
THE UNIVERSITY OF CALGARY

Higher-Order Charity

by

Marc A. Schroeder

A THESIS

SUIBMITI'ED TO THE FACUEX'Y OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGWE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JZTLY, 1997

@ Marc A. Schroeder 1997

National Li'brary Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliograp hic SeMces services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 OtrawaON K1AON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, disttibuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/fil.m, de

reproduction sur papier ou sur format
électronique.

The author r e t . ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent ê e imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

This thesis describes the higher-order Charity programming language which is an exten-

sion of fht-order Charïty. This rcsults from extending the coinductive datatype definition

mechanism to aüow a new class of higher-order datatypes with parameterized destructors.

This adds significant expressive power to the language. In particuiar it ailows one to cre-

ate "‘abjects". The language is "higher-ordei' in the traditionai sense that the exponential

datatype cm be defined, and so that functions can be treated as values.

The higher-order extension is traced from the extension of the syntax and the expressive

gains deiivered to the Charity programmer, down through the innards of the language and

the modifications required in the implementation.

Acknowledgements

First, 1 would Iike to thank my colleagues, past and present, in the Charity Development

Group: Tom Fukushima, Charles Tuckey, Peter Vesely, and Barry Yee. Without the stim-

ulation and support nom a core of talented tesearchers this work would not have been

possible. A sincere thank-you to Ulrich Hensel as weU, whose insighthil input helped to

shape much of this work.

I am extremely gratefûi to rny fnends and family for their help and understanding during

my time at the University of Calgary. Especially to rny mother Dianne Vallée, my brother

Steve Schroeder, and Jennifer Wolfe.

Finaily, many thanlcs to Dr. Robin Cockett for taking me on as his student, for his

intellectual and financial support, and for introducing me to new ways of seeing my craft.

Table of Contents

* .
Approval Page . u

*. .
Absrnt . m

Acknowledgements . iv

Table of Contents . v

Listof Tables . ix

List of Figures . x

Introduction 1

1.1 What is Charity? . 1

1.2 What is Higher-Order Charity? . 2

1.3 The Structure of this Thesis . 3

2 An Overview of First-Order Charity 5

2.1 InductiveDatatypes . 6

2.1.1 Constmctors . 7

2.1.2 Inductive Combinators . 7

2.2 Coinductive Datatypes . 12

2.2.1 Destmctors . 13

2.2.2 Coinductive Combinators . 13

2.3 Other Aspects of Charity . 17

. 5.4 Variance and the Map Combinator 52

6 llranslation 54

6.1 The Extended and Core Tem Logics. and the Translation Between T'hem . 54

. 6.2 nie Combinatory Logic 55

. 6.2.1 mes 55

6.2.2 Atomic Combinators and Compound Combinator Expressions . . . 56

. 6.2.3 Charity's Combinator Theory: The Combinatory Logic 56

. 6.2.4 Context 58

. 6.3 Translation from Core Term Logic to Combinatory Logic 59

7 Compilation and Executfon 64

. 7.1 OveMew of the Charity Abstract Machine 64

. 7.2 Compilation 66

. 7.3 Execution 68

8 Conclusion 71

. 8.1 Summary 71

. 8.2 FutureWork 72

B A Cataïogue of Charity Datatypes 80

. B.l Buütin Datatypes 80

. B.2 Inductive Datatypes 81

. B.3 Coinductive Datatypes 82

. B.4 ?LpeAliases 82

C The Implementstion

D A Simple Parser

Index

List of Tables

6.1 Fundamental combinators . 58

. 7.1 Subroutine calling and retuming 69

7.2 Record value construction . 69
7.3 Record value destruction . 69

7.4 Closureupdating . 70

List of Figures

2.1 Fold with contex t. 20

2.2 Case with contex t.. 20

2.3 Inductive map with context . 20

2.4 Udold with context, . 21

2.5 Record with contex t. 21

2.6 Coinductive map with context . 21

3.1 Higher-order unfold with con text. 33

3.2 Higher-order record with context . 33

3.3 Higher-order map with contex t. 33

5.1 The variance analysis algorithm . 51

6.1 Core tem logic to combinatory Logic translation. part 1: basics 61

6.2 Core terni logic to combinatory logic translation. part 2: coinductive data-

types . 61

6.3 Core term logic to combinatory logic translation. part 3: inductive datatypes . 62

6.4 Core term logic to combinatory logic translation, part 4: combinators 62

7.1 Destructor and record compilation . 66
7.2 Unfold compilation . 67

7.3 Coinductive map compilation . 68

A.1 Term meï'heory . 77
A 2 Pattern me Theory . 78
A.3 Function Qpe Theory . 79

Chapter 1

Introduction

1.1 What is Chariîy?

Charity is a categoricul programming language which isfwictional in style. That is, the

programming styles of both Charity and the various modem functional programming lan-

guages (such as Miranda1 [23] or more recently HaskelI [I 11) are sirnilar. However, Charity

is based on a categorical semantics whereas functional programming languages are based

on the lambda calculus. This means the fundamental operation in Charity is that of function

composition, whereas in functional programming it is that of function application. This in

tum means the exponentiai type (the type of functions) is primitive in functionai program-

ming languages, whereas it is not in Charity. hstead Charity takes as primitive the nuiIary

and binary product types and provides a datatype definition mechanism.

The above distinction has an important consequence: in a functional programming lan-

guage a function with input values of type A and output values of type B is itself a value,

with type A -, B -the exponential type? Charity functions are not values. We Say that

l Miranda is a tdemark of Research Software Limited.
2 ~ t is often said thaî functions in functiooal programming ianguages are "fkt-cIass values": they have a

type, they may be passed as input to and retitrned as output h m other functions, etc., just lüte other values.

a language without the exponential datatype is first-order, and with it is highersrder.

To illustrate, consider the foilowuig function defined in Miranda'

double:: (* -> *) -> * -> *)

double f = f . f

The double function takes a function f as input and r e m s a new function: the composite

of f with itselfg. Here * is a type variable. The type of the input is * -> *, and the type

of the output is also * -> *, so double is a value of type (* -> *) -> (* -> *)

overall. Note that double may be applied to itself:

quadruple = double double

The double function cannot be expressed in first-order Charity.

1.2 What is Higher-Order Charity?

The aim of this thesis is to describe the extension of 6rst-order Charity to higher-order

Charity* In the new language, as in the originai, the exponential is not provided as prim-

itive. Instead, the datatype definition mechanism is generaüzed such that a new class of

higher-order datatypes may be defined. The exponential datatype is one of these, but

more generaily objects may be defined in the sense of object-onented programming.

To give the reader a taste of higher-order Charity we show how the exponential datatype

and the double function can be defined:

'In hmctioiial pmgramming ierminology, hmctioos taking or reaiming other functiom are d e d "highex-
order functions", or "functionalsn,

clefdouble : exp(A,A) + exp(A,A)

= un: f) C, C f n : a ~ f fa).

We also show how to define an objecc a toy 'hirtle" iike that of the logo language. First

we need a direction datatype (dir) with an element for each direction (N, S, E, IV):

Next we need a TURTLE datatype-the absmct class of turtles. A tutle c m be told

to face in a certain direction or to udvance a number of steps:

d d t u d e : 1 + TURTLE

dataC -+ TURTLE =

1.3 The Structure of this Thesis

face : C t dir + C
adv : C -+ int C.

This thesis is divided into two parts: chapters 2 4 discuss the Charity language from

the user's viewpoint, while chapters 5-7 examine the higher-order extension fiom the

Nnplementor's viewpoint, tracing its effects d o m through the various stages of the Ch*

Last we need a turtle objecf initiaUy at the oagin facing North. The turtle can be

poked dong by applying the face and adv methods:

Chapter &An Overview of First-Order Charity We examine the Charïty program-

ming language before the higher-urder extension.

Chapter &An Overview of Higher-Order Charity We discuss the generalization of

the coinductive datatype definition rnechanisrn and examine the resulting changes

to the language. The exponential datatype and the process datatype, canonical exam-

ples, are defined.

. Chapter GUsing aigher-Order Charity The benefits of the higher-order extension are

explored. This indudes some uses of the exponential, the process datatype, and other

higher-order datatypa. We discuss how to use higher-order C h e to d e h e objects

and sirnultaneously tecursive func tions.

Chapter SV8Fiance The higher-order extension introduces "variance" into Char@.

Variance is defined and variance anaiysis is discussed.

Chapter b'R811slation We examine the translation fiom the high-level Charity syntax

as used by the programmer to the low-level representation as used by the Charity

abstract machine.

Chapter 74ompiIation and Execution We introduce the Charity abstract machine and

describe how it evaluates Charity programs.

Chapter 2

An Overview of First-Order Charity

The Charity programming lanpage, before the higher-order extension. is referred to as

first-order Charity. This chapter presents an overview of this language. Note that higher-

order Charity is a searnless extension of the first-order fragment and so aï i the code pre-

sented here remains valid.

Charity is based on the theory of stmg categorical datatypes [6, 7 , 201, a modifica-

tion of Hagino's categoncal damtypes [9] which are related to the algebraic datatypes of

modem functional programming languages. Unlike algebraic datatypes, however, the ctass

of Charity datatypes is partitioned into two duai subclasses: the inductive datatypes and

the coinductive datatypes. A fomal, type-theoretic definition of Charity is presented in

appendix A. This is the syntactic frarnework of the language, itself impotent without ac-

companying datatype de6nitions. Sections 2.1 and 2.2 describe first-order inductive and

coinductive datatypes, respectively. Additional issues are covered in section 2.3. A cata-

logue of commonly used Char@ datatypes is presented in appendix B. We wiii introduce

the language after the higher-order extension in chapter 3.

2.1 Inductive Dabtypes

The abstract syntax for inductive datatype definitions is

In such a definition:

rn L is the name of the datatype;

rn A is a tuple (Al, . . . , &) of type variables-the pararnetric variables (m 2 0);

C is a type variablethe state variable;

each i is the name of a constnictor (1 < i 5 n);

each &(A, C) is a type in t m s of A and C.

