to handle the 

remaining data properly. Missing data can be dealt with using different approaches such as 

removing the missing values, imputing them, or modeling them. The most common and 

easiest way of dealing with the missing data is to omit the missing cases and perform the 

analysis on the remaining data; a technique called listwise deletion or complete case (or 

available case) analysis. To fill in or impute missing values is another approach to dealing 

with the missing data. In this technique, the missing cases are replaced with an estimated 

value calculated based on other available relevant information. Different ways of 

imputation extend from very simple to quite complex. The simplest form of imputation is 

to substitute each missing value with the observed values' mean for the corresponding 

variable. The last observation carried forward (LOCF) is another imputation approach that 

has been used widely. In LOCF, all the missing cases are replaced by the last observed 

value111. Fitting a regression model to the observed cases and then using that model to 

predict the missing cases is another imputation approach that gives a better result. Multiple 

imputation, the soundest strategy for handling missing data consists of replacing the 

missing values with a set of plausible values that accommodate both the natural variability 

and the correct values' uncertainty, rather than just substituting a single value for each piece 

of missing data. This technique predicts the missing values by utilizing the existing 

information from other variables112. Then, the missing values are substituted by the 

predicted values, and a complete dataset is created. This complete dataset is called an 

imputed dataset. Multiply imputed datasets are created by iterating this process repeatedly. 

These multiply imputed datasets are then analyzed by applying the standard statistical 

procedures for complete data, producing multiple results. Subsequently, a single overall 
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analysis result is created by combining these multiple results. We used multiple imputation 

in our study to impute the missing values. 

5. Assess collinearity. Collinearity, a statistical phenomenon where two or more predictor 

variables in a prediction model are highly correlated or associated. As a result, it is hard to 

get reasonable estimates of their distinct effects on the outcome variable. Collinearity 

increases the coefficients' standard errors and makes some variables statistically 

insignificant when they should be significant. Although collinearity does not bias 

coefficients and reduces the model's predictive power or reliability as a whole, it does make 

the coefficients unstable. The variance inflation factor (VIF) is one common way to 

measure collinearity, which evaluates how much the variance of an estimated regression 

coefficient increases if variables are correlated.  If the variables are not correlated, the VIFs 

will all be 1. From the list of candidate variables, those highly correlated should be 

excluded before starting model building. Collinearity among the variables was tested in 

our study using the VIF with a threshold of 2.5113.  

6. Perform variable selection. Regardless of the modeling technique used, one needs to 

apply appropriate variable selection methods during the model building stage.  Selecting 

relevant variables for inclusion in a model is often considered the most critical and 

challenging part of model building114. Variable selection is a process where a subset of 

relevant variables from a large amount of data is selected to filter the dataset down to the 

smallest possible subset of accurate variables. It is imperative to identify the relevant 

variables from a dataset and remove less significant variables that contribute to the outcome 

to achieve the prediction model's better accuracy. The variable selection offers enhanced 

model performance by mitigating the risk of overfitting, improved computational speed 
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and time, decreased computational requirements, and more straightforward interpretability. 

There are different ways of selecting variables for a final model.  However, there is no 

consensus on which method is best114. The standard variable selection method includes 

univariate analysis followed by multivariable analysis based on p-values, forward 

selection, backward elimination, and stepwise selection. In the machine learning domain, 

variable selection is called feature selection, a core concept that massively impacts machine 

learning algorithms' performance. Feature selection methods can be classified into three 

categories: filter, wrapper, and embedded methods. We employed both variable selection 

and feature selection methods in our model building process. 

7. Apply appropriate modeling methods. Fitting the correct model depends on the nature 

of the outcome and the study's objective. Both traditional regression-based models or 

newly emerging machine learning-based models can be applied to develop a prediction 

model. Within regression-based models, Cox proportional hazard model is most frequently 

used for survival data (for time-to-event outcomes), which we used in our study. Due to 

their remarkable success in achieving improved predictive accuracy and comparing their 

predictive performance with traditional regression-based models, we also developed some 

machine learning algorithms. This study's machine learning algorithms include random 

survival forest, gradient boosting, and penalized regression models such as lasso, ridge, 

and elastic net.  

1.7.3 Model Validation 

 

There are two primary components of prediction modeling: model development and model 

validation. A model can be validated either internally (using the same data or data source) or 

externally (using new data from a different data source)115.  The purpose of model validation is to 
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demonstrate that the model is accurate for the intended population (dataset) for whom the model 

was developed and performs well in other populations (datasets) that were not used to create the 

model70. In the split-sample method, one procedure commonly employed in prediction modeling, 

the dataset is split into two sections (often in a 2:1 ratio); one is used for model derivation and the 

second for internal validation116. However, for certain datasets, this method is often limited by 

small study power and more significant variability117. Also, randomly splitting the data does not 

guarantee that the divided data represents the target population, which could be a bias source, 

limiting the model's generalizability to other populations117. 'K-fold cross-validation' and 

'bootstrapping' are two popular methods that improve the split-sample method and produce better 

results regarding bias and variability117. K-fold cross-validation and bootstrapping are also better 

when the sample size is small and when external validation is not readily available. K-fold cross-

validation starts with randomly partitioning the original sample into k equal size subsamples. Only 

one subsample out of these k subsamples is kept as the validation data to test the model. The 

remaining k-1 subsamples are utilized as training data to derive the model. A total of k times (the 

folds) this process is replicated, with each k subsample used only once as the validation data. 

Finally, a single estimate is produced by averaging (or otherwise combining) the k results from the 

folds. K-fold cross-validation has the significant advantage that all observations are utilized to 

derive and validate the model, with each observation used only once for validation. As a result, 

this process has less chance to succumb to a particular biased division of the data.  

On the other hand, bootstrapping involves taking random samples with replacement from 

the data and creating separate sub-cohorts for model selection and validation117. This process often 

occurs hundreds of times, each time producing a model for parameter estimation. Despite having 

some advantages compared to other methods, like attaining minimum variance, bootstrapping is 
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more complex to analyze and interpret due to the methods used and the amount of computation 

required. Studies have suggested that no particular performance difference exists between the two 

methods for prediction models. The procedures mentioned above for model validation pertain to 

internal validation, which does not examine its generalizability. The model's generalizability can 

be established by applying the model to entirely new data collected from an appropriate 

(representative) patient population not used in the development process. Most studies evaluating 

prediction models focus on internal validity instead of external validity118. Internal validation does 

not guarantee generalizability, and thus external validation is necessary before implementing 

prediction models into clinical practice119. 

1.7.4 Evaluating Model Performance 

 

There are different methods and metrics to assess the performance of a prediction model. 

For binary and survival outcomes, the most commonly used measures include the Brier score to 

indicate overall model performance, the concordance statistic (also known as the C-statistic) for 

discriminative ability, and goodness-of-fit statistics for calibration120. The model's overall 

performance is quantified by considering the distance between the actual outcome and the 

predicted outcome. The Brier score is used to calculate the model's overall performance and is 

measured by calculating the squared differences between actual binary outcomes and predictions 

calculated by the model120. The range of values that the Brier score of a model can take lies between 

0 and 0.25, with 0 indicating a perfect model and 0.25 showing a non-informative model with only 

a 50% incidence of the outcome120. Discrimination is defined as the model's ability to distinguish 

between participants who do or do not experience the event of interest (disease outcome such as 

hypertension). A C-statistic (which equals the area under the receiver operating characteristic 

[ROC] curve [AUC] for binary outcomes) is commonly employed for this purpose. A C-statistic 
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value refers to the probability that a randomly selected subject who experienced the outcome will 

have a higher predicted probability of having the outcome than a randomly selected subject who 

did not experience the event121. The C-statistic can range from 0.5 to 1.00, with higher values 

indicating better predictive models. A C-statistic of 0.5 suggests the model's performance in 

predicting an outcome is no better than the random chance. At the same time, a C-statistics of 1 

indicates the model perfectly distinguishes those who will experience a particular outcome and 

those who will not. 

The agreement between observed outcomes and predictions made by the model is 

calibration120. Model calibration measures the predictions' validity and determines whether the 

predictions based on the risk prediction model align with what is observed within the study cohort. 

A calibration plot is a method that visually inspects calibration and presents a plot for predicted 

against expected probabilities. It also uses the Hosmer-Lemeshow test to assess calibration. In a 

calibration plot, predictions are plotted on the x-axis and the observed outcome on the y-axis. In 

the y-axis, the plot contains only 0 and 1 values for binary outcomes. Different smoothing 

techniques (e.g., the loess algorithm) can be employed to estimate the observed probabilities of 

the outcome with respect to the predicted probabilities. Perfect predictions should be on the 45° 

line suggesting that predicted risks are correct120. An alternative assessment of calibration is to 

categorize predicted risk and assess whether the event rate corresponds to the average predicted 

risk in each risk group. The Hosmer-Lemeshow goodness-of-fit-test plots a graphical illustration 

to assess whether the observed event rate corresponds to the expected event rate in the model 

population subgroups. 

1.7.5 Generation of Point Scoring System 

 



23 
 

In practice, the predicted probability of an outcome calculated by the model needs to be 

presented in a simplified way to be easily used122. Multivariable prediction models are relatively 

complex, and the computations using the prediction model can be tedious123. The points scoring 

system simplifies the tedious calculation of prediction models by assigning integer points to a 

given risk factor so that clinicians can easily approximate risk by summing integer points based 

on each risk factor's presence/absence. The points scoring system is generally formulated around 

categories123. To aid in interpreting risk estimates, tables of comparative risks are also often 

provided123. These comparative risks can motivate patients to change risk factors to reduce their 

chance of developing hypertension. There are different ways to build a point scoring system. Point 

scoring can be done by transforming the regression coefficient or relative risk (odds ratio or hazard 

ratio) for each predictor to integers122. We applied a point scoring system proposed by Sullivan et 

al.123 to develop a point (scoring) system that can be used clinically to estimate an individual's risk 

of developing hypertension without a calculator or computer.  

1.7.6 Existing Research on Hypertension Prediction Models 

 

Like other health areas, risk prediction models are also common in hypertension, which 

estimates the probability that a currently healthy individual with specific risk factors will develop 

hypertension in the future within a specified time. A thorough review was performed to identify 

scientific publications that tested and developed clinical risk prediction tools for hypertension. 

This process was augmented by reference snowballing124, where relevant papers were reviewed 

for both articles the authors cited and articles citing that paper. This process was repeated for every 

paper considered relevant. Among the identified hypertension prediction models, the most 

important ones are discussed here briefly. Pearson et al.125 developed the first hypertension 

prediction model, known as the Johns Hopkins multiple risk equations, based in the USA in 1990. 
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A Cox proportional hazards regression model containing age, SBP at baseline, paternal history of 

hypertension, and BMI predicted hypertension. Parikh et al.16 developed a hypertension incidence 

prediction score in 2008, commonly known as the Framingham hypertension risk score.  Age, sex, 

BMI, SBP and DBP, cigarette smoking, and parental hypertension were used to predict 

hypertension. Scores were developed for predicting the 1-, 2-, and 4-year risk for new-onset 

hypertension. Paynter et al.17 developed a series of models based on clinical characteristics and 

blood biomarkers. A prospective cohort of normotensive women aged 45 and older from the 

Women's Health Study was used to develop the logistic regression models to predict incident 

hypertension. Kivimaki et al.126,127 created two models known as the Whitehall II risk scores and 

Whitehall II repeat measures risk score based on the British population. Among the risk factors, 

age, sex, parental hypertension, SBP, DBP, BMI, and cigarette smoking were considered in model 

building. Bozorgmanesh et al.128 developed a point-score system for predicting incident 

hypertension by converting Weibull regression coefficients of predictors to integer values in an 

Iranian population. Among women, family history of premature CVD, waist circumference, SBP, 

and DBP were predictive of hypertension, whereas, among men, smoking, SBP, and DBP were 

identified as predictors. Chien et al.13 developed point-based prediction models for new-onset 

hypertension for ethnic Chinese based on clinical and biochemical variables, including sex, age, 

BMI, SBP, DBP, white blood count, fasting glucose, and uric acid. Lim et al.18 developed a 

hypertension incidence prediction model in a middle-aged Korean population. They used the same 

risk factors that were used for creating the Framingham hypertension risk score. Fava et al.14 

aggregated genetic information obtained from many markers into a single genetic risk score to see 

to what extent genetics can predict the incidence of future hypertension or cardiovascular events. 

Still, they did not find any improvement in the prediction of incident hypertension using genetic 
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information outside that provided by traditional risk factors such as sex, age, obesity, diabetes 

mellitus, family history of hypertension, smoking status, etc. Otsuka et al.4 developed a risk 

prediction model in a Japanese male population to estimate the 4-year risk of incident 

hypertension. They used age, SBP, DBP, BMI, parental history of hypertension, current smoking 

status, and excessive alcohol intake as their model predictors.  

Most of the studies defined hypertension as either SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg or 

the use of antihypertensive drugs. While developing different hypertension prediction models, 

participants were followed-up for 3 to 30 years. Most prediction models were built using traditional 

risk factors, and only a few with genetic risk factors. The most commonly used risk factors 

included in different models were age, SBP, DBP, BMI, gender, and parental history of 

hypertension. In recent times, genetic risk factors are incorporated increasingly as model 

predictors. However, the genetic risk factors inclusion does not improve the model's performance 

significantly in most cases129. 

1.8 Study Rationale  

 

The increasing availability and richness of datasets create more opportunities for developing 

and deploying clinical risk prediction models. Several prediction models (or risk scores) have been 

developed over the past decades to predict a person's chance of developing hypertension. Such 

prediction helps identify individuals at risk of hypertension so that primary prevention strategies 

can be targeted. However, the identification of such at-risk individuals remains a challenge130. 

Multivariable hypertension risk prediction models have been used in different countries to serve 

that purpose131. These prediction models were constructed considering various risk factors for 

hypertension using data from diverse populations. Each population has its probability of getting 

the disease, and each population may have a different distribution of risk factors, which may weigh 
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differently in determining the disease132. Prediction models are determined by an equation that 

includes risk factors (e.g., age, BMI) and risk coefficients (multiplying factors) that attribute an 

etiological weight to single factors132. These elements change according to the type of population, 

particularly when very different cultures are compared (i.e., European and Asian countries). Due 

to the differences in the risk factors prevalence and incident hypertension between populations, a 

prediction model's performance can differ substantially by population. As a result, the prediction 

model's accuracy is often acceptable for that index population and is not necessarily generalizable 

to populations other than that for which the model was developed132. Our review identified 

hypertension prediction models developed in different countries, but none have been developed in 

the Canadian context so far to the best of our knowledge. As such, developing a hypertension 

prediction model using one of Canada's largest cohort studies will provide local clinicians and 

health care providers assistance in clinical decision-making, planning, and proper management of 

healthcare services regarding hypertension. 

Accurate and reliable identification of individuals at high risk of developing hypertension 

allows for interventions that may help prevent hypertension and related cardiovascular 

complications. Inaccurate risk estimation can lead to failure to identify individuals who are at risk 

of developing hypertension. Misclassification can lead to ineffective interventions and 

unnecessary exposure to treatment in patients at low risk and missed opportunities to intervene in 

those most susceptible to developing hypertension. To see whether the prediction model's accuracy 

can be improved using machine learning algorithms, we will establish several machine learning 

algorithms to predict hypertension incidence and compare their predictive performance with 

traditional statistical models developed earlier. 

1.9 Research Objectives 
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This research aims to develop a robust hypertension prediction model for the general 

population using Alberta's Tomorrow Project (ATP) cohort data. 

The specific objectives are: 

Objective 1:  Conduct a comprehensive systematic review to identify risk factors and 

prediction models for hypertension incidence and perform a meta-analysis 

to evaluate the current model's predictive performance.  

Objective 2:          Develop a risk prediction model for incident hypertension in a Canadian 

cohort using a traditional modeling approach and converting it into a risk 

score for daily clinical practice use. 

Objective 3:  Develop machine learning algorithms to predict hypertension incidence and 

compare their predictive performance with a traditional statistical model in 

a large survival data. 

This study's three specific objectives have been achieved as follows. The systematic review 

provided information on all past hypertension prediction models and the variables considered in 

developing the model. The meta-analysis provided an overall predictive performance of existing 

models and helped compare existing traditional regression-based models' predictive performance 

with machine learning-based models. Linked administrative health data provided information on 

outcomes, and ATP data supplied variables to build a new traditional prediction model using Cox 

proportional hazard modeling. Machine learning algorithms developed in a survival context using 

the same data sources provided an alternative class of prediction models on which predictive 

performances can be compared with the traditionally developed model.  

Chapter 1 summarizes the background information on hypertension and its risk factors, the 

consequences of hypertension, hypertension burden, an overview of the risk prediction models, 
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and their role in hypertension preventions. Chapters 2, 3, and 4 are the main body of the dissertation 

and represent three papers. Chapter 2 describes a systematic review to identify existing models of 

hypertension prediction and associated risk factors. It also provides a meta-analysis to evaluate 

and compare the predictive performance of existing hypertension prediction models. Chapter 3 

develops a new hypertension prediction model applying a traditional statistical modeling approach 

using a large retrospective Canadian cohort data. It also created a risk score from the developed 

model to facilitate clinical use. Chapter 4 develops machine learning models for hypertension 

prediction and compare their predictive performance with the traditionally developed model in 

chapter 3. Chapter 5 summarizes the study's main findings, strengths and limitations, and future 

research directions. 
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CHAPTER 2. A SYSTEMATIC REVIEW TO IDENTIFY RISK FACTORS AND 

PREDICTION MODELS FOR HYPERTENSION INCIDENCE AND A META-
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2.1 Abstract 

 

Introduction 

Hypertension is a common medical condition and is a significant risk factor for heart attack, 

stroke, kidney disease, and mortality. Developing a risk prediction model for hypertension 

incidence incorporating its risk factors can help identify high-risk individuals who should be 

targeted for healthy behavioral changes or medical treatment to prevent hypertension development. 

We plan to perform a systematic review and meta-analysis to identify existing hypertension risk 

prediction models and associated risk factors and evaluate the models’ predictive performance. 

Methods and Analysis 

We systematically searched MEDLINE, EMBASE, Web of Science, Scopus, and the grey 

literature for studies predicting the risk of hypertension among the general adult population. The 

search was based on two key concepts: hypertension and risk prediction. Summary statistics from 

the individual studies were the C-statistic, and a random-effects meta-analysis was used to obtain 

pooled estimates. The predictive performance of pooled estimates was compared between 

traditional regression-based models and machine learning-based models. Heterogeneity was 

assessed using meta-regression, and study quality was assessed using the PROBAST (Prediction 

model Risk Of Bias ASsessment Tool) checklist. 

Results 

Of 14,778 articles, 52 articles were finally selected for systematic review, and 32 were 

selected for meta-analysis. The overall pooled C-statistics was 0.75 [0.73 – 0.77] for the traditional 

regression-based models and 0.76 [0.72 – 0.79] for the machine learning-based models. High 

heterogeneity in C-statistic was observed. The age (p = 0.011), and sex (p = 0.044) of the 
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participants and the number of risk factors considered in the model (p = 0.001) were identified as 

a source of heterogeneity in traditional regression-based models. Only a few studies were 

externally validated, and the risk of bias (ROB) and applicability was a concern in many studies.  

Conclusion 

Many models with acceptable-to-good predictive performance were identified; however, 

significant differences were not observed in overall predictive performance. More external 

validation of models and impact studies to implement the hypertension risk prediction model in 

clinical practice is required. 

Key Words: Hypertension, Risk, Prediction Model, Systematic Review, Meta-analysis 
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2.2 Introduction 

 

Hypertension, or high blood pressure, is a common medical condition affecting about 1 in 

4 people1 and is a significant risk factor for heart attack, stroke, kidney disease, and mortality2. 

Hypertension has been linked to 13% of deaths globally3 and is a significant health burden that 

affects all population segments. Considering the high prevalence and global burden, hypertension 

prevention, and control strategies need to be a top priority. Preventing hypertension creates an 

opportunity to halt the continuing costly cycle of hypertension management and its associated 

complications4. Hypertension can be prevented by applying strategies that target the general 

population and individuals and groups at higher risk for hypertension. The need for early 

identification of at-risk individuals who could benefit from preventive interventions has led to a 

growing interest in hypertension risk prediction.  

Many risk factors such as age, sex, body mass index, waist-hip ratio, blood pressure, 

smoking, family history, and level of physical inactivity significantly contribute to developing 

hypertension5. Modeling can help identify important risk factors contributing to hypertension and 

provide reasonable estimates about future hypertension risk6. Predicting the risk of developing 

hypertension through modeling would help identify high-risk individuals who should be targeted 

for healthy behavioral changes and medical treatment to prevent hypertension7–9. 

Many prediction models have been developed to predict the risk of hypertension in the 

general population over the years. The predictive ability of these multiple models varies due to 

their lack of consistency in estimating risk. To evaluate the different models' predictive 

performance properly, it is recommended that the same data be used10. Such evidence, however, 

is uncommon and therefore not realistic. Instead, through a systematic review and subsequent 

meta-analysis, a pooled synthesis of performance measures of different models produced in 
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multiple studies can be compared and measured11. This methodology would provide a detailed 

overview of these models’ predictive ability and allow the models' performance measures based 

on the reported data to be explored quantitatively11. With this in mind, we aimed to 1) 

systematically review the literature to identify hypertension risk prediction models that have been 

applied to the general adult population and the risk factors that were considered in those models; 

2) characterize the study populations in which these models were derived and validated; and 3) 

assess the predictive performance and quality of these prediction models to better inform the 

selection of models for clinical implementation.  

Two prior studies systematically analyzed hypertension risk prediction models in 

adults12,13. Both studies performed a narrative synthesis of the evidence to summarize the existing 

knowledge and performance of hypertension prediction models. In addition, a systematic review 

was also carried out on prediction models to classify children at an elevated risk of developing 

hypertension14. One of the prior studies performed a meta-analysis without assessing 

heterogeneity9. Our review differs from previous studies and contributes to information on the 

prediction of hypertension risk and the identification of associated risk factors in the following 

ways: 1) we synthesized performance of the prediction models through meta-analysis and explored 

potential sources of heterogeneity; 2) we compared the performance of the prediction models 

developed using traditional statistical regression-based models and more recent machine learning-

based models; 3) we provide a thorough evaluation of the quality of the studies among traditionally 

developed regression-based models; and 4) we describe several additional models that have 

recently been derived. 

2.3 Methods 

 

2.3.1 Data Sources and Searches  
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We searched MEDLINE, EMBASE, Web of Science, and Scopus (each from inception to 

March 2020) to identify studies for predicting the risk of incident hypertension in the general adult 

population. Google Scholar and ProQuest (theses and dissertations) were searched for grey 

literature. Additionally, we explored the reference lists of all relevant articles. The search strategy 

focused on two key concepts: hypertension and risk prediction. We used proper free-text words 

and Medical Subject Headings (MeSH) terms to identify all relevant studies for each key concept. 

Certain text words were truncated, or wildcards were used when required. The Boolean operators 

“AND”, “OR”, and “NOT” were used to combine the words and MeSH terms. A detailed search 

strategy for MEDLINE is provided in Table 2.1.  

2.3.2 Eligibility Criteria 

 

Only original studies were included in this review. This excludes reviews, editorials, 

commentaries, and letters to the editor. Although risk prediction models are generally developed 

using a cohort-based study design with follow-up information, we considered all types of study 

designs, anticipating that machine learning-based models may use other types of study design. 

Studies written in languages other than English and French were also excluded. The Population, 

Prognostic Factors (or models of interest), and Outcome (PFO)15 framework was used to outline 

eligibility criteria.   

Population 

The study population consists of people free of hypertension at baseline and those around 

which hypertension risk prediction models were developed. No restrictions were imposed on the 

geographic region, time, or gender of the study participants. Nevertheless, models developed only 

on the adult population were considered, as outcome essential hypertension is expected in adults. 

Prognostic Factors (or models of interest) 
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We only considered studies where risk prediction models for hypertension in the general 

adult population were developed. Studies that focused solely on the added predictive value of new 

risk factors to an existing prediction model, studies presenting a prediction model developed in 

patients with previous hypertension, or studies that derived risk prediction tools other than score-

type tools (e.g., risk charts) were not considered. Further, we did not consider studies that only 

assessed bivariate association between predictors and hypertension incidence. Instead, we focused 

on those studies where risk prediction models for hypertension were built incorporating risk factors 

that demonstrated significant prognostic contribution in predicting incident hypertension. When a 

model was assessed on more than one external population, information from all reported models 

was considered. However, when the model was presented both in a derivation and validation 

cohort, only data from the validation cohort were considered for meta-analysis. 

Outcome  

 

Our outcome of interest, hypertension, was primarily defined as systolic blood pressure 

(SBP) ≥ 140 mm Hg, a diastolic blood pressure (DBP) ≥ 90 mm Hg or taking antihypertensive 

medication. Modifications on the definition of hypertension include the 2017 American College 

of Cardiology (ACC)/American Heart Association (AHA) Hypertension Guideline’s report where 

SBP ≥130 mm Hg, DBP ≥80 mm Hg, or taking antihypertensive medication was recommended16. 

Nevertheless, we considered all definitions of hypertension to capture the maximum number of 

studies.  

2.3.3 Study Selection  

 

Two reviewers independently identified eligible articles using a two-step process. First, all 

searched articles were exported to EndNote (Clarivate Analytics) (a software program for 

managing bibliographies, citations, and references) to remove duplicates. Next, the title and 
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abstracts of non-duplicated records were screened by two reviewers. Studies retained (based on 

eligibility criteria) during this stage of screening went to a full-text screening. Full-text articles 

were further screened for eligibility by the same two reviewers independently. Lastly, articles 

containing extractable data on hypertension prediction models and hypertension risk factors were 

selected for data extraction. Inter-rater reliability (Kappa coefficient) was estimated to measure 

agreement between the independent reviewers. Any disagreement between reviewers was resolved 

through consensus. 

2.3.4 Data Extraction  

 

  Two reviewers independently extracted data from each study using standardized forms. 

We classified the identified models into two categories: models developed using a traditional 

regression-based approach and models developed using machine learning algorithms. Separate 

data extraction sheets were used for each model type and included study name, the location where 

the model was developed/location of data used for the model developed and participants’ ethnicity, 

study design used, sample size, age, and gender of the study participants, risk factors included in 

the model, number of events and total participants, an outcome considered, the definition used for 

hypertension, duration of follow-up, modeling method used, measures of discrimination and 

calibration of the prediction model, and the validation of the prediction model (Table 2.2, Table 

2.3). In a separate form (Table 2.4), information about the externally validated hypertension risk 

prediction models was extracted, including: study name/model validated, the total number of 

validation studies, location of the validation study, follow-up period, number of events, and total 

participants, definition of outcome and discrimination and calibration of the model. We also 

extracted information about risk factors, particularly how many times a specific risk factor was 

considered in the models (Figure 2.2, Figure 2.3). Each reviewer assessed study quality according 
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to the Prediction model Risk Of Bias ASsessment Tool (PROBAST) checklist17,18 (Table 2.5). The 

PROBAST is designed to assess the risk of bias and concerns regarding diagnostic and prognostic 

prediction model studies' applicability. The PROBAST contains 20 questions under four domains: 

participants, predictors, outcome, and analysis, facilitating judgment of risk of bias and 

applicability. The overall risk of bias of the prediction models was judged as “low”, “high”, or 

“unclear” and overall applicability of the prediction models was considered as “low concern”, 

“high concern”, and “unclear” according to the PROBAST checklist17,18. 

2.3.5 Data Analysis  

 

We summarized the number of studies identified and those excluded (with the reason for 

exclusion) and included in the systematic review and subsequent meta-analysis using the PRISMA 

flow diagram19 (Figure 2.1). In data synthesis, we performed a meta-analysis both on the traditional 

regression type’s prediction modeling (e.g., logistic regression model and Cox proportional hazard 

regression model) and a more complicated modeling strategy (e.g., machine learning tools). We 

synthesized the performance measure of hypertension risk prediction models through meta-

analysis. Discrimination (the model’s ability to distinguish between patients developing and not 

developing hypertension) and calibration (the model’s accuracy of predicted probabilities of 

hypertension risk) are the two most common statistical measures of predictive performance. 

Discrimination is commonly quantified by the concordance (C) statistic, also known as the area 

under the receiver operating characteristics (ROC) curve. Conversely, calibration is quantified by 

different measures, and different studies often report different calibration measures. This leads to 

difficulty in synthesizing calibration measures through meta-analysis. Recent guidelines 

recommend summarizing the total O (observed)/E (expected) ratio, which provides a rough 

estimate of overall model calibration20. In this review, we performed a meta-analysis on the C-
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statistic or AUC (area under the receiver operating characteristic curve) only to evaluate the 

models’ predictive performance and provide a comprehensive summary of the models’ predictive 

ability. We did not undertake a meta-analysis of the total O/E ratio due to the unavailability of 

relevant data. 

Summary statistics, also known as the effect measure, comprised the C-statistic or AUC of 

the hypertension risk prediction models from the individual studies. To summarize the predictive 

performance measures (e.g., C-statistic) of a model and determine the existence of unexplained 

heterogeneity in these measures, random-effects meta-analysis has been recommended20. 

Random-effects meta-analysis assumes that a model’s ‘true’ performance is normally distributed 

within and across studies21; however, the C-statistic distributions, for example, are often skewed 

across studies in settings with considerable variability in the predictor effects22. Normality can be 

massively improved using the C-statistic logit transformation and is, therefore, more appropriate 

and recommended when pooling C-statistics22,23. Consequently, we logit transformed the C-

statistics, performed pooling, and then back-transformed the results to the original scale for 

interpretation. We used a random-effects meta-analysis with REML estimation and Hartung-

Knapp-Sidik-Jonkman (HKSJ) confidence interval (CI) to obtain the pooled weighted average of 

the logit C-statistic20. Forest plots were generated to show the pooled C-statistic together with the 

95% CI, 95% approximate prediction interval for the summary C-statistic, the author’s name, 

publication year, and study weights. In studies that only provided a C-statistic but no measure of 

its variance or confidence intervals, the standard error (SE) and 95% CI of the logit C-statistic 

(AUC) was calculated using the formula: 
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𝑆𝐸 (𝐴𝑈𝐶) =
√1 +

(
𝑁
2 − 1) (1 − 𝑐)

2 − 𝑐 +
(

𝑁
2 − 1) 𝑐

1 + 𝑐
𝑐(1 − 𝑐)𝑂(𝑁 − 𝑂)

 

where 𝑁 = the number of patients and 𝑂 = the total number of observed events (hypertension) 

and 𝑁 − 𝑂 =  the total number of non-events20. When the confidence intervals of the C-statistics 

were available, standard errors (SE’s) of the logit C-statistics were derived from the CIs as follows: 

[(𝑙𝑜𝑔𝑖𝑡(𝑐𝑢𝑏) − 𝑙𝑜𝑔𝑖𝑡(𝑐𝑙𝑏)) (2 𝑋 1.96)]⁄ 2
, where 𝑐𝑢𝑏 and 𝑐𝑙𝑏 are the upper and lower bound of the 

95% CI of the C-statistic, respectively20. The presence of heterogeneity (mostly due to differences 

in the study setting, participants, and methodology) was assessed using Cochran’s Q statistic and 

quantified with the I2 statistic. A p-value of less than 0.05 was considered statistically significant 

heterogeneity and was categorized as low, moderate, and high when the I2 values were below 25%, 

between 25% and 75%, and above 75%, respectively24. Sources of heterogeneity were further 

explored using meta-regression and stratified analyses according to modeling type and study 

characteristics (sex of the participants, age of the participants, number of risk factors considered 

in the model, sample size considered in the model, and ethnicity of the study participants). 

Calculation of 95% approximate prediction intervals to illustrate the extent of between study 

heterogeneity is also recommended for meta-analysis of performance measures (e.g., C-

statistic)22,23. We calculated 95% prediction intervals to provide a likely range of performance of 

a prediction model in a new population and setting. We did not assess publication bias by any 

statistical tests or funnel plot asymmetry.  We used Stata version 16.1 (StataCorp LP, College 

Station, TX, USA) to perform statistical analysis using the following commands: meta, metan and 

metareg. 

2.4 Results 

 

2.4.1 Study Identification and Selection 
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We identified 14,730 articles through our electronic database search and an additional 48 

articles through our grey literature search. After removing duplicates, 12,268 titles and abstracts 

were screened for eligibility, and from there, 119 articles were selected for full-text screening. 

After assessing full-texts, 52 articles were finally selected for the systematic review. Within the 

chosen final studies, 32 studies provided sufficient information for synthesis through a meta-

analysis. The detailed study selection process is summarized in Figure 2.1. Agreement between 

reviewers on the initial screening and final articles eligible for inclusion in the systematic review 

was good (κ = 0.81, and κ = 0.89, respectively). We classified the identified prediction models into 

two categories based on the methodology used to develop the model: traditional regression-based 

models and machine learning-based models. A total of 117 models were identified from the finally 

selected articles predicting the risk of hypertension in the general adult population, of which 75 

were developed using traditional regression-based modeling and 42 using machine learning tools. 

2.4.2 Study Characteristics of Traditional Regression-based Models  

 

 Study characteristics of traditional regression-based models are presented in Table 2.2. A 

total of 573,268 participants were used to develop 75 traditional models in 34 studies. Models were 

mostly developed either in white Caucasian or Asian populations. Two studies considered only 

male participants, one study considered only female participants, and the remaining studies 

considered both to develop the models. The number of risk factors considered to create the models 

ranged from 1 to 19, with a median of 7 risk factors per model. Age was the most common risk 

factor considered in 61 models, followed by BMI (32 models), DBP (28 models), SBP (27 models), 

and sex (21 models). The distribution of the conventional risk factors considered in the different 

models is presented in Figure 2.2. Duration of follow-up time (mean/median/total) considered to 

develop the models varied between 1.6 years to 30 years. The age of the study participants ranged 
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from 15 to 90 years. SBP ≥140 mm Hg, DBP ≥90 mm Hg, or use of antihypertensive medication 

was the standard definition used to define hypertension in almost all the studies, except one study 

where SBP ≥ 130 mm Hg, DBP≥ 80 mm Hg, or use of any antihypertensive drug was used. Logistic 

regression was the most used methodology to develop the model (15 studies), followed by Cox 

proportional-hazards regression (11 studies) and Weibull regression (6 studies). Calibration of the 

prediction model was reported by 15 studies, mostly using the Hosmer-Lemeshow test. However, 

the majority of them (19 studies) did not report calibration measures. Discrimination was assessed 

using the C-statistic (or AUC) and reported by almost all studies with values ranging from 0.57 to 

0.97. Only one model was externally validated by the same study when they developed the model. 

2.4.3 Meta-analysis of Traditional Regression-based Models 

 

The overall pooled C-statistics of the traditional regression-based models was 0.75 [0.73 – 

0.77] (after back transformation to the original scale) with high heterogeneity in the discriminative 

performance of these models ( 𝐼2 = 99.3, Cochran Q-statistic p < 0.001). Stratified pooled results 

by modeling type showed pooled C-statistics were 0.73 [0.69 – 0.77], 0.77 [0.74 – 0.81], 0.73 

[0.69 – 0.78], and 0.77 [0.75 – 0.79] for Cox, logistic, repeated Poisson, and Weibull respectively 

(Figure 2.4). The heterogeneity was still observed to be high within the different types of models 

(Figure 2.4). The 95% approximate prediction interval for the overall C-statistics was from 0.63 

to 0.84, which indicates an expected performance range of the considered models in a new 

population.   

To explore possible sources of heterogeneity in the overall pooled C-statistics, we 

performed a meta-regression. We initially considered the following potential sources of 

heterogeneity as follows: the definition of hypertension used (the cut-off level used to define 

hypertension), sex of the participants in included studies (categorized as female-only, male-only, 
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and both male and female ), age of the participants (study participants below average age versus 

above average age), number of risk factors considered in the model (below median versus above 

median), sample size considered in the model (below median versus above median), and ethnicity 

of the study participants (Whites versus Asians). However, we excluded the definition of 

hypertension as a heterogeneity source, as almost all studies had the same definition of 

hypertension. Meta-regression identified the participants’ sex, that is being male compared to 

female (p = 0.044), participants’ age (p = 0.011), and the number of risk factors considered in the 

model (p = 0.001) as potential sources of high heterogeneity in the C-statistic.  Sex of the 

participants’ when both male and female compared to female-only (p = 0.351), sample size 

considered in the model (p = 0.395), and ethnicity of the study participants (p = 0.899) did not 

explain the observed heterogeneity in the C-statistic of these models (Figure S2.1 - S2.4). 

