
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-03-05

Reducing Energy Consumption and

Latency of Applications on Wireless Devices

Sehati, Ali

Sehati, A. (2018). Reducing Energy Consumption and Latency of Applications on Wireless

Devices (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/13062

http://hdl.handle.net/1880/106417

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Reducing Energy Consumption and Latency of Applications on Wireless Devices

by

Ali Sehati

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

March, 2018

c© Ali Sehati 2018

Abstract

Energy consumption and delay are the key factors influencing users’ quality of experience for

applications running on wireless devices. In cellular networks, providing a satisfactory user

experience faces several challenges caused by the poor interactions between multiple factors.

First, cellular networks suffer from long round trip times and also employ a radio resource

control protocol, which keeps the radio of the device in high power state even after com-

pletion of a data transfer. Second, in most applications, completing a user action involves

many round trips over the high-latency cellular link, which can lead to poor application

performance. Moreover, periodic and intermittent traffic pattern exhibited by the majority

of applications can result in serious energy inefficiencies. In this thesis, we address these

challenges from the network and end device perspectives. First, we design a network-centric

solution, called WebPro, that adopts speculative loading and bundling techniques to reduce

latency and energy consumption of mobile web browsing. Performance evaluation results ob-

tained through live experiments indicate that WebPro outperforms state-of-the-art, though

the degree of improvement varies for different webpages.

Then, we focus on energy-delay tradeoff on end devices and design algorithms to balance

the energy-delay tradeoff inherent in bundling. Specifically, we formulate a generalized notion

of bundling as an online optimization problem. The objective of this problem is to minimize

the bundling cost defined as a weighted summation of energy and delay costs. Based on

two different energy cost models associated with smartphones and internet of things (IoT)

devices, we develop online algorithms to solve the optimization problem. A distinctive feature

of our online algorithms is that they do not rely on any assumption about the traffic pattern

or nature of applications. We provide theoretical performance bounds for our proposed

algorithms by comparing them to an optimal offline algorithm. We evaluate the performance

of our algorithms in a range of realistic scenarios using both model-driven simulations and

ii

real experiments on a smartphone. Our results show that depending on the delay tolerance

level of a user, energy savings ranging from zero to about 100% can be achieved using our

algorithms.

Acknowledgements

I would like to thank my supervisor Dr. Majid Ghaderi. I appreciate the time he spent

discussing research ideas with me during our weekly meetings. His comments on the drafts

of my work helped me improve the quality of my writing and research. Without his guidance

and support, this thesis would hardly have been completed.

I express my warmest gratitude to members of my examination committee, Dr. Mea

Wang, Dr. Diwakar Krishanmurthy, Dr. Geoffrey Messier, and Dr. Majid Khabbazian for

their time to read this thesis and their thoughtful feedback. Their comments and suggestions

enhanced the quality of this thesis. I am also grateful to Martin Arlitt for his help on various

occasions during my PhD.

I should mention the staff of the main office of the Department of Computer Science.

Especially, I would like to thank Britta Hicks and Jackie Hunt who helped me with my

scholarship applications and defense process.

I appreciate the financial support that I received from the University of Calgary and the

Government of Alberta in the form of scholarships, teaching and research assistantships.

I would like to thank many friends and fellow graduate students at the University of

Calgary who made my life happier during my stay in Calgary. I am deeply indebted to my

parents for their perpetual support and unconditional love. They have been the main source

of motivation and encouragement during my studies.

iv

Table of Contents

Abstract . ii
Acknowledgements . iv
Table of Contents . v
List of Tables . vii
List of Figures . viii
List of Symbols . xi
1 Introduction . 1
1.1 Motivation . 1
1.2 Characteristics of cellular networks . 3
1.3 Interactions between applications and servers 5
1.4 Thesis objectives . 7
1.5 Contributions . 11
1.6 Published work . 13
1.7 Thesis organization . 13
2 Background and Related Work . 15
2.1 Background . 15

2.1.1 HTTP protocol . 15
2.1.2 Browser anatomy . 17
2.1.3 Energy consumption of cellular radio 18
2.1.4 Online algorithms . 20

2.2 Related Work . 21
2.2.1 Reducing Latency and Energy of Mobile Web Browsing 21
2.2.2 Energy-Delay Tradeoff for Request Bundling 25
2.2.3 Energy Management in IoT Applications 29

3 Reducing Latency and Energy of Mobile Web Browsing 32
3.1 Our Approach . 35
3.2 WebPro: Proxy-Based Speculative Loading 38

3.2.1 System Architecture . 38
3.2.2 Circumventing Webpage Dependencies 41
3.2.3 Identifying Popular Websites . 42
3.2.4 Practical Considerations . 44
3.2.5 Prototype Implementation . 46

3.3 Performance Evaluation . 49
3.3.1 Experimental Setup . 50
3.3.2 Workload Characterization . 51
3.3.3 Performance Metrics Used . 52
3.3.4 Measurement Results . 53

3.4 Discussion . 68
4 Energy-Delay Tradeoff for Request Bundling on Smartphones 70
4.1 Problem Statement . 71

4.1.1 Energy Cost . 72
4.1.2 Delay Cost . 73

v

4.2 Optimal Offline Algorithm . 74
4.2.1 Performance of the Offline Algorithm 75

4.3 Online Break-Even Algorithm . 77
4.3.1 Cumulative Delay . 78
4.3.2 Max Delay . 79

4.4 Analysis of Online Algorithm under Cumulative Delay 79
4.4.1 Preliminaries . 80
4.4.2 Radio State Transitions . 80
4.4.3 Intervals with No Radio Transition 81
4.4.4 Intervals with One or More Radio Transitions 82
4.4.5 Proof of Theorem 2 . 83
4.4.6 Proof of Theorem 3 . 84

4.5 Analysis of Online Algorithm under Max Delay 86
4.5.1 2-competitiveness . 86
4.5.2 Tightness . 88

4.6 Performance Evaluation . 89
4.6.1 Model-Driven Evaluation . 89
4.6.2 Smartphone Experiments on LTE . 96

5 Online Energy Management in IoT Applications 98
5.1 Problem Statement . 99

5.1.1 Energy Cost . 101
5.1.2 Delay Cost . 101

5.2 Optimal Offline Algorithm . 102
5.3 Online Energy Management Algorithm . 102
5.4 Analysis of the Break-Even Algorithm . 104

5.4.1 Preliminaries . 104
5.4.2 Analysis of a Single Interval . 105
5.4.3 Cost of Grant Intervals . 106
5.4.4 Intervals with No Radio Transition 108
5.4.5 Intervals with One or More Radio Transitions 108
5.4.6 Remarks on the competitive ratio of Theorem 6 111

5.5 Performance Evaluation . 112
5.5.1 Model-Driven Evaluation . 112
5.5.2 Experiments on IoT Testbed . 119

6 Conclusion . 122
6.1 Summary of the thesis . 122
6.2 Future directions . 124
Bibliography . 127

vi

List of Tables

3.1 Hit ratio and top URL set size that result from running the simple algorithm
over University of Calgary’s HTTP traces collected between May 1, 2015 and
May 6, 2015 . 43

3.2 Characteristics of the Websites Used in the Experiments (accessed on Oct.
29, 2014). 51

3.3 Improvement in Average Page Load Time. 55
3.4 Improvement in Average Radio-on Time with Bundling. 68

4.1 Empirical competitive ratio of BE. 92
4.2 Empirical competitive ratio with bursty arrival pattern. 94

5.1 Power model parameters. 112
5.2 Empirical competitive ratio of BE. 113

vii

List of Figures and Illustrations

1.1 Effect of tail time on energy consumption . 4

2.1 HTTP Persistent Connection [1] . 16
2.2 RRC state machines for the 3G/LTE networks 19
2.3 Energy cost is variable: Scenarios (a) and (b) have the same energy cost even

though they have different number of grants. 28

3.1 CDF of the time to fetch the base HTML file for Canada’s top 100 websites.
In the median case, it takes 430 ms to download the base HTML file. However,
this time can go beyond 1 second in some cases. 34

3.2 Resource list for an example webpage. This webpage contains a CSS, a
JavaScript, two images and an HTML iframe. Notice that the embedded
JavaScript file itself refers to another image file which can be identified only
after the JavaScript file is fetched and processed. 36

3.3 High Level Architecture of WebPro. 39
3.4 Downloading a Webpage with WebPro (a) and PBB (b). 40
3.5 Flow Chart of Operations Performed at Remote Proxy 41
3.6 Bundling Performance . 48
3.7 Experimental Setup with the Remote Proxy. 50
3.8 Temporal Change in Webpage Structures. Drop in the value of the average hit

ratio over time is an indication of the change in the structure of the webpages.
However, the amount of such change is relatively low over an eight hour period. 54

3.9 Cumulative Distribution Function of Page Load Time. WebPro outperforms
benchmark PBB. In the WLAN setting, under WebPro, 73% of the pages
load in less than 2 seconds. However, in the PBB approach, 28% of the
instances complete loading within 2 seconds. In the cellular environment,
under WebPro, 78% of the page loads complete within 6 seconds while under
PBB, only 55% of the pages complete loading in that time. 55

3.10 Back to Back load time for 20 popular webpages as a function of page hit
ratio. An increase in the page hit ratio reduces the total browsing time. In
the case of WLAN and cellular measurements, there is a maximum reduction
of 28% and 39%, respectively. The maximum improvements are achieved at
100% page hit ratio. 57

3.11 Page Hit Ratios achieved by applying the space saving algorithm to the HTTP
traces collected from the University of Calgary’s Internet link over four dif-
ferent six day intervals. Increasing the size of the popular URLs list leads to
higher page hit ratios. Also, on average, keeping just the top-1000 popular
URLs in the stream of URLs that arrive at the proxy, results in over 80% page
hit ratios. 59

viii

3.12 Average Page Load Time for a Wikipedia article page as a function of the
number of parallel connections. We see that increasing the concurrency re-
duces the page load time. The benefits are greater for WebPro as it can fetch
more subresources concurrently. 61

3.13 Average Page Load Time for a Wikipedia article page as a function of network
delay. We see that higher RTT values lead to higher page load times. By
increasing RTT, PBB incurs higher latencies compared to WebPro. 62

3.14 Dependency graphs for four carefully designed test pages with the same set of
embedded objects. In the first test page (a), all the objects can be discovered
after fetching and parsing the base HTML file, giving it a critical path of
length 1. The second page (b) has a critical path of length 2, because the
image object can be revealed after fetching and evaluating the JavaScript
object sc1.js. In the third page (c) with critical path length 3, fetching and
evaluating JavaScript object sc2.js, reveals another JavaScript object, sc1.js,
the fetching and evaluation of which reveals the image object. Finally, in
the last page (d) with critical path length 4, evaluating sc3.js reveals sc2.js,
evaluating sc2.js reveals sc1.js and evaluating sc1.js reveals the image object. 64

3.15 Speedup of WebPro relative to PBB as a function of critical path length. As
the critical path becomes longer, the speedup with WebPro increases. Also,
for a given webpage, speedups with WebPro are higher under the setting that
does not support persistent connections. 65

3.16 Waterfall of loading (a) the first and (b) the second test page using PBB with
persistent connections enabled. In (a), test1.js, sc1.js and img.jpg and in (b)
test2.html, sc1.js and sc3.js are downloaded over the same connection. 67

4.1 Relation between arrivals, grants and intervals. 72
4.2 τ is the time since the last grant. 73
4.3 Bottom up nature of the offline algorithm. 76
4.4 Modified grant sequence in Theorem 1. 77
4.5 An example depicting the cumulative delay cost. 78
4.6 An example grant interval created by BE under max delay. 79
4.7 Grants and radio state transitions of OPT. 81
4.8 Grant intervals of BE overlaid on radio states of OPT. 81
4.9 Intervals with one or more radio transitions. 83
4.10 Example for the lower bound under cumulative delay. 85
4.11 (gi, gi+1] is a sample interval created by BE under max delay. 87
4.12 Example for the lower bound under max delay. 88
4.13 Performance of BE: By controlling α, different energy-delay tradeoffs can be

achieved. 91
4.14 CDF of individual request delays under cumulative and max delay functions. 92
4.15 Comparing the performance of BE with OPT and Default under different

fluctuation levels of request inter-arrival times. 93
4.16 A bursty arrival sequence: The thick and thin arrows indicate burst and single

arrivals, respectively . 95
4.17 Energy cost of BE with different tail times. 95

ix

4.18 LTE experiments on a Nexus smartphone. 96

5.1 Relation between arrivals, grants and intervals. 100
5.2 Intersection of energy and delay functions. 103
5.3 (gi, gi+1] is a sample interval created by BE. 105
5.4 Grants and radio state transitions of OPT. 107
5.5 Grant intervals of BE overlaid on radio states of OPT. 107
5.6 Intervals with one or more radio transitions. 109
5.7 Performance of BE: By controlling α, different energy-delay tradeoffs can be

achieved. 114
5.8 Comparing the performance of BE with OPT and Default under different

fluctuation levels of request inter-arrival times. 116
5.9 Energy cost under different power models. 117
5.10 Energy cost under different ratios of parameters. 118
5.11 Topology of the experiment run on IoT-LAB testbed. 120
5.12 LTE experiments using IoT trace. 121

x

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

AJAX Asynchronous JavaScript and XML

BE Break-Even Algorithm

BLE Bluetooth Low Energy

CDF Cumulative Distribution Function

CDN Content Distribution Network

CR Competitive Ratio

CV Coefficient of Variation

DOM Document Object Model

DRX Discontinuous Reception

DynAck Dynamic TCP Acknowledgement Problem

eNB Evolved NodeB

EnerB Energy-Aware Bundling Problem

HOL Head of Line

HTTP HyperText Transfer Protocol

IoT Internet of Things

MPTCP Multi-Path TCP

OPT Optimal Offline Algorithm

PBB Proxy Based Browsing

PDCCH Physical Downlink Control Channel

PLT Page Load Time

RRC Radio Resource Control

RTT Round Trip Time

TTR Tail Time Ratio

xi

UE User Equipment

URL Unified Resource Locator

VPN Virtual Private Network

xii

Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed an unprecedented increase in global mobile data traffic. Ac-

cording to Cisco VNI report, it is estimated that the overall mobile data traffic will grow to

49 exabytes per month by 2021, which is a sevenfold increase compared to 2016 [2]. The ever

increasing number of wireless devices with different capabilities is one of the main reasons

for such a growth in data traffic. It is expected that by 2021, there will be about 11.6 billion

wireless devices worldwide [2]. This is, in part, due to the rise of smartphones and tablets,

which have become an integral part of our daily lives. The emergence of new technologies

such as wearable and Internet of things (IoT) devices also contributes to this growing trend.

The surging popularity of wireless devices is due to the development of an increasing num-

ber of diverse applications that impact people’s everyday lives. These applications provide

a wide range of services such as social networking (e.g., Facebook), entertainment, location-

based services (e.g., Google Map), and environmental monitoring in the context of IoT. The

growing interest in such applications is evidenced by the fact that there are over 1 million

apps hosted on Android’s Google play store [3]. It is important to provide the users of these

applications with a satisfactory experience. Delay and energy consumption of applications

are two essential factors that affect user satisfaction:

• Users of most applications are sensitive to delay. For example, in the context of mobile

web browsing, recent studies show that users’ expectations of the page load time are

increasing and it is likely that people will demand sub one-second load times in the near

future [4]. Also there have been several studies that reveal the ill-effects of high application

latency on business profits. As an example, it is reported that 57% of online shoppers will

1

wait at most three seconds before switching to a competitor site, which could result in

lost revenues [5]. Application latency will be even more important in the near future,

considering the growing interest of users in applications such as video streaming and

cloud-based gaming where there exist stringent requirements on latency [4].

• On the other hand, wireless devices derive the required energy for their operation from

batteries with limited capacities. Despite dramatic improvements in other hardware com-

ponents of wireless devices, battery technology evolves at a slower rate which makes battery

life a major bottleneck for satisfactory user experience. For instance, in the time period

between 2012 and 2015, the average capacity of smartphone batteries has only increased

by 500 mAh [6]. Battery life is even more important in the context of IoT, considering

the prevalence of scenarios targeting multi-year lifetimes and also the fact that the cost of

replacing batteries is often a major operational expenditure [7].

Any solution that aims to improve the quality of experience for application users (in terms

of energy and delay) should consider the connectivity choice of wireless devices. The reason

is that the operation of a majority of applications depends on a reliable Internet connection

so that they can communicate with remote servers (possibly hosted on cloud platforms). The

wide deployment of cellular networks, enables near-constant Internet connection for wireless

devices. As a result, cellular networks have become the main connectivity choice for wireless

devices operating in wide area networks. However, in cellular networks, providing a satisfac-

tory experience for application users faces new challenges that did not exist for traditional

desktop computers and their software. These challenges stem from the co-existence of two

main factors and the interplay between them. The first factor is the unique characteristics

of cellular networks. The second factor is the nature of the interactions between applica-

tions and their corresponding remote servers. We will discuss these factors in the following

sections.

2

1.2 Characteristics of cellular networks

Long round trip times:

It has been reported that compared to wired and WiFi networks, cellular networks have

longer transmission and access delays [8]. In particular, the wireless hop in a cellular net-

work has longer round-trip times (RTT) (of the order of 70-86 msec [9]), which leads to

higher values for end-to-end RTT. Such long RTTs are due to dynamic conditions in wire-

less channels (caused by fading, shadowing, interference and mobility of wireless devices)

as well as the radio access mechanisms in cellular networks that involve several rounds of

signalling exchange between the device and the network. Because of long RTTs, applications

experience higher delays over cellular networks which can be frustrating [8]. For example,

a recent study on the load times of the top 200 websites indicates that the 80th percentile

load time on a smartphone using a 4G connection is more than 15 seconds [10]. While long

RTTs of cellular networks are the primary culprits for high load times, complex interactions

between computation activities (parsing, script evaluation, rendering) and network transfers

during the page load process also contribute to such high latencies. Thus, there is a need

for new solutions to reduce the latency experienced by applications over cellular networks.

Radio resource control protocol:

Wireless devices use cellular radio interfaces to communicate over cellular networks. One of

the characteristics of the radio interface is that it consumes a lot of power and is responsible

for a significant portion of the total device power usage [11]. Recent studies show that a

significant portion of the radio energy is spent when there is no active data transfer [12,13].

This stems from a resource management policy known as the radio resource control (RRC)

protocol, which is employed by cellular networks to efficiently utilize their limited radio

resources.

Specifically, under RRC protocol, a cellular network associates a state machine with each

wireless device to control the radio interface of the device. The state machine prevents the

3

0 75 150 225 300
0

0.5

1

1.5

2

2.5

3
x 10

4

Tail time (ms)

E
n
e

rg
y
 c

o
s
t

(m
s
)

Figure 1.1: Effect of tail time on energy consumption

radio of the device from immediate demotion to the low power state once a data transfer is

completed. Instead, the radio of the device stays in high power state until the expiration

of a timer called tail time. When there is no network activity for the duration of the

tail time, the radio switches to the low power state. The main reason for this behavior

is to avoid switching radio states in case any data transfer request arrives during the tail

time, which in turn reduces network signalling overhead. Tail time also helps to alleviate

other inefficiencies resulting from frequent state switches. In particular, other than causing

signalling overhead, switching radio states also takes time and consumes energy [12]. In

3G/LTE networks, typical values for the tail time are around several seconds depending on

the carrier configuration [9, 14].

We performed a simulation experiment in order to gain a better insight on the effect of

the tail time on radio energy consumption. We generated 100 random data transfer requests

where inter-arrival times are sampled from a normal distribution with mean 300 ms and

standard deviation 150 ms. Consider a setting where requests are granted as soon as they

arrive. Fig. 1.1 depicts the amount of time the radio spends in the high power state (energy

cost) under different values of the tail time. It can be seen that when the tail time is zero,

4

energy consumption due to tail effect is zero. However, by increasing the tail time, the

amount of energy spent during tail periods increases.

It has been shown that poor interactions between the traffic patterns of applications

and the RRC state machine, can negatively affect the energy efficiency of the applica-

tions and quickly drain the battery of the device [15]. As a result, reducing energy con-

sumption of the applications requires optimization strategies that are aware of the cellular

RRC state machine. A well-known technique to alleviate the effect of tail energy is request

bundling [12, 13, 16–20]. With bundling, rather than granting individual data transfer re-

quests as they arrive, multiple requests are bundled together and granted at once. Thus, the

tail energy is amortized over multiple transfers in a bundle, which results in reduced radio

energy consumption.

1.3 Interactions between applications and servers

As mentioned before, the interactions between applications and servers and specifically, the

resulting network access pattern (referred to as traffic pattern) can create challenges for

ensuring a satisfactory user experience in cellular networks. Also notice that there exists

a diverse set of applications and different applications follow different patterns in accessing

the network. As a result, we focus on some particular classes of well-known network traffic

patterns:

Traffic from browsing applications:

The first class of traffic patterns that we consider is the one associated with the browsing

applications. Web browsing is one of the core applications on wireless devices (e.g., smart-

phones and tablets) and is responsible for more cellular traffic than any other application,

except for multimedia streaming [21]. There are also many applications that are simply

customized programmable browsers (such as news applications) and hence follow the same

behavior of regular web browsers [22]. Web browsers are used to load web pages, which

5

typically comprise of hundreds of web objects hosted on multiple server domains.

A main characteristic of the page loading process is that local computations such as

HTML parsing and script evaluations are interleaved with network transfers [23]. Such a

process creates a traffic pattern that is characterized by a large number of object downloads

with idle gaps between them (created because of local computations). The reason for this

behavior is that when a user requests a page, the web browser has no knowledge about

the required resources of that page. So, the browser first downloads the base HTML file of

the page and then parses it to identify the list of the objects referenced in the page. After

parsing the base HTML file, a limited number of parallel TCP connections are initiated to

fetch the identified objects. It is also possible that some of the embedded objects (script files

such as JavaScript and CSS) themselves, will refer to other objects. Thus, script files should

be evaluated and the result of their evaluation could reveal references to other embedded

objects.

Put another way, because of the inter-dependencies between web objects, downloading

all the required objects of a page may take multiple round trip times. This can lead to

unsatisfactorily high page load times on wireless devices that operate in cellular networks

with high RTT values.

Periodic and intermittent transfers:

Another well-known traffic pattern in wireless devices is the periodic and intermittent trans-

fers where applications periodically and/or intermittently send or receive some amount of

data to/from a remote server [15]. Such traffic pattern is indeed a prevalent pattern among

wireless devices. This pattern is created because of activities such as data syncs and status

updates [24], polling, keep-alive messages for push-based services [25], user-behavior mea-

surements, computation offloading to the cloud [16], and advertisement transfers [15]. As

described earlier, web browsing also involves downloading a large number of objects where

there are idle gaps between consecutive web object downloads [26,27]. As a result, the traffic

6

generated by web browsers can also be considered a specific case of this pattern. Finally, pe-

riodic transmission of messages is a characteristic feature of the IoT applications as well [28].

Such a behavior happens when an IoT device regularly transmits status updates to a central

server. For example, this is a typical behavior in smart meter reading (e.g., gas, electricity,

and water) scenarios. As another example, IoT devices may send location updates to a

central server, on a regular basis [29].

It is well-known that periodic and intermittent data transfers are highly energy ineffi-

cient. This is explained by the characteristics of the RRC state machine described above.

Specifically, in every instance of a periodic transmission, an additional tail energy is con-

sumed by the cellular radio interface. Therefore, periodic transfers can keep the radio in

high power state for a long period of time, leading to rapid depletion of the device battery.

1.4 Thesis objectives

In this thesis we aim to reduce the latency and energy consumption of applications running

on wireless devices. We consider wireless devices that are connected to the Internet through

a cellular network. Based on this, three problems are studied in this thesis, namely:

• Reducing latency and energy of mobile web browsing: Due to the popularity of

mobile web browsing, we investigate reducing latency and energy consumption of web

browsing on mobile devices (e.g., smartphones and tablets). As mentioned before, the

first step in loading a web page is fetching the base HTML file in order to discover the list

of the referenced objects in a page. This process takes roughly one round trip time and

constitutes a significant portion of the web browsing delay on wireless devices as cellular

networks suffer from long transmission and access delays. In an effort to reduce the latency

of mobile web browsing, we aim to eliminate this initial delay.

On the other hand, as mentioned before, the page load process involves a large number of

object downloads that happen intermittently with idle gaps between them. Such a network

7

access pattern can keep the radio of the device in high power state for longer durations,

which can quickly drain the battery of the device. Thus, we study solutions that in

addition to reducing the page load time, are able to reduce mobile energy consumption

as well. We use speculative loading technique to reduce page load time in our proposed

solution. Moreover, bundling technique is employed to reduce energy consumption during

the page load process. Also in contrast to the prior attempts, we target a solution that is

transparent to the end systems (client and server side), does not require modifying HTTP

protocol and is well suited for web browsing on mobile devices.

• Balancing energy-delay tradeoff for request bundling on smartphones: For the

first problem, we propose a solution that packs all the required objects in one bundle and

achieves a fixed point on the energy-delay tradeoff associated with bundling (characterized

by maximum energy saving). In order to be able to cover the entire spectrum of the energy-

delay tradeoff, we consider a generalized notion of bundling (called request bundling) and

formalize the energy-delay tradeoff that results from it. Notice that request bundling

on smartphones can reduce radio energy consumption not only in mobile web browsing,

but in a wide range of scenarios characterized by periodic and intermittent data transfer

requests. For instance, it has been shown that request bundling can reduce radio energy

consumption in computation offloading [16], and also delay tolerant applications [13].

As mentioned before, bundling reduces radio energy consumption as it consolidates mul-

tiple tail energies into one tail energy. A critical question when implementing request

bundling is how long to wait to create a bundle. By waiting too long, potentially more

requests can be bundled together leading to more energy savings. This comes, however,

at the expense of increased delay, which may negatively affect the performance of appli-

cations, and consequently the user experience.

Clearly, with bundling, there is a tradeoff between energy saving and increased delay.

In general, the energy-delay tradeoff depends on various contextual and technological

8

factors [30]. For example, a user possessing a smartphone with full battery may prefer

earlier task completion over energy saving. As another example, Android smartphones

allow users to specify their preference for energy saving over latency reduction by enabling

the battery saver mode, which reduces device’s performance by limiting location services

and preventing applications from fetching new data in the background. However, given

that users value both energy efficiency and low latency, it is desirable to devise solutions

that have the flexibility in achieving different energy-delay tradeoffs. To this end, we study

general and systematic solutions to balance the energy-delay tradeoff.

Specifically, we study a bundling algorithm that can minimize the bundling cost defined as

a weighted summation of energy and delay costs. Energy cost is modeled using an On/Off

model, which measures the time the radio spends in the on state. The exact definition of

the delay cost will be clarified later in Chapter 4. Preference over delay versus energy is

controlled by including a weight factor in the cost function. The difficulty in designing

such a bundling algorithm is that the bundling decisions have to be made online without

knowing the timing of future data transfer requests.

• Online energy management in IoT applications: As mentioned before, periodic

transmission of small messages is a characteristic feature of IoT applications as well [28].

On the other hand, wide deployment of 4G cellular networks based on LTE has made LTE

a natural candidate for IoT connectivity [31]. Consequently, the high energy inefficiency

resulting from periodic transmission of small messages over LTE could be detrimental

to the limited battery life of IoT devices. This energy inefficiency is due to the fact

that every time a small message is transmitted, an additional tail energy is consumed by

the LTE radio. In contrast to large messages on smartphones, when transmitting small

messages on IoT devices, the tail energy is significant compared to the energy consumed

for transmitting the message itself.