Inductive dennitions deliver the following:

1. a new m-ary s>pe cowtructor L;

2. a set of new constructors (see below);

3. a set of new operations, or combinators (see below).

Inductive datatypes are also known as 1efl datatypes. or initial datatypes.

One example is the datatype of h i t e lists, defined in terms of the nuiiary product data-

type 1 and the binary product datatype - x :

data list (A) + C = niZ : 1 + C
cons: A x C + C.

As stated above, an inductive datatype definition delivers a set of constructors. To obtain

the types of the constructors one simply replaces the state variable in the datatype definition

with the datatype itseif (ie. substitute L(A) for 0:

Values of type L(A) are built up by constructors: Given data of type A and, recursively,

of type L(Aj, we c m apply consmctor q to obtain data of type L(A). Note that values of

inductive datatypes must be finite.

The constructors for Ikt are

nil : 1 + list(A)
cons : A x list(A) list(A)

is a value of type list (int). Chanty provides an alternative list syntax:

2.1 3 Inductive Combinators

In addition to the constructors, an inductive datatype definition delivers three operations

over its values. These are the fold, the case, and the map. Note that fold is the fundamental

operation, that the other two are speciai cases, and that they can be expressed as such. The

case and the map are deiivered as distinct operations due to their extreme usefulness and

importance.

Combinator 1: Fold

Fold is the destructive operation for inductive datatypes: inductive values are constructed

ushg constructors and are processed using the fold.

The type of fold is:

where each function between (and) is a phrase by which foldL is parametrized. Note that

the type of fold is given exactly by its correspondhg datatype definition. A special "barbed

wire" syntax is provided to the programmer:

The behavior of fold is given by its denning cornmutirtg diagramr, one for each con-

s truc toc

The diagrarns express the identities and uniqueness properties necessary to both reason

about and evaluate fold expressions [25, 271. Here, the identity states that constnicting

a value of type L(A) and then destruchg it is equal to recursively destnicting its sub-

components, and then applying the phrase. We draw a dotted map to express that it is

unique. The uniqueness property States that given any h such that ci; h = Fi {lA, h); fi,

then h = f d d L { f i) .

The datatype of natural numbers is given by:

and has constructors:

data nat -+ N =

zero : 1 + nat
SUCC : nat --+ nat

zero : 1 + N
SUCC : N -. N.

(ie. zero, succ zero, succ succ zero, . . . , are the values of type nat). We may use the

fold to add natural numbers:

zero :) n def add : nat x nat + nat = (m, n) c,
succ : r succr

Note that fouMt is essentiaiiy a for Ioop.

Fold is a generalization of the f old (or f oldr) recursion functional for iists 141, and is

often referred to as the catamorphism functional in the functional programrning iiterature

113, 141. We also say fold is the 44structured recursion operatoi' for its corresponding

datatype: one employs it to implement functions which recursively consume the values of

that datatype.

Combinator 2: Case

Case is the nonrecursive speciaiîzation of fold. M m intuhively, it is the conditional oper-

ation for inductive datatypes.

The type of case is:

 case'{^^(^, L(A)) + C,. . . , F,(A, L(A)) * C) : L(A) + C

A special bmced syntax is provided:

The behavior of case is given by its definhg cornmuting diagrams:

As nat is recursive its main operation is the fold, but the case is also useful. Consider

the 2sZero function:

zero true def isZero : nat bool = n H
succ- H fuke

The datatype of booleans is given by:

Altematively, a shorthand syntax may be used:

data bo l -+ B = true 1 fake : 1 t B.

As bool is not recursive its main operation is the case. We can use it to express aii the

boolean operations, such as n d and or:

de€ not : bool+ b o d = b I+
true H f&e
fdse H true

def or : bol x b o l + bool

One may express these functions more concisely using pattern matching (section 2.3.1).

Note that casehoL is more comrnonly known as the if-then-else conditional.

Combinator 3: Map

Map is another speciaiization of fold, used to 'W a function:

to a function over a parametric inductive datatype L. Specifically, the type of map is:

A special syntax is provided:

The behavior of map is given by its dennllig commuting diagrams:

For example:

list {hZero) [succ zero1 zero7 svcc succ zero] --t m e 7 true, fakre]

Map is a generalization of the map functional for lists 141.

2.2 Coinductive Datatypes

The absnact syntax for coinductive datatype dennitions is:

Coinductive definitions deliver the foiiowing:

1. a new m-ary type constructor R;

2. a set of new destructors (see below);

3. a set of new combinators (see below).

Coinductive datatypes are ako known as right datatypes, orjinal datatypes.

The datatype of infinite lists is given by:

datac --+ inpLst(A) = head : C -+ A I tail : C + CI

2.2.1 Destructors

To obtain the types of the destructors one simply replaces the state variable in the datatype

definition with the datatype itself:

Values of type R(A) are broken down by destructors: given data of type R(A), we c m

apply destmctor 4 to obtain data of type A and, recursively, of type R(A). Note that values

of coinductive datatypes may be infinite.

The destructors for inflist are

head : inflist(A) + A
tail : inflist(A) + injXst(A)

2.2.2 Coinductive Combinators

In addition to the destnictors, a coinductive datatype definition delivers three operations

over its values. These are the mfold, the record, and the map. Here, the unfold is the

fundamental operation and the other two are special cases, but they are delivered as distinct

operations due to th& usefulness.

Combinator 1: Unfotd

Unfold is the constructive operation for coinductive d a m e s : coinductive values are con-

structed using unfold and are processed by applying destructors to them. Unfold is the

stnictiired recursion operator for its corresponding datatype.

The type of unfold is:

Note that the type of unfold is given exactiy by its corresponding datatype definition. A

special "banana" syntax is provided to the programmer (note that the v, common to each

phrase, has been factored out-the corresponding & are referred to as the threadr of the

unfold):

The behavior of unfold is given by its de6ning commuting diagrams, one for each

des tructor:

4 4

unfoldR{ fi): f&{l~, unfoldR{ fi)) .

As for fold, the diagrams express the identities and uniqueness properties necessary to both

reason about and evaiuate unfold expressions.

We can use the unfold to construct inhite lists, such as the inhite list of positive

integers:

a head : i d e f i n t s z l - t i n f l i s t (i n t) = () ~ i e tail : i + l D
This evaluates to

ints - (head : O , tail : . . .)

-+ (head : O , tail : (head : 1, tail : . . .)) - (heud : O , tail : (head : 1, tait : (head : 2 , tuil : . . .)))

where each subsequent step has to be explicitly requested by "poking" the unfold with

destructors.

Unfold is a generaiization of the un£ old recursion functional for lists', and is often

referred to as the a~morphism functional in the functional programming literature [13,141.

Combinator 2: Record

Record is the nonrecursive specialization of unfold. More intuitively, it aUows terms to be

grouped into a structure. In practice, for nonrecursive coinductive datatypes it is the main

consmictive operation. For recursive datatypes it is used to constmct a new value from an

existing value.

The type of record is:

A speciai parenthesiseci syntan is provided:

The behavior of record is given by its defining cornmuthg diagrams:

4
R(A) - &(A, R(A))

A

The datatype of triples is given by:

data T + triple(A, B, C) =

As triple is not recursive, its main operation is the record. We can use it to construct

triples. We cm then destnict them by applying projections, as in:

projo : true) - 42
projz : "Deep Thought?

The above record syntax is equivaient to writing

(projo : true, profi : 42, projz : "Deep Thought")

Combinator 3: Map

A map, of the same fom as the rnap for inductive datatypes, is provided for coinductive

datatypes:

m a p R { ~ --+ B) : R(A) + R(B)

The behavior of this map is given by:

2.3 Other Aspects of Charity

W e conclude our o v e ~ e w of first-order Charity with a short survey of some other aspects:

pattern mutching, combinators, c o n t a and # and @.

23.1 Pattern Matching

Much as do modern functionai programming languages [17, 16.23, 11. 181, Charity sup-

ports pattern matching [21,22]. An abstraction

generaüzes to a pattemed abstraction

ie. a non-empty Iist of cases, where a case is a pattern-term pair. When applying a pattemed

abstraction, is evaluated if and only if pi is the first pattern which '4matches" the input.

Charity patterns must be complete in the sense that aU functions must be total.

A canonical example of pattern matchhg is the boolean binary operator or. It was

expressed without pattern matching in subsection 2.1. Note in the original version the pro-

grammer must explicitly decompose and test input using a tree of cares. Pattern matching

makes case selection implicit. With pattern matching or simplifies to

def or : bool x b o l bool

= valse, f&e) fuke
1 - true.

The example above illustrates pattern matching over pairs and inductive values. One

can also pattern match over coinductive values using record patterns. For example, the

following function tests whether ai l three elements of a triple are 0:

def all-0 : tripZe(int, int, int) -+ bool

= (projo :O,projl : O,projz :O) C, true
I - jabe.

23.2 Combinators

When denning combinators (functions), one may parametrize them by other combinator

expressions. For example, consider the filter function over iists parametrized by an element

Above, p is afwiction variable. When applied, filter is supplied with an acîualfunction,

as in:

füter{isEven) [l, 2,3 ,4 ,5] - [2,4]

where

def isEven = x H eqht(x mod 2,O).

2.33 Context

A term exists within a context: the scope of dl variables bases (or patterns) which can bind

its frre variables. For this reason combinators accept a context a as an additional input to

be supplied to its parameters at application the. This detail is hidden fiom the programmer

but it does affect the naive defining diagrams given in sections 2.1.2 and 2.2.2. The revised

versions appear in figures 2.1-2.6 starting on page 20. The revised types appear below:

foldL{. . . ,&(A$) x a + C a . . .) : L(A) x a C

caseL{. . . , &(A, L(A)) x o + C,. . .) : L(A) x o 4 C

ma#(A x o + B) : L(A) x cr + L(B)
unfoldR{. . . , C x o &(A, C), . . .) : C x a + R(A)

recordR{. . . , o + Fi(A, R(A)), . . .) : o + R(A)

mapR(A x a -+ B) : R(A) x o + R(B)

Context passing. or snengthening, is a central aspect of the theory underlying Charity.

