THE UNIVERSITY OF CALGARY

Higher-Order Charity
by

Marc A. Schroeder

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JULY, 1997

© Marc A. Schroeder 1997

g |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Straet
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Votre référence

Cur fle Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-24697-3

Abstract

This thesis describes the higher-order Charity programming language which is an exten-
sion of first-order Charity. This results from extending the coinductive datatype definition
mechanism to allow a new class of higher-order datatypes with parameterized destructors.
This adds significant expressive power to the language. In particular it allows one to cre-
ate “objects”. The language is “higher-order” in the traditional sense that the exponential
datatype can be defined, and so that functions can be treated as values.

The higher-order extension is traced from the extension of the syntax and the expressive
gains delivered to the Charity programmer, down through the innards of the language and

the modifications required in the implementation.

Acknowledgements

First, I would like to thank my colleagues, past and present, in the Charity Development
Group: Tom Fukushima, Charles Tuckey, Peter Vesely, and Barry Yee. Without the stim-
ulation and support from a core of talented researchers this work would not have been
possible. A sincere thank-you to Ulrich Hensel as well, whose insightful input helped to
shape much of this work.

I am extremely grateful to my friends and family for their help and understanding during
my time at the University of Calgary. Especially to my mother Dianne Vallée, my brother
Steve Schroeder, and Jennifer Wolfe.

Finally, many thanks to Dr. Robin Cockett for taking me on as his student, for his

intellectual and financial support, and for introducing me to new ways of seeing my craft.

iv

Table of Contents

ApprovalPage e e e ii
ADSITACE it e iid
Acknowledgements e e iv
Tableof Contents i i i i i ittt e e e e e v
Listof Tables ittt et e ix
Listof Figures i i i i i e e e e e e e X

1 Introduction 1
1.1 WhatisCharity? 1

1.2 Whatis Higher-OrderCharity? 2

1.3 TheStructureofthisThesis 3

2 An Overview of First-Order Charity 5
2.1 InductiveDatatypes o i i it e e e e e e 6
2.1.1 COnStruCtOrS v v i vt e e e e e e e e e e e e 7

2.1.2 InductiveCombinators 7

22 Coinductive Datatypes it 12
221 DestruCtors v o v i v e e e e e e e e e e e e e 13

2.2.2 Coinductive Combinators 13

23 OtherAspectsofCharity 17

23.1 PattemMatching
232 Combinators
233 ComteXt
234 #and @ L

3 An Overview of Higher-Order Charity

3.1
3.2
33
34
35

Higher-Order Coinductive Datatypes
Destructors

4 Using Higher-Order Charity

4.1
42
4.3
4.4

Processes

Objects: Towards Object-Oriented Programming
Simultaneously Recursive Functions
44.1 The Minimum of Two Natural Numbers

§ Variance

51

52
53

VarianceBasics
5.1.1 Distinct Input/Output Type Variables
5.1.2 Nondistinct Input/Output Type Variables
5.1.3 VarianceGeneralized

vi

24
26
27
31
32

34
35
38
39

41
42
42

5.4 Varianceand the MapCombinator

6 Tranmslation
6.1 The Extended and Core Term Logics, and the Translation Between Them
6.2 TheCombinatoryLogic.

6.2.1 TYPeS i i e e e e e e e e e e e e e e e e e e

6.2.2 Atomic Combinators and Compound Combinator Expressions . . .
6.2.3 Charity’s Combinator Theory: The Combinatory Logic
624 Context ittt e e e e e e e e
6.3 Translation from Core Term Logic to Combinatory Logic

7 Compilation and Execution
7.1 Overview of the Charity Abstract Machine
7.2 Compilation e e e e e e e

7.3 EXECUHON o o e

8 Conclusion

Bibliography
A Syntax

B A Catalogue of Charity Datatypes
B.l BuiltinDatatypes it e
B.2 InductiveDatatypes it i
B.3 CoinductiveDatatypes i

54
54
S5
55
56
56
58
59

64

66
68

71
71
72

73

76

C The Implementation
D A Simple Parser

Index

83

93

List of Tables

6.1

7.1
72
7.3
74

Fundamental combinators. 58
Subroutine callingandretumning. 69
Record value construCtion. & . v o v v o e e e e e e e e e e 69
Record value destruction. & i v i it e e e e e e 69
Closureupdating. i it ittt e it see e 70

List of Figures

2.1
2.2
23
24
2.5
2.6

3.1
3.2
33

5.1

6.1
6.2

6.3
6.4

7.1
7.2
73

Foldwithcontext. 20
Casewithcontext. i i it it it ittt en e 20
Inductivemap withcontext. 20
Unfoldwithcontext., 21
Record withcontext. 21
Coinductive map withcontext. 21
Higher-order unfold withcontext. 33
Higher-orderrecord withcontext. 33
Higher-ordermap withcontext. 33
The variance analysisalgorithm. 51
Core term logic to combinatory logic translation, part 1: basics.. 61

Core term logic to combinatory logic translation, part 2: coinductive data-

187 =1 61
Core term logic to combinatory logic translation, part 3: inductive datatypes. 62
Core term logic to combinatory logic translation, part 4: combinators. . . . 62
Destructorand recordcompilation. 66
Unfoldcompilation.c.0cc.... 67
Coinductive map compilation. 68

Al TermTypeTheory i ittt ..
A2 PattenTypeTheory. i i i it ittt
A3 FunctionTypeTheory. v .

Chapter 1

Introduction

1.1 What is Charity?

Charity is a categorical programming language which is functional in style. That is, the
programming styles of both Charity and the various modern functional programming lan-
guages (such as Miranda’ [23] or more recently Haskell [11]) are similar. However, Charity
is based on a categorical semantics whereas functional programming languages are based
on the lambda calculus. This means the fundamental operation in Charity is that of function
composition, whereas in functional programming it is that of function application. This in
turn means the exponential type (the type of functions) is primitive in functional program-
ming languages, whereas it is not in Charity. Instead Charity takes as primitive the nullary
and binary product types and provides a datatype definition mechanism.

The above distinction has an important consequence: in a functional programming lan-
guage a function with input values of type A and output values of type B is itself a value,
with type A — B —the exponential type?. Charity functions are not values. We say that

1Miranda is a trademark of Research Software Limited.
2It is often said that functions in functional programming languages are “first-class values™: they have a
type, they may be passed as input to and returned as output from other functions, etc., just like other values.

a language without the exponential datatype is first-order, and with it is higher-order.
To illustrate, consider the following function defined in Miranda:

double:: (* -> *) -> (* -> *)
double £ = £ . £

The doubl e function takes a function £ as input and returns a new function: the composite
of £ with itself3. Here * is a type variable. The type of the input is * -> *, and the type
of the outputis also * -> *,sodoubleisavalueoftype (* -> *) -> (* -> *)

overall. Note that double may be applied to itself:
quadruple = double double

The double function cannot be expressed in first-order Charity.

1.2 What is Higher-Order Charity?

The aim of this thesis is to describe the extension of first-order Charity to higher-order
Charity. In the new language, as in the original, the exponential is not provided as prim-
itive. Instead, the datatype definition mechanism is generalized such that a new class of
higher-order datatypes may be defined. The exponential datatype is one of these, but
more generally objects may be defined in the sense of object-oriented programming.

To give the reader a taste of higher-order Charity we show how the exponential datatype
and the double function can be defined:

dataC — exp(A,B)=fn:C — A= B.

3In functional programming terminology, functions taking or returning other functions are called “higher-
order functions™, or “functionals”.

def double : exp(A,A) — exp(A, A)
= (fn:f) = (fm:av— f fa).

We also show how to define an object: a toy “turtle” like that of the logo language. First
we need a direction datatype (dir) with an element for each direction (N, S, E, W):

data dir — C = N|S|E|W :1 — C.

Next we need a TURTLE datatype—the abstract class of turtles. A turtle can be told

to face in a certain direction or to advance a number of steps:

dataC — TURTLE =|face : C — dir = C
adv : C — int = C.

Last we need a turtle object, initially at the origin facing North. The turtle can be
poked along by applying the face and adv methods:

ddturtle : 1 — TURTLE

Joace : d = (d,(z,v)

(dy (3111 - ‘))
d, (z +1,1))

=0 = (d, (2, 1)) = {
adv : I
(dl(m-"vy))

(d, (z.,y + 1)) } (N, (0,0)).
d

Fhnz
1111

1.3 The Structure of this Thesis

This thesis is divided into two parts: chapters 2—4 discuss the Charity language from
the user’s viewpoint, while chapters 5—7 examine the higher-order extension from the

implementor’s viewpoint, tracing its effects down through the various stages of the Charity

interpreter. Specifically:

Chapter 2—An Overview of First-Order Charity We examine the Charity program-

ming language before the higher-order extension.

Chapter 3—An Overview of Higher-Order Charity We discuss the generalization of
the coinductive datatype definition mechanism and examine the resulting changes
to the language. The exponential datatype and the process datatype, canonical exam-
ples, are defined.

Chapter 4—Using Higher-Order Charity The benefits of the higher-order extension are
explored. This includes some uses of the exponential, the process datatype, and other
higher-order datatypes. We discuss how to use higher-order Charity to define objects

and simultaneously recursive functions.

Chapter S—Variance The higher-order extension introduces “variance” into Charity.

Variance is defined and variance analysis is discussed.

Chapter 6—Translation We examine the transiation from the high-level Charity syntax
as used by the programmer to the low-level representation as used by the Charity

abstract machine.

Chapter 7—Compilation and Execution We introduce the Charity abstract machine and
describe how it evaluates Charity programs.

Chapter 2

An Overview of First-Order Charity

The Charity programming language, before the higher-order extension, is referred to as
first-order Charity. This chapter presents an overview of this language. Note that higher-
order Charity is a seamless extension of the first-order fragment and so all the code pre-
sented here remains valid.

Charity is based on the theory of strong categorical datatypes [6, 7, 20], a modifica-
tion of Hagino’s categorical datatypes [9] which are related to the algebraic datatypes of
modern functional programming languages. Unlike algebraic datatypes, however, the class
of Charity datatypes is partitioned into two dual subclasses: the inductive datatypes and
the coinductive datatypes. A formal, type-theoretic definition of Charity is presented in
appendix A. This is the syntactic framework of the language, itself impotent without ac-
companying datatype definitions. Sections 2.1 and 2.2 describe first-order inductive and
coinductive datatypes, respectively. Additional issues are covered in section 2.3. A cata-
logue of commonly used Charity datatypes is presented in appendix B. We will introduce
the language after the higher-order extension in chapter 3.

2.1 Inductive Datatypes

The abstract syntax for inductive datatype definitions is

dataL(A)—-)C:: 1 = Fl(A,C) — C

a : F,(4,0) — C.
In such a definition:
e L is the name of the datatype;
e Aisatuple (Ay,..., An) of type variables—the parametric variables (m > 0);
e C is a type variable—the state variable;
e each ¢; is the name of a constructor (1 < i < n);
e cach F;(A,C)isatypeinterms of Aand C.
Inductive definitions deliver the following:
1. a new m-ary type constructor L;
2. aset of new constructors (see below);
3. aset of new operations, or combinators (see below).

Inductive datatypes are also known as left datatypes, or initial datatypes.
One example is the datatype of finite lists, defined in terms of the nullary product data-
type 1 and the binary product datatype - x _:

data list(A) — C =|nil : 1

— C
cons : AxXxC — C.

2.1.1 Constructors

As stated above, an inductive datatype definition delivers a set of constructors. To obtain
the types of the constructors one simply replaces the state variable in the datatype definition
with the datatype itself (ie. substitute L(A) for C):

¢ - F]_(A,L(A)) — L(A)

e : Fa(A,L(4)) — L(A)

Values of type L{A) are built up by constructors: Given data of type A and, recursively,
of type L(A), we can apply constructor ¢; to obtain data of type L(A). Note that values of
inductive datatypes must be finite.