2.4.4 Critical Appraisal of Traditional Regression-based Models 

 

 We assessed study quality using the PROBAST checklist. A detailed assessment of the risk 

of bias (ROB) and applicability is presented in Table 2.5 and Figure 2.5. Overall, ROB was “low” 

in 19 studies, “high” in 5 studies, and “unclear” in 10 studies. Overall applicability was “low 

concern” in 12 studies, “high concern” in 21 studies, and “unclear concern” in 1 study. Within the 

ROB domains, the “low” risk of bias was observed in most of the domains except the “analysis” 

domain, where a large portion of studies (more than 30%) was “unclear” (Figure 2.5). Similarly, 

within the applicability domains, the “participants” domain seems to be a concern, as a large 

portion of studies (more than 30%) were at “high concern” or “unclear concern” (Figure 2.5). We 

also presented the different PROBAST signaling questions' distribution of responses by the various 

studies in Supplementary Figures S2.5 and S2.6. 

2.4.5 Study Characteristics of Machine Learning-based Models  
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Study characteristics of machine learning-based models are presented in Table 2.3. A total 

of 1,211,093 participants were used to develop 42 machine learning-based models in 20 studies. 

Models were basically developed either in white Caucasian or Asian populations. The number of 

risk factors/features considered to create the model ranged from 2 to 169, with a median of 7 risk 

factors per model. Age was the most common risk factor considered in 25 models, followed by 

sex/gender (8 models), BMI (7 models), DBP (6 models), smoking (6 models), and parental history 

of hypertension (6 models). The distribution of the conventional risk factors considered in machine 

learning models is presented in Figure 2.3. Hypertension was predominantly defined using SBP ≥ 

140 mm Hg, DBP ≥ 90 mm Hg, or antihypertensive medication. Artificial neural network (ANN) 

was the most common method used to develop the models. Different studies reported different 

performance measures, and accuracy and AUC/C-statistic were the two most commonly reported 

measures. Most of the studies did not report calibration measures. In studies that reported 

discrimination, the AUC (or C-statistic) values range from 0.64 to 0.93.   

2.4.6 Meta-analysis of Machine Learning-based Models 

 

The overall pooled C-statistics of the machine learning-based models was 0.76 [0.72 – 

0.79] (after back transformation to the original scale) with high heterogeneity in the discriminative 

performance of these models ( 𝐼2 = 99.9, Cochran Q-statistic p < 0.001). Similar to traditional 

regression-based models, we did not perform stratified pooled results by modeling type due to 

diversity in the modeling method. The 95% approximate prediction interval for the overall C-

statistics was from 0.63 to 0.84, which indicates an expected performance range of the considered 

models in a new population, as well as large variability of the models’ performance across studies.   

We explored possible sources of heterogeneity in the overall pooled C-statistics through 

meta-regression. As before, we considered sex of the participants (categorized as female-only, 
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male-only, and both male and female), age of the participants (study participants below average 

age versus above average age), number of risk factors considered in the model (below median 

versus above median), sample size considered in the model (below median versus above median), 

and ethnicity of the study participants (Whites versus Asians) as potential sources of heterogeneity. 

However, meta-regression did not identify any of age of the participants (p = 0.358), the number 

of risk factors considered in the model (p = 0.812), sex of the participants, that is being male 

compared to female (p = 0.886) and both male and female compared to female-only (p = 0.787), 

sample size considered in the model (p = 0.577), or ethnicity of the study participants (p = 0.326) 

as the potential source of high heterogeneity in the C-statistic (Figure S2.78 - S2.102). 

2.4.7 Study Characteristics of Externally Validated Models 

 

Only four models were externally validated in a different population. Detailed 

characteristics of the studies that validated these four models are presented in Table 2.4. The 

Framingham hypertension risk model (FHRS) is the only validated model in more than one 

external population. The FHRS25 model was validated by eight different studies in diverse 

populations. A total of 122,348 participants from 8 studies was used to validate the FHRS model. 

Study participants had an age range of 18 to 84 years with follow-up time (mean/median/total) 

from 1.6 years to 25 years. Almost all studies reported performance measures of the FHRS. The 

Hosmer-Lemeshow test was used to report calibration, while the C-statistic (or AUC) was used to 

report discrimination. The values of the reported C-statistic ranged from 0.54 to 0.84. Models by 

Lim et al.26, Völzke et al.27, and Kanegae et al.28 were validated only once in an external population 

by the same authors. Within these three models, performances were best for the model by Kanegae 

et al.28, with a C-statistic of 0.85 [0.76 – 0.91]. 

2.4.8 Meta-analysis of Externally Validated Models 
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The pooled C-statistic of the FHRS25 model was 0.75 [0.68 – 0.80] (after back 

transformation to the original scale) with high heterogeneity in the discriminative performance of 

this model (𝐼2 = 99.6, Cochran Q-statistic p < 0.001) . The 95% approximate prediction interval 

for the C-statistic in the FHRS25 was from 0.47 to 0.91, which indicates an expected performance 

range of the FHRS model in a new population, as well as large variability of the model’s 

performance across studies. As the other three models were externally validated only once, pooling 

their performance measure was irrelevant.    

We explored possible sources of heterogeneity in the pooled C-statistics through meta-

regression considering the age of the participants (study participants below average age versus 

above average age), sample size considered in the model (below median versus above median), 

and ethnicity of the study participants (Whites versus Asians). Only ethnicity of the study 

participants (p = 0.044) was identified as a source of high heterogeneity in the C-statistic of the 

FHRS model25 (Figure S2.11). 

2.5 Discussion 

 

This review systematically identified the models used to predict the risk of developing 

incident hypertension, the risk factors considered to develop the models, synthesized, and 

compared the predictive performance, and evaluated the included studies' quality. We classified 

identified models into two categories--traditional regression-based models and machine learning-

based models--and assessed each category separately. This categorization assumed that there are 

inherent differences in these two types of models’ developmental methods in computation, 

complexity, interpretability, and accuracy. 

The models we identified mainly were comprised of Caucasian (American/European) or 

Asian populations. There was no model derived from African populations and only one29 from 
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Latin American populations. Considering racial/ethnic groups are particularly susceptible to 

hypertension (e.g., people of African descent30), studies should incorporate subjects from different 

ethnic backgrounds to build hypertension risk prediction models.  

The majority of the models developed considered conventional risk factors for 

hypertension, although there were considerable variations in the number of risk factors considered 

by the different models. The most frequently used risk factors included age, BMI, SBP, DBP, 

sex/gender, etc., which are readily available in clinical practice. Genetic risk factors/biomarkers 

often contribute significantly to developing hypertension, and models were developed to consider 

both conventional risk factors and biomarkers. In addition, there were models where biomarkers 

were used primarily in model building. Information about models developed using biomarkers 

(e.g., genetic risk scores) is presented in Table S2.1. Biomarkers are often considered very 

important for increasing the predictive performance of models. However, the pooled predictive 

performance (C-statistic) of the models that considered biomarkers primarily was 0.76 [0.71 – 

0.80] (after back transformation to the original scale) (Figure S2.12) and did not show an overall 

improvement in the models’ predictive performance. Adding genetic factors/biomarkers in the 

model has disadvantages. The models become less suitable for daily clinical practice, as 

information on those biomarkers often is not readily available and interpreting the models becomes 

difficult. Patients also could not use the model for the self-assessment of their risk due to a lack of 

instant information on biomarkers.  

The pooled analysis identified the overall predictive performance of the traditional 

regression-based models was good (C-statistic 0.75) but with high heterogeneity. The participants' 

age, sex and the number of risk factors considered in the model were detected as possible sources 

of heterogeneity. Stratified analysis by modeling methodology (e.g., logistic, Cox) within 



64 
 

traditional regression-based models did not show much difference in predictive performance (C-

statistic was from 0.73 to 0.77), and heterogeneity was still observed within the modeling 

methodology. 

The reliability and acceptability of a prediction model largely depend on how well it 

performs in a validation cohort outside of the derivation cohort where the model was developed. 

Internal validation of prediction models often is not enough for generalizability, and external 

validation is necessary before implementing prediction models in clinical practice. The models we 

identified in our search were mostly internally validated. Only four models25–28 were found to be 

externally validated, and only one had multiple validations. The FHRS25 was the only model 

validated in eight different populations and had good/accepted pooled predictive performance. 

This model has potential applicability in a new population, as the model was validated in a diverse 

population; thus, its performance can be trusted. However, since the FHRS25 showed high 

heterogeneity in its predictive performance, and ethnicity served as a source of heterogeneity, and 

the model was built predominantly in a White population, we need to be cautious in its application 

in an entirely different population. Models that have only single or no validation need external 

validation, preferably by a different group of investigators, to guarantee the model’s 

generalizability to a different population. 

Only eight models25,31–37 were converted into a risk score after model development. For a 

prediction model to be useful in clinical practice, it is crucial that its end-users (clinicians and 

patients) easily comprehend how the model works and can adequately communicate its results 

with each other. Presenting the risk derived from the model through scoring instead of a complex 

mathematical formula may facilitate the use of prediction models and subsequently improve the 
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uptake of prediction models in clinical practice. We recommend incorporating risk scoring in 

hypertension risk prediction modeling.  

Recently, increased emphasis has been put on using machine learning tools in clinical 

research, particularly precision medicine. Since machine learning tools are more recent, advanced, 

and have the reputation of producing more accurate predictive performance, our assumption was 

models developed using these tools might show better predictive performance than the traditional 

regression-based models. However, we did not notice much difference in predictive performance 

between these two categories of models (C-statistic 0.76 versus 0.75). A few machine learning-

based models (e.g., models by Huang et al.38, Sakr et al.39, and Ye et al.40) showed excellent 

discriminative performance; however, none of these models has ever been externally validated in 

a different population. In fact, none of the machine learning-based models have been externally 

validated, an imperative criterion for the generalizability of any prediction model. Consequently, 

the performance of those models in a new setting/population is quite uncertain. We also noticed 

high heterogeneity in the predictive performance (C-statistic) of these models. Meta-regression 

using potential sources of heterogeneity failed to identify the real source of heterogeneity. One 

possible source could be the difference in methodology used to develop the machine learning-

based models. We could not explore this potential source due to the diverse methods considered 

in different models. We did not notice higher expected variability in machine learning-based 

models' future predictive performance compared to traditional regression-based models, as the 

95% prediction interval for machine learning-based models was similar to traditional regression-

based models (0.63 to 0.84). 

We also did not find any studies that assessed the impact of adopting hypertension risk 

prediction models in clinical settings. Ideally, a prediction model should have an impact study to 
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evaluate whether the model improves clinical decision-making and patient health outcomes6,41. 

Impact studies also help identify factors (ease of use, acceptability) that can affect implementation 

in routine care6. 

The risk of bias (ROB) was “high”, or ‘unclear” in a large portion of studies. This is mostly 

due to the “analysis” domain of ROB, where many studies failed to meet the criteria. Overall, the 

applicability of the models was “high concern” or “unclear concern” in many studies, and this is 

mostly due to the “participants” aspect. Several models were developed in a specific population, 

making the models less applicable to the general adult population. 

One of our study's strengths is the extent of the systematic search, which includes four 

different databases, grey literature, and extensive use of the reference lists of the identified studies. 

To the best of our knowledge, this is the first study where a meta-analysis of predictive 

performance, together with assessment of heterogeneity, comparison of the predictive performance 

of traditional regression based-models and machine learning-based models, and a detailed critical 

appraisal of studies in hypertension risk prediction models has been performed. Nevertheless, our 

study also has limitations. We excluded non-English and non-French publications. While it is 

widely perceived that the English language is the primary language of science, the choice of 

scientific results in a particular language can incorporate language bias and may lead to incorrect 

conclusions42. We were only able to use C-statistics to compare the model performance, which 

could be insensitive to distinguish a model’s ability to correctly stratify patients into clinically 

relevant risk groups42,43. A meta-analysis of calibration measures (e.g., O/E ratio) along with C-

statistics could provide a comprehensive summary of the performance of these models20. Failing 

to assess publication bias amongst the studies is another potential limitation of this study. Recent 

guidelines20 did not emphasize the need to assess publication bias for prediction model 
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performance, which encouraged us not to do so. Although studies have considered publication bias 

in a similar scenario before, we believe existing traditional publication bias assessment tools (e.g., 

funnel plot, Egger’s test, Begg’s test) are more appropriate for studies assessing statistically 

significant results (e.g., RCT) than studies assessing predictive performance (e.g., C-statistic) of 

the prognostic models. Instead, we assessed ROB using the PROBAST checklist. We also could 

not appraise studies that use machine learning algorithms to predict hypertension. Although most 

of the PROBAST signaling questions also apply to appraise machine learning algorithms, 

additional signaling questions are recommended to add due to differences in data analysis methods 

for machine learning algorithms and regression-based models17,18. Machine learning algorithms 

use different variable selection strategies, different estimation techniques for variable– outcome 

estimations, and different ways to adjust for overfitting17,18. When additional questions are added 

to the PROBAST, these questions need to be appropriately phrased, and specific guidance on 

assessing these signaling questions also needs to be provided17,18. Considering these additional 

works, we refrain from appraising studies considered machine learning algorithms. 

2.6 Conclusion 

 

In this review, we attempted to provide a comprehensive evaluation of hypertension risk 

prediction models. We identified many models with acceptable-to-good predictive performance. 

We did not notice significant differences in the predictive performance of traditional regression-

based models and machine learning-based models. Including genetic risk factors/biomarkers also 

did not show much improvement in the models' predictive performance. The quality of the studies 

was reasonable, with areas where further improvement is needed. Only a few of the multiple 

models developed had been externally validated, which is a concern. Also, there is a lack of impact 

studies. Models with external validation and impact studies are required to implement a prediction 
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model in a clinical practice guideline. A model with accurate prediction is not beneficial if it is not 

generalizable to a different population or does not improve clinical decision-making and patient 

health outcomes.  
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Figure 2.1 PRISMA diagram for the systematic review of studies presenting hypertension prediction 

models developed in the general population 
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Figure 2.2 

 
 

Figure 2.2 Conventional risk factors considered by traditional regression-based models. 
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Figure 2.3 

 
 

Figure 2.3 Conventional risk factors considered by machine learning-based models. 
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Figure 2.4 

 
 

Figure 2.4 Forest plot of traditional regression-based models with 95% prediction interval. 
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Figure 2.5 

 

 
 

 
 

Figure 2.5 Graphical summary presenting the percentage of hypertension risk prediction studies rated by 

level of concern, risk of bias (ROB), and applicability for each domain. 
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Figure 2.6 

 
 

Figure 2.6 Forest plot of machine regression-based models with 95% prediction interval. 
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Figure 2.7 

 

 
 

 

Figure 2.7 Forest plot of externally validated models with 95% prediction interval. 
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Table 2.1 Keywords Used to Search in MEDLINE 

KEYWORDS 

1. prediction model*.mp 

2. risk function*.mp 

3. risk prediction*.mp 

4. risk table*.mp 

5. predictive model*.mp 

6. exp "Predictive Value of Tests"/ 

7. risk chart*.mp 

8. risk equation*.mp  

9. risk engine*.mp 

10. risk calculat*.mp 

11. risk score*.mp 

12. prediction tool*.mp 

13. prediction rule*.mp 

14. risk model*.mp 

15. prognostic tool*.mp 

16. prognostic model*.mp 

17. exp Risk Assessment/ 

18. risk algorithm*.mp 

19. risk ind*.mp 

20. prediction algorithm*.mp 

21. (hypertension adj2 (risk score or risk model or prediction model or risk prediction model or risk 

assessment)).mp 

22. (high blood pressure adj2 (risk score or risk model or prediction model or risk prediction model or risk 

assessment)).mp 

23. OR/1-22 

24. validation.mp.  

25. exp Validation Studies/ 

26. validate*.mp 

27. OR/24-26 

28. 23 AND 27 

29. exp Hypertension/ 

30. hypertens*.mp 

31. (high adj2 blood pressure).mp 

32. high blood pressure.mp 

33. elevated blood pressure.mp 

34. blood pressure.mp 

35. OR/29-34 

36. 28 AND 35 
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Table 2.2 Information about existing traditional regression-based hypertension prediction models from the selected studies 

Study Location 

Model 

Developed/ 

Ethnicity 

Study 

Design 

Age Gender Risk Factors 

Included 

Events 

(n)/Total 

Participan

ts (N) 

Definition of 

Outcome 

Predicted/ 

Hypertension 

Durati

on of 

Follow-

up 

Modeling 

Method 

Discrimi

nation 

Calibration  Model 

Validation

: Internal 

or 

External 

Pearson 

et al.44 

1990 

USA/ 

Mixed, 

mainly 

Whites 

Prospective 

cohort 

≤ 25 

years 

Male 

only 

Age, SBP at 

baseline, 

paternal history 

of hypertension, 

and BMI 

114/1130 Self-reported 

use of blood 

pressure-

lowering 

medications 

30 

years 

Cox 

proportional- 

hazards 

regression 

NR NR NR 

Parikh et 

al.25 2008 

USA/ 

Mainly 

Whites 

Prospective 

cohort 

20-69 

years 

Both 

male 

and 

female 

Age, sex, SBP, 

DBP, BMI, 

parental 

hypertension, 

and cigarette 

smoking 

796/1717 SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or use 

of BP-lowering 

medications 

Median 

3.8 

years 

Weibull 

regression 

C-statistic 

= 0.788 

[0.733– 

0.803] 

HL Chi-

square = 4.35 

(p = 0.88) 

Internal, 

apparent 

Paynter et 

al.45 2009 

USA/ 

Whites and 

Blacks 

Prospective 

cohort 

45-64 

years 

Female 

only 

Inclusive 

Model: Age, 

ethnicity, BMI, 

total grain 

intake, SBP, 

DBP, 

apolipoprotein 

B, lipoprotein 

(a), and C-

reactive protein. 

Simplified 

Model with 

Lipids: Age, 

BMI, SBP, 

DBP, ethnicity, 

and total to 

HDL- 

cholesterol ratio 

Simplified 

Model: Age, 

BMI, ethnicity, 

SBP, and DBP 

Derivation 

cohort: 

1935/9427 

Validation 

cohort: 

1068/5395 

Self-report or 

SBP ≥ 140 

mmHg or DBP 

≥ 90 mmHg 

8 years Logistic 

regression 

Inclusive 

Model: 

C-statistic 

= 0.705 

Simplifie

d Model 

with 

Lipids: C-

statistic = 

0.705 

Simplifie

d Model: 

C-statistic 

= 0.703  

Inclusive 

Model: HL 

Chi-square   

= 24.6 

(p = 0.002) 

Simplified 

Model with 

Lipids: HL 

Chi-square   

= 20.7 

(p = 0.008) 

Simplified 

Model: HL 

Chi-square   

= 12.3 

(p = 0.140) 

Internal, 

split-

sample 2:1 
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Kivimäki 

et al.46 

2009 

England/ 

Mainly 

Whites 

Prospective 

cohort 

35-68 

years 

Both 

male 

and 

female 

Age, sex, SBP, 

DBP, BMI, 

parental 

hypertension, 

and cigarette 

smoking 

1258/8207 SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or use 

of BP-lowering 

medications 

Median 

5.6 

years 

Weibull 

regression 

C-statistic 

= 0.804 

HL Chi-

square = 14.3 

(p = 0.88) 

Internal, 

split-

sample 6:4 

Kivimäki 

et al.47 

2010 

England/ 

Mainly 

Whites 

Prospective 

cohort 

36-68 

years 

Both 

male 

and 

female 

Repeat Measure 

BP Model: Age, 

sex, BMI, 

parental 

hypertension, 

repeat measures 

of BP, and 

cigarette 

smoking 

Average BP 

Model: Age, 

sex, BMI, 

parental 

hypertension, 

average BP, and 

cigarette 

smoking 

Derivation 

cohort: 

614/4135 

Validation 

cohort: 

438/2785 

SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or use 

of 

antihypertensiv

e medications 

Median 

5.8 

years 

Weibull 

regression 

Repeat 

Measure 

BP 

Model: 

C-statistic 

= 0.799 

Average 

BP 

Model: 

C-statistic 

= 0.794 

Repeat 

Measure BP 

Model: HL 

Chi-square   

= 6.5 

Average BP 

Model: NR 

Internal, 

split-

sample 6:4 

Kshirsaga

r et al.48 

2010 

USA/ 

Mixed but 

mainly 

Whites 

Prospective 

cohort 

45-64 

years 

Both 

male 

and 

female 

Age, level of 

SBP or DBP, 

smoking, family 

history of 

hypertension, 

diabetes 

mellitus, BMI, 

female sex, and 

lack of exercise 

3795/11,40

7 

(7610 for 

derivation 

sample 

and 3692 

for the 

validation 

sample) 

SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use of 

BP-lowering 

medications 

Up to 9 

years 

Logistic 

regression 

AUC = 

0.742 

(3years), 

0.750 

(6 years), 

0.791 

(9 years), 

and 0.775 

(ever) 

NR Internal, 

split-

sample 2:1 

Bozorgm

anesh et 

al.,33 

2011 

Iran/ 

Asians 

Prospective 

cohort 

≥ 20 

years 

Both 

male 

and 

female 

For Women: 

age, waist 

circumference, 

DBP, SBP, and 

family history of 

premature CVD 

For Men: age, 

DBP, SBP, and 

smoking 

805/4656  SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use of 

BP lowering 

medications 

6 years Weibull 

regression 

C-statistic 

= 0.731 

[0.706-

0.755] for 

women 

C-statistic 

= 0.741 

[0.719-

0.763] for 

men 

HL Chi-

square = 7.8 

(p = 0.554) 

for women 

HL Chi-

square = 8.8 

(p = 0.452) 

for men 

NR 
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Chien et 

al.32 2011 

Taiwan/ 

Chinese 

Prospective 

cohort 

≥ 35 

years 

Both 

male 

and 

female 

Clinical Model: 

Age, gender, 

BMI, SBP, and 

DBP 

Biochemical 

Model: Age, 

gender, BMI, 

SBP, DBP, 

white blood 

count, fasting 

glucose, uric 

acid 

1029/2506 SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use of 

BP-lowering 

medications 

Median 

6.15 

years 

Weibull 

regression 

Clinical 

Model: 

AUC = 

0.732 

[0.712 - 

0.752] 

(point 

based, 

AUC = 

0.737 

(coefficie

nt based) 

Biochemi

cal 

Model: 

AUC = 

0.735 

[0.715 - 

0.755] 

(point 

based), 

AUC = 

0.74 

(coefficie

nt based) 

Clinical 

Model: HL 

Chi-square   

= 8.3, p = 

0.40 (point 

based), 10.9, 

p = 0.21 

(coefficient 

based) 

Biochemical 

Model: HL 

Chi-square   

= 13.2, p = 

0.11 (point 

based), 6.4, p 

= 0.60 

(coefficient 

based) 

Internal, 

fivefold 

cross- 

validation 

Fava et 

al.49 2013 

Sweden/ 

Whites 

Prospective 

cohort 

Middle

-aged 

Both 

male 

and 

female 

Age, sex, age, 

sex times 

age, heart rate, 

obesity 

(BMI.30 

kg/m2), 

diabetes, 

hypertriglycerid

emia, 

prehypertension, 

family 

history of 

hypertension, 

sedentary in 

spare time, 

problematic 

alcohol 

behavior, 

married or living 

as a couple, 

NR/10,781 SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use of 

BP-lowering 

medications 

Over 

average 

23-

years   

Logistic 

regression 

AUC = 

0.662 

[0.651-

0.672] 

NR NR 
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high-level non-

manual work, 

smoking 

  
Lim et 

al.26 2013 

Korea/ 

Asians 

Prospective 

cohort 

40–69 

years 

Both 

male 

and 

female 

Age, sex, 

smoking, SBP, 

DBP, parental 

hypertension, 

BMI 

819/4747 

Derivation 

cohort: 

483/2840 

Validation 

cohort: 

336/1907 

SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use of 

BP lowering 

medications 

4 years Weibull 

regression 

AROC = 

0.791 

[0.766 - 

0.817] 

H-L Chi-

square = 4.17 

(p = 0.8415) 

Internal, 

split-

sample 6:4 

Choi et 

al.50 2014 

USA/ 

Mexicans 

Prospective 

cohort 

NR Both 

male 

and 

female 

Age, gender, 

smoke, age x 

gender, 

Rs10510257 

(AA), 

Rs10510257 

(AG), 

Rs1047115 

(GT) 

NR/443 SBP >140 mm 

Hg, DBP >90 

mm Hg, or use 

of 

antihypertensiv

e medication 

NR Generalized 

estimating 

equations for 

marginal 

model and 

logistic 

random 

effect model 

for 

conditional 

model 

Marginal 

model: 

AUC = 

0.839 

(with 

SNPs), 

0.826 

(without 

SNPs) 

Condition

al model: 

AUC = 

0.973 

(with 

SNPs), 

0.973 

(without 

SNPs) 

NR NR 

Lim et 

al.51 2015 

Korean/ 

Asians 

Prospective 

cohort 

40-69 

years 

Both 

male 

and 

female 

Traditional 

variables: age, 

gender, SBP, 

current 

smoking status, 

family history of 

hypertension, 

BMI, and one 

genetic variable 

(cGRS or wGRS 

derived from the 

4 SNPs): 

rs995322, 

rs17249754, 

NR/5632 SBP ≥140 mm 

Hg or DBP 

≥90 mm Hg or 

use of 

antihypertensiv

e medication 

4-year Logistic 

regression 

Derivatio

n cohort: 

C-statistic 

= 0.810 

[0.796–

0.824] 

(model 

without 

wGRS, 

C-statistic 

= 0.811 

[0.797–

0.825] 

(model 

with 

HL Chi-

square   = 

6.916 (model 

without 

wGRS), HL 

Chi-square   

= 5.711 

(model with 

wGRS) 

Internal 

validation, 

fivefold 

cross-

validation 
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rs1378942, 

rs12945290 

wGRS); 

Validatio

n cohort: 

Mean C-

statistic = 

0.811 

[0.809-

0.816] 

Otsuka et 

al.31 2015 

Japan/ 

Asians 

Prospective 

cohort 

19–63 

years 

Male 

only 

Age, BMI, SBP 

and DBP, 

current smoking 

status, excessive 

alcohol intake, 

parental history 

of hypertension 

1633/15,02

5 

SBP ≥140 mm 

Hg or DBP 

≥90 mm Hg or 

use of 

antihypertensiv

e medication 

Median 

4 years 

Cox 

proportional-

hazards 

regression 

Validatio

n cohort: 

C-statistic 

= 0.861 

[0.844-

0.877] 

(model), 

C-statistic 

= 0.858 

[0.840-

0.876] 

(score)  

Validation 

cohort: HL 

Chi-square   

= 15.2 (p = 

0.085) 

(model), HL 

Chi-square   

= 9.30 (p = 

0.41) (score) 

Internal 

validation, 

split 

sample 4:1 

Asgari et 

al.52 2015 

Iran/ 

Asians 

Prospective 

cohort 

≥ 20 

years 

Both 

male 

and 

female 

ISH: Age, SBP, 

BMI, 2 hours 

post-challenge 

plasma glucose 

IDH: Age, DBP, 

waist 

circumference, 

marital status, 

gender, HDL-C 

ISH: 

235/4574 

IDH: 

470/4809 

Isolated 

systolic 

hypertension 

(ISH): SBP ≥ 

140 mmHg and 

DBP < 90 

mmHg 

Isolated 

diastolic 

hypertension 

(IDH): SBP 

<140 mmHg 

and DBP ≥ 90 

mmHg 

ISH: 

Median 

9.57 

years, 

IDH: 

Median 

9.62 

years 

Cox 

proportional- 

hazards 

regression 

ISH: C-

statistic = 

0.91, 

IDH: C-

statistic = 

0.76 

NR NR 

Sathish et 

al.37 2016 

India/ 

Asians 

Prospective 

cohort 

15-64 

years 

Both 

male 

and 

female 

Age, sex, years 

of schooling, 

daily intake of 

fruits or 

vegetables, 

current smoking, 

alcohol use, BP, 

prehypertension, 

central obesity, 

70/297 SBP ≥140 mm 

Hg or DBP 

≥90 mm Hg or 

use of 

antihypertensiv

e medication 

Mean 

7.1 

years 

Logistic 

regression 

AUC = 

0.802 

[0.748- 

0.856] 

Hosmer-

Lemeshow p 

= 0.940 

NR 
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history of high 

blood glucose  

Lee et 

al.53 2015 

Korea/ 

Asians 

Prospective 

cohort 

40-69 

years 

Both 

male 

and 

female 

BMI, waist 

circumference, 

waist-to-hip 

ratio, waist-to-

height ratio 

Men: 

384/2128 

Women: 

374/2326 

SBP ≥140 mm 

Hg or DBP 

≥90 mm Hg or 

use of 

antihypertensiv

e medication 

4 years Cox 

proportional- 

hazards 

regression 

Men: 

AROC = 

0.58 

[0.56-

0.60] 

(BMI), 

0.62 

[0.60-

0.64] 

(WC, 

WHR, 

WHtR) 

Women: 

AROC = 

0.57 

[0.55-

0.59] 

(BMI), 

0.66 

[0.64-

0.68] 

(WC), 

0.68 

[0.66-

0.70] 

(WHR, 

WHtR) 

NR NR 

Lee et 

al.54 2014 

Korea/ 

Asians 

Cross-

sectional 

21-85 

years 

Both 

male 

and 

female 

Women: Height, 

age, neckC, 

axillaryC, ribC, 

waistC, pelvicC, 

rib_hip, 

waist_hip, 

pelvic_hip, 

NR/12,789 SBP ≥ 140 

mmHg and/or 

DBP ≥ 90 

mmHg or 

physician-

diagnosed 

hypertension 

NR Logistic 

regression  

Women: 

AUC = 

0.713 

(LR-

CFS), 

0.721 

(LR-

NR Internal, 

10-fold 

cross- 

validation 
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rib_pelvic, 

axillary_rib, 

chest_rib, 

axillary_chest, 

forehead_neck 

(CFS), height, 

weight, BMI, 

age, chestC, 

forehead_hip, 

waist_hip, 

chest_pelvic, 

waist_pelvic, 

axillary_waist, 

forehead_rib, 

neck_axillary 

(LR-wrapper) 

Men: Age, 

foreheadC, 

neckC, 

axillaryC, 

chestC, ribC, 

waistC, pelvicC, 

hipC, rib_hip, 

waist_hip, 

rib_pelvic, 

waist_pelvic, 

chest_waist, 

forehead_rib, 

chest_rib, 

axillary_chest, 

forehead_neck 

(CFS), height, 

foreheadC, 

neckC, 

axillaryC, ribC, 

pelvicC, 

forehead_hip, 

chest_hip, 

rib_hip, 

pelvic_hip, 

forehead_waist, 

axillary_waist, 

rib_waist, 

neck_rib, 

axillary_rib, 

wrapper) 

Men: 

AUC = 

0.637 

(LR-

CFS), 

0.652 

(LR-

wrapper) 
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chest_rib, 

forehead_axillar

y, 

forehead_neck, 

WHtR (LR-

wrapper) 

Kanegae 

et al.28 

2017 

Japan/ 

Asians 

Prospective 

cohort 

18-83 

years  

Both 

male 

and 

female 

Age, sex, BMI, 

SBP, DBP, low-

density 

lipoprotein 

cholesterol, uric 

acid, 

proteinuria, 

current smoking, 

alcohol intake, 

eating rate, DBP 

by age, and BMI 

by age 

7402/63,49

5  

SBP/DBP ≥ 

140/90 mm Hg 

and/or the 

initiation of 

antihypertensiv

e medications 

with self-

reported 

hypertension 

Mean 

3.4 

years  

Cox 

proportional- 

hazards 

regression 

C-statistic 

= 0.885 

[0.865-

0.903]  

Greenwood-

Nam-

D’Agostino 

χ2 statistic = 

13.6) 

External 

validation 

Chen et 

al.55 2016 

China/ 

Asians 

Prospective 

cohort 

Averag

e age 

41.73 

years 

(men), 

39.49 

years 

(wome

n) 

Both 

male 

and 

female 

Men: Age, BMI, 

SBP, DBP, 

gamma-

glutamyl 

transferase, 

fasting blood 

glucose, 

drinking, age x 

BMI, age x DBP 

Women: Age, 

BMI, SBP, 

DBP, fasting 

blood glucose, 

total cholesterol, 

neutrophil 

granulocyte, 

drinking, 

smoking 

2021 

(men), 764 

(women) 

7537 

(men), 

4960 

(women) 

First 

occurrence at 

any follow-up 

medical check-

up of SBP > 

140 mm Hg or 

DBP > 90 mm 

Hg or of the 

person taking 

antihypertensiv

e medication 

Median 

4.0 

years 

Cox 

proportional-

hazards 

regression 

Derivatio

n: AUC = 

0.761 

[0.752–

0.771] 

(men), 

0.753 

[0.741–

0.765] 

(women) 

Validatio

n: AUC = 

0.760 

[0.751–

0.770] 

(men), 

0.749 

[0.737–

0.761] 

(women) 

NR Internal, 

10-fold 

cross-

validation 
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Díaz-

Gutiérrez 

et al.36 

2019 

Spain/ 

Spanish 

Prospective 

cohort 

Age 

present

ed 

accordi

ng to 

the 

numbe

r of 

healthy 

lifestyl

e 

factors 

Both 

male 

and 

female 

No smoking, 

moderate-to-

high physical 

activity, 

Mediterranean 

diet adherence, 

healthy BMI, 

moderate 

alcohol intake, 

and no binge 

drinking 

1406/14057 SBP ≥ 130 

mmHg, DBP≥ 

80 mmHg, or 

use of any 

antihypertensiv

e drug 

Median 

10.2 

years 

Cox 

regression 

NR NR NR 

Wang et 

al.56 2018 

China/ 

Asians 

Longitudinal 18-90 

years 

Both 

male 

and 

female 

Age, sex, 

education, 

marriage, 

smoking, 

drinking, BMI, 

energy, carbo, 

fat, protein 

882/5265 

(derivation) 

NR/1597 

(validation) 

Taking 

antihypertensiv

e drugs or SBP 

at least 140 

mmHg or DBP 

at least 90 

mmHg 

Averag

e 

follow-

up of 

8.05 ± 

5.27 

years 

Multistate 

Markov 

model 

NR NR Temporal 

validation, 

same data 

but in a 

later time 

Niiranen 

et al.57 

2016 

Finland/ 

Whites 

Prospective 

cohort 

≥ 30 

years 

Both 

male 

and 

female 

Model 1: GRS 

Model 2: Model 

1 + age + sex 

Model 3: Model 

2 + smoking, 

diabetes, 

education, 

hyper- 

cholesterolemia, 

leisure-time 

exercise, and 

BMI 

NR/2045 BP ≥ 140/90 

mm Hg and/or 

antihypertensiv

e medication 

11 

years 

Multiple 

linear and 

logistic 

regression 

C-index = 

0.731 

(Model 1) 

C-index = 

0.733 

(Model 3) 

NR NR 

Yeh et 

al.58 2001 

Taiwan/ 

Chinese 

Prospective 

cohort 

≥ 20 

years 

Both 

male 

and 

female 

Age, DM, and 

fibrinogen 

concentration 

(Men) 

Age and APTT 

(activated partial 

thromboplastin 

time) (Women) 

88/2374 SBP ≥140 mm 

Hg or DBP 

≥90 mm Hg  

Averag

e 3.23 

years 

Cox 

regression 

NR NR NR 
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Syllos et 

al.29 2020 

Brazil/ 

South 

Americans 

Prospective 

cohort 

35-74 

years 

Both 

male 

and 

female 

Age, sex, 

educational 

level, parental 

history of 

hypertension, 

leisure-time 

physical 

activity, BMI, 

neck 

circumference, 

smoking, SBP, 

DBP 

1088/8027; 

Derivation: 

4825 

Validation: 

3202 

SBP ≥ 140 mm 

Hg, DBP ≥ 90 

mm Hg or the 

use of blood 

pressure-

lowering 

medications 

4 years Logistic 

regression 

AUC = 

0.830 

[0.810 - 

0.849] 

H-L Chi-

square = 

8.22, p = 

0.41 

Internal, 

split 

sample 6:4 

ratio 

Wang et 

al.35 2020 

China/ 

Asians 

Prospective 

cohort 

≥ 18 

years 

Both 

male 

and 

female 

Age, parental 

hypertension, 

SBP, DBP, 

BMI, and age by 

BMI 

1658/9034 SBP ≥ 140 mm 

Hg, DBP ≥ 90 

mm Hg or the 

use of blood 

pressure-

lowering 

medications 

Median 

6 years 

Logistic 

regression 

C-index = 

0.795 

[0.7733–

0.810] 

(Training 

set), C-

index = 

0.7914 

[0.773–

0.809] 

(Testing 

set) 

H–L Chi-

square = 

7.747, P = 

0.459 

(Training set) 

H–L Chi-

square = 

14.366, P = 

0.073 

(Testing set) 

Internal, 

Bootstrap 

validation 
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Xu et 

al.59 2019 

China/ 

Asians 

Prospective 

cohort 

35-74 

years 

Both 

male 

and 

female 

M1 Model: Age, 

SBP, DBP, 

hypertension 

parental history, 

WC, interaction 

item of age with 

WC, and 

interaction item 

of age with DBP 

W1 Model: Age, 

SBP, DBP, WC, 

fruit and 

vegetable intake, 

hypertension 

parental history, 

interaction item 

of age with WC, 

and interaction 

of age with DBP 

were included in 

W1 model 

1036/4796 

(Training) 

SBP ≥ 140 mm 

Hg and/or DBP 

≥ 90 mm Hg, 

and/or a 

diagnosis of 

hypertension 

by a physician 

and currently 

receiving anti-

hypertension 

treatment 

6 years Cox 

regression 

Testing 

Set Men: 

AUC=0.7

71 

[0.750-

0.791] 

(M1) 

Testing 

Set 

Women: 

AUC = 

0.765 

[0.746-

0.783] 

(W1), 

0.764 

[0.746-

0.783] 

(W2) 

Testing Set 

Men: 

Modified 

Nam-

D’Agostino 

test Chi-

square = 

6.305, 

p=0.708 

(M1) Testing 

Set women: 

Modified 

Nam-

D’Agostino 

test Chi-

square = 

6.783, p = 

0.147(W1); 

7.404, p = 

0.115 (W2) 

Internal, 

10-fold 

cross-

validation 

in training 

data and 

external in 

the testing 

data 
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Kadomats

u et al.34 

2019 

Japan/ 

Asians 

Prospective 

cohort 

Mean 

age 

51.3 

years 

Both 

male 

and 

female 

Age, sex, BMI, 

current smoking 

habit, ethanol 

consumption, 

presence of DM, 

parental 

hypertension 

history, SBP, 

DBP 

324/3936 SBP ≥ 140 mm 

Hg, DBP ≥ 90 

mm Hg, or use 

of 

antihypertensiv

e medication 

Median 

5 years  

Logistic 

regression 

AUC = 

0.826 

[0.804-

0.848] 

(Entire 

cohort 

validation

) Median 

AUC = 

0.83 

[0.828-

0.832] 

(Cross-

validation

) 

H–L Chi-

square = 

7.06, p = 

0.53, (Entire 

cohort 

validation); 

H–L Chi-

square = 12.2 

(Cross-

validation) 

Internal, 

split-

sample 

cross-

validation 

6:4 ratio 

Wang et 

al.60 2015 

USA/ 

Multi-

ethnic 

Telephone-

based health 

survey 

≥ 18 

years 

Both 

male 

and 

female 

Exercise, 

diabetes, 

hyperlipemia, 

age, marriage, 

education, 

income, weight, 

height, sex, 

smoke, drink 

NR/308,71

1 

NR NR Logistic 

regression  

Accuracy, 

sensitivit

y, 

specificit

y, and 

AUC. 