It is discussed from a formal standpoint in [6,7,20], and h m an intuitive one in chapter 6.

Figure 2.1: Fold with context.

Figure 2.2: Case with context.

Figure 2.3: Inductive map with context

- Fi(Ay C) x a
(fi, PI)

Figure 2.4: Unfold with context

Figure 2.5: Record with context.

Figure 2.6: Coinductive map with context.

Charity supports two special Ydentifiers": the # variable inside foltir and the @ function

inside wifoldF.

The # ("hash") allows one to read the value being destructeci Uiside a fold. In functional

programrning terminology, it ailows the expression ofparnmorphisms [13]. Consider the

dropwhile function which traverses a list fkom left to nght, dropping elements until they no

longer satisfy a predicate:

def dropwhile {pa : A + bool) : list (A) + list (A)

At any point during a fold the # represents the value being destmcted (by the fold be-

fore it has been recursively applied). GeneraUy for an inductive datatype L, # has type

&(A, L(A)) for each of the i phrases of the fold. T'us, in our example above, the fold

proceeds through the list from left to right recursively dropping each value until the pred-

icate faüs. At this point we reach a base case and r e m whatever is left of the list being

processed.

Dropwhile is expressible without # in Charity, but rquires a more complicated fold

state involving the product datatype.

The # d o w s one to cast the fold operation as the case operation-its non-recursive

special case-simply. For example, casing over lists:

The @ ("at?) ailows one to write the value being constructed inside an unfold. It's

function is dual to that of the #. Consider the pwhdown hinction which inserts a value into

an ordered infinite list, preserving the ordering:

D (head t, tail L) .
truc * Q(hmd:d, tuü:L8)) a < A a l

c, (h a d LI, taii il)

Here, once the value has been inserted hto the infinite list, the remainder is simply the

infinite list (head : a', tail : 1') and so we produce it directly instead of producing a new

state and recursively applying the unfold. Naively, the type of @ may be considered to be

R(A) -, C (although there is a complication).

Pushdown is expressible without @ in Charity, but requires a more cornplicated unfold

state involving the sum datatype (or coproduct datatypesee appendU B).

Note that 8 also allows one to cast unfolds as records-again its non-recwsive specid

case. For example, the following is the infinite list O, 0,1,2,3,4,5, . . .:

head : O

tail : @ ones D
Besides the expressive gains delivered by # and Ci?, each reduces the complexity of code

and therefore some computational overhead. There is another efficiency issue: in the case

of the # an optimizing translation could eliminate unnecessary recursion when a premahire

base case is reached. The typing of # and @ is discussed in [24].

Chapter 3

An Overview of Higher-Order Charity

The Charity programming language, after the higher-order extension, is referred to as

Ngher-order Charïty. This extension is a generaiization of the coinductive datatypes. As

such, the presentation here follows that of section 2.2 in the previous chapter: section 3.1

describes higher-order coinductive datatype definitions, and is succeeded by sections 3.2

and 3.3 which discuss the correspondhg destructors and combinators, respectively. Sec-

tions 3.4 and 3.5 discuss pattern matching and context issues. The exponential and process

datatypes are used as nuuiing examples throughout, and more examples will be presented

in the next chapter.

3.1 Higher-Order Coinductive Datatypes

The absmct syntax for higher-order coinductive datatype definitions is

In such a definition Ej(A) is a type in terms of A. The syntax allows the introduction

of destructors both of the original 4 form and of the new dj fom. AU the 6rst-order

coinductive datatypes are maintained sirnply by not using the d, form.

The syntax is syntactic sugar. In fact, the system r d

The above syntax is used as it is more consistent with both the original coinductive datatype

syntax and the higher-order unfold syntax introduced in section 3.3.

The fkst and simplest of the higher-order datatypes is the exponential datatype:

The type -(A, B) is the type of total hinctions fiom type A to type B, and is often written

asBA oras A + Bintheliterahire.

Another Mgher-order datatype is the process datatype:

The type proc(A, B) is the type of total processes with input space A, output space B, and

state space C.

The exponential and particularly the process datatype are discussed in more detaii in

chapter 4.

3.2 Destructors

The destructors for a higher-order coinductive datatype are

The main idea of the higher-order extension is that the coinductive datatypes are general-

ized such that destruction is pararnetrized.

The destnictor for exp is

The fn descnictor applies a function f of type -(A, B) to an input a of type A, yielding

an output b of type B:

In(a,f) - b

The destnictor for proc is

Similarly to the above, pr applies a process to an input, yielding an output Additionally

the intemal state of the process changes and the process evolves.

3.3 Combinators

Combinator 1: Unfold

The type of unfold for higher-order coinductive datatypes (ignoring context) is

unfoldR{c + F;.(A, C), . . . , Ej(A) x C + Fj(A, C)) : C + R(A)

The syntax is:

Note that the thread associated with 4 is a term as before. while the thread associated with

di is afwiction. The input to this function is supplied at destnict-tirne.

The commuting diagrams for the 4 are as given in chapter 2. The diagrams for the dj

are as given here:

As exp is nonrecursive its unfold operation is quivalent to its record operation. How-

ever, proc is recursive and provides an example. First, we need the "success-or-failure"

datatype-the datatype of exceptions:

Now consider the foiiowing delay function:

del delag : ànt + pmc(A, SF(A))

Kn the above code rep : int x A -+ lZst(A) is the repeat function which produces an

xelement list of ff's and + : list(A) x list(A) list(A) is the append function which

concatenates two lists. A process may be considered a function with memory. The delay

function builds a delay process of length x. The initial state of the delay is "empty". ie. it

is stocked with ff 's. At destxuct-time input is supplied at one end and output arrives at the

other. The output must have first flowed through the delay. Note that the nil case above is

never taken, but is required for completeness.

Combinator 2: Record

The type of record is

The syntax is

Again, the commuting diagmms for the 4 are as given in chapter 2. The diagrams for

the d, are as given here:

E,(A) x 1

SpecialiPng from above, we obtain the type and diagram for record-:

A x l

The record- combinator introduces values of type exp(A, B)-the combinator en-

capsulates a function f : A -+ B as a term of type exp(A, B).

Consider

def prd : 1 + ezp(nat, nat)

zero zero
succn n

r d - (jn : (function))

and

fn(succ succ zero, prd) - succ zero

Combinator 3: Map

The map combinator is the one most heavily aEected by the higher-order extension. We

devote chapter 5 to this aspect of the extension-variance-but introduce it here.

Recall that forfirst-order Charity map lifts a function

to a function

mapR{ f) : R(A) + R(B)

For higher-order Charity, generally, the situation is more cornplex: it lifts a pair of func-

to a function

The syntax is

The diagrams for the d, are

where

f = f + : A + B & f - : B + A

The idea is that as destructors consume additionai input (in the E, component) as weli

as produce output (in the Fj component), we must both preprocess the input with f - and

postprocess the output with f + when mapping. As will be explained, the type of mapefP is

3.4 Higher-Order Patterns

The higher-order extension affects pattern matching in one important way: we may use

higher-order record pattems. For example, consider the composition function which

takes two fïrst-class funçtions (with suitable types) and retums their 6rst-class composite.

W h u t higher-order record patterns we write

Wth them we s imple to:

defcomp : exp(A,B) x exp(B,C) + = p (A , C)

= ((fa : f),(fi : g)) ct ÿn : U H gfa).

Here f and g are jùnction variables.

Generally, higher-order record patterns are of the fom

where f is an identifier. Higher-order record patterns were developed with Charles Tuckey

and the implementation details are given in [22].

3.5 Combinators with Context

The commutative diagrams for unfold, record, and map given in this chapter must deal with

context Figures 3.1-3.3 complete the naive diagrams given thus far.

Figure 3.1 : Higher-order unfold with context

Ej(A) x O

Figure 3.2: Higher-order record with context

Figure 3.3: Higher-order map with context.

Chapter 4

Using Higher-Order Charity

In the previous chapter we defined two important higher-order datatypes: the exponential

datatype of functions and the datatype of processes. These are two higher-order datatypes

among many. In this chapter we continue to illustrate the higher-order extension and the

expressive gains delivered by presenting more examples ushg these two datatypes, and

also by introducing others.

First, the process datatype is studied in greater detail in section 4.1. Then it is shown

how to express stackr and queues in higher-order Charity in section 4.2. Generally, the

higher-order extension aliows one to express objects in the sense of object-oriented pro-

gramming. Rocesses, stacks, and queues are some specific examples. The correspondence

between higher-order Ch* and object-oriented programming is discussed in section 4.3.

The exponential datatype may be used to write simultaneously recursive functiom, and

even to reaiize an efficiency gain. This is dernonstrated in section 4.4. It is shown how to

implernent a simple parser using higher-order datatypes in appendix D.

4.1 Processes

In [12] a technique for modeling processes as circuits is descnbed. A circuit is, informaliy,

an object with input space A, output space B, and state space C, represented diagrarnmati-

c d y as:

Each circuit is provided with a method p:

That is, circuits mode1 processes as they consume input, produce output, and have an inter-

na1 state which aüows them to evolve over time as they are invoked.

We cm mode1 processes in higher-order Charity the same way using the process data-

type:

dataC+proc(A,B)=pr:C+A+Cx B.

The above is reminiscent of the exponentid In fact, r o c is a genemhation in that ezp is

r o c where C is specialized to 1. In other words, as exp is nontecursive one may generalize

it to proc by adding a state C, thus making it recwsive. We say that processes are functions

"extended in tirne".