To ensure ultra-long battery life for IoT devices, recently, 3GPP has proposed a number

9

of LTE enhancements for low-power wide area communications including Machine Type

Communication in LTE-M specifications [32, 33]. To reduce power consumption, LTE-M

includes several power saving mechanisms such as the extended Discontinuous Reception

(DRX), which enables an IoT device to manage its LTE radio more efficiently by minimiz-

ing the time the radio spends in high power active mode [34]. Specifically, an intermediate

power state, called DRX state, is introduced in the RRC state machine, where the wireless

device monitors physical control channel less frequently.

Although the proposed power saving mechanisms are effective in reducing LTE radio

energy consumption, they are oblivious to the specific requirements of different IoT appli-

cations in terms of delay and energy. In particular, while different IoT applications have

different delay requirements, most are generally delay-tolerant [28]. As such, it makes

sense to bundle multiple message transfer requests together and grant them later at once

instead of granting individual requests immediately upon their arrivals, specially in sce-

narios where an IoT device aggregates sensor readings from multiple sensors.

As mentioned above, the side effect of bundling is the increased delay experienced by

applications. Thus, there is a need for a flexible bundling algorithm that allows applica-

tions to trade increased delay for reduced energy consumption. While our solution for the

previous problem (request bundling on smartphones [35]) serves that goal, it falls short

in capturing the effect of the DRX mechanism. Specifically, the On/Off model used be-

fore, is a reasonable approximation model for radio energy consumption on smartphones.

However, the On/Off model does not capture the effect of DRX, which would lead to sig-

nificant overestimation or underestimation of the radio energy consumption, and hence,

the inefficient management of the IoT device energy. Thus, due to the constrained energy

resources in IoT devices, an accurate modeling of the DRX mechanism is required.

To this end, we study message bundling algorithms that are tailored to the specific oper-

ation of LTE radios and the DRX mechanism. We consider a cost minimization problem

10

that has the same objective defined for the previous problem, i.e., a weighted summation

of energy and delay costs. However, energy cost is modeled using a three state model,

which is based on the behavior of the LTE radio. The weight factor in the objective func-

tion can be used to balance the energy-delay tradeoff based on the IoT traffic type (delay

tolerant or delay sensitive) and also power constraints of the IoT device.

1.5 Contributions

• First, we study the problem of latency and energy reduction for mobile web browsing. In

order to eliminate the initial round-trip time required to fetch the base HTML file of a

page, we propose the design and implementation of a system called WebPro. WebPro

relies on a network proxy that builds an up-to-date database of resource lists for the

websites visited frequently by network users. The proxy resides in the wired part of the

network, and hence can afford to pro-actively build and refresh the resource list database

periodically. When a request for a webpage comes to the proxy, it simultaneously fetches

the base HTML and all referenced objects required to render the webpage using the

corresponding resource list stored in the local database. Once all the required objects of a

webpage are fetched, the proxy packs them in a bundle and sends it to the mobile device.

By implementing bundling, WebPro reduces radio energy consumption as well since it

eliminates unnecessary state promotions and demotions in mobile’s radio for each of the

small objects.

We have built a working prototype of WebPro and have conducted live experiments over

WiFi and LTE networks. Our results show an average of 26% reduction in page load time

for a mix of popular web sites chosen from categories such as news, sports and shopping.

Moreover, in comparison to another well-known proxy-based solution, WebPro provides

delay reductions ranging from 5% to 51% for a variety of web sites.

• After the first problem, we study balancing energy-delay tradeoff for request bundling on

11

smartphones. To minimize the bundling cost, we design a deterministic online algorithm

called the Break-Even algorithm (BE), which is inspired by the classic Ski Rental prob-

lem [36]. Specifically, BE does not automatically grant each data transfer request upon

its arrival. Rather, it bundles them together and makes a single grant when the energy

cost and weighted delay cost associated with that grant become equal. Our algorithm

is considerably general and can accommodate different definitions of the delay cost. For

two commonly used delay functions i.e., cumulative and max delay functions, we perform

a detailed competitive analysis of BE with respect to the optimal offline algorithm that

knows the future data transfer requests in advance. We prove that, 1) If the delay cost

is defined as the cumulative delay of individual requests in a bundle, then BE achieves a

competitive ratio of 1 or 4, depending on the value of the weight factor. 2) If the delay

cost is defined as the maximum delay of individual requests in a bundle, then BE achieves

a competitive ratio of 1 or 2, depending on the value of the weight factor. 3) In both cases,

the competitive ratios, i.e., 4 and 2, are tight.

We evaluate the performance of the proposed algorithm and the accuracy of our results

in a range of realistic scenarios using both model-driven simulations and real experiments

on a smartphone. Our results show that depending on the delay tolerance level of a user,

energy savings ranging from zero (delay intolerant) to about 100% (delay tolerant) can be

achieved using our algorithm.

• Finally, we investigate the problem of online energy management in IoT applications. To

minimize the message bundling cost, we use the same online policy of the Break-Even

algorithm introduced above (i.e., make a grant when the energy cost and weighted delay

cost associated with that grant become equal). However, the detailed implementation of

the BE is adjusted to account for the new energy model that is based on the behavior of

the LTE and DRX mechanism. Our detailed analysis shows that, depending on DRX and

application parameters, our algorithm is 1, 2, or 4-competitive with respect to the optimal

12

offline algorithm that knows the entire sequence of application messages a priori.

To assess the performance of BE, we conducted an extensive set of model-driven simula-

tions under a wide variety of realistic conditions. We also collected real traces from an

experimental IoT testbed and used them on an Android-based LTE smartphone to em-

pirically evaluate our online algorithm. Our results show that in most realistic scenarios,

BE achieves an empirical competitive ratio less than 2. Also, depending on application

requirements, energy savings ranging from zero to about 100% can be achieved using our

algorithm. We also observe that DRX has a significant effect on energy consumption,

which is neglected by the existing On/Off models.

1.6 Published work

The results of the research presented in this thesis were published in the proceedings of

three conferences and a journal article. Specifically, the results of the research on latency

and energy reduction for mobile web browsing appeared in IEEE/ACM IWQoS 2015 confer-

ence [37] and Elsevier Computer Networks journal [38]. Most of the results on energy-delay

tradeoff for request bundling were published in the proceedings of IEEE INFOCOM 2017

conference [35]. Finally, the results of our study on energy management in IoT applications

will be published in the proceedings of IEEE INFOCOM 2018 conference [39].

1.7 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 provides the required background

information for discussions in this thesis. It then presents a review of the related work

for the problems considered in this thesis. Chapter 3 studies the problem of latency and

energy reduction for mobile web browsing. Chapter 4 studies the problem of energy-delay

tradeoff for request bundling on smartphones. Chapter 5 studies the problem of online

13

energy management in IoT applications. Finally, Chapter 6 concludes the thesis and presents

directions for future research.

14

Chapter 2

Background and Related Work

2.1 Background

2.1.1 HTTP protocol

The HyperText Transfer Protocol (HTTP) is an application-layer protocol being widely used

by mobile applications. As a request-response protocol running on top of TCP, it defines

the structure of messages exchanged between a client program (e.g., a browser) and a server

program (e.g., a web server). One of the most common use cases of HTTP is to retrieve

a webpage from a web server. A typical webpage consists of a base HTML file and several

embedded objects that are referenced in the base HTML file with their Unified Resource

Locators (URLs). In the simplest form, opening a webpage involves downloading the HTML

file, parsing it to identify the referenced objects and then fetching those objects.

Similar to other protocols, HTTP is always evolving. Until 1997, browsers and web

servers supported HTTP/1.0. Since the standardization of HTTP/1.1 in 1999, it has been

the dominant protocol implemented by browsers and web servers. The next version of HTTP,

HTTP/2.0, was standardized in 2015 [40].

Persistent and Non-Persistent Connections. There are two approaches for request-

ing web objects using HTTP. The first approach is called HTTP non-persistent connection

and requires each object to be transferred over a separate TCP connection. This way, after

sending the response, the web server closes the TCP connection. As a result, the connection

gets terminated by the time that the client receives the response object. While simple from

the implementation perspective, this approach increases the load on HTTP servers as they

15

Client Server

GET Base HTML

GET Obj#1

GET last Obj

Figure 2.1: HTTP Persistent Connection [1]

should maintain TCP buffers and variables for every individual TCP connection that is es-

tablished for each object [41]. Also in this approach, fetching each object incurs a delay of

at least two round-trip-times (RTTs), one for establishing the TCP connection and one for

fetching the object from the server.

The other approach is called HTTP persistent connection and was introduced in order

to improve web page loading performance. In this approach, the TCP connection is kept

open after sending a response by the server and the subsequent HTTP transactions reuse

the same connection. This enables the client to use one connection for downloading all the

objects of a page or even for downloading all the webpages residing on the same server.

The HTTP server will close the TCP connection after a certain period of inactivity on that

connection. Notice that HTTP clients and servers use persistent connections by default [41].

Figure 2.1 shows how a persistent connection can be used to load a webpage. Notice that

after completing the first two parts of the three-way handshake, it takes one RTT to receive

the base HTML file and then fetching each referenced object will incur another RTT.

Pipelining. HTTP pipelining is one of the optimization techniques introduced in HTTP

1.1 and it enables the client to send multiple HTTP requests back-to-back without waiting

16

for replies to previous requests. Pipelining is usually suggested as a way to dramatically

reduce page load times over high latency connections. However, HTTP pipelining suffers

from the Head of Line (HOL) blocking problem. The reason is that the protocol requires

the responses to requests to be received in the same order that they were requested. As a

result, a slow-to-generate resource in the server can block fetching subsequent objects [42].

Concurrent TCP Connections. Given that most modern webpages contain 10s or 100s

of small objects, current browsers try to accelerate the page load process by using multiple

TCP connections in parallel. This way, they can also circumvent the low initial congestion

window size of TCP’s slow start phase and attain a better utilization of the link’s band-

width [42]. In particular, modern browsers such as Chrome and Firefox use six concurrent

TCP connections per host. Usually there is also an upper limit on the total number of con-

current connections across all domains [1] as the benefits of concurrent connections diminish

by increasing the concurrency.

2.1.2 Browser anatomy

Here we briefly introduce the process of loading a webpage in a typical browser. This

process starts with a user requesting a webpage through the browser’s user interface. This

will cause the object loader component to download the base HTML file of the page. After

receiving the base HTML file, it is fed into an HTML parser that parses the page iteratively

and constructs the intermediate representation of the page, called Document Object Model

(DOM) tree. Parsing the base HTML reveals the set of embedded objects (also called

subresources [43]) in a page. These objects could be of different MIME types including

HTML (e.g., IFrame), JavaScript, CSS, image and Media [26]. The object loader will fetch

these objects for further processing. It may have to fetch them from web servers over the

Internet or from the browser’s local cache. Of those subresources, JavaScript and CSS files

need to be evaluated. Hence, there is an evaluator component in the web browser that

17

evaluates these objects and manipulates the DOM tree accordingly. Javascript files can add

dynamic content to webpages and CSS files define the attributes of visible webpage elements

such as font and colour. Notice that evaluating JavaScript or CSS files can result in new

object requests [44]. Finally, a browser’s rendering engine is responsible for visualizing the

page using the constructed DOM tree. Rendering engine consists of a layout component

which computes the size and screen locations of elements [26]. It also includes a painting

component that generates the final representation of the page by putting the actual pixels

on the screen [45].

2.1.3 Energy consumption of cellular radio

Recent years have witnessed an increase in the popularity of mobile devices such as smart-

phones and tablets. These devices are equipped with radio interfaces that enable communi-

cation over wide-area cellular networks. As a result, mobile devices have become one of the

major choices for accessing popular network applications such as web browsing and email.

However, wireless radio controller of a mobile device has a high energy consumption and can

quickly drain the battery of the device.

Specifically, in cellular networks there is a state machine associated with each device that

controls its energy consumption and allocated channels. Even though 3G and LTE networks

share some general principles in their state machines, there are some differences in their be-

haviour. The general idea is to carefully manage the battery power of the device and radio

resources of the network by putting the device in specific states.

3G State Machine. Figure 2.2(a) depicts the state machine employed in 3G networks. In

IDLE state there is no radio resource allocated to the device and the user equipment (UE)

does not consume any power in this state. When base station detects any traffic to/from the

device it promotes the device to the CELL DCH state by allocating a dedicated channel to

UE. This state consumes significant amount of battery power (about 800/600 mW depending

18

CELL_FACH

CELL_DCH

IDLE

D
ata Activity

Idle for

12s

Id
le

 fo
r 5

s

Q
ueue S

iz
e >

Thre
sh

old
2 sec.

delay

(a) 3G

RRC_CONNECTED

Idle for

Tt

Send/RCV

RRC_IDLE

(Idle)

DRX

Continuous

Reception

D
a

ta
 A

ct
iv

it
y

Id
le

 f
o

r
T

i

(b) LTE

Figure 2.2: RRC state machines for the 3G/LTE networks

on the carrier [46]). The promotion from IDLE to DCH takes approximately 2 seconds [46].

In order to be energy efficient, the device can’t stay in the DCH state all the time. So if

there is no traffic activity for ∼ 5 seconds, the device will demote to the CELL FACH state

with the operating power of around 460 mW. Once in the FACH state, the user device can

send/receive data through a shared channel at a lower rate. Notice that the use of the FACH

state for 3G networks is optional and is not supported across all carriers [47]. If the device

remains inactive for another ∼ 12 seconds it will go back to the IDLE state.

LTE State Machine. As shown in Figure 2.2(b), energy consumption in LTE networks is

characterized by a state machine consisting of two states, RRC IDLE and RRC CONNECTED.

RRC IDLE (or idle state) represents the lowest energy state and data transmission to/from

the UE in this state will cause a promotion to the RRC CONNECTED state in about 200 ms.

Once promoted, the user equipment enters the Continuous Reception mode (also called active

state) and consumes high power as it continuously monitors the physical downlink control

channel (PDCCH) for scheduling information. The UE also starts an inactivity timer, Ti,

in this mode which gets restarted every time a data transfer request is scheduled before

the timer is expired. Otherwise, the expiry of the timer moves the UE to Discontinuous

Reception (DRX) mode. In DRX mode, the UE periodically wakes up to monitor PDCCH

only for short intervals (referred to as ON durations) and then goes to sleep at other times.

19

As a result, power consumption in DRX mode is higher than the idle state but is lower than

the active state. Along with Ti, the UE also starts a timer called RRC tail timer, Tt, every

time it enters the RRC CONNECTED state. When there is no network activity for the

duration of the tail timer, the UE moves to the idle state. Finally, it is worth noting that

the promotion delays are shorter in LTE compared to 3G networks [9].

Each of the aforementioned state transitions consumes energy and also introduces some

signalling overhead in the system. Also promotion delays and timers associated with each

state can have different values across vendors and carriers.

2.1.4 Online algorithms

The basic assumption in the design and analysis of traditional algorithms is that an algorithm

uses its complete knowledge of the entire input in order to generate output. However, this

assumption does not necessarily hold in all practical applications. Some algorithmic problems

in practice are online meaning that the input is revealed in parts and hence is only partially

available at any time. Thus, an online algorithm is required to generate output without

knowledge of the entire input. In other words, the online algorithm must make a decision

every time a new input arrives. Also at any point in time, it is impossible to revoke the

previous decisions made by the online algorithm [48].

Formally, assume that a sequence of requests A = 〈a1, . . . , am〉 is presented to an online

algorithm ALGO over time. These requests must be served in the order of their occurrence.

Also when algorithm ALGO serves ai, it has no knowledge about any request aj with j > i.

There is a cost associated with serving each request and the objective is to minimize the

total cost incurred due to serving the entire request sequence [49].

A standard mechanism to evaluate the performance of online algorithms is competitive

analysis. In competitive analysis, an online algorithm ALGO is compared to an optimal

offline algorithm, which is an unrealistic algorithm that has full knowledge of the entire

input sequence in advance and hence can serve it with minimum cost. For an input sequence

20

A, let OPT(A) denote the cost incurred by the optimal algorithm and let ALGO(A) denote

the cost incurred by the online algorithm ALGO. Algorithm ALGO is said to attain a

competitive ratio of c (i.e., be c-competitive), if for all possible input sequences A, there

exists a constant a that satisfies the relation ALGO(A) ≤ c.OPT(A) + a. Notice that the

competitive ratio is independent of the input sequence and is always at least 1. Also the

smaller the competitive ratio is, the better the online algorithm performs [50].

2.2 Related Work

2.2.1 Reducing Latency and Energy of Mobile Web Browsing

There is a large body of work on improving the performance, energy usage and wireless data

consumption of web browsing on mobile devices. Here, we classify the work that is most

relevant to ours.

Client-based Solutions. Traditional solutions based on client-side caching and prefetching

fall in this category. As an example, the authors of [51] used a machine learning approach

to model the web browsing signature for each individual user. This model can predict the

future web access patterns, enabling a prefetching scheme to download web content before

the actual user request.

Recently, there have been measurement studies to assess the effectiveness of client-side

caching and prefetching in improving the performance of mobile web browsing. For instance,

Ma et al. [52] conducted comprehensive measurements to characterize the performance of

mobile web caching. They identified redundant transfers and miscached resources (providing

out-of-date resources from cache) as the two main problems that negatively affect mobile web

caching performance. Their investigations revealed Same Content (same resources having

different URLs at different times), Heuristic Expiration and Conservative Expiration as

the root causes of unsatisfactory cache performance. Wang et al. [43] used a web dataset

collected from 24 iPhone users over a year to quantitatively evaluate client-only caching and

21

prefetching. Their results indicate that there is a limited efficiency gain due to caching and

prefetching when it comes to mobile web browsing. Consequently, they proposed a new

technique called speculative loading which predicts and loads the required resources of a

page in parallel with the base HTML file of the page. However, their approach requires

changing the mobile browser extensively, which limits its practical feasibility.

One major drawback of the client-only solutions is that any incorrect prediction can lead

to downloading data that the user may never use. While not a significant problem in wired

networks, this can waste the scarce resources of mobile battery and wireless bandwidth and

hence harm user’s experience rather than improving it in wireless networks. In order to

accurately balance costs and benefits of prefetching, authors of [53] proposed a system level

solution that provides explicit prefetching support to mobile applications. However, their

solution requires extensive modifications of the existing applications. Another drawback of

client-only solutions is that they cannot observe the aggregate behaviour of users and benefit

from their common browsing activities which is at the heart of traditional caching techniques.

Protocol-based Solutions. SPDY by Google [54] is a new application layer protocol

primarily designed for reducing latency of web browsing. SPDY multiplexes multiple data

streams over a single TCP connection. It also enables unsolicited push of embedded objects

by web servers which can speed up the resource loading process in the browser. Combined

with other advanced features, SPDY can be very effective in reducing the web browsing

delay [54]. However this protocol relies on web server support and given that only 8.9% of

all websites support SPDY [55], its impact so far has been rather limited. Also the next gen-

eration HTTP protocol, HTTP/2, which was standardized on February 2015, evolved from

SPDY [56] and therefore inherits most of its features. However, there are a few differences

between SPDY and HTTP/2.0 for example in their header compression algorithms [40].

With server push being one of the main novelties in SPDY/HTTP 2.0, there have been

22

several proposals to resolve some of its limitations or to further improve the efficiency of

this feature. For example, notice that the server is oblivious of client’s cache status and by

pushing content that already exists in client’s cache, it can waste bandwidth and battery

of the mobile device. To address this issue, Khalid et al. [57] proposed sending cache hints

from client to server in the form of bloom filters. To further adjust the performance of server

push, they also proposed the ideas of half-push and half-pull. In half-push, the server pushes

the content to an edge proxy rather than the client and in half-pull the client requests the

content to be brought to the proxy without traversing the last mile. Finally, authors of [23]

proposed a novel framework that uses the server push feature in HTTP/2 to preemptively

push resource lists of the requested page and all its subpages, to the client. By using these

cached meta files, a future request for a subpage can be issued in parallel with the subre-

source fetching requests of that page. In this scheme, client incurs little extra bandwidth

overhead due to meta data transfers but can benefit from speedup in downloading subpages.

Infrastructure-based Solutions. Some of the previous work in this category has tried

to improve the energy efficiency of mobile web browsing. Aggrawal et al. [58] proposed a

cloud-based proxy system to reduce the energy consumption of the smartphone’s data com-

munication by employing aggregation, redundancy elimination and opportunistic scheduling

when downloading web objects from the network. Wang et al. [18, 59] presented a dual-

proxy architecture called EEP that utilizes bundling and compression to reduce the energy

consumption of web browsing in 3G/WLAN networks.

There are also studies that try to reduce both power consumption and delay of mobile

web browsing. For example, Zhao et al. [60] proposed a Virtual-Machine based architec-

ture in which a VM-hosted proxy performs all the computation expensive tasks of mobile

browsing and sends a screen copy of the rendered page to the smartphone. However, as

mentioned in [45], offloading compute-intensive operations when loading a webpage has neg-

23

ligible benefits compared to the improvements resulting from resource loading optimizations.

Also Sivakumar et al. [19] proposed PARCEL which uses the same architecture as in EEP

while providing the proxy with the flexibility to optimize the bundle size in a cellular friendly

manner.

Finally, this category includes studies with the goal of reducing latency of mobile web

browsing. Some of them achieve this goal by reducing the amount of data transmitted

because of web browsing [61, 62], while others employ solutions that directly deal with net-

work access delay [63]. For example, Opera Mini [61] and Amazon Silk [62] are cloud-

based browsers that offload portions of the page load process to cloud-based proxies. These

browsers are widely used today based on the common belief that using compression proxies

reduces data usage of mobile web and thus, reduces latency. However, the results of a recent

measurement study in [64] reveals that using compression proxies in good network conditions

can increase page load time rather than improving it. As a result, they design and implement

a framework called FlexiWeb that decides whether to fetch a resource from middle box or

the original server based on the object size and the network conditions. In line with the

findings of [64], a recent study by Sivakumar et al. [65] also shows that cloud-based browsers

are not always superior in terms of responsiveness and energy consumption, especially in

dealing with client interactions.

Instead of directly reducing page load time in mobile web browsing, authors of [10] pro-

posed KLOTSKI that aims at improving mobile user’s quality of experience by delivering

as many high utility resources as possible within tolerance limits of mobile users (3-5 sec-

onds). To this end, KLOTSKI employs a cloud-based proxy to capture and update different

properties of websites such as dependency structure, resource sizes and positions on rendered

displays and stores them in the form of a compact fingerprint. When loading a page, those

fingerprints are used to dynamically reprioritize delivery of different resources.

The closest work to ours is EEP by Wang et al. [18, 59] and PARCEL by Sivaku-

24

mar et al. [19]. While their focus is on reducing energy consumption by batching and

compression [18, 19, 59], our main goal is latency reduction using the speculative loading

technique. These solutions are orthogonal to each other and can be used in combination to

create a solution that is both energy efficient and low latency.

2.2.2 Energy-Delay Tradeoff for Request Bundling

We divide the prior work related to our work into the following categories.

2.2.2.1 Tail Energy Mitigation

There are three major classes of solutions devised to mitigate the effect of tail time. First

class consists of solutions that propose optimization and dynamic reconfiguration of the

tail time in response to the changing traffic pattern of smartphones [66, 67]. The fact that

configuring RRC parameters is controlled by cellular network carriers is a hurdle in practical

implementation of these solutions. The second class consists of solutions that utilize the

fast dormancy feature [68, 69]. In these solutions, the user equipment (UE) uses detailed

application-specific knowledge to predict the end of a network usage period and proactively

request demotion of radio to a low power state. However, the high dynamics in UE traffic, can

lead to low prediction accuracy and hence eliminate the benefits of fast dormancy. Finally,

there are solutions based on bundling (discussed in the next subsection) that delay data

transfer requests and transmit them in bundles to reduce the tail energy.

2.2.2.2 Traffic Bundling

The following is a brief review of several works on bundling that are more relevant to our

research.

Packet Bundling. Packet bundling can be implemented at the link layer irrespective of the

applications running on the device. Deng et al. [12] proposed a learning algorithm to predict

the traffic pattern in order to decide when a packet bundle should be granted. In another

work, Dogar et al. [70] showed that the bandwidth discrepancy between wired and wireless

25

segments of a connection can create small idle gaps between successive packets. They then

designed a proxy-based system that bundles multiple packets together in order to maximize

the idle time between bundle grants. Alonso et al. [20] proposed bundling packets in order to

improve the energy efficiency of the DRX mechanism in LTE networks. Assuming a Poisson

packet arrival process, they computed the optimal size of bundles that minimizes the radio

energy consumption, while ensuring a bounded average packet delay.

Mobile Web Browsing. Hoque et al. [71] showed that when viewing web pages, there

are idle gaps between consecutive web object downloads. This is due to the fact that inter-

object dependencies in web pages require some processing, for example to evaluate Java

scripts, which can create delays between object downloads [26]. To reduce the radio energy

consumption of mobile web browsing, a proxy-based architecture was proposed in [18,19], in

which a network-hosted proxy fetches web objects from remote servers and then sends them

to the client device in bundles. In particular, using the heuristic assumption of equal-sized

bundles, Sivakumar et al. [19] computed the optimal number of bundles that minimizes the

radio energy usage of visiting a web page.

Delayed Data Offloading. While not directly related to minimizing the radio on time on

smartphones, the problem in delayed data offloading has a similar structure to the bundling

problem considered in this thesis, and hence any solution for the bundling problem will be

of benefit to the data offloading problem as well. In delayed data offloading, the problem is

to decide how long to wait until a WiFi network becomes available to offload data transfer

requests from the cellular network to the WiFi network [72,73].

Delay-Tolerant Applications. Balasubramanian et al. [13] proposed a threshold-based

bundling algorithm called TailEnder which achieves a competitive ratio of 2. The idea is that

data transfer requests from delay-tolerant applications can be postponed up to a deadline

without any penalty. The TailEnder requires modification of applications so that they can

inform the bundling algorithm of their deadlines.

26

Mobile Code Offloading. In practice, it is difficult to know the deadlines for data transfer

requests particularly for non-delay-tolerant applications. Instead, Xiang et al. [16] formulated

the bundling problem in the context of mobile code offloading as a cost minimization problem,

where the cost of bundling is given as a function of both energy and delay. Thus, a bundling

algorithm may delay bundles arbitrarily in order to reduce its energy cost as long as it

is willing to accept the increased delay cost. Then, based on [74], they devised an online

algorithm to minimize the cost of bundling.

With the exception of [16], the aforementioned works on bundling do not have the flexi-

bility to achieve different energy-delay tradeoffs. Indeed, the problem setting considered in

our work is similar to the one considered in [16]. There are, however, significant differences

between the two works, as discussed next in section 2.2.2.4.

2.2.2.3 Ski Rental Problem

Ski rental problem is about a skier who wants to go skiing and must decide whether to buy

skis or to rent them. Assume that it costs $1 to rent skis per day and it costs $B to buy

them. With foresight, it is better to rent the skis, if the number of skiing days is less than B,

and it is better to buy them right away if the skier plans to go skiing for more than B days.

However, the challenge is that the skier does not know, ahead of time, the number of days

s/he will be skiing. The number of skiing days is unknown due to various reasons such as

unpredictable weather conditions, or possible loss of interest. So, every day when the skier

goes skiing, s/he has to make an online decision, on whether to rent skis or to buy them.

There is a simple deterministic online algorithm for the ski rental problem, called the

Break-Even algorithm. The Break-Even algorithm dictates the skier to continue renting

the skis up until the Bth day, at which point the skier should buy the skis. It has been

shown that the competitive ratio of the Break-Even algorithm is 2 [36]. There is also a

randomized online algorithm that achieves an expected competitive ratio of e/(e − 1) [75].