AUC = 

0.74±0.00

1 

(logistic), 

Accuracy 

= 71.96% 

(logistic) 

NR Internal, 

split 

sample 7:3 

ratio 



101 
 

Muntner 

et al.61 

2010 

USA/ 

Multi-

ethnic 

(Whites, 

Blacks, 

Hispanics, 

and Asians 

–primarily 

of Chinese 

descent)  

NR 45-84 

years 

Both 

male 

and 

female 

SBP-alone 

model (7 SBP 

categories) 

Age-specific 

categories of 

DBP model (20 

categories) 

849/3013 The first study 

visit, 

subsequent to 

baseline, at 

which SBP ≥ 

140 mm Hg 

and/or DBP ≥ 

90 mm Hg 

and/or the 

initiation of 

antihypertensiv

e medication 

Median 

of 1.6 

years 

and 4.8 

years 

Repeated-

measures 

Poisson 

regression 

model 

 SBP 

model: C-

statistic = 

0.768 

[0.751 - 

0.785] 

(1.6 years 

follow-

up), 0.773 

[0.775 - 

0.791] 

(4.8 years 

follow-up 

Age-

specific 

DBP 

Model: 

C-statistic 

= 0.699 

[0.681 - 

0.717] 

(1.6 years 

follow-

up), 0.691 

[0.671 - 

0.711] 

(4.8 years 

follow-

up) 

NR  NR 



102 
 

Ture et 

al.62 2005 

Turkey/ 

Europeans 

Retrospectiv

e 

Averag

e 48.2 

years 

(hypert

ension) 

46.5 

(contro

l) 

Both 

male 

and 

female 

Age, sex, family 

history of 

hypertension, 

smoking habits, 

lipoprotein (a), 

triglyceride, 

uric acid, total 

cholesterol, and 

BMI 

694 (452 

patients 

with 

hypertensio

n and 242 

controls) 

Average of 3 

or more DBP 

measurements 

on at least 3 

subsequent 

visits is ≥ 90 

mmHg or when 

the average of 

multiple SBP 

readings on 3 

or more 

subsequent 

visits is 

consistently ≥ 

140 mmHg 

NR Four 

statistical 

algorithms 

(logistic 

regression 

analysis, 

Flexible 

discriminant 

analysis, 

multivariate 

additive 

regression 

splines 

(degree 1), 

multivariate 

additive 

regression 

splines 

(degree 2) 

Sensitivit

y, 

specificit

y, and 

predictive 

rate (PR) 

NR Internal, 

split 

sample 3:1 

ratio 

Yamakad

o et al.63 

2015 

Japan/ 

Asians 

Prospective 

cohort 

≥ 20 

years 

Both 

male 

and 

female 

PFAA Index 1: 

Leucine, 

alanine, 

tyrosine, 

asparagine, 

tryptophan, and 

glycine; PFAA 

Index 2: 

Isoleucine, 

alanine, 

tyrosine, 

phenylalanine, 

methionine, and 

histidine 

424/2637 SBP ≥ 140 mm 

Hg or DBP ≥ 

90 mm Hg or 

use of 

antihypertensiv

e medication 

4 years Logistic 

regression 

NR NR Internal, 

leave-one-

out cross-

validation 

(LOOCV) 

and 

validation 

in a cohort 

dataset 
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Qi et al.64 

2014 

China/ 

Asians 

Case-control Case 

cohort: 

64.48 

± 8.53 

years 

Contro

l: 

64.23 

± 

10.13 

years 

Both 

male 

and 

female 

rs17030613, 

rs16849225, 

rs1173766, 

rs11066280, 

rs35444, 

rs880315, 

rs16998073, 

rs11191548, 

rs17249754 

Patients: 

NR/1009 

Controls = 

NR/756 

SBP ≥ 140 mm 

Hg or DBP ≥ 

90 mm Hg or 

use of 

antihypertensiv

e medication 

NR Logistic 

regression 

NR NR NR 

Lu et al.65 

2015 

China/ 

Asians 

Prospective 

cohort 

35-74 

years 

Both 

male 

and 

female 

Model1: GRS+ 

(age, sex, and 

BMI); 

Model2: GRS 

+Model1 + 

smoking, 

drinking, pulse 

rate, and 

education 

Model3: GRS+ 

Model2 + SBP 

and DBP 

2559/7724 SBP ≥ 140 mm 

Hg or DBP ≥ 

90 mm Hg or 

use of 

antihypertensiv

e medication 

Mean 

7.9 

years 

Logistic 

regression 

and Cox 

proportional- 

hazards 

regression 

Model1: 

C-statistic 

= 0.650 

[0.637-

0.663] 

(without 

GRS), 

0.655 

[0.642-

0.668] 

(with 

GRS) 

Model 2: 

C-statistic 

= 0.683 

[0.670-

0.695] 

(without 

GRS), 

0.687 

[0.675-

0.700] 

(with 

GRS) 

Model 3: 

C-statistic 

= 0.774 

[0.763-

0.785] 

(without 

NR NR 
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GRS), 

0.777 

[0.766-

0.787] 

(with 

GRS) 

Zhang et 

al.66 2015 

China/ 

Asians 

Prospective 

cohort 

18-88 

years 

Both 

male 

and 

female 

Five latent 

factors extracted 

from 11 

biomarkers 

(BMI, SBP, 

DBP, FBG, TG, 

HDL-C, 

Hb, HCT, WBC, 

LC, NGC): 

inflammatory 

factor, blood 

viscidity factor, 

insulin 

resistance factor, 

blood 

pressure factor, 

lipid 

resistance factor, 

and age 

3793/17,47

1 

SBP ≥ 140 mm 

Hg or DBP ≥ 

90 mm Hg or 

use of 

antihypertensiv

e medication 

5 years Cox 

proportional- 

hazards 

regression 

Derivatio

n cohort: 

AUC = 

0.755 

[0.746-

0.763] 

(men), 

AUC = 

0.801 

[0.792-

0.810] 

(women) 

Validatio

n cohort: 

AUC = 

0.755 

[0.746-

0.763] 

(men), 

AUC = 

0.800 

[0.791-

0.810] 

(women) 

NR Internal, 

10-fold 

cross- 

validation 
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Table 2.3 Information about existing hypertension prediction models developed using machine learning algorithms from selected studies 

Study Location of 

Data used for 

Model 

Developed 

Sample Size Risk Factors Included Outcome 

Considered 

Definition of 

Outcome Predicted 

Modeling 

Method Used 

Performance Measure 

Falk CT67 

2003 

USA 300 records for 

training and 300 

for validating  

Seven input values: sex; 

age; total cholesterol; 

fasting glucose; fasting 

HDL; fasting triglycerides; 

body 

mass index (BMI) 

High blood 

pressure  

SBP > 140 mm Hg or 

DBP > 90 mm Hg 

Two neural 

network 

programs: 

NNdriver and 

SNNS 

Classification success rate. 

Training: 91%-98%, 

(Strategy 1), 70%-87% 

(Strategy 2); Validation: 

59% (Strategy 1), 63% 

(Strategy 2) 

Farran et al.68 

2013 

Kuwait 10,632 (6759 

hypertensive 

and 3873 non-

hypertensive) 

BMI, age, ethnicity, 

and diagnosis for diabetes      

Incident 

hypertension, 

type 2 diabetes, 

and 

comorbidity 

NR Logistic 

regression (LR), 

k-nearest 

neighbors, 

support vector 

machines, and 

multifactor 

dimensionality 

reduction 

(MDR) 

Classification accuracy: 

90% (hypertension) 

Huang et al.38 

2010 

China Training: 2438, 

Validation: 616 

High educational level, 

predominantly sedentary 

work, positive family 

history of HTN, 

overweight, dysarteriotony, 

alcohol intake, salty diet, 

more vegetable and fruit 

intake, meat consumption, 

and regular physical 

exercise 

Hypertension Average SBP or DBP 

> 139 mmHg or > 89 

mmHg, respectively 

Logistic 

regression 

model (LRM) 

and artificial 

neural network 

(ANN) model 

(back-

propagated delta 

rule networks) 

AUC:  0.900 ± 0.014 

(ANN model) 

AUC: 0.732 ± 0.026 

(LRM) 
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Kwong et al.69 

2018 

NR 498 Age, BMI, exercise level, 

alcohol consumption level, 

smoking status, stress level, 

and salt intake level 

Systolic blood 

pressure (SBP) 

BP readings > 140 

mmHg 

Two artificial 

neural networks 

(ANN): Back-

propagation 

(BP) neural 

network and 

radial basis 

function (RBF) 

neural network 

validate the 

prediction 

system 

Average Accuracy, BP 

ANN: 94.28% (male), 

93.74% (female) 

RBF ANN: 91.06% 

(male), 90.44% (female) 

Polak et al.70 

2008 

USA 159,989 records High blood cholesterol, 

number of cigarettes 

smoked now, age, weight, 

height, sex 

Hypertension NR Artificial neural 

network (ANN): 

Around 250 

architectures of 

backpropagation 

(BP) and fuzzy 

networks 

Classification rate and 

AUROC, different values 

for different Nets 

architecture 

Priyadarshini 

et al.71 2018 

USA NR SBP, DBP, total cholesterol 

(TC), high-density 

lipoprotein (HDL), low-

density lipoprotein (LDL), 

plasma glucose 

concentration (PGC), and 

heart rate (HR) 

Hypertension 

attack 

DBP or SBP > 90 

mm Hg or > 120 mm 

Hg, respectively, for 

at least two 

measuring instances 

Deep neural 

network model 

Confusion/performance 

matrix formed out of four 

evaluating parameters: 

accuracy 88%, precision 

92%, recall 82%, and F1 

score 76% (average value 

over 20 iterations) 



107 
 

Sakr et al.39 

2018 

USA 23,095 Age, METS, resting 

systolic blood pressure, 

peak diastolic blood 

pressure, resting diastolic 

blood pressure, HX 

coronary artery disease, the 

reason for the test, history 

of diabetes, percentage HR 

achieved, race, history of 

hyperlipidemia, Aspirin 

use, hypertension response 

Hypertension NR Six machine 

learning 

techniques: 

LogitBoost 

(LB), Bayesian 

network 

classifier (BN), 

locally weighted 

naïve Bayes 

(LWB), artificial 

neural network 

(ANN), support 

vector machine 

(SVM), and 

random tree 

forest (RTF) 

AUC, F-Score, 

Sensitivity, Specificity, 

Precision, and RMSE.  

AUC (0.93), F-Score 

(86.70%), Sensitivity 

(69,96%) and Specificity 

(91.71%) for RTF model 

in 10-fold cross-validation 

AUC (0.88), Sensitivity 

(74.30%), Precision 

(73.50%), and F-Score 

(73.90%) for RTF model 

in holdout method 

Tayefi et al.72 

2016 

Iran 9078 Age, gender, BMI, marital 

status, level of education, 

occupation status, 

depression and anxiety 

status, physical activity 

level, smoking status, LDL, 

triglyceride, total 

cholesterol, fasting blood 

glucose, uric acid, and hs-

CRP in Model 1 

Age, gender, white blood 

cell, red blood cell, 

hemoglobin, hematocrit, 

mean corpuscular volume, 

mean corpuscular 

hemoglobin, platelets, red 

cell distribution 

width and platelet 

distribution width in Model 

2 

Hypertension SBP of 140 mm Hg, 

DBP of 90 mm Hg, 

and/or current use of 

antihypertensive 

drugs 

Decision tree Accuracy, sensitivity, 

specificity, and area under 

the ROC curve (AUC): 

For Model 1, the values 

are 73%, 63%, 77% and 

0.72, respectively, and for 

Model 2 were 70%, 61%, 

74% and 0.68, 

respectively 

Wu et al.73 

2015 

USA 75 females and 

165 males 

Age, gender, serum 

cholesterol, fasting blood 

sugar and 

electrocardiographic signal, 

heart rate 

Systolic blood 

pressure 

SBP and DBP > 140 

mm Hg and 90 mm 

Hg, respectively 

Two neural 

network 

algorithms: 

back-

propagation 

neural network 

and radial basis 

function 

network 

The absolute difference 

(error) between the real 

value and predicted values 



108 
 

Wu et al.74 

2016 

NR 498 Age, BMI, gender, exercise 

level, alcohol consumption, 

stress level, salt intake 

level, smoke status, 

cholesterol, and blood 

glucose 

Systolic blood 

pressure 

SBP > 140 mm Hg  Two artificial 

neural networks: 

back-

propagation 

neural network 

and radial basis 

function neural 

network 

The average prediction 

errors (absolute difference 

between the predicted 

value and measured 

value):  51.9% for men 

and 52.5% for women 

(backpropagation neural 

network) 

51.8% for men and 49.9% 

for women (radial basis 

function network)  

Ye et al.40 

2018 

USA 823,627 

(training 

cohort/retrospec

tive cohort), 

680,810 

(validation 

cohort/prospecti

ve cohort) 

Total 169 features: 2 

demographic features, 14 

socioeconomic 

characteristics, 30 

diagnostic diseases, 6 

laboratory tests, 98 

medication prescriptions, 

and 19 clinical utilization 

measures 

Incident 

essential 

hypertension 

International 

Classification of 

Diseases, 9th 

Revision, Clinical 

Modification (ICD-9-

CM) diagnosis codes 

from category 401 

A supervised 

machine 

learning and 

data mining 

tool, XGBoost 

AUC = 0.917 

(retrospective cohort) 

AUC = 0.870 (prospective 

cohort) 

Zhang et al.75 

2017 

NR Data collected 

from CM400 

monitor. A total 

of 15,628,501 

sets of valid 

characteristic 

attributes data 

Seven input features: right 

atrium (AVR), left atrium 

(AVL), anterior atrium 

(AVF), 

photoplethysmography 

(PPG), oxygen saturation 

(SPO2), pulse transit time 

(PTT), heart rate (HR) 

Blood pressure NR CART 

(classification 

and regression 

tree) model 

Four evaluation indexes: 

accuracy rate, root mean 

square error (RMSE), 

deviation rate, and the 

Theil inequality 

coefficient (TIC) 
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Völzke et al.27 

2013 

Germany Training set: 

803 Validation 

set: 802 

External 

validation 

cohort: 2887 

Age, mean arterial pressure, 

rs16998073, serum glucose, 

and urinary albumin 

concentrations, the 

interaction between age and 

serum glucose, interaction 

between rs16998073 and 

urinary albumin 

concentrations 

Incident 

hypertension 

SBP ≥ 140 mmHg 

and 

DBP ≥ 90 mmHg 

Bayesian 

network 

Training set: AUC = 0.78 

[0.74-0.82] 

Validation set: 

AUC = 0.79 

[0.75-0.83] 

External validation set: 

AUC = 0.77 [0.74-0.80] 

Training set: HL Chi-

square   = 11.82 

(p = 0.16) 

Validation set: HL Chi-

square = 11.65 

(p = 0.17) 

External validation set: H-

L Chi-square = 40.6 

(p < 0.01) 

Lee et al.54 

2014 

Korea 12,789 Women: Height, age, 

neckC, axillaryC, ribC, 

waistC, pelvicC, rib_hip, 

waist_hip, pelvic_hip, 

rib_pelvic, axillary_rib, 

chest_rib, axillary_chest, 

forehead_neck (CFS), 

height, ge, foreheadC, 

eckC, hipC, axillary_hip, 

axillary_pelvic, 

chest_pelvic, chest_rib 

(NB-wrapper) 

Men: Age, foreheadC, 

neckC, axillaryC, chestC, 

RibC, waistC, pelvicC, 

hipC, rib_hip, waist_hip,  

rib_pelvic, waist_pelvic, 

chest_waist, forehead_rib, 

chest_rib, axillary_chest, 

forehead_neck (CFS), 

height, age, foreheadC, 

neckC, axillaryC, hipC, 

rib_hip, pelvic_hip, 

neck_pelvic, 

waist_pelvic, chest_waist, 

chest_rib, neck_chest, 

forehead_neck (NB-

wrapper) 

Hypertension 

and 

hypotension 

SBP ≥ 140 mmHg 

and/or DBP ≥ 90 

mmHg or physician-

diagnosed 

hypertension 

Naive Bayes 

algorithm (NB) 

Women: AUC = 0.696 

(NB-CFS), 0.713 (NB-

wrapper) 

Men: AUC = 0.64 (NB-

CFS), 0.646 (NB-wrapper) 
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Xu et al.59 

2019 

China 4796  M1 Model: Age, SBP, 

DBP, hypertension parental 

history, WC, interaction 

item of age with WC, and 

interaction item of age with 

DBP 

W1 Model: Age, SBP, 

DBP, WC, fruit and 

vegetable intake, 

hypertension parental 

history, interaction item of 

age with WC, and 

interaction of age with DBP 

Hypertension SBP ≥ 140 mm Hg 

and/or DBP ≥ 90 mm 

Hg and/or a diagnosis 

of hypertension by a 

physician and 

currently receiving 

anti-hypertension 

treatment 

Artificial neural 

network (ANN), 

naive Bayes 

classifier 

(NBC), and 

classification 

and regression 

tree (CART) 

Testing Set Men: AUC= 

0.773 [0.752-0.793] 

(ANN), 0.760 [0.738-

0.781] (NBC), 0.722 

[0.699-0.743] (CART) 

Testing Set Women: AUC 

= 0.756 [0.737-0.775] 

(ANN), 0.761 [0.742-

0.779] (NBC), 0.698 

[0.677-0.717] (CART) 

Testing Set Men: 

Modified 

Nam-D’Agostino test Chi-

square = 29.274, p = 

0.0006 (ANN); 82.269, p 

< 0.00001 (NBC); 5.249, 

p =0.072 (CART) 

Testing Set women: 

Modified 

Nam-D’Agostino test Chi-

square = 4.744, p = 0.314 

(ANN); 189.754, p < 

0.00001 (NBC); 19.733, p 

= 0.00005 (CART) 

Wang et al.60 

2015 

USA 308,711 Exercise, diabetes, 

hyperlipemia, age, 

marriage, education, 

income, weight, height, sex, 

smoke, drink 

Hypertension NR Multi-layer 

perception 

neural network 

Accuracy, sensitivity, 

specificity, and AUC. 

Average AUC = 0.77 with 

h vary from 8 to 11 

(neural network); 

Accuracy = 72% (neural 

network) 
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Ture et al.62 

2005 

Turkey 694 Age, sex, family history of 

hypertension, smoking 

habits, lipoprotein (a), 

triglyceride, uric acid, total 

cholesterol, and BMI 

Essential 

hypertension 

The average of 3 or 

more DBP 

measurements on at 

least 3 subsequent 

visits is ≥ 90 mmHg, 

or when the average 

of multiple SBP 

readings on 3 or more 

subsequent visits is 

consistently ≥ 140 

mmHg 

Three decision 

trees (Chi-

squared 

automatic 

interaction 

detector. 

Classification 

and regression 

tree, quick, 

unbiased, 

efficient 

statistical tree); 

two neural 

networks (multi-

layer perceptron, 

radial basis 

function)  

Sensitivity, specificity, 

and predictive rate (PR). 

Values not reported. 

Zhao et al.76 

2008 

China/ 

Asians 

Total: 4759 

(2411 

hypertensive 

and 2,348 age-

matched and 

sex-matched 

healthy 

controls) 

MDR Model: 4-locus 

model consisted of the SNP 

KCNMB1-rs11739136, 

RGS2-rs34717272, 

PRKG1-rs1881597, and 

MYLK-rs36025624; CART 

Model: RGS2, PRKG1, 

KCNMB1, and MYLK 

Hypertension 

CHECK 

Average SBP ≥ 150 

mm Hg, an average 

DBP ≥ 95 mm Hg, or 

current use of 

antihypertensive 

medication 

Multifactor-

dimensionality 

reduction 

(MDR) and 

classification 

and regression 

trees (CART) 

MDR Model: Accuracy = 

52.98%, cross-validation 

consistency = 9.7 

Wang et al.60 

2014 

China/ 

Asians 

1009 

hypertensive 

patients and 756 

normotensive 

controls 

Genes Hypertension Mean SBP ≥ 140 

mmHg and/or DBP ≥ 

90 mmHg on two 

occasions and/or the 

current usage of 

antihypertensive drug 

treatment 

Multifactor 

dimensionality 

reduction 

(MDR) model 

The best MDR model 

testing accuracy = 0.6331, 

cross-validation 

consistency = 10  
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Zhao et al.77 

2014 

China/ 

Asians 

1009 

hypertensive 

patients and 756 

normotensive 

controls 

The best MDR model 

included rs5804 and BMI 

Hypertension Mean SBP of at least 

140 mm Hg or a 

mean DBP of at least 

90 mm Hg or the 

current intake of 

antihypertensive 

drugs 

Multifactor 

dimensionality 

reduction 

(MDR) model 

The best MDR model: 

testing accuracy of 0.7309 

and a maximum cross-

validation consistency of 

10 (P < 0.001) 
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Table 2.4 Information about external validation studies of existing traditional hypertension prediction models from selected studies 

Study 

Name/Prediction 

Model Validated 

Total 

Number of 

Validation 

Studies 

Validation 

Study 

Location/Ethnicity Age Follow-

up 

Period 

Events 

(n)/Total 

Participants 

(N) 

Outcome 

Definition 

Calibration Discrimination 

Parikh et al.25 

2008/Framingham 

Hypertension Risk 

Model (FHRS) 

  

  

  

  

  

  

8 Zheng et 

al.78 2014 

China/Asians ≥ 35 

years 

Median 

4.8 years 

8675/24,434 Average SBP ≥140 

mm Hg, and/or 

DBP ≥ 90 mm Hg, 

and/or use of 

antihypertensive 

medications within 

2 weeks before the 

follow-up 

examination 

H–L Chi-

square test = 

2,287.7 (P < 

0.0001), 2-

year 

incidence of 

hypertension 

H–L Chi-

square test = 

8,227.1 (P < 

0.0001), 4-

year 

incidence of 

hypertension  

C statistics = 

0.537 [0 .524–

0.550], 2-year 

incidences of 

hypertension 

C statistics = 

0.610 [0.602–

0.618], 4-year 

incidences of 

hypertension 

Muntner et 

al.61 2010 

USA/Multiethnic 

(Whites, Blacks, 

Hispanics, and 

Asians–primarily 

of Chinese descent)  

45-84 

years 

Median 

of 1.6 

years and 

4.8 years 

849/3013 The first study visit, 

subsequent to 

baseline, at which 

SBP ≥ 140 mm Hg 

and/or DBP ≥ 90 

mm Hg and/or the 

initiation of 

antihypertensive 

medication 

H-L goodness 

of fit Chi-

square: p < 

0.001 

C-statistic = 

0.788 [0.773 - 

0.804] (1.6 

years follow-

up) 

C-statistic = 

0.792 [0.775-

0.807] (4.8 

years follow-

up) 
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Carson et 

al.79 2013 

USA/Whites and 

Blacks 

18-30 

years 

25 years 1179/4388 First study 

examination in 

which SBP ≥ 140 

mm Hg or DBP ≥ 

90 mm Hg or 

initiated treatment 

with 

antihypertensive 

medications 

Modified H–

L goodness of 

fit χ2 = 249.4; 

P < 0.001 

C-index = 0.84 

[0.83–0.85] 

Lim et al.80 

2016 

Korea/Asians 40–69 

years 

4 years 13005/69,918 SBP ≥ 140 mmHg 

or DBP ≥ 90 mmHg 

on health 

examination or a 

record with 

hypertensive 

disease codes (I10–

I13) and 

prescription of one 

of the 

antihypertensive 

agents 

H-L Chi-

square p < 

0.001 

AROC = 0.729 

Kivimäki et 

al.46 2009 

England/Mainly 

Whites 

35-68 

years 

Median 

5.6 years 

NR/5472 SBP ≥ 140 mmHg 

or DBP ≥ 90 mmHg 

or use of blood 

pressure-lowering 

medications 

H-L Chi-

square = 11.5 

C-statistic = 

0.803 

Wang et 

al.35 2020 

China/Asians ≥ 18 

years 

Median 6 

years 

1658/9034 SBP ≥ 140 mm Hg, 

DBP ≥ 90 mm Hg, 

or the use of blood 

pressure-lowering 

medications 

NR AUC = 0.787 

[0.778–0.795] 

Syllos et 

al.29 2020 

Brazil/South 

Americans 

35-74 

years 

4 years 1088/8027; 

Derivation: 

4825 

Validation: 

3202 

SBP ≥ 140 mm Hg, 

DBP ≥ 90 mm Hg, 

or the use of blood 

pressure-lowering 

medications 

H-L Chi-

square = 3.78, 

p = 0.876 

AUC = 0.827 

[0.808 - 0.847] 
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Völzke et 

al.27 2013 

Denmark/Whites 20-79 

years 

5.4 ± 0.2 

years 

434/2887 SBP ≥ 140 mmHg 

and DBP ≥ 90 

mmHg 

Validation 

dataset: H-L 

Chi-square = 

11.26 

(p = 0.19) 

External 

validation 

dataset: H-L 

Chi-square = 

203.34 

(p < 0.001) 

Validation 

dataset: AUC = 

0.77 [0.73 – 

0.82] 

External 

validation 

dataset: AUC = 

0.73 [0.71-

0.75] 

Lim et al.26 2013/ 

Korean Genome 

Epidemiology 

Study (KoGES) 

1 Lim et al.80 

2016 

Korea/Asians 40–69 

years 

4-year 13,005/69,918 SBP ≥ 140 mmHg 

or DBP ≥ 90 mmHg 

on health 

examination, or a 

record with 

hypertensive 

disease codes (I10–

I13) and 

prescription of one 

of the 

antihypertensive 

agents 

H-L Chi-

square p = 

0.062 

AROC = 0.733 

Völzke et al.27 

2013 

1 Völzke et 

al.27 2013 

Denmark/Whites 20-79 

years 

5.4 ± 0.2 

years 

434/2887 SBP ≥ 140 mmHg 

and DBP ≥ 90 

mmHg 

H-L Chi-

square = 40.6 

(p < 0.001) 

AUC = 0.77 

[0.74 – 0.80] 

Kanegae et al.28 

2017 

1 Kanegae et 

al.28 2017 

Japan/Asians 18-89 

years  

Mean 2.4 

years  

NR/14,168  SBP/DBP ≥ 140/90 

mm Hg and/or the 

initiation of 

antihypertensive 

medications with 

self-reported 

hypertension 

Greenwood-

Nam-

D’Agostino 

χ2 statistic = 

8.7  

C-statistic = 

0.846 [0.775-

0.905]  
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Table 2.5 Study quality assessment using PROBAST 

Study Risk of Bias (ROB) Applicability Overall 

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability 

Pearson et al.44 

(1990) 

- + + ? - + + - - 

Parikh et al.25 (2008) + + + + - + + + - 

Paynter et al.45 

(2009) 

+ + + + - + + + - 

Kivimaki et al.46 

(2009) 

+ + + + - + + + - 

Kivimaki et al.47 

(2010) 

+ + + + - + + + - 

Kshirsagar et al.48 

(2010) 

+ + + + + + + + + 

Bozorgmanesh et 

al.33 ( 2011) 

+ + + + + + + + + 

Chien et al.32 (2011) + + + + + + + + + 

Fava et al.49 (2013) + + + ? + + - ? - 

Lim et al.26 (2013)  + + + ? + + + ? + 

Choi et al.50 (2014)  + + + ? ? - + ? - 

Lim et al.51 (2015) + + + + + - + + - 

Otsuka et al.31 (2015)  + + + ? - + + ? - 

Asgari et al.52 (2016) + - + + + + - - - 

Sathish et al.37 

(2016) 

+ + + - + + + - + 

Lee et al.53 (2015) + + + ? + + + ? + 

Lee et al.54 (2014) + + + + + - + + - 

Kanegae et al.28 

(2017)  

+ + + + - + + + - 

Chen et al.55 (2016)  + + + + + + + + + 

Diaz-Gutierrez et 

al.36 (2019)  

+ + + + - + + + - 

Wang et al.56 (2018) + + + + + + - + - 

Niiranen et al.57 

(2016)  

+ + + + + - + + - 
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Yeh et al.58 (2001) + + + ? + - - ? - 

Syllos et al.29 (2020) + + + + + + + + + 

Wang et al.35 (2020) + + + + + + + + + 

Xu et al.59 (2019)  + + + - + + + - - 

Kadomatsu et al.34 

(2019) 

+ + + ? + + + ? + 

Wang et al.60 (2015) + + + + + + + + + 

Muntner et al.61 

(2010) 

+ + + + + + + + + 

Ture et al.62 (2005) + + + + ? + + + ? 

Yamakado et al.63 

(2015) 

- - - - + - - - - 

Qi et al.64 (2014) + + + ? - - - ? - 

Lu et al.65 (2015) + + + ? + - + ? - 

Zhang et al.66 (2015) + + + ? + - + ? - 
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Figure S2.1 

 
Figure S2.1 Meta-regression on the age of the participants (study participants below average age versus 

above average age). 
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Figure S2.2 

 
Figure S2.2 Meta-regression on the number of risk factors considered in the model (below median versus 

above median). 
  



