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Abstract 

This thesis describes the higher-order Charity programming language which is an exten- 

sion of fht-order Charïty. This rcsults from extending the coinductive datatype definition 

mechanism to aüow a new class of higher-order datatypes with parameterized destructors. 

This adds significant expressive power to the language. In particuiar it ailows one to cre- 

ate "‘abjects". The language is "higher-ordei' in the traditionai sense that the exponential 

datatype cm be defined, and so that functions can be treated as values. 

The higher-order extension is traced from the extension of the syntax and the expressive 

gains deiivered to the Charity programmer, down through the innards of the language and 

the modifications required in the implementation. 
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Chapter 1 

Introduction 

1.1 What is Chariîy? 

Charity is a categoricul programming language which isfwictional in style. That is, the 

programming styles of both Charity and the various modem functional programming lan- 

guages (such as Miranda1 [23] or more recently HaskelI [I 11) are sirnilar. However, Charity 

is based on a categorical semantics whereas functional programming languages are based 

on the lambda calculus. This means the fundamental operation in Charity is that of function 

composition, whereas in functional programming it is that of function application. This in 

tum means the exponentiai type (the type of functions) is primitive in functionai program- 

ming languages, whereas it is not in Charity. hstead Charity takes as primitive the nuiIary 

and binary product types and provides a datatype definition mechanism. 

The above distinction has an important consequence: in a functional programming lan- 

guage a function with input values of type A and output values of type B is itself a value, 

with type A -, B -the exponential type? Charity functions are not values. We Say that 

l Miranda is a tdemark of Research Software Limited. 
2 ~ t  is often said thaî functions in functiooal programming ianguages are "fkt-cIass values": they have a 

type, they may be passed as input to and retitrned as output h m  other functions, etc., just lüte other values. 



a language without the exponential datatype is first-order, and with it is highersrder. 

To illustrate, consider the foilowuig function defined in Miranda' 

double:: ( *  -> * )  -> * -> *) 

double f = f . f 

The double function takes a function f as input and r e m s  a new function: the composite 

of f with itselfg. Here * is a type variable. The type of the input is * -> *, and the type 

of the output is also * -> *, so double is a value of type ( * -> * ) -> ( * -> * ) 

overall. Note that double may be applied to itself: 

quadruple = double double 

The double function cannot be expressed in first-order Charity. 

1.2 What is Higher-Order Charity? 

The aim of this thesis is to describe the extension of 6rst-order Charity to higher-order 

Charity* In the new language, as in the originai, the exponential is not provided as prim- 

itive. Instead, the datatype definition mechanism is generaüzed such that a new class of 

higher-order datatypes may be defined. The exponential datatype is one of these, but 

more generaily objects may be defined in the sense of object-onented programming. 

To give the reader a taste of higher-order Charity we show how the exponential datatype 

and the double function can be defined: 

'In hmctioiial pmgramming ierminology, hmctioos taking or reaiming other functiom are d e d  "highex- 
order functions", or "functionalsn, 



clefdouble : exp(A,A) + exp(A,A) 

= un: f) C, C f n : a ~  f fa). 

We also show how to define an objecc a toy 'hirtle" iike that of the logo language. First 

we need a direction datatype (dir) with an element for each direction (N, S, E, IV): 

Next we need a TURTLE datatype-the absmct class of turtles. A tutle c m  be told 

to face in a certain direction or to udvance a number of steps: 

d d t u d e  : 1 + TURTLE 

dataC -+ TURTLE = 

1.3 The Structure of this Thesis 

face : C t dir  + C 
adv : C -+ int C. 

This thesis is divided into two parts: chapters 2 4  discuss the Charity language from 

the user's viewpoint, while chapters 5-7 examine the higher-order extension fiom the 

Nnplementor's viewpoint, tracing its effects d o m  through the various stages of the Ch* 

Last we need a turtle objecf initiaUy at the oagin facing North. The turtle can be 

poked dong by applying the face and adv methods: 



Chapter &An Overview of First-Order Charity We examine the Charïty program- 

ming language before the higher-urder extension. 

Chapter &An Overview of Higher-Order Charity We discuss the generalization of 

the coinductive datatype definition rnechanisrn and examine the resulting changes 

to the language. The exponential datatype and the process datatype, canonical exam- 

ples, are defined. 

. Chapter GUsing aigher-Order Charity The benefits of the higher-order extension are 

explored. This indudes some uses of the exponential, the process datatype, and other 

higher-order datatypa. We discuss how to use higher-order C h e  to d e h e  objects 

and sirnultaneously tecursive func tions. 