The constructors for list are

nil : 1 — list(A)
cons : Axlist(A) — list(A)

SO

cons(1, cons(2, cons(3, nil())))

is a value of type list(i¢nt). Charity provides an alternative list syntax:

[1,2,3]

2.1.2 Inductive Combinators

In addition to the constructors, an inductive datatype definition delivers three operations
over its values. These are the fold, the case, and the map. Note that fold is the fundamental
operation, that the other two are special cases, and that they can be expressed as such. The

case and the map are delivered as distinct operations due to their extreme usefulness and

importance.

Combinator 1: Fold

Fold is the destructive operation for inductive datatypes: inductive values are constructed
using constructors and are processed using the fold.

The type of fold is:
fold®{F1(A,C) — C,...,F,(4,C) — C}: L(A) — C

where each function between { and } is a phrase by which fold” is parametrized. Note that
the type of fold is given exactly by its corresponding datatype definition. A special “barbed
wire” syntax is provided to the programmer:

¢ v — U

Cn I Uy > i,

The behavior of fold is given by its defining commuting diagrams, one for each con-

structor:

Fi(A, L(4)) —=— L(4)

Fi{1, fold“{f:} fold{£;}

c

v
Fi(A,C)
i
The diagrams express the identities and uniqueness properties necessary to both reason
about and evaluate fold expressions [25, 27]. Here, the identity states that constructing

a value of type L(A) and then destructing it is equal to recursively destructing its sub-

components, and then applying the phrase. We draw a dotted map to express that it is
unique. The uniqueness property states that given any h such that ¢;; h = Fi{14,h}; f;
then h = fold*{f:}.

The datatype of natural numbers is given by:

datanat —- N=|zero : 1 — N
suce : N — N.
and has constructors:

zero : 1 — nat
succ : nat — nat

(ie. zero, succ zero, succ succ zero, ..., are the values of type nat). We may use the

fold to add natural numbers;

succ : r +— succr

zero : () = n Bm

def add : nat x nat — nat = (m,n) — {

Note that fold™* is essentially a £or loop.

Fold is a generalization of the £01d (or £01dxr) recursion functional for lists [4], and is
often referred to as the catamorphism functional in the functional programming literature
[13, 14]. We also say fold is the “structured recursion operator” for its corresponding
datatype: one employs it to implement functions which recursively consume the values of

that datatype.

Combinator 2: Case

Case is the nonrecursive specialization of fold. Mcre intuitively, it is the conditional oper-
ation for inductive datatypes.
The type of case is:

case’{Fi(A, L(A)) — C, ..., Fa(A,L(A)) — C} : L(4) — C

10
A special braced syntax is provided:

G vy = 4

Chn © Up — I,
The behavior of case is given by its defining commuting diagrams:

F(A, L(4)) —

L(A)

gcase"{ fi}

C

As nat is recursive its main operation is the fold, but the case is also useful. Consider

the 2sZero function:

def isZero : nat — bool = n — {

zero +—» true
succ- +—> false

The datatype of booleans is given by:

data bool — B =] true

1 — B
false 1 — B.

Alternatively, a shorthand syntax may be used:

data bool — B = true | false: 1 — B.

As bool is not recursive its main operation is the case. We can use it to express all the

boolean operations, such as not and or:

defnot:bool—)boal:bl—){true = false}b

false — true

11

defor : bool x bool —» bool

true +— true

= (bg,b1) — true > true bo.
false — false — false b

One may express these functions more concisely using pattern matching (section 2.3.1).

Note that case®*® is more commonly known as the i f-then-else conditional.

Combinator 3: Map

Map is another specialization of fold, used to “lift” a function:
f:A— B
to a function over a parametric inductive datatype L. Specifically, the type of map is:
map“{A — B} : L(A) — L(B)

A special syntax is provided:

LS vp — 4

The behavior of map is given by its defining commuting diagrams:

Ci

Fi(4, L(4)) L(4)
F{f, map*{/}); ‘map"{(f}
F{B,L(B)) L(B)

For example:

list {isZero} [succ zero, zero, succ succ zero] ~» |[false, true, false]

Map is a generalization of the map functional for lists [4].

2.2 Coinductive Datatypes

The abstract syntax for coinductive datatype definitions is:

dataC—)R(A)= d]_ : C — Fl(A,C)

d,. : C — F,(AC).
Coinductive definitions deliver the following:
1. a new m-ary type constructor R;
2. a set of new destructors (see below);
3. a set of new combinators (see below).

Coinductive datatypes are also known as right datatypes, or final datatypes.
The datatype of infinite lists is given by:

13

data C — inflist(A) =|head : C —
cC —

A
tail C.

2.2.1 Destructors
To obtain the types of the destructors one simply replaces the state variable in the datatype

definition with the datatype itself:

d, : R(A) — Fi(A,R(A))

d, : R(A) — F,(A,R(A))

Values of type R(A) are broken down by destructors: given data of type R{A), we can
apply destructor d; to obtain data of type A and, recursively, of type R(A). Note that values
of coinductive datatypes may be infinite.

The destructors for inflist are

head : inflist(A) — A
tail : inflist(A) — inflist(A)

2.2.2 Coinductive Combinators

In addition to the destructors, a coinductive datatype definition delivers three operations
over its values. These are the unfold, the record, and the map. Here, the unfold is the
fundamental operation and the other two are special cases, but they are delivered as distinct

operations due to their usefulness.

14

Combinator 1: Unfold

Unfold is the constructive operation for coinductive datatypes: coinductive values are con-
structed using unfold and are processed by applying destructors to them. Unfold is the
structured recursion operator for its corresponding datatype.

The type of unfold is:

unfold®{C — F1(A,C),...,C — F,(A,C)} : C — R(A)

Note that the type of unfold is given exactly by its corresponding datatype definition. A
special “banana’” syntax is provided to the programmer (note that the », common to each
phrase, has been factored out—the corresponding ¢; are referred to as the threads of the
unfold):

d1 : tl
U
dn : ts
The behavior of unfold is given by its defining commuting diagrams, one for each
destructor:
d;
R(A) Fi(A, R(A))
))
unfold®{f;} -Fi{14, unfold"{f:}}
é’ F; /i, C
2 (4.0)

As for fold, the diagrams express the identities and uniqueness properties necessary to both
reason about and evaluate unfold expressions.
We can use the unfold to construct infinite lists, such as the infinite list of positive

integers:

15

. e . . head : 1
defints : 1 — inflist(int) = () — (] e G D 0.

This evaluates to

ints ~+ (head:0,tail :...)
~+ (head : 0,tail : (head : 1,tail : ...))
~+ (head : 0,tail : (head : 1,tail : (head: 2,tail : ...)))

where each subsequent step has to be explicitly requested by “poking” the unfold with
destructors.

Unfold is a generalization of the unfold recursion functional for lists!, and is often
referred to as the anamorphism functional in the functional programming literature [13, 14].

Combinator 2: Record

Record is the nonrecursive specialization of unfold. More intuitively, it allows terms to be
grouped into a structure. In practice, for nonrecursive coinductive datatypes it is the main
constructive operation. For recursive datatypes it is used to construct a new value from an
existing value.

The type of record is:
record®{1 — Fy(4, R(A)),...,1 — F,(A,R(A))}: 1 — R(A)

A special parenthesised syntax is provided:

In Charity, colists as opposed to lists (see appendix B).

16

The behavior of record is given by its defining commuting diagrams:

R(4) E. R4, R(A))

record®{ f,-}g g
1
The datatype of triples is given by:
data T — triple(A,B,C) =|projo : T — A
proh : T — B
projo : T — C

As triple is not recursive, its main operation is the record. We can use it to construct

triples. We can then destruct them by applying projections, as in:

projo : true
proji | proji : 42 ~r 42
projz : “Deep Thought”

The above record syntax is equivalent to writing

(projo : true, proj : 42, projs : "Deep Thought”)

17

Combinator 3: Map

A map, of the same form as the map for inductive datatypes, is provided for coinductive
datatypes:
map®{A — B} : R(A) — R(B)

The behavior of this map is given by:

R(B) —% . F(B, R(B))
map™{f}. Fi{f, map™{/}}
R(4) Fi(4, R(A))

2.3 Other Aspects of Charity

We conclude our overview of first-order Charity with a short survey of some other aspects:

pattern matching, combinators, context, and # and @.

2.3.1 Pattern Matching

Much as do modern functional programming languages [17, 16, 23, 11, 18], Charity sup-
ports pattern matching [21, 22]. An abstraction

v

18
generalizes to a patterned abstraction
o= b

Pn = in

ie. a non-empty list of cases, where a case is a pattern-term pair. When applying a patterned
abstraction, ¢; is evaluated if and only if p; is the first pattern which “matches” the input.
Charity patterns must be complete in the sense that all functions must be total.

A canonical example of pattern matching is the boolean binary operator or. It was
expressed without pattern matching in subsection 2.1. Note in the original version the pro-
grammer must explicitly decompose and test input using a tree of cases. Pattern matching

makes case selection implicit. With pattern matching or simplifies to

defor : bool x bool — bool

= (false, false) +> false
| - — true.

The example above illustrates pattern matching over pairs and inductive values. One
can also pattern match over coinductive values using record patterns. For example, the
following function tests whether all three elements of a triple are 0:

defall 0 : triple(int,int,int) — bool

= (projy:0,proj; : 0,proj2:0) — true
- — false.

2.3.2 Combinators

When defining combinators (functions), one may parametrize them by other combinator

expressions. For example, consider the filter function over lists parametrized by an element

19

testing predicate p:

def filter{p : A —+ bool} : list(A) —» list(A)

nil 0O - {
= L.
»—r{l ons : (o) o { ;m : ;:.om(a,r) }pa I}

Above, pis a function variable. When applied, filter is supplied with an actual function,
as in:

filter{isEven} [1,2,3,4,5] ~ [2,4]

where

def isEven = z — egin:(z mod 2, 0).

2.3.3 Context

A term exists within a context: the scope of all variables bases (or patterns) which can bind
its free variables. For this reason combinators accept a context o as an additional input to
be supplied to its parameters at application time. This detail is hidden from the programmer
but it does affect the naive defining diagrams given in sections 2.1.2 and 2.2.2. The revised
versions appear in figures 2.1—2.6 starting on page 20. The revised types appear below:

fold*{...,Fy(A,C)xo — C,...} : L{A) x s — C
caset{...,Fy(A,L(A)) x 0 — C,...} : L(A) x 0 — C
map’{A x ¢ — B} : L(A) x 0 — L(B)
unfold®{...,C x 0 — F;(A,C),...} : C x ¢ — R(A)
record®{...,c — F;(4A, R(A)),...} : 0 — R(A)
map®{A x o —s B} : R(A) x ¢ — R(B)

Context passing, or strengthening, is a central aspect of the theory underlying Charity.
Itis discussed from a formal standpointin [6, 7, 20], and from an intuitive one in chapter 6.

Fi(A, L(A)) x o — 3L 14y x o
(map™{po, fold"“{:}}, p): fold®{ £}
FiA,C) x o - C

Figure 2.1: Fold with context.

¢ x1

Fi(A,L(A)) x o L(A) x o

‘case® (£}

C

Figure 2.2: Case with context.

X1

Fi(A,L(A)) x o L(A) x o
map®{f, map"{f}}: map"{f}

F(B,L(B)) x o L(B)

Figure 2.3: Inductive map with context.