The foilowing examples use the semicolon syntax which expresses the composition of

two functions:

u ~ t ; f = ~ ~ f t

Process building operations can be implemented using the unfold. For example, we can

compose processes (ie. wire them in series) much as we cm for functions:

We cm also define other "wirhgs": the identity wire, the split for branching, the wire-

pair twist, a multi-wire exchange ex, and a feedback Ioop fi.

def fo : proc(d x C, B x C) x C -+ pro@, B)

def nor : 1 + proc(int x int, int)

We can deme a basic RS-fiipflop:

def &$op : 1 + proc(int x int, int x int)

= () H jb(ex; ; ((nor; ; split) 11 (nw; ; split)); ; ex; ; (ubel (twist), (1,O)).

The above examples dernonstrate that we can build complex processes fiom simpler

ones according to a type discipline. It also shows that we can use higher-order Charity to

mode1 hardware,

Note that proc is the datatype of total, deterministic processes. We can also define the

datatype of partial processes (ie. processes that cm teminate):

data C + Pproc(A, B) = Ppr : C + A SF(C x B).

and the datatype of nondeterministic processes (ie. processes that can evolve in more than

one way) :

data C + NDproc(A, B) = NDpr : C -+ A +list(C x B).

4.2 Stacks and Queues

Stacks (LIFOs) and queues (FIFOS)~ c m be specified using the sarne bigher-order data-

type:

data C + storage(A) = write : C + SF (A) + C 1 read : C + SF(A) x C.

The destructors delivered are

write : SF(A) x storage t starage
read : &orage + SF(A) x stmage

The idea is that one rnay wnte an element to the stacwqueue object thus obtalliing a

new one (the ff case empties the object), and one may read an element f2om the object

again obtaining a new one (the ff case indicates the object is empty).

Stacks and queues are implemented using diffecent unfolds:

defstack : 1 +storage(A)

defqueue : 1 +storage(A)

1 write : 1 * l+ O
s s a ct I=tt[a]

Note that even though write and read are dual (ie. their types are symmetnc) it is

not guaranteed that they are inverses. Such propositions about the sensible behaviour of

implementations must be proven.

4.3 Objects: Towards Object-Oriented Programrning

Objects, in the sense of object oriented programming [Il, can be expressed in higher-order

Charity. We have already seen some examples: turties, processes, stacks, and queues.

This section makes some general observations about the relationship between higher-order

Charity and object-onented programming.

AU the preceding datatype dennitions are specijcatiom of abstract datatypes. Their

values, as generated by unfolds, are implementahons. Abstract datatype specifications are

presented algebraicaiIy, and consist of thnx components:

1. the name of the îype;

2. the îyped operations for this type;

3. the equations these operations m u t satisfy.

A higher-order datatype definition declares the 6rst two only. The unfold then defines how

the first will be represented intemaiiy, and how the second will manipulate that concrete

representation. The third component-the equations-are not fonnulated in Charity. In-

stead, it is the programmer's job to state them at the meta-level and then to prove that the

implementation satisfies them.

Generaiiy, the operations of algebraic specifications are not restricted in their typing.

Higher-order datatypes are restricted, however, in that the state variable must occur exactly

once in the domain of each destructor. For instance, one could not specify an abstract data-

type of sets in which union and intersection were provided as operations, as each requires

a pair of sets as input. However, the "simple" abstract datatypes specifiable via the higher-

order datatype definition mechanism do represent a Bgnificant increase in expressive power

as they correspond to objects in the sense of object oriented programming. The foiiowing

table illustrates the relationship:

1 ADT OOP

datatypz = abstractclass

unfold (not applied) E class

unfold (applied) = object

state - - - state

destruc tor - - - method

That is, to define an (abstract) class we define a higher-order datatype. Objects are

values of that type. There are two essentid facets of objects: they have an internai state, and

they are intenicted with excIusively via their methods. The state of an object is simply the

state over which we unfold, and the methods for querying and manipulating the objectktate

are destructors. The unfold ensures that the intemal state is hidden, thus guaranteeing

proper data abstraction and modularity. The one centrai ciifference between traditional

object oriented programming and higher-order Chariy is that we currently lack inheritance

and a class hiefarchy.

4.4 Simultaneously Recursive Functions

Recali that fold is the stnichired recursion operator for inductive datatypes: It is used to re-

cursively process a finite value. O h , however, one wishes to recursively process multiple

values simultuneofcsly. In functional programming languages this is accompliîhed using

general recursion. For example, consider the min function which cornputes the minimum

of two natural numbers expressed in Miranda:

min:: num -> num -> nurn

m i n r n n = m i n ' r n n
where

minf O Y = rn
minf x O = n
minf (x + 1) (y + 1) = min' * Y

This function recurses sirnultaneously over each of its two inputs until one reaches its

base case. The Grst to "bottom out" is the minimum, so the computation wiîl terminate in

the proportional to the smaller.

The min fwiction cm also be expressed in first-order Charity but it can not use such a

straightforward algorithm. This is because fold is singly recursive. Instead, one subtracts

the second input fiom the ht. If the resuit is zero then the first is smaiîer, ouienvise the

second is smaUer. Of course, this subtraction is implemented via a fold and so it must

arbitrarily choose which of the two numbers to fold over. If the larger is chosen then the

computation will terminate in time proportional to the larger.

One cm express simultaneously recursive fiinctions in higher-order Charity with the

help of a p . This technique was discovered independently by Meijer [15J.

4.4.1 The Mïnimum of ' h o Natural Nurnbers

We implement the original min algorithm in higher-order Charity:

def min : nat x nat -+ nat

That is, we fold over rn to produce a nested function-of type ezp(nat, nat)-and

apply that function to n. The n drives the nested function, removing a Iayer of nesting each

time it is decremented. Whkh bottoms out first indicates which number is the smaller.

Note that, essentiaiîy, we have solved the problem of simuitaneous recursion versus singly

recursive folds by currying.

Note also: the tmnslation function (chapter 6) is currently unoptimized, so the fold

eagerly cornputes the entire nested function before appiying it to n, even though the succ

phrase contains an early base case. An optimized translation proposed by Robin Cockett

as yet unimplemented will eliminate this problem, allowing the computation to terminate

with tirne always proportional to the smaller input.

The "Zip" of ' h o Lists

The min function scales up, fkom nat to list, as the z ip function [4]. This takes a pair

of lis6 and rems a list of pairs, where the elements of the k t two lists have been paired

component-wise. The length of the resulting list is equal to the length of the shomr input

list as extra unpairable components are dropped. A g a , this operation is expressed using

simdtaneous recursion in a functional language and so can be expressed in higher-order

Charity using the exponential:

d d z ip : list(A) x list(B) --+ h t (A x B)

The ability of higher-order Charity to express simultaneously recursive functions is not

only usefui for nat and list, but generally for ail recmive inductive datatypes. Consider

that two elements of any inductive datatype can be tested for structural equality* This test

is a simultaneous recursion over the two elements. For instance, an inductive tree datatype

can be defined in Chadty:

data tree(A) + C = leaf : A + C
J n d : C x C -t C.

W e can test trees for equality as foiiows:

leaf : a +b (fi :l !"f " e q ~ (& d))
* fobe

= (tl?t2) - fii(t1,
nodc : () ,+ (fi:I - ~ & (h ') * a " d (f r l . f ~ r)

fnbe

Chapter 5

Variance

First-order Charity's type variables can only occur covariantly. The higher-order extension

generalizes datatypes so that their pararnetric type variables may occur both covariantly

and contravariantly. In this chapter we dehe these terms and discuss variance analysis.

The concepts of duality and variMce corne from category theory ([26,3,8, 191, etc.):

datatypes are modeled by functors. Duality is a form of symmetry which manifests itself as

variance in parametnc datatypes, in this case the symmetry between input (contravariance)

and output (covariance). VUiance with respect to datatypes was studied by Hagino and used

in his categorical programming laquage 191, and generally by the functional programming

community [13, 141.

5.1 Variance Basics

Ln this section we explore the concept of variance starting with some examples.

5.1.1 Distinct Input/Output Qpe Variables

Consider the exponential datatype:

The parametric type variable A occurs in an "input' position and the parameaic type vari-

able B occurs in an "outpuf' position. That is, an A is comumed at destxuct-tirne, w M e a

B is produced.

How does one map over exp? Clearly one uses the rnap combinator:

but how are the parameters filied in? Viewing a value of type -(A, B) as an object, we

draw:

To rnap this value to a value of type ezp(C, D) we "wrap" it between preprocessing and

postprocessing func tions:

Pre : C + A
post : B -+ D

to obtain:

Thus, to rnap over ezp one uses the map combinator:

map"{C --t A, B -+ D) : -(A, B) ezp(C, D)

which encapsulates the input function between preprocessing and postprocessing functions,

yielding the output func tion.

Expressing the map as a record we cm write:

def map-ezp{pre, post) = f ct un : c c) ps t fn(pre c, f)).

5.1 Nondistinct Input/Output Q p e Variables

Next, consider the storage datatype:

dataC -+ storage(A) = write : C + SF(A) + C 1 reod : C -+ SF(A) x C.

Here. the parameuic type variable A occurs in both an input position (w i t e) and an

output position (read).

To map over storage one uses the map combinator:

where its single parameter has both a preprocessing function and a postprocessing function.

This combinator encapsulates the input stacwqueue behind a read/write front-end.
Expressing the map as an unfold we can write:

m i t e : ict unite(SF{prwrite)i ,s)

read : SF{postread) read s

Note that p o s t m d and preurite need not be inverses.

A (saictiy) output type variable is caUed a covariant panuneter, a (suictly) input type

variable is c a e d a contravariant parameter, and an input/output type variable is caiied a

divariant parameter. The Iast possibility is that a type variable is introduced but not used

in a datatype dennition. In this case it is neither an input nor an output variable and is

calied an invariant panmeter. W e denote these four possible variances using the symbols

+, -, *, ? respectively.

When a datatype R is defined variance analysis must be performed, as:

1. the type signature of mapR must be calcuiated, and

2. R is invaiid if its state variable C occurs contravariantly or divariantly. Otherwise

one could define such undesirable types as

data C -+ foo = bar : C -t exp(C, C).

or, equivalently,

data C + foo = bar : C -r C =+ C.