It has been shown that the best achievable competitive ratios for the ski rental problem by

27

g g

X < T

(a) Two grants.

g

X < T

gg g g

(b) Multiple grants.

Figure 2.3: Energy cost is variable: Scenarios (a) and (b) have the same energy cost even though
they have different number of grants.

any deterministic and randomized algorithm are 2 and e/(e− 1), respectively [75].

2.2.2.4 Dynamic TCP Acknowledgement

One would appreciate the resemblance between our problem (hereafter called Energy-Aware

Bundling or EnerB) and the dynamic TCP acknowledgment problem (DynAck) [76]. In Dy-

nAck, there exists the possibility to acknowledge multiple packets simultaneously by bundling

their individual acks together and sending a single cumulative acknowledgement. The goal

is to select the timing of cumulative acks in a way that minimizes the acknowledgement

cost plus the delay cost incurred due to delaying acks. DynAck is a generalization of the

ski-rental problem and can be solved by a 2-competitive deterministic algorithm and a ran-

domized e/(e− 1)-competitive algorithm [74]. The problem can then be cast as a variation

of EnerB, in which the energy cost is replaced by the acknowledgment cost, i.e., the num-

ber of acks sent. Indeed, this relation was exploited in [16] to design a bundling algorithm

for mobile code offloading. There is, however, a subtle difference between problems EnerB

and DynAck, which completely changes the problem. Whereas the cost of sending an ack

is constant, the energy cost of making a grant is variable. Specifically, the cost of sending

an ack is always 1 (no matter how long the algorithm waits to send the ack), and thus, the

acknowledgment cost incurred by the algorithm is simply given by the total number of acks

sent.

In contrast, in EnerB, the energy cost of making a grant is variable as it represents the

amount of time the radio has been on. For a bundling algorithm A, let EA denote its energy

28

cost. In this case, the energy cost EA is the summation of radio on times over the duration

of the algorithm, and hence the number of grants may not have any relation to EA. Consider

the scenarios depicted in Fig. 2.3, where T denotes the tail time. Grants are specified by g

on the figure. In Fig. 2.3(a), there is one grant at the beginning and one grant at the end of

an interval of length X. In Fig. 2.3(b), in addition to the grants at the beginning and end

of the interval of length X, there are three other grants during the interval. Since X < T ,

in both scenarios, the radio is on for the entire duration X. Thus, the energy cost of the

bundling algorithm in both scenarios is equal to X, even though there are different number

of grants during the same interval. Thus, as opposed to the analysis presented in [16,74,76],

if algorithm A makes more grants than algorithm B, we cannot conclude that EA > EB, as

shown in Fig. 2.3. This relation is at the heart of the analysis presented for the performance

of the online algorithms proposed in [16,74,76]. As shown later, we design a completely new

approach to analyze the performance of our algorithm as the approach taken in the above

mentioned works does not apply.

2.2.3 Energy Management in IoT Applications

There is a large body of work on DRX-aware radio energy management schemes. The most

relevant categories related to our work include:

2.2.3.1 DRX optimization

There have been several studies on improving the energy efficiency of IoT devices by optimal

configuration of DRX parameters (e.g., see [77, 78], and references therein). The common

approach in these works is to model the effect of DRX parameters on energy and delay at the

UE side, and then determine the optimal DRX parameters that achieve a desired tradeoff

between energy and delay. To model energy and delay, typically modeling assumptions are

made about the traffic arrival process and other aspects of the system. For example, [77] de-

veloped a Markov model to characterize DRX effect on energy and delay assuming a Poisson

29

traffic arrival. In contrast, our analysis is independent of any specific assumption about the

incoming traffic. Also, the problem considered in this thesis is orthogonal (and complemen-

tary) to the existing work on DRX. In particular, we design our algorithm assuming that the

DRX parameters are already configured and set using one of the above optimization models.

2.2.3.2 DRX enhancement

There have also been proposals for modified versions of DRX that address the energy effi-

ciency requirement of IoT devices. For example, the authors of [79] proposed to enhance

the DRX mechanism with a quick sleep indication, where the base station (called evolved

NodeB or eNB) can inform the device to go to sleep when there is no incoming traffic. Also

in order to increase the time spent in DRX mode while achieving a bounded average packet

delay, [20] proposed a packet coalescing mechanism, where the eNB delays transmitting

packets to the UEs in DRX mode until their downstream queues reach a tunable threshold.

However, these schemes require changes to the operation of current eNBs which could hinder

their deployment and adoption.

2.2.3.3 DRX-aware scheduling

Several recent works have proposed scheduling strategies that take DRX operations into

account. For example, Liang et al. [80] suggested using a DRX selection algorithm along with

a cooperating DRX-aware scheduling algorithm at eNB in order to satisfy QoS requirements

of IoT applications. However, most IoT traffic is uplink, and hence their algorithm is not

sufficient for most IoT applications. Wang et al. [29] proposed an IoT device-based uplink

scheduler that balances device power consumption and the network signaling load. Their

design choice requires end devices cooperating in signal load reduction of the network.

2.2.3.4 Smartphone request bundling

As discussed earlier in subsection 2.2.2.2, there are some existing works that address the

energy-delay tradeoff associated with bundling [13,16]. However, these works along with our

30

work in Chapter 4 consider an On/Off radio model which does not capture the operation of

the DRX mechanism in LTE networks.

31

Chapter 3

Reducing Latency and Energy of Mobile Web Browsing

Recent advances in cellular technology have given rise to the widespread adoption of mobile

devices such as smartphones and tablets. Among numerous mobile apps, web browsing is

still one of the most popular applications on mobile devices. Due to limited bandwidth and

longer access delays in wireless networks (more specifically, cellular networks), however, web

browsing is generally slower on mobile devices, which could frustrate users and lead to lost

online business opportunities. For example, it is estimated that a 2 second increase in the

load time of Bing’s home page can reduce revenue per user by 4.3% [81].

Prior work [45, 82] has shown that different from desktop computers, there is a new set

of factors causing the slow browsing experience on smartphones, which calls for solutions

tailored to mobile web browsing. Some of these factors are:

1. Compared to the enterprise Ethernet typically used by desktop computers, wireless hop

has longer access delays which dominate the end-to-end round trip time (RTT) and con-

sequently result in longer RTTs. The long network RTT makes resource loading the bot-

tleneck of web browsing on smartphones. On the contrary, compute intensive operations

such as scripting, style formatting and layout are the bottleneck in desktop browsers.

2. Limited processing power of smartphones affects the resource loading process as it is

associated with network stack and OS services.

3. Many webpages are not designed specifically for web browsing on mobile devices. For

example, analysis of the traces of 25 iPhone users in [45] shows that over half of the

webpages visited by smartphone users are not optimized for mobile devices or are non-

mobile webpages.

32

Recently, there has been a significant amount of work on reducing the latency of mobile web

browsing [1, 23, 43, 51, 53, 54, 57, 60]. Some of these efforts rely on modifying the web access

protocol. For example, SPDY [54], a new protocol designed by Google, aims to minimize

the latency of web browsing by adding request multiplexing, support for prioritization and

a number of other advanced features. However, this solution requires changing the client

and server side software which limits its widespread adoption. There are also prior attempts

that rely on client side optimizations. This category includes solutions based on client

side caching [21] and prefetching [51, 53] along with a recently proposed technique called

speculative loading [43]. The short expiration times of most web objects limit the efficiency

of caching techniques, while prefetching solutions suffer from wasted wireless bandwidth and

battery resources that result from incorrect predictions (not a problem on wired desktop

browsing). On the other hand, speculative loading technique relies on extensive changes to

the mobile browser which is a hurdle to its adoption.

Other noticeable solutions are those based on network proxies. These solutions mostly try

to reduce the computation time or energy consumption of web browsing by delegating some

tasks involved in opening a page to a powerful entity in the network such as a cloud-based

proxy [60,61,83]. One of the major advantages of employing a network-based proxy solution

is that a proxy can offer a better improvement by learning and exploiting the aggregate

browsing behaviour of a diverse mix of mobile users which is not possible in client-only

solutions.

Specifically, some network-based solutions such as VMP [60] and Opera Mini [61] aim

at offloading compute-intensive operations of the page loading process to a proxy. How-

ever, it has been shown that optimizing compute-intensive operations leads to only marginal

improvements in the overall page load performance [45]. Thus, other solutions such as

EEP [18,59] and PARCEL [19] try to offload resource loading operations to a network-based

proxy in order to improve page load performance. Specifically, in these solutions, proxy

33

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Base HTML Fetch Time (msec)

C
D

F

Figure 3.1: CDF of the time to fetch the base HTML file for Canada’s top 100 websites. In the
median case, it takes 430 ms to download the base HTML file. However, this time can go beyond
1 second in some cases.

retrieves the base HTML file of the page and parses it to discover referenced objects, which

could be then fetched and transmitted to the client in a bundle (in order to reduce energy

consumption of the mobile device).

One essential aspect of such proxy-based solutions is that the proxy can build and trans-

mit the bundle only after it has finished downloading all the embedded objects of a page.

Considering the request-response nature of the HTTP protocol, discovering the list of the

referenced objects requires at least one RTT in order to fetch and parse the base HTML

file. Also, one or more redirections might be involved before arriving at the base HTML file

which can further delay the realization of the web objects.

To gain a better insight, we measured the latency of downloading the base HTML file for

the top 100 Canadian websites [84] from a desktop computer connected to campus Ethernet.

Because of the redirections, this time might be different from the RTT between our device

and the corresponding web server. Figure 3.1 shows the cumulative distribution function of

the time to fetch the base HTML file of each site. In the median case, it takes 430 ms to fetch

the base HTML file. However, over 6% of the cases experience latencies beyond 1 second.

34

Also according to the measurement results in [26], the base HTML fetch time constitutes the

largest fraction of the network time for loading a page. This implies that there is a potential

for optimizing mobile browser performance by eliminating the initial fetch time.

The rest of the chapter is organized as follows. Section 3.1 presents a high level overview

of our approach in addressing the above issue. Section 3.2 introduces our proposed solution

in detail and discusses different aspects of it. Section 3.3 offers results on the performance

evaluation of the system.

3.1 Our Approach

In an effort to reduce the latency of mobile web browsing, we propose the design and imple-

mentation of a system that aims at eliminating the initial round-trip time required to fetch

the base HTML file of a page. Our solution, called WebPro, is built on two cooperating

proxies, one of which resides in the mobile device and the other one, remote proxy, is de-

ployed inside the network, preferably as close to the user as possible (see Figure 3.3). When

a user wants to visit a page, the remote proxy will fetch all the required objects on behalf

of the mobile device. After downloading all the objects, the remote proxy packs them in a

bundle and pushes it to the local proxy, which will serve all browser’s requests locally. In

this dual proxy architecture, not only we are able to significantly reduce page load time but

also reduce energy consumption by implementing bundling to eliminate unnecessary power

state promotions and demotions in mobile’s radio for each of the small objects [18,85].

In order to fetch all the required objects of a page, the remote proxy employs the spec-

ulative loading technique [43]. The main idea behind this approach is to bypass the extra

time for fetching and parsing the base HTML file, by using a previously recorded list of all

the required objects for a webpage, hereafter called the webpage “resource list”. Figure 3.2

presents the resource list for an example webpage. We observed that the amount of change

in the structure of the webpages within a few hours is relatively low and hence it should

35

 var f = document.getElementById("ex");

f.src = 'http://g.org/h.png';

b.js:

<html>

 <head>

 <link rel='stylesheet'

 href ='a.css'>

 </head>

 <body>

 <script src='b.js'> </script>

 <iframe

 src='http://c.com/d.html'>

 </iframe>

 </body>

</html>

http://someSite/index.html:

http://someSite/index.html

http://someSite/a.css

http://someSite/b.js

http://c.com/d.html

http://someSite/e.jpg

http://g.org/h.png

Resource List:

Figure 3.2: Resource list for an example webpage. This webpage contains a CSS, a JavaScript,
two images and an HTML iframe. Notice that the embedded JavaScript file itself refers to another
image file which can be identified only after the JavaScript file is fetched and processed.

be feasible for a proxy to keep track of such changes and maintain an updated resource list

of the popular pages (pages that are popular among its users). Note that maintaining the

resource lists of the webpages is different from caching the actual web objects, the majority

of which can not be cached or have a short expiration time [43]. Nevertheless, such legacy

caching and prefetching techniques can be added to our system if desired.

Maintaining an updated set of resource lists is achieved by enhancing the remote proxy

with a profiler that periodically visits popular websites and records their resource lists in a

metadata repository. Considering that the proxy resides in the wired part of the network,

it can afford to pro-actively fetch webpages and construct their resource lists for the most

popular websites in the network. Such a profiling module can be easily integrated with the

operational activities of high-performance dedicated middle-boxes that are already deployed

by most mobile operators for caching, traffic monitoring and optimization purposes [86].

This way, the first step in loading a page at the remote proxy will become checking

the metadata repository. In the case the repository contains the resource list of the page,

multiple parallel connections will be used to fetch all the objects of the page from possibly

36

different web servers. Otherwise, the remote proxy will employ a web engine to load the

page by first fetching the base HTML file and then loading the discovered objects. WebPro’s

profiler employs a web engine to perform all the steps involved in loading a page except

rendering. This way, profiler will be able to record all the requests that result from parsing

as well as script evaluations. We also implemented a filtering module to prevent profiler from

recording changing URLs that result from third party advertisements and tracking systems.

In order for the metadata repository to contain the resource lists of the majority of the

requests, profiler should employ an effective mechanism to identify popular URLs in the

network. Considering the flow of URLs into the proxy as a data stream, we exploit a well-

known algorithm in data mining community, space saving, for identifying the popular URLs

at the proxy. Our experiments using traffic traces collected from University of Calgary’s

Internet link show that maintaining a metadata repository for the top-1000 URLs in the

network, allows a timely update of their resource lists by the profiler while providing a high

hit ratio to the user requests.

Using resource lists at the proxy also enables WebPro to avoid going through the iterative

process of exploring objects in a webpage. In other words, it enables WebPro to break

the inter-object dependencies in a webpage. The most common form of such dependencies

happens when an embedded object itself refers to another object, similar to the example

in Figure 3.2. Accordingly, our experiments using carefully designed synthetic webpages

reveal that the benefits of WebPro will extend as the number of dependencies in a webpage

increases.

We emphasize that in contrast to client-based approaches (e.g., [43]), WebPro is transpar-

ent to the end-points and does not require any changes to the client’s browser. As a proxy, it

exploits the common browsing activity across a diverse set of mobile users and hence provides

a faster browsing experience. Moreover, in WebPro, the penalty of downloading wrong and

unusable objects (in terms of wireless bandwidth usage and mobile battery consumption) is

37

negligible compared to that of client-based approaches as it resides in the wired part of the

network. Thus, it can afford to pro-actively update the resource lists, which is very costly

to implement on wireless clients.

We have implemented WebPro on Linux and have conducted an extensive set of measure-

ment experiments. We believe that the common approach taken by proxy-based solutions

EEP [18, 59] and PARCEL [19] is the state of the art and one of the most complete proxy-

based solutions for improving web browsing performance on mobile devices1. We call this

approach PBB (Proxy Based Browsing) and use it as benchmark to evaluate the performance

of WebPro. In comparison to PBB, our scheme achieves lower page load times. Specifically

in the case of a workload consisting of the 20 popular webpages from different categories,

our approach loads 73% of the pages in less than two seconds while under PBB, only 28%

of the pages load in that time. To the best of our knowledge, this is the first work to use

the speculative loading approach in a dual proxy architecture for improving mobile user

experience.

3.2 WebPro: Proxy-Based Speculative Loading

3.2.1 System Architecture

In order to eliminate the initial fetch time at the remote proxy, we take advantage of the

speculative loading approach. The basic idea of speculative loading is to use the previously

recorded knowledge about the structure of a website during the page load process. Our

system, called WebPro, is depicted in Figure 3.3. WebPro equips the remote proxy with a

profiling module that pro-actively and periodically loads webpages from a set of top visited

websites and records their resource lists in a metadata repository. The list of top websites

can be inferred from the web browsing behaviour of the users of the system. As will be

discussed later, the memory footprint of keeping resource lists is very low, which means

1The difference between EEP and PARCEL solutions was discussed in section 2.2.1 of this thesis.

38

Browser

Local Proxy

Mobile Device

Remote
Proxy

Metadata
Repository

Profiler

Proxy Server

1. Page Request (URL)

5. Page in Bundle

2. URL

3. Resource List

Page Structure
Information

4. Individual Objects

Web Servers

Internet

Figure 3.3: High Level Architecture of WebPro.

that the proxy can easily keep metadata for a large number (on the order of thousands) of

websites.

After receiving a request to load a webpage at the remote proxy, if the resource list of

that page already exists in the metadata repository, multiple parallel connections will be

used to fetch the objects in the resource list. In case the remote proxy receives a request for

the first time and notices the absence of the corresponding resource list, it will use the legacy

approach of PBB by loading the page in a web engine. Once all the required objects of a

webpage are fetched, the remote proxy packs them in a bundle and sends the bundle to the

local proxy. Figure 3.4 shows the download pattern of WebPro and PBB. Notice that both

WebPro and PBB bundle objects when transferring them from proxy to the client. The flow

chart in Figure 3.5 shows the operations performed at WebPro’s remote proxy for serving a

user request.

A defining feature of WebPro is that the profiler on the remote proxy can always keep a

fairly recent version of the resource lists for user requested webpages. However, the freshness

of the maintained resource lists will depend on the frequency of change in the structure of

39

Browser Local Proxy Remote Proxy Web Server

Metadata

Repository

Compress and Bundle

Unbundle and

Decompress

(a) WebPro

Browser Local Proxy Remote Proxy Web Server

Compress and Bundle

Unbundle and

Decompress

W
e

b
-e

n
g

in
e

 l
o

a
d

s
p

a
g

e

Parse Base HTML

(b) PBB

Figure 3.4: Downloading a Webpage with WebPro (a) and PBB (b).

the webpages. In Section 3.3.4.1, we will present measurement results indicating that on

average the amount of such change within a few hours is relatively small. Therefore, given

the abundance of the computation and communication resources at the remote proxy, it

should be feasible for the profiler to capture the temporal changes in resource structures by

updating its metadata repository in a timely manner. Notice that doing so on the mobile

device using a client-based approach is not feasible due to bandwidth and battery limitations.

Also it is noteworthy that an optimized implementation of the proxy will not penalize the

page load times in the case of websites with rapidly changing structures (such as social media

news feed sites), but it may not improve them either.

In order to learn and utilize the aggregate browsing activity of users in WebPro, whenever

the remote proxy loads a page for the first time through the web engine, it also adds the

corresponding resource list to the metadata repository. This way, the remote proxy will be

able to exploit the common browsing activity across different users.

It is important to note the difference between WebPro and traditional proxy-based

caching systems [87]. Those systems cache the actual content of web objects, which limits

their efficiency as most web objects can not be cached or have a short expiration time [43].

However, with WebPro, the remote proxy just keeps a list of the referenced URLs and

fetches a fresh copy of the corresponding objects at each page request. Despite this differ-

40

Start

End

Input: Page
Request from

Local Proxy

Resource List Exists in
Metadata Repository?

Load the Page
Using Web Engine

Load All the Objects
in Resource List Using
Parallel Connections

Bundle All
the Objetcs

Output:
Send the Batch
to Local Proxy

YesNo

Figure 3.5: Flow Chart of Operations Performed at Remote Proxy

ence, WebPro could be augmented with traditional caching as well in case some objects are

usable because there is plenty of storage/processing capacity available at the remote proxy.

3.2.2 Circumventing Webpage Dependencies

In addition to eliminating the initial HTML fetch time, there are other reasons that lead

to a reduced page load time in our approach. Those reasons are based on the fact that the

activities involved in the process of loading a page are inter-dependent and can block each

other [26]. For example, some of the objects may be referenced by a JavaScript or CSS file

and loading those objects depends on evaluating the referencing scripts. Also, downloading

and evaluating a synchronous JavaScript file blocks HTML parsing during the page load

process.

The immediate implication of such dependencies is that a web engine’s resource loading

operations are not fully parallel and discovering web objects can be further delayed because of

script evaluations and other dependencies. However, WebPro can use a previously recorded

41

resource list and hence load all the required objects of a page without going through such

dependent operations.

3.2.3 Identifying Popular Websites

As implied in previous sections, WebPro’s profiler keeps a list of popular URLs in the network

and by periodically loading those URLs, updates its metadata repository. It is clear that the

benefits of WebPro will increase if the profiler maintains a URL list that achieves higher hit

ratios for page requests in the network. The reason is that the presence of a user requested

URL in the list of top URLs (hit occurrence) means that the proxy already has the updated

resource list of that page in its metadata repository and hence can load the page faster. A

simple approach for constructing such a list of URLs would be keeping a SET data structure

and adding all the URLs to the SET upon their arrival at the proxy.

To gain a better insight, we applied this approach to network traffic traces that were

collected from University of Calgary’s Internet link. These traces contain summary infor-

mation of all the HTTP transactions and are recorded by Bro [88], an open source Network

Intrusion Detection System. We wrote an AWK script to extract the URLs of the landing

pages from HTTP traces of six consecutive days (May 1, 2015 to May 6, 2015). We ran

an offline analysis on the extracted traces and constructed the URL set by adding elements

to it using the set union operation. Before adding a URL to the list, a dictionary lookup

operation is performed to test whether it already exists in the list, and if so, a hit counter is

incremented. In this experiment, we kept adding URLs to the same list for the entire six day

period. For each day, we compute the hit ratio as the number of hits on that day divided

by the total number of requests during that day. We also record the size of the SET at the

end of each day which is the number of distinct URLs observed by that time. The results

are presented in Table 3.1. It can be seen that in all days a high hit ratio of at least 93%

is achieved. Also notice that the number of distinct URLs is ∼ 18K in the first day and

reaches ∼ 54K by the end of the sixth day.

42

Day Number Hit Ratio # of Distinct URLs
1 93.4 % 18482
2 95 % 24725
3 97 % 28156
4 94.6 % 38235
5 95.3 % 46565
6 96 % 54040

Table 3.1: Hit ratio and top URL set size that result from running the simple algorithm over
University of Calgary’s HTTP traces collected between May 1, 2015 and May 6, 2015

Notice that storing the resource lists of such a large number of URLs is feasible because

of small size of resource lists (on average 11.7 KB for a page in our top 20 page selection) and

abundance of storage space in the remote proxy. However, considering that on average a page

can take about 6 seconds to load on a Desktop computer [89], it would take about 33 hours

to visit 20000 pages back to back and update their resource lists in metadata repository.

Such a long update interval can compromise the freshness of resource lists for some of the

fast changing websites.

Notice that the above problem stems from a large number of page requests constantly

flowing into the proxy. As a result, we can cast it as an instance of identifying most popular

k items in a data stream. Rather than storing all the distinct URLs in a set, in this setting

we are interested in an online algorithm that accurately reports top-k elements of a data

stream by taking only a single pass over data. This is one of the well-studied problems in

data mining community. For instance, authors of [90] presented a survey of some of the most

popular algorithms in this area and conducted experiments to compare the performance of

these algorithms. Their findings indicate that for insert-only streams2, the space saving

algorithm [91] performs better in terms of precision3, recall4, used space and update speed.

As a result, we select this algorithm for identifying top-k URLs in the stream of URLs

arriving at the proxy.

2As opposed to streams where elements can be both inserted and deleted
3Proportion of the items reported by the algorithm that are true frequent items
4Proportion of the true frequent items that are reported by the algorithm

43

3.2.3.1 Space Saving Algorithm

In order to identify top-k elements of a data stream, the space saving algorithm maintains k

elements with their associated counters. Upon arrival of a new URL at the proxy, in case it

is already monitored (exists in the list), we just increment its associated counter. Otherwise,

if the URL list is not full, we insert the URL into the list and set its counter to 1. If the

URL list is full and the URL does not match a monitored item, we find the URL with the

least count, min, and replace it with the new URL. Finally, min+1 is assigned to the count

of the new URL. The authors of [91] proposed a data structure called Stream-Summary

that ensures constant time for finding the minimum element. Also incrementing counters in

Stream-Summary can be performed using O(1) pointer operations.

3.2.4 Practical Considerations

Webpage Customization: A growing number of websites provide a mobile version of

their content which contains fewer and smaller images and short and concise text [82]. Also

browser-dependent code in some webpages can download different set of objects for different

browsers [19]. Therefore in order to comply with users’ actual needs, the remote proxy needs

to be aware of the client attributes such as user-agent and device’s screen information. To

this end, client provides this information to the proxy when it sends the initial request for

the page. By using such information, the proxy will be able to imitate the client device when

requesting objects from web servers. This way, the proxy can also incorporate the resource

list of the corresponding mobile website in its metadata repository.

Incremental Rendering: The bundling feature in WebPro enables the mobile device to

stay in low power state during the entire time that the remote proxy fetches the embedded

objects of a page. While this can reduce energy consumption of mobile web browsing, it

delays receiving the first set of objects by the browser which is required for the partial ren-

dering of the page. To enable drawing intermediate displays in a browser, we can envision

44

WebPro without bundling in which the proxy forwards each object to the client as soon as

it receives the object from a web server. Clearly, such a scheme has the potential to further

reduce page load times at the cost of increased energy consumption (compared to WebPro

with bundling). We note that implementing WebPro without bundling can benefit from

native Virtual Private Network (VPN) support in vast majority of modern mobile devices.

Similar to Meddle proposed in [92], in this setting, a VPN tunnel can be used to direct all

the Internet traffic of mobile device to the remote proxy. Such a VPN-based approach will

eliminate the need to deploy a local proxy component on the mobile device.

Cost of Stale Records in Resource List: A webpage’s structure can change since the

last visit by the profiler which can lead to staleness of some of the records in its correspond-

ing resource list. Considering the superior network connectivity and processing power of the

remote proxy, we can ignore the overhead of fetching such stale objects on the proxy. On the

other hand, a recent study of object sizes in the top 500 Alexa websites reveals that most of

the web objects are typically small to moderate, with the median size being 18 KB [19]. Also

because of selective compression component in WebPro, some of those small objects will be

compressed before being included in the batch which is usually around a few megabytes for

popular webpages. As a result, the overhead of stale objects for mobile device appears as

a few extra kilobytes added to the size of a typically large batch file. However, the bene-

fits of WebPro, and specifically elimination of base HTML fetch time, far outweighs such a

negligible overhead. On the contrary, a client-only solution may incur significant costs in

terms of energy and delay as fetching each of those stale objects can cause state promotion

and demotion in the radio of the device, which is a well-known cause of battery drainage on

wireless devices.

Profiling Overhead: In WebPro, it is expected that usually the profiler’s visit to a page

45

will occur at an earlier time than serving a user request for that page. However in PBB

(the solution proposed in [18,19,59]), each page request triggers a new process of identifying

page resources at the proxy. Therefore, in a setting that most webpages already have a

corresponding resource list at the proxy, the majority of user requests can be served without

incurring any overhead due to profiling.

Handling Asynchronous JavaScript Requests: Most modern webpages use Asyn-

chronous JavaScript requests (AJAX) to dynamically load contents such as advertisements

even after the page is loaded (i.e., after the onload event). Usually such requests are for

session dependent content and hence it would be better to fetch those objects directly from

the web servers rather than the proxy. To accomplish this, the local proxy adopts a selective

forwarding approach in which it forwards the initial page request to the remote proxy and

after receiving the page batch from the remote proxy, forwards all subsequent requests to

objects not present in its cache to the corresponding web servers.