Chapter SV8Fiance The higher-order extension introduces "variance" into Char@. 

Variance is defined and variance anaiysis is discussed. 

Chapter b'R811slation We examine the translation fiom the high-level Charity syntax 

as used by the programmer to the low-level representation as used by the Charity 

abstract machine. 

Chapter 74ompiIation and Execution We introduce the Charity abstract machine and 

describe how it evaluates Charity programs. 



Chapter 2 

An Overview of First-Order Charity 

The Charity programming lanpage, before the higher-order extension. is referred to as 

first-order Charity. This chapter presents an overview of this language. Note that higher- 

order Charity is a searnless extension of the first-order fragment and so aï i  the code pre- 

sented here remains valid. 

Charity is based on the theory of stmg categorical datatypes [6, 7 ,  201, a modifica- 

tion of Hagino's categoncal damtypes [9] which are related to the algebraic datatypes of 

modem functional programming languages. Unlike algebraic datatypes, however, the ctass 

of Charity datatypes is partitioned into two duai subclasses: the inductive datatypes and 

the coinductive datatypes. A fomal, type-theoretic definition of Charity is presented in 

appendix A. This is the syntactic frarnework of the language, itself impotent without ac- 

companying datatype de6nitions. Sections 2.1 and 2.2 describe first-order inductive and 

coinductive datatypes, respectively. Additional issues are covered in section 2.3. A cata- 

logue of commonly used Char@ datatypes is presented in appendix B. We wiii introduce 

the language after the higher-order extension in chapter 3. 



2.1 Inductive Dabtypes 

The abstract syntax for inductive datatype definitions is 

In such a definition: 

rn L is the name of the datatype; 

rn A is a tuple (Al, . . . , &) of type variables-the pararnetric variables (m 2 0); 

C is a type variablethe state variable; 

each i is the name of a constnictor (1 < i 5 n); 

each &(A, C) is a type in t m s  of A and C. 

Inductive dennitions deliver the following: 

1. a new m-ary s>pe cowtructor L; 

2. a set of new constructors (see below); 

3. a set of new operations, or combinators (see below). 

Inductive datatypes are also known as 1efl datatypes. or initial datatypes. 

One example is the datatype of h i t e  lists, defined in terms of the nuiiary product data- 

type 1 and the binary product datatype - x : 

data list (A) + C = niZ : 1 + C 
cons: A x C  + C. 



As stated above, an inductive datatype definition delivers a set of constructors. To obtain 

the types of the constructors one simply replaces the state variable in the datatype definition 

with the datatype itseif (ie. substitute L(A) for 0: 

Values of type L(A) are built up by constructors: Given data of type A and, recursively, 

of type L(Aj, we c m  apply consmctor q to obtain data of type L(A). Note that values of 

inductive datatypes must be finite. 

The constructors for Ikt are 

nil : 1 + list(A) 
cons : A x list(A) list(A) 

is a value of type list (int). Chanty provides an alternative list syntax: 

2.1 3 Inductive Combinators 

In addition to the constructors, an inductive datatype definition delivers three operations 

over its values. These are the fold, the case, and the map. Note that fold is the fundamental 

operation, that the other two are speciai cases, and that they can be expressed as such. The 

case and the map are deiivered as distinct operations due to their extreme usefulness and 



importance. 

Combinator 1: Fold 

Fold is the destructive operation for inductive datatypes: inductive values are constructed 

ushg constructors and are processed using the fold. 

The type of fold is: 

where each function between ( and ) is a phrase by which foldL is parametrized. Note that 

the type of fold is given exactly by its correspondhg datatype definition. A special "barbed 

wire" syntax is provided to the programmer: 

The behavior of fold is given by its denning cornmutirtg diagramr, one for each con- 

s truc toc 

The diagrarns express the identities and uniqueness properties necessary to both reason 

about and evaluate fold expressions [25, 271. Here, the identity states that constnicting 

a value of type L(A) and then destruchg it is equal to recursively destnicting its sub- 



components, and then applying the phrase. We draw a dotted map to express that it is 

unique. The uniqueness property States that given any h such that ci; h = Fi {lA, h); fi, 

then h = f d d L {  f i ) .  

The datatype of natural numbers is given by: 

and has constructors: 

data nat -+ N = 

zero : 1 + nat 
SUCC : nat --+ nat 

zero : 1 + N 
SUCC : N -. N. 

(ie. zero, succ zero, succ succ zero, . . . , are the values of type nat). We may use the 

fold to add natural numbers: 

zero : ) n def add : nat x nat + nat = (m, n) c, 
succ : r succr 

Note that fouMt is essentiaiiy a for Ioop. 