20

21

R(‘A) & F(4, F(A))
unfold®{ f,} mapF' {po, unfold®{ f:}}
Cxo — Fi(A,C) x o

Figure 2.4: Unfold with context.

di

R(A) F(A, R(A))
record®{ f,}
o

Figure 2.5: Record with context.

R(B) —% . Fy(B,R(B))
map™{f}. imapFi{f, map™{f}}
R(Ai X o Tl F;(A, RiA)) X o

Figure 2.6: Coinductive map with context.

22

234 #and @

Charity supports two special “identifiers”: the # variable inside folds and the @ function
inside unfolds.

The # (“hash”) allows one to read the value being destructed inside a fold. In functional
programming terminology, it allows the expression of paramorphisms [13]. Consider the
dropwhile function which traverses a list from left to right, dropping elements until they no
longer satisfy a predicate:

def dropwhile {ps : A — bool} : list(A) — list(A)
nil : () =]

cons : (a,l') — true > U a ’
) ’ false — # P4

=l

At any point during a fold the # represents the value being destructed (by the fold be-
fore it has been recursively applied). Generally for an inductive datatype L, # has type
F;(A,L(A)) for each of the 7 phrases of the fold. Thus, in our example above, the fold
proceeds through the list from left to right recursively dropping each value until the pred-
icate fails. At this point we reach a base case and return whatever is left of the list being
processed.

Dropwhile is expressible without # in Charity, but requires a more complicated fold
state involving the product datatype.

The # allows one to cast the fold operation as the case operation—its non-recursive

special case—simply. For example, casing over lists:

nl - o~ #

cons : - — #
The @ (“at”) allows one to write the value being constructed inside an unfold. It’s
function is dual to that of the #. Consider the pushdoum function which inserts a value into

23

an ordered infinite list, preserving the crdering:

def pushdown{<,: A x A —+ bool} : A x inflist(A) — inflist(A)

. frue — a ’
head : false — o }c <pQ
=(a,l) = || (@', ') —~ (head L, tail [).
N true — Q(head :a’,tail:{') '
tad false — (head U', tail I') a<ad

Here, once the value has been inserted into the infinite list, the remainder is simply the
infinite list (head : o/, tail : ') and so we produce it directly instead of producing a new
state and recursively applying the unfold. Naively, the type of @ may be considered to be
R(A) — C (although there is a complication).

Pushdown is expressible without @ in Charity, but requires a more complicated unfold
state involving the sum datatype (or coproduct datatype—see appendix B).

Note that @ also allows one to cast unfolds as records—again its non-recursive special

case. For example, the following is the infinite list 0,0, 1,2, 3,4, 5, .. .:

head : 0
G()H tatll @onesD()

Besides the expressive gains delivered by # and @, each reduces the complexity of code
and therefore some computational overhead. There is another efficiency issue: in the case
of the # an optimizing translation could eliminate unnecessary recursion when a premature
base case is reached. The typing of # and @ is discussed in [24].

24

Chapter 3

An Overview of Higher-Order Charity

The Charity programming language, after the higher-order extension, is referred to as
higher-order Charity. This extension is a generalization of the coinductive datatypes. As
such, the presentation here follows that of section 2.2 in the previous chapter: section 3.1
describes higher-order coinductive datatype definitions, and is succeeded by sections 3.2
and 3.3 which discuss the corresponding destructors and combinators, respectively. Sec-
tions 3.4 and 3.5 discuss pattern matching and context issues. The exponential and process
datatypes are used as running examples throughout, and more examples will be presented

in the next chapter.

3.1 Higher-Order Coinductive Datatypes

The abstract syntax for higher-order coinductive datatype definitions is
dataC — R(A) =|d; : C — Fi(A,C)

d; : C— E;(A) = Fy(4,C).

25

In such a definition E;(A) is a type in terms of A. The syntax allows the introduction
of destructors both of the original d; form and of the new d; form. All the first-order
coinductive datatypes are maintained simply by not using the d; form.

The = syntax is syntactic sugar. In fact, the system reads

d; : C — E;(A) = F;(4,C)

d; : E;(A) x C — Fj(A,C)

The above syntax is used as it is more consistent with both the original coinductive datatype
syntax and the higher-order unfold syntax introduced in section 3.3.
The first and simplest of the higher-order datatypes is the exponential datatype:

dataC — ezp(A,B)=fn:C — A= B.

The type exp(A, B) is the type of total functions from type A to type B, and is often written
as B4 or as A = B in the literature.
Another higher-order datatype is the process datatype:

dataC — proc(A,B) =pr:C — A= C x B.

The type proc(A, B) is the type of total processes with input space A, output space B, and
state space C.

The exponential and particularly the process datatype are discussed in more detail in
chapter 4.

26
3.2 Destructors
The destructors for a higher-order coinductive datatype are

di : R(A) — Fi(A, R(A))

d; : Ej;(A) x R(A) — Fj(A, R(A4))

The main idea of the higher-order extension is that the coinductive datatypes are general-
ized such that destruction is parametrized.
The destructor for ezp is

/n:Axexp(A,B) — B

The fn destructor applies a function f of type ezp(A, B) to an input a of type A, yielding
an output b of type B:
In(a,f) ~ b

The destructor for proc is
pr: A x proc(A, B) — proc(A,B) x B

Similarly to the above, pr applies a process to an input, yielding an output. Additionally

the internal state of the process changes and the process evolves.

27
3.3 Combinators

Combinator 1: Unfold

The type of unfold for higher-order coinductive datatypes (ignoring context) is
unfold®{C — Fy(A,C),..., E;(A) xC — Fj(A,C)}:C — R(A)

The syntax is:
d; : t;
v
d; : vj—t;
Note that the thread associated with d; is a term as before, while the thread associated with
d; is a function. The input to this function is supplied at destruct-time.
The commuting diagrams for the d; are as given in chapter 2. The diagrams for the d;

are as given here:

F;(A) x R(A) — % Fy(4, R(4))
]-Ej(A) X unfoldR{fj}é E{]'Ar unfOIdR{fj}}
E;(4) x C Fy(4,C)
fi

As exp is nonrecursive its unfold operation is equivalent to its record operation. How-
ever, proc is recursive and provides an example. First, we need the “success-or-failure”

datatype—the datatype of exceptions:

data SF(A) — C = ff 1 — C
s : A — C.

28

Now consider the following delay function:

defdelay : int — proc(A,SF(A))

=z (Ialr:aH{ nil = (0.4 }l%[ssa]D rep(z, ff).

cons(a,as) — (as,a)

In the above code rep : int x A — list(A) is the repeat function which produces an
z-element list of ff’s and - : list(A) x list(A) — list(A) is the append function which
concatenates two lists. A process may be considered a function with memory. The delay
function builds a delay process of length z. The initial state of the delay is “empty”, ie. it
is stocked with ff’s. At destruct-time input is supplied at one end and output arrives at the
other. The output must have first flowed through the delay. Note that the nil case above is

never taken, but is required for completeness.

Combinator 2: Record

The type of record is
record®{1 — F;(A, R(A)),..., Ej(A) — F;(A, R(A))} : 1 — R(A)

The syntax is

dj : 'Uji—)tj

Again, the commuting diagrams for the d; are as given in chapter 2. The diagrams for

29

the d; are as given here:

d;

E;(4) x R(4) F;(A, R(4))

15].(,4) X recordR{fj}E . %’3
- ,QQ\
EJ(A) x 1

Specializing from above, we obtain the type and diagram for record®*?:

record®™?{A — B} :1 — exp(A, B)

Mn

AXx ex?(A, B) B
14 X record™?{ f } \

Axi
The record®? combinator introduces values of type exp(A, B)—the combinator en-

capsulates a function f : A — B as a term of type ezp(A4, B).

Consider
defprd: 1 — ezp(nat,nat)
zero > zero
=0 = (fn. succn — n)
Then

prd ~+ (fn : (function))

30

and

In(suce succ zero,prd) ~» succzero

Combinator 3: Map

The map combinator is the one most heavily affected by the higher-order extension. We
devote chapter S to this aspect of the extension—variance—but introduce it here.

Recall that for first-order Charity map lifts a function
f:A— B

to a function
map®{f} : R(A) — R(B)

For higher-order Charity, generally, the situation is more complex: it lifts a pair of func-

tions
ff:A— B

fF:B— A

to a function
map®{ft:A— B& f~: B — A} : R(A) — R(B)
The syntax is

Ry o= tf & vy =ty

31

The diagrams for the d; are

E;(B) x R(B) F;(B, R(B))

1g;(g) X map®{f } gF}{f ,mapR{f}}+

E{(A) x R(4) —— Fy(4, R(A)

E5(B) x R(4) E;{f}~ x lpea) 5

where
f=ft:A— B&f :B— A

The idea is that as destructors consume additional input (in the E; component) as well
as produce output (in the F; component), we must both preprocess the input with f~ and

postprocess the output with f+ when mapping. As will be explained, the type of map*® is

map®?{C — A, B — D} : ezp(A, B) — exp(C, D)

3.4 Higher-Order Patterns

The higher-order extension affects pattern matching in one important way: we may use
higher-order record patterns. For example, consider the composition function which
takes two first-class functions (with suitable types) and returns their first-class composite.

Without higher-order record patterns we write

defcomp : exp(A,B) x exp(B,C) — exp(A,C)
= (f,9) = (fn:aw fa(fn(a, f),9))

With them we simplify to:

defcomp : exp(A, B) x exp(B,C) — exp(A,C)
((fn: f),(fn:g))— (fn:a— gfa).

32

Here f and g are function variables.

Generally, higher-order record patterns are of the form
(dj: f)

where f is an identifier. Higher-order record patterns were developed with Charles Tuckey

and the implementation details are given in [22].

3.5 Combinators with Context

The commutative diagrams for unfold, record, and map given in this chapter must deal with

context. Figures 3.1—3.3 complete the naive diagrams given thus far.

33

E;(4) x R(A) 4 - (A, R(4))
[¢
Lg;ca) % unfold™{f;}: :map® {14, unfold®{f;}}
E;(A) x (C x o) Frpipd) F;(A,C) x o

Figure 3.1: Higher-order unfold with context.

d;

E;(4) x R(4) F;(A, R(A))

1g;(a) % record®{ f;}: G
EJ(A) X o

Figure 3.2: Higher-order record with context.

Ej(B) x R(B) F;(B, R(B))
Le;m x mapR{f} imap®s {f, mapR{f}}+

Ej(B) x (R(A) x o) Fj(A, aiA)) x

{({{po,p1:p1)i map®i { £}, p1;i Po); dj,p1: p1)

Figure 3.3: Higher-order map with context.

34

Chapter 4

Using Higher-Order Charity

In the previous chapter we defined two important higher-order datatypes: the exponential
datatype of functions and the datatype of processes. These are two higher-order datatypes
among many. In this chapter we continue to illustrate the higher-order extension and the
expressive gains delivered by presenting more examples using these two datatypes, and
also by introducing others.

First, the process datatype is studied in greater detail in section 4.1. Then it is shown
how to express stacks and queues in higher-order Charity in section 4.2. Generally, the
higher-order extension allows one to express objects in the sense of object-oriented pro-
gramming. Processes, stacks, and queues are some specific examples. The correspondence
between higher-order Charity and object-oriented programming is discussed in section 4.3.
The exponential datatype may be used to write simultaneously recursive functions, and
even to realize an efficiency gain. This is demonstrated in section 4.4. It is shown how to

implement a simple parser using higher-order datatypes in appendix D.

35

4.1 Processes

In [12] a technique for modeling processes as circuits is described. A circuit is, informally,
an object with input space A, output space B, and state space C, represented diagrammati-

cally as:

A-{ ¢ kB

Each circuit is provided with a method p:
p:AxC —CxB

That is, circuits model processes as they consume input, produce output, and have an inter-
nal state which allows them to evolve over time as they are invoked.
We can model processes in higher-order Charity the same way using the process data-

type:
dataC — proc(A,B)=pr:C — A= CxB.