120 
 

Figure S2.3 

 
Figure S2.3 Meta-regression on sample size considered in the model (below median versus above median). 
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Figure S2.4 

 
Figure S2.4 Meta-regression on the ethnicity of the study participants (Whites versus Asians). 
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Figure S2.5 

 
 

Figure S2.5 The number of PROBAST criteria satisfied by different studies. 
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Figure S2.6 

 
 

Figure S2.6 Response to different signaling questions by the number of studies. 
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Figure S2.7 

 
Figure S2.7 Meta-regression on the age of the participants (study participants below average age versus 

above average age). 
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Figure S2.8 

 

Figure S2.8 Meta-regression on the number of risk factors considered in the model (below median versus 

above median). 
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Figure S2.9 

 

Figure S2.9 Meta-regression on sample size considered in the model (below median versus above median). 
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Figure S2.10 

 

Figure S2.10 Meta-regression on the ethnicity of the study participants (Whites versus Asians). 
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Figure S2.11 

 
Figure S2.11 Meta-regression on the ethnicity of the study participants (Whites versus Asians). 
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Figure S2.12 

 
 

 

Figure S2.12 Forest plot of models primarily developed using genetic risk factors/biomarkers with a 95% 

prediction interval.
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Table S2.1 Information about existing hypertension prediction models developed using biomarkers (genetic risk score) from the selected 

studies 
Study Location 

Model 

Developed/ 

Ethnicity 

Study 

Design 

Age Gender Risk Factors 

Included 

Events 

(n)/Total 

participants 

(N) 

Definition of 

Outcome 

Predicted/H

ypertension 

Duration 

of 

Follow-

up 

Modeling 

Method 

Discriminat

ion 

Calibrati

on 

Model 

Validation: 

internal or 

external 

Yamakado 

et al.63 

2015 

Japan/Asian

s 

Prospecti

ve cohort 

≥ 20 

years 

Both 

male and 

female 

PFAA Index 1: 

Leucine, alanine, 

tyrosine, 

asparagine, 

tryptophan, and 

glycine 

PFAA Index 2: 

Isoleucine, 

alanine, tyrosine, 

phenylalanine, 

methionine, and 

histidine 

424/2637 SBP ≥ 140 

mm Hg or 

DBP ≥ 90 

mm Hg or 

use of 

antihypertens

ive 

medication 

4 years Logistic 

regression 

NR NR Internal, 

leave-one-out 

cross-

validation 

(LOOCV) 

and External, 

the 

independent 

validation 

dataset 

Qi et al.64 

2014 

China/Asian

s 

Case-

control 

Case 

cohort: 

64.48 ± 

8.53 

years; 

Control

: 64.23 

± 10.13 

years 

Both 

male and 

female 

rs17030613, 

rs16849225, 

rs1173766, 

rs11066280, 

rs35444, rs880315, 

rs16998073, 

rs11191548, 

rs17249754 

Patients: 

NR/1009, 

Controls = 

NR/756 

SBP ≥1 40 

mm Hg or 

DBP ≥ 90 

mm Hg or 

use of 

antihypertens

ive 

medication 

NR Logistic 

regression 

NR NR NR 
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Lu et al.65 

2015 

China/Asian

s 

Prospecti

ve cohort 

35-74 

years 

Both 

male and 

female 

Model1: GRS+ 

(Age, sex, and 

BMI) 

Model2: GRS 

+Model 

1+smoking, 

drinking, pulse 

rate, and 

education 

Model3: GRS+ 

Model2 

+ SBP and DBP 

2559/7724 SBP ≥ 140 

mm Hg or 

DBP ≥ 90 

mm Hg or 

use of 

antihypertens

ive 

medication 

Mean 7.9 

years 

Logistic 

regression 

and Cox 

proportiona

l- hazards 

regression 

Model1: C-

statistic 

=0.650 

[0.637-

0.663] 

(without 

GRS), 0.655 

[0.642-

0.668] (with 

GRS) 

Model 2: C-

statistic = 

0.683 

[0.670-

0.695] 

(without 

GRS), 0.687 

[0.675-

0.700] (with 

GRS) 

Model 3: C-

statistic = 

0.774 

[0.763-

0.785] 

(without 

GRS), 0.777 

[0.766-

0.787] (with 

GRS) 

NR NR 
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Zhang et 

al.66 2015 

China/Asian

s 

Prospecti

ve cohort 

18-88 

years 

Both 

male and 

female 

Five latent factors 

extracted 

from 11 

biomarkers (BMI, 

SBP, DBP, FBG, 

TG, HDL-C, 

Hb, HCT, WBC, 

LC, NGC): 

inflammatory 

factor, blood 

viscidity factor, 

insulin resistance 

factor, blood 

pressure factor, 

and lipid resistance 

factor, and age 

3793/17,471 SBP ≥140 

mm Hg or 

DBP ≥90 

mm Hg or 

use of 

antihypertens

ive 

medication 

5 years Cox 

proportiona

l- hazards 

regression 

Derivation 

cohort: AUC 

= 0.755 

[0.746-

0.763] 

(men), AUC 

= 0.801 

[0.792-

0.810] 

(women) 

Validation 

cohort: AUC 

= 0.755 

[0.746-

0.763] 

(men), AUC 

= 0.800 

[0.791-

0.810] 

(women) 

NR Internal, 10-

fold cross-

validation 

Zhao et 

al.76 2008 

China/Asian

s 

Case-

control 

35–74 

years 

Both 

male and 

female 

MDR Model: 4-

locus model 

consisted of the 

SNP KCNMB1-

rs11739136, 

RGS2-

rs34717272, 

PRKG1-

rs1881597, and 

MYLK-

rs36025624; 

CART Model: 

RGS2, PRKG1, 

KCNMB1, and 

MYLK 

genes 

Total: 4759 

(2411 

hypertensive 

and 2348 

age-matched 

and sex-

matched 

healthy 

controls) 

Average SBP 

≥ 150 mm 

Hg, an 

average DBP 

≥ 95 mm Hg, 

or current use 

of 

antihypertens

ive 

medication 

NR Multifactor

-

dimensiona

lity 

reduction 

(MDR) and 

classificatio

n and 

regression 

trees 

(CART) 

MDR 

Model: 

Accuracy = 

52.98%, 

cross-

validation 

consistency 

= 9.7 

NR Internal, 10-

fold cross-

validation 

Wang et 

al.81 2014 

China/Asian

s 

Case-

control 

Averag

e 64.48 

± 8.53 

years 

(cases), 

64.23 ± 

10.13 

years 

Both 

male and 

female 

The best MDR 

model included 

rs5804 and BMI 

1009 

hypertensive 

patients and 

756 

normotensive 

controls 

Mean SBP ≥ 

140 mmHg 

and/or DBP 

≥ 90 mmHg 

on two 

occasions 

and/or the 

current usage 

of 

NR Multifactor 

dimensiona

lity 

reduction 

(MDR) 

model 

The best 

MDR model 

testing 

accuracy = 

0.6331, 

cross-

validation 

consistency 

= 10 

NR Internal, 10-

fold cross-

validation 
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(control

) 

antihypertens

ive drug 

treatment 

Zhao et 

al.77 2014 

China/Asian

s 

Case-

control 

Averag

e 64.48 

± 8.53 

years 

(cases), 

64.23 ± 

10.13 

years 

(control

) 

Both 

male and 

female 

The overall best 

model includes 

three-locus 

rs6749447, 

rs35929607, and 

rs3754777 

1009 

hypertensive 

patients and 

756 

normotensive 

controls 

Mean SBP of 

at least 140 

mm Hg or a 

mean DBP of 

at least 90 

mm Hg or 

the current 

intake of 

antihypertens

ive drugs 

NR Multifactor 

dimensiona

lity 

reduction 

(MDR) 

model 

The best 

MDR 

model: 

testing 

accuracy of 

0.7309 and a 

maximum 

cross-

validation 

consistency 

of 10 (P < 

0.001) 

NR Internal, 10-

fold cross-

validation 

Niiranen 

et al.57 

2016 

Finland/Whi

tes 

Prospecti

ve cohort 

≥ 30 

years 

Both 

male and 

female 

Model 1: GRS 

Model 2: Model 1 

+ age + sex 

Model 3: Model 2 

+ smoking, 

diabetes, 

education, 

hypercholesterole

mia, leisure-time 

exercise, and BMI 

NR/2045 BP ≥ 140/90 

mm Hg 

and/or 

antihypertens

ive 

medication 

11 years Multiple 

linear and 

logistic 

regression 

C-index = 

0.731 

(Model 1) 

NR NR 

Choi et 

al.50 2014 

USA/Mexic

ans 

Prospecti

ve cohort 

NR Both 

male and 

female 

Age, gender, 

smoke, age × 

gender, 

Rs10510257 (AA), 

Rs10510257 (AG), 

Rs1047115 (GT) 

NR/443 SBP >140 

mm Hg, DBP 

>90 mm Hg, 

or use of 

antihypertens

ive 

medication 

NR Generalize

d 

estimating 

equations 

for 

Marginal 

model and 

logistic 

random 

effect 

model for 

Conditional 

model 

Marginal 

model: AUC 

= 0.839 

(with SNPs); 

Conditional 

model: AUC 

= 0.973 

(with SNPs) 

NR NR 
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Lim et 

al.51 2015 

Korean/ 

Asians 

Prospecti

ve cohort 

40-69 

years 

Both 

male and 

female 

Traditional 

variables: age, 

gender, SBP, 

current smoking 

status, family 

history of 

hypertension, 

BMI, and one 

genetic variable 

(cGRS or wGRS 

derived from the 4 

SNPs): rs995322, 

rs17249754, 

rs1378942, 

rs12945290 

NR/5632 SBP ≥ 140 

mm Hg or 

DBP ≥ 90 

mm Hg or 

use of 

antihypertens

ive 

medication 

4 years Logistic 

regression 

Derivation 

cohort: C-

statistic = 

0.810 

[0.796–

0.824] 

(model 

without 

wGRS, C-

statistic = 

0.811 

[0.797–

0.825] 

(model with 

wGRS) 

Validation 

cohort: 

Mean C-

statistic = 

0.811 

[0.809-

0.816] 

HL Chi-

square   = 

6.916 

(model 

without 

wGRS), 

HL Chi-

square   = 

5.711 

(model 

with 

wGRS) 

Internal 

validation, 

fivefold 

cross-

validation 

Chien et 

al.32 2011 

Taiwan/Chi

nese 

Prospecti

ve cohort 

≥ 35 

years 

Both 

male and 

female 

Biochemical 

Model: Age, 

gender, BMI, SBP 

and DBP, white 

blood count, 

fasting glucose, 

uric acid 

1029/2506 SBP ≥ 140 

mmHg or 

DBP ≥ 90 

mmHg or 

reported use 

of BP-

lowering 

medications 

Median 

6.15 

years 

Weibull 

regression 

Biochemical 

Model: 

AUC = 

0.735 [0.715 

- 0.755] 

(point 

based), AUC 

= 0.74 

(coefficient 

based) 

Biochemi

cal 

Model: 

HL Chi-

square   = 

13.2, p = 

0.11 

(point 

based), 

6.4, p = 

0.60 

(coefficie

nt based)  

 

Internal, 

fivefold 

cross-

validation 
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CHAPTER 3. DEVELOPMENT OF A RISK PREDICTION MODEL FOR INCIDENT 

HYPERTENSION IN A CANADIAN COHORT USING TRADITIONAL REGRESSION-

BASED MODELING APPROACH AND CONVERTING INTO A RISK SCORE FOR USE 

IN DAILY CLINICAL PRACTICE 
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3.1 Abstract 

 

Background 

Identifying high-risk individuals for targeted intervention may prevent or delay 

hypertension onset and may facilitate cost-effective approaches to management. We aimed to 

develop a hypertension risk prediction model and subsequent risk sore among the Canadian 

population using measures readily available in a primary care setting. 

Methods 

Eighteen thousand three hundred twenty-two participants aged 35-69 years without 

hypertension at baseline from a Canadian cohort were followed (median follow-up 5.80 years) for 

hypertension incidence, and 625 new hypertension cases were reported. The sample was randomly 

divided into derivation and validation sets at a 2:1 ratio. The model was developed in the derivation 

sample using a Cox proportional hazard model, and the model’s performance was assessed in the 

validation sample. A risk score table was finally derived, incorporating regression coefficients 

from the Cox model. 

Results 

On the multivariable Cox model, age, BMI, SBP, diabetes, total physical activity time, and 

cardiovascular disease were identified as significant risk factors (p < 0.05) of hypertension 

incidence. The variable sex was forced to enter the final model. Some interaction terms were also 

identified as significant but were excluded due to their lack of incremental predictive capacity. Our 

model showed good discrimination (Harrel’s C-statistic 0.77) and calibration (Grønnesby and 

Borgan test, 𝜒2 statistic = 8.75, p = 0.07; calibration slope 1.006) in the validation set. Points 

associated with each variable were created, and risk estimates for point totals at 2-, 3-, 5-, and 6-

year time were derived from favoring the risk model's clinical implementation and workability.  
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Discussion 

We developed a simple yet practical prediction model to estimate the risk of incident 

hypertension for the Canadian population that relies on readily available variables. This model 

may help clinicians and the general population assess their risks of new-onset hypertension and 

facilitate discussions on modifying this risk most effectively.  
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3.2 Introduction 

 

Hypertension, which affects 1 in 5 Canadians1, is a common medical condition and is a 

significant risk factor for several fatal diseases and mortality2. Hypertension prevention and blood 

pressure management in hypertensive patients is considered a major public health and primary 

care concern3. Current population health research integrates precision public health methodology, 

a more focused approach towards targeted intervention by identifying people at greater risk4,5. 

Screening people at greater risk of hypertension opens the possibility to promote individualized 

preventive initiatives because we will have the idea of who to target, what to target, where to target, 

and how to target. Evidence suggests that the risk of progression to hypertension depends on 

several factors. Combining these risk factors into a multivariable model for risk stratification 

would help identify high-risk individuals who should be targeted to prevent hypertension 

development6,7. Consequently, hypertension risk assessment becomes a vital mainstay for 

preventive efforts within the precision medicine approach.  

 A risk prediction model is a statistical tool for estimating the probability that a currently 

healthy individual with specific risk factors will develop a future condition within a particular 

time8. Over the past decades, many prediction models have been developed in different populations 

to predict incident hypertension9–16, but their performance in accurately forecasting incident 

hypertension varies. Each model has its inherent strengths and weaknesses based on the underlying 

population characteristics and data from which they were derived. Prediction models cannot be 

directly transported from one type of population to another17–19. Often, models developed in one 

population show poor performance when applied to a different population due to differences in 

case-mix17. 
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Prediction models for the risk of incident hypertension that directly address the Canadian 

population have not yet been established to the best of our knowledge. To fill this study gap, we 

intend to create and internally validate a simple and practical risk prediction model for incident 

hypertension in the Canadian general adult population. We also derived the point-based risk score 

from the developed model to facilitate clinical practice use for decision-making. 

3.3 Methods 

 

3.3.1 Study population 

 

The study subjects are from Alberta’s Tomorrow Project (ATP) cohort data. ATP is a 

province-wide prospective cohort study and consists of Alberta’s residents, aged 35-69 years, 

without any history of cancer, other than non-melanoma skin cancer20. ATP is a part of a pan-

Canadian initiative to investigate the causes and prevention of cancer and chronic diseases. 

Launched in 2000, ATP is Alberta’s largest longitudinal population health cohort from the general 

population. It contains baseline and longitudinal information on socio-demographic 

characteristics, personal and family history of the disease, medication use, lifestyle and health 

behavior, environmental exposures, and physical measures. ATP joined the Canadian Partnership 

for Tomorrow Project (CPTP) in 200821. ATP had three baseline questionnaires: Canadian Diet 

History Questionnaire-I (CDHQ-I), Health and Lifestyle Questionnaire (HLQ), and the Past-Year 

Total Physical Activity Questionnaire (PYTPAQ), and two follow-up questionnaires: Survey 2004 

and Survey 2008, during the period 2001-2008. When ATP merged with CPTP, participants were 

asked to complete two versions of questionnaires: The Updated Health and Lifestyle Questionnaire 

(UHLQ), along with the Physical Activity and Nutrition Survey (PANS) or the CORE 

questionnaire22. As both questionnaires contained very similar information, participants completed 
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either UHLQ/PANS or CORE. UHLQ/PANS or CORE questionnaires were more elaborate and 

captured more information about the participants than the other questionnaires. 

The recruitment of participants in ATP was done in two phases23. In Phase I (2000-08), 

participants were recruited using a two-stage telephone-based random digit dialing method20. Eight 

waves of telephone-based random digit dialing (RDD) using Alberta’s regional health authority 

boundaries as the sampling frame was used to recruit participants20. Participants were identified 

using a 2-stage method. In the first stage, a household was identified, and in the second stage, one 

or two eligible adults within the identified household were selected for participation20. Participants 

selected a second time from the same household were excluded to avoid repetition23. In Phase I, 

29,878 participants were recruited with a response rate of 49%23. 

In Phase II (2009-15), when ATP joined with the Canadian Partnership for Tomorrow 

Project (CPTP)–an alliance of five cohorts across Canada (British Columbia, Alberta, Ontario, 

Quebec, and Atlantic Canada), ATP-CPTP recruitment began using a volunteer sampling 

method23.  Existing ATP participants (Phase I participants) were invited to join CPTP and 

requested to visit study centers for physical measurements and blood and urine contributions23. 

Fifteen thousand one hundred sixty-two participants from Phase I (approximately 50%) agreed to 

join CPTP, of which about 60% visited Study Centres23. Due to ATP’s pledge to enroll roughly 

40,000 participants to CPTP from Alberta, more participants were recruited. Nevertheless, the 

process for selecting potential participants in CPTP varies between jurisdictions. It includes a 

random selection from population-based data, purchase of mailing lists for specific geographic 

areas, RDD, and word of mouth24. Telephone-based RDD was initially used to recruit new ATP-

CPTP participants in 2009 but was soon replaced by volunteer sampling due to the low response 

rate and increasing cost23. To promote volunteer recruitment, further communication and 
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advocating strategies were employed, such as marketing, advertising, media coverage, information 

booths at community events, corporate presentations, Ambassador Program,  and articles23. In 

Phase II, 22,932 participants were recruited through volunteer sampling. 

An invitation package was sent to the eligible participants (in both phases) that includes a 

cover letter, a study information booklet, an explicit consent to participate in the ATP and allow 

data linkage, and a self-administered ATP questionnaire23. Those who completed the ATP 

questionnaire and agreed to data linkage were considered as ATP participants. By March 2015, 

52,810 Alberta residents had signed up for the ATP and decided to have their data linked to 

healthcare databases, with 38,094 of them agreeing to participate in the CPTP as well23. Of the 

total 52,810 ATP participants, 29,878 completed HLQ, 25,955 completed CDHQ, 25,889 

completed PYTPAQ, 8,540 completed Survey 2004, 20,107 completed Survey 2008, 12,395 

completed UHLQ, 12,402 completed PNAS and 25,677 completed the CORE questionnaire23. 

ATP was built to represent Alberta’s general population with no history of cancer other 

than non-melanoma skin cancer. To see how different ATP participants are from the rest of the 

Alberta population and compare their characteristics, a study was conducted where the ATP cohort 

was compared with the Alberta-specific subsets of Canadian Community Health Survey (CCHS) 

participants in the same age group (35-69 years). Corresponding to the two ATP recruitment 

phases, two different cycles of CCHS were used to make the comparison fair. ATP participants 

were older, had more women, were more likely to be obese and less likely to smoke, ate more 

fruits and vegetables, and were more physically active than CCHS participants23. 

For this study, we used data from the CORE questionnaire. Our study cohort consists of 

25,359 participants who consented to have their data linked with Alberta’s administrative health 

data. Linking with administrative health data was primarily done due to lack of follow-up data in 
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ATP when accessed, necessary to determine hypertension incidence. A detailed description of data 

linkage is provided in Appendix 1. We excluded 6,996 participants from the analysis who had 

hypertension at baseline and consequently did not meet eligibility criteria (free of hypertension at 

baseline). We also excluded 41 participants who responded to hypertension status questions at 

baseline as “don’t know” or “missing”. Eighteen thousand three hundred twenty-two participants 

remained after exclusion and were finally included in the analysis. This study’s ethics was 

approved by the Conjoint Health Research Ethics Board (CHREB) at the University of Calgary. 

3.3.2 Selection of candidate variables 

 

Before commencing the analysis, we compiled a list of available potential candidate 

variables. We determine the possible candidate variables for inclusion in model development based 

on a literature search, variables that have been used in the past, and discussion with content experts. 

For this study, we considered 29 candidate variables for inclusion in the model. Given our model’s 

intended clinical application, we deliberately did not consider any genetic risk factors/biomarkers 

as potential candidate variables. Inclusion of the genetic risk factors in the model can reduce the 

model’s usability due to a lack of readily available information. 

3.3.3 Definition of variables 

 

The outcome incident hypertension was determined from linked administrative health data 

using a coding algorithm. We used the relevant ICD-9 and ICD-10 codes (ICD-9-CM codes: 401.x, 

402.x, 403.x, 404.x, and 405.x; ICD-10-CA/CCI codes: I10.x, I11.x, I12.x, I13.x, and I15.x) and 

a validated hypertension case definition (two physician claims within two years or one hospital 

discharge for hypertension) to define hypertension incidence25. 

The study participants’ age was categorized into four groups: 35 to less than 45, 45 to less 

than 55, 55 to less than 65, and greater than or equal to 65 years. Body mass index (BMI) was 
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classified into four groups: underweight (< 18.5 kg/m2), normal (18.5 – 24.99 kg/m2), overweight 

(25.0 – 29.99 kg/m2), and obese (≥ 30.0 kg/m2). Waist circumference was classified as normal (≤ 

102 cm for male and ≤ 88 cm for female) and substantially increased risk of metabolic 

complications (> 102 cm for male and > 88 cm for female) groups. The waist-hip ratio was 

categorized as normal (< 0.9 for male and < 0.85 for female) and abdominal obesity (≥ 0.9 for 

male and ≥ 0.85 for female). BMI waist ratio was categorized into four quartiles. Body fat 

percentage (BFP) was categorized as normal (< 25.0 for male and < 35.0 for female) and obese (≥ 

25.0 for male and ≥ 35.0 for female). Diastolic blood pressure (DBP) was categorized into three 

groups: < 80 mm Hg, 80 – 89 mm Hg, and ≥ 90 mm Hg. Systolic blood pressure (SBP) was 

categorized into four groups: <120 mm Hg, 120 – 129 mm Hg, 130 – 139 mm Hg, and ≥ 140 mm 

Hg. Marital status was categorized into three groups: married and/or living with a partner, single 

who never married, and others (divorced, widowed, separated). Total household income was 

categorized into four groups: < $49,999, $50,000 - $99,999, $100,000 - $199,999, and ≥ $200,000. 

The highest education level completed was categorized into three groups: high school or below 

(none, elementary school, high school, trade, technical or vocational school, apprenticeship 

training or technical CEGEP), diploma but below bachelor’s degree (diploma from a community 

college, pre-university CEGEP or non-university certificate, university certificate below 

bachelor’s level), and bachelor’s degree or above (bachelor’s degree, graduate degree (MSc, MBA, 

MD, PhD, etc.). Ethnicity was categorized into six groups: Aboriginal, Asian (South Asian, East 

Asian, Southeast Asian, Filipino, West Asian, Arab), White, Latin American Hispanic, Black, and 

other (Jewish and others). Diabetes was categorized as “yes” or “no” based on the response to the 

question “Has a doctor ever told you that you had diabetes?”. Cardiovascular disease was 

categorized as “yes” if any stroke, myocardial infarction, angina, arrhythmia, coronary heart 
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disease, coronary artery disease, heart disease, and heart failure was present and as ‘no” if absent. 

Depression was categorized as “yes” or “no” based on the response to the question “Has a doctor 

ever told you that you had depression?”. Family history of hypertension was categorized as “yes” 

if any first-degree relative is diagnosed with hypertension, otherwise “no”. Smoking status was 

categorized as: never, former, and current. Ever smoked was categorized as “yes” or “no” based 

on the response of the question “Have you smoked at least 100 cigarettes in your life?”. Alcohol 

consumption was categorized into five groups: never, ≤ 1 time a week, 2 to 3 times a week, 4 to 5 

times a week, and ≥ 6 times a week. Working status was categorized into four groups: full-time, 

part-time, other (looking after a home, disable/sick, student, unpaid/voluntary), and unemployed. 

Total sleep time was categorized into four groups: ≤ 5 hours (short sleep duration), 6 to 7 hours, 8 

hours, and ≥ 9 hours (long sleep duration). Total physical activity time was categorized as: light 

(< 450 MET minutes/week), moderate (450 – 900 MET minutes/week), and vigorous (> 900 MET 

minutes/week). Total sitting time was derived as the sum of the sitting times on weekdays and 

weekends. Physical activity was categorized as: low (first quartile of physical activity time and 

fourth quartile of sitting time), moderate (second and third quartile of physical activity time and 

sitting time), and high (fourth quartile of physical activity and first quartile of sitting time). 

Vegetable and fruit consumption was categorized as low (less than 5 servings of vegetable and 

fruit), moderate (less than 5 servings of vegetable but more than 5 servings of fruit OR more than 

5 servings of vegetable but less than 5 servings of fruits), and high (5 or more servings of vegetable 

and fruit). Job schedule was categorized as regular daytime shift and other (evening shift, night 

shift, rotating shift, split shift, irregular shift, or on-call). 

3.3.4 Missing values 
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Our dataset has missing values on several candidate variables ranging from 0 to 26%. 

Information on missing values for different candidate variables is presented in the supplementary 

table (Table S3.1). We used multiple imputation techniques to impute the missing values due to 

their several advantages26. Multiple imputation is considered the soundest strategy for handling 

missing data. This technique predicts the missing values by utilizing the existing information from 

other available variables27 and then substitute the missing values with the predicted values to create 

a complete dataset. An assumption associated with multiple imputations needs to satisfy before 

applying multiple imputations. Missing at random (MAR) “when the probability that the responses 

are missing depends on the set of observed responses but is not related to the specific missing 

values that are expected to be obtained”26 assumption is assessed before applying multiple 

imputations in our study. Multiple imputation by chained equations (MICE) was used to impute 

the missing values using Stata’s “ice” command28. 

3.3.5 Statistical analysis 

 

At first, we imputed the missing values using multiple imputation. However, before imputing 

the missing values, the required assumption (MAR) for performing multiple imputation was 

checked. We compared the study characteristics of those with missing with those without missing 

information using appropriate tests (unpaired t-test or the χ2-test). Continuous variables were 

expressed as the mean (SE), and categorical variables were expressed as numbers (percentage of 

the total). We randomly split subjects into two sets: the derivation set, which included 67% (two-

thirds) of the sample (n = 12,233), and the validation set, which included the remaining 33% (one-

third) (n = 6,089). The two groups’ baseline characteristics were compared using the unpaired t-

test or the χ2-test, as appropriate. We developed a risk prediction model from the derivation data 

using the multivariable Cox proportional hazards model and assessed the goodness of fit using the 
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validation data. Continuous variables remained continuous in the model developed and categorized 

only for deriving risk scores. 

Collinearity among the variables was tested using the variance inflation factor (VIF) with 

a threshold of 2.529. From the list of candidate variables, those that were highly correlated were 

excluded based on VIF before applying the model. 

In the derivation set, the univariate Cox proportional hazards model was applied first to 

screen the variables for a significant association (p < 0.20) with hypertension incidence. Variables 

identified as significant in univariate association were later put into a multivariable Cox 

proportional hazards model to determine ultimate significant risk factors (p < 0.05) of incident 

hypertension. In the multivariable model, age, sex, body mass index, SBP, diabetes, CVD, total 

physical activity time, depression, waist-hip ratio, residence, highest education level completed, 

working status, total household income, family history of hypertension, smoking status, total sleep 

time, vegetable and fruit consumption, and job schedule were used as explanatory variables. The 

following interaction terms were also tested in the model with significant variables identified in 

the multivariable Cox model: age by BMI, age by SBP, age by diabetes, age by CVD, age by total 

physical activity time, age by sex, BMI by sex, SBP by sex, diabetes by sex, CVD by sex, and total 

physical activity time by sex. During the model development process, proportional hazard 

assumption associated with the Cox model was also tested. There are several methods for verifying 

proportionality assumption, and we tested the proportionality assumption by using the Schoenfeld 

and scaled Schoenfeld residuals. We tested the proportionality of the model as a whole and 

proportionality for each predictor.  We also obtained the graph of the scaled Schoenfeld 

assumption. A non-significant p-value (> 0.05) or a horizontal line in the graph indicates no 

violation of the proportionality assumption. 
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The following general equation was used to calculate the risk of incident hypertension 

within time 𝑡: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑆0(𝑡)exp (∑ 𝛽𝑖𝑋𝑖−∑ 𝛽𝑖𝑋𝑖)
𝑝
𝑖=1

𝑝
𝑖=1                                                                         (1) 

Where 𝑆0(𝑡) is the baseline survival function, assuming all variables are represented by average 

values at follow-up time 𝑡;  𝛽𝑖 is the estimated regression coefficient of the 𝑖th variable; 𝑋𝑖 is the 

value of the 𝑖th variable; 𝑋𝑖 is the corresponding mean, and 𝑝 denotes the number of variables. 

In the validation data, the model’s predictive performance was assessed. Model 

discrimination was evaluated using Harrell’s C-statistic30. Harrel’s C-statistic indicates the 

proportion of all pairs of subjects that can be ordered such that the subject who survived longer 

will have the higher predicted survival time than the subjects who survived shorter, assuming that 

these subject pairs are selected at random. Calibration was assessed using the Grønnesby and 

Borgan (GB) test31. The GB test is an overall goodness-of-fit test for the Cox proportional hazards 

model and is based on martingale residuals. In the GB test, the observations are divided into K 

groups according to their estimated risk score, an approach similar to Hosmer and Lemeshow 

goodness-of-fit for logistic regression32. Brier score was calculated at different time points, and a 

calibration plot was also used for assessing calibration. In a calibration plot, expected probabilities 

(predicted probabilities from the model) are plotted against observed outcome probabilities 

(calculated by Kaplan-Meier estimates). Arjas like plots were used for assessing goodness of fit 

graphically33. We have also produced a histogram of the prognostic index (a linear predictor of the 

Cox model) to show the prognostic index distribution in the derivation and validation data set. The 

histogram will demonstrate the log relative hazard’s general level and indicate the spread and 

outliers34. We also assessed calibration using the approach proposed by Royston P35, where 

observed (Kaplan–Meier) and predicted survival probabilities compared in some prognostic 
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groups derived by placing cut points on the prognostic index. We defined three risk groups (good, 

intermediate, and poor) from the 25th and 75th centiles of the prognostic index in the derivation 

dataset based on events.  

The predicted probability calculated by the model needs to be presented in a simplified 

way so that it can be easily used in clinical practice. The mathematical form of prediction models 

is relatively complex, and the computations using the prediction model can be tedious36. The points 

scoring system simplifies the tedious calculation of prediction models by assigning integer points 

to a given risk factor so that clinicians can easily approximate risk by summing integer points 

based on each risk factor’s presence/absence. The points scoring system is generally formulated 

around categories36. We constructed the risk score utilizing the regression coefficients of our Cox 

model according to the method proposed by Sullivan et al. 36. To facilitate the calculation of risk 

score, continuous variables considered in the model development were divided into categories as 

discussed before. 

All statistical tests were two-sided. All statistical analyses were performed using Stata 

(Version 15.1; Stata Corporation, College Station, Texas 77845, USA). 

3.4 Results 

 

Baseline characteristics of the study participants are presented in Table 3.1 and Table 3.2. In 

Table 3.1, the study participants’ characteristics are compared between the derivation sample and 

validation sample, while in Table 3.2, characteristics are compared according to the status of 

developing hypertension.  Table 3.1 shows no significant difference (p < 0.05) in study 

characteristics between the derivation sample and validation sample except BMI waist ratio. Two 

quartiles (quartile 1, p = 0.009 and quartile 4, p = 0.046) in BMI waist ratio showed a significant 

difference between the derivation sample and validation sample. During the median 5.8-year 
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follow-up, 625 (3.41%) participants newly developed hypertension. In Table 3.2, most of the study 

characteristics were significantly different between those who developed hypertension and those 

who did not. Some study characteristics, however, were not significantly different and this includes 

first three quartiles of BMI waist ratio (p = 0.485, p = 0.433, and p = 0.118 respectively), marital 

status (p = 0.146), residence (p = 0.146), ethnicity (p = 0.349), depression (p = 0.179), family 

history of hypertension (p = 0.061), alcohol consumption (p = 0.189), total physical activity time 

(p = 0.825), and physical activity (p = 0.707). Overall, the study participants’ mean age was 50.99 

years, and participation of females (68.55%) in the studies were higher than the males (31.45%). 

From the list of candidate variables, six (ever smoked, hip circumference, body fat 

percentage, BMI waist ratio, waist circumference, diastolic blood pressure.) were excluded from 

the model building due to their high collinearity (threshold VIF > 2.5) with other variables. 

Comparing the study characteristics between the missing and those are imputed is presented in the 

supplementary table (Table S3.2). 

  In the derivation sample, most of the candidate variables used in our study were identified 

as significant (p < 0.20) risk factors of incident hypertension according to the univariate Cox 

proportional hazard model (Table 3.3). Variables not significantly associated with incident 

hypertension included total sitting time, ethnicity, physical activity, alcohol consumption, and 

marital status and were excluded from the multivariable model. The multivariable Cox model 

indicated that age, BMI, SBP, diabetes, total physical activity time, and cardiovascular disease 

were independent significant (p < 0.05) risk factors of incident hypertension (Table 3.3). We forced 

sex into the model, considering its clinical importance. The inclusion of sex in the final model 

changed some of the variables’ significance levels, but we deliberately overlooked it. When the 

interaction terms were included in the model with the variables in the multivariable Cox model, 
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age by sex, age by BMI, age by SBP, age by total physical activity time, sex by SBP, and sex by 

CVD showed significant association with incident hypertension (Table 3.4). However, the 

inclusion of these interaction terms did not improve the models’ discriminative performance. The 

models with and without interaction terms were virtually identical regarding their Harrel’s C-

statistics value (0.77 and 0.77, respectively) and statistical significance (p = 0.64). Consequently, 

the interaction terms were excluded from the finally selected model. The model with only main 

effects was used in subsequent analyses to construct a simpler and more user-friendly risk 

estimation equation and risk score. A global test for Cox proportional hazards assumption 

indicated no violation of assumptions (p = 0.72) (Supplementary Table S3.3 and Figure S3.1 – 

Figure S3.13). The baseline survival function at median follow-up time 5.80-years ≈ 6-years,  

𝑆0(6) was (0.977). In the derivation sample, the model’s discriminative performance (Harrel’s C-

statistic) was 0.77. 

When we applied our derived model in the validation sample, the model’s discriminative 

performance was good (Harrel’s C-statistic 0.77). The results of the GB test indicated an 

acceptable calibration of the risk prediction model ( 𝜒2 statistic 8.75, p = 0.07, Figure 3.1). To 

compare the observed and expected events in each group based on risk score, Arjas like plots are 

also presented (Figure 3.2). A calibration plot of our prediction model at a time of 6-years was also 

presented in Figure 3.3.  A calibration slope of 1.006 indicates that predicted probabilities do not 

vary enough37. Figure 3.4 represents the calibration of our model in the derivation and validation 

datasets. The calibration of the model looks good in each dataset. The predictions in the validation 

dataset are good for both “Good” and “Intermediate” risk groups where survival and predicted 

probabilities are quite similar, except slightly higher predictions between 6- and 14-years time 

intervals for the “Intermediate” group. The predictions in the “Poor” group are consistent with the 
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survival up to year six and somewhat high later; that is, survival tends to be worse than predicted. 

Due to fewer validation data events, the confidence intervals tend to be wider in validation data 

than in the derivation data. Figure 3.5 presents the prognostic index histogram in derivation and 

validation data, and no obvious irregularities and outliers were detected. Brier score calculated at 

4-year, 5-year, 6-year, and 7-year time points are 0.018, 0.021, 0.026, and 0.029, respectively 

indicating accurate predictions.      

Finally, from the developed model, a simple and practical risk score was created to calculate 

the risk of incident hypertension at different times (2-year, 3-year, 5-year, and 6-year) Table 3.5. 

The constant for the points system or the number of regression units that will correspond to one 

point was set as the risk associated with a 5-year increase in age. To score a continuous variable, 

the range of possible values of the variable was divided into appropriate categories to enable the 

allocation of points to the selected categories. To determine the reference values for the open-

ended categories (e.g., < or >), we used the 1st percentile and the 99th percentile of that variable 

to minimize  the influence of extreme values. The points were initially computed as a decimal 

value, but later rounded to the nearest integer for facile calculation. The approximate risk of 

incident hypertension was then estimated via summation of the points awarded to each of the items. 

We attach the risks associated with each point total using the Cox regression equation (Table 3.6). 

Finally, we created risk categories according to the total points. In our model, the maximum total 

point is 40, and the minimum is -2. For simple interpretation in a clinical setting, we categorize 

estimated risk into three categories and presented in Table 3.7. 

3.4.1 Case Study 

 

A 50-year-old male with BMI 28.5, SBP 135, diabetic, no CVD, and moderate physical 

activity (850 MET minutes/week). 
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Risk Factor Value Points 

Age 50 2 

Sex Male 0 

BMI 28.5 3 

SBP 135 10 

Diabetes status Yes 4 

CVD status No 0 

Physical activity Moderate (850 MET minutes/week) -1 

Point Total 18 

The estimate of Risk (6-year) 7.31 

 

The risk estimate based on our newly developed Cox model is computed as follows: 

∑ 𝛽𝑖𝑋𝑖 = 0.02768(50) + 0.08722(0) + 0.05147(28.5) + 0.04629(135) + 0.57066(1)

7

𝑖=1

+ 1.08710(0) − 0.00003(850) = 9.645205 

∑ 𝛽𝑖�̅�𝑖 = 0.02768(50.94) + 0.08722(0.3142) + 0.05147(26.48) + 0.04629(119.75)

7

𝑖=1

+ 0.57066(0.041) + 1.08710(0.021) − 0.00003(3157.97) = 8.2950638 

 

�̂� = 1 − 𝑆0(𝑡)exp(∑ 𝛽𝑖
7
𝑖=1 𝑋𝑖−∑ 𝛽𝑖�̅�𝑖

7
𝑖=1 ) = 1 − 0.977exp(9.645205−8.2950638) = 0.085 

 

The points system gives a 6-year estimate of the risk of 7 percent, employing the Cox model 

straight gives 8 percent. 

3.5 Discussion 

 

In this large prospective cohort study, we developed a simple model to predict the risk of 

developing hypertension incidence in the general Canadian adult population. The variables 

included in our model (age, sex, SBP, BMI, diabetes, cardiovascular disease, and total physical 

activity time) are routinely and easily assessed in the primary-care clinical setting. Our prediction 

model for hypertension risk had very good discrimination and calibration for both the derivation 

and validation samples, suggesting that this model has good performance and may perform well 

when applied to a different Canadian population. Also, a risk score table was derived for clinical 
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implementation and workability of the developed model. Derived point-based score where points 

assigned to each variable is easy to administer by health care professionals and the general 

population and can guide clinical counseling and decision making. 