Fold is a generalization of the f old (or f oldr) recursion functional for iists 141, and is 

often referred to as the catamorphism functional in the functional programrning iiterature 

113, 141. We also say fold is the 44structured recursion operatoi' for its corresponding 

datatype: one employs it to implement functions which recursively consume the values of 

that datatype. 

Combinator 2: Case 

Case is the nonrecursive speciaiîzation of fold. M m  intuhively, it is the conditional oper- 

ation for inductive datatypes. 

The type of case is: 

 case'{^^(^, L(A)) + C,. . . , F,(A, L(A)) * C) : L(A) + C 



A special bmced syntax is provided: 

The behavior of case is given by its definhg cornmuting diagrams: 

As nat is recursive its main operation is the fold, but the case is also useful. Consider 

the 2sZero function: 

zero true def isZero : nat bool = n H 
succ- H fuke 

The datatype of booleans is given by: 

Altematively, a shorthand syntax may be used: 

data bo l -+  B = true 1 fake : 1 t B. 

As bool is not recursive its main operation is the case. We can use it to express aii the 

boolean operations, such as n d  and or: 

de€ not : bool+ b o d =  b I+ 
true H f&e 
fdse H true 



def or : bol  x b o l  + bool 

One may express these functions more concisely using pattern matching (section 2.3.1). 

Note that casehoL is more comrnonly known as the if-then-else conditional. 

Combinator 3: Map 

Map is another speciaiization of fold, used to 'W a function: 

to a function over a parametric inductive datatype L. Specifically, the type of map is: 

A special syntax is provided: 



The behavior of map is given by its dennllig commuting diagrams: 

For example: 

list {hZero) [succ zero1 zero7 svcc succ zero] --t m e 7  true, fakre] 

Map is a generalization of the map functional for lists 141. 

2.2 Coinductive Datatypes 

The absnact syntax for coinductive datatype dennitions is: 

Coinductive definitions deliver the foiiowing: 

1. a new m-ary type constructor R; 

2. a set of new destructors (see below); 

3. a set of new combinators (see below). 

Coinductive datatypes are ako known as right datatypes, orjinal datatypes. 

The datatype of infinite lists is given by: 



datac --+ inpLst(A) = head : C -+ A I tail : C + CI 

2.2.1 Destructors 

To obtain the types of the destructors one simply replaces the state variable in the datatype 

definition with the datatype itself: 

Values of type R(A) are broken down by destructors: given data of type R(A), we c m  

apply destmctor 4 to obtain data of type A and, recursively, of type R(A). Note that values 

of coinductive datatypes may be infinite. 

The destructors for inflist are 

head : inflist(A) + A 
tail : inflist(A) + injXst(A) 

2.2.2 Coinductive Combinators 

In addition to the destnictors, a coinductive datatype definition delivers three operations 

over its values. These are the mfold, the record, and the map. Here, the unfold is the 

fundamental operation and the other two are special cases, but they are delivered as distinct 

operations due to th& usefulness. 



Combinator 1: Unfotd 

Unfold is the constructive operation for coinductive d a m e s :  coinductive values are con- 

structed using unfold and are processed by applying destructors to them. Unfold is the 

stnictiired recursion operator for its corresponding datatype. 

The type of unfold is: 

Note that the type of unfold is given exactiy by its corresponding datatype definition. A 

special "banana" syntax is provided to the programmer (note that the v,  common to each 

phrase, has been factored out-the corresponding & are referred to as the threadr of the 

unfold): 

The behavior of unfold is given by its de6ning commuting diagrams, one for each 

des tructor: 

4 4 

unfoldR{ fi): f&{l~, unfoldR{ fi)) . 

As for fold, the diagrams express the identities and uniqueness properties necessary to both 

reason about and evaiuate unfold expressions. 

We can use the unfold to construct inhite lists, such as the inhite list of positive 

integers: 



a head : i d e f i n t s z l  - t i n f l i s t ( i n t ) = ( ) ~  i e  tail : i + l D 
This evaluates to 

ints - (head : O ,  tail : . . .) 

-+ (head : O ,  tail : (head : 1, tail : . . .)) - (heud : O ,  tail : (head : 1, tait : (head : 2 ,  tuil : . . .))) 

where each subsequent step has to be explicitly requested by "poking" the unfold with 

destructors. 

Unfold is a generaiization of the un£ old recursion functional for lists', and is often 

referred to as the a~morphism functional in the functional programming literature [ 13,141. 