The above is reminiscent of the exponential. In fact, proc is a generalization in that ezp is
proc where C is specialized to 1. In other words, as exp is nonrecursive one may generalize
it to proc by adding a state C, thus making it recursive. We say that processes are functions
“extended in time”.

The following examples use the semicolon syntax which expresses the composition of
two functions:

v tf = v ft

Process building operations can be implemented using the unfold. For example, we can

compose processes (ie. wire them in series) much as we can for functions:

36

def ser : proc(A, B) x proc(B,C) — proc(A,C)
pr: a = pr(aaprl) D
z

=z»—>0(pr1,prz)r—> ;i (pr,0) = (b,p72)
i (pr,c) = ((pri,pr3),¢0)

We can parallelize processes (ie. wire them in parallel):
def par : proc(A, B) x proc(C, D) — proc(A x C, B x D)

— r: (G,C) — (pr(a,prl),pr(c,prg))
*“’(l"’”"’”’"’ i (@rh,0), erhd) — ((orh,pry), (6,d) D"'

We can also define other “wirings”: the identity wire, the split for branching, the wire-

pair twist, a multi-wire exchange ez, and a feedback loop fb.
defwire: 1 — proc(A, A)

=0 = (O=pr:a=(0:0) 0

defsplit : 1 — proc(4,A x A)

= () » 0= pr:am((),(a,a)) ()

deftwist : 1 — proc(A x B,B x A)

= (0 = (O=pr:(abd)—(0,(a))

defex : 1 — proc((A x B) x (C x D),(A x C) x (B x D))

=() = (0 — pr: ((a,b), (c,d)) = ((), ((a,), (5, d)))) O

37

def fb : proc(A x C, B x C) x C — proc(A, B)

pr: a — pr((a,c),p)
=z [[(e)—= ; @, (-C) — pr((ad)p) || 2
i @, (0,¢)) = pr((",c"),b)

The second step in fb allows a circuit to stabilize. We use the infix operators ; ; for ser

and || for par. Now if we define a nor-gate:
defnor : 1 — proc(int x int,int)
(0,00 = ((),1) D
= — > pr: .
0 = (0mer:| @22 @) 0
We can define a basic RS-flipflop:
def flipflop : 1 — proc(int x int,int x int)
= () » fb(ex;; ((nor;; split)||(nor; ; split)); ; ex; ; (wire|[twist), (1, 0)).
The above examples demonstrate that we can build complex processes from simpler

ones according to a type discipline. It also shows that we can use higher-order Charity to

model hardware.
Note that proc is the datatype of total, deterministic processes. We can also define the

datatype of partial processes (ie. processes that can terminate):
data C — Pproc(A, B) = Ppr : C — A = SF(C x B).

and the datatype of nondeterministic processes (ie. processes that can evolve in more than

one way):

data C — NDproc(A, B) = NDpr : C — A = list(C x B).

38

4.2 Stacks and Queues

Stacks (LIFOs) and queues (FIFOs)! can be specified using the same higher-order data-
type:
data C —» storage(A) =|write : C — SF{A)=>C
read : C — SF(A) xC.
The destructors delivered are

write : SF(A) x storage — storage
read : storage — SF(A) x storage

The idea is that one may write an element to the stack/queue object thus obtaining a
new one (the ff case empties the object), and one may read an element from the object
again obtaining a new one (the ff case indicates the object is empty).

Stacks and queues are implemented using different unfolds:

def stack : 1 — storage(A)

write F =1
" |ssa — cons(a,l)
= (- [|I{- -
A .0
read { cons(a,l’) : (ss c[r.], N } :

def queue : 1 — storage(A)

: i
write ssa : 9 +-[a]
= O~ ||l .
read : { Ic]ons(a’ l’) : %z;,([l],)l’) } l

1 This presentation is inspired by that in [26].

39

Note that even though write and read are dual (ie. their types are symmetric) it is
not guaranteed that they are inverses. Such propositions about the sensible behaviour of

implementations must be proven.

4.3 Objects: Towards Object-Oriented Programming

Objects, in the sense of object oriented programming [1], can be expressed in higher-order
Charity. We have already seen some examples: turtles, processes, stacks, and queues.
This section makes some general observations about the relationship between higher-order
Charity and object-oriented programming.

All the preceding datatype definitions are specifications of abstract datatypes. Their
values, as generated by unfolds, are implementations. Abstract datatype specifications are

presented algebraically, and consist of three components:
1. the name of the type;
2. the typed operations for this type;
3. the equations these operations must satisfy.

A higher-order datatype definition declares the first two only. The unfold then defines how
the first will be represented internally, and how the second will manipulate that concrete
representation. The third component—the equations—are not formulated in Charity. In-
stead, it is the programmer’s job to state them at the meta-level and then to prove that the
implementation satisfies them.

Generally, the operations of algebraic specifications are not restricted in their typing.
Higher-order datatypes are restricted, however, in that the state variable must occur exactly
once in the domain of each destructor. For instance, one could not specify an abstract data-

type of sets in which union and intersection were provided as operations, as each requires

40

a pair of sets as input. However, the “simple” abstract datatypes specifiable via the higher-
order datatype definition mechanism do represent a significant increase in expressive power
as they correspond to objects in the sense of object oriented programming. The following

table illustrates the relationship:

ADT ooP
datatype = abstractclass
unfold (not applied) = class
unfold (applied) = object
state = state
destructor = method

That is, to define an (abstract) class we define a higher-order datatype. Objects are
values of that type. There are two essential facets of objects: they have an internal state, and
they are interacted with exclusively via their methods. The state of an object is simply the
state over which we unfold, and the methods for querying and manipulating the object/state
are destructors. The unfold ensures that the internal state is hidden, thus guaranteeing
proper data abstraction and modularity. The one central difference between traditional
object oriented programming and higher-order Charity is that we currently lack inheritance

and a class hierarchy.

4.4 Simultaneously Recursive Functions

Recall that fold is the structured recursion operator for inductive datatypes: It is used to re-
cursively process a finite value. Often, however, one wishes to recursively process multiple
values simultaneously. In functional programming languages this is accomplished using
general recursion. For example, consider the min function which computes the minimum

of two natural numbers expressed in Miranda:

41

min:: num -> num -> num

minmn = min’ mn

where
min’ 0 Y = m
min’ x 0 =n
min’ (x + 1) (y + 1) =min’ xy

This function recurses simultaneously over each of its two inputs until one reaches its
base case. The first to “bottom out” is the minimum, so the computation will terminate in
time proportional to the smaller.

The min function can also be expressed in first-order Charity but it can not use such a
straightforward algorithm. This is because fold is singly recursive. Instead, one subtracts
the second input from the first. If the result is zero then the first is smaller, otherwise the
second is smaller. Of course, this subtraction is implemented via a fold and so it must
arbitrarily choose which of the two numbers to fold over. If the larger is chosen then the
computation will terminate in time proportional to the larger.

One can express simultaneously recursive functions in higher-order Charity with the

help of exp. This technique was discovered independently by Meijer [15].

4.4.1 The Minimum of Two Natural Numbers

We implement the original min algorithm in higher-order Charity:

def min : nat X nat — nat
zero : () = (fm:-—m)

m).
zero +— n)

sucen’ — fn'

= (m,n) — fn(n,

succ : (m:f) — (fn:

That is, we fold over m to produce a nested function—of type exp(nat, nat)—and

apply that function to n. The n drives the nested function, removing a layer of nesting each

42

time it is decremented. Which bottoms out first indicates which number is the smaller.
Note that, essentially, we have solved the problem of simultaneous recursion versus singly
recursive folds by currying.

Note also: the translation function (chapter 6) is currently unoptimized, so the fold
eagerly computes the entire nested function before applying it to n, even though the succ
phrase contains an early base case. An optimized translation proposed by Robin Cockett
as yet unimplemented will eliminate this problem, allowing the computation to terminate

with time always proportional to the smaller input.

4.4.2 The “Zip” of Two Lists

The min function scales up, from nat to list, as the zip function [4]. This takes a pair
of lists and returns a list of pairs, where the elements of the first two lists have been paired
component-wise. The length of the resulting list is equal to the length of the shorter input
list as extra unpairable components are dropped. Again, this operation is expressed using
simultaneous recursion in a functional language and so can be expressed in higher-order

Charity using the exponential:

def zip : list(A) x list(B) — list(A x B)

nil : () - (o]
= (‘11‘2) Hfﬂ(lz, ﬂ nil —) H l]).

cons : (a,(fm:f)) (ﬁ‘l cons(b,l) Eona((a,b),fl)
443 Equality

The ability of higher-order Charity to express simultaneously recursive functions is not
only useful for nat and list, but generally for all recursive inductive datatypes. Consider
that two elements of any inductive datatype can be tested for structural equality. This test
is a simultaneous recursion over the two elements. For instance, an inductive iree datatype

can be defined in Charity:

datatree(A) — C =|leaf : A

We can test trees for equality as follows:

def eqeree{eqa : A x A — bool} : tree(A) x tree(A) —+ bool

leaf : a -+ (fnvl
= (t1,t2) = fa(t1,
node : (Un:fd(m:fe) = (o

node : CxC

— C
— C.

leafa’ — cq,g(a,a’))
- — false

node(l,r) — and(fil, f- "))
- > false

43

t2).

Chapter 5

Variance

First-order Charity’s type variables can only occur covariantly. The higher-order extension
generalizes datatypes so that their parametric type variables may occur both covariantly
and contravariantly. In this chapter we define these terms and discuss variance analysis.

The concepts of duality and variance come from category theory ({26, 3, 8, 19], etc.):
datatypes are modeled by functors. Duality is a form of symmetry which manifests itself as
variance in parametric datatypes, in this case the symmetry between input (contravariance)
and output (covariance). Variance with respect to datatypes was studied by Hagino and used
in his categorical programming language [9], and generally by the functional programming
community [13, 14].

5.1 Variance Basics

In this section we explore the concept of variance starting with some examples.

45

5.1.1 Distinct Input/Output Type Variables

Consider the exponential datatype:
dataC — ezp(A,B)=fn: C — A= B.

The parametric type variable A occurs in an “input” position and the parametric type vari-
able B occurs in an “output” position. That is, an A is consumed at destruct-time, while a
B is produced.

How does one map over ezp? Clearly one uses the map combinator:
map*®{...} : exp(4, B) —» eap(C, D)

but how are the parameters filled in? Viewing a value of type ezp(A, B) as an object, we
draw:

A [Tanctior < B

To map this value to a value of type ezxp(C, D) we “wrap” it between preprocessing and

postprocessing functions:

pre : C— A
post : B-—D

to obtain:

CHEHa B®SLD

Thus, to map over ezp one uses the map combinator:

map*?{C — A,B — D} : ezp(A, B) — ezp(C, D)

which encapsulates the input function between preprocessing and postprocessing functions,

46

yielding the output function.

Expressing the map as a record we can write:
def map_ezp{pre, post} = f — (fn : ¢ — post fn(pre c, f)).

5.1.2 Nondistinct Input/Output Type Variables

Next, consider the storage datatype:

data C — storage(A) =|write : C — SF(A)=>C
read : C — SF(A)xC.

Here, the parametric type variable A occurs in both an input position (write) and an
output position (read).

To map over storage one uses the map combinator:
map*¢{A — B & B —» A} : storage(A) — storage(B)

where its single parameter has both a preprocessing function and a postprocessing function.

This combinator encapsulates the input stack/queue behind a read/write front-end.
Expressing the map as an unfold we can write:

write : i+ write(SF{prewrite}i,s
def map_storage{prewrite, postread} = s — (] s (SF{pr }is) D]

read : SF{postread} read s

Note that posiread and prewrite need not be inverses.