The predictive performance of our model was similar to other studies. Although prediction 

models’ performance varies considerably across studies, our recent meta-analysis on the predictive 

performance of hypertension risk prediction models indicates an overall pooled C-statistic of 0.75 

[95% CI: 0.73 – 0.77], which justifies our model’s good predictive performance. Framingham 

hypertension risk score16, the most validated hypertension risk prediction model, had a C-statistic 

of 0.78, similar to our model. Our model’s calibration was also right on several performance 

measures. 

Most of the variables included in our final model are consistent with other previous studies 

(Supplementary Figure S3.14). The variable sex was not identified as a significant factor in our 

model, but we forced it into the model considering its clinical implication38. Diabetes and CVD 

were the two significant risk factors in our model, often excluded by many studies. Individuals 

who have diabetes or CVD have a higher risk of developing hypertension than those free of these 

conditions. Our risk prediction model aimed to identify the risk factors for hypertension in general 

adults but excluding people with diabetes and CVD would limit our results’ generalizability. To 

develop a risk prediction model applicable to as many individuals as possible, we considered 

diabetes and CVD subjects in model building. Smoking, alcohol consumption, and family history 

of hypertension are common risk factors used in the past hypertension risk prediction models 

(Supplementary Figure S3.14). In our study, these risk factors were not identified as significant. 

Their inclusion in the model also did not change the model’s discriminative performance (Harrel’s 

C-statistic remains the same as 0.77). We identified total physical activity time significantly 
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contributes to our model. This finding is significant because exercise is considered a preventive 

factor for hypertension incidence supported by scientific evidence39. Moreover, it is a highly 

modifiable lifestyle factor, and physical activity changes can modify the status of hypertension 

incidence.  

We assessed interaction effects in our model, and several of the interaction terms were 

identified as significant. However, inclusion of interaction terms in the model did not improve the 

model’s predictive performance. Our focus was on generating a simple and user-friendly risk 

scoring algorithm avoiding complexity. As a result, the interaction terms were excluded from the 

model in final considerations. 

To our knowledge, this is the first hypertension risk prediction model developed explicitly 

in a Canadian population. The model was created using a large sample size, and the estimates from 

our prediction models were found to be stable, as demonstrated in the internal validation. Further, 

consideration of many candidate variables in model building is also a strength of this study. In 

contrast to most studies, where models were developed in complete cases, excluding those with 

missing values, we imputed missing values in our study. This approach prevented information loss, 

maximized information utilization, and made the results robust. 

Our study has several limitations. Study participants were middle-aged and elderly 

Canadians. Prevention strategies are likely to be more effective if the young population can be 

targeted. Nevertheless, our study participants’ age range will likely have minimal impact on our 

study’s generalizability, as the people diagnosed with hypertension are generally ≥ 35 years of 

age40. At baseline, we excluded participants with self-reported hypertension, which can potentially 

lead to misclassification of hypertension status. Determining hypertension status with objective 

blood pressure measurement rather than relying on self-reported alone could better assemble the 
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cohort and avoid potential misclassification. The incidence rate of hypertension in our study was 

relatively low compared to what is reported for the general Alberta population41. There can be 

several potential reasons for that. The characteristics of the study participants in ATP may be 

different from the general Alberta population. For example, female participation in ATP data was 

more than double the male participation (69% vs. 31%), and the hypertension incidence rate in 

Alberta was much lower in females than the males in study age groups41. A potential selection bias 

also may lead to a lower incidence rate of hypertension in our study. A selection bias is an error 

associated with recruiting study participants or factors affecting the study participation and usually 

occurs when selecting participants is not random42. The participants in ATP were mainly selected 

using the volunteer sampling method23. Those who decided to join the study  (i.e., who self-select 

into the survey) may have a different characteristic (e.g., healthier) than the non-participants. Due 

to the longitudinal nature of the study, there can also be a loss of study participants during follow-

up. Participants who were lost to follow-up (e.g., due to emigration out of the province) may be 

more likely to develop hypertension. Our study ascertained outcome hypertension from a linked 

administrative health data (the hospital discharge abstract or physician claims data source) due to 

a lack of follow-up information in ATP. There is a possibility that the outcome ascertainment was 

incomplete. People who did not have a healthcare encounter after cohort enrollment (e.g.,  did not 

visit a family physician/general practitioner or were not admitted to the hospital during the study 

period) were missed and can potentially lead to a lower hypertension incidence. Competing risks 

occur when individuals experience one or more outcomes that compete with the outcome of 

interest43. It hinders the observation of the event of interest or modifies the chance that this event 

occurs. In our context, death could be a competing risk because if a person dies, it hinders the 

observation of hypertension, and the person who dies may also have a higher risk of hypertension. 
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We did not account for competing risks in our study because the expected event (death) rate is low 

as the cohort was healthy and relatively young at inception with a short follow-up time. We did 

not include genetic risk factors or biomarkers in our model. The inclusion of genetic risk factors 

in the model has the potential of improving risk prediction. However, our recent meta-analysis on 

hypertension risk prediction models and previous studies12 did not show any differences in 

discriminative performance (pooled C-statistic was 0.76 for models developed using genetic risk 

factors/biomarkers). In addition, the inclusion of genetic risk factors in the model may decrease 

the prediction model’s application in routine clinical practice. Sodium intake is an important 

dietary factor for the risk of incident hypertension; however, in our study, sodium intake data were 

not available. We could not perform an external validation of our model, essential for any 

prediction model’s generalizability. Therefore, further validation of our model in other 

populations, particularly in another Canadian jurisdiction, is warranted. 

In conclusion, we have developed a simple yet practical prediction model to estimate the risk 

of incident hypertension for the Canadian population. Risk assessment tools are believed to be 

convenient in motivating high-risk individuals for future health problems to modify their lifestyles 

to decrease their risks. Once the model is validated via external validation studies, it can help 

identify individuals at higher risk of hypertension, increase health consciousness, motivate 

individuals to improve their lifestyles and prevent or delay the onset of hypertension. 

 

 

 

 

 



 

157 
 

3.6 References 

 

1.  Padwal RS, Bienek A, McAlister FA, Campbell NRC. Epidemiology of Hypertension in 

Canada: An Update. Can J Cardiol. 2016;32(5):687-694. doi:10.1016/j.cjca.2015.07.734 

2.  Bromfield S, Muntner P. High blood pressure: The leading global burden of disease risk 

factor and the need for worldwide prevention programs. Curr Hypertens Rep. 

2013;15(3):134-136. doi:10.1007/s11906-013-0340-9 

3.  Nerenberg KA, Zarnke KB, Leung AA, et al. Hypertension Canada’s 2018 Guidelines for 

Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and 

Children. Can J Cardiol. Published online 2018. doi:10.1016/j.cjca.2018.02.022 

4.  Khoury MJ, Iademarco MF, Riley WT. Precision Public Health for the Era of Precision 

Medicine. Am J Prev Med. Published online 2016. doi:10.1016/j.amepre.2015.08.031 

5.  Chowdhury MZI, Turin TC. Precision health through prediction modelling: Factors to 

consider before implementing a prediction model in clinical practice. J Prim Health Care. 

2020;12(1):3-9. doi:10.1071/HC19087 

6.  Usher-Smith JA, Silarova B, Schuit E, Moons KGM, Griffin SJ. Impact of provision of 

cardiovascular disease risk estimates to healthcare professionals and patients: a systematic 

review. BMJ Open. Published online 2015. doi:10.1136/bmjopen-2015-008717 

7.  Lopez-Gonzalez AA, Aguilo A, Frontera M, et al. Effectiveness of the Heart Age tool for 

improving modifiable cardiovascular risk factors in a Southern European population: A 

randomized trial. Eur J Prev Cardiol. Published online 2015. 

doi:10.1177/2047487313518479 

8.  Chowdhury MZI, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Predicting the risk of 

stroke among patients with type 2 diabetes: A systematic review and meta-analysis of C-



 

158 
 

statistics. BMJ Open. 2019;9(8). doi:10.1136/bmjopen-2018-025579 

9.  Kanegae H, Oikawa T, Suzuki K, Okawara Y, Kario K. Developing and validating a new 

precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension 

prediction model (JG model). J Clin Hypertens. 2018;20(5):880-890. 

doi:10.1111/jch.13270 

10.  Otsuka T, Kachi Y, Takada H, et al. Development of a risk prediction model for incident 

hypertension in a working-age Japanese male population. Hypertens Res. 2015;38(6):419-

425. doi:10.1038/hr.2014.159 

11.  Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the Risk of Incident 

Hypertension in a Korean Middle-Aged Population: Korean Genome and Epidemiology 

Study. J Clin Hypertens. 2013;15(5):344-349. doi:10.1111/jch.12080 

12.  Paynter NP, Cook NR, Everett BM, Sesso HD, Buring JE, Ridker PM. Prediction of 

Incident Hypertension Risk in Women with Currently Normal Blood Pressure. Am J Med. 

2009;122(5):464-471. doi:10.1016/j.amjmed.2008.10.034 

13.  Wang B, Liu Y, Sun X, et al. Prediction model and assessment of probability of incident 

hypertension: the Rural Chinese Cohort Study. J Hum Hypertens. Published online 2020. 

doi:10.1038/s41371-020-0314-8 

14.  Kadomatsu Y, Tsukamoto M, Sasakabe T, et al. A risk score predicting new incidence of 

hypertension in Japan. J Hum Hypertens. 2019;33(10):748-755. doi:10.1038/s41371-019-

0226-7 

15.  Chien KL, Hsu HC, Su TC, et al. Prediction models for the risk of new-onset hypertension 

in ethnic Chinese in Taiwan. J Hum Hypertens. 2011;25(5):294-303. 

doi:10.1038/jhh.2010.63 



 

159 
 

16.  Parikh NI, Pencina MJ, Wang TJ, et al. A risk score for predicting near-term incidence of 

hypertension: The Framingham Heart Study. Ann Intern Med. Published online 2008. 

doi:10.7326/0003-4819-148-2-200801150-00005 

17.  Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and 

elaboration. Ann Intern Med. 2015;162(1):W1-W73. doi:10.7326/M14-0698 

18.  Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: 

Validating a prognostic model. BMJ. Published online 2009. doi:10.1136/bmj.b605 

19.  Altman DG, Royston P. What do we mean by validating a prognostic model? In: Statistics 

in Medicine. ; 2000. doi:10.1002/(SICI)1097-0258(20000229)19:4<453::AID-

SIM350>3.0.CO;2-5 

20.  Robson PJ, Solbak NM, Haig TR, et al. Design, methods and demographics from phase I 

of Alberta’s Tomorrow Project cohort: a prospective cohort profile. C Open. 

2016;4(3):E515-E527. doi:10.9778/cmajo.20160005 

21.  Summary Data Tables | Alberta’s Tomorrow Project. Accessed December 15, 2020. 

http://myatp.ca/for-researchers/summary-data-tables 

22.  Survey Questions Asked - Alberta’s Tomorrow Project. Accessed January 4, 2021. 

https://myatpresearch.ca/survey-questions/ 

23.  Ye M, Robson PJ, Eurich DT, Vena JE, Xu JY, Johnson JA. Cohort profile: Alberta’s 

Tomorrow Project. Int J Epidemiol. 2017;46(4):1097-1098l. doi:10.1093/ije/dyw256 

24.  Borugian MJ, Robson P, Fortier I, et al. The Canadian Partnership for Tomorrow Project: 

Building a pan-Canadian research platform for disease prevention. Cmaj. 

2010;182(11):1197-1201. doi:10.1503/cmaj.091540 



 

160 
 

25.  Quan H, Khan N, Hemmelgarn BR, et al. Validation of a case definition to define 

hypertension using administrative data. Hypertension. Published online 2009. 

doi:10.1161/HYPERTENSIONAHA.109.139279 

26.  Kang H. The prevention and handling of the missing data. Korean J Anesthesiol. 

2013;64(5):402-406. doi:10.4097/kjae.2013.64.5.402 

27.  Sinharay S, Stern HS, Russell D. The use of multiple imputation for the analysis of 

missing data. Psychol Methods. 2001;6(3):317-329. doi:10.1037/1082-989x.6.4.317 

28.  Royston P, White IR. Journal of Statistical Software Multiple Imputation by Chained 

Equations (MICE): Implementation in Stata. J Stat Softw. 2011;45(4):1-20. 

http://www.jstatsoft.org/ 

29.  Midi H, Sarkar SK, Rana S. Collinearity diagnostics of binary logistic regression model. J 

Interdiscip Math. 2010;13(3):253-267. doi:10.1080/09720502.2010.10700699 

30.  Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical 

Tests. JAMA J Am Med Assoc. 1982;247(18):2543-2546. 

doi:10.1001/jama.1982.03320430047030 

31.  Grønnesby JK, Borgan Ø. A Method for Checking Regression Models in Survival 

Analysis Based on the Risk Score. Lifetime Data Anal. Published online 1996. 

doi:10.1007/bf00127305 

32.  Hosmer DW, Lemeshow S. Goodness of fit tests for the multiple logistic regression 

model. Commun Stat - Theory Methods. 1980;9(10):1043-1069. 

doi:10.1080/03610928008827941 

33.  Arjas E. A graphical method for assessing goodness of fit in Cox’s proportional hazards 

model. J Am Stat Assoc. 1988;83(401):204-212. doi:10.1080/01621459.1988.10478588 



 

161 
 

34.  Royston P, Altman DG. External validation of a Cox prognostic model: Principles and 

methods. BMC Med Res Methodol. Published online 2013. doi:10.1186/1471-2288-13-33 

35.  Royston P. Tools for checking calibration of a Cox model in external validation: 

Prediction of population-averaged survival curves based on risk groups. Stata J. 

2015;15(1):275-291. doi:10.1177/1536867x1501500116 

36.  Sullivan LM, Massaro JM, D’Agostino RB. Presentation of multivariate data for clinical 

use: The Framingham Study risk score functions. Stat Med. 2004;23(10):1631-1660. 

doi:10.1002/sim.1742 

37.  Stevens RJ, Poppe KK. Validation of clinical prediction models: what does the 

“calibration slope” really measure? J Clin Epidemiol. 2020;118:93-99. 

doi:10.1016/j.jclinepi.2019.09.016 

38.  Ramirez LA, Sullivan JC. Sex differences in hypertension: Where we have been and 

where we are going. Am J Hypertens. 2018;31(12):1247-1254. doi:10.1093/ajh/hpy148 

39.  Kshirsagar A V., Chiu Y lin, Bomback AS, et al. A hypertension risk score for middle-

aged and older adults. J Clin Hypertens. 2010;12(10):800-808. doi:10.1111/j.1751-

7176.2010.00343.x 

40.  Hajjar I, Kotchen TA. Trends in Prevalence, Awareness, Treatment, and Control of 

Hypertension in the United States, 1988-2000. J Am Med Assoc. Published online 2003. 

doi:10.1001/jama.290.2.199 

41.  Interactive Health Data Application - Display Results. Accessed March 29, 2021. 

http://www.ahw.gov.ab.ca/IHDA_Retrieval/selectSubCategoryParameters.do 

42.  Tripepi G, Jager KJ, Dekker FW, Zoccali C. Selection bias and information bias in clinical 

research. Nephron - Clin Pract. 2010;115(2). doi:10.1159/000312871 



 

162 
 

43.  Noordzij M, Leffondré K, Van Stralen KJ, Zoccali C, Dekker FW, Jager KJ. When do we 

need competing risks methods for survival analysis in nephrology? Nephrol Dial 

Transplant. 2013;28(11):2670-2677. doi:10.1093/ndt/gft355 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

163 
 

Figure 3.1 

 

 
 

Figure 3.1 Grønnesby and Borgan (GB) goodness-of-fit test of the risk prediction model for incident 

hypertension in the validation sample. 
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Figure 3.2 

 

 
 

Figure 3.2 Arjas like plots to compare observed and expected events in five quantiles of the linear predictor 

in the validation sample. 
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Figure 3.3  

 

 
 

Figure 3.3 Calibration plot where expected probabilities (predicted probabilities from the model) are 

plotted against observed outcome probabilities (calculated by Kaplan-Meier estimates). 
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Figure 3.4  

 

 

 
 

Figure 3.4 Smooth dashed lines represent predicted survival probabilities, and vertical capped lines 

represent Kaplan–Meier estimates with 95% confidence intervals. Three prognosis groups are plotted: the 

“Good” group (green lines), the “Intermediate” group (navy blue lines), and the “Poor” group (red lines). 
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Figure 3.5 

 

 

 
 

Figure 3.5 Histogram of the prognostic index in the derivation and validation datasets. 
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Table 3.1 Baseline characteristics of study participants and comparison in the derivation sample and validation sample 

 

Socio-demographic characteristics of groups 

Variable Categories All participants 

(18,322) 

Derivation sample  

(n = 12,233) 

Validation sample  

(n = 6,089) 

P-value 

Age, years, mean (SE)  50.99 (9.20) 50.94 (9.19) 51.07 (9.24) 0.377   

Age, years, n (%) 35 to less than 45 5,556 (30.32) 3,723 (30.43)   1,833 (30.10)    0.275 

45 to less than 55 6,188 (33.77)   4,169 (34.08)   2,019 (33.16)   

55 to less than 65 5,190 (28.33)    3,410 (27.88) 1,780 (29.23)      

≥ 65 1,388 (7.58)   931 (7.61)   457 (7.51) 

Sex, n (%) Male 5,763 (31.45)   3,844 (31.42) 1,919 (31.52)   0.899 

Female 12,559 (68.55)   8,389 (68.58)   4,170 (68.48) 

Body Mass Index, 

kg/m2, mean (SE) 

 26.45 (4.90) 26.48 (4.94)  26.39 (4.81)  

Body Mass Index, 

kg/m2, n (%) 

Underweight (< 18.5) 177 (0.97)   122 (1.00)   55 (0.90)    0.847 

Normal (18.5 – 24.99) 7,781 (42.47)    5,185 (42.39)   2,596 (42.63)    

Overweight (25.0 – 29.99) 6,971 (38.05) 4,645 (37.97)      2,326 (38.20)     

Obese (≥ 30.0) 3,393 (18.52)    2,281 (18.65) 1,112 (18.26)   

BMI Waist Ratio, 

mean (SE) 

 0.28 (0.03)   0.28 (0.03) 0.28 (0.03) 0.277 

BMI Waist Ratio in 

Quartiles, mean (SE) 

Quartile 1 0.25 (0.01) 0.25 (0.01)    0.25 (0.01)   0.009   

Quartile 2 0.27 (0.01) 0.27 (0.01)   0.27 (0.01) 0.818 

Quartile 3 0.29 (0.01) 0.29 (0 .01) 0.29 (0.01) 0.251 

Quartile 4 0.32 (0.02) 0.32 (0.02) 0.32 (0.02) 0.046   

Hip Circumference, 

mean (SE) 

 104.85 (10.04) 104.91 (10.13) 104.73 (9.86) 0.250 

Waist Circumference, 

mean (SE) 

 92.40 (13.18)   92.50 (13.29) 92.20 (12.95)   0.146   

Waist Circumference, 

n (%) 

Normal (≤ 102 cm for male 

and ≤ 88 cm for female) 

10,319 (56.32)   6,854 (56.03)   3,465 (56.91)     0.260 

Substantially increased risk 

of metabolic complications 

(> 102 cm for male and > 88 

cm for female) 

8,003 (43.68)   5,379 (43.97)   2,624 (43.09)      

Waist Hip Ratio, mean 

(SE) 

 0.91 (0.07) 0.91 (0.07)   0.91 (0.07) 0.882  

Waist Hip Ratio, n 

(%) 

Normal (< 0.9 for male and 

< 0.85 for female) 

4,556 (24.87)      3,056 (24.98)   1,500 (24.63)   0.609 
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Abdominal obesity (≥ 0.9 for 

male and ≥ 0.85 for female) 

13,766 (75.13)    9,177 (75.02)   4,589 (75.37) 

Body Fat Percentage, 

mean (SE) 

 31.89 (8.62)     31.93 (8.59)  31.82 (8.68) 0.411 

Body Fat Percentage, 

n (%) 

Normal (< 25.0 for male and 

< 35.0 for female) 

9,386 (51.23)    6,258 (51.16)   3,128 (51.37)    0.784 

Obese (≥ 25.0 for male and ≥ 

35.0 for female) 

8,936 (48.77) 5,975 (48.84)   2,961 (48.63)    

Diastolic Blood 

Pressure, mean (SE) 

 72.95 (9.35)    72.93 (9.35) 72.97 (9.34) 0.787 

Diastolic Blood 

Pressure, mmHg, n 

(%) 

< 80  14,002 (76.42)   9,373 (76.62)   4,629 (76.02)    0.533 

80 – 89  3,467 (18.92)   2,287 (18.70)    1,180 (19.38)   

≥ 90 853 (4.66)      573 (4.68) 280 (4.60)     

Systolic Blood 

Pressure, mean (SE) 

 119.81 (13.73)    119.75 (13.73) 119.92 (13.71)  0.446 

Systolic Blood 

Pressure, mmHg, n 

(%) 

< 120  9,561 (52.18)   6,398 (52.30)     3,163 (51.95)    0.245 

120 – 129  4,561 (24.89)   3,024 (24.72)     1,537 (25.24)    

130 – 139  2,717 (14.83)   1,846 (15.09)   871 (14.30)     

≥ 140 1,483 (8.09)   965 (7.89)   518 (8.51)    

Marital Status, n (%) Married and/or living with a 

partner 

14,458 (78.91)    9,659 (78.96)    4,799 (78.81)     0.226 

Single, never married 1,180 (6.44)    763 (6.24)    417 (6.85)    

Other (divorced, widowed, 

separated) 

2,684 (14.65)    1,811 (14.80)      873 (14.34)       

Residence, n (%) Urban 15,272 (83.35)       10,180 (83.22)    5,092 (83.63)   0.484 

Rural 3,050 (16.65)   2,053 (16.78)   997 (16.37)   

Total Household 

Income, n (%) 

< $49,999 2,855 (15.58)    1,904 (15.56)   951 (15.62)    0.416 

$50,000 - $99,999 5,889 (32.14) 3,902 (31.90)    1,987 (32.63)     

$100,000 - $199,999 7,149 (39.02)   4,823 (39.43)   2,326 (38.20)    

≥ $200,000 2,429 (13.26)   1,604 (13.11)   825 (13.55)   

Highest Education 

Level Completed, n 

(%) 

High school or below (none, 

elementary school, high 

school, trade, technical or 

vocational school, 

apprenticeship training or 

technical CEGEP) 

6,161 (33.63)    4,073 (33.30) 2,088 (34.29)       0.310 

Diploma but below 

bachelor’s degree (diploma 

from a community college, 

4,928 (26.90   3,288 (26.88)   1,640 (26.93) 
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pre-university CEGEP or 

non-university certificate, 

university certificate below 

bachelor's level) 

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, 

PhD, etc.)) 

7,233 (39.48)     4,872 (39.83)   2,361 (38.77) 

Ethnicity, n (%) Aboriginal 68 (0.37)     49 (0.40)    19 (0.31)     0.316 

Asian (South Asian, East 

Asian, Southeast Asian, 

Filipino, West Asian, Arab) 

827 (4.51)      545 (4.46)     282 (4.63)     

White 16,895 (92.21)    11,274 (92.16)   5,621 (92.31)      

Latin American Hispanic 162 (0.88)     121 (0.99)      41 (0.67)     

Black 97 (0.53) 63 (0.52)   34 (0.56)    

Other (Jewish and others) 273 (1.49)      181 (1.48)   92 (1.51)      

Diabetes, n (%)  735 (4.01)   502 (4.10)       233 (3.83) 0.368 

Cardiovascular 

Disease, n (%) 

 377 (2.06)   257 (2.10)      120 (1.97)   0.559 

Depression, n (%)  2,013 (10.99)     1,366 (11.17)   647 (10.63)    0.270 

Family History of 

Hypertension, n (%) 

 10,946 (59.74)      7,266 (59.40)     3,680 (60.44)   0.176 

Smoking Status, n (%) Never 10,116 (55.21)    6,739 (55.09)     3,377 (55.46)     0.763 

Former  6,763 (36.91) 4,537 (37.09)    2,226 (36.56)    

Current 1,443 (7.88)   957 (7.82) 486 (7.98)      

Ever Smoked, n (%)  8,206 (44.79)   5,494 (44.91)    2,712 (44.54)   0.633 

Alcohol Consumption, 

n (%) 

Never 1,293 (7.06)   869 (7.10) 424 (6.96)    0.855 

≤ 1 time a week 9,644 (52.64) 6,415 (52.44) 3,229 (53.03) 

2 to 3 times a week 3,807 (20.78) 2,535 (20.72)    1,272 (20.89) 

4 to 5 times a week 1,993 (10.88) 1,340 (10.95)   653 (10.72) 

≥ 6 times a week 1,585 (8.65) 1,074 (8.78) 511 (8.39) 

Working Status, n (%) Full time 10,281 (56.11) 6,836 (55.88) 3,445 (56.58) 0.065 

Part time 3,719 (20.30) 2,543 (20.79) 1,176 (19.31) 

Other (looking after home, 

disable/sick, student, 

unpaid/voluntary) 

3,974 (21.69)   2,614 (21.37) 1,360 (22.34) 

Unemployed 348 (1.90) 240 (1.96) 108 (1.77) 

Total Sleep Time, n 

(%) 

≤ 5 hours (short sleep 

duration) 

1,191 (6.50)    804 (6.57) 387        6.36 0.257 



 

171 
 

6 hours 3,739 (20.41) 2,441 (19.95)   1,298 (21.32) 

7 hours (reference) 7,042 (38.43) 4,747 (38.80) 2,295 (37.69)    

8 hours 5,111 (27.90) 3,414 (27.91) 1,697 (27.87)   

≥ 9 hours (long sleep 

duration) 

1,239 (6.76)   827 (6.76)    412 (6.77) 

Total Physical 

Activity Time, mean 

(SE) 

 3158.53 (2869.02) 3157.97 (2853.36) 3159.66 (2900.45) 0.970 

Total Physical 

Activity Time, n (%) 

Light (< 450 MET 

minutes/week) 

1,668 (9.10) 1,096 (8.96)     572 (9.39) 0.530 

Moderate (450 – 900 MET 

minutes/week) 

2,067 (11.28)    1,394 (11.40)   673 (11.05) 

Vigorous (> 900 MET 

minutes/week) 

14,587 (79.61) 9,743 (79.65) 4,844 (79.55)   

Total Sitting Time, 

mean (SE) 

 2487.77 (1174.02)  2495.39 (1176.80) 2472.48 (1168.35) 0.214 

Physical Activity, n 

(%) 

Low (first quartile of 

physical activity time and 

fourth quartile of sitting 

time) 

1,691 (9.23) 1,157 (9.46) 534 (8.77) 0.280 

Moderate (second and third 

quartile of physical activity 

time and sitting time) 

14,479 (79.03) 9,653 (78.91) 4,826 (79.26) 

High (fourth quartile of 

physical activity and first 

quartile of sitting time) 

2,152 (11.75) 1,423 (11.63) 729 (11.97)   

Vegetable and Fruit 

Consumption, n (%) 

Low consumption (less than 

5 servings of vegetable and 

fruit) 

15,273 (83.36) 10,182 (83.23) 5,091 (83.61) 0.620 

Moderate consumption (less 

than 5 servings of vegetable 

but more than 5 servings of 

fruit OR more than 5 

servings of vegetable but less 

than 5 servings of fruits 

2,529 (13.80) 1,694 (13.85) 835 (13.71)   

High consumption (5 or 

more servings of vegetable 

and fruit) 

520 (2.84) 357 (2.92)   163 (2.68) 

Job Schedule, n (%) Regular daytime shift 11,920 (65.06) 7,985 (65.27) 3,935 (64.62) 0.385 
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Other (evening shift, night 

shift, rotating shift, split 

shift, irregular shift, or on 

call) 

6,402 (34.94) 4,248 (34.73) 2,154 (35.38) 
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Table 3.2 Baseline characteristics of study participants according to the status of developing hypertension or not 

 

Socio-demographic characteristics of groups 

Variable Categories All participants 

(18,322) 

Participants who has 

developed hypertension  

(n = 625) 

Participants who did not 

develop hypertension  

(n = 17,697) 

P-value 

Age, years, mean (SE)  50.99 (0.07)  53.99 (0.35)       50.88 (0.07)      < 0.001 

Age, years, n (%) 35 to less than 45 5556 (30.32) 107 (17.12)    5449 (30.79)  < 0.001 

45 to less than 55 6188 (33.77) 213 (34.08) 5975 (33.76) 

55 to less than 65 5190 (28.33) 226 (36.16) 4964 (28.05) 

≥ 65 1388 (7.58)    79 (12.64)   1309 (7.39) 

Sex, n (%) Male 5763 (31.45)  250 (40) 5513 (31.15) < 0.001 

Female 12559 (68.55)   375 (60) 12184 (68.85) 

Body Mass Index, 

kg/m2, mean (SE) 

 26.45 (0.04) 28.63 (0.21) 26.38 (0.04)  

Body Mass Index, 

kg/m2, n (%) 

Underweight (< 18.5) 179 (0.97)   3 (0.48) 199 (1.12) < 0.001 

Normal (18.5 – 24.99) 7819 (42.68)   148 (23.62) 7642 (43.18) 

Overweight (25.0 – 29.99) 6876 (37.53) 271 (43.37) 6501 (36.73) 

Obese (≥ 30.0) 3448 (18.82) 203 (32.53) 3355 (18.96) 

BMI Waist Ratio, 

mean (SE) 

 0.28 (0.0002)   0.2893 (0.0013)    0.2831 (0.0002)       < 0.001 

BMI Waist Ratio in 

Quartiles, mean (SE) 

Quartile 1 0.25 (0.0002)   0.25 (0.0009)    0.25 (0.0002)   0.485 

Quartile 2 0.27 (0.0001)    0.27 (0.0004)   0.27 (0.0001) 0.433 

Quartile 3 0.29 (0.0001)   0.29 (0.0005) 0.29 (0.0001) 0.118 

Quartile 4 0.32 (0.0003)  0.33 (0.0016) 0.32 (0.0003) 0.017 

Hip Circumference, 

mean (SE) 

 104.85 (0.08) 108.25 (0.44)       104.78 (0.08)       < 0.001 

Waist Circumference, 

mean (SE) 

 92.38 (0.10)   100.60 (0.60)       92.21 (0.10)       <0.001 

Waist Circumference, 

n (%) 

Normal (≤ 102 cm for male 

and ≤ 88 cm for female) 

10188 (55.60) 201 (32.11)   9987 (56.43)   < 0.001 

Substantially increased risk 

of metabolic complications 

(> 102 cm for male and > 88 

cm for female) 

8134 (44.40) 424 (67.89) 7710 (43.57) 

Waist Hip Ratio, mean 

(SE) 

 0.9093 (0.0006)    0.9363 (0.0033)       0.9085 (0.0006)       < 0.001 
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Waist Hip Ratio, n 

(%) 

Normal (< 0.9 for male and 

< 0.85 for female) 

4466 (24.38) 101 (16.08) 4366 (24.67) < 0.001 

Abdominal obesity (≥ 0.9 for 

male and ≥ 0.85 for female) 

13856 (75.62) 524 (83.92)   13331 (75.33) 

Body Fat Percentage, 

mean (SE) 

 31.86 (0.07)   34.67 (0.37)       31.84 (0.07)      < 0.001 

Body Fat Percentage, 

n (%) 

Normal (< 25.0 for male and 

< 35.0 for female) 

9425 (51.44)   179 (28.59)   9246 (52.25) < 0.001 

Obese (≥ 25.0 for male and ≥ 

35.0 for female) 

8897 (48.56)   446 (71.40) 8451 (47.75)  

Diastolic Blood 

Pressure, mean (SE) 

 72.96 (0.08)   78.43 (0.47)       72.78 (0.08)        < 0.001 

Diastolic Blood 

Pressure, mmHg, n 

(%) 

< 80  13977 (76.28) 344 (55.05) 13633 (77.03) < 0.001 

80 – 89  3482 (19.00) 184 (29.44) 3298 (18.63)  

≥ 90 863 (4.71)   97 (15.51) 766 (4.33)    

Systolic Blood 

Pressure, mean (SE) 

 119.71 (0.11)    132.36 (0.67)       119.40 (0.12)       < 0.001 

Systolic Blood 

Pressure, mmHg, n 

(%) 

< 120  9600 (52.40) 129 (20.69) 9471 (53.52)  < 0.001 

120 – 129  4585 (25.03)   139 (22.25) 4446 (25.12) 

130 – 139  2684 (14.65) 176 (28.23) 2508 (14.17) 

≥ 140 1453 (7.93) 180 (28.83)  1272 (7.19)  

Marital status, n (%) Married and/or living with a 

partner 

14457 (78.91)  488 (78.08) 13969 (78.94) 0.146 

Single, never married 1180 (6.44) 32 (5.12) 1148 (6.49) 

Other (divorced, widowed, 

separated) 

2685 (14.65)  105 (16.8) 2580 (14.57) 

Residence, n (%) Urban 15272 (83.35)   428 (68.48) 14844 (83.88) 0.146 

Rural 3050 (16.65)   197 (31.52) 2853 (16.12) 

Total Household 

Income, n (%) 

< $49,999 2800 (15.28)   178 (28.56) 2627 (14.84) < 0.001 

$50,000 - $99,999 5912 (32.27) 229 (36.68) 5690 (32.15) 

$100,000 - $199,999 7174 (39.16)  177 (28.27) 6986 (39.48) 

≥ $200,000 2436 (13.29) 41 (6.49) 2394 (13.52) 

Highest Education 

Level Completed, n 

(%) 

High school or below (none, 

elementary school, high 

school, trade, technical or 

vocational school, 

apprenticeship training or 

technical CEGEP) 

6164 (33.64)   309 (49.35) 5854 (33.08) < 0.001 
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Diploma but below 

bachelor’s degree (diploma 

from a community college, 

pre-university CEGEP or 

non-university certificate, 

university certificate below 

bachelor's level) 

4926 (26.89)   163 (26.15) 4764 (26.92) 

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, 

PhD, etc.)) 