To see the problem consider the typings

unfoidf"(~ x C + C) : C + foo

bar : f o u x foo + foo

When applying bar one must pass in a value of type foo, but this violates the hiding of

the intemal state C of the unfold. Additionaiiy, the foo datatype models the untyped

X-calculus.

Fomaily, each type variable A which occurs in the definition of a datatype R is assigned

a varfance vR(A) E {+, -, *, ?). The variance-arity, or varïty of a datatype R States the

assignment of variance to each of its parametric type variables. We write:

Viiriance analysis is the calculation of V (R) and uR(C).

5.2 Examples

Charity provides two fundamental builtin type constmctors for finite products. We state the

varity of each:

As stated above, input types are contravariant while output types are covariant. Naively,

this says type variables are contravariant if they occur to the left of +, and are covariant

otherwise. Thus one would expect the following va&ies:

V(ezp) = [-7 +]

V (proc) = [-, +]

V (storage) = [*]

Consider the datatype:

data C + stmnge(X, Y, 2) = str : C exp(exp(X, Y), 2).

What is V(strange)? Anythuig to the left of a + would be in a position of negative (-)

variance. However, in this case everything is in a position of positive (+) variance. But:

V (ezp) = [-, +]. This means Z occurs in a position of positive variance, but e q ~ (X, Y)

has been substituted into a position of negative variance. This has the effect of tiipping its

varity so that X sits in a position of positive variance, while Y sits in a position of negative

variance. That is, V(strmge) = [f i -, +].

5.3 Formalizing Variance

The variance algebra is the triple (v -, V) where

V = {+, -, *, ?) is the set of variances;

(-) : V x V -+ V is the substitution operation given by:

(v) : V x V + V is the join operation given by:

No te:

(V, 0) forms a commutative monoid with identity +.

(V, V) forms a commutative monoid with identity ?.

0 V forms a lattice:

The substitution operation says how to "£iipW a variance VI when it sits in a position

of variance v2. The join operation says how to combine variances vl and v2 when a type

variable occurs once in a position of q variance, then again in a position of v2 variance.

W e lift the join operator to varities:

We may read a varity v' at index h:

Gl

W e may also update a vanty with u at index h:

returning the new varity.

Given the generalized form of a coinductive datatype definition:

the variance analysis algorithm is as shown in figure 5.1.

data A. + R(A1, . . . , &) =

where

d j : A. + Ej(Ai7 .. . , Am) =+ e (A a , . . . , Am)

Figure 5.1 : The variance analysis algorithm.

That is, A steps through each destnictor checking its Ej component (if present) and F j

component The Ej sits in a position of negative variance whiie the Fj sits in a position of

positive variance. Initially we h o w nothing about the variances of their variables and set

them to [?, . . . , ?]. The C function returns this vector, updated with the variances for each

of the type's variables. Note that the vectors obtained from each Ej and Fj must be joined.

The C function descends recursively through a type expression and determines the vari-

ance of each of its variables. In the recmive case for the constant type T we retneve its

varity, then descend through each of its subexpressions. At each step T sits in a position

of v variance, so each of its subexpressions si$ in a position of v - uhi variance. A joui of

the vectors obtained fkom each subexpression must then be fomied. In the base case for the

variable type Ah we set its variance to be that of the position in which this occurrence sits

(later join operations may merge this variance with the variance of other occurrences).

Now R is valid if:

A(R)[O] = ? or A(R)[O] = +

Inductive datatype definitions also require variance analysis, and algonthm A extends

to them in the obvious way: there is no Ej component to check.

5.4 Variance and the Map Combinator

Given a valid datatype R, the type signature of its map combinator is obtained from V (R):

mapR{s1, . . . , Sm) : R(AI , . . . , A,) --+ R(&, . . . , B,)

where each type signature Sh is:

When mapping the variance information indicates which phrase (the covariant or the

contravariant) to apply. "Atomic" maps of "compound" types are expanded to "compound"

maps of "atomic" types:

where

and

Chapter 6

Translation

Charity has three distinct notations, each residing at a different level of abstraction. The

highest, as introduced in chapters 2 and 3, is the extended term logic which is usehl for

programrning. Next, also previously discussed, is the core term logïc which is used as

an intermediary representation. The lowest is the combinatory togic which is usefui for

evaluation. In this chapter we discuss these representations and the translations between

them.

6.1 The Extended and Core Term Logics, and the Trans-

lation Between Them

The core term logic is a special case of the extended term logic: it's the latter minus pat-

terns. For the first-order fragment it's the notation as introduced in chapter 2 discounting

section 2.3.1. For the higher-order extension it's the notation as discussed in chapter 3 dis-

counting section 3.4. The core terrn logic is described in [7, 51. The extended term logic

was ûrst proposed in [21] and is fully described in 1221.

The translation m m extended to core tenn logic is known as "pattern matching". As

previously illustrateci, one may express a Charity function as a list of cases where a case

is an input pattem followed by a term. The case to be taken is the fkst one whose pattern

matches the input. The pattern matching algorithm translates such "patterned" hinctions as

a me of nested case functions. thus making the case selection process explicit.

The higher-order extension has little effect on pattern matching and the precise algo-

rithm is beyond the scope of this thesis. [22] provides a detailed description.

6.2 The Combinatory Logic

The tem logic is a "variable-ful" notation. One could evaiuate it directly, but then one

would have to deal with variable substitution 121. Instead, we translate the temi logic to a

"variable-less" notation-the combinatory logic. r6.5, 20, 27, 251 also deal with Charity

cornbinators.

A combinator theory consists of a system of types, a set of aromic combinators. a

system for building compod combinator expressions, and a set of equations between

combinator expressions.

A set of type constructors (with 6xed arities. or kinindr) generates a system of types. ie. the

set of terms of the fm algebm For example:

generates types such as:

6 3 3 Atornic Combinators and Compound Combinator Expressions

A combinator is a function nom one type to another, paramecric about other functions.

Compound combinator expressions are buüt from atomic combinators of the fom:

where

c is the combinator name,

each and is a type.

We write this as a formation rule':

fl : Tl + T;, a.. , fn : Tn + TA

6 3 3 Chanity's Combinator Theory: The Combinatory Logic

Charity's type system is generated from the fundamental type constructors for products: 1

and - x , the builtins (eg. int), and the user-defined type constructors (eg. list). Charity's

atomic combinators for manipulating values of these types are described in the following

paragraphs.

The identity and composition combinators are delivered as foiIows:

A m e identiîy
id{) : A -+ A

'Xn f a such a G e is inmduced parametrically, meaning tbat the types may be polymorphic. The
theory must therefore account for type variable substitution and specialization. To test whether a combinator
expression is vaüd one wouid use the d c a î i o n algorithm 1241.

f : A + B , g : B + C
composition

m p { f 7 g) : A --+ C

When writing O-ary combinators such as id the empty braces may be dropped. Also, the

comp combinator may be written using the in6x notation f ; g.

id is the identity combinator which outpuü its input, while comp is the composition

combinator which pipelines two composable combinator expressions. The id and m p

combinators satisfy the standard identity and associative laws.

Fundamentai combinators for nnite products (! for 1 and pair, po, and pl for - x -) are

delivered as follows:
A type

voiding (O-tuple)
!{}: A + 1

A type, B type 0th projection

A type, B type
1st projection

The pair combinator rnay be written using the angle bracket syntax (f, 9) .

The voiding combinator ! is the O-tuple constmcting combinator, ie. the unique map

from A to 1 which forgets its input The pairhg combinator (, -) is the 2-tuple consmict-

ing combinator parametric about its two component building pluases, while po and pl are

the 2-tuple destructing combinators, ie. the component projections. The finite product com-

binators satisfy the standard universal properties for products.

Charity7s fundamental combinators are summarized in table 6.1. The combinators and

equations delivered with user-defined datatypes are as describeci in chapters 2 and 3 (fuld,

un f old. etc.).

Table 6.1 : Fundamentai combinators.

Each Charity program is expressible as a combinator expression. Consider, for exam-

ple, the function
headd : s

taiU : (1 D
which produces an infinite list of input x. The state of the unfold is set to the O-tuple. This

program is expressed as a combinator expression as

(!, id) ; ~nfold'~f""{~~, !)

Section 6.3 gives the derivation.

A combinator is a function, and so takes input Cornbinators with arity 1 or greater (ie.

combinators with parameters, exclucüng comp, pair, and records) take a pair as input: the

first component is an input value proper, and the second is a context. In the example

above, unfo~d'"~"~ is applied to the O-tuple, so the first component of its input is !. It needs

access to its context (x), so that is propagated inside via id in the second component. Note

also that each phrase is a function, so it too takes a pair as input: a local context and the

global context propagated in fkom outride. For example, the hd phrase acts on a pair: the

O-tuple provided locaily and the x provided globaliy. To access the x it projects away the

local component. To summarize: as combinators provide a variable-free notation, context

must be expiicitly propagated inside ai l cornbinators whose phrases might look up variable

values in scope.

6.3 Translation from Core Term Logic to Combinatory

Logic

The translation fiom core term logic to combinatory logic for fïrst-order Charity is given

in several places, includuig [7]. In this section we re-present it pursuant to the higher-

order extension. First, for clarity and to explain the way context is handled, we discuss the

translation of Charky's basic framework (see figure 6.1 on page 6 1).

Each d e (excepting possibly the last) does the obvious, introducing a fundamental

combinator discussed in the previous section. The first takes a variable to itseK via the

identity combinator id. nie second handles O-tuples by the "forgening" combinator !. The

third decomposes pairs, accessing their variable components by projecting, while the next

composes pairs. The second last handles function application for functions f. where f is a

O-arity named function, constructor, or destructor. The las4 and most interesting, handles

function abstraction, This case also serves as a review of variable elhination and of the

manner in which this translation makes global and local context management explicit. We

are translating term {v' H t') t in context u, so dtst translate input terni t with respect to

u and pair it with id, This has the foiiowing effect when evaiuating: a context is generated

before this pair combinator is encountered. The first component uses it to evaluate t and

the second preserves it. Both are then passed on to the abstraction v' c+ t'. However,

this abstraction may not only access the local context vf, but also the global context v , and

so is actuaiiy translated as [(v', v) c, tl in anticipation of the pair. The context v is now

presewed and forwarded inside the abstraction, dong with the input proper, via this pair.