§.1.3 Variance Generalized

A (strictly) output type variable is called a covariant parameter, a (strictly) input type
variable is called a contravariant parameter, and an input/output type variable is called a

divariant parameter. The last possibility is that a type variable is introduced but not used

47

in a datatype definition. In this case it is neither an input nor an output variable and is
called an invariant parameter. We denote these four possible variances using the symbols
+, —, *, ? respectively.

When a datatype R is defined variance analysis must be performed, as:

1. the type signature of map® must be calculated, and

2. R is invalid if its state variable C' occurs contravariantly or divariantly. Otherwise

one could define such undesirable types as
data C —» foo = bar : C — ezp(C,C).
or, equivalently,
dataC — foo =bar:C — C = C.

To see the problem consider the typings
unfold’™ {C x C — C} : C —> foo

bar : foo x foo — foo

When applying bar one must pass in a value of type foo, but this violates the hiding of
the internal state C of the unfold. Additionally, the foo datatype models the untyped
A-calculus.

Formally, each type variable A which occurs in the definition of a datatype R is assigned
a variance vg(A) € {+, —, %, 7}. The variance-arity, or varity of a datatype R states the

assignment of variance to each of its parametric type variables. We write:

v(R) = [VR(AI)) ceey VR(Am)]

48

Variance analysis is the calculation of V(R) and vg(C).

5.2 Examples

Charity provides two fundamental builtin type constructors for finite products. We state the

varity of each:
« V(1) =]
o V(_x.)=[++]

As stated above, input types are contravariant while output types are covariant. Naively,
this says type variables are contravariant if they occur to the left of =>, and are covariant

otherwise. Thus one would expect the following varities:

o V(bool) =]
e V(SF) = [+]
o V(nat) =[]

o V(list) = [+]

o V(inflist) = [+]
® V(ezp) = [, +]
e V(proc) = [, +]
e V(storage) = [#]

Consider the datatype:

data C — strange(X,Y, Z) = str : C — exp(ezp(X,Y), Z).

49

What is V(strange)? Anything to the left of a = would be in a position of negative (—)
variance. However, in this case everything is in a position of positive (+) variance. But:
V(ezp) = [—, +]- This means Z occurs in a position of positive variance, but ezp(X,Y')
has been substituted into a position of negative variance. This has the effect of flipping its
varity so that X sits in a position of positive variance, while Y’ sits in a position of negative

variance. That is, V(strange) = [+, —, +].

5.3 Formalizing Variance
The variance algebra is the triple (V] -, v) where
e V = {+, —, %, 7} is the set of variances;

e (-): V x V — V is the substitution operation given by:

~
~
+ + |+
!
*

50

Note:
e (V,-) forms a commutative monoid with identity +.
e (V, V) forms a commutative monoid with identity ?.

e V forms a lattice:

The substitution operation says how to “flip” a variance v; when it sits in a position
of variance v,. The join operation says how to combine variances v; and v, when a type

variable occurs once in a position of v, variance, then again in a position of v, variance.

We lift the join operator to varities:
[1,. -y Um] V [U1, -y V] = [1 VUL, ... um VL]

We may read a varity ¥ at index h:
o[h]

We may also update a varity with v at index h:

update(7, h, v)

51

returning the new varity.
Given the generalized form of a coinductive datatype definition:

data A, —)R(Al,...,A"J =
dj : Ao -—)Ej(Ah...,Am) = F:-,‘(Ao,...,Am)

the variance analysis algorithm is as shown in figure 5.1.

m+1 m+1

A(R) = Ve, C(=, By, (B> v+, Fy, [0 7))

where
C(v, Ay, 7) = update(?, h,v)
Cv, T(Ty,...,Tw),) = VB_,C(v-vp,Tw,?)

where V(T) = [vy, . - ., U]
Figure 5.1: The variance analysis algorithm.

That is, A steps through each destructor checking its E; component (if present) and F;
component. The Ej; sits in a position of negative variance while the Fj sits in a position of
positive variance. Initially we know nothing about the variances of their variables and set
them to [?,...,7?]. The C function returns this vector, updated with the variances for each
of the type’s variables. Note that the vectors obtained from each E; and F; must be joined.

The C function descends recursively through a type expression and determines the vari-
ance of each of its variables. In the recursive case for the constant type T we retrieve its
varity, then descend through each of its subexpressions. At each step T sits in a position
of v variance, so each of its subexpressions sits in a position of v - vy variance. A join of

the vectors obtained from each subexpression must then be formed. In the base case for the

52

variable type A, we set its variance to be that of the position in which this occurrence sits
(later join operations may merge this variance with the variance of other occurrences).
Now R is valid if:
A(R)[0] =? or A(R)[0] =+

and:
V(R) = [A(R)[ll’) A(R)[m]]

Inductive datatype definitions also require variance analysis, and algorithm A extends

to them in the obvious way: there is no E; component to check.

5.4 Variance and the Map Combinator

Given a valid datatype R, the type signature of its map combinator is obtained from V(R):

map®{S,,...,Sm} : R(As,...,Am) — R(By, ..., Bn)

where each type signature S;, is:
- if Up = ?
Ap — By ifv, =+
B, — A ifop =—

Ap, — Br& B, — Ay ifv, =%

and where
V(R) = [‘l)]_, seoy 'Um]

When mapping the variance information indicates which phrase (the covariant or the

contravariant) to apply. “Atomic” maps of “compound” types are expanded to “compound”

maps of “atomic” types:

[mapdh{, o fa&gn,-. _}+] -
fu

[map™{.... fa& gn,-..}7| =
9h

arity T

r———,
map™ (- T), || =

map” {..., [mapTh'{. e s Dhy - }"] & [mapTh’ {....pn,...}["® ”] yooo}
an'tvyT
where
fip+ = -
fip— = +
and

ph:fh&gh

53

54

Chapter 6

Translation

Charity has three distinct notations, each residing at a different level of abstraction. The
highest, as introduced in chapters 2 and 3, is the extended term logic which is useful for
programming. Next, also previously discussed, is the core term logic which is used as
an intermediary representation. The lowest is the combinatory logic which is useful for
evaluation. In this chapter we discuss these representations and the translations between

them.

6.1 The Extended and Core Term Logics, and the Trans-
lation Between Them

The core term logic is a special case of the extended term logic: it’s the latter minus pat-
terns. For the first-order fragment it’s the notation as introduced in chapter 2 discounting
section 2.3.1. For the higher-order extension it’s the notation as discussed in chapter 3 dis-
counting section 3.4. The core term logic is described in [7, 5]. The extended term logic
was first proposed in [21] and is fully described in [22].

The translation from extended to core term logic is known as “pattern matching”. As

55

previously illustrated, one may express a Charity function as a list of cases where a case
is an input pattern followed by a term. The case to be taken is the first one whose pattern
matches the input. The pattern matching algorithm translates such “patterned” functions as
a tree of nested case functions, thus making the case selection process explicit.

The higher-order extension has little effect on pattern matching and the precise algo-
rithm is beyond the scope of this thesis. [22] provides a detailed description.

6.2 The Combinatory Logic

The term logic is a *“variable-ful” notation. One could evaluate it directly, but then one
would have to deal with variable substitution [2]. Instead, we translate the term logic to a
‘“variable-less™ notation—the combinatory logic. [6, 5, 20, 27, 25] also deal with Charity
combinators.

A combinator theory consists of a system of types, a set of atomic combinators, a
system for building compound combinator expressions, and a set of equations between

combinator expressions.

6.2.1 Types

A set of type constructors (with fixed arities, or kinds) generates a system of types, ie. the

set of terms of the free algebra. For example:

1 : Q2 —0
_Xo 2 —0
list : Q—Q

generates types such as:
list(A) x (1 x list(B))

56

6.2.2 Atomic Combinators and Compound Combinator Expressions

A combinator is a function from one type to another, parametric about other functions.

Compound combinator expressions are built from atomic combinators of the form:
co{h —T,....T, = T,}: Tp — T,

where

e c is the combinator name,

e each T; and T is a type.
We write this as a formation rule!:

f]_ : Ty —}T{,...,ntTn——)Tl‘
C{fla---,fn}:TO _)'Té

6.2.3 Charity’s Combinator Theory: The Combinatory Logic

Charity’s type system is generated from the fundamental type constructors for products: 1
and _ x _, the builtins (eg. int), and the user-defined type constructors (eg. [ist). Charity’s
atomic combinators for manipulating values of these types are described in the following
paragraphs.

The identity and composition combinators are delivered as follows:

A type
id{}:A— A

identity

'In fact, such a rule is introduced parametrically, meaning that the types may be polymorphic. The
theory must therefore account for type variable substitution and specialization. To test whether a combinator
expression is valid one would use the unification algorithm [24].

57

f:A—B,g:B—C
comp{f,g} :A—C

composition

When writing 0-ary combinators such as id the empty braces may be dropped. Also, the
comp combinator may be written using the infix notation f; g.

id is the identity combinator which outpuis its input, while comp is the composition
combinator which pipelines two composable combinator expressions. The id and comp
combinators satisfy the standard identity and associative laws.

Fundamental combinators for finite products (! for 1 and pair, pg, and p, for _ x _) are

delivered as follows:
A type

H}:4—1

voiding (0-tuple)

f:C—Ag9:C—B
pair{f,g}:C — Ax B

pairing (2-tuple)

A type, B type
P P Oth projection
po{} t:AxB—A
A type, B type
P oP 1st projection

m{}:AxB—B

The pair combinator may be written using the angle bracket syntax (f, g).

The voiding combinator ! is the O-tuple constructing combinator, ie. the unique map
from A to 1 which forgets its input. The pairing combinator (_, _) is the 2-tuple construct-
ing combinator parametric about its two component building phrases, while py and p, are
the 2-tuple destructing combinators, ie. the component projections. The finite product com-
binators satisfy the standard universal properties for products.

Charity’s fundamental combinators are summarized in table 6.1. The combinators and

equations delivered with user-defined datatypes are as described in chapters 2 and 3 (fold,

58

unfold, etc.).

id:A— A

1:A—1

(C— A C—B):C— AXB
p:AxB-—A
pn:AxB— B

Table 6.1: Fundamental combinators.

Each Charity program is expressible as a combinator expression. Consider, for exam-

z*—»O()H hefzdd .z D 0
taill : ()

ple, the function

which produces an infinite list of input z. The state of the unfold is set to the 0-tuple. This

program is expressed as a combinator expression as
(!, id); unfold™/** {p, 1}

Section 6.3 gives the derivation.

6.2.4 Context

A combinator is a function, and so takes input. Combinators with arity 1 or greater (ie.
combinators with parameters, excluding comp, pair, and records) take a pair as input: the
first component is an input value proper, and the second is a context. In the example
above, unfold™f!*t is applied to the O-tuple, so the first component of its input is !. It needs
access to its context (z), so that is propagated inside via ¢d in the second component. Note
also that each phrase is a function, so it too takes a pair as input: a local context and the

global context propagated in from outside. For example, the hd phrase acts on a pair: the

59

0-tuple provided locally and the = provided globally. To access the x it projects away the
local component. To summarize: as combinators provide a variable-free notation, context
must be explicitly propagated inside all combinators whose phrases might look up variable

values in scope.

6.3 Translation from Core Term Logic to Combinatory
Logic

The translation from core term logic to combinatory logic for first-order Charity is given
in several places, including [7]. In this section we re-present it pursuant to the higher-
order extension. First, for clarity and to explain the way context is handled, we discuss the
translation of Charity’s basic framework (see figure 6.1 on page 61).