Combinator 2: Record 

Record is the nonrecursive specialization of unfold. More intuitively, it aUows terms to be 

grouped into a structure. In practice, for nonrecursive coinductive datatypes it is the main 

consmictive operation. For recursive datatypes it is used to constmct a new value from an 

existing value. 

The type of record is: 

A speciai parenthesiseci syntan is provided: 



The behavior of record is given by its defining cornmuthg diagrams: 

4 
R(A) - &(A, R(A))  

A 

The datatype of triples is given by: 

data T + triple(A, B, C )  = 

As triple is not recursive, its main operation is the record. We can use it to construct 

triples. We cm then destnict them by applying projections, as in: 

projo : true ) - 42 
projz : "Deep Thought? 

The above record syntax is equivaient to writing 

(projo : true, profi : 42, projz : "Deep Thought") 



Combinator 3: Map 

A map, of the same fom as the rnap for inductive datatypes, is provided for coinductive 

datatypes: 

m a p R { ~  --+ B) : R(A) + R(B) 

The behavior of this map is given by: 

2.3 Other Aspects of Charity 

W e  conclude our o v e ~ e w  of first-order Charity with a short survey of some other aspects: 

pattern mutching, combinators, c o n t a  and # and @. 

23.1 Pattern Matching 

Much as do modern functionai programming languages [17, 16.23, 11. 181, Charity sup- 

ports pattern matching [21,22]. An abstraction 



generaüzes to a pattemed abstraction 

ie. a non-empty Iist of cases, where a case is a pattern-term pair. When applying a pattemed 

abstraction, is evaluated if and only if pi is the first pattern which '4matches" the input. 

Charity patterns must be complete in the sense that aU functions must be total. 

A canonical example of pattern matchhg is the boolean binary operator or. It was 

expressed without pattern matching in subsection 2.1. Note in the original version the pro- 

grammer must explicitly decompose and test input using a tree of cares. Pattern matching 

makes case selection implicit. With pattern matching or simplifies to 

def or : bool x b o l  bool 

= valse, f&e) fuke 
1 -  true. 

The example above illustrates pattern matching over pairs and inductive values. One 

can also pattern match over coinductive values using record patterns. For example, the 

following function tests whether ai l  three elements of a triple are 0: 

def all-0 : tripZe(int, int, int) -+ bool 

= (projo :O,projl : O,projz :O)  C, true 
I - jabe. 

23.2 Combinators 

When denning combinators (functions), one may parametrize them by other combinator 

expressions. For example, consider the filter function over iists parametrized by an element 



Above, p is afwiction variable. When applied, filter is supplied with an acîualfunction, 

as in: 

füter{isEven) [l, 2,3 ,4 ,5 ]  - [2,4] 

where 

def isEven = x H eqht(x mod 2,O). 

2.33 Context 

A term exists within a context: the scope of dl variables bases (or patterns) which can bind 

its frre variables. For this reason combinators accept a context a as an additional input to 

be supplied to its parameters at application the.  This detail is hidden fiom the programmer 

but it does affect the naive defining diagrams given in sections 2.1.2 and 2.2.2. The revised 

versions appear in figures 2.1-2.6 starting on page 20. The revised types appear below: 

foldL{. . . ,&(A$) x a + C a . .  .) : L(A) x a C 

caseL{. . . , &(A, L(A))  x o + C,. . .) : L(A) x o 4 C 

ma#(A x o + B) : L(A) x cr + L(B) 
unfoldR{. . . , C x o &(A, C), . . .) : C x a + R(A) 

recordR{. . . , o + Fi(A, R(A)),  . . .) : o + R(A) 

mapR(A x a -+ B) : R(A) x o + R(B) 

Context passing. or snengthening, is a central aspect of the theory underlying Charity. 

It is discussed from a formal standpoint in [6,7,20], and h m  an intuitive one in chapter 6. 



Figure 2.1: Fold with context. 

Figure 2.2: Case with context. 

Figure 2.3: Inductive map with context 



- Fi(Ay C) x a 
(fi, PI) 

Figure 2.4: Unfold with context 

Figure 2.5: Record with context. 

Figure 2.6: Coinductive map with context. 



Charity supports two special Ydentifiers": the # variable inside foltir and the @ function 

inside wifoldF. 