Having discussed the prelirninaries we can now give the translation of the unfold the

record, and the map (figure 6.2). The unfold (in context a) translates much as the abstrac-

tion does, but the input and context are passed into the unfoldR combinator delivered with

datatype R Each phrase has access to the unfold state v and the context a. Higher-order

phrases have access to an additional input vj. An important note: this input is the leftrnost

component of the triple, the state foUows. and the c o n t a is the rightmost component.

This is for scoping purposes and is due to the manner in which pairs are decomposed (see

figure 6.1).

The record translation is a special case of the unfold translation: it is the non-recursive

specialization and as such rquires no state. Thus it requires no initial state, hence no input

(ie. it is a term and not a function), so the context is forwarded directly without pairing.

The map translation is similar to the unfold translation, respecthg variance.

For completeness, the remaining translation phrases for the fold, case, inductive map

(figure 6.3). and combinator (figure 6.4) are given. In facc this last case generalizes those

preceding it.

We conclude with some example translations. The ûrst is the derivation promised in

section 6.2:

= (!, id); ~nfofd"~'"'@~; [x w X] , !}
= (!, id); unfold hphf (m ; id, !)

A subsequent phase of the Charity system optimizes the id out of the h t phrase of the

unfold 1271.

[x H x] = id

[v* 01 = !
[(uo, V I) c, x] = pi; [vi c, x] where i = O if x occurs in uo, and i = 1 otherwise

[v H (t0,tl)I = ([v - to] , [v e t l])
[v H f t] = [V H t] ; f where f is a function symbol

[v H { v f ct f) t] = ([u * t] , i d) ; [(d , u) H t'l

Figure 6.1: Core term logic to combinatory logic translation, part 1: basics.

Figure 6.2: Core iemi logic to combinatory logic translation, part 2: coinductive datatypes.

Figure 6.3: Core term logic to combinatory Iogic translation, part 3: inductive datatypes.

Figure 6.4: Core terni logic to combinatoy logic translation. part 4: combinators.

Next we illustrate a transIation for a higher-order datatype. Consider the fmction which

takes input z and rems a function, where this function takes input y and rems the pair

(~ 9 Y):

The optimization yields:

r e ~ d e 2 P { (~ l c l , PO))

Chapter 7

Compilation and Execution

Charity prograrns are executed by the Charity abstract machine. Previous versions of the

machine executed combinators directiy 151. However, it was found that by k s t cornpiling

cornbinators to an even lower level representation, computations could be performed much

more quickly and simply [IO, 271.

A detailed description of the Charity abstract machine and the compilation function

from combinators to machine instructions for first-order Charity was the subject of [27].

In this chapter, we concentrate on the changes the higher-order extension necessitated in

both compilation and executiun: the fomer is ueated in section 7.2, and the latter in sec-

tion 7.3. As neither cm be understood in isolation and without some gïounding in the

general operation of the machine, we first present a primer in section 7.1.

7.1 Overview of the Charity Abstract Machine

The Charity abstract machine consists of

A heap pointer H with associated value heap for storing data;

0 A program counter C with associated code s n e m for storing code;

A dump stack pointer D with associated d u q srack for storing temporary results,

subroutine return addresses, etc.

The machine state is a triple (H, C, D)'. A Charity expression compiles down into a

Stream of machine instructions, into which C is an index. Execution begins with C pointing

to the start of the Stream and ends with a HALT instruction. Wchever value the heap

pointer addresses when halting is the result of the expression's evaluation2. For larger

computations execution may need to be suspended occasionally in order to garbage collect

the heap. Note that, as the code stream is randomly indexable, the machine may execute

the GOTO instruction as weiï the JUMP and RET instructions for subroutines during the

course of execution.

The coinductive datatype operations-unfold, record, and map-are aii treated uni-

formly, Each is compiled into a short sequence of instructions for building "record" heap

values (rec's). These are values of the coinductive datatype. In this sense, the cosmetic dif-

ferences between these three operations are elirninated (fold, case, and the inductive map

are ai l also compiled in a d o m way).

The operation of the Charity abstract machine on rec's is lay, and supports sharing. A

rec is an n-element array of dosures, one for each destructor of the n-destructor datatype.

A closure is itself a (potential) value, but at rec creation time each closure is unevaiuated.

When destnictor i is applied to rec it forces evaluation of closure i. This is cdled "poking".

This closure is then updated with the resulting value so that subsequent pokes do not force

redundant reevaluation, but rather return the precomputed result. In other words, a value of

a coinductive datatype is a record whose fields are initiaily unaccessed and unevaluated. As

we poke this structure b y applying destructors, we access the correspondhg fields, evaluate,

and update, thus developing the value as needed (the laziness). If we reaccess a previously

'In fxt. for technical reasons reiating to garbage coiïection and space efficieocy, the heap and dump are
split into a number of specialized heaps and dumps, for storing a specific kind of value. lhis does not
affect our description.

*This value must be decompiled.

developed field, we don? force any reevaiuation (the shanng). Sections 7.2 and 7.3 explain

the above concepts M e r .

7.2 Compilation

In this section we give the compilation function nom combinators to machine instructions,

restncted to those cases affected by the higher-order extension. This section and the next

also correct some errors in the original description for mt-order Charity [27].

We begin with the compilation of destructor and record combinators as records are

simpler than unfolds and maps. yet illustrate most of the issues in compiiing ai i three. The

relevant cases are given in figure 7.1.

(cl* 1 [di] = DESTR{i)
(ClSb [-1 = HODESTRC))
(Ci,) [remrdR(h,-.-.fn$ = where J W { z)

x := ALLOC{n).BLDCLO{l,zl}.BLDCLO{~,Z~).RET
where := BLDUPDATE

Figure 7.1 : Destmctor and record compilation.

The original nile for destructors, Cl3. has been genedized to Cl% and Cla. where the

former handles first-order destructors and the latter higher-order destructors. In fact, CI3= is

the old rule and we simply adding a new instruction, HODESTR, with the new mie.

HODESTR is the oniy addition to the instruction set which the higher-order extension

necessitates! Each of the operations DESTR and HODESTR have, as operand, the

desmictor's position.

As stated in nile CI4, a record compiles as a jump to a subroutine beginning at la-

bel x (JUMP). This subroutine, when invoked, will aUocate a new record value on the

heap (ALLOG'), initialize each of its n closures, (the n BLDCLO instructions), and return

(RET). Each closure points to the start of a corresponding subroutine to be executed when

it is poked. The snbroutine is. essentially, a compiled phase of the original record, but

in the kst-order case it is wrapped within the updating instructions (BLDUPDATE and

UPDATE). The k s t prepares for the update and the second carries it out, as explained in

the next section. We must not update in the higher-order case as extra input will be supplied

to the closure at poke time ench tim we poke it. That is. the closure is not an expression,

but afwrchn parametrized by an input. Thus it can never be reduced to one value, but

must be reevaluated each t h e .

As explained in chapter 2, the operators delivered with Charity datatypes, most notably

fold and unfold, are structured recursion operators. That is, the recmive nature of the op-

eratiens remains implicit down to the combinator level. The compilation from combinators

to machine instructions makes recursion explicit. Figure 7.2 shows how for unfold.

(cis) [u W d R { f ~ . - 3 fn }] = JUMP{z}
where
x ALLOC{n).BtDCLO{l, xi).BLDCLO.(n, Xn).RET
where zi := BLDUPDATE

- [(fi. pl); m p F i b o p 0 , j u ~ p i d)]
. UPDATE{i)
. RET

zj := [(fj 9 pi ; PI); m p F j @O, ~ U ~ P { Z }]]
. RET

Figure 7.2: Unfold compilation.

Rule C15 is very similar to nile CI4, but Mers in the compilation of the phrases fi and

fi. In the first-order case fi is executed in context, the result is paired with the context,

and the unfold is mapped onto this resuît, making the recursion explicit. The higher-order

case is nearly identical, but the additional input is taken into account when propagating the

context to the map. Note that this rule simply restates the recursive definition of unfold

as expressed in the commuting diagram of chapter 3 (as the d e for the record restates its

commuting diagram). The main point of interest is that the recwsive mapping of the unfold

is via the label x.

Like d e C15 for unfold, nile Cie for rnap is derived fiom its diagrammatic definition.

See figure 7.3. Here f is, in general, aset of rnap phrases fF& f;, . .. , f$& f;-a positive

and negative phrase for each parameter of a coinductive datatype R with anty m. Thus,

mapFiT mapEj, and mafi must respect variance as described in chapter 5.

Figure 7.3: Coinductive map compilation.

A machine state transition is a one-step updating of the machine state, one for each ma-

chine instruction. A computation is a sequence of transitions driven by a sequence of

instructions. The machine transitions for First-Order Charity are given in 1271. The higher-

order extension requires the modification of onïy one of those des: rule 17. It is general-

ized to a case for Mt-order destructors (17a-the same as the original d e 17), and a case

for higher-order destructors (17b). First, we present some other basic des.

Rules 10 and 11 deal with subroutine calhg and retuming (table 7.1 on page 69).

JUMP lends control to a speçified point and pushes the r e m address onto the dump

stack. RET retums control and pops the r e m address off of the dump stack.

Table 7.1: Subroutine c a h g and rehiming.

10
11

Iàble 7.2: Record value construction.

H C D H C D
v JUMP{d).c d H v d cat{c).d
v RI3T.c cont{d).d ++ v C' d

Rules 15 and 16 construct record values on the heap (table 7.2). ALLOC ailocates an

n-closure record, which the heap pointer H then addresses. The old value addressed by H

is remembered for subsequent BLDCLO instructions using an auxiliary machine register.