Each rule (excepting possibly the last) does the obvious, introducing a fundamental
combinator discussed in the previous section. The first takes a variable to itself via the
identity combinator ¢d. The second handles 0-tuples by the “forgetting” combinator !. The
third decomposes pairs, accessing their variable components by projecting, while the next
composes pairs. The second last handles function application for functions f, where fisa
0-arity named function, constructor, or destructor. The last, and most interesting, handles
function abstraction. This case also serves as a review of variable elimination and of the
manner in which this translation makes global and local context management explicit. We
are translating term {v' + ¢’} ¢ in context v, so first translate input term ¢ with respect to
v and pair it with ¢d. This has the following effect when evaluating: a context is generated
before this pair combinator is encountered. The first component uses it to evaluate ¢ and
the second preserves it. Both are then passed on to the abstraction v/ — ¢. However,
this abstraction may not only access the local context v/, but also the global context v, and
8o is actually translated as [(v’,v) — ¢] in anticipation of the pair. The context v is now

60

preserved and forwarded inside the abstraction, along with the input proper, via this pair.

Having discussed the preliminaries we can now give the translation of the unfold, the
record, and the map (figure 6.2). The unfold (in context ¢) translates much as the abstrac-
tion does, but the input and context are passed into the unfold® combinator delivered with
datatype R. Each phrase has access to the unfold state v and the context o. Higher-order
phrases have access to an additional input v;. An important note: this input is the leftmost
component of the triple, the state follows, and the context is the rightmost component.
This is for scoping purposes and is due to the manner in which pairs are decomposed (see
figure 6.1).

The record translation is a special case of the unfold translation: it is the non-recursive
specialization and as such requires no state. Thus it requires no initial state, hence no input
(ie. it is a term and not a function), so the context is forwarded directly without pairing.

The map translation is similar to the unfold translation, respecting variance.

For completeness, the remaining translation phrases for the fold, case, inductive map
(figure 6.3), and combinator (figure 6.4) are given. In fact, this last case generalizes those
preceding it.

We conclude with some example translations. The first is the derivation promised in

section 6.2:

[o= 5D o]
tail : ()

)

([z — 01, id); unfold™**{[((), z) = 2],[(0, z) = O}

= (!, id); unfold* ' {p,:[z — 1], "}
= (!, id); unfold*™f**{p, ;id,!}

A subsequent phase of the Charity system optimizes the id out of the first phrase of the
unfold [27].

61

r—z] = id
b= Q] = !
[(vo, 1) = 2] = pi;vi — z] where i = 0 if z occurs in vg, and i = 1 otherwise

[’U —> (to, tl)] = ([’U —> to] ’ [’U —> tl])
[v— ft] = [vw— {; f where f is a function symbol
= {v' =t}] = (v, idys[(,2) =]

Figure 6.1: Core term logic to combinatory logic translation, part 1: basics.

d; : ¢
o v : t =
dj Tl tj
([o — 4], id); unfOIdR{[(vr o) = t],...,[(v;, (v,0)) — t;1}
d; : ¢
o : =
dj vy > tj
record®{[o — t],...,[(vj,0) = &;]}

RS vnty & vyt 3t =

([o = 14, id); map®{...,[(vs,0) = ta] &[(},0) = 8],...}

Figure 6.2: Core term logic to combinatory logic translation, part 2: coinductive datatypes.

62

L vy = 4
g : t|f =
Ch I Uy > i,
{[o = 1], id); fold™{[(v1,0) — ti],- .., [(vn, o) — ta]}
vy —
o : t|| =
CrnlUn H I
([o = 1],id); caseL{[(vls o) = t],-- -, [(vn, 0) = L]}

oL vty & vyt @ tfl =
(le = 1, id); map™{. .., ,[(vk, o) — te) &[(v},0) — t}],-. .}

Figure 6.3: Core term logic to combinatory logic translation, part 3: inductive datatypes.

v — I
o—cC : tl| =
Un —+ Iy
(lo = 4, 1d); c{[(v1,0) = ti], ..., [(vn, o) > La]}

Figure 6.4: Core term logic to combinatory logic translation, part 4: combinators.

63

Next we illustrate a translation for a higher-order datatype. Consider the function which
takes input z and returns a function, where this function takes input y and returns the pair

(z,y):
= (frn:y— (z,9)] = record™{[(y,z) — (z,y)]}
= record{{[(y, x) — 2],[(v,z) — 9]}
= record™"{(p:;[r — 2], p0;[v — 1))}
= record*™P{(p.;id, po; id)}
The optimization yields:

record™®{(p:, po) }

Chapter 7

Compilation and Execution

Charity programs are executed by the Charity abstract machine. Previous versions of the
machine executed combinators directly [5]. However, it was found that by first compiling
combinators to an even lower level representation, computations could be performed much
more quickly and simply [10, 27].

A detailed description of the Charity abstract machine and the compilation function
from combinators to machine instructions for first-order Charity was the subject of [27].
In this chapter, we concentrate on the changes the higher-order extension necessitated in
both compilation and execution: the former is treated in section 7.2, and the latter in sec-
tion 7.3. As neither can be understood in isolation and without some grounding in the

general operation of the machine, we first present a primer in section 7.1.

7.1 Overview of the Charity Abstract Machine
The Charity abstract machine consists of
e A heap pointer H with associated value heap for storing data;

e A program counter C with associated code stream for storing code;

65

o A dump stack pointer D with associated dump stack for storing temporary results,
subroutine return addresses, etc.

The machine state is a triple (H,C, D)'. A Charity expression compiles down into a
stream of machine instructions, into which C is an index. Execution begins with C pointing
to the start of the stream and ends with a HALT instruction. Whichever value the heap
pointer addresses when halting is the result of the expression’s evaluation?. For larger
computations execution may need to be suspended occasionally in order to garbage collect
the heap. Note that, as the code stream is randomly indexable, the machine may execute
the GOT O instruction as well the JUMP and RET instructions for subroutines during the
course of execution.

The coinductive datatype operations—unfold, record, and map—are all treated uni-
formly. Each is compiled into a short sequence of instructions for building “record” heap
values (rec’s). These are values of the coinductive datatype. In this sense, the cosmetic dif-
ferences between these three operations are eliminated (fold, case, and the inductive map
are all also compiled in a uniform way).

The operation of the Charity abstract machine on rec’s is lazy, and supports sharing. A
rec is an n-element array of closures, one for each destructor of the n-destructor datatype.
A closure is itself a (potential) value, but at rec creation time each closure is unevaluated.
When destructor 7 is applied to rec it forces evaluation of closure ¢. This is called “poking”.
This closure is then updated with the resulting value so that subsequent pokes do not force
redundant reevaluation, but rather return the precomputed result. In other words, a value of
a coinductive datatype is a record whose fields are initially unaccessed and unevaluated. As
we poke this structure by applying destructors, we access the corresponding fields, evaluate,

and update, thus developing the value as needed (the laziness). If we reaccess a previously

1n fact, for technical reasons relating (o garbage collection and space efficiency, the heap and dump are
split into a number of specialized heaps and dumps, each for storing a specific kind of value. This does not
affect our description.

2This value must be decompiled.

66

developed field, we don’t force any reevaluation (the sharing). Sections 7.2 and 7.3 explain

the above concepts further.

7.2 Compilation

In this section we give the compilation function from combinators to machine instructions,
restricted to those cases affected by the higher-order extension. This section and the next
also correct some errors in the original description for first-order Charity [27].

We begin with the compilation of destructor and record combinators as records are
simpler than unfolds and maps, yet illustrate most of the issues in compiling all three. The

relevant cases are given in figure 7.1.

(C13a) [d;] = DESTR{i}
(Ciss) [= HODESTR(j}
(Ci4) [remd“{f;,...,fnﬁ = JUMP{z}
where
z = ALLOC{n}.BLDCLO{l,z1}..... BLDCLO{n,zn}.RET
where z; := BLDUPDATE
(sl
UPDATE{i}
RET
z; = [fj]
RET

Figure 7.1: Destructor and record compilation.

The original rule for destructors, Ci3, has been generalized to C)3, and C135, where the
former handles first-order destructors and the latter higher-order destructors. In fact, C3, is
the old rule and we are simply adding a new instruction, HODEST R, with the new rule.
HODESTR is the only addition to the instruction set which the higher-order extension
necessitates! Each of the operations DESTR and HODESTR have, as operand, the
destructor’s position.

As stated in rule Cy4, a record compiles as a jump to a subroutine beginning at la-
bel z (JUMP). This subroutine, when invoked, will allocate a new record value on the

67

heap (ALLOC), initialize each of its n closures, (the n BLDCLO instructions), and return
(RET). Each closure points to the start of a corresponding subroutine to be executed when
it is poked. The subroutine is, essentially, a compiled phrase of the original record, but
in the first-order case it is wrapped within the updating instructions (BLDUPDATE and
UPDATE). The first prepares for the update and the second carries it out, as explained in
the next section. We must not update in the higher-order case as extra input will be supplied
to the closure at poke time each time we poke it. That is, the closure is not an expression,
but a function parametrized by an input. Thus it can never be reduced to one value, but
must be reevaluated each time.

As explained in chapter 2, the operators delivered with Charity datatypes, most notably
fold and unfold, are structured recursion operators. That is, the recursive nature of the op-
erations remains implicit down to the combinator level. The compilation from combinators

to machine instructions makes recursion explicit. Figure 7.2 shows how for unfold.

(C1s) [unfoldR{f1,....fa}] = JUMP{z}
where
z 1= ALLOC{n}.BLDCLO{1,2:}.....BLDCLO{n,zn}.RET
where z; := BLDUPDATE
[<#5,p1)s map® {po, jump{z}}]
UPDATE{i}
. RET
zj = [(fj,P1ip1)imap®i {p, jump{z}}]
. RET

Figure 7.2: Unfold compilation.

Rule Cjs is very similar to rule C4, but differs in the compilation of the phrases f; and
f;. In the first-order case f; is executed in context, the result is paired with the context,
and the unfold is mapped onto this result, making the recursion explicit. The higher-order
case is nearly identical, but the additional input is taken into account when propagating the
context to the map. Note that this rule simply restates the recursive definition of unfold
as expressed in the commuting diagram of chapter 3 (as the rule for the record restates its

68

commuting diagram). The main point of interest is that the recursive mapping of the unfold
is via the label z.

Like rule Ci5 for unfold, rule C}s for map is derived from its diagrammatic definition.
See figure 7.3. Here f is, in general, a set of map phrases f; & fi, ..., f1& f—a positive
and negative phrase for each parameter of a coinductive datatype R with arity m. Thus,

map®, map®i, and map®i must respect variance as described in chapter 5.

(Cis) [mapR{f}] = JUMP{z}

where
z:= ALLOC{n}.BLDCLO{1,z:}..... BLDCLO{n,z,}.RET
where z; := BLDUPDATE
[(po; di, p1); map® { £, jump{z}}*]
UPDATE{i}
(((PO:PI, pl): mapEj {f}-vplr pO) de o1 Pl)]
map"’ {f,jump{z}}*]

Figure 7.3: Coinductive map compilation.

7.3 Execution

A machine state transition is a one-step updating of the machine state, one for each ma-
chine instruction. A computation is a sequence of transitions driven by a sequence of
instructions. The machine transitions for First-Order Charity are given in [27]. The higher-
order extension requires the modification of only one of those rules: rule 17. It is general-
ized to a case for first-order destructors (17a—the same as the original rule 17), and a case
for higher-order destructors (17b). First, we present some other basic rules.

Rules 10 and 11 deal with subroutine calling and returning (table 7.1 on page 69).
JUMP lends control to a specified point and pushes the return address onto the dump
stack. RET returns control and pops the return address off of the dump stack.