7232 (39.47) 153 (24.49) 7079 (40.0) 

Ethnicity, n (%) Aboriginal 68 (0.37)   1 (0.16) 67 (0.38) 0.349 

Asian (South Asian, East 

Asian, Southeast Asian, 

Filipino, West Asian, Arab) 

827 (4.51) 21 (3.4) 806 (4.55) 

White 16894 (92.21) 588 (94.03) 16307 (92.14) 

Latin American Hispanic 162 (0.89) 2 (0.32) 160 (0.9) 

Black 97 (0.53) 2 (0.33) 95 (0.54) 

Other (Jewish and others) 273 (1.49) 11 (1.76) 262 (1.48) 

Diabetes, n (%)  735 (4.01)  58 (9.28) 677 (3.83) < 0.001 

Cardiovascular 

Disease, n (%) 

 377 (2.06)   40 (6.4) 337 (1.9) < 0.001 

Depression, n (%)  2011 (10.98)   79 (12.64) 1932 (10.92) 0.179 

Family History of 

Hypertension, n (%) 

 10946 (59.74)  396 (63.36) 10550 (59.61) 0.061 

Smoking Status, n (%) Never 10107 (55.16)   290 (46.37) 9823 (55.51) < 0.001 

Former  6773 (36.97)    276 (44.15) 6491 (36.68) 

Current 1442 (7.87) 59 (9.48) 1383 (7.81) 

Ever Smoked, n (%)  8215 (44.84) 335 (53.63) 7874 (44.49) < 0.001 

Alcohol Consumption, 

n (%) 

Never 1279 (6.98) 56 (8.97) 1224 (6.92) 0.189 

≤ 1 time a week 9642 (52.63)   341 (54.52) 9307 (52.59) 

2 to 3 times a week 3820 (20.85) 123 (19.77) 3689 (20.85) 

4 to 5 times a week 1988 (10.85)  55 (8.74) 1938 (10.95) 

≥ 6 times a week 1593 (8.69) 50 (8.0) 1539 (8.69) 

Working Status, n (%) Full time 11449 (62.49)   352 (56.29) 11057 (62.48) < 0.001 

Part time 4596 (25.09) 182 (29.19) 4422 (24.99) 

Other (looking after home, 

disable/sick, student, 

unpaid/voluntary) 

1857 (10.13)   83 (13.23) 1803 (10.18) 
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Unemployed 420 (2.29)  8 (1.28) 415 (2.35) 

Total Sleep Time, n 

(%) 

≤ 5 hours (short sleep 

duration) 

1192 (6.51)   47 (7.49) 1147 (6.48) < 0.001 

6 hours 3732 (20.37)   127 (20.33) 3604 (20.37) 

7 hours (reference) 7048 (38.46) 200 (32.02) 6847 (38.69) 

8 hours 5115 (27.92)  185 (29.66) 4929 (27.85) 

≥ 9 hours (long sleep 

duration) 

1235 (6.74)  66 (10.49) 1170 (6.61) 

Total Physical 

Activity Time, mean 

(SE) 

 3159.83 (21.43)  3183.97 (126.52)       3157.58 (21.68)       0.825 

Total Physical 

Activity Time, n (%) 

Light (< 450 MET 

minutes/week) 

1,668 (9.10) 84 (13.44) 1,584 (8.95)    0.001 

Moderate (450 – 900 MET 

minutes/week) 

2,067 (11.28) 69 (11.04) 1,998 (11.29) 

Vigorous (> 900 MET 

minutes/week) 

14,587 (79.61) 472 (75.52)     14,115 (79.76)     

Total Sitting Time, 

mean (SE) 

 2488.53 (8.92) 2389.16 (49.14)       2490.98 (9.38)       0.043 

Physical Activity, n 

(%) 

Low (first quartile of 

physical activity time and 

fourth quartile of sitting 

time) 

1685 (9.19)   59 (9.47) 1678 (9.48) 0.707 

Moderate (second and third 

quartile of physical activity 

time and sitting time) 

14478 (79.02) 488 (78.12) 13957 (78.87) 

High (fourth quartile of 

physical activity and first 

quartile of sitting time) 

2159 (11.78)  78 (12.40) 2062 (11.65) 

Vegetable and Fruit 

Consumption, n (%) 

Low consumption (less than 

5 servings of vegetable and 

fruit) 

15264 (83.31)  544 (87.05) 14721 (83.18) 0.024 

Moderate consumption (less 

than 5 servings of vegetable 

but more than 5 servings of 

fruit OR more than 5 

servings of vegetable but less 

than 5 servings of fruits 

2536 (13.84)  68 (10.84) 2469 (13.95) 
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High consumption (5 or 

more servings of vegetable 

and fruit) 

522 (2.85) 13 (2.11) 507(2.87) 

Job Schedule, n (%) Regular daytime shift 12866 (70.22)  385 (61.59) 12452 (70.36) < 0.001 

Other (evening shift, night 

shift, rotating shift, split 

shift, irregular shift, or on 

call) 

5456 (29.78)   240 (38.41) 5245 (29.64) 
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Table 3.3 Unadjusted and adjusted hazard ratios for the risk factors of hypertension incidence 

 
Unadjusted and adjusted hazard ratios and 95% confidence intervals for the risk factors of hypertension incidence 

Variable  Unadjusted 

Hazard Ratio 

(95% CI) 

P-value 

 

Adjusted Hazard 

Ratio (95% CI) 

P-value 

 

Age, years  1.05 (1.03 - 1.06) < 0.001       1.02 (1.01 - 1.03)  0.002      

Sex Male Reference  Reference  

Female 0.68 (0.56 - 0.82) < 0.001       1.01 (0.80 - 1.28) 0.923      

Body Mass Index, 

kg/m2 

 1.07 (1.06 - 1.09) < 0.001       1.05 (1.03 - 1.07) < 0.001      

BMI Waist Ratio,   1894.98  

(93.43 - 38435.67) 

< 0.001       - - 

Hip Circumference, 

cm 

 1.03 (1.02 - 1.04) < 0.001       - - 

Waist 

Circumference, cm 

 1.04 (1.03 - 1.05) < 0.001       - - 

Waist Hip Ratio  41.81  

(12.45 - 140.43) 

< 0.001      0.94 (0.22 - 4.04)  0.930      

Body Fat 

Percentage, 

percentage 

 1.03 (1.02 - 1.04) < 0.001      - - 

Diastolic Blood 

Pressure, mmHg 

 1.06 (1.05 - 1.07) < 0.001      - - 

Systolic Blood 

Pressure, mmHg 

 1.05 (1.05 - 1.06)  < 0.001      1.05 (1.04 - 1.05) < 0.001       

Marital Status Married or living with a 

partner 

Reference  0.145* - - 

Single, never married 1.02 (0.66 - 1.58) 0.913      - - 

Other (divorced, widowed, 

separated) 

1.29 (1.00 - 1.66) 0.050      - - 

Residence Urban Reference  Reference  

Rural 1.37 (1.11 - 1.71) 0.004      1.08 (0.86 - 1.35) 0.500      

Total Household 

Income,  

< $49,999 Reference  < 0.001* Reference  0.060* 

$50,000 - $99,999 0.65 (0.51 - 0.83) 0.001      0.80 (0.62 - 1.04) 0.090      

$100,000 - $199,999 0.51 (0.39 - 0.65) < 0.001      0.75 (0.57 - 0.99) 0.048      

≥ $200,000 0.34 (0.22 - 0.52) < 0.001      0.56 (0.36 - 0.88) 0.012      
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Highest Education 

Level Completed 

High school or below (none, 

elementary school, high 

school, trade, technical or 

vocational school, 

apprenticeship training or 

technical CEGEP) 

Reference  < 0.001* Reference  0.250* 

Diploma but below 

bachelor's degree (diploma 

from a community college, 

pre-university CEGEP or 

non-university certificate, 

university certificate below 

bachelor's level) 

0.79 (0.63 - 0.99) 0.050      1.01 (0.79 - 1.28) 0.952      

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, 

PhD, etc.)) 

0.54 (0.43 - 0.69) < 0.001       0.82 (0.63 - 1.06) 0.128      

Ethnicity Aboriginal 0.49 (0.07 - 3.50) 0.478      0.532* - - 

Asian (South Asian, East 

Asian, Southeast Asian, 

Filipino, West Asian, Arab) 

1.17 (0.71 - 1.93) 0.543      - - 

White Reference  - - 

Latin American Hispanic 0.33 (0.05 - 2.36) 0.270      - - 

Black 0.62 (0.09 - 4.41) 0.632      - - 

Other (Jewish and others) 1.61 (0.80 - 3.25) 0.182      - - 

Diabetes No Reference  Reference  

Yes 2.10 (1.48 - 2.98) < 0.001      1.71 (1.19 - 2.46) 0.004       

Cardiovascular 

Disease 

No Reference  Reference  

Yes 3.14 (2.13 - 4.64) < 0.001      2.81 (1.89 - 4.19) < 0.001      

Depression No Reference  Reference  

Yes 1.08 (0.79 - 1.46) 0.640      0.97 (0.71 - 1.33) 0.874      

Family History of 

Hypertension 

No Reference  Reference  

Yes 1.14 (0.93 - 1.39) 0.202      1.13 (0.93 - 1.39) 0.225       

Smoking Status Never Reference  0.031* Reference  0.759* 

Former  1.31 (1.07 - 1.61)  0.009      1.07 (0.87 - 1.32) 0.536 

Current 1.23 (0.87 - 1.74) 0.250      1.11 (0.78 - 1.58) 0.565      

Ever Smoked No Reference  - - 

Yes 1.29 (1.07 - 1.57) 0.009      - - 

Never Reference  0.249* - - 
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Alcohol 

Consumption 

≤ 1 time a week 0.74 (0.53 - 1.04) 0.085      - - 

2 to 3 times a week 0.86 (0.59 - 1.24) 0.414      - - 

4 to 5 times a week 0.72 (0.47 - 1.10) 0.130      - - 

≥ 6 times a week 0.63 (0.40 - 1.01) 0.058      - - 

Working Status Full time Reference  < 0.001* Reference  0.294* 

Part time 0.89 (0.68 - 1.18) 0.426      0.83 (0.62 - 1.12) 0.232       

Other (looking after home, 

disable/sick, student, 

unpaid/voluntary) 

1.63 (1.32 - 2.03) < 0.001       0.96 (0.71 - 1.30) 0.807      

Unemployed 0.53 (0.20 - 1.41) 0.202       0.45 (0.16 - 1.23) 0.120        

Total Sleep Time, 

hours 

≤ 5 hours (short sleep 

duration) 

1.60 (1.11 - 2.31) 0.012      0.006* 1.03 (0.70 - 1.51) 0.882      0.178* 

6 hours 1.42 (1.08 - 1.85) 0.011       0.77 (0.53 - 1.12) 0.173      

7 hours (reference) Reference  Reference  

8 hours 1.17 (0.91 - 1.51) 0.220      0.85 (0.59 - 1.24) 0.408      

≥ 9 hours (long sleep 

duration) 

1.70 (1.19 - 2.43) 0.003      1.07 (0.68 - 1.68) 0.781      

Total Physical 

Activity Time, 

minutes/week 

 0.99 (0.99 - 1.00) 0.144      0.99 (0.99993 - 

0.999997) 

0.033      

Total Sitting Time, 

minutes/week 

 1.00 (0.99 - 1.01) 0.660       - - 

Physical Activity, 

quartiles 

Low (first quartile of 

physical activity time and 

fourth quartile of sitting 

time) 

Reference  0.738* - - 

Moderate (second and third 

quartile of physical activity 

time and sitting time) 

0.88 (0.64 - 1.21) 0.437      - - 

High (fourth quartile of 

physical activity and first 

quartile of sitting time) 

0.90 (0.60 - 1.35) 0.613      - - 

Vegetable and Fruit 

Consumption, 

servings 

Low consumption (less than 

5 servings of vegetable and 

fruit) 

Reference  0.408* Reference  0.494* 

Moderate consumption (less 

than 5 servings of vegetable 

but more than 5 servings of 

fruit OR more than 5 

0.81 (0.59 - 1.11) 0.191      0.97 (0.70 - 1.33) 0.832      
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servings of vegetable but 

less than 5 servings of fruits 

High consumption (5 or 

more servings of vegetable 

and fruit) 

0.89 (0.48 - 1.67) 0.725      1.45 (0.77 - 2.74) 0.249      

Job Schedule Regular daytime shift Reference  Reference  

Other (evening shift, night 

shift, rotating shift, split 

shift, irregular shift, or on 

call) 

1.42 (1.17 - 1.73) < 0.001      1.15 (0.91 - 1.46) 0.229     

 

* overall effect for categorical variables with multiple categories 

 

 

 

 

 

 

 

 



 

182 
 

Table 3.4 Regression coefficients and hazard ratio’s for incident hypertension 

 
Variable Simplified model without interaction terms The model with interaction terms 

 β Standard 

Error (SE) 

Hazard 

Ratio (HR) 

95 % CI β Standard 

Error (SE) 

Hazard 

Ratio (HR) 

95 % CI 

Age 0.02768   0.00562     1.02807    1.02-1.04 0.18825    0.05158      1.20714     1.09-1.34 

Sex* 0.08722   0.10411      1.09113    0.89-1.34 - 2.75995   1.02372     0.06329   0.01-0.47 

Body Mass 

Index (BMI) 

0.05147    0.00857      1.05282    1.04-1.07 0.13194    0.04638      1.14104   1.04-1.25 

Systolic Blood 

Pressure (SBP) 

0.04629   0.00309    1.04738    1.04-1.05 0.08233   0.01898      1.08581   1.05-1.13 

Diabetes 0.57066   0.18200     1.76943    1.24-2.53 0.62335    0.18262      1.86517  1.30-    

2.67 

Cardiovascular 

Disease (CVD) 

1.08710   0.20085      2.96566   2.00-4.39 1.43281    0.24367     4.19044   2.60-6.76 

Total Physical 

Activity Time 

- 0.00003   0.00002     0.99997   0.99-1.00 0.00024   0.00010     1.00024    1.00-1.00 

Age by Sex - - - - 0.01516    0.01133     1.01527    0.99-1.04 

Age by BMI - - - - - 0.00157    0.00088    0.99843   0.99-1.00 

Age by SBP - - - - - 0.00084   0.00035    0.99916    0.99-0.99 

Age by Total 

physical 

activity time 

- - - - - 0.00001 0.000002 0.99999   0.99-0.99 

Sex by SBP - - - - 0.01583    0.00638     1.01596    1.00-1.03 

Sex by CVD - - - - - 0.96267   0.45499     0.38187  0.16-0.93 

 

 

*  male is the reference category 
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Table 3.5 Calculation of point values for risk score 

 
Variable 𝜷 

 

Categories 

 

Reference Value (𝑾) 

 

𝜷 (𝑾 −  𝑾𝑹𝑬𝑭) 

            

𝑷𝒐𝒊𝒏𝒕𝒔 

=
𝛃 (𝑾 −  𝑾𝑹𝑬𝑭)

𝑩
 

                

Age 0.02768    35 to less than 45 * 39.5 (𝑊𝑅𝐸𝐹) 0 0 

45 to less than 55 49.5 0.2768 2 

55 to less than 65 59.5 0.5536 4 

65 to less than 75 69.5 0.8304 6 

Sex 0.08722    Male * 0 (𝑊𝑅𝐸𝐹) 0 0 

Female 1 0.0872   1 

Body Mass Index 

‡ 

0.05147    < 18.5 * 18.5 (𝑊𝑅𝐸𝐹) 0 0 

18.5 to less than 

25.0 

21.75 

0.1673 1 

25.0 to less than 

30.0 

27.5 

0.4632 3 

≥ 30.0 36.35 0.9187 7 

Systolic Blood 

Pressure † 

0.04629   < 120 * 106 (𝑊𝑅𝐸𝐹) 0 0 

120 to less than 130  125 0.8795 6 

130 to less than 140 135 1.3424 10 

≥ 140 148 1.9442 14 

Diabetes 0.57066    No * 0 (𝑊𝑅𝐸𝐹) 0 0 

Yes 1 0.5707   4 

Cardiovascular 

Disease 

1.08710   No * 0 (𝑊𝑅𝐸𝐹) 0 0 

Yes 1 1.0871   8 

Physical Activity 

Total** 

- 0.00003    Light (< 450 MET 

minutes/week) 

274.5 (𝑊𝑅𝐸𝐹) 0 

0 

Moderate (450 – 900 

MET minutes/week) 

675 - 0.0120 

-1 

Vigorous (> 900 MET 

minutes/week) 

7209 - 0.2080 

-2 

 

* Reference Category 

The age range in the sample is 35 – 70. 

‡ The range of body mass index is 12.5 – 64.9. To determine the reference values for the first and last categories, we 

use the 1st percentile (18.5) and the 99th percentile (42.7) to minimize extreme values' influence. 

**The range of physical activity total is from 33 MET minutes/week to 19,278 MET minutes/week. To determine the 

reference values for the first and last categories, we use the 1st percentile (99) and the 99th percentile (13,518) to 

minimize extreme values' influence. 

† The range of systolic blood pressures is 76 – 205. To determine the reference values for the first and last categories, 

we use the 1st percentile (92) and the 99th percentile (156) to minimize extreme values' influence. 

The constant for the points system or the number of regression units will correspond to one point. Here, we let B 

reflect the increase in risk associated with a 5-year increase in age: 

 𝐵 = 5(0.02768) = 0.1384 
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Table 3.6 Risk estimates for point totals at 2, 3, 5, and 6-year time 

 
2-year risk (%) 3-year risk (%) 5-year risk (%) 6-year risk (%) 

Point 

total 

Estimate of 

risk 

Point 

total 

Estimate of 

risk 

Point 

total 

Estimate of 

risk 

Point 

total 

Estimate of 

risk 

-2 0.27 -2 0.30 -2 0.39 -2 0.48 

-1 0.31 -1 0.35 -1 0.45 -1 0.55 

0 0.35 0 0.40 0 0.52 0 0.63 

1 0.40 1 0.46 1 0.60 1 0.72 

2 0.46 2 0.53 2 0.68 2 0.83 

3 0.53 3 0.61 3 0.79 3 0.95 

4 0.61 4 0.70 4 0.90 4 1.09 

5 0.70 5 0.80 5 1.04 5 1.25 

6 0.81 6 0.92 6 1.19 6 1.43 

7 0.93 7 1.05 7 1.36 7 1.64 

8 1.06 8 1.21 8 1.56 8 1.88 

9 1.22 9 1.38 9 1.79 9 2.16 

10 1.40 10 1.59 10 2.06 10 2.48 

11 1.60 11 1.82 11 2.36 11 2.84 

12 1.84 12 2.09 12 2.71 12 3.25 

13 2.11 13 2.40 13 3.10 13 3.73 

14 2.42 14 2.75 14 3.55 14 4.27 

15 2.77 15 3.15 15 4.07 15 4.89 

16 3.18 16 3.61 16 4.66 16 5.59 

17 3.64 17 4.13 17 5.33 17 6.40 

18 4.17 18 4.73 18 6.10 18 7.31 

19 4.78 19 5.41 19 6.97 19 8.35 

20 5.47 20 6.19 20 7.96 20 9.53 

21 6.25 21 7.08 21 9.09 21 10.86 

22 7.15 22 8.08 22 10.37 22 12.37 

23 8.16 23 9.23 23 11.81 23 14.07 

24 9.32 24 10.52 24 13.44 24 15.98 

25 10.62 25 11.98 25 15.28 25 18.13 

26 12.10 26 13.64 26 17.34 26 20.52 

27 13.77 27 15.50 27 19.64 27 23.19 

28 15.64 28 17.58 28 22.21 28 26.14 

29 17.74 29 19.91 29 25.05 29 29.39 

30 20.10 30 22.51 30 28.19 30 32.94 

31 22.71 31 25.39 31 31.64 31 36.80 

32 25.61 32 28.56 32 35.39 32 40.96 

33 28.81 33 32.04 33 39.45 33 45.41 

34 32.31 34 35.83 34 43.79 34 50.10 

35 36.12 35 39.92 35 48.40 35 54.99 

36 40.23 36 44.29 36 53.23 36 60.02 

37 44.63 37 48.93 37 58.22 37 65.10 

38 49.28 38 53.78 38 63.29 38 70.15 

39 54.14 39 58.78 39 68.37 39 75.06 

40 59.15 40 63.86 40 73.33 40 79.70 

 

We determine the risks that are associated with each point in total. The first step is to select the point totals' theoretical 

range based on the point system computed earlier. In our point system, the theoretical range of point totals is −2 to 40. 

We then attached a risk estimate to each point total using the Cox regression equation. 
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Table 3.7 Risk categories based on total points 

 

Total Score Risk Category (based on 5-years estimated risk) 

< 22 (< 10% estimated risk) Low risk 

22 - 27 (10 - 20% estimated risk) Intermediate risk 

> 27 (> 20% estimated risk)  High risk 
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Figure S3.1 

 

 
 

Figure S3.1 Plot to test the proportionality assumption of “Total physical activity time” variable. 
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Figure S3.2 

 

 
 

Figure S3.2 Plot to test the proportionality assumption of “Diabetes” variable. 
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Figure S3.3 

 

 
 

Figure S3.3 Plot to test the proportionality assumption of “Age” variable. 
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Figure S3.4 

 

 
 

Figure S3.4 Plot to test the proportionality assumption of “Systolic blood pressure” variable. 
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Figure S3.5 

 

 
 

Figure S3.5 Plot to test the proportionality assumption of “Cardiovascular disease” variable. 
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Figure S3.6 

 

 
 

Figure S3.6 Plot to test the proportionality assumption of “Body mass index” variable. 
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Figure S3.7 

 

 
 

Figure S3.7 Plot to test the proportionality assumption of the “Sex” variable. 
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Figure S3.8 

 

 
 

Figure S3.8 Plot to test the proportionality assumption of “Age by Body mass index” interaction variable. 
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Figure S3.9 

 

 
 

Figure S3.9 Plot to test the proportionality assumption of “Age by Systolic blood pressure” interaction 

variable. 
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Figure S3.10 

 

 
 

Figure S3.10 Plot to test the proportionality assumption of “Age by Total physical activity time” interaction 

variable. 
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Figure S3.11 

 

  
 

Figure S3.11 Plot to test the proportionality assumption of “Age by Sex” interaction variable. 
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Figure S3.12 

 

 
 

Figure S3.12 Plot to test the proportionality assumption of “Sex by Systolic blood pressure” interaction 

variable. 
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Figure S3.13 

 

 
 

Figure S3.13 Plot to test the proportionality assumption of “Sex by Cardiovascular disease” interaction 

variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

199 
 

Figure S3.14 

 

 
 

Figure S3.14 Traditional risk factors considered by conventional regression-based models. 
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Table S3.1 Missing information about different variables 

 

Variables Missing Total Percent Missing 

Total Physical Activity Time 520 18,322 2.84 

Total Sitting Time 1,421 18,322 7.76 

Depression 16 18,322 0.09 

Diabetes 8 18,322 0.04 

Waist Hip Ratio 4,686 18,322 25.58 

Sex 0 18,322 0.00 

Age 0 18,322 0.00 

Residence 0 18,322 0.00 

Family History of Hypertension 0 18,322 0.00 

Diastolic Blood Pressure 4,283 18,322 23.38 

Systolic Blood Pressure 4,283 18,322 23.38 

Ethnicity 23 18,322 0.13 

Cardiovascular Disease 0 18,322 0.00 

Highest Education Level Completed 11 18,322 0.06 

Working Status 0 18,322 0.00 

Vegetable and Fruit Consumption 266 18,322 1.45 

Physical Activity 1,846 18,322 10.08 

Total Household Income 1,402 18,322 7.65 

Alcohol Consumption 846 18,322 4.62 

Total Sleep Time 239 18,322 1.30 

Smoking Status 45 18,322 0.25 

Job Schedule 4,303 18,322 23.49 

Marital Status 7 18,322 0.04 

Body Mass Index 4,260 18,322 23.25 

BMI Waist Ratio 4,718 18,322 25.75 

Ever Smoked 41 18,322 0.22 

Body Fat Percentage 4,471 18,322 24.40 

Hip Circumference 4,564 18,322 24.91 

Waist Circumference 4,769 18,322 26.03 

 

 

 

 

 

 

 

 



 

201 
 

Table S3.2 Baseline characteristics of study participants according to the missing status  

 

Socio-demographic characteristics of groups   

Variable  Observations  

(without missing values) 

Observations  

(imputed missing values) 

P-value 

Age, years, mean (SE)  50.99 (9.20) - - 

Sex, n (%) Male 5,763 (31.45)   - - 

Female 12,559 (68.55)   - - 

Body Mass Index, kg/m2, 

mean (SE) 

 26.40 (4.78)  26.62 (5.27) 0.009   

BMI Waist Ratio, mean 

(SE) 

 0.28 (0.03)   0.28 (0.03)   < 0.001 

Hip Circumference, mean 

(SE) 

 104.80 (9.92) 104.99 (10.41)  0.257 

Waist Circumference, 

mean (SE) 

 92.38 (13.14) 92.44 (13.28)   0.785   

Waist Hip Ratio, mean 

(SD) 

 0.91 (0.07) 0.91 (0.07) 0.100   

Body Fat Percentage, 

mean (SE) 

 31.90 (8.56) 31.86 (8.79) 0.795 

Diastolic Blood Pressure, 

mmHg, mean (SE) 

 72.87 (9.36) 73.22 (9.29) 0.032 

Systolic Blood Pressure, 

mmHg, mean (SE) 

 119.63 (13.71) 120.41 (13.78) 0.001 

Marital Status, n (%) Married and/or living with a 

partner 

14,451 (78.90) 7 (100.00) 0.392 

Single, never married 1,180 (6.44)   0 (0.00) 

Other (divorced, widowed, 

separated) 

2,684 (14.65)   0 (0.00) 

Residence, n (%) Urban 15,272 (83.35) - - 

Rural 3,050 (16.65)   - 

Total Household Income, 

n (%) 
< $49,999 2,562 (15.14) 293 (20.90) < 0.001 

$50,000 - $99,999 5,427 (32.07) 462 (32.95) 

$100,000 - $199,999 6,649 (39.30) 500 (35.66) 

≥ $200,000 2,282 (13.49) 147 (10.49) 

Highest Education Level 

Completed, n (%) 

High school or below (none, 

elementary school, high school, 

6,158 (33.63) 3 (27.27) 0.769 
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trade, technical or vocational 

school, apprenticeship training or 

technical CEGEP) 

Diploma but below bachelor’s 

degree (diploma from a 

community college, pre-university 

CEGEP or non-university 

certificate, university certificate 

below bachelor's level) 

4,924 (26.89) 4 (36.36) 

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, PhD, 

etc.)) 

7,229 (39.48) 4 (36.36) 

Ethnicity, n (%) Aboriginal 68 (0.37) 0 (0.00) 0.978 

Asian (South Asian, East Asian, 

Southeast Asian, Filipino, West 

Asian, Arab) 

826 (4.51)        1 (4.35) 

White 16,873 (92.21) 22 (95.65)     

Latin American Hispanic 162 (0.89)     0 (0.00) 

Black 97 (0.53)    0 (0.00) 

Other (Jewish and others) 273 (1.49) 0 (0.00) 

Diabetes, n (%)  735 (4.01)   0 (0.00) 0.563 

Cardiovascular Disease, n 

(%) 

 377 (2.06)    - - 

Depression, n (%)  2,009 (10.97)     4 (25.00) 0.073 

Family History of 

Hypertension, n (%) 

 10,946 (59.74) - - 

Smoking Status, n (%) Never 10,084 (55.17)   32 (71.11) 0.028 

Former  6,755 (36.96)      8 (17.78)   

Current 1,438 (7.87) 5 (11.11)      

Ever Smoked, n (%)  8,197 (44.84) 9 (21.95)   0.003 

Alcohol Consumption, n 

(%) 

Never 1,210 (6.92)    83 (9.81) 0.002 

≤ 1 time a week 9,177 (52.51) 467 (55.20)   

2 to 3 times a week 3,653 (20.90)   154 (18.20)        

4 to 5 times a week 1,909 (10.92) 84 (9.93) 

≥ 6 times a week 1,527 (8.74) 58 (6.86)   

Working Status, n (%) Full time 10,281 (56.11) - - 

Part time 3,719 (20.30)   - 
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Other (looking after home, 

disable/sick, student, 

unpaid/voluntary)6697  

3,974 (21.69) - 

Unemployed 348 (1.90) - 

Total Sleep Time, n (%) ≤ 5 hours (short sleep duration) 1,179 (6.52) 12 (5.02)   0.533 

6 hours 3,685 (20.38) 54 (22.59) 

7 hours (reference) 6,955 (38.46) 87 (36.40)   

8 hours 5,046 (27.90)    65 (27.20)     

≥ 9 hours (long sleep duration) 1,218 (6.74)   21 (8.79)   

Total Physical Activity 

Time, mean (SE) 

 3168.50 (2866.67) 2817.41 (2930.63) 0.006 

Total Sitting Time, mean 

(SE) 

 2493.30 (1174.18) 2422.02 (1170.47) 0.028 

Physical Activity, n (%) Low (first quartile of physical 

activity time and fourth quartile of 

sitting time) 

1,449 (8.79)    242 (13.11) < 0.001 

 

 

Moderate (second and third 

quartile of physical activity time 

and sitting time) 

13,050 (79.21)    1,429 (77.41)    

High (fourth quartile of physical 

activity and first quartile of sitting 

time) 

1,977 (12.00) 175 (9.48) 

Vegetable and Fruit 

Consumption, n (%) 

Low consumption (less than 5 

servings of vegetable and fruit) 

15,031 (83.25) 242 (90.98) 0.004 

Moderate consumption (less than 5 

servings of vegetable but more 

than 5 servings of fruit OR more 

than 5 servings of vegetable but 

less than 5 servings of fruits 

2,509 (13.90)    20 (7.52) 

High consumption (5 or more 

servings of vegetable and fruit) 

516 (2.86) 4 (1.50) 

Job Schedule, n (%) Regular daytime shift 10,918 (77.88)      1,002 (23.29)      < 0.001 

 

 
Other (evening shift, night shift, 

rotating shift, split shift, irregular 

shift, or on call) 

3,101 (22.12)   3,301 (76.71) 
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Table S3.3 Test of Cox proportional-hazards assumption 

 
Variable rho 𝝌𝟐 Degrees of 

freedom (df) 

P-value 

Sex -0.06572 1.61 1 0.2049 

Total Physical Activity Time 0.04143 0.54 1 0.4631 

Diabetes -0.03620 0.54 1 0.4611 

Age 0.04250 0.67 1 0.4121 

SBP 0.00164 0.00 1 0.9731 

CVD -0.05012 1.03 1 0.3109 

BMI 0.05692 1.15 1 0.2826 

Age by BMI -0.06566 1.59 1 0.2080 

Age by SBP -0.01090 0.05 1 0.8167 

Age by Total Physical Activity Time  -0.04543 0.65 1 0.4208 

Age by Sex 0.04340 0.74 1 0.3906 

Sex by SBP 0.03560 0.47 1 0.4952 

Sex by CVD 0.00310 0.00 1 0.9501 

Global Test  9.66        13  0.7216 
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CHAPTER 4. USING MACHINE LEARNING ALGORITHMS TO PREDICT 

HYPERTENSION INCIDENCE AND COMPARING THEIR PREDICTIVE 

PERFORMANCE WITH A CONVENTIONAL STATISTICAL MODEL IN A LARGE 

SURVIVAL DATA
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4.1    Abstract 

 

Risk prediction models are frequently used to identify individuals who are at risk of 

developing hypertension. This study evaluates different machine learning algorithms and 

compares their predictive performance with the conventional Cox proportional hazard (PH) model 

to predict hypertension incidence in survival data. We used the data of 18,322 participants on 24 

candidate features from the large Alberta’s Tomorrow Project (ATP) to develop different 

prediction models. 

Feature selection methods included two filter-based: a univariate Cox p-value and C-index; 

two embedded-based: random survival forest and least absolute shrinkage and selection operator 

(Lasso); and one constraint-based: the statistically equivalent signature (SES), to select the top 

features. Five machine learning algorithms were developed to predict hypertension incidence: 

penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient 

boosting (GB), along with the conventional Cox proportional hazards (PH) model. The predictive 

performance of the models was assessed using C-index. The performance of machine learning 

algorithms was observed, similar to the conventional Cox PH model. Average C-indexes were 

0.78, 0.78, 0.78, 0.76, 0.76, and 0.77 for Ridge, Lasso, Elastic Net, RSF, GB and Cox PH, 

respectively. Important features associated with each model were also presented.  

Our study findings demonstrate little predictive performance difference between machine 

learning algorithms and the conventional Cox PH regression model in predicting hypertension 

incidence. 
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4.2    Introduction 

 

Hypertension has long been documented as a substantial health burden that affects all 

segments of the population. Globally, hypertension causes 17.8% (9.4 million) of deaths every 

year and 7% of disease burden, making it one of the most significant risk factors for global 

mortality and disease burden1,2. Individuals with hypertension are at higher risk for developing not 

only life-changing, but also possibly life-threatening conditions3. Left uncontrolled or undetected, 

high blood pressure (BP) can lead to dangerous health complications and poor life quality.  Due to 

the high prevalence and global burden of hypertension, early detection and prevention strategies 

need to be a top priority.  

One of the priorities of health and clinical research is to identify people at higher risk of 

developing an adverse health outcome such as hypertension so they can be targeted for early 

preventative strategies and treatment4. Multiple factors may cause and increase the risk of 

hypertension, including physical, hereditary, or behavioral. Individuals who are healthy but are 

found to have a high risk of developing hypertension could be recommended to change their 

lifestyle and behaviors (e.g., physical activity, dietary pattern, alcohol consumption, smoking, etc.) 

to reduce their risk. Prediction modeling can play a vital role in identifying high-risk individuals. 

Prediction models can be used to estimate the risk of future occurrence of a health condition in an 

individual by utilizing different underlying demographic and clinical characteristics called risk 

factors that are believed to be associated with the health outcome of interest. Prediction models 

help predict the chance of experiencing a health outcome by an individual with a given set of risk 

factors.  

Various models have been developed that mathematically combine multiple risk factors to 

estimate the risk of hypertension in asymptomatic subjects in the population. While specific details 
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may vary between clinical risk prediction models, the goals and processes of developing prediction 

models are mostly similar. From all available variables, candidate variables are selected based on 

clinical and statistical viability. A predictive model is derived using an appropriate modeling 

strategy from the chosen candidate variables, and its utility is internally validated. 

The regression-based methodology is the conventional approach for developing prediction 

models. Logistic regression (for binary endpoint/outcome) and Cox regression (for time-to-event 

endpoint/outcomes) are the most frequently used algorithms for conventional regression-based 

prediction models. Machine learning algorithms recently emerged as a popular modeling approach 

that offers an alternative class of models with more computational flexibility5.  Over the last few 

years, machine learning algorithms achieved significant successes across a broad range of fields 

due to their superiority, such as their ability to model nonlinear relations and the accuracy of their 

overall predictions6. Decision trees, random forest, penalized regression models, neural networks, 

and support vector machines are examples of machine learning algorithms7. 

The vast majority of developed hypertension risk prediction models are conventional 

regression-based models8–17. Machine learning-based models also exist in the hypertension 

prediction domain18,19,28,29,20–27. Machine learning algorithms sometimes struggle with reliable 

probabilistic estimation and interpretability30,31. Moreover, in clinical applications, machine 

learning algorithms often produce mixed results in predictive performance compared with 

conventional regression models32–36.  Among the models where machine learning algorithms were 

used to predict hypertension, data were mostly cross-sectional. Models were built without 

considering or utilizing survival information where time is an inherent part of model building. Due 

to the lack of survival data utilization in predicting hypertension in the machine learning domain, 

it is unclear how machine learning-based models will perform in predicting hypertension in 
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survival data. A formal comparison in predictive performance between conventional regression-

based hypertension prediction models and machine learning-based models in a survival setting is 

also absent. There is also a scarcity of comparisons using the same dataset. This motivated us to 

assess and compare machine learning algorithms’ predictive performance with conventional 

regression-based models in a survival setting. 

In this study, we investigated and compared five machine learning algorithms’ performance 

with the conventional Cox PH regression model to predict the risk of developing hypertension 

using Alberta’s Tomorrow Project cohort data. 

4.3 Methods 

 

4.3.1 Study population 

 

The data used in this study are from Alberta’s Tomorrow Project (ATP) cohort data, which 

is Alberta’s largest longitudinal population health cohort and contains data for more than 55,000 

adults from the general population aged 35-69 years. ATP contains baseline and longitudinal 

information on socio-demographic characteristics, personal and family history of the disease, 

medication use, lifestyle and health behavior, environmental exposures, and physical measures. 

ATP launched in 2000, and in 2008 joined the Canadian Partnership for Tomorrow Project 

(CPTP)37. ATP has several questionnaires, and this study uses data from the CORE questionnaire. 

A more detailed description of ATP data is provided in Chapter 3. Our study cohort consists of 

25,359 participants between 35-69 years of age at enrolment.  Eligible subjects were free of 

hypertension at baseline and consented to have their data linked with Alberta’s administrative 

health data. Linking with administrative health data was primarily done due to the lack of follow-

up data in ATP, which was necessary to determine hypertension incidence. A detailed description 

of data linkage is provided in Appendix 1. We excluded 6,996 participants from the analysis who 
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had hypertension at baseline and consequently did not meet eligibility criteria (free of hypertension 

at baseline). We also excluded 41 participants who responded to hypertension status questions at 

baseline as “don’t know” or “missing”. Eighteen thousand three hundred twenty-two participants 

remained after exclusion and were finally included in the analysis. The Conjoint Health Research 

Ethics Board (CHREB) at the University of Calgary granted ethical approval for this study. 

4.3.2 Selection of candidate features 

 

We compiled a list of available potential candidate features before launching the analysis. 