3.2.5 Prototype Implementation

Our current implementation of WebPro uses the Qt SDK version 5.3. Specifically, QWebKit

class which is a result of integration of WebKit into Qt enabled us to develop the web engine

component of the system. Also considering that for evaluating WebPro, we compare its

performance with PBB, both approaches were implemented using the same Qt libraries.

Here we briefly introduce the important parts of our implementation.

3.2.5.1 Resource Profiler

Profiler is responsible for constructing and updating webpage resource lists and storing the

metadata information on the remote proxy. The Profiler is basically a WebKit-based web

engine which loads webpages on demand. Note that loading a page in the profiler involves

all the steps of opening a webpage except rendering. This way, we can obtain the list of all

46

the objects whether they are resulted from parsing or from JavaScript/CSS evaluations. In

particular, we intercept the network activity of this web engine and record the corresponding

URLs of all the HTTP requests.

As mentioned in Section 3.2, webpages from the set of popular websites should be loaded

periodically in order to keep an up-to-date repository of resource lists on the remote proxy.

This is achieved by a bash script that wakes up periodically and iteratively invokes profiler

with a URL from a list of top visited websites.

A hash function of the URL determines the unique name and directory of the file that

stores its resource list in the repository. In contrast to caching, storage overhead of this

approach is negligible because instead of storing actual content of the objects, the proxy

stores URLs of those objects. In our experiments, the total space required to store the

resource lists of 20 popular websites was about 234 KB. As a result, the entire repository

of resource lists can be loaded in the main memory during the operation of the proxy. Disk

access is required only for backup purposes.

3.2.5.2 Object Bundling

We use libtar library to implement bundling in the remote proxy and unbundling in the

client proxy. In our experiments, the time spent in bundling and unbundling is negligible

and has a minimal effect on page load times. For example, in the case of an experiment

with www.cnn.com which contained 139 objects with a total size of 2.6 MB, the time spent

in bundling was only 32 milliseconds.

To study the effect of the number of objects on the performance of bundling, we measured

the time spent in bundling for different numbers of objects, all with size 20KB (the average

object size in a modern webpage). Figure 3.6 depicts the bundling performance as a function

of object numbers. It can be observed that even for the case of 200 objects, the bundling

time is negligible compared to the overall page load time (in the order of tens of seconds). It

is also noteworthy that the timing values reported here are obtained using a typical machine

47

40 80 120 160 200
0

10

20

30

40

50

60

70

80

90

100

Number of Objects

T
im

e
 S

p
e
n

t
in

 B
u
n

d
lin

g
 (

m
s
)

Figure 3.6: Bundling Performance

in our lab, while it is expected that in a real-world deployment, the proxy will be hosted

on a more powerful computer(s) with dedicated hardware. With the widespread adoption

of cloud computing, we can also envision hosting remote proxy in a cloud platform which

automatically scales up its processing power to handle an increase in workload.

3.2.5.3 Selective Compression

According to the results reported in [93], objects that have an image or video content-type

and also most objects with binary data (e.g. app/octet-stream) already are in compressed

form and there is very little room for additional saving. On the other hand, text files such as

HTML, XML, JavaScript, and CSS can benefit greatly from compression. In line with this,

the remote proxy has a selective compression component that uses the zlib [94] library to

compress the body of HTTP responses with the text MIME type. We implemented bundling

and selective compression in the same way for PBB as well.

3.2.5.4 Filtering Dynamic URLs

Many websites these days contain references to third party advertisement networks and web

tracking systems. Tracking or targeted advertising is done by inclusion of a JavaScript code

in a webpage that is executed when a user visits that page. Usually such JavaScript codes use

48

random numbers or date information to create requests with dynamic URLs (i.e., different

URLs over different visits). As a result, the URL generated at the client’s browser will

be different from the recorded URL at the remote proxy. In other words, these URLs will

change at every request and hence the Profiler should avoid recording them. To this end,

we have implemented a module in our profiler that filters those changing URLs during the

profiling period. In particular, this module detects changing URLs based on the prefixes in

URLs and also URLs belonging to a blacklist [95]. To ensure a fair comparison with PBB,

we also equipped PBB’s web engine in the remote proxy with our filtering module.

Given that the advertisements fetched at different visits to a page can be of varying sizes

and/or belong to different domains, we also incorporated the filtering module in our client

side proxy to eliminate such variabilities in object load times.

3.2.5.5 Local Proxy

The local proxy is developed using QT’s networking API (QTcpSocket and QTcpServer)

and acts as a server to the mobile browser while acting as a client to the remote proxy. It

also uses the same libraries discussed above for unbundling and decompression. Specifically,

local proxy passes the first request of a page to the remote proxy and after receiving the

page bundle, responds to the browser with the appropriate object while caching the rest of

the objects in the bundle. For all the subsequent requests, local proxy will try to load the

object from its cache if available, otherwise will forward the request to the corresponding

web server.

3.3 Performance Evaluation

In this section, we use our prototype implementation to demonstrate the effectiveness of

WebPro. Notice that we compare WebPro to benchmark system PBB as opposed to con-

ventional web browsers, because the previous work [18, 19] has already shown the superior

performance of PBB in comparison to traditional browsers.

49

Figure 3.7: Experimental Setup with the Remote Proxy.

3.3.1 Experimental Setup

Client Setup: Figure 3.7 depicts our experimental setup. We chose an ASUS UX31A

laptop running Ubuntu 14.04 with built-in WiFi adapter as our mobile terminal. For cellular

measurements, we equipped the laptop device with an LTE USB modem so that it can access

the LTE network provided by a major Canadian cellular carrier. As mentioned in [1], the

rationale for using laptops instead of smartphones is that slower processors of smartphones

can influence our results on page load times. Also, by using laptops, we don’t have to restrict

our experiments to those websites that provide a mobile version of their site.

On the client side, we developed our own browser using QWebKit library. This way we

can log detailed timing information and also clear browser’s cache programmatically before

each experiment. In practice, any browser can benefit from our proxy-based solution without

any modifications. It only requires configuring the browser to use the local proxy.

Infrastructure Setup: We performed WLAN measurements using a Cisco Linksys EA2700

wireless router. The router was connected to the proxy server through the campus LAN (100

Mbps Ethernet). We also conducted cellular experiments over the LTE network at a loca-

tion with good signal strength. In the cellular setting, the proxy was configured with a

public IP address. The average TCP throughput between the mobile device and the remote

proxy, measured by iperf tool, was about 52.5 Mbps and 2.5 Mbps in WiFi and Cellular

50

Webpage Size (KB) # of images # of JS # of CSS # of other Total # of objects
cnn.com 2712 90 36 1 12 139

espn.go.com 2404 76 13 3 5 97
mozilla.org 957 18 5 3 7 33
walmart.ca 3239 51 12 3 4 70

bbc.com 1599 43 24 3 3 73
ebay.ca 4078 132 4 3 9 148

shaw.ca/store 1944 26 20 2 10 58
go.com 3224 22 30 8 16 76

nytimes.com 2974 84 40 8 9 141
deviantart.com 2102 68 14 4 2 88

apple.com 1254 25 18 6 1 50
ikea.com/ca/en 2923 56 13 5 3 77

flickr.com 6736 24 4 2 8 38
ca.ign.com 2473 62 24 13 6 105

microsoft.com 1208 35 10 1 7 53
homedepot.ca 2180 32 12 5 11 60

Wikipedia Article 1932 80 9 2 1 92
cbssports.com 1535 37 26 2 5 70
tripadvisor.ca 3510 78 5 1 4 88

about.com 1437 43 5 2 3 53

Table 3.2: Characteristics of the Websites Used in the Experiments (accessed on Oct. 29, 2014).

settings, respectively. Also the average ping RTT between the mobile device and the remote

proxy was about 10 ms and 117 ms in WiFi and Cellular settings, respectively. The remote

proxy was hosted on a fairly typical machine running Ubuntu 14.04 with no special server

capability. This machine is connected to Internet using a 100 Mbps LAN connection. All

experiments were conducted in a lab environment.

3.3.2 Workload Characterization

We selected 20 webpages from the top Canadian websites listed on Alexa [84]. Similar

to [1], we used desktop versions of these websites instead of their mobile versions because

of widespread use of tablets and large screen smartphones. These webpages were chosen

from different categories such as news, auction, sports, shopping, etc. Table 3.2 shows the

detailed properties of our selected webpages. The average page size is 2521.05 KB and the

total number of objects ranges from 33 to 148. Anything other than image, JavaScript and

CSS is counted as other.

51

3.3.3 Performance Metrics Used

Page Load Time: We use page load time (PLT) as the primary indicator of user-perceived

performance. In our measurements, page load time is the time elapsed between the initial

page request and the time when all associated objects of a page have been downloaded and

processed. This time is identified by the occurrence of the onload event at the browser

and includes the time spent in executing CSS and synchronous JavaScript files. In the

proxy-based systems discussed here, PLT consists of the following components:

1. Time to request the page from the remote proxy,

2. Time to download all the objects in the resource list (in WebPro) or the time

it takes for the remote proxy’s web engine to load the page (in PBB),

3. Time to receive the bundle from the remote proxy, and,

4. Time to download all the objects that are missing in the bundle until the entire

webpage is loaded.

Hit Ratio: In order to capture the amount of change in webpage structures, we use the hit

ratio metric. The hit ratio associated with a webpage’s resource list is the number of objects

from the resource list that are actually requested during the page load process, divided by

the total number of objects in that resource list. It represents the fraction of the resource

list that is still valid and accurate. A high hit ratio means that there has been little change

in webpage’s structure since the last time that the profiler visited the page.

52

3.3.4 Measurement Results

3.3.4.1 Change in Webpage Structures

The underlying hypothesis in WebPro is that the resource structure of a website changes less

frequently than the actual content of the objects and webpages. We note that web publishers

usually choose a short expiration time for web objects and also prevent web resources from

being cached by using “no-store” in the cache-control HTTP header field.

In line with this, our first experiment studies the temporal changes in webpage structures.

In particular, it monitors the average hit ratio of the resource lists of the websites presented in

Section 3.3.2. As mentioned in Section 3.3.3, a decline in the value of the hit ratio associated

with a resource list corresponds to change in that page’s structure. Note that our selected

webpages are a combination of fast changing pages such as news websites as well as stable

homepages of large companies such as Apple.

We conducted five experiments over the span of five weeks, each separated by one week.

In each experiment, we first constructed the resource list of the webpages and then used them

to load the same pages every hour over an 8 hour period. Figure 3.8 plots the average hit ratio

and 95% confidence intervals of the webpages among all the experiments as a function of the

hours passed since loading the page for the first time. We see that the highest amount of hit

ratio is achieved in the first hour, as expected. It can be observed that the amount of change

in webpage structures over an eight hour period is relatively low. The difference between the

average hit ratio in the first and eighth hours is less than 0.1 and the maximum amount of

hour to hour change in the average hit ratio is about 0.02. As a result, it should be feasible

for the remote proxy to capture the temporal changes in webpage structures by updating its

resource list repository in a timely manner (every three hours in our experiments). Notice

that our selected three hour update interval is even less than the 4 hour update interval

proposed by [10] for capturing the flux in dependency structure of webpages.

53

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

Hours Passed

A
v
e
ra

g
e

 H
it
 R

a
ti
o

Figure 3.8: Temporal Change in Webpage Structures. Drop in the value of the average hit ratio
over time is an indication of the change in the structure of the webpages. However, the amount of
such change is relatively low over an eight hour period.

3.3.4.2 Comparison with Benchmark

Next, we compare the performance of WebPro and the benchmark PBB, using the webpages

presented in Section 3.3.2. Because of the variability in load times between consecutive page

visits, we performed ten back to back experiments with each page. Our experiments were

conducted during quiet times and the browser’s cache was cleared programmatically before

each experiment. Speculative loading at the proxy involves using resource lists associated

with user-requested webpages and in our experiments, the remote proxy used the resource

lists that were constructed three hours before the actual measurements. Given the abundance

of computation and communication resources at the proxy, it is feasible for the proxy to

update its resource list repository of top visited webpages every three hours. Moreover, the

results of our experiment in the previous section show that the amount of change in webpage

structures within three hours is negligible.

Figure 3.9 represents the cumulative distribution function of page load time under these

two approaches in WLAN and cellular settings. It can be seen that WebPro performs better

in terms of page load time. Figure 3.9(a) shows that in the WLAN environment, WebPro

54

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page Load Time (msec)

C
D

F

WebPro

PBB

(a) WLAN Measurements

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page Load Time (msec)

C
D

F

WebPro

PBB

(b) Cellular Measurements

Figure 3.9: Cumulative Distribution Function of Page Load Time. WebPro outperforms benchmark
PBB. In the WLAN setting, under WebPro, 73% of the pages load in less than 2 seconds. However,
in the PBB approach, 28% of the instances complete loading within 2 seconds. In the cellular
environment, under WebPro, 78% of the page loads complete within 6 seconds while under PBB,
only 55% of the pages complete loading in that time.

Webpage
Page Load Time (ms)

Improvement
PBB WebPro

www.tripadvisor.ca 3835 3623 5.5%
www.deviantart.com 10675 10070 5.7%

www.flickr.com 6717 3278 51.2%
www.about.com 4456 2166 51.4%

Table 3.3: Improvement in Average Page Load Time.

helps up to 73% of the pages to load in less than 2 seconds, while with PBB only 28%

of the instances complete loading in that time. Similarly Figure 3.9(b) shows that in the

cellular environment, under WebPro, 78% of the pages finish loading within 6 seconds, but

under PBB, only 55% of the instances finish loading in that time. In general, across all

the experiments performed in the WLAN and cellular environments, our results indicate

that an average of 26% reduction in page load times can be achieved by using WebPro.

Figure 3.9(b) also confirms that in cellular networks, the same webpages experience longer

load times underscoring the importance of page load time reduction in such networks.

Table 3.3 zooms into the details of these measurements by listing two of the webpages

with the lowest amount of improvement and two of the pages with the highest reduction

55

in load time. It shows that the improvements can range from 5% to 51%. Note that the

variability in improvement across websites results from several factors, of which we mention

only a few:

• The number of domains that web objects are spread across which affects the number of

unique connections required to fetch all the objects.

• The size of the website as indicated by the total number of bytes and also the number of

objects.

• Website design which creates different set of dependencies between operations of the page

load process [26]. This can impose different orders for retrieving web objects.

• Topological proximity between the client and original web server or an edge server from

content distribution networks (CDNs).

3.3.4.3 Effect of Page Hit Ratio

In a real deployment, it is possible that the remote proxy will not have the resource lists

associated with all the user requests. In that case, it will load the page in a web engine and

will send the whole page in a bundle to the client. That is, the remote proxy will employ

a combination of the web engine-based and speculative loading approaches to satisfy user

requests.

In light of this, our next experiment evaluates the improvements in page load time in a

more realistic scenario. Here we gradually increase the hit ratio for the test webpages, that

is we increase the fraction of user requests with a corresponding resource list at the proxy.

To distinguish this fraction from the hit ratio metric introduced in Section 3.3.3, we call

it page hit ratio. Using the same webpages presented in Section 3.3.2, we conducted five

experiment runs associated with each page hit ratio. At each run, the remote proxy uses

resource lists for a random set of pages that are determined based on the page hit ratio, and

employs ordinary page loading for the rest of the pages. As a clarifying example, assume

56

0 20 40 60 80 100
30

35

40

45

50

55

60

Page Hit Ratio

A
v
e
ra

g
e
 T

o
ta

l
B

ro
w

s
in

g
 T

im
e
 (

s
e
c
)

(a) WLAN Measurements

0 20 40 60 80 100
70

80

90

100

110

120

130

140

Page Hit Ratio

A
v
e
ra

g
e
 T

o
ta

l
B

ro
w

s
in

g
 T

im
e
 (

s
e
c
)

(b) Cellular Measurements

Figure 3.10: Back to Back load time for 20 popular webpages as a function of page hit ratio.
An increase in the page hit ratio reduces the total browsing time. In the case of WLAN and
cellular measurements, there is a maximum reduction of 28% and 39%, respectively. The maximum
improvements are achieved at 100% page hit ratio.

that the remote proxy is going to serve 20 distinct page requests. In the case of 40% page

hit ratio, for each run, proxy randomly selects 8 out of the 20 pages to load using resource

lists and employs web engine for loading the remaining 12 pages.

Figure 3.10 shows the average value for the total time to visit all 20 webpages back to back

as a function of the page hit ratio. The results are represented with 95 percent confidence

intervals. It can be seen that a higher page hit ratio leads to a greater improvement in user’s

browsing experience. The upper bound of reduction in back to back page load time is 28%

and 39% in the case of WLAN and cellular measurements, respectively. These upper bounds

correspond to a 100% page hit ratio in both experiments.

From Figure 3.10 we can see that the amount of improvement gained from using resource

lists depends on the page hit ratio. We observed in section 3.2.3 that adding all the new

URLs to profiler’s URL list can result in high page hit ratios that are close to 100%. However,

this may lead to a long update interval in profiler and endanger freshness of resource lists.

The immediate alternative is to keep a relatively small summary of data stream (stream

of URLs) rather than storing all of them. As discussed before, we propose using the space

57

saving algorithm to identify top-k popular URLs of the stream.

To study the effectiveness of this approach in a real setting, we ran the space saving

algorithm over network traffic traces collected from the University of Calgary’s Internet link.

Similar to the experiment explained in section 3.2.3, we used an AWK script to extract URLs

of the landing pages from HTTP traces and fed them to the space saving algorithm. We

performed four experiments over four different six-day intervals. At each experiment, we

constructed the top-k list for the URL stream of six consecutive days while measuring page

hit ratio separately for each day. Specifically, with each URL in the stream, we first check the

top-k list to determine whether it is among the current popular elements (hit occurrence),

and if so, we increment both its associated counter in the list and a hit counter. Otherwise,

we add the URL and its associated counter to the top-k list in accordance with the space

saving algorithm. Finally, page hit ratio of each day is calculated as the number of hits

during that day divided by the total number of page requests received on that day.

Figure 3.11 shows the page hit ratios achieved for different values of k. It can be seen

that by increasing the size of the popular URLs list, k, the page hit ratio increases. For

example, in May 25-30 period, by increasing k from 100 to 1000, the average page hit ratio

increases from 67% to 83%. Figure 3.11 also shows that in all four time periods, by keeping

a popular URL list with only 1000 items, a page hit ratio of above 80% can be achieved.

By assuming an average 6 seconds page load time on a Desktop computer [89], updating

the resource lists of 1000 websites at the proxy will take only one hour and forty minutes.

Comparing such a short update time to our results in section 3.3.4.1 on the frequency of

change in webpage structures implies that the profiler would be able to capture temporal

changes in the structure of top-1000 popular webpages (a subset of all the requests in the

network) and still provide a high page hit ratio to its users.

58

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

Day Number

P
a
g
e
 H

it
 R

a
ti
o

Top−100

Top−200

Top−500

Top−1000

(a) January 5-10, 2015

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

Day Number

P
a
g
e
 H

it
 R

a
ti
o

Top−100

Top−200

Top−500

Top−1000

(b) February 09-14, 2015

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

Day Number

P
a
g
e
 H

it
 R

a
ti
o

Top−100

Top−200

Top−500

Top−1000

(c) May 25-30, 2015

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

Day Number

P
a
g
e
 H

it
 R

a
ti
o

Top−100

Top−200

Top−500

Top−1000

(d) June 8-13, 2015

Figure 3.11: Page Hit Ratios achieved by applying the space saving algorithm to the HTTP traces
collected from the University of Calgary’s Internet link over four different six day intervals. In-
creasing the size of the popular URLs list leads to higher page hit ratios. Also, on average, keeping
just the top-1000 popular URLs in the stream of URLs that arrive at the proxy, results in over 80%
page hit ratios.

59

3.3.4.4 Effect of Concurrent Connections

As mentioned in Section 3.2, WebPro uses multiple concurrent connections to fetch all objects

in the resource list associated with a webpage. Similarly, typical web engines use concurrent

TCP connections to avoid the head-of-line blocking problem and reduce page load time [42].

However, in modern web engines there is a limit on the number of concurrent connections per

domain. For example, the Chrome browser on Android mobile operating system limits the

number of simultaneous connections per domain to 6. The WebKit-based web engine used in

our implementation also caps the number of parallel connections per host/port combination

to 6. This limitation is imposed by Qt’s network access manager class and hence it is also

applied to our implementation of WebPro, which uses the same class for network operations.

Our next experiment studies the effect of the number of concurrent connections on

the performance of WebPro and PBB. Figure 3.12 shows the average page load time for

a Wikipedia article page under a varying number of maximum concurrent connections. The

results are averaged over 10 runs and error bars represent 95% confidence intervals. We ob-

serve a significant performance improvement in both approaches by increasing the number

of concurrent connections. Specifically, increasing the concurrency limit from 2 to 8 results

in 48% and 23% faster page load time in the case of WebPro and PBB, respectively. The

justification for better performance of WebPro is that an increased number of concurrent

connections allows more subresources to be fetched in parallel.

We also found that increasing the concurrency limit beyond 6 leads to marginal im-

provements in page load times. This can be due to several factors creating a bottleneck

for browsing performance. For example, by increasing the concurrency beyond a limit, each

connection obtains less bandwidth, which results in longer delays when downloading objects.

On the other hand, high concurrency requires more TCP connection states and buffers to be

maintained at the remote proxy and hence increases the processing overhead on the proxy.

Figure 3.12 also shows that WebPro benefits more from increased concurrency, compared

60

2 4 6 8
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of Concurrent Connections

A
v
e
ra

g
e

 P
a
g
e

 L
o

a
d

 T
im

e
 (

m
s
e
c
)

PBB
WebPro

Figure 3.12: Average Page Load Time for a Wikipedia article page as a function of the number
of parallel connections. We see that increasing the concurrency reduces the page load time. The
benefits are greater for WebPro as it can fetch more subresources concurrently.

to the PBB approach. In particular, a 4% difference in page load time between two ap-

proaches reaches 36%, by increasing the concurrency restriction from 2 to 8. This is due

to the fact that processing tasks such as JavaScript evaluation can serialize the page load

process in PBB’s web engine. However, by using the resource list of a webpage, WebPro can

utilize the full potential of concurrent connections.

3.3.4.5 Effect of Network Delay

As mentioned in Section 3.2, WebPro improves the performance of mobile web browsing by

eliminating the initial RTT required to fetch the base HTML file of a webpage. The length

of this time varies depending on the distance between the remote proxy and web servers,

and the type of networks involved. Other factors such as queuing delays or congested links

can also contribute to the variability in the end-to-end delay between the proxy and web

servers. In order to study the impact of network delay on page load time, we conducted a

set of experiments by artificially controlling the amount of packet delay in our tests.

We used the dummynet network emulator [96] to inject extra delay between the remote

proxy and web servers. Specifically, we added 100, 200, 300 and 400 ms extra delay to

61

100 200 300 400
2000

4000

6000

8000

10000

12000

14000

Extra Delay Added to RTT (msec)

A
v
e
ra

g
e

 P
a
g
e

 L
o

a
d

 T
im

e
 (

m
s
e
c
)

PBB

WebPro

Figure 3.13: Average Page Load Time for a Wikipedia article page as a function of network delay.
We see that higher RTT values lead to higher page load times. By increasing RTT, PBB incurs
higher latencies compared to WebPro.

the round trip time between our device and the servers hosting the objects referenced in a

Wikipedia article page. Figure 3.13 shows the average page load time under WebPro and

PBB as a function of the network delay. The results represent the average of ten runs along

with the 95% confidence intervals. It is observed that increasing RTT (i.e., network delay)

leads to a slower browsing experience in both approaches. In particular, raising the amount

of injected delay from 100 ms to 400 ms increases the average page load time by 136% and

164% in WebPro and PBB, respectively.

Figure 3.13 also shows that with larger RTTs, the amount of savings achieved by WebPro

increases. This can be explained by the notions of dependency graph and critical path,

introduced in [26]. The dependency graph of a webpage is a directed acyclic graph with

load process activities as nodes. The edges of this graph represent the dependencies between

those activities. Given that each node is associated with the duration of completing its

corresponding activity, the simplest form of critical path is defined as the longest path in

the dependency graph. Since in PBB, the extra delay impacts all the resource loading nodes

of a critical path, the overall page load time will be affected by the aggregate of those extra

62

delays. However, WebPro avoids traversing the critical path by downloading the objects in

the resource list of a page.

3.3.4.6 Effect of Webpage Complexity

As mentioned in section 3.2.2, there are inter-object dependencies in today’s webpages that

lead to the serialization of network transfers required for loading a page. One of the common

cases of such dependencies is created when an embedded object itself embeds other objects.

For example a JavaScript object can embed any kind of object and a CSS file can embed

background images. In this case, discovering the object referenced in a script file, requires

another RTT between the browser and the origin server. Because of such dependencies, a

browser (or a web engine) cannot discover all the embedded objects of a page right after

fetching and parsing the base HTML file. On the contrary, resource exploration becomes

an iterative process in which local computations such as parsing and script executions are

interleaved with network transfers [23].

Other than eliminating the base HTML fetch time, one other reason for WebPro’s su-

perior performance is that it breaks such object level dependencies by using a previously

recorded resource list. To study the benefits that come from eliminating inter-object de-

pendencies, we carefully designed 4 webpages, all with the same set of embedded objects.

The base HTML files of these pages have slight differences but all are of the same sizes (174

Bytes)5. Also in all the 4 pages, the final rendered page is the same which consists of just a

pigeon image on the screen. The major difference between these pages is in the amount of

dependency between their objects. Specifically, from the first page (test1.html) to the last

page (test4.html), we gradually increase the length of the critical path in their dependency

graphs. Figure 3.14 depicts the dependency graphs for these 4 pages. Test webpages are

available at http://pages.cpsc.ucalgary.ca/∼asehati/webpro/.

We hosted our test pages on an Apache web server running on a Linux machine in our lab.

5The size of the HTML files were made equal by inserting the required number of blank spaces after the
</html> tag.

63

http://pages.cpsc.ucalgary.ca/~asehati/webpro/

test1.html

sc3.js img.jpgsc1.js sc2.js

(a) level 1

test2.html

sc3.jsimg.jpg

sc1.js

sc2.js

(b) level 2

test3.html

sc3.js

img.jpg

sc1.js

sc2.js

(c) level 3

test4.html

sc3.js

img.jpg

sc1.js

sc2.js

(d) level 4

Figure 3.14: Dependency graphs for four carefully designed test pages with the same set of embed-
ded objects. In the first test page (a), all the objects can be discovered after fetching and parsing
the base HTML file, giving it a critical path of length 1. The second page (b) has a critical path
of length 2, because the image object can be revealed after fetching and evaluating the JavaScript
object sc1.js. In the third page (c) with critical path length 3, fetching and evaluating JavaScript
object sc2.js, reveals another JavaScript object, sc1.js, the fetching and evaluation of which reveals
the image object. Finally, in the last page (d) with critical path length 4, evaluating sc3.js reveals
sc2.js, evaluating sc2.js reveals sc1.js and evaluating sc1.js reveals the image object.

Similar to the previous section, dummynet was used to inject 200 ms emulated delay between

remote proxy and the web server. Using the same WiFi setting described in section 3.3.1, we

loaded each test page ten times with WebPro and PBB and computed the average speedup

achieved with WebPro6. Borrowing the definition from [97], WebPro’s speedup relative to

PBB, is the ratio of page load time using PBB to the page load time under WebPro. Given

that all the 4 pages have the same set of embedded objects and their base HTML files are

of the same size, WebPro results in the same page load times for all of the test pages. The

reason is that the resource list files of all the pages point to the same set of embedded objects

hosted on the same server and also base HTML fetch times are the same. However, different

levels of complexity in these pages lead to different page load times under PBB which by

using a web engine goes through an iterative process of discovering embedded objects.