69

H C D H C D
10{v JUMP{c}.c d — v ¢ cont{c}.d
11{v RET.c cont{c}d —» v d d
Table 7.1: Subroutine calling and returning.
H C D H C D
15| v ALLOC{n}.c d — rec{(e,€)}t,v ¢ d
16 | rec{(e,e)};,v BLDCLO{i,c;}.c d +— rec{(v,e)}iv ¢ d

Table 7.2: Record value construction.

Rules 15 and 16 construct record values on the heap (table 7.2). ALLOC allocates an
n-closure record, which the heap pointer H then addresses. The old value addressed by H
is remembered for subsequent BLDC LO instructions using an auxiliary machine register.
Each BLDCLO then initializes a given closure of the record. A closure is a pair: some
code and a value to act on. The start address of the code is supplied by the BLDCLO, and
the address of the value is supplied by the auxiliary register.

H C D H C D
17a v :rec{(vi,ci)}s DESTR{i}.c d = v ¢; cont{c}.d
17b [v : (e, w) HODESTR{j}.c d w~ v :(e,vj)w c¢; cont{c}.d
w : rec{(v;, ¢;)};

Table 7.3: Record value destruction.

Rules 17a and 17b deal with destructor application (table 7.3). In the first-order case we
are poking closure ¢ of the record pointed to by H. Thus we execute closure code c; at value
v; as a subroutine, pushing the return address onto the dump stack. Again, an auxiliary
register is used to remember the record’s address for the BLDUPD AT E instruction. The

higher-order case is similar, but H addresses a pair, not a record. The first component of the

70

pair is the input supplied at destruct time, e, and the second is the record to be destructed.

This time we execute closure code ¢; at value (e, v;).

H [4] D H C D
18a | v.w BLDUPDATE.c d - v ¢ update{w}.d
18b | v UPDATE{i}.c update{w}.d — v c d

w : rec{(v;, c5)}i w : rec{v, RET};

Table 7.4: Closure updating.

Last, rules 18a and 18b handle closure updating (table 7.4). BLDUPDATE is exe-
cuted at the start of closure execution, and pushes the address of the record being poked
onto the dump stack. UPDATYE is executed at the end of closure execution, and updates
that closure of that record in the following way: the result value is stored in the closure
with an “empty” subroutine for evaluating it (ie. a single RET). Subsequent pokes of the

same closure will simply return the precomputed value.

71

Chapter 8

Conclusion

In this final chapter we summarize our results, briefly discuss how they might be applied,
and look towards the future.

8.1 Summary

In this thesis we have described the higher-order extension of first-order Charity: a gener-
alization of its coinductive datatype definition mechanism by parameterizing destructors.
Higher-order Charity realizes some expressive gains over its first-order predecessor, includ-
ing:

e the ability to define the exponential datatype, rendering functions first-class values;

e the ability to define objects generally, opening the door to object-oriented program-
ming in Charity;
o the ability to define simultaneously recursive functions, leading to a much more nat-

ural implementation of several common functions.

The effect of the extension on Charity syntax is slight, and is backwards compatible
with first-order Charity. The effects on the various stages of Charity interpretation are

72

also clean, as witnessed by the minimal updates required in the compilation and execution

phases.

8.2 Future Work

Higher-order Charity suggests at least two possible topics of research:

1. Now that we may express classes and objects in Charity, we may also wish to incor-
porate other standard features of object-oriented programming. Most noteworthy is

inheritance and the construction of a class hierarchy.

2. One would like to write Charity programs with graphical user interfaces. Interface
entities such as windows and buttons are usually programmed as objects in modern
programming languages. Now that Charity supports objects, one should be able
to define window and button objects, assign them a graphical representation, and

interact with them.

73

Bibliography

{1] Martin Abadi and Luca Cardelli. A Theory of Objects, chapter 1-4. Springer, 1996.

[2] H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. North Holland, revised edition, 1984.

{3] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice
Hall International Series in Computer Science. Prentice Hall, 1990.

[4] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice
Hall International Series in Computer Science. Prentice Hall, 1988.

[5] Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Department of Computer Science, The University of Calgary, June 1992.

[6] Robin Cockett and Dwight Spencer. Strong categorical datatypesI. In R. A. G. Seely,
editor, International Meeting on Category Theory 1991, Canadian Mathematical So-
ciety Proceedings. AMS, 1992.

[7] Robin Cockett and Dwight Spencer. Strong categorical datatypes II: A term logic for
categorical programming. (to appear), May 1992.

[8] Roy L. Crole. Categories for Types. Cambridge University Press, 1993.

[9] Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of
Edinburgh, 1987.

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

74

Mike Hermann. A lazy graph reduction machine for Charity: CHarity Abstract Re-
duction Machine (CHARM). (unfinished), July 1992.

Paul Hudak, Simon Peyton Jones, Philip Wadler, et al. Report on the programming
language Haskell: A non-strict, purely functional language. SIGPLAN Notices, 27(5),
May 1992.

P. Katis, N. Sabadini, and R. F. C. Walters. The bicategory of circuits. In C. Barry
Jay, editor, Proceedings of Computing: the Australian Theory Seminar, pages 89—108,
December 1994.

E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In FPCA9!: Functional Programming Languages
and Computer Architecture, volume 523 of Lecture Notes in Computer Science, pages
124-144. Springer, 1991.

Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to ex-
ponential types. In Functional Programming Languages and Computer Architecture,
1995.

Erik Meijer and Johan Jeuring. Merging monads and folds for functional program-
ming. In Johan Jeuring and Erik Meijer, editors, Advanced Functional Programming,
number 925 in Lecture Notes in Computer Science, pages 228-266. First Interna-
tional Spring School on Advanced Functional Programming Techniques, Springer,
December 1995.

Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The
MIT Press, 1990.

75

{18] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice Hall International Series in Computer Science. Prentice Hall, 1986.

[19] D. E. Rydeheard and R. M. Burstall. Computational Category Theory. Prentice Hall
International Series in Computer Science. Prentice Hall, 1988.

[20] Dwight L. Spencer. Categorical Programming with Functorial Strength. PhD thesis,
The Oregon Graduate Institute of Science and Technology, January 1993.

[21] Charles Tuckey. The implementation of pattern matching in Charity, April 1994.
Undergraduate honours thesis, Department of Computer Science, The University of

Calgary.

[22] Charles Tuckey. The implementation of pattern matching in Charity. Master’s thesis,
The University of Calgary, July 1997.

[23] David Turner. An overview of Miranda. SIGPLAN Notices, December 1986.

[24] Peter Vesely. Typechecking the Charity term logic, April 1997. (documentation,
http://www.cpsc.ucalgary.ca/projects/charity/home.html).

[25] Peter M. Vesely. Categorical combinators for Charity. Master’s thesis, The University
of Calgary, November 1996.

[26] R. E C. Walters. Categories and Computer Science. Number 28 in Cambridge Com-
puter Science Texts. Cambridge University Press, 1991.

[27] Dale Barry Yee. Implementing the Charity abstract machine. Master’s thesis, The
University of Calgary, September 1995.

76

Appendix A
Syntax

This appendix gives a formal definition of higher-order Charity syntax, type-theoretically.
It is based on a first-order core term logic type theory by Peter Vesely [25], and was ex-
tended to a higher-order extended term logic type theory by Charles Tuckey [22]. The
figures presented here are those of [22] minus completeness information.

The type theory is spread over three figures: figure A.1 deals with terms and their types,
figure A.2 deals with patterns and their types, and figure A.3 combines the two, yielding

functions and their types signatures.

variable

unit

pair

record

application

'k

'y vevar(T) vnotin
'v:TkHv:T

F(:1

Fl‘to:%,tl :Tl
Tk (to,t1) : ToxTh

t; : F;(A, R(A)), i=1...r

g tEj(A) > F;(A,R(4)) j=r+1...

| Al (d, M ti,dj :gj) M R(A)

'Ht:8,f:5->T
FHft:T

Figure A.1: Term Type Theory

77

variable

unit

constr

pair

record

int

char

pattern
abstraction

T, pi: Fi(A,R(4)) Fo

'y vevar(T) vnotinT
Fv:Tkey

'k
F'):1k¢

I, pi: Ei(A,L(A)) F o ¢ €cstr(L)
U,epi: L(A)Fo

C,p:S,p2:Thyp
T, (p1,02) : SxTF o

v; € var(E;(A) — F;(A, R(A)))
V5 notinI"

i=1...r

J=r+1l...n

T, (& pnd; o) RAFp

F'Fp 4,jEZU{-00,00} i<
T'yi.j:intk o

'y c,co€ascii ¢ < ¢
I', c1..cp : chart

I‘,_pt,-:Sl-t,-:T i=1l...m
I"I-p,l—)t,l:S—>T

Figure A.2: Pattern Type Theory

78

structor

defined
function

case

fold

map

unfold

I' s:S—=Tecstrudstr
T'Fs: ST

THgitSi—»T: fecomb((S;=>T],S—=T) i=1

N (L)

TFflg}: ST

F'gtS—>T
'H{g}:S5->T

FI"Q,[:E,(A,T)—)T C{ECSH’(L) t=1...n
F'F{e:g}:L(A)—>T

g | A: = B;, i=1...p
- gJ-'|:B,-—>A,—, j=p+l...q

& } Ax — By, k=q+1...7

gEJBk—)Ak T € types

g,
I"I—T{ 97 }:T(A)—>T(B)
gt & g¢

% : Fy(A, R(A)), k=1...m

F'r Dr - St g;.‘ k EJ(A) - F}(A; R(A))

Pf"‘qpkl—)

di:tf |\
dj:ng.SﬁR(A)

Figure A.3: Function Type Theory

79

80

Appendix B
A Catalogue of Charity Datatypes

This appendix lists the most common Charity datatypes, higher-order and otherwise. We
begin with the builtins (section B.1), then user-definable inductive (B.2) and coinductive
(B.3) datatypes, and briefly type aliases (B.4).

B.1 Builtin Datatypes

o The nullary product datatype: 1. Value:
()
e The binary product datatype: - x _. Value format:
(to, 1)
o The boolean datatype:

data bool — C = false | true: 1 — C.

o The integer datatype: int (machine-level builtin). Values:

.,=2,-1,0,1,2,...

@ The character datatype: char (machine-level builtin). Example values:

\cA (‘A’), \cB (‘B’), \cC (‘C"), ...

B.2 Inductive Datatypes

e The coproduct datatype:

data coprod(A,B) — C=|by : A — C

bh : B — C

@ The success-or-failure datatype:

dataSFA—C={ff : 1 — C

ss : A — C.

e The natural-number datatype:

datanat — C=|zero : 1 — C

suce :' 1 — C.

@ The list datatype:

datalist A——C=|nil :1 — C

cons : AxC — C.

81

e The binary tree datatype:

data bTree(A,B) — C =|leaf : A — C
node : Bx(CxC) — C.

B.3 Coinductive Datatypes

e The colist datatype:

data C — colist A = delist : C — SF(A x C).

o The infinite list datatype:

dataC — inflist A=|head : C — A
tat!l : C — C.

e The exponential datatype:

dataC — ezp(A,B)=fn:C — A= B.

e The process datatype:

dataC — proc(A,B)=pr:C — A=>C x B.

B.4 Type Aliases

o The string datatype:
data string = list char.