Each BLDCLO then initializes a given closure of the record. A closure is a pair: some

code and a value to act on. The start address of the code is supplied by the BLDCLO, and

the address of the value is supplied by the auxiliary repister-

Table 7.3: Record value destruction.

17a
17b

Rules 17a and 17 b deal with destnictor application (table 7 -3). In the tînt-order case we

are polring closure i of the record pointed to by H. Thus we execute closure code at value

Vi as a subroutine. pushing the r e m address ont0 the dump stack. Again, an auxiliary

register is used to remember the record's address for the BLDUPDATE instruction. The

higher-order case is similar, but H addresses a pair, nota record. The 6rst component of the

H C D H C D
v : rec{(vi, DESTR{i).c d H V+V cont{c}.d
v : (e, W) HODESTR{j).c d ++ v ' : (~ , v ~) . w cj m t { c) . d
W : ?%c{(v~,

pair is the input supplied at destmct tirne, e, and the second is the record to be destnicted.

This time we execute closure code q at value (e, %).

Table 7.4: Closure updating.

Last, niles 18a and 18b handle closure updating (table 7.4). BLDUPDATE is exe-

cuted at the start of closure execution, and pushes the address of the record being poked

ont0 the dump stack. UPDATE is executed at the end of closure execution, and updates

that closure of that record in the following way: the result value is stored in the closure

with an "empty" subroutine for evaluating it (ie. a single RET). Subsequent pokes of the

same closure wiU simply retm the precomputed value.

Chapter 8

Conclusion

In this final chapter we summarize our resuits, briefiy discuss how they might be appüed,

and look towards the future.

In this thesis we have described the higher-order extension of first-order Charity: a gener-

aüzation of its coinductive datatype definition mechanism by parameterizhg destructors.

Higher-order Charity reaüzes some expressive gains over its first-order predecessor, includ-

hg:

the ability to define the exponential datatype, rendering functions first-class values;

the ability to define objects generally, opening the door to object-oriented program-

ming in Chaity;

the ability to define simuitaneously recursive functions, leadhg to a much more nat-

ural implementation of severai common functions.

The effect of the extension on Charity syntax is slight, and is backwards compatible

with kst-order Charity. The effects on the various stages of Charity interpretation are

also clean, as witnessed by the minimal updates required in the compilation and execution

phases.

8.2 Future Work

Higher-order Cha15ty suggests at least two possible topics of research:

1. Now that we may express classes and objects in Charity, we may also wish to incor-

porate other standard features of object-oriented programming. Most noteworthy is

inhen'tance and the construction of a class hierarchy.

2. One would like to write Charity programs with graphical user inte$uces. Interface

entities such as windows and buttons are usually programmed as objects in modem

programming languages. Now that Charity supports objects, one should be able

to define window and button objects, assign them a graphical representation, and

interact with them.

Bibliography

[l] Ma& Abadi and Luca CardeIli. A 7ïzeory of Objects, chapter 1-4. Springer. 1996.

[2] H. ' Barendregt. The Lambda-Calculus: Its Syntax and Semantics. S tudies in Logic

and the Foundations of Mathematics. North Hoiiand, revised edition, 1984.

[3] Michael Barr and Charles Wells. Cutegory Theory for Computurg Science. Prentice

Hall International Series in Computer Science. Prentice Haii, 1990.

[4] Richard Bird and PhiIip Wadler. Introduction to Fwictional Programming. Prentice

HaU International Series in Computer Science. Prentice Hall, 1988.

[5] Robin Cockett and Tom Fukushima About Chaty. Yeiiow Series Report No.

92/480/18. Deparanent of Computer Science, The University of Calgary, June 1992.

[6] Robin Cockett and Dwight Spencer. Strong categorical datatypes 1. In R A. G. Seely,

editor, International Meeting on Category Theory 1991, Canadian Mathematical So-

ciety Proceedings. AMS, 1992.

[7] Robin Cockett and Dwight Spencer. Strong categorical datatypes II: A tenn logic for

categorical programming. (to appear), May 1992.

[8] Roy L. Crole. Categorïes for Types. Cambridge University Press, 1993.

[9] Tatsuya Hagino. A Cutegoncal Pmgramming Lmguage. PhD thesis, U~versity of

Edhburgh, 1987.

[IO] Mike Hermann. A lazy graph reduction machine for Charity: CHarity Abstract Re-

duction Machine (CHARM). (unfinished), Juiy 1992.

[I l] Paul Hudak, Simon Peyton Jones, Philip Wdler, et al. Report on the programming

language Haskeil: A non-strict, purely functional language. SIGPLANNotices, 27(5),

May 1992.

1121 P. Katis, N. Sabadini, and R. E C. Walters. The bicategory of circuits. In C. Bany

Jay, editor, Proceedings of Computing: the Australim Theory Seminar, pages 89-108,

December 1994,

[13] E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas,

lenses, envelopes and barbed wire. In FPCA91: FwctionaZ Programming Languages

and Conputer Architecture, volume 523 of Lecture Notes in Cornputer Science, pages

124-144. Springer, 199 1.

[14] Erik Meijer and Graham Hutton Bananas in space: Extending fold and unfold to ex-

ponentid types. In Functionul Programmrng Languages and Computer Architecture,

1995.

[15l Erik Meijer and Johan Jeuring. Merging monads and folds for functionai program-

ming. In Johan Jeuring and Erik Meijer, editors, Advanced F m c t i o l Programming,

number 925 in Lecture Notes in Computer Science, pages 228-266. Fust Interna-

tional Spring School on Advanced Functional Programming Techniques, Springer,

December 1995,

[161 Robin m e r and Mads Tofte. Commentary on StMdard ML. The MIT Press, 199 1.

[17] Robin Milner, Mads Tofk, and Robert Harper, The D e m o n of S t h r d ML. The

MIT Press, 1990.

Cl81 Simon L. Peyton Jones. ?ne Implementah'on of FwctionaL Programmirtg Languages.

Rentice Hall International Series in Cornputer Science. Prentice Hall, 1986.

[19] D. E. Rydeheard and R M. Burstall. Cornpututional Cutegory Theory. Prentice Hall

International Series in Cornputer Science. Rentice Haii, 1988.

[20] Dwight L. Spencer. Cutegoncal Pmgramming wirh Functot+al Strength. PhD thesis.

The Oregon Graduate Lnstitute of Science and Technology, January 1993.

[21] Charles Tuckey. The implernentation of pattern matching in Charity, A p d 1994.

Undergraduate honours thesis, Department of Computer Science, The University of

CaWY-

[22] Charles Tuckey. The implementation of pattern rnatching in Charity. Master's thesis,

The University of Calgary, July 1997.

[23] David Turner. An overview of Miranda. SIGPLAN Notices, December 1986.

[24] Peter Vesely. lSrpechecking the Charity term logic, A p d 1997. (documentation,

http:/iwww.cpsc.ucalgary.ca/projects/charity/home.htmL).

[25] Peter M. Vesely. Categorical cornbinators for Charity. Master's thesis, The University

of Calgary, Novernber 1996.

[2q R F. C. Waters. Categories and Computer Science. Number 28 in Cambridge Corn-

puter Science Texts. Cambridge University Press, 199 1.

[27) Dale Barry Yee. Implementing the Chaxity abstract machine. Master's thesis, The

University of Calgary, September 1995.

Appendix A

This appendix gives a formal definition of higher-order Chdty syntax, type-theoretically.

It is based on a first-order core term logic type theory by Peter Vésely [25], and was ex-

tended to a higher-order extended term logic type theory by Charles Tuckey [22]. The

figures presented here are those of [22] minus completeness information.

The type theory is spread over three figures: figure A. 1 deals with terms and their Srpes,

figure A.2 deals with patterns and their types. and figure A.3 combines the two. yielding

functions and their types signatures.

variable

mit

pair

record

application

Figure A. 1 : Term Type Theory

pair

record

int

char

pattern
abstraction

Figure A.2: Pattern me Theory

structor

case

Figure A.3: Function 'ISrpe Theory

Appendix B

A Catalogue of Charity Datatypes

This appendix lists the most common Charity datatypes, higher-order and otherwise. We

begin with the builtins (section B. l), then user-definable inductive (B.2) and coinductive

(B.3) datatypes, and briefiy type aliases (B.4).

B.l Builtin Datatypes

The nullary product datatype: 1. Value:

0

a The binary product datatype: - x -. Value format

(t o , ti)

The boolean datatype:

data bool -+ C = f&e 1 true : 1 + C.

The integer datatype: int (machine-level builtin). Values:

The character datatype: char (machine-level buiïtin). Example values:

\CA ('A'). \cB ('B.), \CC ('C'), . . .

B.2 Inductive Datatypes

a The copmduct datatype:

The success-or-failure datatype:

The natural-number datatype:

The list datatype:

datanat + C = zero : 1 C

succ : 1 + C.

data h t A -+ C = ni1 : 1 + C
c o n s : A x C + C.

The binary tree datatype:

data blPree(A, B) -+ C =

B.3 Coinductive Datatypes

a The cotist datatype:

data C + colist A = delist : C -+ SF(A x C).

a The infinite üst datatype:

a The exponential datatype:

d a t a C - + q (A , B) = f n : C - t A + B .

data C --+ i n f i t A =

The process datatype:

& t a c - + p r o c (A , B) = p r : C + A + C x B.

head : C + A

tail : C C.

a The string datatype:

data string = list char.

Appendix C

The Implementation

Higher-order Charity is implemented. As of the the of writing the version is 1.9 (alpha)

of June 1997. The interpreter consistr of about 30000 lines of C code.