Figure 3.15 depicts WebPro’s speedup relative to PBB as a function of critical path length

under two settings. In one setting (called first setting), persistent connections were supported

by the web server and in the other setting (called second setting), persistent connections were

disabled in the web server. Notice that for a given test page, WebPro achieves the same load

695% confidence intervals were also computed but are not presented since they were very small.

64

1 2 3 4
1.5

2

2.5

3

3.5

4

4.5

5

Critical Path Length

A
v
e
ra

g
e

 S
p
e

e
d

u
p

Persistent Connection Supported

Persistent Connection Not Supported

Figure 3.15: Speedup of WebPro relative to PBB as a function of critical path length. As the critical
path becomes longer, the speedup with WebPro increases. Also, for a given webpage, speedups
with WebPro are higher under the setting that does not support persistent connections.

times under these two settings, but in three out of the four test pages (test 2 through 4), PBB

achieves higher page load times under the second setting. The reason is that WebPro’s proxy

establishes 5 parallel TCP connections to the server right at the beginning and by using each

connection only once, does not get affected by the lack of support for persistent connections.

However in PBB under the second setting, every time that evaluating one object reveals

another object, the proxy will incur one extra RTT to establish a new TCP connection for

fetching the newly discovered object. For these reasons, we can see in Figure 3.15 that for

a given webpage, speedups with WebPro are higher if persistent connections are not used

between the proxy and the web server. The only exception is page 1 in which all the objects

are referenced in the base HTML and there are no inter-object dependencies.

From Figure 3.15, it can also be observed that speedups with WebPro increase as the

critical path becomes longer. By increasing the critical path length from one to four, the

speedup of 1.9 reaches 2.79 and 4.56 in the first and second settings, respectively. Given

that WebPro achieves the same page load times for all pages, higher speedup comes from

higher page load times under PBB. Specifically, in the first setting, increasing the critical

65

path length by one adds one RTT to the page load time of PBB which is the time required

to fetch and evaluate the new referencing object inserted in the critical path. In the second

setting, extending the critical path by one edge adds two RTTs to the page load time of

PBB. One RTT is incurred for establishing a new TCP connection to the server and another

RTT is incurred for fetching and evaluating the new referencing object.

We observe that in Figure 3.15, under the first setting, WebPro achieves the same

speedups for page 1 and 2 which again is due to the fact that same page load times are

achieved with PBB for these two pages. Figure 3.16 shows the waterfall of loading these two

pages using PBB under the first setting. To load test1.html, Web engine first establishes a

connection to the server (we call it connection 1) to fetch the base HTML file of the page.

After fetching and parsing the base HTML file, the web engine finds links to four new objects

(img.jpg, sc1.js, sc2.js, and sc3.js). Because of persistent connections, connection 1 is still

available and can be used for fetching one of the four newly discovered objects. Specifically,

web engine issues the request for sc1.js over connection 1 and at the same time initiates three

new parallel connections to the server (we call them connections 2, 3 and 4). Notice that

initiating a connection means the exchange of SYN and SYNACK segments between the

proxy and the server which takes one RTT. On the other hand, considering the small size of

sc1.js (65 bytes), it takes one RTT to request and receive this file at the proxy. As a result,

by the time that those three connections are established, sc1.js has arrived at the proxy and

connection 1 has become available again. Therefore, at this point in time (marked as 600

ms in Figure 3.16(a)), the proxy has 4 available connections to the server (connections 1, 2,

3 and 4) but there are just 3 objects remaining from the page (img.jpg, sc2.js and sc3.js).

The proxy proceeds by using connection 1 for fetching img.jpg and at the same time issues

requests for sc2.js and sc3.js over two of the three newly opened connections (connections 3

and 4). Finally, the proxy is able to fetch all the required objects of the page without using

connection 2. A similar explanation can be used to describe waterfall of page test2.html

66

0 200 400 600 800

test1.html

sc1.js

img.jpg

sc2.js

sc3.js

Time (milliseconds)

Connection Establishment Fetching Object

(a)

0 200 400 600 800

test2.html

sc1.js

sc3.js

sc2.js

img.jpg

Time (milliseconds)

Connection Establishment Fetching Object

(b)

Figure 3.16: Waterfall of loading (a) the first and (b) the second test page using PBB with persistent
connections enabled. In (a), test1.js, sc1.js and img.jpg and in (b) test2.html, sc1.js and sc3.js are
downloaded over the same connection.

which is downloaded at the proxy after four RTTs.

We note that the last three experiments study the behaviour of WebPro and PBB under

different system conditions, i.e. concurrency limit, network delay and webpage complexity.

Given that these conditions only affect the wired part of the network between the remote

proxy and web servers, we only presented the experimental results under WLAN setting.

Similar behaviour is expected in the cellular environment.

3.3.4.7 Energy Impact of Bundling

As mentioned in section 3.2, the remote proxy sends all the required objects of a page in a

bundle to the client. Transmitting a batch instead of a sequence of small objects prevents

the radio of the device from constant promotions and demotions which can quickly drain

the battery of the device. On the other hand, as mentioned in section 2.4 (Incremental

Rendering), bundling is not an indispensable feature of WebPro and we can envision WebPro

without bundling.

However, to verify the energy efficiency of WebPro with bundling, we performed a set of

experiments using real webpages. To do so, we used most of the experimental setup described

in sections 3.3.1 and 3.3.2 of this chapter. The only difference was that we emulated LTE

network conditions using dummynet network emulator. Specifically, dummynet was used to

inject extra delay and throttle bandwidth so that the RTT and throughput of our emulation

67

Webpage
Radio-on Time (ms)

ImprovementWebPro w/ WebPro w/o
bundling bundling

business.gov.au 2333 3395 31.3%
spark.co.nz 3229 3881 16.8%

mashreghnews.ir 3042 5225 41.8%
zju.edu.cn 3374 4521 25.4%

Table 3.4: Improvement in Average Radio-on Time with Bundling.

would be consistent with real-world settings reported in recent measurement studies [98]. In

our experiments we measure the radio-on time which starts from the time that the client

receives the first set of bytes and ends with the reception of the last byte. In order to consider

LTE’s Radio Resource Control (RRC) state machine, we also incorporated tail time effect

in our analysis. Specifically, idle gaps between consecutive objects that are greater than the

tail time, only contribute the amount of tail time to the radio-on time.

Table 3.4 presents our results for 4 different webpages that are among popular sites in 4

different countries. All measurement results are averaged over 10 runs. It can be seen that

bundling reduces radio-on time which implies reduction in energy consumption of mobile

web browsing. However, the amount of improvement achieved with bundling varies between

different webpages. This is due to a set of reasons such as different amounts of inter-object

idle gaps, different number of objects and differences in topological distance between the

proxy and the web servers.

3.4 Discussion

User Mobility: While we addressed the challenges arising from long access delays of wire-

less networks, it should be noted that the mobility of users while surfing the web can make

accelerating mobile web even more challenging. Specifically, mobility of users can cause

unpredictable network conditions, rate variability and signaling overheads, all of which can

contribute to the poor browsing experience of mobile users. Considering the recent efforts

on the application of Multi-Path TCP (MPTCP) to mobile devices [99], mobility of users

68

can be facilitated by using multiple interfaces (WiFi and cellular) available in most of the

mobile devices. In such a setting, MPTCP’s backup mode [100] will be used to provide the

user with a seamless transition experience as he/she walks between WiFi APs or walks out

of the WiFi coverage.

WebPro in Error-Prone Wireless Networks: In WebPro, the transmission of bun-

dles between the client and the remote proxy is performed over TCP. This implies that the

TCP protocol will provide a reliable channel service to our system, WebPro. Specifically,

TCP will react to any packet loss by retransmitting the missing packets. In other words, the

granularity of TCP’s retransmission is in the packet level and from this perspective, there is

no difference between transmitting individual objects versus transmitting bundles over the

wireless link.

69

Chapter 4

Energy-Delay Tradeoff for Request Bundling on

Smartphones

To reduce the energy consumption of mobile web browsing, in Chapter 3, we employed the

bundling technique. Specifically, in WebPro, the mobile device receives all the required

objects of a webpage in one bundle from the remote proxy. This approach can reduce the

time the radio interface is on, by eliminating the idle gaps between web objects. However,

using a single bundle during the load process, trades off increased page load time (compared

to WebPro without bundling) for the potential to achieve maximum possible energy saving.

This is due to the fact that in this scheme, the remote proxy should wait to receive all the

embedded objects of a page before it can create the bundle and send it to the client. This

implies that the bundling scheme used in Chapter 3 is capable of achieving only a fixed

point on the energy delay tradeoff associated with bundling. It is also worth noting that

mobile web browsing is not the only application that can benefit from bundling. As stated in

Chapter 1, bundling can reduce radio energy consumption in other contexts such as mobile

code offloading and delay tolerant applications.

Clearly, the side effect of bundling is the additional delay experienced by application

users. Given that different users may have different preferences for energy versus delay, it is

desirable to devise systematic solutions that have the flexibility in achieving different energy

delay tradeoffs. Thus, in this chapter we study a formal notion of optimal request bundling

in the general context of data traffic in cellular networks. Specifically, we formulate bundling

as a cost minimization problem, in which the tradeoff between energy and delay is captured

by a cost function. We then propose an online algorithm that can solve the problem without

knowing the future data transfer requests a priori. As a benchmark for the evaluation of

70

our algorithm, we design a dynamic programming-based optimal offline algorithm that relies

on the unrealistic assumption of knowing the entire sequence of the data transfer requests

in advance. We perform competitive analysis of the online algorithm by comparing it to

the optimal offline algorithm. This is followed by performance evaluation of the proposed

algorithm in a range of realistic scenarios using both model-driven simulations and real

experiments on a smartphone.

The rest of the chapter is organized as follows. We start by formally describing the

problem in Section 4.1. In Section 4.2 we present an optimal offline algorithm. Our proposed

online algorithm is presented in Section 4.3, which is then followed by a detailed analysis

of the algorithm in Sections 4.4 and 4.5. Performance evaluation results are discussed in

Section 4.6.

4.1 Problem Statement

Consider a sequence of data transfer request arrivals A = 〈a1, . . . , an〉, where ai denotes

the arrival time of request i. The sequence A is not known in advance. Without loss of

generality, we assume that the radio is off when the first request arrives. The goal is to

design an online algorithm to bundle multiple requests together and grant them at once as

opposed to individually granting each request. Depending on the application context, a data

transfer request may involve uploading and/or downloading data over the radio interface.

Let GA = 〈g1, . . . , gk〉 denote the sequence of grants made by some algorithm A, for the

arrival sequence A, where gi denotes the time of grant i. Let XA = {X1, . . . , Xk} denote the

set of all grant intervals of algorithm A, where X1 = [a1, g1] and Xi = (gi−1, gi], for i ≥ 2.

All requests that arrive during the interval Xi are bundled together and granted at time gi.

Throughout the chapter, we use the notation Xi to refer to the i-th grant interval as well as

the length of that interval, when there is no ambiguity.

Fig. 4.1 shows the relation between arrivals and grants. The objective of the bundling

71

g3g2 g4

X2

g1

X3 X4X1

a1 a2 a3 a4 a5 a6

Figure 4.1: Relation between arrivals, grants and intervals.

algorithm is to determine the grant times gi that minimize the cost CA = EA +αDA, where,

CA denotes the total cost of algorithm A. EA and DA denote the energy cost and delay

cost of algorithm A, respectively. The weight factor α ≥ 0 is used to achieve a desired

tradeoff between energy and delay. A smaller value of α indicates the willingness of the

user to tolerate a higher delay for the sake of reducing the radio energy consumption. By

controlling α, different energy-delay tradeoffs can be achieved ranging from maximum energy

reduction (with α = 0) to zero energy saving (with α� 1).

4.1.1 Energy Cost

The energy cost EA is the tail energy consumed because of inactivity periods between grants

of algorithm A. Let T denote the tail time. We use the following function to characterize

the tail energy:

ε(τ) = min {τ, T} (4.1)

where, τ is the time passed since the last grant of the algorithm (see Fig. 4.2). Then, the

energy cost of grant interval Xi is given by EA(Xi) = ε(Xi). It then follows that,

EA =
∑
Xi∈XA

EA(Xi) + T =
∑
Xi∈XA

ε(Xi) + T, (4.2)

where the additional term T is added to account for a tail time after the last grant. In other

words, we define EA as the time the radio spends in the on state under algorithm A. To

simplify the analysis, similar to [16, 74, 76], we have ignored the transfer time of bundles as

this time is the same for every bundling algorithm.

72

τgi

Figure 4.2: τ is the time since the last grant.

4.1.2 Delay Cost

The delay cost of the algorithm is defined as the sum of delay costs of all the bundles. We

use the notation DA(Xi) to denote the delay cost of bundle i, which includes all requests

that arrive during interval Xi. Then, we have,

DA =
∑
Xi∈XA

DA(Xi) .

Consider a request aj ∈ Xi = (gi−1, gi]. The delay cost of request aj is given by dj =

(gi − aj). The delay cost of bundle i, i.e., DA(Xi), can be any arbitrary function of request

delays dj, for all aj ∈ Xi. Two commonly used delay cost functions are cumulative delay

and max delay functions [76]. Under the cumulative delay function,

DA(Xi) =
∑
aj∈Xi

(gi − aj), (4.3)

and under the max delay function,

DA(Xi) = max
aj∈Xi

(gi − aj) . (4.4)

Notice that an equivalent form of the max delay function is given by DA(Xi) = gi−afirst,i,

where afirst,i is the arrival time of the first request in bundle i. It will become clear later, in

Section 4.3, that the decision making technique used by our online algorithm is independent

of the specific delay cost function considered and can be applied to a variety of other delay

cost definitions. We will later comment on the effect of the specific choice of the delay cost

function on the performance of our algorithm.

73

4.2 Optimal Offline Algorithm

The optimal offline algorithm knows the entire request arrival sequence a priori. While un-

realistic, OPT can be used as a benchmark when evaluating the performance of our online

algorithm. We design OPT based on the observation that every grant of the optimal al-

gorithm happens right at the time of some request arrival, i.e., for all gi ∈ GOPT, we have

gi = ak, for some ak ∈ A. That is, the optimal algorithm never makes a grant in-between

two arrivals because doing so would only increase its cost. As a result, we can consider

the problem of finding the optimal grant sequence as a discrete time optimization problem.

Thus, upon each request arrival, the optimal algorithm should decide whether to make a

grant for the current bundle or wait for the next request arrival.

Algorithm 1 OPT: Optimal Offline Algorithm

Input: A = 〈a1, a2, . . . , an〉
Output: Cmin, Seq
1: Initialize: Cmin[1] = 0
2: Initialize: Seq[1] = 〈1〉
3: for i ∈ [2, n] do
4: Cmin[i] = αfdelay(1, i)
5: Seq[i] = I〈i〉
6: for j ∈ [1, i− 1] do
7: C = Cmin[i− j] + αfdelay(i− j + 1, i)
8: + ε(ai − ai−j)
9: if C < Cmin[i] then

10: Cmin[i] = C
11: Seq[i] = 〈Seq[i− j], I〈j〉〉
12: end if
13: end for
14: end for

Specifically, we present a dynamic programming solution with the runtime of O(n2),

where n is the length of the arrival sequence A. The input to the algorithm is the arrival

sequence A. The output of the algorithm are arrays Cmin and Seq. Here, Cmin[i] represents

the optimal cost of the subsequence Ai = 〈a1, . . . , ai〉, and Seq[i] is a binary grant sequence

representing the decisions of OPT for the subsequence Ai. If Seq[i][j] = 1, then assuming

Ai as input, OPT makes a grant at aj, otherwise it waits for the next arrival. Also, COPT is

74

given by Cmin[n] + T .

Algorithm 1 shows the steps in OPT. As can be seen, it constructs the optimal grant

sequence in a bottom-up fashion. The main idea of the algorithm is that, for any arrival

sequence, there is a grant right when the last request arrives, and the second to last grant

can happen when any of the previous requests arrives. Specifically, OPT consists of a

nested loop where each iteration of the outer loop finds the optimal solution for the smaller

subsequence Ai and stores it in Cmin[i] and Seq[i]. Finally, the last iteration of the outer

loop computes the optimal grant decisions for the arrival sequence A = An using the results

achieved in previous iterations. The notation fdelay(j, i), for j ≤ i, denotes the delay cost

incurred by requests 〈aj, . . . , ai〉 when they are granted at time ai. In the case of max delay

function, we have fdelay(j, i) = ai− aj, and in the case of cumulative delay function we have

fdelay(j, i) =
∑i

k=j(ai − ak). Also, I〈l〉 denotes a binary sequence of length l in which all

elements are 0 except the last one, which is set to 1.

4.2.1 Performance of the Offline Algorithm

For the arrival sequence A (of length n), the last arrival will always trigger a grant. As a

result, in order to find the optimal grant sequence for A, there are 2n−1 possible binary grant

sequences that should be considered. However, algorithm OPT is capable of finding such an

optimal sequence in O(n2) time. This stems from the bottom up nature of the OPT. In the

following, we discuss how OPT can attain the optimal solution in polynomial time, despite

the existence of an exponential number of possible solutions for the problem.

Given the trivial solution for an arrival sequence of size 1, OPT starts by finding the

optimal grant sequence for A2 (see Fig. 4.3). To do so, it compares the cost of two grant

sequences 〈0, 1〉 and 〈1, 1〉. For the sake of argument, assume that 〈0, 1〉 results in a lower

cost and hence OPT assigns it to Seq[2]. Thus, the optimal grant sequence for A can never

start with the sequence 〈1, 1〉 which means that all the 2n−1−2 = 2n−3 grant sequences that

start with 〈1, 1〉 are eliminated. Assuming Seq[2] = 〈0, 1〉, in the next step, OPT considers

75

〈0, 1, 1〉 〈1, 0, 1〉 〈0, 0, 1〉

〈1, 1〉〈0, 1〉

〈1〉

×

×

×

Figure 4.3: Bottom up nature of the offline algorithm.

3 solutions for A3, namely 〈1, 0, 1〉, 〈0, 1, 1〉, and 〈0, 0, 1〉. Again one of these 3 cases will

result in the lowest cost (assume that Seq[3] = 〈1, 0, 1〉). This implies that the optimal

grant sequence for A, can never start with any of the other two sequences, i.e., 〈0, 1, 1〉 and

〈0, 0, 1〉, thus eliminating 2 × 2n−1−3 = 2n−3 of the grant sequences that start with them.

Notice that the sequences eliminated in this step are different than the ones eliminated

during the previous step (associated with A2). By following a similar routine, we can see

that the bottom up nature of the OPT can eliminate an exponential number of the possible

grant sequences for the arrival sequence A.

Theorem 1. When α ≥ 1, OPT makes a grant for every request arrival.

Proof. We prove this Theorem by contradiction. Assume that there exists an arrival subse-

quence Ajk = 〈aj, . . . , ak〉 with j < k, where OPT bundles requests in this subsequence and

makes a single grant at ak (with a grant called gi+1) instead of making individual grants (see

Fig. 4.4). Also, assume that Ajk is extended to the maximum possible length in a sense that

the last arrival before aj is associated with a grant (we call this grant gi). Let gi+2 denote the

first grant of OPT after Ajk. If we modify the optimal grant sequence by adding individual

grants for every arrival in Ajk, the weighted latency cost of the new sequence decreases by at

least α(ak − aj). Rewriting this value using telescoping sums, we can quantify the decrease

76

aj ak

gi gi+2gi+1

Figure 4.4: Modified grant sequence in Theorem 1.

in weighted latency cost as follows:

α

l=k∑
l=j+1

al − al−1 .

On the other hand, adding these new grants changes the energy cost contribution of Ajk
from ε(ak − gi) to ε(aj − gi) +

∑l=k
l=j+1 ε(al − al−1). Put another way, the net increase in the

energy cost can be characterized as follows:

ε(aj − gi)− ε(ak − gi) +
l=k∑
l=j+1

ε(al − al−1) .

Notice that when α > 1, we have ατ > ε(τ). In addition, ε(aj − gi)− ε(ak − gi) ≤ 0 due to

the fact that ε(t) is a non-decreasing function. As a result, we can see that the increase in

energy cost is less than the decrease in weighted latency cost. Thus, the cost of the modified

grant sequence is less than the cost of the optimal grant sequence, which is a contradiction.

Interestingly, using a similar argument, it can be established that when α = 1, there exist

multiple optimal grant sequences and that granting at each arrival is one of them.

Notice that Theorem 1 and its proof are independent of any specific delay function and

apply to both cumulative and max delay functions.

4.3 Online Break-Even Algorithm

With Theorem 1 characterizing the behavior of the online algorithm for α ≥ 1, our online

algorithm called Break-Even (BE) will imitate OPT in that regime. In other regimes, BE

77

A
rr
iv
al
s

D

Time

gi gi+1τ

Figure 4.5: An example depicting the cumulative delay cost.

works as follows. Assume that the last grant was at time gi and the algorithm has to decide

when to make its next grant gi+1. Let τ denote the time duration since the last grant gi (see

Fig. 4.2). Also, let EBE(τ) and DBE(τ) denote the energy and delay cost incurred by BE

during τ . Then, BE makes a grant at time gi+1 = gi + τ , when EBE(τ) = αDBE(τ) holds.

The first grant is treated differently, i.e., when there is no gi. The algorithm makes its first

grant at some time τ that satisfies the equation T = αDBE(τ). The algorithm BE can be

implemented using timers. In the following, we present the specific details of the algorithm

and its implementation for each of the cumulative and max delay functions.

4.3.1 Cumulative Delay

In Fig. 4.5, the staircase curve shows the arrival of requests over time. It is easy to see that

for any choice of τ , the area of the resulted shaded region will be equal to the cumulative

delay cost associated with a grant at time gi+1 = gi + τ . Let D denote the numerical value

of this area. BE will choose such a τ value that satisfies the following equation:

min{τ, T} = αD . (4.5)

To implement BE, upon the arrival of the l-th request at time al, a timer is set to time

78

gi+1gi

τ − τ1afirst,i+1τ1

τ

Figure 4.6: An example grant interval created by BE under max delay.

out at time al+τ , where the value of τ is computed based on (4.5). If the next request arrives

before the expiry of this timer, the timer value will reset to a new value τ by solving (4.5)

with a new value of D. Otherwise, a time out at time gi+1 = al + τ will provoke a grant

event in which case all the pending requests will be granted.

4.3.2 Max Delay

In Fig. 4.6, τ1 is the time between the last grant of the algorithm (i.e., gi) and the first

arrival after that. This way, the weighted delay cost associated with the grant at gi + τ will

be α(τ − τ1). BE will choose such a τ value that satisfies the following equation:

min{τ, T} = α(τ − τ1) . (4.6)

Since α < 1, the only feasible solution for (4.6) is τ − τ1 = T
α

. Therefore, for the first

arrival after each grant gi, BE sets a timer to time out after T
α

time units. Upon expiry of

the timer, a grant will be made and all the pending requests will be granted.

4.4 Analysis of Online Algorithm under Cumulative Delay

As mentioned earlier, in the regime of α ≥ 1, BE imitates the behavior of OPT as determined

by Theorem 1. As such, BE is 1-competitive when α ≥ 1. Therefore, it suffices to analyze BE

for the regime of α < 1. In this regime, the main difficulty in determining the competitive

ratio of BE is that the algorithm can make several grants in a short period of time and incur

only a small energy cost. This implies that, an algorithm can make many grants and incur

79

smaller energy cost compared to another algorithm that makes only a few grants. This is

completely different from the problem setting considered in [16, 74, 76], where it is assumed

that if an algorithm makes more grants then it incurs a higher energy cost.

In the reminder of this section, we focus on proving the following theorems.

Theorem 2. For cumulative delay function, the Break-Even algorithm achieves a competitive

ratio of 4, that is, CBE ≤ 4COPT.

Theorem 3. For cumulative delay function, the competitive ratio of 4 is tight, that is, there

is an arrival sequence for which CBE = 4COPT.

4.4.1 Preliminaries

The main idea is to lower-bound the cost of OPT with respect to the cost of BE.

Lemma 1. The cost of grant interval Xi is given by CBE(Xi) = 2 min {Xi, T}.

Proof. Recall that BE makes a grant when EBE(Xi) = αDBE(Xi). Thus, the cost of interval

i is given by CBE(Xi) = 2EBE(Xi). Based on the definition of the energy cost, we have

EBE(Xi) = min {Xi, T}. This completes the proof.

Observation 1. At least one request arrives during an interval Xi = (gi−1, gi]. If there is

no arrival, then the algorithm does not make any grant at gi as there is no request to grant.

Observation 2. Using Lemma 1, the cost of interval Xi satisfies the relations CBE(Xi) ≤

2Xi and CBE(Xi) ≤ 2T .

4.4.2 Radio State Transitions

Let GOPT = 〈g1, . . . , gl〉 denote the sequence of grants made by OPT. Recall that OPT knows

the sequence A in advance, and hence can optimally space its grants in order to minimize

its cost. We make no assumption about the relation between the number of grants of BE and

OPT.

80

g2 g3 g4

On

Off

T T

g1

Figure 4.7: Grants and radio state transitions of OPT.

On

Off

X2X1 X4X3

Figure 4.8: Grant intervals of BE overlaid on radio states of OPT.

Fig. 4.7 depicts the grants of OPT and the corresponding state of the radio interface under

this algorithm. At the beginning, the radio is off. During the execution of the algorithm, the

radio may switch between the on and off states several times. Once the last grant is made,

which happens when the last request arrives at time an, after a tail time T , the radio goes

to the off state again.

Fig. 4.8 depicts the grant intervals of BE overlaid on the radio states under OPT. Two

types of intervals can be identified:

1. Intervals that do not include any radio state transitions.

2. Intervals that include one or more radio state transitions.

The following subsections, analyze these two types of interval.

4.4.3 Intervals with No Radio Transition

Let X denote such an interval. There are two types of such intervals:

1. Radio is on during interval X: In this case, no matter how many grants OPT makes, it

incurs at least the energy cost as its radio is on. Its delay cost could be zero, but it keeps

81

the radio on for at least X amount of time. Thus,

COPT(X) ≥ X . (4.7)

Based on Observation 2, it is obtained that,

CBE(X) = 2 min {X,T} ≤ 2X ≤ 2COPT(X) . (4.8)

2. Radio is off during interval X: Following Observation 1, since BE makes a grant at the

end of interval X, it means that at least one request has arrived during X. As the radio

is off for OPT, we conclude that OPT incurs at least a delay cost equal to DBE(X), as

does BE. Therefore,

COPT(X) ≥ αDBE(X) . (4.9)

As discussed in the proof of Lemma 1, we have CBE(X) = 2EBE(X) = 2αDBE(X). Thus,

the following relation is obtained,

CBE(X) = 2αDBE(X) ≤ 2COPT(X) . (4.10)

4.4.4 Intervals with One or More Radio Transitions

Let X denote such an interval. Consider the grants of OPT during the interval X. If there

are no grants, then clearly CBE(X) ≤ 2COPT(X) as OPT suffers from at least a delay cost

equal to DBE(X) because it does not make any grants during X. Thus, in the remainder of

this subsection, we consider the case that OPT makes at least one grant during interval X.

Consider the first grant of OPT in X. As depicted in Fig. 4.9, there are two cases to be

considered:

1. The first grant happens when the radio is already on: This case is depicted in Fig. 4.9(a).

Since OPT has a grant when the radio is on, the radio remains on for at least a tail time

T . Thus, COPT(X) ≥ T . It then follows that,

CBE(X) ≤ 2 min {X,T} ≤ 2T ≤ 2COPT(X) . (4.11)

82

X

T

g
(a) First grant of OPT happens when the radio is on.

g

X

(b) First grant of OPT happens when the radio is off.