82

&3

Appendix C
The Implementation

Higher-order Charity is implemented. As of the time of writing the version is 1.9 (alpha)
of June 1997. The interpreter consists of about 30000 lines of C code.
Charity is installed locally and may be invoked at a shell prompt by typing:

charity

It is available world-wide, together with literature, examples, etc., via the Charity home-

page:
http://www.cpsc.ucalgary.ca/projects/charity/home.html
The Charity Development Group may be contacted at:

charity@cpsc.ucalgary.ca

84

Appendix D
A Simple Parser

This appendix gives a simple expression calculator whose scanning and parsing phases
make heavy use of higher-order datatypes. This example is due to Schroeder and Cock-
ett. The calculator takes a string involving binary addition and multiplication of numbers
0,1,2,... (as well as optional white space), and returns “success-or-failure” of an integer

result, respecting operator precedence. For example:

Charity>> calculate "2 + 10 * 4",
ss(42) : SF(int)

Charity>>

The Marc Schroeder’s calculator code is:

rf °*PRELUDE.ch". % THE BASIC ENVIRONMENT
rf *syntax-trees.ch'. % ROBIN COCKETT'S PARSING UTILITIES

data lex_states -> C =80 | s1: 1 -> C. % SCANNER STATES s0, sl

def char2int: char -> int % CONVERT ‘0’ TO O, ETC...

= ¢ => { \c0..\c% => sub_int (code c, code \c0)

I - =0
}
Cc.
data tokens A -> C = PLUS : 1 -> C % TOKENS FOR NATURAL NUMBERS, +, AND *
| TIMES: 1 -> C
| NUM : A -> C.
def lex: 1 -> rS (char, list tokens int) % A SCANNING AUTOMATON

= () = (| (s0, (£, _)) => tok: ¢ =>

\d32 => MORE (s0, (f, 0})
\c+ => MORE (s0, ((fn: 1 => fn (cons (PLUS, 1), £)), 0}}
\c* => MORE (s0, ({fn: 1 => fn (cons (TIMES, 1}, £)), 0))

— e — gy

\c0..\c9%
=> MORE (sl1, (f, char2int c))
| — => PAIL
}
c

| end: sc fn ([], f)
| (s1, (£, s8)) => tok: ¢ =>

{ \d32 => MORE (s0, ((fn: 1 => fn (cons (NUM s, 1), £)), 0))
| \e+ => MORE (s0, ((fn: 1 => fn (cons (NUM s, cons (PLUS, 1)), £)}, 0))
| \e* => MORE (s0, ((fn: 1 => fn (cons (NUM s, cons (TIMES, 1)), £)), 0})
| \e0..\c9

=> MORE (sl, (f, add_int (mul_int (s, 10), char2int c}))
| = => FAIL

| end: ss fn ([NUM s], f)

]
(sO0, ((fn: 1 => 1), 0)).

def scan: string -> SF list tokens int % THE SCANNER PROPER

= 8 => p0 PARSE (lex, s).

(t

* THE INTERNAL REPRESENTATION
*)

data expr ~=> C = aAdd: C * C -> C
| Mul: ¢ * ¢ -> C
| val: int -> C.

* THE PARSER
*)

data syn_states -> C = ps0 | psl: 1 -> C. % PARSER STATES ps0O, psl

% UPDATE AN INCOMPLETE EXPRESSION TREE WITH A NEW SUBTREE:

def update_expr: tokens int * expr * exp (expr, expr) ® tokens int ->
tokens int ®* expr ® exp (expr, expr)

= (((op, val), f), op’) =>

=> Add (fn (val, £}, e)))
=> fn (Mul (val, e), £)))
=> Add (fn (val, £), €)))
=> fn (Mul (val, e), £)))

{ (PLUS, PLUS) => ((PLUS, val), (fn:
| (PLUS, TIMES) => ((TIMES, val), (fn:
| (TIMES, PLUS) => ((PLUS, wval), (fn:
|
|

(TIMES, TIMES) => ({TIMES, val), (fn:
=> ({op, val), f)

}

(op, op’).

def syn: 1 -> rS (tokens int, expr) % A PARSING AUTOMATON

= () => (| (ps0, ((op, val), £}) => tok:

NUM i => MORE (psl, ((op, Val i), £))
| — => FAIL

| end: f£f
| (psi, ((op, val), £}) => tok:
PLUS => MORE (ps0O, update_expr (((op, val}), f£), PLUS})
| TIMES => MORE (psO, update_expr (((op, val), £), TIMES))
P — => PAIL

| end: ss fn (val, f)

|) (psO, ((TIMES, val 0), (fn: e => e}}).

def parse: list tokens int -> SF expr $ THE PARSER PROPER

= 1 => p0 PARSE (syn, 1l).

(’
* THE EVALUATOR
*}

def eval: expr -> int

= e => {| Add: p => add_int p
| Mul: p => nul_int p
| val: 4 => i
1}

(

»

*

*)

THE ENTIRE SYSTEM

def calculate: string -> SF int

(

L d

*)

= s => SF(eval) compose_SF({scan, parse} s.

Robin Cockett’s syntax-trees utility code is:

Parsing using ‘*recursive syntax diagrams®
Author: Robin Cockett
Date: 25 sept ‘96

Recursive syntax diagrams were invented and used by Wirth to
write the syntax of Pascal. The way they are defined here
guarantees an LL(1) (one token look ahead grammar)

and it allows a very simple implementation. Attributes

can be added quite easily after the fact

% Some utilities

def Id = x => x.

def foldleft{(h: ¢ ®*A ->C}: ¢ ® list(A) > C

= (ec,L} => fn(e, (]| nil: (}) => (fn: x = x)
| cons: (a,f) => (fn: x => fn(h(x,a),£))
[} L).

def tail: list(A) -> list(A)

%
L]

= nil => nil

| cons(_,L) => L.

Data structures for recursive syntax diagrams
After a token is taken in various things can happen

88

89

{1) The parser can FATIL
(2) The parser can decide the token is meant for the next
parsing step and it can PASS the token and any structures
it has built forward.
(3) The parser can eat a token and continue asking for MORE
(4) It can recursively call a substructure before continuing
with the parse.
At any stage in the parse one can ask supply a token (the tok
destructor) or see whether one can legally end (the end destructor
indicates the final states).

WP P P P Bk W X N R N

data POLLOW(A,R,S} -> C = PASS: A ®R ~> C
| PaIL: 1 -> ¢
| MORE: § -> C
| RMORE: S ® exp(R.,S) -> C.

< Recursive syntax trees
data C ~> rS(A,R) = tok: C -> A => FOLLOW(A,R,C)
| end: ¢ -> SF{R}.

% An attribute recursive syntax diagrams allows an input attribute to
% transform the diagram (inherited attributes and synthesized attributes
% handled in this manner).

data ¢ -> rsa(A,R) = rsa: ¢ -> R => rS(A,R).

% Two basic attribute recursive syntax diagrams
% PFailure (always fails)
def rSA_NULL: 1 -> rSA(A,R)

= () => (rsa:_ => (tok: _ => FAIL,end: ff)).
% Pass (always passas)
def rSA_PASS: 1 -> rSA(A,R)

= () => (rsa:r => (tok: a => PASS(a,r), end: ss r)).

% Seguencing recursive syntax tree generators:
% When the syntax tree of one ends it passes the last
] token and the result it is building to the next syntax tree

% generator.

90

data SUM(A,B) -> C = b_0: A -> C
| b_1: B -> C.

def seq: rSA(T,R} * rSA(T,R) -> rSA(T,R)
= (p,q) => (rsa: r =>
(] b_0 t => tok: a =>
(PAss(a’,r’) => POLLOW(Id, Id&Id,b_1)} tok{a’,rsa(r’,q})}
| MORE t’ => MORE b_0 t’
| RMORE(tl,c) => RMORE(b_1 t1,(fn: r => b_0 fn(r,c)))
| PAIL => FAIL
} tok(a,t)
| end: flatten SF SF{ r => end rsa(r,q) } end t
| b_1 £ => tok: a => POLLOW(Id, IdsId,b_1} tok(a,t)
} end: end t
[} b_O rsa(r,p}
).

% Kleene'’'s star operator: repeating an attribute recursive syntax tree.
% When the tree passes a symbol immediately it is done!

def star: rsA(T,R) ~> rsA(T,R)
=q => (rsa: r =>
(|l e = tok: a => { PASS(a’,r’) => tok(a’',rsa(r’,q))
| 2z =z
} tok(a,t)
| end: end t
|) rsa(r,q)).

§€ Alternating over recursive syntax trees:
% If the first syntax tree fail immediately the second is used.

def alt: rsA(T,R) * rsA(T,R) -> rSA(T,R)
= (p.q) => (rsa: r => (tok: a => (FAIL => tok(a,rsa(r,q))
I zZ =>2Z

} tok(a,rsa(xr,p))

,end: (£f => end rsa(r,q)
| z=> 2z

} end rsa(r,p)

91

Parsing using an attribute recursive syntax tree:
The parsing uses a stack of recursive syntax tree generators which
it develops every time it hits a recursive sub-syntax-diagram and
pPops every time it finishes a parse pushed by a recursive
sub-syntax-diagram.

® B # 0 &

This routine presents the PASSed values to each member of the stack

»

until one of the generators does not simply pass it oix ...

»

def use_stack
= ((a,r),st) => { (MORE T',St) => ss(T’.St)
| (RMORE(T, £T).St) => ss(T,cons(£fT,St))
| — => ££ }
foldleft{ {(PAsS(a,r),St),c) => (tok(a,fn(r,c)),tail st)
| (z.0) => z

} ((PAass(a,r),st),st).

L This routine chacks that a parse has succaessfully ended:
% to do this we must check that what remains on the stack agrees
that the current state is a successful end point!

def end_stack
= (T,St) =>
foldleft{ (ss r,c) => end fn(r,c)
) - = ff

} (end T,St).
4 The parsing uses a stack (St) to hold the °*continuation®” syntax trees

def PARSE: rS(A,R) * list(a) -> SF(R) *® list(A)
= (T,L) => { (ss(T,St),L) => (end_stack(T,St),L)
| (., L) => (££,L) }
foldleft(((s5{T,st),L),a) => (MORE T’ => (ss(T’,St),tail L}
| RMORE(T, £T} => (ss(T,cons(fT,St)),tail L)
| PAss(a,r}) => (88 x => (ss X,tail L)
| ££ => (££,L)
} use_stack((a,r),st)
| PAXIL => (£f,L)
} tok(a,T)
| ((££,L),a) => (f£,L)

92

} ((ss(T,(]).L).L).

The Charity Standard Prelude (PRELUDE . ch) is a basic environment of common data-

types and functions.

Index

#and, 22
abstract datatypes, 39

categorical programming, 1
Charity
first-order, 5
higher-order, 24
homepage, 83
implementation, 83
The Charity Development Group, 83
Charity abstract machine, 64
closures, 65
laziness, 65
sharing, 65
state, 65
state transition, 68
circuits, 35
combinator theories, 55
combinators, 18
combinatory logic, 55
fundamental combinators, 58
translating to, 59

compilation, 66
destructors, 66
map, 68
records, 66
unfolds, 67

constructors, 7

context, 19, 58, 59

core term logic, 54

currying, 42

datatypes
coinductive (first-order), 12
higher-order, 2
inductive, 6
syntax, 6, 12, 24
destructors, 13

execution, 68
exponential, the, 1, 25
extended term logic, 54

first-order vs. higher-order, 2
functional programming, 1

lambda calculus, the, 1

93

objects, 39
process, 35
queue, 38
stack, 38
turtle, 3

parametricity, 18
pattern matching, 17, 54
record patterns, 18
higher-order, 31

processes, 35

recursion, 9, 14, 22 23
simultaneous, 41

variance, 30, 47
algebra, 49
analysis, 47
co-, 46
contra-, 46
di-, 46
in-, 47
join, 49
substitution, 49
varity, 47

94

TEST TARGET (QA-3)

EE
J

L EE

EEEEETTT

16

14

125

150mm

L AW
FA P

Y A.,,.@oé
//V/g Oot A@ | AW

wrauw

<

<