The # ("hash") allows one to read the value being destructeci Uiside a fold. In functional 

programrning terminology, it ailows the expression ofparnmorphisms [13]. Consider the 

dropwhile function which traverses a list fkom left to nght, dropping elements until they no 

longer satisfy a predicate: 

def dropwhile {pa : A + bool) : list (A)  + list (A)  

At any point during a fold the # represents the value being destmcted (by the fold be- 

fore it has been recursively applied). GeneraUy for an inductive datatype L, # has type 

&(A, L(A))  for each of the i phrases of the fold. T'us,  in our example above, the fold 

proceeds through the list from left to right recursively dropping each value until the pred- 

icate faüs. At this point we reach a base case and r e m  whatever is left of the list being 

processed. 

Dropwhile is expressible without # in Charity, but rquires a more complicated fold 

state involving the product datatype. 

The # d o w s  one to cast the fold operation as the case operation-its non-recursive 

special case-simply. For example, casing over lists: 

The @ ("at?) ailows one to write the value being constructed inside an unfold. It's 

function is dual to that of the #. Consider the pwhdown hinction which inserts a value into 



an ordered infinite list, preserving the ordering: 

D (head t, tail L )  . 
truc * Q(hmd:d, tuü:L8) ) a < A a l  

c, ( h a d  LI, taii il) 

Here, once the value has been inserted hto the infinite list, the remainder is simply the 

infinite list (head : a', tail : 1') and so we produce it directly instead of producing a new 

state and recursively applying the unfold. Naively, the type of @ may be considered to be 

R(A) -, C (although there is a complication). 

Pushdown is expressible without @ in Charity, but requires a more cornplicated unfold 

state involving the sum datatype (or coproduct datatypesee appendU B). 

Note that 8 also allows one to cast unfolds as records-again its non-recwsive specid 

case. For example, the following is the infinite list O, 0,1,2,3,4,5, . . .: 

head : O 

tail : @ ones D 
Besides the expressive gains delivered by # and Ci?, each reduces the complexity of code 

and therefore some computational overhead. There is another efficiency issue: in the case 

of the # an optimizing translation could eliminate unnecessary recursion when a premahire 

# base case is reached. The typing of # and @ is discussed in [24]. 



Chapter 3 

An Overview of Higher-Order Charity 

The Charity programming language, after the higher-order extension, is referred to as 

Ngher-order Charïty. This extension is a generaiization of the coinductive datatypes. As 

such, the presentation here follows that of section 2.2 in the previous chapter: section 3.1 

describes higher-order coinductive datatype definitions, and is succeeded by sections 3.2 

and 3.3 which discuss the correspondhg destructors and combinators, respectively. Sec- 

tions 3.4 and 3.5 discuss pattern matching and context issues. The exponential and process 

datatypes are used as nuuiing examples throughout, and more examples will be presented 

in the next chapter. 

3.1 Higher-Order Coinductive Datatypes 

The absmct syntax for higher-order coinductive datatype definitions is 



In such a definition Ej(A) is a type in terms of A. The syntax allows the introduction 

of destructors both of the original 4 form and of the new dj  fom. AU the 6rst-order 

coinductive datatypes are maintained sirnply by not using the d, form. 

The syntax is syntactic sugar. In fact, the system r d  

The above syntax is used as it is more consistent with both the original coinductive datatype 

syntax and the higher-order unfold syntax introduced in section 3.3. 

The fkst and simplest of the higher-order datatypes is the exponential datatype: 

The type -(A, B) is the type of total hinctions fiom type A to type B, and is often written 

asBA oras A +  Bintheliterahire. 

Another Mgher-order datatype is the process datatype: 

The type proc(A, B) is the type of total processes with input space A, output space B, and 

state space C. 

The exponential and particularly the process datatype are discussed in more detaii in 

chapter 4. 



3.2 Destructors 

The destructors for a higher-order coinductive datatype are 

The main idea of the higher-order extension is that the coinductive datatypes are general- 

ized such that destruction is pararnetrized. 

The destnictor for exp is 

The fn descnictor applies a function f of type -(A, B) to an input a of type A, yielding 

an output b of type B: 

In(a,f) - b 

The destnictor for proc is 

Similarly to the above, pr applies a process to an input, yielding an output Additionally 

the intemal state of the process changes and the process evolves. 



3.3 Combinators 

Combinator 1: Unfold 

The type of unfold for higher-order coinductive datatypes (ignoring context) is 

unfoldR{c + F;.(A, C), . . . , Ej(A) x C + Fj(A, C)) : C + R(A) 

The syntax is: 

Note that the thread associated with 4 is a term as before. while the thread associated with 

di is afwiction. The input to this function is supplied at destnict-tirne. 