Figure 4.9: Intervals with one or more radio transitions.

2. The first grant happens when the radio is off: This case is depicted in Fig. 4.9(b). In this

case, the cost of OPT could be as low as zero if its first grant (denoted by g on the figure)

happens right at the same time as the grant of X. Thus, the only relation that can be

established in this case is,

CBE(X) ≤ 2 min {X,T} ≤ 2T, (4.12)

and the ratio CBE(X)/COPT(X) is indeed unbounded. Let X 0
BE ⊆ XBE denote the set of

all such intervals of BE.

The key idea is then to bound the cost of OPT over the interval set X 0
BE rather than

bounding its cost over individual intervals (where its cost could be zero). This is established

during the proof of Theorem 2 presented next.

4.4.5 Proof of Theorem 2

Proof. We have the following relations for the cost of BE and OPT with respect to grant

intervals XBE,

COPT =
∑

Xi∈XBE

COPT(Xi) + T, (4.13)

CBE =
∑

Xi∈XBE

CBE(Xi) + T . (4.14)

It was shown in the previous subsections that for every interval Xi ∈ XBE/X 0
BE, we have,

CBE(Xi) ≤ 2COPT(Xi). Also, for every interval Xi ∈ X 0
BE, we have, CBE(Xi) ≤ 2T . There-

83

fore, it is obtained that,

CBE =
∑

Xi∈XBE

CBE(Xi) + T

=
∑

Xi∈XBE\X 0
BE

CBE(Xi) +
∑

Xi∈X 0
BE

CBE(Xi) + T

≤ 2
∑

Xi∈XBE\X 0
BE

COPT(Xi) +
∑

Xi∈X 0
BE

(2T) + T

≤ 2COPT + 2T |X 0
BE|,

(4.15)

where |X 0
BE| denotes the cardinality of set X 0

BE. Thus, it is left to compute an upper bound

for the term |X 0
BE|. To this end, we focus on the behavior of OPT and observe that for the

entire arrival sequence, the OPT radio will transition between different states several times.

Assume that for K times, there is a transition from the off to on state. Accordingly, we

have COPT ≥ KT , because every time the radio goes to the on state, it incurs at least an

energy cost equal to one tail time T before going back to the off state. Also notice that

after overlaying BE intervals over the radio states under OPT, we cannot have more than K

intervals belonging to X 0
BE. Thus, it is obtained that,

|X 0
BE| ≤ K ≤

COPT

T
. (4.16)

By replacing |X 0
BE| in (4.15) with its upper bound from (4.16), the following relation is

obtained,

CBE ≤ 2COPT + 2T |X 0
BE|

≤ 2COPT + 2COPT = 4COPT .

(4.17)

4.4.6 Proof of Theorem 3

Proof. To show that the competitive ratio 4 is tight, it is sufficient to provide an example

that attains this ratio. To this end, consider the scenario depicted in Fig. 4.10. Assume that

α < 1, i.e., energy is more important than delay.

84

A

BE

ALG

Z

> T> Tδ

Figure 4.10: Example for the lower bound under cumulative delay.

In this example, every time the radio is off, a large number of requests (depicted by a

thick arrow) arrive in a short period of time, i.e., a batch arrival, so that the online algorithm

makes a grant immediately after the batch arrival. Recall that individual request delays are

added together. Therefore, even though individual delays are small, a large number of them

are added together to become equal to T , at which point BE makes its first grant. Since the

radio is off, the cost of the first grant is given by its delay cost, which is equal to T .

A short time δ after this grant, another request arrives (depicted by a thin arrow) and

then nothing arrives for a while. Algorithm BE waits for some time before making a grant

for the second arrival. Since α < 1, the wait time will be longer than T in order to satisfy the

equation EBE(δ+ t) = min {δ + t, T} = αt. For the second grant, the cost is the summation

of the energy cost T and its weighted delay cost, which is also equal to T , for a total cost

of 2T . Once time T has passed after the second grant, the radio goes to the off state, which

incurs the energy cost T due to the tail time. At this time, the same scenario is repeated

again (i.e., a large batch arrival immediately followed by a single arrival).

Next, consider the cost of OPT for the same scenario. We do not know how OPT behaves

in this case, but we do know that its cost is less than or equal to the cost of the algorithm

that makes a grant as soon as any request arrives. This algorithm is denoted by ALG on

Fig.4.10. For this algorithm, its delay cost will be zero, and thus its total cost is given by

85

the radio on time δ plus a tail time.

Let Z denote the time interval from when the first request in a batch arrives until the

arrival of the first request of the next batch as depicted in Fig.4.10. Based on the above

argument, it is obtained that,

CBE(Z) = T + 2T + T, (4.18)

COPT(Z) ≤ CALG(Z) = δ + T . (4.19)

The proof is established by noting that,

lim
δ→0

CBE

COPT

= 4 . (4.20)

4.5 Analysis of Online Algorithm under Max Delay

As stated before, when α ≥ 1, BE follows the behavior of OPT specified by Theorem 1. In

other words, BE is 1-competitive when α ≥ 1. In the following, we prove that under max

delay function and in the regime of α < 1, BE achieves a competitive ratio of 2. We also

prove that the competitive ratio of 2 is tight.

4.5.1 2-competitiveness

Under max delay function and in the regime of α < 1, BE divides time horizon into a set

of intervals, each of length at least T
α

. Fig. 4.11 shows one such interval, which we refer to

as X. Considering the distance of T
α

between the first arrival in X and its associated grant,

the weighted delay cost incurred by BE will be α × T
α

= T . Since BE makes a grant when

EBE(X) = αDBE(X), the cost of interval X is

CBE(X) = 2αDBE(X) = 2EBE(X) = 2T . (4.21)

Depending on whether OPT has a grant in X, we can consider two types of intervals:

86

gi+1goptgi

ℓ

T
α

afirst,i+1τ1

Figure 4.11: (gi, gi+1] is a sample interval created by BE under max delay.

1. Intervals with no grant from OPT

2. Intervals with at least one grant from OPT

4.5.1.1 Intervals with no grant from OPT

If OPT does not make any grant in X, it will incur at least a delay cost equal to DBE(X),

and hence COPT(X) ≥ αDBE(Y), which establishes CBE(X) ≤ 2COPT(X).

4.5.1.2 Intervals with at least one grant from OPT

In case OPT has at least one grant in X, we will use gOPT to refer to its first grant in

this interval. Let ` denote the time duration from gOPT up to the end of interval X (see

Fig. 4.11). We will charge gOPT with ε(`) for its contribution to the energy cost and α(T
α
−`)

for its contribution to the weighted delay cost. If ` > T , then COPT(X) ≥ ε(`) = T . Since

T ≥ EBE(X), we obtain that 2COPT(X) ≥ CBE(X). Otherwise (i.e., if ` ≤ T), we have,

COPT(X) ≥ α(
T

α
− `) + ε(`)

= T + (1− α)` . (4.22)

COPT(X) is lower bounded in (4.22) because it is possible for OPT to have more than one

grant in interval X. When α < 1 in (4.22), `’s coefficient becomes positive. As a result, it

always holds that T ≤ COPT(X), which implies that CBE(X) ≤ 2COPT(X).

87

A

BE

ALG

δ δ

Z

T
α

T
α > T

T
α

Figure 4.12: Example for the lower bound under max delay.

4.5.2 Tightness

Similar to the proof of Theorem 3, it suffices to provide an example arrival sequence that

attains competitive ratio of 2. To this end, consider the arrival sequence in Fig. 4.12 when

α < 1.

In Fig. 4.12, every time the radio is off, a single request arrives. As mentioned in sec-

tion 4.3, BE waits until αDBE(τ) = T holds, meaning that it makes a grant T/α time units

after the arrival of this request. Since the radio was off, the grant cost consists of only the

weighted delay cost which is T . Some time δ after this grant, another request arrives, and

again based on the policy of αDBE(τ) = EBE(τ), BE makes a grant T/α time units after this

arrival. The cost of the second grant consists of both the energy cost and the weighted delay

cost. Each of these components are equal to T , adding up to the total cost of 2T . After the

second grant, no request arrives for a duration of at least T . During this period, the radio

returns to the off state and energy cost of T is incurred due to the tail time. From this point

onward, the same arrival pattern is repeated again.

We now consider the cost of the algorithm ALG that grants requests as soon as they

arrive. Over the time interval Z (specified in Fig. 4.12), ALG has a delay cost of zero and

its total cost is 2T , which is the summation of the tail times associated with the first two

88

grants. Given that COPT is upper bounded by CALG, we have the following relations,

CBE(Z) = T + 2T + T = 4T,

COPT(Z) ≤ CALG(Z) = 2T .

(4.23)

The relations in 4.23 establish a lower bound of 2 on the competitive ratio of BE for max

delay function. On the other hand, we know from the competitive analysis presented earlier

that the competitive ratio is upper bounded by 2. This implies that the competitive ratio of

the example arrival sequence in Fig. 4.12 is 2.

4.6 Performance Evaluation

In this section, we first present model-driven simulation results to verify the accuracy of our

results. Then, we present experimental results based on measurements on a smartphone to

demonstrate the utility and performance of the proposed algorithm in realistic scenarios. In

addition to BE and OPT, we have also implemented the Default algorithm, in which requests

are granted as soon as they arrive. Unless indicated to the contrary, we only present the

results for cumulative delay function in experiments where similar conclusions can be made

about BE’s behavior under both delay functions. Also, given that BE has the same behavior

for the entire regime of α ≥ 1, we only present the experimental results for α = 1 to avoid

redundancy.

4.6.1 Model-Driven Evaluation

In this part, we use a custom-developed discrete-event simulator to compute energy and

delay costs under different algorithms. The input to the simulator consists of the weight

factor α, the value of the tail time and the arrival sequence. Unless otherwise stated, the

tail time is set to 200 ms, which is the value for the tail time of the Continuous Reception

substate in LTE’s Radio Resource Control (RRC) state machine [14].

89

4.6.1.1 Exploring Energy-Delay Tradeoff

The first experiment is performed using a sequence of 100 request arrivals, where the inter-

arrivals are sampled from a normal distribution with mean 200 ms and standard deviation

80 ms. In this sequence, about 41% (59%) of the inter-arrival times are less (greater) than

the tail time.

Figs. 4.13(a) and 4.13(b) represent the energy and delay cost for different values of α,

respectively. It can be seen that by exploring the large parameter space of α, BE is able

to provide different levels of energy savings depending on the user preference. Specifically,

by increasing the weight α, BE achieves lower delay values at the expense of higher energy

consumption. In our experiments, α = 10−4 and α = 1 mark two ends of the spectrum where

maximum energy saving (and delay reduction) are achieved at the expense of increased delay

(and energy consumption). For example, α = 1 results in 100% delay reduction compared to

α = 10−4, while α = 10−4 brings about 98.9% energy saving compared to α = 1. Fig. 4.13(c)

combines the previous two plots by showing the pairwise values of energy and delay along

with their corresponding weight factors.

Fig. 4.13(d) shows the average size of the bundles created by BE. It is observed that BE

ia able to adjust its behavior based on the weight given to the delay cost. Specifically, the

average bundle size decreases from 100 to 1 by increasing the delay weight from 10−4 to 1.

For lower values of α, greater energy savings require a more aggressive aggregation policy,

thus creating larger bundles. On the other hand, in scenarios where delay has higher weight,

BE tends to avoid bundling and grants requests as soon as they arrive.

Using the same arrival sequence, we also run the BE algorithm under the max delay func-

tion. In order to compare the performance of BE under different delay functions, we mea-

sured the delay experienced by individual requests when using each delay function. Fig. 4.14

presents the cumulative distribution function (CDF) of request delays under cumulative and

max delay functions for two values of α. It can be seen that the cumulative function results

90

10
−4

10
−3

10
−2

10
−1

10
0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Weight (α)

E
n
e
rg

y
 c

o
s
t

(a) Energy cost (in ms).

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Weight (α)

D
e
la

y
 c

o
s
t

(b) Delay cost (in ms).

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

10
−4

10
−3

10
−2

10
−1

10
0

Energy cost

D
e
la

y
 c

o
s
t

(c) Energy-delay tradeoff.

0

10

20

30

40

50

60

70

80

90

100

10
−4

10
−3

10
−2

10
−1

10
0

Weight (α)

A
v
e
ra

g
e
 b

u
n
d
le

 s
iz

e

(d) Average bundle size.

Figure 4.13: Performance of BE: By controlling α, different energy-delay tradeoffs can be achieved.

in lower delays for requests. For example, in the case of α = 10−1, 50% of requests incur

delays less than 420 ms when cumulative delay function is used. However, the median delay

is about 1013 ms when using the max delay function. Fig. 4.14 also reveals that regardless

of the delay function, changing the weight factor (α) affects the distribution of individual

request delays.

Table 4.1 compares the performance of BE and OPT in terms of the empirical competitive

ratio achieved for different values of α and different delay functions. It can be seen that under

cumulative delay function, BE performs considerably better than the predicted worst-case

91

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Individual delays (msec)

C
D

F

Cumulative delay
Max Delay

(a) α = 10−1

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Individual delays (msec)

C
D

F

Cumulative delay
Max Delay

(b) α = 10−2

Figure 4.14: CDF of individual request delays under cumulative and max delay functions.

competitive ratio of 4. Also, under max delay function, the values of empirical competitive

ratio conform with the 2-competitive result proved in our analysis. Notice that for α = 1,

the total cost of BE becomes equal to the cost of OPT. The reason is that in the regime of

α ≥ 1, both BE and OPT have identical behaviors as they grant requests as they arrive.

Table 4.1: Empirical competitive ratio of BE.

CBE/COPT

α Cumulative delay Max delay
10−4 1.32 1.98
10−3 1.30 1.81
10−2 1.18 1.96
10−1 1.17 1.75

1 1 1

4.6.1.2 Performance under Different Arrival Patterns

To study the behavior of BE under different arrival patterns, we consider the fluctuation

level of the inter-arrival times. Similar to [101], we use the coefficient of variation (CV) to

classify sequences of arrival times into groups of low, medium and high fluctuations. We

conduct simulations with sequences characterized by CV = 0.5 (low fluctuation), CV = 1.5

(medium fluctuation) and CV = 5 (high fluctuation). In all sequences, inter-arrival times

are sampled from a normal distribution with mean 200 ms.

92

low medium high
10

0

10
1

10
2

10
3

10
4

10
5

T
o
ta

l
c
o
s
t

OPT
BE
Default

(a) α = 10−4

low medium high
10

0

10
1

10
2

10
3

10
4

10
5

T
o
ta

l
c
o
s
t

OPT
BE
Default

(b) α = 10−2

low medium high
10

0

10
1

10
2

10
3

10
4

10
5

T
o
ta

l
c
o
s
t

OPT
BE
Default

(c) α = 1

Figure 4.15: Comparing the performance of BE with OPT and Default under different fluctuation
levels of request inter-arrival times.

Fig. 4.15 compares the total cost of the three algorithms under varying fluctuation levels

and weight values. It is observed that for a specific delay weight, the performance of BE

changes depending on the characteristics of the arrival sequence. For example in Fig. 4.15(a)

(α = 10−4), the cost of BE is 1.15 and 1.37 times the cost of OPT for sequences with medium

and high fluctuation, respectively. Among all the considered scenarios, the ratio CBE/COPT

ranges from 1 to 1.37, which is consistent with our analysis. We can also see that, in scenarios

with higher weight for energy (α = 10−2, 10−4), BE outperforms the Default algorithm. For

example, in a setting with α = 10−2 and high fluctuation, BE results in 69.8% reduction in

the total cost compared to Default.

As Fig. 4.15(c) illustrates, in scenarios with high delay importance (α ≥ 1), all three

algorithms have an identical performance as they grant requests as soon as they arrive. This

is in line with the claim made by Theorem 1. Also as seen in Fig. 4.15, for a given input

sequence, the total cost of the Default algorithm is independent of the weight factor. This is

93

due to the fact that the requests do not experience any delay under this algorithm and hence

the total delay cost of the Default algorithm will always be zero. As a result, the weight

assigned to the delay cost becomes ineffective under Default.

4.6.1.3 A Bursty Arrival Pattern

In this section, we verify that for cumulative delay function, the competitive ratio of BE is

indeed greater than 2. To this end, we generate an arrival sequence inspired by the example

described in Subsection 4.4.6. As Fig. 4.16 shows, this sequence is a repetition of a specific

pattern, where a burst of requests (marked by a thick arrow) arrives and then after a short

period of time, denoted by ts, a single request arrives (marked by a thin arrow). Thereafter,

a long interval, denoted by tl, passes before the arrival of the next burst. By following this

pattern, we construct a sequence of 500 requests, where the size of each burst is uniformly

distributed between 1 and 14. The short and long time intervals (ts and tl) are exponentially

distributed with means 40 ms and 400 ms, respectively.

Table 4.2: Empirical competitive ratio with bursty arrival pattern.

α CBE/COPT α CBE/COPT

0.6 2.11 0.9 2.51
0.7 2.23 0.99 2.55
0.8 2.36 0.999 2.62

Table 4.2 tabulates the empirical competitive ratio of BE for values of α that result in

a cost ratio greater than 2. We note that, while the cost ratio is greater than 2 in these

scenarios, it is still consistent with the ratio 4.

4.6.1.4 Effect of Tail Time

To study the effect of the tail time on the performance of BE, we use a sequence of 100

requests, where the inter-arrival times are sampled from a normal distribution with mean

300 ms and standard deviation 80 ms. We perform a set of experiments with three differ-

ent values for the tail time (100, 200 and 300 ms). Fig. 4.17 depicts the energy cost for

different values of the tail time as a function of the delay weight (α). It is observed that

94

tlts
Figure 4.16: A bursty arrival sequence: The thick and thin arrows indicate burst and single arrivals,
respectively

10
−4

10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3
x 10

4

Weight (α)

E
n
e

rg
y
 c

o
s
t
(m

s
e
c
)

T = 100

T = 200

T = 300

Figure 4.17: Energy cost of BE with different tail times.

the energy-delay tradeoff and hence the energy cost is dependent on the value of the tail

time. Specifically, decreasing the tail time leads to a lower energy cost in almost all cases (α

values). For example, in the case of α = 1, an energy cost improvement of about 64% can

be achieved when changing the tail time from 300 ms to 100 ms. This is due to the fact that

larger values of tail time tend to keep the network interface on for longer, which can cause

higher energy consumption.

Fig. 4.17 also shows that the benefit of shorter tail times grows with increasing the delay

weight. The reason is that, to reduce delay, a higher number of grants are needed, which in

turn generates a higher number of inter-grant idle gaps. Therefore, the role played by the

tail time becomes more significant when delay has higher importance to the user. A similar

argument can be made to justify the marginal benefits of shortening the tail time in settings

95

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

7

10
−4

10
−3

10
−2

10
−1

10
0

Energy (Joule)

D
e
la

y
 (

m
s
e
c
)

(a) Energy-delay tradeoff.

0

10

20

30

40

50

60

70

80

90

100

10
−4

10
−3

10
−2

10
−1

10
0

Weight (α)

E
n
e
rg

y
 s

a
v
e
d
 (

%
)

(b) Energy savings.

Figure 4.18: LTE experiments on a Nexus smartphone.

with higher energy weight (α� 1).

4.6.2 Smartphone Experiments on LTE

To assess the performance of BE under more realistic conditions, we also performed experi-

ments on a Nexus smartphone. To measure the energy consumption of the radio interface,

we used the AT&T ARO tool [11], which is configured with AT&T LTE network parameters.

To conduct experiments on a smartphone, we developed an Android app that turns off the

screen and performs HTTP transfers at user-specified times. Each run of this app uses a

grant sequence file and a URL as input. It then repeatedly downloads the object referred

to by the URL at the times specified in the grant file. We also installed a firewall app

(AFWall+) on the phone to block all background traffic from OS services and other apps.

For the input sequence, we created a sequence of 100 requests with normal inter-arrival

times of mean 10 seconds and standard deviation 5 seconds, based on the measurement

results reported in [13] for popular news feed updates. Also, given that the operation of BE

depends on the value of the tail time, we used 10 seconds as the tail value which is the default

value in ARO’s AT&T LTE profile for the inactivity timer of the RRC CONNECTED state.

96

Using the input sequence, and for different values of α, we run BE and Default and record

their resulting grant times in separate files. We then feed those files to our Android app and

measure the radio energy consumption of the device during each run.

Fig. 4.18(a) plots the pairwise energy-delay values of BE along with their corresponding

α values. Notice that both Fig. 4.18(a) and Fig. 4.13(c) in previous section use the same

delay measure which is the cumulative delay (in ms) incurred by all requests in the sequence.

However, while Fig. 4.13(c) expresses energy in terms of the milliseconds spent in the high

power state, here we present energy in terms of Joules. Fig. 4.18(a) illustrates a consistent

behavior between simulation and real-world experiments as BE spans the broad spectrum

of the energy-delay tradeoff. Also, our experiment with the Default algorithm (which only

achieves a fixed tradeoff point) resulted in zero delay and an energy expenditure of 905.7

Joules. Fig. 4.18(b) plots the energy savings of BE compared to the Default algorithm for

different values of α. We can see growing energy savings by increasing the relative importance

of energy. Across all the values of α, the energy savings of BE can range between 0% and

99%.

97

Chapter 5

Online Energy Management in IoT Applications

In recent years, an ever increasing number of smart devices with sensing and communication

capabilities has given rise to the Internet of Things (IoT). IoT envisions a world where a

variety of smart objects are connected to the Internet and communicate with each other

without human intervention. Gartner predicts that by 2020, about 35 billion smart objects

will be connected to the Internet [102]. As a promising networking paradigm, IoT enables

a new range of services such as smart homes [103], e-healthcare [104] and environmental

monitoring [105].

With LTE being a natural candidate for IoT connectivity, in this chapter we consider

energy management on LTE-enabled IoT devices. A characteristic feature of IoT applications

is the periodic generation of small messages, whose transmission over LTE is highly energy

inefficient. To mitigate the energy inefficiency resulting from small IoT messages, we resort

to the message bundling technique. As mentioned in Chapter 1, the benefits of message

bundling come at the expense of additional delay in message transmission, thus reflecting

the existence of an energy-delay tradeoff. Therefore, we study a message bundling algorithm

that is capable of balancing the enrgy-delay tradeoff and is tailored to the specific operation

of LTE radios. The difficulty in designing such an algorithm is that the bundling decisions

have to be made online without knowing the timing of future message transfer requests.

For instance, many IoT applications generate messages in an event-based manner with no

predictable schedule [29].

In Chapter 4, we formulated bundling as a cost minimization problem, where the cost

function is a weighted summation of energy and delay costs. However, the energy cost was

characterized using an On/Off radio model. As mentioned in our related work discussion on

98

DRX (subsection 2.2.3 in Chapter 2), the On/Off model does not accurately represent the

effect of the extended DRX mechanism introduced in LTE to deal with IoT traffic. Thus,

in this chapter, we incorporate the interplay between energy consumption and the extended

DRX mechanism into our energy cost model. Also, in this chapter, we only focus on the

max delay function to characterize the delay cost of the bundling algorithm. Accordingly,

we adjust the implementation of the Break-Even (BE) algorithm proposed in Chapter 4 to

account for the new energy cost model. We present a detailed analysis of BE in the new

setting using the well-known notion of competitive ratio. We evaluate the performance of

the proposed algorithm and the accuracy of our analysis in a range of realistic scenarios

using both model-driven simulations and real experiments on an IoT testbed.

It is worth noting that while energy management in IoT applications was the main

motivation for our work in this chapter, the presented online algorithm and its analysis are

applicable to any LTE device.

The rest of the chapter is organized as follows. In Section 5.1 we present a formal

specification of the problem. In Section 5.2 we describe an offline algorithm as a benchmark

solution to the problem. We introduce our online algorithm in Section 5.3. Then we perform

competitive analysis of the online algorithm in Section 5.4. Performance evaluation results

are discussed in Section 5.5.

5.1 Problem Statement

The problem considered in this chapter is mostly similar to the one studied in previous

chapter. The main difference is the adoption of a new function to characterize the energy

cost, which reflects the effect of the DRX mechanism on energy consumption. Also, as

mentioned before, in this chapter we only use max delay function to characterize the delay

cost. We include a complete description of the problem here for the reader’s convenience.

Consider a sequence of message transfer request arrivals A = 〈a1, . . . , an〉, where ai de-

99

g3g2 g4

X2

g1

X3 X4X1

a1 a2 a3 a4 a5 a6

Figure 5.1: Relation between arrivals, grants and intervals.

notes the arrival time of request i. The sequence A is not known in advance. Without

loss of generality, we assume that the radio is in idle state when the first request arrives.

The goal is to design an online algorithm to bundle multiple requests together and grant

them at once as opposed to individually granting each request. A message transfer request

may involve uploading environmental readings received at an LTE-enabled IoT device from

multiple IoT sensors. The LTE-enabled IoT device may communicate with its sensors using

short-range low-power wireless technologies such as Bluetooth Low Energy (BLE) [29]. Let

GA = 〈g1, . . . , gk〉 denote the sequence of grants made by some algorithm A, for the arrival

sequence A, where gi denotes the time of grant i. Let XA = {X1, . . . , Xk} denote the set

of all grant intervals of algorithm A, where X1 = [a1, g1] and Xi = (gi−1, gi], for i ≥ 2.

All requests that arrive during the interval Xi are bundled together and granted at time gi.

Throughout the chapter, we use the notation Xi to refer to the i-th grant interval as well as

the length of that interval, when there is no ambiguity.

Fig. 5.1 shows the relation between arrivals and grants. The objective of the bundling

algorithm is to determine the grant times gi that minimize the cost CA = EA + αDA, where

EA and DA denote the energy cost and delay cost of algorithm A, respectively. The coefficient

α is a control parameter that can be used to specify the relative importance of delay cost

over energy cost depending on the IoT application requirements.

100

5.1.1 Energy Cost

The energy cost EA is the tail energy consumed because of inactivity periods between grants

of algorithm A. Let PC and PD denote the base powers consumed by the radio during the

active and DRX substates of the RRC Connected state, respectively, where PC > PD. Also,

let Ti denote the length of the inactivity timer in active state and Tt denote the overall RRC

tail time, where Tt > Ti. Similar to [106, 107], we use the following function to characterize

the tail energy:

ε(τ) =


PCτ 0 ≤ τ ≤ Ti,

PCTi + PD(τ − Ti) Ti < τ ≤ Tt,

PCTi + PD(Tt − Ti) Tt < τ,

(5.1)

where, τ is the time passed since the last grant of the algorithm. Then, the energy cost of

grant interval Xi is given by EA(Xi) = ε(Xi). Consequently, the energy cost of the algorithm

A is given by,

EA =
∑
Xi∈XA

EA(Xi) + ε(Tt), (5.2)

where the additional term ε(Tt) is added to account for a tail time after the last grant of the

algorithm. To simplify the analysis, similar to [16, 76], we have ignored the transfer time of

bundles as this time is the same for every bundling algorithm.

5.1.2 Delay Cost

The delay cost of the algorithm is defined as the sum of delay costs of all the bundles. We

use the notation DA(Xi) to denote the delay cost of bundle i, which includes all requests that

arrive during interval Xi. Consider a request aj ∈ Xi. The delay cost of request aj is given

by (gi − aj). The delay cost of bundle i is then expressed as DA(Xi) = maxaj∈Xi
(gi − aj).