Charity is installed localiy and rnay be Uivoked at a sheii prompt by typing:

charity

It is available world-wide, together with literature, examples, etc., via the Charity home-

page:

The Ch- Developrnent Group may be contacteci at:

Appendix D

A Simple Parser

This appendix gives a simple expression calculator whose scanning and parsing phases

make heavy use of higher-order datatypa. This example is due to Schroeder and Cock-

ett. The calculator takes a string involving binary addition and multiplication of numbers

0,1,2, . . . (as weU as optional white space), and rems "success-or-faiiure" of an integer

resuit, respecting operator precedence. For example:

Charity>> calculate " 2 + 10 * 4 " .

ss(42) : SF(int)

Chari ty>>

The Marc Schroeder's calculator code is:

rf mPRELUDE.chw. % THE BASIC Rnmmwmm
rf gsyntax-troes.chm. % ROBIN COCKCIT'S PARSINC DTILITIES

(+

THE SCANNER

data le~states -> C = s0 1 si: 1 -> C. O SaWNEEt STATES s0, sl

def char2int: char -> int % CONvER!r ' O * TO O, Erc. ..

= c => C \cO..\c9 =, sub-iat (code c, code \ C O)

I - => O

1
C .

data tokens A -> C = PLUS : 1 -> C

1 TZMES: 1 -> C

1 NUM : A -> C.

def lex: 1 -w rS (char, list tokens int)

% MKEXS FOR NATTJRAL NüEtERS, +, AND +

= (1 =, (1 (s0 , (f, ,)) => tok: c =>

(. \ tu2 => MORE (s0, (f, O))

1 \c+ =w MORE (sO, ((fn: 1 - fa (cons (PLUS, 11, f)) , O))

1 \c+ => MORE (s0, ((fn: 1 => fa (cou (TIMES, 11, f)), O))

1 \CO. .\cg
=> MORE (SI, (f, charlint c))

1 - => FAIL

1 end: se fn ([] , f)

1 (sl, (f , s)) => tok: c =w

{ \d32 5 MORE (sO, ((fa: 1 => fn (cons (NüM s, 11, f)) , O))

1 \c+ => MORE (s0, ((fn: 1 =, fn (cons (NUM s, coas (PLUS, I)), f)), O))

1 \c+ 3 MORE (s0, ((fn: 1 => in (cons (m s, coas (m, 1)) , f)) , O)]
1 \CO. .\cg

=> MORE (SI, [f, add-int (mul,int (s, IO), char2int c)))

1 - => FAIL

1
C

def scan: striag -> SF list tokens int % THE SCANNER PRûPER

= s * pO PARSE (lex, s) .

data oxpr -w C = Add: C * C -> C

I M u l : C * C - > C

1 Val: i n t -> C.

data smstates -> C = psO 1 gsl: 1 -> C . % PARSER STATES ps0, psl

O UPDATE AN INCOMPLETE EXPRESSION TREE WITX A NEW SVBTREE:

def update-expr: tokens i n t * expr + exp (expr, expr) tokens Fnt ->

tokens int expr exp (expr, expr)

{ (PLUS, PLUS) => ((PLUS, val), (fn: e =, Add (fn (val, f) , e)))

1 (PLUS, TIMES) => ((TïMES, val), (fn: e =, fa (Mu1 (val, el, f) 1)

1 (TIMES, PLUS) => ((PLUS, val), (fn: e => Aüd (fn (val, f) , e)))

1 (TIMES, TIMES) => ((TIMES, val), (fa: a = > fn (Muï (val, e), f)))

I - => ((op, vail r f)

def syn: 1 -> rS (tokens int, expr) % A PARSING AUTOMATON

1 end: f f

I end: ss fn (val, f)

de€ parse: list tokeas int -> SP expr % THE PARSER PROPER

(

* THE EVALUATOR

* 1

def evaï: exgr -> iat

Robin Cockett's syntax- trees utillty code is:

Pklcsing usiag 'recursive syntax diagrams'

Author: Robin C o c k e t t

Date: 25 Sept ' 96

Recursive syatax diagrans were invented and wed by W i r t h to

write the syntax of Pascal. The way Ehey are defined here

guarantees an LL (1) (one token look ahead graramar)

and it allows a very simple implementation. Attributes

can be added quite easily after the fact -...

def Id = x => x.

def foldleftCh: C A -> Cl: C list(A) -> c
= (c,L) =) fn(c, (1 1 :) => (fn: X =) X)

def tail: list (A) - l i s t : (A)

= ni1 =, ni1

1 cons(-,L) => La

% Data structures for rocursive syntw diagrams

% After a token is taken in various t u s cap happen

(1) The parser can FAIL

(2) The parser can decide the token is meant for the nexf

garsing stop and it can PASS the token and any structures

it has built forward.

(3) The parser can eat a token and continue asking for MORE

(4) It can recursively cal1 a substructure before contirsuhg

with the parse.

At any stage in the parse one can ask supply a coken (the tok

destxuctor) or see whether one can legally end (the end destructor

M c a t e s the final states) -

data POLLOW(A,R,S) -> C = PASS: A R -> C

1 PAIL: 1 -> C

1 MORE: S -> C

1 RMORE: S exp(R,S) -> C .

% Recursive syntax troos

data C -> rS (A,R) = tok: C -> A => FOLLOW(A,R,C)

1 end: C -> SF(R) .

% An attribute recursive syntax diagraxns aïlows an input attribute to

% transform the diagram (Fnherited attributes and synthesized attributes

% handled in this m e r) .

data C -> rSA(A, R) = rsa: C -a R => rS (A, R) .

% Two basic attribute recursive syntax diagrams

% Failure (always fa1 1s)

def r-L: 1 -> rSA(A,R)

= () =, (rsa:, =w (tok: , => PAIt,end: ff 1) .

% Pass (always passes)

def rSLPASS : 1 -> rSA(A, R)

= () => (rsa:r (tok: a => PASS (a,r) , end: ss r)) ,

% Seguencing rectxsive syntax tree generators:

% When the syntax tree of one ends i t passes the last

% token and the result it i s building to the next syntax tree

% generator.

data SüM(A, B) -> C = b-O : A -w C

(b-l: B -> C.

def seq: rSA(T,R) + rSA(T,R) -* rSA(T,R)
= (p,q) =, (rsa: r *

(1 b-O t => tok: a =>

(PASS(a',rr) => POLLOW(Id,Id6rId,b-1) tok(a8,rsa(r',q))

1 MORE t ' MORE b-0 t'

1 RMORE(t1,c) => RMORE(b-1 el, (fa: r =, b-O fn(r,c) 1)

1 FAIL => PAIL

1 tok(a,t)

1 end: flatte- SFC r =a end rsa(r,q)) end t

1 b-1 t => tok: a => FOLLOW(Id,Id&Id,b,l) tok(a,t)

I end: enâ t

1 1 b-0 rsa (r,p)

1 -

% Kïeene's star operator: regeating an attrribute recursive syntax tree.

% When the tree passes a symbol inmiediately it is donei

% Alternathg over recursive syatax trees:

% If the first syn tw mue fa i l itmneüiately the second i s used.

der ait: rSA(T,R) rSA(T,R) -> rSA(T,R)

= (p,q) =w (rsa: r => (tok: a => (FAZL => tok(a, rsa(r,g))

) z = > z

1 tok(a,rsa(r,p) 1

,end: (ff => end rsa(r,g)

(z = > z

1 end rsa(r,p)

1

% Pars* using an attribute recursive syntax tree:

O The pars* uses a stack of recursive syntw tree generators w h f c h

% it develops every t h it hits a recursive sub-syntw-diagram and

% gops every thne iE fiafshes a parse pushed by a recursive

% sub-syntax-diagram .

O This routine gresents the PASSed values to each member of the stack

% until one of the generators does not sfmgly pass it ou ..-

def use-s tack

= ((a,r) ,St) => ((MORE T* ,St) => ss(T9,St)

% This routine checks that a parse has successfully ended:

% to do t h i s we mst check that what remains on the stack agrees

% that the current state fs a successful end point!

de€ eastack

= (T,St) =>

foldleftC (ss r,c) => end fn(r,c)

I - => ff

) (end T,St).

% The garsing uses a stack (St) to hold the wcontinuationw syntax trees

def PARSE: rS (A, R) * list (A) -> SP (R) list (A)

= (T, L) => ((8s (T, St) , L) => (end,stack(T,St) , L)
1 (- 8 LI => (ff,L) 1

foldleft(((ss :Y, St) , L) ,a) => (MORE T* => (ss (T' , St) , tail L)
1 l?.MORE(T, fT) =, (8s (T,cons (fT,St) 1 , tail LI
1 PASS(a,r) => (ss x => (ss x, tail L)

1 rr =, (rf,~)

) use,stack((a, r) , St)
1 FAlL => (f f , L)

1 tok(a,T)

1 ((ff,L) ,a) =, (ff,L)

The Charity Standard Relude (PRELUDE . ch) is a basic environment of common data-

types and functions.

Index

and, 22

abstract datatypes, 39

categoncal programming, 1

Charity

6rst-order, 5

higher-order, 24

homepage, 83

impiementation, 83

The Charity Development Group, 83

Charïty abstract machine, 64

closures, 65

Iaziness, 65

sharing, 65

state, 65

state transition, 68

circuits, 35

combinator theones, 55

combinators, 18

combinatory logic, 55

fmdamental combinators, 58

translating to, 59

compilation, 66

destructors, 66

map, 68

records, 66

unfolds, 67

constructors, 7

context, 19,58,59

core terni logic, 54

currying. 42

datatypes

coinductive (first-order), 12

higher-order, 2

inductive, 6

syntax, 6,12,24

destructors, 13

execution, 68

exponential, the, 1,25

extended term logic, 54

kt-order vs. higher-order, 2

functionai programming, 1

lambda calculus, the, 1

objects, 39

process, 35

queue, 38

stack, 38

turtie, 3

parametricity, 18

pattern matching, 17.54

record patterns, 18

higher-order, 3 1

processes, 35

variance, 30,47

algebra, 49

anaiysis, 47

CO-, 46

contra-, 46

di-, 46

in-, 47

join, 49

substitution, 49

varity, 47

TEST TARGET (QA-3)

APPLIED IMAGE, lnc
a 1653 East Main Sueet - -. , , Rochester, M 14609 USA -- -- , -, Phone: 71 6/482-0300 --
-7 - - Fm 71 61288-5989