We determined the possible candidate features for model development based on a literature search, 

features used in the past, and discussion with content experts. We initially considered 24 candidate 

features for the model development process. Given our model’s intended clinical application, we 

deliberately did not consider any genetic risk factors/biomarkers as potential candidate features. 

4.3.3 Definition of features 

 

The outcome incident hypertension was determined from linked administrative health data 

using a coding algorithm. We used the relevant ICD-9 and ICD-10 codes (ICD-9-CM codes: 401.x, 

402.x, 403.x, 404.x, and 405.x; ICD-10-CA/CCI codes: I10.x, I11.x, I12.x, I13.x, and I15.x) and 

a validated hypertension case definition (two physician claims within two years or one hospital 

discharge for hypertension) to define hypertension incidence38. 

The age of the study participants, body mass index (BMI), the waist-hip ratio, diastolic blood 

pressure (DBP), systolic blood pressure (SBP), total physical activity time (total MET 

minutes/week), and total sitting time (the sum of the sitting times on weekdays and weekends) 

were all considered as continuous features. The remaining features were categorical. The sex of 

the participants was either male or female. The residence was either urban or rural. Marital status 

was categorized into three groups: married and/or living with a partner, single who never married, 
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and others (divorced, widowed, separated). Total household income was categorized into four 

groups: < $49,999, $50,000-$99,999, $100,000-$199,999, and ≥ $200,000. The highest education 

level completed was categorized into three groups: high school or below (none, elementary school, 

high school, trade, technical or vocational school, apprenticeship training or technical CEGEP), 

diploma but below bachelor’s degree (diploma from a community college, pre-university CEGEP 

or non-university certificate, university certificate below bachelor’s level), and bachelor’s degree 

or above (bachelor’s degree, graduate degree [MSc, MBA, MD, PhD, etc.]). Ethnicity was 

categorized into six groups: Aboriginal, Asian (South Asian, East Asian, Southeast Asian, Filipino, 

West Asian, Arab), White, Latin American Hispanic, Black, and other (Jewish and others). 

Diabetes was categorized as “yes” or “no” based on the response to the question “Has a doctor 

ever told you that you had diabetes?”. Cardiovascular disease was categorized as “yes” if any 

stroke, myocardial infarction, angina, arrhythmia, coronary heart disease, coronary artery disease, 

heart disease, and heart failure was present and as ‘no” if absent. Depression was categorized as 

“yes” or “no” based on the response to the question “Has a doctor ever told you that you had 

depression?”. Family history of hypertension was categorized as “yes” if any first-degree relative 

was diagnosed with hypertension, otherwise “no”. Smoking status was categorized as: never, 

former, and current. Alcohol consumption was categorized into five groups: never, ≤ 1 time a 

week, 2 to 3 times a week, 4 to 5 times a week, and ≥ 6 times a week. Working status was 

categorized into four groups: full-time, part-time, other (looking after a home, disable/sick, 

student, unpaid/voluntary), and unemployed. Total sleep time was categorized into four groups: ≤ 

5 hours (short sleep duration), 6 to 7 hours, 8 hours, and ≥ 9 hours (long sleep duration). Physical 

activity was categorized as: low (first quartile of physical activity time and fourth quartile of sitting 

time), moderate (second and third quartile of physical activity time and sitting time), and high 
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(fourth quartile of physical activity and first quartile of sitting time). Vegetable and fruit 

consumption was categorized as low (less than 5 servings of vegetable and fruit), moderate (less 

than 5 servings of vegetable but more than 5 servings of fruit OR more than 5 servings of vegetable 

but less than 5 servings of fruits), and high (5 or more servings of vegetable and fruit). Job schedule 

was categorized as regular daytime shift and other (evening shift, night shift, rotating shift, split 

shift, irregular shift, or on-call). 

4.3.4 Missing values 

 

Our dataset has missing values on several candidate features ranging from 0 to 26%. 

Information on missing values for different candidate features is presented in the supplementary 

table (Table S4.1). To impute the missing data, we have used the multiple imputations by chained 

equations method39,40.  

4.3.5 Feature selection 

 

Modern-day datasets are rich in information with data collected on many features, making 

the data high dimensional. Such high-dimensional datasets create computational difficulty and 

complicate the interpretability of a prediction model. Feature selection is a process where a subset 

of relevant features from a large amount of data is selected to filter the dataset down to the smallest 

possible subset of accurate features. It is imperative to identify the relevant features from a dataset 

and remove less significant features that have a minimal contribution to the outcome to achieve 

better prediction model accuracy. Feature selection is one of the core concepts in machine learning 

that massively impacts a model’s performance. Feature selection offers enhanced model 

performance by mitigating the risk of overfitting, improved computational speed and time, 

decreased computational requirements, and easier interpretability of the model.  
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Feature selection methods can be classified into three categories: filter, wrapper, and 

embedded methods41. Filter methods use feature ranking techniques as the main criteria for feature 

selection41. An appropriate ranking criterion is applied to score the features, and features that are 

below a specified threshold are eliminated. Filter methods serve as a preprocess to rank the features 

in which the highest-ranked features are selected. Wrapper methods use the performance of the 

model as the feature selection criterion41. The model is wrapped in a search algorithm that will 

find a subset of the features that give the highest model performance. Embedded methods integrate 

the selection of features as part of the model building process41. 

There are different ways to assign numerical scores within filter methods so that features can 

be ordered based on their relevance. This study used two popular variants in the survival analysis 

setting: a univariate Cox p-value and C-index42. A univariate Cox model is separately applied for 

each feature, and p-values are obtained43. These p-values are used as importance scores. The C-

index calculation is performed for each feature without fitting a survival model. The resulting C-

index is used as a score for that feature42. Features are ordered according to their C-index, and a 

higher C-index indicates more importance. This study also employed two popular embedded 

methods of feature selection: RSF and Lasso. Both are machine learning approaches for building 

prediction models but also perform feature selection. Variable importance in RSF is calculated 

using a prediction error approach involving noising up the feature by randomly permuting its 

value44. A feature’s variable importance is the difference between a prediction error when a feature 

is noised and a  prediction error in the original feature44. The Lasso method shrinks the regression 

model’s coefficients as part of penalization, and the features left after the shrinkage process are 

selected for model building. In Lasso, prediction/fitting errors are minimized using the objective 

functions, and the features with near-zero regression coefficients are eliminated45. We also 
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employed the statistically equivalent signature (SES)46, a constraint-based method for feature 

selection that tries to identify multiple subsets of predictive features whose performance is 

statistically equivalent47. The signature here implies minimal sets of features with maximum 

predictive power. The primary purpose of running the SES algorithm is to select variables as 

important according to the increasing p-value. 

4.3.6 Machine learning models 

 

Modeling survival analysis (time-to-event data) requires specialized methods to handle 

unique challenges such as censoring, truncation, time-varying features, and effects. Censoring, 

where the event of interest is not observed due to time constraint or lost to follow-up during the 

study period, is challenging, and survival analysis provides different mechanisms to deal with such 

problems. Application of typically used statistical or machine learning approaches to analyze 

survival data is impractical, as regular statistical and supervised machine learning algorithms do 

not inherently handle censored data. Statistical methods for handling survival data are well 

established. Several machine learning algorithms have also been developed and adapted to work 

with survival analysis data, effectively addressing complex challenges associated with survival 

data.  

This study developed five machine learning algorithms, namely RSF, boosted gradient, 

penalized Lasso, penalized Ridge, and penalized EN. We provide a brief description of these 

models below. Although it is not a machine learning algorithm, the Cox PH model is included here 

as a conventional regression-based model (baseline) against which we compared the machine 

learning-based models. 

4.3.6.1 Cox PH model 
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The Cox PH model is considered the standard model for analyzing survival data43. The Cox 

PH model is semi-parametric (since the baseline hazard function, ℎ0(𝑡), is unspecified) and 

evaluates the effects of observed risk factors simultaneously on the time to an event of interest 

(e.g., diagnosis of a disease). It is the most frequently used method for modeling an individual’s 

survival, given their baseline data. 

The Cox PH model is stated by the hazard function, which is the risk of an event occurring 

at time t. The formula for the Cox PH model is 

ℎ (𝑡, 𝑋1, 𝑋2, … 𝑋𝑝) = ℎ0(𝑡)exp (𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝)      

where ℎ (𝑡, 𝑋1, 𝑋2, … 𝑋𝑝) is the expected or predicted hazard at time 𝑡 for a subject with covariate 

values, 𝑋1, 𝑋2, … 𝑋𝑝, ℎ0(𝑡) is the baseline hazard when all the covariates equal to zero, 𝑒𝑥𝑝 is the 

exponential function, 𝑋𝑖 is the 𝑖𝑡ℎ covariate in the model, and 𝛽𝑖 is the regression coefficient for 

the 𝑖𝑡ℎ covariate, 𝑋𝑖. 

The Cox PH model does not assume a particular distribution for the survival times. The 

baseline hazard function is also unspecified (no assumptions about the shape of the function), 

which can take any form and only a function of time (i.e., no covariates involved). However, the 

model is limited by some strict assumptions, such as the proportional hazards, and violation of 

these assumptions will end up in completely misleading results. The regression coefficients in the 

Cox PH model are estimated by maximizing the partial likelihood.  

4.3.6.2 Penalized Cox regressions (Lasso, Ridge, and EN) 

 

When applied to high-dimensional data (the number of features in the data is almost equal 

to or even exceeds the number of observations), the basic Cox model does not generalize well. The 

model may perform poorly and provide inaccurate results due to overfitting (which occurs when a 

model is tailored to a specific dataset and cannot generalize to other datasets)48. Overfitting can be 
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prevented through regularization, a process of introducing additional information into the model. 

Several different penalty functions have been developed and introduced in prediction models to 

identify the most relevant features of the outcome in high-dimensional data. Such a model is called 

a penalized model, which adds penalty functions to restrict the features. This restriction reduces or 

shrinks the coefficient values toward zero to ensure that the model has less impact on the less 

relevant features. 

The two most commonly used regularizers are the L1 penalty and L2 penalty. In the L1 

penalty (also known as Lasso), the sum of the coefficients’ absolute value is penalized, and feature 

selection and regression coefficient estimation are simultaneously performed. The L1 penalty 

yields sparse models (models with a smaller number of features) that are more easily interpreted7. 

In the L2 penalty (also known as Ridge regression), the sum of squared coefficients is penalized. 

Unlike Lasso, Ridge regression cannot produce a sparse model, as any of the coefficients never 

become precisely zero, and hence none are eliminated. For the same reason, Ridge regression also 

cannot perform variable selection. Lasso suffers from some limitations because it cannot select 

more features than the number of observations, and in cases where there are correlated features, it 

tends to choose only one from a group without discrimination49. Lasso feature selection can be too 

data-dependent and therefore unstable. 

EN emerged from Lasso criticism and provided a solution by combining the Ridge 

regression and Lasso penalties to get the best of both worlds. EN is a linear combination of the L1 

and L2 penalties and can perform feature selection and deal with the correlation between the 

features simultaneously49. Unlike Lasso, EN can be useful when the number of features is larger 

than the number of observations. 

4.3.6.3 Random survival forest 
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The random forest50 is an ensemble method specifically designed to make predictions using 

tree-structured models. RSF51 is an extension of the original Breiman’s random forest50 to censored 

survival data using a forest of survival trees for prediction. In an RSF, many bootstrap samples are 

randomly drawn from the given dataset, and for each sample, a survival tree is built by randomly 

selecting features. Each node is split based on randomly selected candidate features in an RSF to 

maximize the child nodes’ survival difference. Using the non-parametric Nelson-Aalen (NA) 

estimator, the ensemble Cumulative Hazard Function (CHF) of the bootstrapped samples is 

calculated by taking the CHF average of each tree6. Randomization in RSFs reduces the correlation 

among the trees and thus improves the predictive performance. RSF offers many advantages: the 

ability to model complex, nonlinear data, handle high-dimensional data, identify interactions, and 

naturally impute missing data, and has become a popular and powerful tool for survival 

prediction52. 

4.3.6.4 Boosted gradient  

 

The idea behind boosting is to add new models to the ensemble sequentially. At each 

iteration, a new weak, base-learner model (where the error rate is only a little better than random 

guess) is trained concerning the error (residuals) of the whole ensemble learned so far and 

improved the remaining error iteratively. Once it reaches a stage where errors cannot be improved, 

the process can be stopped. Algorithmically, a loss function is minimized such that loss becomes 

its minimum. GB53 identifies the shortcomings of weak learners by using gradients in the loss 

function. 

4.3.7 Feature importance 

 

It is crucial to communicate machine learning algorithms’ findings to an audience who may 

not be familiar with such algorithms. Just presenting the algorithm’s predictive performance is 
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often not enough. Somehow, we need to attribute the predictions to the input data elements that 

contribute to model accuracy. Feature importance is a tool that refers to a class of techniques for 

assigning scores to input features according to their usefulness at predicting a target feature. The 

relative scores can indicate which features are most relevant to the target and which are not. Feature 

importance helps with interpreting and explaining machine learning algorithms by illustrating the 

predictive power of the dataset’s features.  

Function for computing the importance of features in RSF, GB, and Cox PH models is based 

on Breiman’s permutation method50, where each feature is randomly permuted at a time, and the 

associated reduction in predictive performance is calculated. For the penalized models, the 

standardized regression coefficients’ magnitude was used to rank order the features according to 

their importance54. To ensure comparable rank-ordering across all models, the importance metrics’ 

absolute values for all the features were scaled to unit norm55. 

4.3.8 Statistical analysis 

 

We first imputed the missing values. We then randomly split subjects into two sets: the 

training set, which included 67% (two-thirds) of the sample (n = 12,233), and the testing set, which 

included the remaining 33% (one-third) (n = 6,089). The two groups’ baseline characteristics were 

compared using the unpaired t-test or the χ2-test, as appropriate. We developed risk prediction 

models from the training data and assessed the models’ performance using the testing data. 

Continuous features remained continuous in the model development. Five different feature 

selection methods were employed to derive the most accurate risk prediction model for all the 

machine learning and conventional regression models. Features were first ranked according to 

their importance/scores/p-values. Based on the features’ ranking, the top 20 features by each of 
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the methods were selected. Due to the variations in selected top 20 features by different methods, 

features that are common in all the methods are finally considered in model building. 

Five machine learning algorithms and the conventional Cox PH model were developed in 

the training set. Machine learning algorithms have hyper-parameters that need to be selected to 

optimize model performance. We carried on tuning these hyper-parameters automatically within 

a 10-fold nested cross-validation loop. Hyper-parameter values were chosen by applying 20 

random iterations in the inner loop, and model performance was assessed in the outer loop. This 

ensured the repetition of model selection steps for each pair of training and test data. The number 

of random variables for splitting and the minimal number of events in the terminal nodes was tuned 

when building the RSF. We fitted a Cox PH model as a base learner for GB models. The number 

of boosting iterations and the regression coefficients were tuned in GB. For the penalized models, 

parameter lambda was tuned, and the best value was chosen based on 10-fold cross-validation. 

The models’ predictive performance was evaluated using the concordance index (C-index)56, 

which measures the proportion of pairs in which observation with higher survival time has the 

higher probability of survival as predicted by the model. The whole process was iterated 10 times 

by sampling the original data with replacement.  

Moreover, the training data features were ranked according to their relative contribution to 

the prediction of hypertension incidence using various variable importance metrics. The analyses 

were conducted using several packages40,54,57–62 of R software v 3.6.2. 

4.4 Results 

 

We presented the baseline characteristics of the study participants in Table 4.1 and Table 

4.2. In Table 4.1, the study participants’ characteristics are compared between training data and 

test data, while in Table 4.2, characteristics are compared according to the status of developing 
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hypertension.  In Table 4.1, no significant difference (p < 0.05) in study characteristics was 

observed between training data and test data. During the median 5.8-year follow-up, 625 (3.41%) 

participants newly developed hypertension. In Table 4.2, most of the study characteristics were 

significantly different between those who developed hypertension and those who did not. Some 

study characteristics, however, were not significantly different, including marital status (p = 

0.146), residence (p = 0.146), ethnicity (p = 0.349), depression (p = 0.179), family history of 

hypertension (p = 0.061), alcohol consumption (p = 0.189), total physical activity time (p = 0.825), 

and physical activity (p = 0.707). Overall, the study participants’ mean age was 50.99 years, and 

the participation of females (68.55%) in the studies were higher than the males (31.45%). 

Table 4.3 presents feature rankings of all 24 candidate features, and Table 4.4 shows the top 

20 features based on five different methods. Due to the differences in the ranking by different 

methods, the top 20 selected features are not the same. To avoid any less relevant features in the 

model building process, we chose features common in the top 20 selected features by different 

methods. Fourteen features were identified as common in all top 20 features and were included in 

the final model building process (Table 4.4, red-colored cells). These included SBP, DBP, BMI, 

waist-hip ratio, diabetes, cardiovascular disease, age, job schedule, working status, total household 

income, residence, highest education level completed, family history of hypertension, and sex. 

Figure 4.1 describes the relative importance of features concerning the prediction of 

hypertension incidence by six different model building approaches. The waist-hip ratio was 

selected as the top feature by Ridge regression and GB. In contrast, cardiovascular disease was 

selected as the top feature by Lasso regression and EN regression. In comparison, SBP was 

selected as the top feature by the Cox PH model and RSF. The waist-hip ratio, cardiovascular 

disease, diabetes, SBP, age, and BMI have been deemed the most important features considered 
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by most modeling approaches. However, there are also variations in the rank ordering of important 

features across the investigated models. 

Figure 4.2 describes the predictive accuracy of different models. There were negligible 

differences in the accuracy of machine learning and conventional regression-based Cox models.  

The average C-index for the machine learning algorithms Ridge, Lasso, EN, RSF, and GB was 

0.78, 0.78, 0.78, 0.76, and 0.76, respectively. In comparison, the conventional regression-based 

Cox PH model’s average C-index was 0.77. 

4.5 Discussion 

 

In this study, we examined the predictive accuracy of machine learning algorithms and 

compared their performance with the conventional regression-based Cox PH model to predict 

hypertension incidence. The predictive accuracy of the machine learning algorithms and the Cox 

PH model was good63, as the C-index was well over 0.70 in every case. Our findings suggest that 

the machine learning algorithm’s predictive accuracy is similar to the regression-based Cox PH 

model. These findings are consistent with our recent systematic review and meta-analysis, where 

no evidence of machine learning algorithms’ superior predictive performance over conventional 

regression-based models was observed. According to our meta-analysis, the overall pooled C-

statistics of the machine learning-based algorithms was 0.76 [0.71 – 0.80], compared with an 

overall pooled C-statistic of 0.75 [0.73 – 0.77] in the traditional regression-based models. 

In the past, several machine learning algorithms were developed for predicting 

hypertension18,19,28,29,20–27. Most of those algorithms used cross-sectional data and did not predict 

hypertension incidence. Some of the models used longitudinal data but did not incorporate time 

into their model. Only two models predicted the incidence of hypertension, considering survival 

data using machine learning algorithms21,64. Ye et al.21 used XGBoost, and Völzke et al.64 used the 
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Bayesian network to build their model for predicting incident hypertension. However, neither 

study compared their model performance with conventional regression-based models. There have 

been only two studies27,29 where both conventional regression-based models and machine learning-

based models were developed simultaneously. Huang et al.29 and Farran et al.27 both created 

machine learning algorithms along with a conventional logistic regression model. Huang et al.29 

used AUC to assess their models’ performance and found the artificial neural network’s AUC 

(0.90±0.01) much higher than the logistic regression model’s AUC (0.73±0.03). Farran et al.27 

used classification accuracy to assess their models’ performance and found logistic regression had 

relatively similar accuracy (82.4) to other machine learning algorithms (82.4±0.6 for support 

vector machines, 80.0±0.8 for the k-Nearest neighbors, and 80.9 for multifactor dimensionality 

reduction). Nevertheless, none of the studies considered survival data in their modeling. 

We employed feature selection methods before model building and selected the top 20 

features by five different methods. We noticed considerable variations in the top 20 features and 

adopted a strategy where features common in all top 20 features were included in model building. 

We believe selecting common features made our model robust. 

The relative importance of the features in predicting hypertension incidence revealed that 

waist-hip ratio, cardiovascular disease, diabetes, SBP, age, and BMI are the essential features. 

There are apparent discrepancies in a feature’s importance by different methods. DBP was 

identified as an important feature by RSF and GB. However, negligible importance was assigned 

for it in the penalized models. Perhaps this is due to its high collinearity with SBP, and penalized 

models tend to eliminate correlated features. Cardiovascular disease and diabetes were the two 

critical features identified in our study for predicting hypertension incidence, often avoided by 
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most studies. This is because participants with cardiovascular disease and diabetes are often 

excluded from the model building process in those studies. 

This study’s unique strength is comparing machine learning algorithms with the 

conventional regression-based Cox model to predict hypertension incidence using survival data. 

To the best of our knowledge, this is the first time a comparison between machine learning 

algorithms and conventional regression models has been performed to predict hypertension 

incidence in survival data. Using a large cohort data and considering many features is also a 

significant strength of this study. Notwithstanding the strengths, this study also has some 

limitations. The incidence rate of hypertension in our study was relatively low compared to what 

is reported for the general Alberta population65. There can be several potential reasons for that. 

The characteristics of the study participants in ATP may be different from the general Alberta 

population. For example, female participation in ATP data was more than double the male 

participation (69% vs. 31%), and the hypertension incidence rate in Alberta was much lower in 

females than the males in study age groups65. A potential selection bias also may lead to a lower 

incidence rate of hypertension in our study. A selection bias is an error associated with recruiting 

study participants or factors affecting the study participation and usually occurs when selecting 

participants is not random66. The participants in ATP were mainly selected using the volunteer 

sampling method67. Those who decided to join the study  (i.e., who self-select into the survey) may 

have a different characteristic (e.g., healthier) than the non-participants. Due to the longitudinal 

nature of the study, there can also be a loss of study participants during follow-up. Participants 

who were lost to follow-up (e.g., due to emigration out of the province) may be more likely to 

develop hypertension. Our study ascertained outcome hypertension from a linked administrative 

health data (the hospital discharge abstract or physician claims data source) due to a lack of follow-
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up information in ATP. There is a possibility that the outcome ascertainment was incomplete. 

People who did not have a healthcare encounter after cohort enrollment (e.g.,  did not visit a family 

physician/general practitioner or were not admitted to the hospital during the study period) were 

missed and can potentially lead to a lower hypertension incidence.  We only compared C-index to 

evaluate the models’ predictive performance. Although we tried to compare all the models with a 

standard performance measure, and C-index is the most commonly used predictive measure, 

considering other performance measures such as the Brier score could better compare the models’ 

performance. We could not evaluate our models’ performance in an external cohort, which is 

essential for any prediction model’s generalizability. Considering additional machine learning 

algorithms such as artificial neural networks and survival support vector machines could make the 

comparison more sophisticated. 

In conclusion, we developed several machine learning algorithms for predicting 

hypertension incidence using survival data. We compared machine learning algorithms’ 

performance with conventional Cox PH regression models, and a negligible difference in 

predictive performance was observed. Based on this study’s findings, conventional regression-

based models are comparable to machine learning algorithms to provide good predictive accuracy 

in a moderate dataset with a reasonable number of features. 
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Figure 4.1 Features ranked according to their importance by the different models 
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Figure 4.2 Boxplots showing the spread of values of the C-index produced by the different models 
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Table 4.1 Baseline characteristics of study participants and comparison of the training and test data 

Socio-demographic characteristics of groups 

Variable Categories All participants 

(18,322) 

Derivation sample  

(n = 12,233) 

Validation sample  

(n = 6,089) 

P-value 

Age, years, mean (SE)  50.99 (9.20) 50.94 (9.19) 51.07 (9.24) 0.377   

Sex, n (%) Male 5,763 (31.45)   3844 (31.42) 1919 (31.52)   0.899 

Female 12,559 (68.55)   8389 (68.58)   4170 (68.48) 

Body Mass Index, 

kg/m2, mean (SE) 

 26.45 (4.90) 26.48 (4.94)  26.39 (4.81)  

Waist-Hip Ratio, 

mean (SE) 

 0.91 (0.07) 0.91 (0.07)   0.91 (0.07) 0.882  

Diastolic Blood 

Pressure, mean (SE) 

 72.95 (9.35)    72.93 (9.35) 72.97 (9.34) 0.787 

Systolic Blood 

Pressure, mean (SE) 

 119.81 (13.73)    119.75 (13.73) 119.92 (13.71)  0.446 

Marital Status, n (%) Married and/or living with a 

partner 

14,458 (78.91)    9659 (78.96)    4799 (78.81)     0.226 

Single, never married 1180 (6.44)    763 (6.24)    417 (6.85)    

Other (divorced, widowed, 

separated) 

2684 (14.65)    1811 (14.80)      873 (14.34)       

Residence, n (%) Urban 15,272 (83.35)       10,180 (83.22)    5092 (83.63)   0.484 

Rural 3050 (16.65)   2053 (16.78)   997 (16.37)   

Total Household 

Income, n (%) 

< $49,999 2855 (15.58)    1904 (15.56)   951 (15.62)    0.416 

$50,000 - $99,999 5889 (32.14) 3902 (31.90)    1987 (32.63)     

$100,000 - $199,999 7149 (39.02)   4823 (39.43)   2326 (38.20)    

≥ $200,000 2429 (13.26)   1604 (13.11)   825 (13.55)   

Highest Education 

Level Completed, n 

(%) 

High school or below (none, 

elementary school, high 

school, trade, technical or 

vocational school, 

apprenticeship training or 

technical CEGEP) 

6161 (33.63)    4073 (33.30) 2088 (34.29)       0.310 

Diploma but below 

bachelor’s degree (diploma 

from a community college, 

pre-university CEGEP or 

non-university certificate, 

4928 (26.90   3288 (26.88)   1640 (26.93) 
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university certificate below 

bachelor’s level) 

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, 

PhD, etc.)) 

7233 (39.48)     4872 (39.83)   2361 (38.77) 

Ethnicity, n (%) Aboriginal 68 (0.37)     49 (0.40)    19 (0.31)     0.316 

Asian (South Asian, East 

Asian, South East Asian, 

Filipino, West Asian, Arab) 

827 (4.51)      545 (4.46)     282 (4.63)     

White 16,895 (92.21)    11,274 (92.16)   5621 (92.31)      

Latin American Hispanic 162 (0.88)     121 (0.99)      41 (0.67)     

Black 97 (0.53) 63 (0.52)   34 (0.56)    

Other (Jewish and others) 273 (1.49)      181 (1.48)   92 (1.51)      

Diabetes, n (%)  735 (4.01)   502 (4.10)       233 (3.83) 0.368 

Cardiovascular 

Disease, n (%) 

 377 (2.06)   257 (2.10)      120 (1.97)   0.559 

Depression, n (%)  2013 (10.99)     1366 (11.17)   647 (10.63)    0.270 

Family History of 

Hypertension, n (%) 

 10,946 (59.74)      7266 (59.40)     3680 (60.44)   0.176 

Smoking Status, n (%) Never 10,116 (55.21)    6739 (55.09)     3377 (55.46)     0.763 

Former  6763 (36.91) 4537 (37.09)    2226 (36.56)    

Current 1443 (7.88)   957 (7.82) 486 (7.98)      

Alcohol Consumption, 

n (%) 

Never 1293 (7.06)   869 (7.10) 424 (6.96)    0.855 

≤ 1 time a week 9644 (52.64) 6415 (52.44) 3229 (53.03) 

2 to 3 times a week 3807 (20.78) 2535 (20.72)    1272 (20.89) 

4 to 5 times a week 1993 (10.88) 1340 (10.95)   653 (10.72) 

≥ 6 times a week 1585 (8.65) 1074 (8.78) 511 (8.39) 

Working Status, n (%) Full time 10,281 (56.11) 6836 (55.88) 3445 (56.58) 0.065 

Part time 3719 (20.30) 2543 (20.79) 1176 (19.31) 

Other (looking after home, 

disable/sick, student, 

unpaid/voluntary) 

3974 (21.69)   2614 (21.37) 1360 (22.34) 

Unemployed 348 (1.90) 240 (1.96) 108 (1.77) 

Total Sleep Time, n 

(%) 

≤ 5 hours (short sleep 

duration) 

1191 (6.50)    804 (6.57) 387        6.36 0.257 

6 hours 3739 (20.41) 2441 (19.95)   1298 (21.32) 

7 hours (reference) 7042 (38.43) 4747 (38.80) 2295 (37.69)    

8 hours 5111 (27.90) 3414 (27.91) 1697 (27.87)   
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≥ 9 hours (long sleep 

duration) 

1239 (6.76)   827 (6.76)    412 (6.77) 

Total Physical 

Activity Time, mean 

(SE) 

 3158.53 (2869.02) 3157.97 (2853.36) 3159.66 (2900.45) 0.970 

Total Sitting Time, 

mean (SE) 

 2487.77 (1174.02)  2495.39 (1176.80) 2472.48 (1168.35) 0.214 

Physical Activity, n 

(%) 

Low (first quartile of 

physical activity time and 

fourth quartile of sitting 

time) 

1691 (9.23) 1157 (9.46) 534 (8.77) 0.280 

Moderate (second and third 

quartile of physical activity 

time and sitting time) 

14,479 (79.03) 9653 (78.91) 4826 (79.26) 

High (fourth quartile of 

physical activity and first 

quartile of sitting time) 

2152 (11.75) 1423 (11.63) 729 (11.97)   

Vegetable and Fruit 

Consumption, n (%) 

Low consumption (less than 

5 servings of vegetable and 

fruit) 

15,273 (83.36) 10,182 (83.23) 5091 (83.61) 0.620 

Moderate consumption (less 

than 5 servings of vegetable 

but more than 5 servings of 

fruit OR more than 5 

servings of vegetable but less 

than 5 servings of fruits) 

2529 (13.80) 1694 (13.85) 835 (13.71)   

High consumption (5 or 

more servings of vegetable 

and fruit) 

520 (2.84) 357 (2.92)   163 (2.68) 

Job Schedule, n (%) Regular daytime shift 11,920 (65.06) 7985 (65.27) 3935 (64.62) 0.385 

Other (evening shift, night 

shift, rotating shift, split 

shift, irregular shift, or on 

call) 

6402 (34.94) 4248 (34.73) 2154 (35.38) 
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Table 4.2 Baseline characteristics of study participants according to the status of developing hypertension or not 

Socio-demographic characteristics of groups 

Variable Categories All participants 

(18,322) 

Participants who 

developed hypertension  

(n = 625) 

Participants who did not 

develop hypertension  

(n = 17,697) 

P-value 

Age, years, mean (SE)  50.99 (0.07)  53.99 (0.35)       50.88 (0.07)      < 0.001 

Sex, n (%) Male 5763 (31.45)  250 (40) 5513 (31.15) < 0.001 

Female 12,559 (68.55)   375 (60) 12,184 (68.85) 

Body Mass Index, 

kg/m2, mean (SE) 

 26.45 (0.04) 28.63 (0.21) 26.38 (0.04)  

Waist Hip Ratio, mean 

(SE) 

 0.9093 (0.0006)    0.9363 (0.0033)       0.9085 (0.0006)       < 0.001 

Diastolic Blood 

Pressure, mean (SE) 

 72.96 (0.08)   78.43 (0.47)       72.78 (0.08)        < 0.001 

Systolic Blood 

Pressure, mean (SE) 

 119.71 (0.11)    132.36 (0.67)       119.40 (0.12)       < 0.001 

Marital status, n (%) Married and/or living with a 

partner 

14,457 (78.91)  488 (78.08) 13,969 (78.94) 0.146 

Single, never married 1180 (6.44) 32 (5.12) 1148 (6.49) 

Other (divorced, widowed, 

separated) 

2685 (14.65)  105 (16.8) 2580 (14.57) 

Residence, n (%) Urban 15,272 (83.35)   428 (68.48) 14,844 (83.88) 0.146 

Rural 3050 (16.65)   197 (31.52) 2853 (16.12) 

Total Household 

Income, n (%) 

< $49,999 2800 (15.28)   178 (28.56) 2627 (14.84) < 0.001 

$50,000 - $99,999 5912 (32.27) 229 (36.68) 5690 (32.15) 

$100,000 - $199,999 7174 (39.16)  177 (28.27) 6986 (39.48) 

≥ $200,000 2436 (13.29) 41 (6.49) 2394 (13.52) 

Highest Education 

Level Completed, n 

(%) 

High school or below (none, 

elementary school, high 

school, trade, technical or 

vocational school, 

apprenticeship training or 

technical CEGEP) 

6164 (33.64)   309 (49.35) 5854 (33.08) < 0.001 

Diploma but below 

bachelor’s degree (diploma 

from a community college, 

pre-university CEGEP or 

non-university certificate, 

4926 (26.89)   163 (26.15) 4764 (26.92) 
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university certificate below 

bachelor’s level) 

Bachelor’s degree or above 

(bachelor's degree, graduate 

degree (MSc, MBA, MD, 

PhD, etc.)) 