In other words, the delay cost of a bundle is the maximum of all the delays of the requests

in the bundle. Equivalently, the delay cost of bundle i is given by gi − afirst,i, where afirst,i

101

is the arrival time of the first request in bundle i. It then follows that,

DA =
∑
Xi∈XA

DA(Xi) =
∑
Xi∈XA

max
aj∈Xi

(gi − aj) . (5.3)

5.2 Optimal Offline Algorithm

As a point of comparison for our online algorithm, we design an optimal offline algorithm,

called OPT. OPT is not a realistic algorithm, since it knows the entire request arrival

sequence in advance. An important observation used in designing OPT is the fact that the

optimal algorithm always makes grants right at the time of some request arrivals and never

makes a grant in-between two arrivals. Based on this observation, we design OPT using a

dynamic programming algorithm similar to the one in [76]. OPT has the runtime of O(n2),

where n is the length of the arrival sequence. A detailed discussion of the optimal offline

algorithm and its analysis can be found in Section 4.2 of Chapter 4.

Theorem 4. When α ≥ PC, OPT makes a grant for every request arrival.

Proof. The proof of this Theorem is exactly the same as the proof of Theorem 1 in Chap-

ter 4. The only difference is that the comparison between the increase in energy cost and

the decrease in weighted latency cost, now relies on the fact that when α > PC , we have

ατ > ε(τ).

Also, similar to the proof of Theorem 1, it can be established that when α = PC , there

exist multiple optimal grant sequences and that granting at each arrival is one of them.

5.3 Online Energy Management Algorithm

With Theorem 4 characterizing the behavior of the optimal algorithm for α ≥ PC , our online

algorithm called Break-Even (BE) will imitate OPT in that regime. In other regimes, BE

works as follows. Assume that the most recent grant was at time gi and the algorithm has to

decide when to make its next grant gi+1. Let τ denote the time duration since the last grant

102

Tt

α
(τ

−
τ 1
)E
n
er
gy

/D
el
ay

Time(τ)

PC
T i
+
PD
(τ
− T

i)

P
C
τ

PCTi + PD(Tt − Ti)

τ1

Figure 5.2: Intersection of energy and delay functions.

gi. Also, let EBE(τ) and DBE(τ) denote the energy and delay cost incurred by BE during

τ . Then, BE makes a grant at time gi+1 = gi + τ , when EBE(τ) = αDBE(τ) holds. Fig. 5.2

portrays a plot illustrating the behavior of BE. In this figure, τ1 is the time between the

last grant of the algorithm (i.e., gi) and the first arrival after that. This way, the weighted

delay cost associated with the grant at gi + τ will be α(τ − τ1), which is presented by the

dashed line (called D-line). The solid polyline (called E-line) is the graphical presentation

of the energy cost function defined in (5.1). The intersection of these two lines determines

the desired τ value.

In the following sections, we will focus on the value of τ − τ1 to analyse the performance

of BE. If α ≤ PD, D-line will intersect horizontal part of the E-line, and hence,

τ − τ1 =
PCTi + PD(Tt − Ti)

α
=
ε(Tt)

α
, if α ≤ PD . (5.4)

If PD < α < PC , D-line can intersect the middle part or the horizontal part of the E-line.

Specifically, we have,

τ − τ1 =


f(τ1), if (PC − PD)Ti + ατ1 ≤ (α− PD)Tt,

ε(Tt)
α
, otherwise,

(5.5)

where, f(τ1) = (PC−PD)Ti+PDτ1
α−PD

. Notice that the first grant is treated differently, i.e., when

103

there is no gi. The algorithm makes its first grant at some time τ that satisfies the equation

ε(Tt) = αDBE(τ).

The algorithm BE can be implemented using timers. Specifically, for the first arrival

after each grant gi, BE sets a timer to time out after w time units, where the value of w

can be computed from (5.4) or (5.5) depending on the values of α, τ1, and their relations to

the power model parameters. Upon expiry of the timer, a grant will be made and all the

pending requests will be granted.

5.4 Analysis of the Break-Even Algorithm

As mentioned earlier, we will study the behaviour of BE in three different regimes. In the

regime of α ≥ PC , BE imitates the behavior of OPT as determined by Theorem 4. As such,

BE is 1-competitive when α ≥ PC . Therefore, it suffices to analyze BE for the remaining

two regimes, namely when α ≤ PD and PD < α < PC . In the sequel, we focus on proving

the following theorems.

Theorem 5. When α ≤ PD, the Break-Even algorithm is 2-competitive.

Theorem 6. When PD < α < PC, the Break-Even algorithm is 4-competitive.

5.4.1 Preliminaries

The following observations will be used in our analysis.

Observation 3. At least one request arrives during an interval Xi = (gi−1, gi]. If there is

no arrival, then the algorithm does not make any grant at gi as there is no request to grant.

Observation 4. Energy function ε(τ) is a concave piecewise-linear function [108], where

104

gi+1goptgi

ℓ

τ − τ1afirst,i+1τ1

Figure 5.3: (gi, gi+1] is a sample interval created by BE.

the following relations always hold,

ε(τ) ≤ PCτ, (5.6)

ε(τ) ≤ PCTi + PD(τ − Ti), (5.7)

ε(τ) ≤ PCTi + PD(Tt − Ti) = ε(Tt) . (5.8)

5.4.2 Analysis of a Single Interval

We focus on individual grant intervals created by BE in isolation. Fig. 5.3 shows one such

interval, which we refer to as X. Considering the distance of (τ−τ1) between the first arrival

in X and its associated grant, the weighted delay cost incurred by BE will be α(τ − τ1).

Since BE makes a grant when EBE(X) = αDBE(X), the cost of interval X is,

CBE(X) = 2αDBE(X) = 2α(τ − τ1) = 2EBE(X) . (5.9)

If OPT does not make any grant in X, it will incur at least a delay cost equal to DBE(X), and

hence COPT(X) ≥ αDBE(Y), which establishes CBE(X) ≤ 2COPT(X). In case OPT has at

least one grant in X, we will use gOPT to refer to its first grant in this interval. Let ` denote

the time duration from gOPT up to the end of interval X (Fig. 5.3). We will charge gOPT

with ε(`) for its contribution to the energy cost and α(τ − τ1 − `) for its contribution to the

weighted delay cost. If ` > Tt, then ε(`) = ε(Tt) ≥ EBE(X), indicating 2COPT(X) ≥ CBE(X).

Otherwise (i.e., if ` ≤ Tt), we have,

105

COPT(X) ≥ α(τ − τ1 − `) + ε(`)

=


α(τ − τ1) + (PC − α)` if 0 ≤ ` ≤ Ti,

α(τ − τ1) + (PC − PD)Ti

+ (PD − α)` if Ti < ` ≤ τ − τ1 .

(5.10)

COPT(X) is lower bounded in (5.10) because it is possible for OPT to have more than one

grant in interval X.

Proof of Theorem 5:

When α ≤ PD in (5.10), `’s coefficient in both cases becomes positive (also PC−PD > 0). As

a result, it always holds that α(τ − τ1) ≤ COPT(X), which implies that CBE(X) ≤ 2COPT(X).

Notice that when PD < α < PC , the coefficient of ` in (5.10) is positive only in the

first case. As a result, we have α(τ − τ1) ≤ COPT(X) only in the first case, and hence

CBE(X) ≤ 2COPT(X). On the other hand, `’s coefficient is negative in the second case

of (5.10). Therefore, the minimum value of the lower bound in (5.10) is obtained by the

maximum possible value for `, which is given by min {τ − τ1, Tt}. If Tt < τ − τ1, we obtain

that

COPT(X) ≥ α(τ − τ1 − Tt) + ε(Tt) ≥ EBE(X), (5.11)

which results in CBE(X) ≤ 2COPT(X). However, if Tt ≥ τ − τ1, we obtain that,

COPT(X) ≥ PD(τ − τ1) + (PC − PD)Ti . (5.12)

5.4.3 Cost of Grant Intervals

In the previous subsection, we studied BE intervals in isolation. Specifically, in each BE

interval we charged BE with the energy cost of the entire interval. In contrast, we charged

potential OPT grants only with the energy cost of a portion of the interval (i.e., τ − τ1),

106

g1 g2 g4g3

Ti Tt

Active

DRX

Idle

Figure 5.4: Grants and radio state transitions of OPT.

Active

DRX

Idle

X1 X2 X3 X4 X5

Figure 5.5: Grant intervals of BE overlaid on radio states of OPT.

ignoring energy consumption during τ1 period. This can result in a pessimistic bound for

the competitive ratio. Thus, in this section, we study the entire set of intervals altogether.

We consider GOPT = 〈g1, . . . , gl〉 to be the grants made by OPT. Because of these grants,

the radio will transition between different states (idle, DRX and active state) several times.

Fig. 5.4 depicts an example consisting of a few OPT grants and radio state transitions

resulting from them. In general, the radio is initially in the idle state, then goes through

several transitions and finally goes to the idle state after Tt time from the last grant. The

main technique used in this section is to overlay grant intervals of BE over the radio states

under OPT (see Fig. 5.5). This way, we can identify two classes of intervals:

1. Intervals with no radio state transition,

2. Intervals with one or more radio state transitions.

The analysis of these interval classes is presented in the next subsections.

107

5.4.4 Intervals with No Radio Transition

Let X represent one such interval. Considering the radio state during X, the following cases

can be identified.

1. Radio is in active state during interval X: In this case, we only focus on the energy cost

incurred by OPT as its delay cost could be as low as zero. Since the OPT radio is in the

active state during interval X, we have EOPT(X) = PCX. Based on Observation 4, it is

obtained that,

COPT(X) ≥ PCX ≥ EBE(X) . (5.13)

Recall that CBE(X) = 2EBE(X), which yields 2COPT(X) ≥ CBE(X).

2. Radio is in DRX or idle states during interval X: Based on Observation 3, the fact that

BE makes a grant at the end of interval X implies the arrival of at least one request

during X. When the radio for OPT spends the entire interval X in the DRX or idle

states, it means that OPT did not make a grant during X, because otherwise it would

have transitioned to the active state. Therefore, OPT incurs at least a delay cost equal

to DBE(X). Thus, we have,

COPT(X) ≥ αDBE(X) . (5.14)

Combining (5.14) with CBE(X) = 2αDBE(X) results in 2COPT(X) ≥ CBE(X).

5.4.5 Intervals with One or More Radio Transitions

Let X refer to one such interval. If OPT does not have a grant in X then CBE(X) ≤

2COPT(X) will hold because OPT will suffer from at least the delay cost DBE(X). Therefore,

in the following, we assume OPT makes at least one grant during interval X.

When the first grant of OPT in X happens, the OPT radio can be in any of the following

three possible power states.

108

X

Ti

g
(a) First grant of OPT happens when the
radio is in active state.

g

X

(b) First grant of OPT happens when the
radio is in DRX state.

g

X

(c) First grant of OPT happens when the
radio is in idle state.

Figure 5.6: Intervals with one or more radio transitions.

1. The first grant happens when the radio is in active state: Fig. 5.6(a) depicts this case.

Since OPT makes grants only at request arrival times (and not in-between them), we

know that OPT can not have a grant during the period τ1. Also notice that only a grant

can cause the radio to transition to the active state (in contrast to the expiry of an RRC

timer and state demotion). As such, the radio of OPT should be in the active state from

the beginning of X until the first OPT grant in X (and this time period covers τ1).

As shown in subsection 5.4.2, COPT(X) and CBE(X) always satisfy the relation 2COPT(X) ≥

CBE(X), except in one case. The only case where this relation does not hold leads to the

lower bound in (5.12). Given that this lower bound is obtained without accounting for

the radio energy consumption during τ1, we can adjust the lower bound by considering

the fact that the OPT radio will be in the active state during the period τ1. Therefore,

given that PC > PD, we have,

COPT(X) ≥ PD(τ − τ1) + (PC − PD)Ti + PDτ1,

= PCTi + PD(τ − Ti),

≥ EBE(X) .

(5.15)

The last inequality comes form (5.7) in Observation 4 by considering that τ represents the

length of intervalX. Finally, the relation CBE(X) = 2EBE(X) yields 2COPT(X) ≥ CBE(X).

2. The first grant happens when the radio is in the DRX state: Fig. 5.6(b) depicts this case.

This case is similar to the previous case. Notice that the only way the radio can transition

109

to the DRX state is through the expiry of the RRC inactivity timer and demotion from

the active state. In other words, making a grant will always bring the radio to the active

state and not the DRX state. Thus, the only difference compared to the previous case

is that the OPT radio can be in the active and DRX states during τ1 but not in the

idle state. As a result, the lower bound in (5.12) can be adjusted by adding PDτ1, which

means that the relation in (5.15) still holds. Therefore, we have 2COPT(X) ≥ CBE(X).

3. The first grant happens when the radio is in the idle state: Fig. 5.6(c) depicts this case.

In this case, OPT’s first grant (called gOPT) could be right at the arrival time of the first

request in the interval, which implies zero delay cost. On the other hand, if gOPT is close

to the end of interval X, the energy cost incurred by OPT during interval X could also be

zero. As a result, the cost of COPT(X) could be as low as zero. Based on Observation 4,

the following upper bound is obtained for CBE(X),

CBE(X) = 2EBE(X) ≤ 2ε(Tt) . (5.16)

Let X 0
BE ⊆ XBE denote the set of all such intervals of BE. Instead of establishing a lower

bound for COPT over individual intervals, we will bound the cost of OPT over the entire

set of such intervals (i.e., over X 0
BE). This will be discussed in the proof of Theorem 6

presented next.

Proof of Theorem 6:

For computing COPT and CBE, we will use the following:

COPT =
∑

Xi∈XBE

COPT(Xi) + ε(Tt), (5.17)

CBE =
∑

Xi∈XBE

CBE(Xi) + ε(Tt) . (5.18)

Based on the analysis in previous subsections, every interval Xi in XBE/X 0
BE satisfies

CBE(Xi) ≤ 2COPT(Xi). Also based on (5.16), every intervalXi in X 0
BE satisfies CBE(Xi) ≤ 2ε(Tt).

110

Therefore, we have,

CBE =
∑

Xi∈XBE

CBE(Xi) + ε(Tt)

=
∑

Xi∈XBE\X 0
BE

CBE(Xi) +
∑

Xi∈X 0
BE

CBE(Xi) + ε(Tt)

≤ 2
∑

Xi∈XBE\X 0
BE

COPT(Xi) +
∑

Xi∈X 0
BE

2ε(Tt) + ε(Tt)

≤ 2COPT + 2ε(Tt) |X 0
BE|,

(5.19)

where, |X 0
BE| denotes the cardinality of set X 0

BE. Thus, our analysis is reduced to establishing

an upper bound on |X 0
BE|. To this end, we focus on the behavior of OPT and observe that

for the entire arrival sequence, the OPT radio will transition between different states several

times. Assume that for K times, there is a transition from idle to active state. Accordingly,

we have COPT ≥ Kε(Tt), because every time the radio goes to the active state, it incurs at

least the energy cost of ε(Tt) before going back to the idle state. Also notice that after

overlaying BE intervals over the radio states under OPT, we cannot have more than K

intervals belonging to X 0
BE. Thus, it is obtained that,

|X 0
BE| ≤ K ≤

COPT

ε(Tt)
. (5.20)

By replacing |X 0
BE| in (5.19) with its upper bound from (5.20), the following relation is

obtained,

CBE ≤ 2COPT + 2ε(Tt)|X 0
BE|,

≤ 2COPT + 2COPT = 4COPT .

(5.21)

5.4.6 Remarks on the competitive ratio of Theorem 6

We note that the competitive ratio of 4 proved in Theorem 6 is not tight. This can be

observed by the discussions in subsection 5.4.2, where grant intervals were considered in

111

isolation. Specifically, using (5.9) and (5.12), the following upper bound for CBE

COPT
can be

established,

CBE

COPT

≤ 2α(τ − τ1)

PD(τ − τ1) + (PC − PD)Ti

≤ 2α(τ − τ1)

PD(τ − τ1)
=

2α

PD
.

(5.22)

This implies that, for example, when α/PD is 1.5, the competitive ratio of BE is bounded

by 3.

5.5 Performance Evaluation

In this section, we evaluate BE using both model-driven simulations and real experiments

on an IoT testbed. We compare BE with two algorithms: 1) OPT, and 2) Default, which

grants requests as soon as they arrive. Notice that the delay cost of the Default is always

zero.

5.5.1 Model-Driven Evaluation

In this part, we study the performance of different algorithms using a custom-developed

discrete-event simulator. The simulator takes as input the weight factor α, parameters of

the power model (Ti, Tt, PC , PD) and the transfer request arrival sequence. Unless otherwise

stated, parameters of the power model are set to the values reported in Table 5.1. These

values are reported in [14] based on measurements in an LTE network. The DRX base

power (PD) is computed by taking the weighted average of LTE tail base power and power

consumption of ON durations in each DRX cycle.

Table 5.1: Power model parameters.

State Power (mW) Duration (ms)
Active PC = 788 Ti = 200
DRX PD = 163 Tt = 11000

112

5.5.1.1 Exploring Energy-Delay Tradeoff

We used a sequence of size 100 requests with normal inter-arrival times (µ = 7000 ms,

σ = 6000 ms) to perform this experiment. About 2% and 68% of the inter-arrival times in

the sequence are less than Ti and Tt, respectively.

Figs. 5.7(a) and 5.7(b) show the energy and delay costs for different values of α, re-

spectively. These two plots are combined in Fig. 5.7(c) which shows the pairwise energy

and delay values next to their corresponding weight factors. It is observed that the energy

consumed by BE decreases with lower values of the weight α. For example, α = 1 results

in 98.5% energy saving compared to α = 800. Fig. 5.7(d) which shows the average size of

the bundles, illustrates BE’s ability to adapt its behavior depending on the weight assigned

to the delay cost. Fig. 5.7(e) presents the cumulative distribution function (CDF) of the

delay experienced by the individual requests in the sequence. Notice that in our considered

cost function, the delay cost (DBE) is defined as the summation of the maximum delays

experienced in each bundle. However, as we can see in Fig. 5.7(e), DBE is directly related to

the delays experienced by individual requests.

The empirical competitive ratios for different values of α are listed in Table 5.2. These

results conform the properties claimed in Theorems 4, 5, and 6. Also in the settings char-

acterized by PD < α < PC , BE exhibits a performance significantly better than the one

predicted by the competitive ratio of 4.

Table 5.2: Empirical competitive ratio of BE.

α CBE/COPT α CBE/COPT

1 1.41 400 1.78
10 1.93 600 1.87
100 1.59 800 1
200 1.52 1000 1

113

0

2

4

6

8

10

12

x 10
7

110100 200 400 600 800 1000

Weight (α)

E
n

e
rg

y
 c

o
s
t

(a) Energy cost (in micro-Joules).

0

0.5

1

1.5

2
x 10

6

110 100 200 400 600 800 1000

Weight (α)

D
e

la
y
 c

o
s
t

(b) Delay cost (in ms).

10
6

10
7

10
8

10
6

1

10

100

200

400

600

Energy cost

D
e

la
y
 c

o
s
t

(c) Energy-delay tradeoff.

0

20

40

60

80

100

1 10 100 200 400 600 800 1000

Weight (α)

A
v
e

ra
g

e
 b

u
n

d
le

 s
iz

e

(d) Average bundle size.

0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Individual delays (msec)

C
D

F

α = 5
α = 10

(e) CDF of individual delays.

Figure 5.7: Performance of BE: By controlling α, different energy-delay tradeoffs can be achieved.

114

5.5.1.2 Performance under Different Arrival Patterns

Similar to [101], here we change the fluctuation level of the inter-arrival times to generate

different patterns of request arrivals. In particular, based on the coefficient of variation (CV)

of inter-arrival times, we consider arrival sequences of low (CV = 0.5), medium (CV = 1.5)

and high (CV = 5) fluctuations. The inter-arrival times are normally distributed with mean

7000 ms.

Fig. 5.8 shows the total cost achieved with the three algorithms under varying fluctu-

ation levels. We consider three weight values corresponding to three regimes identified by

Theorems 4, 5, and 6. In Fig. 5.8(b), the cost of BE is 1.53 and 1.81 times the cost of OPT

for sequences with low and high fluctuation, respectively. This implies that for a specific

delay weight, the performance of BE changes depending on the characteristics of the arrival

sequence. The total costs presented in Fig. 5.8 also verify our analysis, since the maximum

value of CBE/COPT is 1.84 among all the considered scenarios. In scenarios where energy is

more important (α ≤ PD), BE outperforms the Default algorithm. For example, in a setting

with α = 10 and high fluctuation, BE results in 64.6% reduction in the total cost compared

to Default.

Across all α values, BE’s worst performance is achieved when PD < α < PC . While in

this regime BE results in lower energy consumption compared to the Default algorithm, the

higher weight assigned to the delay causes the total cost of BE to be higher. In this regime,

Default performs better in sequences with long inter-arrival times, where most of the gaps

are longer than BE’s timer value. In that case, not only BE misses chances of bundling, but

also incurs higher cost due to unnecessary waiting. In contrast, BE outperforms Default in

sequences with shorter inter-arrival times. For example, in an experiment characterized by

α = 200 and normal inter-arrival times of mean 400 ms and standard deviation 200 ms, the

Default’s total cost is 14% higher than BE’s cost. As Fig. 5.8(c) illustrates, in scenarios with

high delay importance (α ≥ PC), all three algorithms have an identical performance as they

115

low medium high
10

0

10
2

10
4

10
6

10
8

10
10

T
o
ta

l
c
o
s
t

OPT
BE
Default

(a) α = 10

low medium high
10

0

10
2

10
4

10
6

10
8

10
10

T
o
ta

l
c
o
s
t

OPT
BE
Default

(b) α = 200

low medium high
10

0

10
2

10
4

10
6

10
8

10
10

T
o
ta

l
c
o
s
t

OPT
BE
Default

(c) α = 800

Figure 5.8: Comparing the performance of BE with OPT and Default under different fluctuation
levels of request inter-arrival times.

grant requests as soon as they arrive.

5.5.1.3 Comparison with On/Off Radio Models

To study the difference between the LTE radio model and an On/Off model, we compare the

performance of BE under 3 different power profiles. Specifically, Profile-1 and Profile-2

are On/Off radio models, where the radio consumes PD and PC for the entire tail period

(Tt), respectively. Profile-3 represents the LTE radio model characterized by parameters

PC , PD, Ti, Tt.

We performed experiments using a sequence of size 100 with normal inter-arrival times

(µ = 7000 ms, σ = 6000 ms). For PC , PD and Ti we used values reported in Table 5.1, but

we changed Tt between 200 and 1200 ms. For α = 200, Fig. 5.9(a) shows the energy cost of

BE under the three power profiles as a function of tail time ratio Tt/Ti (called TTR). As

seen, for all the TTR values, Profile-2 and Profile-1 result in the highest and the lowest

116

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
x 10

7

T
t
/T

i

E
n
e
rg

y
 C

o
s
t

Profile−1 (P
D

)

Profile−2 (P
C

)

Profile−3 (P
C

,P
D

)

(a) BE’s energy cost under long inter-arrival times

1 2 3 4 5 6
0

2

4

6

8

10

12

14
x 10

6

T
t
/T

i

E
n
e
rg

y
 C

o
s
t

Profile−1 (P
D

)

Profile−2 (P
C

)

Profile−3 (P
C

,P
D

)

(b) OPT’s energy cost under short inter-arrival times

Figure 5.9: Energy cost under different power models.

energy consumption, respectively.

We also observed a behavior similar to the one in Fig. 5.9(a) when using input sequences

with short inter-arrival times. However, depending on the characteristics of the input se-

quence, OPT can exhibit a different behaviour. For example, Fig. 5.9(b) compares the

performance of OPT under the three power profiles using an input sequence with short

inter-arrival times (normal with µ = 700 ms and σ = 600 ms). We can see a different or-

dering between power profiles as Profile-2 results in the lowest energy consumption. This

stems from the fact that OPT can make bundling decisions based on its knowledge about the

entire sequence. In particular, when arrival times are close to each other, the delay cost of

bundling would be low compared to the reduction in its energy cost. Thus, with an increase

in power dissipation rate (Profile-2), OPT more aggressively reduces the number of grants

resulting in low inter-grant time gaps. In contrast, when inter-arrival times are longer, OPT

cannot adopt such an aggressive policy as it would result in high delay costs. That is why

OPT’s energy cost follows a similar trend to the one in Fig. 5.9(a) under sequences with

longer inter-arrival times.

117

1 80 160 240 320 400
0

2

4

6

8

10

12
x 10

7

Weight (α)

E
n
e
rg

y
 C

o
s
t

P
C

/P
D

 = 1

P
C

/P
D

 = 4

P
C

/P
D

 = 8

(a) Energy cost for different ratios of PC
PD

.

(PD, Ti, Tt) = (500, 200, 1000).

1 80 160 240 320 400
0

1

2

3

4

5

6

7

8

9

10
x 10

7

Weight (α)

E
n
e
rg

y
 C

o
s
t

T
t
/T

i
 = 1

T
t
/T

i
 = 4

T
t
/T

i
 = 8

(b) Energy cost for different ratios of Tt
Ti

.

(PD, PC , Ti) = (500, 2000, 200).

Figure 5.10: Energy cost under different ratios of parameters.

5.5.1.4 Effect of Power Model Parameters

In this experiment, we study the effect of power model parameters (PC and PD) on the

performance of BE. Specifically, we examine the performance of BE under different ratios

of PC/PD (called power ratio) by using a fixed value for PD and changing values of PC .

To better capture the effect of power ratio on BE’s energy cost, we use the power model

parameters characterized by PD = 500 mW, Ti = 200 ms, and Tt = 1000 ms, which are

different than the ones in Table 5.1. We performed experiments using a sequence of 100

requests with normal inter-arrival times (µ = 7000 ms, σ = 6000 ms). Given the high

importance of energy in IoT scenarios, we consider the regime of α ≤ PD, where energy is

more important than delay.

Fig. 5.10(a) plots the energy cost of BE under different power ratios as a function of

the weight factor α. We can see that increasing the power ratio leads to higher energy

consumption. Also notice that the increase in the energy cost becomes more pronounced

in settings with higher values of α. This is because with an increase in delay importance,

BE tends to avoid bundling and grants requests as soon as they arrive. This will create

more inter-grant idle gaps which in turn will highlight the role played by a higher power

118

dissipation rate.

5.5.1.5 Effect of Tail Times

Here we study the effect of timers Ti and Tt on the performance of BE. Specifically, we per-

form experiments under three different ratios of TTR by using a fixed value for Ti and chang-

ing values of Tt. As in the previous subsection, we use parameter values of (PD, PC , Ti) =

(500 mW, 2000 mW, 200 ms) to better represent the impact of timers on the performance of

BE. Also, we perform these experiments in the regime of α ≤ PD using the same sequence

described in the previous subsection.

Fig. 5.10(b) depicts the energy cost for different values of TTR as a function of the

delay weight (α). As observed, BE’s energy cost is influenced by the values of the timers.

Specifically, increasing TTR contributes to a higher energy consumption in all cases (α

values). For example, in the case of α = 80, raising TTR from 1 to 8 leads to 59.8% increase

in the energy cost. This is due to the fact that with larger values of Tt, the radio stays longer

in the DRX state instead of switching to the idle state. Similar to the previous section, in

Fig. 5.10(b), an increase in the delay weight intensifies the impact of long tail time, which

is the result of higher number of grants and longer inter-grant idle gaps.