The commuting diagrams for the 4 are as given in chapter 2. The diagrams for the dj  

are as given here: 

As exp is nonrecursive its unfold operation is quivalent to its record operation. How- 

ever, proc is recursive and provides an example. First, we need the "success-or-failure" 

datatype-the datatype of exceptions: 



Now consider the foiiowing delay function: 

del delag : ànt + pmc(A, SF(A)) 

Kn the above code rep : int x A -+ lZst(A) is the repeat function which produces an 

xelement list of ff's and + : list(A) x list(A) list(A) is the append function which 

concatenates two lists. A process may be considered a function with memory. The delay 

function builds a delay process of length x. The initial state of the delay is "empty". ie. it 

is stocked with ff 's. At destxuct-time input is supplied at one end and output arrives at the 

other. The output must have first flowed through the delay. Note that the nil case above is 

never taken, but is required for completeness. 

Combinator 2: Record 

The type of record is 

The syntax is 

Again, the commuting diagmms for the 4 are as given in chapter 2. The diagrams for 



the d, are as given here: 

E,(A) x 1 

SpecialiPng from above, we obtain the type and diagram for record-: 

A x l  

The record- combinator introduces values of type exp(A, B)-the combinator en- 

capsulates a function f : A -+ B as a term of type exp(A, B). 

Consider 

def prd : 1 + ezp(nat, nat) 

zero zero 
succn n 

r d  - (jn : (function)) 



and 

fn(succ succ zero, prd) - succ zero 

Combinator 3: Map 

The map combinator is the one most heavily aEected by the higher-order extension. We 

devote chapter 5 to this aspect of the extension-variance-but introduce it here. 

Recall that forfirst-order Charity map lifts a function 

to a function 

mapR{ f) : R(A) + R(B) 

For higher-order Charity, generally, the situation is more cornplex: it lifts a pair of func- 

to a function 

The syntax is 



The diagrams for the d, are 

where 

f = f + : A + B &  f - : B + A  

The idea is that as destructors consume additionai input (in the E, component) as weli 

as produce output (in the Fj component), we must both preprocess the input with f - and 

postprocess the output with f + when mapping. As will be explained, the type of mapefP is 

3.4 Higher-Order Patterns 

The higher-order extension affects pattern matching in one important way: we may use 

higher-order record pattems. For example, consider the composition function which 

takes two fïrst-class funçtions (with suitable types) and retums their 6rst-class composite. 

W h u t  higher-order record patterns we write 

Wth them we s imple  to: 

defcomp : exp(A,B) x exp(B,C)  + = p ( A , C )  

= ((fa : f),(fi : g ) )  ct ÿn : U H  gfa). 



Here f and g are jùnction variables. 

Generally, higher-order record patterns are of the fom 

where f is an identifier. Higher-order record patterns were developed with Charles Tuckey 

and the implementation details are given in [22]. 

3.5 Combinators with Context 

The commutative diagrams for unfold, record, and map given in this chapter must deal with 

context Figures 3.1-3.3 complete the naive diagrams given thus far. 



Figure 3.1 : Higher-order unfold with context 

Ej(A) x O 

Figure 3.2: Higher-order record with context 

Figure 3.3: Higher-order map with context. 



Chapter 4 

Using Higher-Order Charity 

In the previous chapter we defined two important higher-order datatypes: the exponential 

datatype of functions and the datatype of processes. These are two higher-order datatypes 

among many. In this chapter we continue to illustrate the higher-order extension and the 

expressive gains delivered by presenting more examples ushg these two datatypes, and 

also by introducing others. 

First, the process datatype is studied in greater detail in section 4.1. Then it is shown 

how to express stackr and queues in higher-order Charity in section 4.2. Generally, the 

higher-order extension aliows one to express objects in the sense of object-oriented pro- 

gramming. Rocesses, stacks, and queues are some specific examples. The correspondence 

between higher-order Ch* and object-oriented programming is discussed in section 4.3. 

The exponential datatype may be used to write simultaneously recursive functiom, and 

even to reaiize an efficiency gain. This is dernonstrated in section 4.4. It is shown how to 

implernent a simple parser using higher-order datatypes in appendix D. 



4.1 Processes 

In [12] a technique for modeling processes as circuits is descnbed. A circuit is, informaliy, 

an object with input space A, output space B, and state space C, represented diagrarnmati- 

c d y  as: 

Each circuit is provided with a method p: 

That is, circuits mode1 processes as they consume input, produce output, and have an inter- 

na1 state which aüows them to evolve over time as they are invoked. 

We cm mode1 processes in higher-order Charity the same way using the process data- 

type: 

dataC+proc(A,B)=pr:C+A+Cx B. 