7232 (39.47) 153 (24.49) 7079 (40.0) 

Ethnicity, n (%) Aboriginal 68 (0.37)   1 (0.16) 67 (0.38) 0.349 

Asian (South Asian, East 

Asian, South East Asian, 

Filipino, West Asian, Arab) 

827 (4.51) 21 (3.4) 806 (4.55) 

White 16,894 (92.21) 588 (94.03) 16,307 (92.14) 

Latin American Hispanic 162 (0.89) 2 (0.32) 160 (0.9) 

Black 97 (0.53) 2 (0.33) 95 (0.54) 

Other (Jewish and others) 273 (1.49) 11 (1.76) 262 (1.48) 

Diabetes, n (%)  735 (4.01)  58 (9.28) 677 (3.83) < 0.001 

Cardiovascular 

Disease, n (%) 

 377 (2.06)   40 (6.4) 337 (1.9) < 0.001 

Depression, n (%)  2011 (10.98)   79 (12.64) 1932 (10.92) 0.179 

Family History of 

Hypertension, n (%) 

 10,946 (59.74)  396 (63.36) 10,550 (59.61) 0.061 

Smoking Status, n (%) Never 10,107 (55.16)   290 (46.37) 9823 (55.51) < 0.001 

Former  6773 (36.97)    276 (44.15) 6491 (36.68) 

Current 1442 (7.87) 59 (9.48) 1383 (7.81) 

Alcohol Consumption, 

n (%) 

Never 1279 (6.98) 56 (8.97) 1224 (6.92) 0.189 

≤ 1 time a week 9642 (52.63)   341 (54.52) 9307 (52.59) 

2 to 3 times a week 3820 (20.85) 123 (19.77) 3689 (20.85) 

4 to 5 times a week 1988 (10.85)  55 (8.74) 1938 (10.95) 

≥ 6 times a week 1593 (8.69) 50 (8.0) 1539 (8.69) 

Working Status, n (%) Full time 11,449 (62.49)   352 (56.29) 11,057 (62.48) < 0.001 

Part time 4596 (25.09) 182 (29.19) 4422 (24.99) 

Other (looking after home, 

disable/sick, student, 

unpaid/voluntary) 

1857 (10.13)   83 (13.23) 1803 (10.18) 

Unemployed 420 (2.29)  8 (1.28) 415 (2.35) 

Total Sleep Time, n 

(%) 

≤ 5 hours (short sleep 

duration) 

1192 (6.51)   47 (7.49) 1147 (6.48) < 0.001 

6 hours 3732 (20.37)   127 (20.33) 3604 (20.37) 

7 hours (reference) 7048 (38.46) 200 (32.02) 6847 (38.69) 

8 hours 5115 (27.92)  185 (29.66) 4929 (27.85) 
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≥ 9 hours (long sleep 

duration) 

1235 (6.74)  66 (10.49) 1170 (6.61) 

Total Physical 

Activity Time, mean 

(SE) 

 3159.83 (21.43)  3183.97 (126.52)       3157.58 (21.68)       0.825 

Total Sitting Time, 

mean (SE) 

 2488.53 (8.92) 2389.16 (49.14)       2490.98 (9.38)       0.043 

Physical Activity, n 

(%) 

Low (first quartile of 

physical activity time and 

fourth quartile of sitting 

time) 

1685 (9.19)   59 (9.47) 1678 (9.48) 0.707 

Moderate (second and third 

quartile of physical activity 

time and sitting time) 

14,478 (79.02) 488 (78.12) 13,957 (78.87) 

High (fourth quartile of 

physical activity and first 

quartile of sitting time) 

2159 (11.78)  78 (12.40) 2062 (11.65) 

Vegetable and Fruit 

Consumption, n (%) 

Low consumption (less than 

5 servings of vegetable and 

fruit) 

15,264 (83.31)  544 (87.05) 14,721 (83.18) 0.024 

Moderate consumption (less 

than 5 servings of vegetable 

but more than 5 servings of 

fruit OR more than 5 

servings of vegetable but less 

than 5 servings of fruits) 

2536 (13.84)  68 (10.84) 2469 (13.95) 

High consumption (5 or 

more servings of vegetable 

and fruit) 

522 (2.85) 13 (2.11) 507(2.87) 

Job Schedule, n (%) Regular daytime shift 12,866 (70.22)  385 (61.59) 12,452 (70.36) < 0.001 

Other (evening shift, night 

shift, rotating shift, split 

shift, irregular shift, or on 

call) 

5456 (29.78)   240 (38.41) 5245 (29.64) 
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Table 4.3 Feature’s ranked based on five different approaches 

Feature Ranking based on 

Random Survival 

Forest Relative 

Importance 

Ranking based on 

Statistical 

Equivalent 

Signature  

Ranking based on 

Harrel’s C-

Index/Somers’ Dxy 

Rank Correlation  

Ranking based on 

Lasso Cox 

Coefficients/Variable 

Importance 

Ranking based 

on Univariate 

Cox p-values 

Systolic Blood Pressure 1 1 1 13 1 

Diastolic Blood Pressure 2 20 2 15 5 

Body Mass Index 3 2 3 11 3 

Waist-Hip Ratio 4 11 5 1 4 

Diabetes 5 5 14 3 10 

Cardiovascular Disease 6 3 16 2 9 

Age 7 4 4 14 2 

Job Schedule 8 6 6 4 7 

Working Status 9 8 7 19 8 

Total Household Income,  10 7 9 6 6 

Residence 11 13 10 5 12 

Total Sleep Time 12 9 11 22 15 

Highest Education Level Completed 13 12 8 10 11 

Family History of Hypertension 14 17 18 12 16 

Physical Activity, quartiles 15 19 22 21 23 

Smoking Status 16 14 12 23 14 

Total Physical Activity Time 17 24 15 16 17 

Depression,  18 21 21 9 24 

Ethnicity 19 10 24 18 21 

Sex 20 18 13 8 13 

Total Sitting Time 21 22 23 17 22 

Alcohol Consumption 22 16 17 7 19 

Marital Status 23 15 20 24 20 

Vegetable and Fruit Consumption 24 23 19 20 18 
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Table 4.4 Top 20 features selected by the different approaches with red cells indicates commonly selected features  

Top 20 Features 

Random Survival Forest 

Relative Importance 

Statistical Equivalent 

Signature 

Harrel’s C-Index/Somers’ 

Dxy Rank Correlation 

Lasso Cox 

Coefficients/Variable 

Importance Feature 

Univariate Cox p-values  

Systolic Blood Pressure Systolic Blood Pressure Systolic Blood Pressure Waist-Hip Ratio Systolic Blood Pressure 

Diastolic Blood Pressure Body Mass Index Diastolic Blood Pressure Cardiovascular Disease Age 

Body Mass Index Cardiovascular Disease Body Mass Index Diabetes Body Mass Index 

Waist-Hip Ratio Age Age Job Schedule Waist-Hip Ratio 

Diabetes Diabetes Waist-Hip Ratio Residence Diastolic Blood Pressure 

Cardiovascular Disease Job Schedule Job Schedule Total Household Income Total Household Income 

Age Total Household Income Working Status Alcohol Consumption Job Schedule 

Job Schedule Working Status Highest Education Level 

Completed 

Sex Working Status 

Working Status Total Sleep Time Total Household Income Depression Cardiovascular Disease 

Total Household Income Ethnicity Residence Highest Education Level 

Completed 

Diabetes 

Residence Waist-Hip Ratio Total Sleep Time Body Mass Index Highest Education Level 

Completed 

Total Sleep Time Highest Education Level 

Completed 

Smoking Status Family History of Hypertension Residence 

Highest Education Level 

Completed 

Residence Sex Systolic Blood Pressure Sex 

Family History of 

Hypertension 

Smoking Status Diabetes Age Smoking Status 

Physical Activity, quartiles Marital Status Total Physical Activity Time Diastolic Blood Pressure Total Sleep Time 

Smoking Status Alcohol Consumption Cardiovascular Disease Total Physical Activity Time Family History of 

Hypertension 

Total Physical Activity Time Family History of 

Hypertension 

Alcohol Consumption Total Sitting Time Total Physical Activity Time 

Depression Sex Family History of 

Hypertension 

Ethnicity Vegetable and Fruit 

Consumption 

Ethnicity Physical Activity, quartiles Vegetable and Fruit 

Consumption 

Working Status Alcohol Consumption 

Sex Diastolic Blood Pressure Marital Status Vegetable and Fruit 

Consumption 

Marital Status 
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Table S4.1 Missing information about different variables 

 

Variables Missing Total Percent Missing 

Total Physical Activity Time 520 18,322 2.84 

Total Sitting Time 1,421 18,322 7.76 

Depression 16 18,322 0.09 

Diabetes 8 18,322 0.04 

Waist Hip Ratio 4,686 18,322 25.58 

Sex 0 18,322 0.00 

Age 0 18,322 0.00 

Residence 0 18,322 0.00 

Family History of Hypertension 0 18,322 0.00 

Diastolic Blood Pressure 4,283 18,322 23.38 

Systolic Blood Pressure 4,283 18,322 23.38 

Ethnicity 23 18,322 0.13 

Cardiovascular Disease 0 18,322 0.00 

Highest Education Level Completed 11 18,322 0.06 

Working Status 0 18,322 0.00 

Vegetable and Fruit Consumption 266 18,322 1.45 

Physical Activity 1,846 18,322 10.08 

Total Household Income 1,402 18,322 7.65 

Alcohol Consumption 846 18,322 4.62 

Total Sleep Time 239 18,322 1.30 

Smoking Status 45 18,322 0.25 

Job Schedule 4,303 18,322 23.49 

Marital Status 7 18,322 0.04 

Body Mass Index 4,260 18,322 23.25 

BMI Waist Ratio 4,718 18,322 25.75 

Ever Smoked 41 18,322 0.22 

Body Fat Percentage 4,471 18,322 24.40 

Hip Circumference 4,564 18,322 24.91 

Waist Circumference 4,769 18,322 26.03 
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CHAPTER 5. DISCUSSION 
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5.1   Overview of main findings 

 

This study’s overall objective was developing a prediction tool that is informative for 

patients and clinicians, providing a quantifiable and readily interpretable metric of an individual’s 

risk for developing hypertension. Providing this information will aid patients in making treatment 

decisions and clinicians in providing treatment recommendations to patients. To achieve this goal, 

we searched the literature to explore the existing knowledge, incorporated knowledge that we 

gained in building a new prediction model and attempted to improve the model’s predictive 

accuracy by applying some new analytical tools. 

We presented below the main findings of this study. 

5.1.1  Multiple prediction models exist but none in a Canadian context 

 

The development of a risk prediction model often begins with a systematic review of the 

literature to identify existing models and their nature and get an idea about the model’s set of 

candidate variables1. Performing a systematic review helped us identify existing hypertension 

prediction models, providing a comprehensive summary of these models and a list of risk factors 

considered in the model development. We identified 52 studies that presented 117 models 

predicting the risk of hypertension in the general adult population by searching four databases and 

grey literature. Of the models, 75 were developed using traditional regression-based modeling in 

34 studies, and 42 using machine learning algorithms in 20 studies. Models were mostly developed 

either in white Caucasian or Asian populations. Continent-wise, the highest 28 studies developed 

models using the Asian population, followed by 14 using North American, 8 using European, and 

1 using the South American population. No studies were from Africa and Oceania. Country-wise 

both USA and China had the highest 14 studies each. Among other countries, five studies were 

from Korea, four from Japan, three from Iran, two from England and Turkey, and one each from 
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Sweden, India, Spain, Finland, Germany, Kuwait, and Brazil.  No studies from Canada were 

identified where a hypertension risk prediction model was developed or validated.  

The number of variables/risk factors considered to create the models ranged from 1 to 19 

in traditional regression-based models and from 2 to 169 in machine learning algorithms. However, 

the median risk factors per model were seven, both in regression-based and machine learning 

algorithms. Age was the most common risk factor, considered in 86 models, followed by BMI (39 

models), DBP (34 models), SBP (31 models), and sex (29 models). Diabetes and cardiovascular 

disease (CVD) are the two important risk factors for hypertension, excluded by most studies. 

Individuals who have diabetes or CVD are expected to develop hypertension more than those free 

of these conditions. Most of the models excluded participants who were with diabetes or CVD 

during model building. If the intention is to build a model for the general adult population, 

excluding people with diabetes and CVD would limit the models’ generalizability.  

5.1.2  Similar predictive performance in existing traditional and machine learning-based 

models identified through meta-regression 

Performing a meta-analysis helped us synthesize the evidence of existing hypertension 

prediction models’ overall predictive performance. The meta-analysis of model discrimination, 

which was typically assessed using the C-statistic (also known as the area under the receiver 

operating characteristic curve), has provided us information about the model’s predictive 

performance. We did not perform a meta-analysis of the total O/E ratio, a rough measure of overall 

model calibration, due to the unavailability of relevant data. We classified identified models into 

two categories--traditional regression-based models and machine learning-based models—due to 

their inherent differences and assessed each category separately. The traditional regression-based 

modeling approach is still dominating in predicting hypertension.   
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The overall pooled C-statistics of the traditional regression-based models and the machine 

learning-based models were almost similar (0.75 versus 0.76). The 95% approximate prediction 

interval for the overall C-statistics was also observed similar (0.63-0.84).  In both categories, high 

heterogeneity in models’ discriminative performance was observed. Stratified analysis by 

modeling methodology (e.g., logistic, Cox) within traditional regression-based models did not 

show much difference in predictive performance, and heterogeneity was still there within different 

modeling methods. A similar stratified pooled analysis within machine learning-based models was 

not performed due to diversity in machine learning algorithms’ modeling method. Meta-

regression, based on various study characteristics, was performed to identify potential 

heterogeneity sources. The participants’ age, sex, and the number of risk factors considered in the 

model were determined C-statistic’s potential sources of high heterogeneity in traditional 

regression-based models. However, the sources of heterogeneity were left unidentified in machine 

learning algorithms.  

Machine learning algorithms are renowned for providing more accurate predictive 

performance. As such, we assumed models developed using machine learning algorithms would 

demonstrate better predictive performance than the traditional regression-based models. However, 

our meta-analysis did not support the evidence of a difference in predictive performance between 

these two categories of models.  

5.1.3  Limitations of current models 

 

The quality of the studies assessed by PROBAST2,3 identified many of the studies failed to 

meet the criteria under the “analysis” domain of risk of bias. Consequently, the risk of bias was 

observed as “high” or ‘unclear” in a large portion of studies. Due to lack of fulfilling the 

“participants” criteria properly, overall, the applicability of the models was also observed as “high 
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concern” or “unclear concern” in many studies. Several models were developed focusing on a 

specific population, making them inappropriate for the general adult population. 

We identified many hypertension prediction models to serve; however, only four were 

externally validated, and only one had multiple validations. External validity establishes the 

generalizability of a prediction model.  Generally, the accuracy of a prediction model degrades 

from the sample in which the model was first developed to subsequent application. For a prediction 

model to be generalizable, its accuracy needs to be reproducible and transportable.  A prediction 

model that cannot predict outcomes accurately in a new sample is useless.  Clinicians did not find 

confidence and trust to use prediction models in their practice that are not well validated. Despite 

its importance being recognized, external validation of prediction models is not common, which 

has primarily contributed to the failure to translate hypertension prediction models into clinical 

practice.   

For a prediction model to be useful in clinical practice, it is crucial that its end-users 

(clinicians and patients) easily comprehend how the model works and can adequately 

communicate its results with each other. Models developed can be converted into a risk score to 

serve this purpose and simplify the tedious calculation of prediction models. We identified only 

eight models that were converted into a risk score after model development. A risk score needs to 

be provided when the models are developed to aid in interpreting risk estimates. 

Studies assessing the impact of adopting hypertension risk prediction models in clinical 

settings was also absent. A prediction model with an impact study to evaluate whether the model 

improves clinical decision-making and patient health outcomes is ideal but lacks reality. Impact 

studies can help identify factors (ease of use, acceptability) that can affect the implementation of 

prediction models in clinical practice. 
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5.1.4  New prediction model for hypertension incidence in Canadian context using large 

cohort data 

The lack of a hypertension prediction model in a Canadian context motivated us to develop 

a new model. We developed a new hypertension incidence prediction model using large Canadian 

ATP cohort data. To obtain follow-up information, ATP data was linked to Alberta’s 

administrative health data.  Eighteen thousand three hundred twenty-two participants aged 35-69 

years without hypertension at baseline from ATP were followed (median follow-up 5.80 years) for 

hypertension incidence, and 625 new hypertension cases were identified. The sample was 

randomly divided into derivation and validation sets at a 2:1 ratio. The model was developed in 

the derivation sample. We used the standard Cox PH model to create the model. While developing 

the new model, we followed the necessary steps required to build a prediction model properly. 

We identified a large set of candidate variables based on literature search and expert 

opinion. A total of 29 candidate variables were compiled available in ATP data. We dealt with 

missing values of the variables by substituting imputed values produced by the multiple imputation 

techniques. On a couple of variables, missing values were up to 26%. Complete case analysis, 

instead of substituting missing values, would reduce our sample size to one fourth. Collinearity 

among the risk factors was assessed using VIF, and highly correlated variables were removed 

before model building to obtain stable estimates. The linearity of the continuous variables was 

evaluated using fractional polynomial, and no issues were detected. Cox proportionality 

assumption was assessed to check violation of assumptions. Only the variables identified as 

significant in univariate association at p < 0.20 were further considered from the set of candidate 

variables. Significant variables identified in univariate associations were put in a multivariable 

model, and variables significant at p < 0.05 were regarded as final risk factors. Nevertheless, we 
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forced the variable sex into the model due to its clinical relevance with hypertension despite being 

statistically insignificant. Within finally selected variables, potential interaction was assessed. 

Several interaction terms were identified as significant. However, the inclusion of those interaction 

terms did not improve the predictive ability of the model significantly. Consequently, we dropped 

the interaction terms from the final model. Our final model consists of age, BMI, SBP, diabetes, 

total physical activity time, cardiovascular disease, and sex. 

5.1.5  Overall good predictive performance of the newly developed model 

 

We assessed the predictive performance of the newly developed model using various 

measures in the validation data. When we applied our derived model in the validation data, the 

model’s discriminative performance was good, as assessed by Harrel’s C-statistic 0.77. The GB 

test results indicated a good calibration of the model (𝜒 2 statistic 8.75, p = 0.07). The model’s 

calibration was also presented graphically using Arjas like plot and calibration plot and was 

observed decent. These plots helped assess calibration visually by comparing the observed and 

expected events in each group based on the risk score. A calibration slope of 1.006 indicated that 

predicted probabilities do not vary enough. The prognostic index histogram in derivation and 

validation data also did not reveal obvious irregularities and outliers. Brier scores calculated at 4-

year, 5-year, 6-year, and 7-year time points were: 0.018, 0.021, 0.026, and 0.029, respectively, 

indicated accurate predictions.      

5.1.6  Deriving risk score from the newly developed model for clinical utility 

 

To facilitate the use of our newly developed model in clinical practice, a user-friendly and 

straightforward risk score from the developed model was created to calculate the risk of incident 

hypertension at different times (2-year, 3-year, 5-year, and 6-year). An algorithm4 was followed 

to prepare the point scoring system. The process involved several steps and started organizing the 
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risk factors into categories and determining each variable’s baseline category and reference values. 

It was then determined how far each category was from the reference category in regression units, 

and a base constant (the number of regression units that reflects one point in the point scoring 

system) was set. Next, the number of points for each category of a variable was determined. It was 

computed by dividing how far each category was from the reference category in regression units 

by the base constant. Then the created final points were rounded to the nearest integers. Finally, 

risk categories were created according to the total score, and patients were classified according to 

their total score into different risk categories. 

5.1.7  Developing some machine learning-based models for hypertension incidence using the 

same survival data 

Machine learning algorithms, an alternative class of models, emerged as a popular 

modeling approach and, due to their superiority, achieved significant successes across a broad 

range of fields. Machine learning algorithms have a reputation for delivering better accuracy in 

predicting outcomes. Due to the lack of use of survival data in predicting hypertension in the 

machine learning domain, it was unclear how machine learning-based models will perform 

predicting hypertension in survival data. A formal comparison in predictive performance between 

conventional regression-based hypertension prediction models and machine learning-based 

models in a survival setting was also absent. There was also a scarcity of comparisons using the 

same dataset. These motivated us to develop machine learning algorithms and compare their 

predictive performance with conventional regression-based models in a survival setting. 

The same ATP data were used to develop machine learning algorithms. Missing values 

were imputed using multiple imputations as before. Before creating the machine learning models, 

we first selected candidate features and then employed five feature selection methods to choose 
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the top 20 features. Feature selection methods included two filter-based: a univariate Cox p-value 

and C-index; two embedded-based: random survival forest and least absolute shrinkage and 

selection operator (Lasso); and one constraint-based: the statistically equivalent signature (SES). 

Due to considerable variations in the top 20 features, we adopted a strategy to choose only those 

features common in all top 20 features. Fourteen features were identified as common and were 

included in the final model building process. Hyper-parameters of different machine learning 

algorithms were tuned automatically within a 10-fold nested cross-validation loop.  

Five machine learning algorithms were developed to predict hypertension incidence: 

penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient 

boosting (GB), along with the conventional Cox proportional hazards (PH) model. Moreover, the 

training data features were ranked according to their relative contribution to the prediction of 

hypertension incidence using various variable importance metrics. 

5.1.8  Similar predictive performance in newly developed machine learning models and 

conventional model 

Fourteen common features used in the model building included SBP, DBP, BMI, waist-hip 

ratio, diabetes, cardiovascular disease, age, job schedule, working status, total household income, 

residence, highest education level completed, family history of hypertension, and sex. The 

predictive performance of the models was assessed using C-index. A negligible difference in the 

predictive accuracy between machine learning and conventional regression-based Cox models was 

observed.  The average C-index for the machine learning algorithms Ridge, Lasso, EN, RSF, and 

GB was 0.78, 0.78, 0.78, 0.76, and 0.76, respectively. In comparison, the conventional regression-

based Cox PH model’s average C-index was 0.77.  
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Regarding feature importance, the waist-hip ratio was selected as the top feature by Ridge 

regression and GB. In contrast, cardiovascular disease was selected as the top feature by Lasso 

regression and EN regression; meanwhile, SBP was selected as the top feature by the Cox PH 

model and RSF. Waist-hip ratio, cardiovascular disease, diabetes, SBP, age, and BMI have been 

deemed the most important features considered by most modeling approaches. Nevertheless, there 

were also variations in the rank ordering of important features across the investigated models. 

This study’s findings have shown that conventional regression-based models are 

comparable to machine learning algorithms to provide good predictive accuracy in hypertension 

prediction in a moderate dataset with a reasonable number of features. 

5.2    Strengths and Limitations 

 

This study’s overall goal was to develop a comprehensive hypertension risk prediction 

model in a Canadian context. The three specific objectives associated with the overall goal were: 

performing a systematic review and meta-analysis on hypertension prediction models, developing 

a new hypertension prediction model applying a traditional regression modeling approach, and 

developing machine learning algorithms for predicting hypertension risk, and compare their 

performance with the traditionally developed model. Each of these specific objectives has been 

reflected as a separate study and has been accomplished with some pros and cons. We discuss the 

strengths and limitations of each below one by one. 

5.2.1  Systematic review and meta-analysis 

 

One of our systematic review’s strengths was the extent of the systematic search, which 

included four different databases, grey literature, and extensive use of the reference lists of the 

identified studies. Accordingly, there was little chance that any relevant studies would have been 

missed. This study was also unique in several ways to the best of our knowledge. This was the first 
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study in which a meta-analysis was carried out to synthesize the predictive performance of the 

hypertension risk prediction models along with the heterogeneity assessment. Comparing the 

overall predictive performance of traditional regression-based models and machine learning-based 

models in predicting hypertension was also exclusive. Moreover, performing a detailed critical 

appraisal of studies in hypertension risk prediction models was also exceptional. 

Nevertheless, there were also limitations to the study. We excluded non-English and non-

French publications. While it is widely perceived that the English language is the primary language 

of science, the choice of scientific results in a particular language can incorporate language bias 

and may lead to incorrect conclusions5. We could only use C-statistics to compare the model 

performance, which could be insensitive to distinguish a model’s ability to stratify patients into 

clinically relevant risk groups correctly5,6. A meta-analysis of calibration measures (e.g., O/E ratio) 

along with C-statistics could provide a comprehensive summary of the performance of these 

models7. Failing to assess publication bias amongst the studies is another potential limitation of 

this study. Recent guidelines7 did not emphasize the need to assess publication bias for prediction 

model performance, which encouraged us not to do so. Instead, we assessed ROB using the 

PROBAST2,3 checklist. 

5.2.2  A new traditionally developed hypertension prediction model 

 

To our knowledge, this was the first hypertension risk prediction model developed 

explicitly in a Canadian population. Using a large sample size to create the model was a significant 

strength of this study. This ensured the stability of the prediction model estimates. Further, 

consideration of many candidate variables in the model building process was also a strength of this 

study. In contrast to most studies, where models were developed in complete cases excluding those 
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with missing values, we imputed missing values in our study. This approach prevented information 

loss, maximized information utilization, and made the results robust. 

Our study had several limitations. Study participants were middle-aged and elderly 

Canadian. Prevention strategies are likely to be more effective if the young population can be 

targeted. Still, our study participants’ age range will likely have minimal impact on our study’s 

generalizability, as the people diagnosed with hypertension are generally ≥ 35 years of age8. At 

baseline, we excluded participants with self-reported hypertension, which can potentially lead to 

misclassification of hypertension status. Determining hypertension status with objective blood 

pressure measurement rather than relying on self-reported alone could better assemble the cohort 

and avoid potential misclassification. The incidence rate of hypertension in our study was 

relatively low compared to what is reported for the general Alberta population9. There can be 

several potential reasons for that. The characteristics of the study participants in ATP may be 

different from the general Alberta population. For example, female participation in ATP data was 

more than double the male participation (69% vs. 31%), and the hypertension incidence rate in 

Alberta was much lower in females than the males in study age groups9. A potential selection bias 

also may lead to a lower incidence rate of hypertension in our study. A selection bias is an error 

associated with recruiting study participants or factors affecting the study participation and usually 

occurs when selecting participants is not random10. The participants in ATP were mainly selected 

using the volunteer sampling method11. Those who decided to join the study  (i.e., who self-select 

into the survey) may have a different characteristic (e.g., healthier) than the non-participants. Due 

to the longitudinal nature of the study, there can also be a loss of study participants during follow-

up. Participants who were lost to follow-up (e.g., due to emigration out of the province) may be 

more likely to develop hypertension. Our study ascertained outcome hypertension from a linked 
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administrative health data (the hospital discharge abstract or physician claims data source) due to 

a lack of follow-up information in ATP. There is a possibility that the outcome ascertainment was 

incomplete. People who did not have a healthcare encounter after cohort enrollment (e.g.,  did not 

visit a family physician/general practitioner or were not admitted to the hospital during the study 

period) were missed and can potentially lead to a lower hypertension incidence. Competing risks 

occur when individuals experience one or more outcomes that compete with the outcome of 

interest12. It hinders the observation of the event of interest or modifies the chance that this event 

occurs. In our context, death could be a competing risk because if a person dies, it hinders the 

observation of hypertension, and the person who dies may also have a higher risk of hypertension. 

We did not account for competing risks in our study because the expected event (death) rate is low 

as the cohort was healthy and relatively young at inception with a short follow-up time. We did 

not include genetic risk factors or biomarkers in our model. The inclusion of genetic risk factors 

in the model had the potential of improving risk prediction. Nevertheless, our performed meta-

analysis and previous studies13 did not show any differences in discriminative performance when 

genetic risk factors were included in the model. Besides, genetic risk factors in the model may 

decrease the prediction model’s application in routine clinical practice. Salt intake, a key dietary 

factor for the risk of incident hypertension; however, data on salt intake were not available in our 

study. We could not perform an external validation of our model, essential for any prediction 

model’s generalizability. Therefore, further validation of our model in other populations, 

particularly in another Canadian jurisdiction, is warranted. 

5.2.3  Machine learning-based hypertension prediction models 

 

This study’s unique strength was comparing machine learning algorithms with the 

conventional regression-based Cox model to predict hypertension incidence using survival data. 
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Comparing machine learning algorithms with traditional regression models to predict hypertension 

incidence using survival data was the first time to the best of our knowledge. The utilization of 

extensive cohort data and consideration of many features is also this study’s significant strengths.  

Notwithstanding the strengths, this study also had some limitations. As outlined earlier, a 

lower incidence rate of hypertension and failure to handle potential reasons associated with the 

lower incidence rate can be considered a limitation of this study. We only compared C-index to 

evaluate models’ predictive performance. Although we intended to compare all the models with a 

standard performance measure and C-index is the standard and most used predictive measure, 

considering other performance measures such as the Brier score could make the comparison more 

comprehensive. We could not evaluate our models’ performance in an external cohort, which is 

essential for prediction models’ generalizability. Consideration of additional machine learning 

algorithms such as artificial neural networks and survival support vector machines could make the 

comparison more elaborate. 

5.3    Future Directions 

 

Based on this study’s findings, there are a few directions that would be worth further 

investigation. 

5.3.1  External validation 

 

The reliability and acceptability of a prediction model largely depend on how well it 

performs in a validation cohort outside of the derivation cohort where the model was developed. 

Internal validation of prediction models is often not sufficient for generalizability, and external 

validation is necessary before implementing prediction models in clinical practice. External 

validation requires data collected from a similar group of patients in a different setting. It aims to 

address a prediction model’s accuracy and performance in patients from a different but plausibly 
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related population. External validation of our newly developed hypertension prediction model 

needs to be performed in an external dataset to assess its performance for generalizability. The 

Canadian Partnership for Tomorrow Project (CPTP)14, a Canada-wide prospective cohort study, 

can be a potential data source for this purpose. 

5.3.2  Developing a computer-assisted tool 

 

For a prediction model to be helpful in clinical practice, it is crucial that its end-users 

(clinicians and patients) easily comprehend how the model works and can adequately 

communicate its results with each other. A typical representation of a predictive model is non-

intuitive and requires an alternative presentation that is discernable so that its users can easily 

understand it. The development of a computerized electronic interactive version of the risk score 

is one such possibility. A web-based version of the risk score that is easily downloadable to a 

computer or mobile phone and can be accessed by physicians and non-physician health workers 

can quickly identify those at high risk of hypertension. Such a tool would be handy and designed 

to support clinicians for quick and consistent estimation of hypertension risk in the general 

population. We can develop such a computerized automatic tool for our hypertension prediction 

model that can smoothly be adopted in routine clinical practice. 

5.3.3  Updating model using meta-modeling  

 

Understanding and quantifying the already reported estimates opens the possibility of 

incorporating those models’ performance characteristics into a newly developed hypertension 

prediction model to improve hypertension’s overall prediction. Using a meta-model updating 

technique, we can enhance the newly developed hypertension prediction model by incorporating 

parameters derived from the existing hypertension prediction models. The meta-model updating 

approach works from the ‘middle ground’ in which current prediction models that may be relevant 
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for the population and endpoint of interest are used and revised to suit the new population15. The 

updated model is then based on both the new and existing data, further improving its performance 

in the new population. There are different approaches for updating a prediction model considering 

the latest data: regression coefficients updating, meta-model updating, and dynamic updating15, 

and any of them can be employed. The application of the meta-model updating technique in 

prediction research is still in its early stage16,17. However, those who have applied the concept have 

found it very successful in accurate outcome prediction18. 

5.3.4  Constructing a multi-disease prediction model 

 

Abnormalities in physiological indicators may indicate not only a single disease but also 

multiple diseases. Therefore, determining the common risk factors and developing a prediction 

model for multiple diseases (e.g., hypertension and hyperlipidemia) can be more important than 

doing so for only a single disease. A two-phase analysis procedure to simultaneously predict 

multiple diseases can be applied. In the first phase, individual risk factors for each disease will be 

selected and combined to determine the common risk factors for both diseases using voting 

principles. In the second phase, a statistical tool (e.g., the multivariate adaptive regression splines 

[MARS]19 method or multivariate logistic regression) can be applied to construct a multi-disease 

predictive model. 

5.4    Conclusion 

 

This study’s overall objective was to develop a comprehensive hypertension risk prediction 

model in a Canadian context. We split the overall objective into three pieces to achieve our goal 

smoothly. Through the systematic review, we identified the existing hypertension prediction 

models, how they were developed, the risk factors considered in different models, and how the 

predictive accuracy varies in various types of models. These findings eventually helped us identify 
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a gap in the hypertension risk prediction models specific to the Canadian context. To fill these 

gaps, we developed a new hypertension incidence prediction model using extensive population-

based Canadian data. The systematic review also helped us figure out the lack of machine learning 

models predicting hypertension incidence in survival context and a formal comparison with 

traditional regression-based models. These further motivated us to develop machine learning 

models for predicting hypertension incidence. We recognized no significant difference in the 

newly developed traditional Cox PH model and machine learning models’ predictive performance. 

Consequently, we recommended proceeding with the traditional regression-based Cox PH model 

due to its easier interpretability. We converted it into a risk score to facilitate its use in the clinical 

setting. After successfully validating the model, this model can be implemented in daily clinical 

practice to support decision-making. 
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APPENDIX 1. 

Data Linkage 

Individual datasets are often limited in scope, consequently limiting their utility in 

comprehensively addressing important questions1. Linking data from multiple sources can 

overcome some of the limitations1. Different information that is believed to be related to the same 

person or event can be connected through the data linkage techniques. Data linkage contains 

pairing observations from two or more files and identifying the pairs belonging to the same entity2. 

Collecting information on the same person from two datasets is a common form of linkage. Among 

many other advantages, data linkage allows the passive follow-up of study participants and 

improved measurement of risk factors and outcomes1. Data linkage from multiple sources is 

challenging because linkage errors can arise from multiple sources and privacy and confidentiality 

issues. To perform the data linkage, we first need to determine its necessity, confirm the data 

availability and check whether a unique identifier exists. If a unique identifier exists, such as a 

personal health number (PHN), linking is a simple operation. When a unique identifier is absent, 

linking is done by combining a range of identifiers, such as date of birth, name, address, etc. There 

are two main types/methods of data linkage algorithms: deterministic and probabilistic. The choice 

of method depends on many interacting factors, such as time, resources, the research question, and 

the quantity and quality of the variables available to link in the dataset1. 

Deterministic Linkage 

The deterministic linkage can be of different types starting from a simple connection of 

two or more datasets with a single reliable and stable identifier to a sophisticated stepwise 

algorithmic linkage. A single identifier or linkage key is used in the deterministic linkage technique 

to join two or more datasets. Deterministic linkage requires a high degree of certainty, which can 
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be achieved if there is a unique identifier such as a PHN. The PHN uniquely identifies an individual 

across datasets. If this unique identifier exists in all datasets to be linked, it can connect an 

individual’s records across those datasets. As deterministic linkage is based on exact matches, 

variables used in deterministic linkage need to be accurate, robust, stable over time, and complete. 

Examples of such variables are sex, date of birth, and first name and last name. Alternatively, a 

linkage key can be created using a combination of attributes such as last name, first name, sex, and 

date of birth, which can be used to match records with the same linkage key value3. This linkage 

key is known as a derived linkage key or statistical linkage key (SLK). Generally, most SLKs are 

constructed from last name, first name, sex, and full date of birth.  

Stepwise deterministic record linkage, a more sophisticated form of deterministic linkage, 

is developed in response to variations that often exist in the attributes used in creating the linkage 

keys for deterministic linkage4. Auxiliary information on the datasets is used in stepwise 

deterministic linkage to provide a platform from which variation in the reported linkage key or 

SLK information can be captured4. This differs from simple deterministic linkage that relies on an 

exact, one-to-one character matching of linkage keys across two or more datasets. “Rules-based 

linkage” is another form of deterministic linkage where a set of rules are used to categorize pairs 

of records as matches or non-matches. Despite being more flexible than using a linkage key, rules-

based linkage development is labor-intensive and overly reliant on the data sets to be linked3. 

Probabilistic Linkage 

Probabilistic linkage is generally applied in the absence of a unique identifier or statistical 

linkage keys or when the linking variables or identifiers are not accurate, stable, or complete to 

perform the deterministic linkage. Attaining a sufficiently comparable value to unique 

identification using several identifying variables is the key in linking in the probabilistic linkage. 
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Individually, each of these variables serves as a partial identifier, but, in combination, they provide 

a reasonably accurate match for the intended purpose of linking datasets.  

When errors exist in linking variables, the probabilistic linkage has a higher capacity to 

link and can provide better linkage than deterministic methods5,6. The deterministic approach’s 

limitations include not considering certain identifiers or certain values having more discriminatory 

power than others. Probabilistic approaches have been developed to address these issues to 

evaluate 1) each identifier’s discriminative ability and 2) the possibility that two records are a 

correct match based on whether they agree with the different identifiers. 

In our study, the three data sources were linked through deterministic linkage using unique 

encrypted health numbers common to all three data sources. Data from the ATP cohort was used 

to define baseline predictors/variables. Data from hospital discharge abstract data and physician 

claims data were linked to identify diagnosed hypertension cases, our study’s outcome. We then 

linked the diagnosed hypertension cases with the ATP cohort data to obtain follow-up information 

about the ATP participants who developed hypertension. 

The ATP has performed the data linkage for us. The ATP retrieved data from external 

sources such as Alberta’s administrative health data through DIMR (Data Integration, 

Measurement & Reporting) and then linked it before releasing it to us for further analysis.  

Cohort Formation 

The cohort was derived from the ATP cohort data. The cohort included all participants 

between 35-69 years of age at enrollment. This age range of the study participants will likely have 

minimal impact on our study’s generalizability, as most of the people diagnosed with hypertension 

are ≥ 35 years of age7. Eligible subjects are free of hypertension at baseline and consented to have 

their data linked with Alberta’s administrative health data.  
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Outcome: Hypertension Incidence 

Our proposed study’s outcome is the incidence of hypertension, which was determined 

from administrative health data. We used a coding algorithm to define diagnosed hypertension in 

administrative health data that refers to individuals who have a diagnostic code for hypertension 

in either the hospital discharge abstract or physician claims data source. The following steps were 

taken to define diagnosed hypertension: 

Step 1. We initially identified patients with diagnosed hypertension using hospital discharge data 

and physician claims data. The relevant ICD-9 and ICD-10 codes (ICD-9-CM codes: 401.x, 402.x, 

403.x, 404.x, and 405.x; ICD-10-CA/CCI codes: I10.x, I11.x, I12.x, I13.x, and I15.x) in the ≤ 25 

coding fields for diagnosis in the hospital discharge data, and ≤ 3 fields in the physician claims 

data was used. We then applied the following validated hypertension case definition to these 

sources: two physician claims within 2 years or one hospital discharge for hypertension8. Incident 

cases were defined as any patient having diagnosed hypertension as defined above but not 

previously identified as such.  

Step 2. We identified the first encounter when an individual meets the hypertension case definition 

algorithm in the study period and exclude subsequent encounters in the study years. After 

exclusion, each patient had one index diagnosis date. We did not consider those events related to 

patients with pregnancy-induced hypertension, defined as females with a hypertension diagnostic 

code and a physician service claim or hospital discharge record within five months (indicating an 

obstetrical event) as a hypertension outcome.  

Step 3. Finally, we linked the index diagnosis with the ATP data (those ATP participants who 

consented to link their data with administrative health data). 
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