5.5.2 Experiments on IoT Testbed

To assess the performance of BE in real-life conditions, we also performed experiments

on Grenoble platform of the FIT IoT-LAB testbed [109]. IoT-LAB is a large scale open

testbed for IoT research which provides access to IoT devices with IEEE 802.15.4-based

radio transmitters. We created a topology consisting of 30 M3 Open nodes configured with

Contiki operating system. Fig. 5.11 shows the topology used for this experiment. One of

the nodes (node 231 in Grenoble platform) was configured to act as a gateway and the rest

of the nodes were configured with a program that periodically (every 60 seconds) reads the

value of atmospheric pressure from node’s sensor and sends it to the gateway over a UDP

119

Sensor Node

Unused Node

Gateway

Figure 5.11: Topology of the experiment run on IoT-LAB testbed.

connection. As mentioned in [110], upon experiment initialization, each node goes through

a slightly different setup phase required for establishing the routing-tree structures in the

network. This creates a random delay before each node starts generating traffic which is

one of the reasons for desynchronization among nodes. For a duration of 20 minutes, we

captured radio communications at the gateway and created a trace from packet arrival times

at the gateway.

Then for different values of α, we run BE and Default algorithms with the collected

trace as their input sequence. For each value of α, we recorded the resulting grant times

in a separate file. We then fed those grant files to our Android app installed on a Nexus

smartphone. This app, which is developed for the purpose of radio energy measurement,

performs message transfers at user-specified times. Each run of the app uses a grant sequence

file as input. It then repeatedly sends message transfer requests at the times specified in

the grant file. We also blocked all background traffic from OS services and other apps. To

measure the energy consumption of the radio interface, we used the AT&T ARO tool [11],

configured with AT&T LTE network parameters [9].

Fig. 5.12(a) presents the pairwise energy-delay values of BE next to their corresponding

α values. Notice that in this figure, the energy cost is expressed in Joules. Here BE exhibits

a behavior similar to the one in simulations as it is able to cover the broad spectrum of the

120

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12
x 10

5

9
200 400 600 800

1000

1200

1400

1600

1800

Energy (Joule)

D
e
la

y
 (

m
s
e
c
)

(a) Energy-delay tradeoff.

0

10

20

30

40

50

60

70

80

90

100

9 200 400 600 800 1000 1200 1400 1600 1800

Weight (α)

E
n
e
rg

y
 s

a
v
e
d
 (

%
)

(b) Energy savings.

Figure 5.12: LTE experiments using IoT trace.

energy-delay tradeoff. In this experiment, because of the specific power model parameters

of AT&T’s LTE network, the maximum energy saving and maximum delay reduction are

achieved at α = 9 and α = 1800, respectively. Also, our experiment with the Default

algorithm resulted in zero delay and an energy expenditure of 1356.63 Joules. Fig. 5.12(b)

plots the energy savings of BE compared to the Default algorithm for different values of α.

As the relative importance of delay decreases, higher energy savings are achieved. Across all

the values of α, BE can achieve energy savings ranging from 0% to 100%.

121

Chapter 6

Conclusion

Due to the increasing popularity of applications running on wireless devices, there has been

great interest in improving users’ quality of experience, specially in terms of energy and delay.

However, providing a satisfactory experience for applications operating in cellular networks

is challenging. This is due to the unique characteristics of cellular networks and the nature

of interactions between applications and their remote servers. Moreover, reducing energy

consumption of applications can increase the delay experienced by users, thus reflecting the

existence of an energy-delay tradeoff. This has motivated us to design mechanisms that

can reduce energy consumption and latency of applications. We also provide a general and

systematic solution to balance the tradeoff between energy and delay. The main techniques

employed to achieve these goals are speculative loading and request bundling. Various meth-

ods such as simulations, live measurement experiments and competitive analysis have been

used to evaluate the performance of the proposed solutions.

6.1 Summary of the thesis

• Reducting latency and energy of mobile web browsing: In Chapter 3, we proposed

a system called WebPro for reducing the latency and energy consumption of mobile web

browsing. WebPro is designed to eliminate the initial round-trip time required to discover

the list of the objects referenced in a webpage by using a previously recorded resource

list of the webpage. Using measurements involving real world websites, we showed that

within a few hours, the amount of change in the structure of webpages is relatively low, and

hence it is feasible for WebPro to maintain an updated resource list of popular websites.

WebPro not only reduces page load time, but also reduces radio energy consumption by

122

implementing bundling. We performed a detailed set of experiments to assess the efficiency

of a prototype implementation of the system. Our results indicate that WebPro outper-

forms state-of-the-art in terms of the page load time, though the amount of improvement

varies between webpages.

• Balancing energy-delay tradeoff for request bundling on smartphones: To cap-

ture the energy-delay tradeoff that is inherent in request bundling, in Chapter 4, we

considered bundling as a cost minimization problem, where the bundling cost is defined

as a weighted summation of energy and delay costs. Energy cost was modeled using an

On/Off model and delay cost was characterized using two commonly used delay functions,

cumulative and max delay functions. We proposed an online algorithm for the problem

and obtained provable performance guarantees through competitive analysis of the algo-

rithm. Our algorithm does not make any assumption about the traffic pattern or nature

of applications. We then evaluated our algorithm using simulations and live experiments,

which showed that, in realistic scenarios, the performance of the proposed algorithm is

close to that of the optimal offline algorithm that knows the arrival sequence in advance.

• Online energy management in IoT applications: In Chapter 5, we studied the

problem of energy management on LTE-enabled IoT devices. Specifically, we considered

application message bundling to alleviate the effect of short message transmissions on

energy consumption. We formulated message bundling as a cost minimization problem

with the same objective function defined in Chapter 4, i.e., a weighted summation of

energy and delay costs. However, specific characteristics of the LTE radios were taken

into account by incorporating the DRX mechanism in our energy cost model. Based

on the new formulation, we developed an online bundling algorithm to solve the cost

minimization problem. Our competitive analysis revealed that depending on DRX and

application parameters, our algorithm is 1, 2 or 4-competitive with respect to the optimal

offline algorithm. We evaluated the performance of the online algorithm using an extensive

123

set of simulations and real experiment on an IoT testbed. Our results show that, i) in

realistic scenarios, our algorithm exhibits a performance better than the one implied by

the competitive ratio, ii) depending on application requirements, energy savings ranging

from zero to about 100% can be achieved using our algorithm, and iii) ignoring DRX could

significantly overestimate or underestimate energy consumption.

6.2 Future directions

• Design and analysis of a randomized bundling algorithm: The online optimization

problems studied in Chapters 4 and 5 can be viewed as a game played against an adver-

sary. In such a game, the adversary generates the sequence of requests and the bundling

algorithm (also referred to as player) makes bundling decisions as requests arrive. In this

game, the adversary is aware of the online bundling algorithm employed by the player and

can use this knowledge to generate an arrival sequence in a way that maximizes the com-

petitive ratio (CR) of the algorithm. From this standpoint, it is possible that randomizing

the behavior of the online player can significantly improve its performance (i.e., CR) [111].

This stems from the fact that by incorporating randomization, the moves of the online

player will no longer be certain, which gives less power to adversary in generating such an

arrival sequence that maximizes the CR.

In this context, it is interesting to study the possibility of improving the worst-case per-

formance of our bundling algorithm by designing and analyzing a randomized online al-

gorithm for request bundling.

• Incorporating energy and delay of radio state promotion in energy cost model:

In our energy cost model considered in Chapters 4 and 5, we only focused on the tail energy

in order to characterize the radio energy consumption of a wireless device. However, in

3G and LTE networks, the delay incurred for state promotion and also the amount of

energy consumed during state promotion are not negligible [9,14]. Thus, a more accurate

124

formulation of the bundling problem can be introduced by incorporating promotion delay

and energy in our energy cost model. Notice that in such a system, the wireless device will

incur promotion energy and delay only if the idle gap between two consecutive grants is

longer than the tail time. In other words, making a grant while the device is in the active

state will not introduce any promotion energy. However, the wireless device will suffer

from promotion energy and delay if the bundling algorithm decides to make a grant in

the idle state. In this context, an interesting problem is the design and analysis of online

bundling algorithms that take promotion energy and delay into account.

• Utilizing statistical information about request arrival process: In our discussions

in Chapters 4 and 5, we assumed the complete lack of knowledge about the timing of future

requests. However, in some scenarios it may be conceivable to assume that some limited

statistical information about the distribution of request inter-arrival times is known to

the online algorithm [112]. Such statistical information can include mean and/or variance

of request inter-arrival times. In this setting, it is desirable to investigate the possibility

of designing online algorithms that can achieve an improved worst-case performance by

exploiting the knowledge of statistical information about the arrival process.

• Improving the competitive analysis of the Break-Even algorithm: In Chapter 5,

we showed that depending on DRX and application parameters, the Break-Even algorithm

achieves a competitive ratio of 1, 2 or 4. However, we did not investigate the tightness of

the ratio of 2 in its corresponding regime. Also, we showed that the competitive ratio of

4 is not tight in its corresponding regime. In this regard, it is interesting to investigate

the tightness of the competitive ratio of 2 and also examine the possibility of replacing 4

with a better upper bound (in terms of tightness). Moreover, in Chapter 5, we presented

the competitive analysis of the Break-Even algorithm only for the max delay function. A

possible avenue for future research is to perform the competitive analysis of the Break-

Even algorithm when energy cost is modeled based on the behavior of the LTE radio (i.e.,

125

a 3-state energy model) and delay cost is defined as the cumulative delay incurred by all

the requests.

Finally, another interesting problem is to study the optimality of the competitive ratios

obtained in Chapters 4 and 5. Such a study would investigate whether there exist any

deterministic online algorithms whose competitive ratios are smaller than the ones reported

in Chapters 4 and 5.

• Channel-aware request bundling: In Chapters 4 and 5, we ignored the energy con-

sumed because of bundle transmissions (hereafter called transmission energy), and only

considered the tail energy in our energy model. However, in a wireless environment, there

could be conflicts between reducing tail energy and reducing transmission energy [106]. On

the one hand, tail energy can be reduced by delaying data transfer requests and transfer-

ring them in bundles. On the other hand, transmission energy can be reduced by granting

requests during good channel conditions. Given the impact of both these energies on

the total energy consumption of the device, a direction for future research is to consider

balancing energy-delay tradeoff in a problem setting where energy cost is defined as the

summation of tail energy and transmission energy. The question that needs to be ad-

dressed is how to adapt our online bundling algorithm and its analysis to the new energy

model.

126

Bibliography

[1] J. Erman et al., “Towards a SPDY’ier mobile web,” in Proc. ACM CoNEXT, 2013.

[2] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update,

2016–2021,” 2017. [Online]. Available: https://www.cisco.com/c/dam/m/en in/

innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf

[3] Phonearea, “Android’s google play beats app store with over 1 million apps, now

officially largest,” 2013. [Online]. Available: https://www.phonearena.com/news/

Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest

id45680

[4] “Bandwidth, proximity, control: Reduce latency to milliseconds,” Nokia solutions and

networks white paper, 2013.

[5] Akamai, “New study reveals the impact of travel site performance on consumers,” 2010.

[Online]. Available: https://www.akamai.com/us/en/about/news/press/2010-press/

new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp

[6] Q. Han and D. Cho, “Characterizing the technological evolution of smartphones: In-

sights from performance benchmarks,” in Proc. International Conference on Electronic

Commerce, 2016.

[7] Ericsson, “cellular networks for massive IoT,” 2016. [Online]. Available: https:

//www.ericsson.com/assets/local/publications/white-papers/wp iot.pdf

[8] V. Gabale and D. Krishnaswamy, “Mobinsight: On improving the performance of

mobile apps in cellular networks,” in Proc. WWW, 2015.

[9] J. Huang et al., “A close examination of performance and power characteristics of 4G

LTE networks,” in Proc. ACM MobiSys, 2012.

127

https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf
https://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
https://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
https://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
https://www.akamai.com/us/en/about/news/press/2010-press/new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp
https://www.akamai.com/us/en/about/news/press/2010-press/new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf

[10] M. Butkiewicz et al., “Klotski: Reprioritizing web content to improve user experience

on mobile devices,” in Proc. USENIX NSDI, 2015.

[11] F. Qian et al., “Profiling resource usage for mobile applications: A cross-layer ap-

proach,” in Proc. ACM Mobisys, 2011.

[12] S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce 3G/LTE wireless

energy consumption,” in Proc. ACM CoNEXT, 2012.

[13] N. Balasubramanian et al., “Energy consumption in mobile phones: a measurement

study and implications for network applications,” in Proc. ACM IMC, 2009.

[14] X. Chen et al., “Smartphone energy drain in the wild: Analysis and implications,” in

Proc. ACM SIGMETRICS, 2015.

[15] F. Qian et al., “Periodic transfers in mobile applications: network-wide origin, impact,

and optimization,” in Proc. WWW, 2012.

[16] L. Xiang et al., “Ready, set, go: Coalesced offloading from mobile devices to the cloud,”

in Proc. IEEE INFOCOM, 2014.

[17] B. Zhao et al., “Energy-aware web browsing on smartphones,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 3, 2015.

[18] L. Wang and J. Manner, “Energy-efficient mobile web in a bundle,” Computer Net-

works, vol. 57, no. 17, 2013.

[19] A. Sivakumar et al., “PARCEL: Proxy assisted browsing in cellular networks for energy

and latency reduction,” in Proc. ACM CoNEXT, 2014.

[20] Herreŕıa-Alonso et al., “Adaptive DRX scheme to improve energy efficiency in LTE

networks with bounded delay,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, 2015.

128

[21] F. Qian et al., “Web caching on smartphones: ideal vs. reality,” in Proc. ACM MobiSys,

2012.

[22] F. Qian, “Toward mobile-friendly web browsing,” IEEE Internet Computing, vol. 19,

no. 5, 2015.

[23] B. Han et al., “Metapush: Cellular-friendly server push for HTTP/2,” in Proc. ACM

Workshop on All Things Cellular, 2015.

[24] M. Gupta et al., “Energy impact of emerging mobile internet applications on LTE

networks: issues and solutions,” IEEE Commun. Mag., vol. 51, no. 2, 2013.

[25] S. Gao et al., “SCoP: Smartphone energy saving by merging push services in fog

computing,” in Proc. IEEE/ACM IWQoS, 2017.

[26] X. S. Wang et al., “Demystifying page load performance with wprof,” in Proc. USENIX

NSDI, 2013.

[27] F. Qian et al., “Characterizing resource usage for mobile web browsing,” in Proc. ACM

MobiSys, 2014.

[28] M. Z. Shafiq et al., “A first look at cellular machine-to-machine traffic: large scale

measurement and characterization,” in Proc. ACM SIGMETRICS, 2012.

[29] X. Wang et al., “Internet of Things session management over LTE—balancing signal

load, power, and delay,” IEEE Internet Things J., vol. 3, no. 3, 2016.

[30] S.-T. Hong and H. Kim, “QoE-aware computation offloading scheduling to capture

energy-latency tradeoff in mobile clouds,” in Proc. IEEE SECON, 2016.

[31] Nokia, “LTE evolution for IoT connectivity.” [Online]. Available: https:

//resources.ext.nokia.com/asset/200178

129

https://resources.ext.nokia.com/asset/200178
https://resources.ext.nokia.com/asset/200178

[32] R. Ratasuk et al., “Overview of LTE enhancements for cellular IoT,” in Proc. IEEE

PIMRC, 2015.

[33] Rico-Alvarino et al., “An overview of 3GPP enhancements on machine to machine

communications,” IEEE Communications Magazine, vol. 54, no. 6, 2016.

[34] C. S. Bontu and E. Illidge, “DRX mechanism for power saving in LTE,” IEEE Com-

mun. Mag., vol. 47, no. 6, 2009.

[35] A. Sehati and M. Ghaderi, “Energy-delay tradeoff for request bundling on smart-

phones,” in Proc. IEEE INFOCOM, 2017.

[36] A. R. Karlin et al., “Competitive snoopy caching,” Algorithmica, vol. 3, no. 1-4, 1988.

[37] A. Sehati and M. Ghaderi, “WebPro: A proxy-based approach for low latency web

browsing on mobile devices,” in Proc. IEEE/ACM IWQoS, 2015.

[38] A. Sehati and M. Ghaderi, “Network assisted latency reduction for mobile

web browsing,” Computer Networks, vol. 106, 2016. [Online]. Available: https:

//doi.org/10.1016/j.comnet.2016.06.026

[39] A. Sehati and M. Ghaderi, “Online energy management in IoT applications,” in Proc.

IEEE INFOCOM (to appear), 2018.

[40] M. Varvello et al., “Is the web HTTP/2 yet?” in Proc. PAM, 2016.

[41] J. Kurose and K. Ross, Computer networking: a top-down approach. Pearson Educa-

tion, 2012.

[42] B. Thomas et al., “SPDYing up the web,” Communications of the ACM, vol. 55, no. 12,

2012.

[43] Z. Wang et al., “How far can client-only solutions go for mobile browser speed?” in

Proc. WWW, 2012.

130

https://doi.org/10.1016/j.comnet.2016.06.026
https://doi.org/10.1016/j.comnet.2016.06.026

[44] S. Sundaresan et al., “Measuring and mitigating web performance bottlenecks in broad-

band access networks,” in Proc. ACM IMC, 2013.

[45] Z. Wang et al., “Why are web browsers slow on smartphones?” in Proc. ACM Hot-

Mobile, 2011.

[46] F. Qian et al., “Characterizing radio resource allocation for 3G networks,” in Proc.

ACM IMC, 2010.

[47] S. Rosen et al., “Discovering fine-grained RRC state dynamics and performance im-

pacts in cellular networks,” in Proc. ACM MobiCom, 2014.

[48] N. Buchbinder and J. S. Naor, “The design of competitive online algorithms via a

primal–dual approach,” Foundations and Trends R© in Theoretical Computer Science,

vol. 3, no. 2–3, 2009.

[49] S. Albers, “Online algorithms: a survey,” Mathematical Programming, vol. 97, no. 1-2,

2003.

[50] A. Borodin and R. El-Yaniv, Online computation and competitive analysis. cambridge

university press, 2005.

[51] D. Lymberopoulos et al., “Pocketweb: Instant web browsing for mobile devices,” in

Proc. ACM ASPLOS, 2012.

[52] Y. Ma et al., “Measurement and analysis of mobile web cache performance,” in Proc.

WWW, 2015.

[53] B. D. Higgins et al., “Informed mobile prefetching,” in Proc. ACM MobiSys, 2012.

[54] SPDY: An experimental protocol for a faster web, accessed December 14, 2015, http:

//www.chromium.org/spdy/spdy-whitepaper.

131

http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper

[55] Usage Statistics of SPDY for Websites, accessed November 27, 2017, http://w3techs.

com/technologies/details/ce-spdy/all/all.

[56] D. Stenberg, “HTTP2 explained,” ACM SIGCOMM Computer Communication Re-

view, vol. 44, no. 3, 2014.

[57] J. Khalid et al., “Improving the performance of SPDY for mobile devices,” in Proc.

ACM HotMobile (Poster Session), 2015.

[58] B. Aggarwal et al., “Stratus: energy-efficient mobile communication using cloud sup-

port,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, 2010.

[59] L. Wang et al., “Proxies for energy-efficient web access revisited,” in Proc. ACM e-

Energy, 2011.

[60] B. Zhao et al., “Reducing the delay and power consumption of web browsing on smart-

phones in 3G networks,” in Proc. IEEE ICDCS, 2011.

[61] Opera mini browser, accessed December 14, 2015, http://www.opera.com/mobile.

[62] Amazon silk browser, accessed December 14, 2015, http://amazonsilk.wordpress.com/.

[63] R. Chakravorty et al., “Optimizing web delivery over wireless links: design, implemen-

tation, and experiences,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, 2005.

[64] S. Singh et al., “Flexiweb: Network-aware compaction for accelerating mobile web

transfers,” in Proc. ACM MobiCom, 2015.

[65] A. Sivakumar et al., “Cloud is not a silver bullet: A case study of cloud-based mobile

browsing,” in Proc. ACM HotMobile, 2014.

[66] J.-H. Yeh et al., “Comparative analysis of energy-saving techniques in 3gpp and 3gpp2

systems,” IEEE Trans. Veh. Technol., vol. 58, no. 1, 2009.

132

http://w3techs.com/technologies/details/ce-spdy/all/all
http://w3techs.com/technologies/details/ce-spdy/all/all
http://www.opera.com/mobile
http://amazonsilk.wordpress.com/

[67] H. Falaki et al., “A first look at traffic on smartphones,” in Proc. ACM IMC, 2010.

[68] P. K. Athivarapu et al., “Radiojockey: mining program execution to optimize cellular

radio usage,” in Proc. ACM MobiCom, 2012.

[69] F. Qian et al., “Top: Tail optimization protocol for cellular radio resource allocation,”

in Proc. IEEE ICNP, 2010.

[70] F. R. Dogar et al., “Catnap: exploiting high bandwidth wireless interfaces to save

energy for mobile devices,” in Proc. ACM MobiSys, 2010.

[71] M. A. Hoque et al., “Poster: Extremely parallel resource pre-fetching for energy opti-

mized mobile web browsing,” in Proc. ACM MobiCom, 2015.

[72] M.-R. Ra et al., “Energy-delay tradeoffs in smartphone applications,” in Proc. ACM

MobiSys, 2010.

[73] F. Mehmeti and T. Spyropoulos, “Is it worth to be patient? analysis and optimization

of delayed mobile data offloading,” in Proc. IEEE INFOCOM, 2014.

[74] A. R. Karlin et al., “Dynamic TCP acknowledgement and other stories about e/(e-1),”

in Proc. ACM STOC, 2001.

[75] A. R. Karlin et al., “Competitive randomized algorithms for nonuniform problems,”

Algorithmica, vol. 11, no. 6, 1994.

[76] D. R. Dooly et al., “On-line analysis of the TCP acknowledgment delay problem,”

Journal of the ACM, vol. 48, no. 2, 2001.

[77] K. Zhou et al., “LTE/LTE-A discontinuous reception modeling for machine type com-

munications,” IEEE Wireless Commun. Lett., vol. 2, no. 1, 2013.

[78] H. Ramazanali and A. Vinel, “Performance evaluation of LTE/LTE-A DRX: A Marko-

vian approach,” IEEE Internet Things J., vol. 3, no. 3, 2016.

133

[79] N. M. Balasubramanya et al., “DRX with quick sleeping: A novel mechanism for

energy-efficient IoT using LTE/LTE-A,” IEEE Internet Things J., vol. 3, no. 3, 2016.

[80] J.-M. Liang et al., “An energy-efficient sleep scheduling with QoS consideration in

3GPP LTE-advanced networks for Internet of Things,” IEEE Trans. Emerg. Sel. Topics

Circuits Syst., vol. 3, no. 1, 2013.

[81] S. Souders. Velocity and the bottom line, accessed December 14, 2015, http://radar.

oreilly.com/2009/07/velocity-making-your-site-fast.html.

[82] J. Huang et al., “Anatomizing application performance differences on smartphones,”

in Proc. ACM MobiSys, 2010.

[83] H. Shen et al., “A proxy-based mobile web browser,” in Proc. ACM Multimedia, 2010.

[84] Alexa Internet Inc. “Top Sites in Canada”, accessed December 14, 2015, http://www.

alexa.com/topsites/countries/CA.

[85] A. Gerber, S. Sen, and O. Spatscheck, “A call for more energy-efficient apps,” AT&T

Labs Research, 2011.

[86] R. Mahindra et al., “A practical traffic management system for integrated LTE-WiFi

networks,” in Proc. ACM MobiCom, 2014.

[87] G. Barish and K. Obraczka, “World Wide Web Caching: Trends and Techniques,”

IEEE Commun. Mag., vol. 38, 2000.

[88] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer

Networks, vol. 31, no. 23, 1999.

[89] Is the web getting faster?, accessed August 19, 2015, http://analytics.blogspot.ca/

2013/04/is-web-getting-faster.html.

134

http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://www.alexa.com/topsites/countries/CA
http://www.alexa.com/topsites/countries/CA
http://analytics.blogspot.ca/2013/04/is-web-getting-faster.html
http://analytics.blogspot.ca/2013/04/is-web-getting-faster.html

[90] G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in streams of data,”

Communications of the ACM, vol. 52, no. 10, 2009.

[91] A. Metwally et al., “Efficient computation of frequent and top-k elements in data

streams,” in Database Theory-ICDT. Springer, 2005.

[92] A. Rao et al., “Using the middle to meddle with mobile,” in Tech. Report NEU-CCS-

2013-12-10, CCIS, Northeastern University, 2013.

[93] F. Qian et al., “How to reduce smartphone traffic volume by 30%?” in Proc. PAM,

2013.

[94] L. Deutsch and J. Gailly, “RFC 1950: ZLIB compressed data format specification

version 3.3,” IETF, May 1996.

[95] J. van den Brande and A. Pras, “The costs of web advertisements while mobile brows-

ing,” in Proc. Information and Communication Technologies. Springer, 2012.

[96] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM Computer Com-

munication Review, vol. 40, no. 2, 2010.

[97] R. Netravali et al., “Mahimahi: accurate record-and-replay for http,” in Proc. USENIX

Annual Technical Conference, 2015.

[98] J. Huang et al., “An in-depth study of LTE: effect of network protocol and application

behavior on performance,” in Proc. ACM SIGCOMM, 2013.

[99] B. Han et al., “An anatomy of mobile web performance over multipath TCP,” in Proc.

ACM CoNEXT, 2015.

[100] S. Deng et al., “WiFi, LTE, or both?: Measuring multi-homed wireless internet per-

formance,” in Proc. ACM IMC, 2014.

135

[101] W. Wang et al., “Dynamic cloud instance acquisition via IaaS cloud brokerage,” IEEE

Trans. Parallel Distrib. Syst., vol. 26, no. 6, 2015.

[102] Gartner Report, “Top strategic predictions for 2016 and beyond: The future is a digital

thing,” www.gartner.com, Oct. 2015.

[103] W. Kleiminger et al., “Household occupancy monitoring using electricity meters,” in

Proc. ACM UbiComp, 2015.

[104] P. Gope and T. Hwang, “BSN-Care: A secure IoT-based modern healthcare system

using body sensor network,” IEEE Sensors J., vol. 16, no. 5, 2016.

[105] U. Kulau et al., “Dynamic sample rate adaptation for long-term IoT sensing applica-

tions,” in Proc. IEEE WF-IoT, 2016.

[106] Y. Cui et al., “Performance-aware energy optimization on mobile devices in cellular

network,” IEEE Trans. Mobile Comput., vol. 16, no. 4, 2017.

[107] J. Song et al., “EDASH: Energy-aware QoE optimization for adaptive video delivery

over LTE networks,” in Proc. IEEE ICCCN, 2016.

[108] L. Vandenberghe, “Piecewise-linear optimization,” EE236a Lecture Notes, University

of California, Los Angeles. [Online]. Available: http://www.seas.ucla.edu/∼vandenbe/

ee236a/lectures/pwl.pdf

[109] C. Adjih et al., “FIT IoT-LAB: A large scale open experimental IoT testbed,” in Proc.

IEEE WF-IoT, 2015.

[110] A. Betzler et al., “Experimental evaluation of congestion control for CoAP communi-

cations without end-to-end reliability,” Ad Hoc Networks, vol. 52, 2016.

[111] S. Ben-David et al., “On the power of randomization in on-line algorithms,” Algorith-

mica, vol. 11, no. 1, 1994.

136

http://www.seas.ucla.edu/~vandenbe/ee236a/lectures/pwl.pdf
http://www.seas.ucla.edu/~vandenbe/ee236a/lectures/pwl.pdf

[112] A. Khanafer et al., “To rent or to buy in the presence of statistical information: The

constrained ski-rental problem,” IEEE/ACM Trans. Netw., vol. 23, no. 4, 2015.

137