The above is reminiscent of the exponentid In fact, r o c  is a genemhation in that ezp is 

r o c  where C is specialized to 1. In other words, as exp is nontecursive one may generalize 

it to proc by adding a state C, thus making it recwsive. We say that processes are functions 

"extended in tirne". 

The foilowing examples use the semicolon syntax which expresses the composition of 

two functions: 

u ~ t ; f  = ~ ~ f t  

Process building operations can be implemented using the unfold. For example, we can 

compose processes (ie. wire them in series) much as we cm for functions: 



We cm also define other "wirhgs": the identity wire, the split for branching, the wire- 

pair twist, a multi-wire exchange ex, and a feedback Ioop fi. 



def fo : proc(d x C, B x C) x C -+ pro@, B) 

def nor : 1 + proc(int x int, int) 

We can deme a basic RS-fiipflop: 

def &$op : 1 + proc(int x int, int x int) 

= () H jb(ex; ; ((nor; ; split) 11 (nw; ; split)); ; ex; ; (ubel  (twist), (1,O)). 

The above examples dernonstrate that we can build complex processes fiom simpler 

ones according to a type discipline. It also shows that we can use higher-order Charity to 

mode1 hardware, 

Note that proc is the datatype of total, deterministic processes. We can also define the 

datatype of partial processes (ie. processes that cm teminate): 

data C + Pproc(A, B) = Ppr : C + A SF(C x B). 

and the datatype of nondeterministic processes (ie. processes that can evolve in more than 

one way) : 

data C + NDproc(A, B) = NDpr : C -+ A +list(C x B).  



4.2 Stacks and Queues 

Stacks (LIFOs) and queues (FIFOS)~ c m  be specified using the sarne bigher-order data- 

type: 

data C + storage(A) = write : C + SF (A)  + C 1 read : C + SF(A) x C. 

The destructors delivered are 

write : SF(A) x storage t starage 
read : &orage + SF(A) x stmage 

The idea is that one rnay wnte an element to the stacwqueue object thus obtalliing a 

new one (the ff case empties the object), and one may read an element f2om the object 

again obtaining a new one (the ff case indicates the object is empty). 

Stacks and queues are implemented using diffecent unfolds: 

defstack : 1 +storage(A) 

defqueue : 1 +storage(A) 

1 write : 1 * l+ O 
s s a  ct I=tt[a] 



Note that even though write and read are dual (ie. their types are symmetnc) it is 

not guaranteed that they are inverses. Such propositions about the sensible behaviour of 

implementations must be proven. 

4.3 Objects: Towards Object-Oriented Programrning 

Objects, in the sense of object oriented programming [Il, can be expressed in higher-order 

Charity. We have already seen some examples: turties, processes, stacks, and queues. 

This section makes some general observations about the relationship between higher-order 

Charity and object-onented programming. 

AU the preceding datatype dennitions are specijcatiom of abstract datatypes. Their 

values, as generated by unfolds, are implementahons. Abstract datatype specifications are 

presented algebraicaiIy, and consist of thnx components: 

1. the name of the îype; 

2. the îyped operations for this type; 

3. the equations these operations m u t  satisfy. 

A higher-order datatype definition declares the 6rst two only. The unfold then defines how 

the first will be represented intemaiiy, and how the second will manipulate that concrete 

representation. The third component-the equations-are not fonnulated in Charity. In- 

stead, it is the programmer's job to state them at the meta-level and then to prove that the 

implementation satisfies them. 

Generaiiy, the operations of algebraic specifications are not restricted in their typing. 

Higher-order datatypes are restricted, however, in that the state variable must occur exactly 

once in the domain of each destructor. For instance, one could not specify an abstract data- 

type of sets in which union and intersection were provided as operations, as each requires 



a pair of sets as input. However, the "simple" abstract datatypes specifiable via the higher- 

order datatype definition mechanism do represent a Bgnificant increase in expressive power 

as they correspond to objects in the sense of object oriented programming. The foiiowing 

table illustrates the relationship: 

1 ADT OOP 

datatypz = abstractclass 

unfold (not applied) E class 

unfold (applied) = object 

state - - - state 

destruc tor - - - method 

That is, to define an (abstract) class we define a higher-order datatype. Objects are 

values of that type. There are two essentid facets of objects: they have an internai state, and 

they are intenicted with excIusively via their methods. The state of an object is simply the 

state over which we unfold, and the methods for querying and manipulating the objectktate 

are destructors. The unfold ensures that the intemal state is hidden, thus guaranteeing 

proper data abstraction and modularity. The one centrai ciifference between traditional 

object oriented programming and higher-order Chariy is that we currently lack inheritance 

and a class hiefarchy. 

4.4 Simultaneously Recursive Functions 

Recali that fold is the stnichired recursion operator for inductive datatypes: It is used to re- 

cursively process a finite value. O h ,  however, one wishes to recursively process multiple 

values simultuneofcsly. In functional programming languages this is accompliîhed using 

general recursion. For example, consider the min function which cornputes the minimum 

of two natural numbers expressed in Miranda: 



min:: num -> num -> nurn 

m i n r n n = m i n ' r n n  
where 

minf O Y = rn 
minf x O = n 
minf (x + 1) ( y  + 1) = min' * Y 

This function recurses sirnultaneously over each of its two inputs until one reaches its 

base case. The Grst to "bottom out" is the minimum, so the computation wiîl terminate in 

the  proportional to the smaller. 

The min fwiction cm also be expressed in first-order Charity but it can not use such a 

straightforward algorithm. This is because fold is singly recursive. Instead, one subtracts 

the second input fiom the ht. If the resuit is zero then the first is smaiîer, ouienvise the 

second is smaUer. Of course, this subtraction is implemented via a fold and so it must 

arbitrarily choose which of the two numbers to fold over. If the larger is chosen then the 

computation will terminate in time proportional to the larger. 

One cm express simultaneously recursive fiinctions in higher-order Charity with the 

help of a p .  This technique was discovered independently by Meijer [15J. 

4.4.1 The Mïnimum of ' h o  Natural Nurnbers 

We implement the original min algorithm in higher-order Charity: 

def min : nat x nat -+ nat 

That is, we fold over rn to produce a nested function-of type ezp(nat, nat)-and 

apply that function to n. The n drives the nested function, removing a Iayer of nesting each 



time it is decremented. Whkh bottoms out first indicates which number is the smaller. 

Note that, essentiaiîy, we have solved the problem of simuitaneous recursion versus singly 

recursive folds by currying. 

Note also: the tmnslation function (chapter 6) is currently unoptimized, so the fold 

eagerly cornputes the entire nested function before appiying it to n, even though the succ 

phrase contains an early base case. An optimized translation proposed by Robin Cockett 

as yet unimplemented will eliminate this problem, allowing the computation to terminate 

with tirne always proportional to the smaller input. 

The "Zip" of ' h o  Lists 

The min function scales up, fkom nat to list, as the z ip  function [4]. This takes a pair 

of lis6 and rems a list of pairs, where the elements of the k t  two lists have been paired 

component-wise. The length of the resulting list is equal to the length of the shomr input 

list as extra unpairable components are dropped. A g a ,  this operation is expressed using 

simdtaneous recursion in a functional language and so can be expressed in higher-order 

Charity using the exponential: 

d d  z ip  : list(A) x list(B) --+ h t ( A  x B) 

The ability of higher-order Charity to express simultaneously recursive functions is not 

only usefui for nat and list, but generally for ail recmive inductive datatypes. Consider 

that two elements of any inductive datatype can be tested for structural equality* This test 

is a simultaneous recursion over the two elements. For instance, an inductive tree datatype 

can be defined in Chadty: 



data tree(A) + C = leaf : A + C 
J n d  : C x C  -t C. 

W e  can test trees for equality as foiiows: 

leaf : a +b (fi :l !"f " e q ~ ( & d )  ) 
* fobe 

= (tl?t2) - fii(t1, 
nodc : ( )  ,+ (fi:I - ~ & ( h ' )  * a " d ( f r l . f ~ r )  

fnbe 



Chapter 5 

Variance 

First-order Charity's type variables can only occur covariantly. The higher-order extension 

generalizes datatypes so that their pararnetric type variables may occur both covariantly 

and contravariantly. In this chapter we dehe these terms and discuss variance analysis. 

The concepts of duality and variMce corne from category theory ([26,3,8, 191, etc.): 

datatypes are modeled by functors. Duality is a form of symmetry which manifests itself as 

variance in parametnc datatypes, in this case the symmetry between input (contravariance) 

and output (covariance). VUiance with respect to datatypes was studied by Hagino and used 

in his categorical programming laquage 191, and generally by the functional programming 

community [13, 141. 

5.1 Variance Basics 

Ln this section we explore the concept of variance starting with some examples. 



5.1.1 Distinct Input/Output Qpe Variables 

Consider the exponential datatype: 

The parametric type variable A occurs in an "input' position and the parameaic type vari- 

able B occurs in an "outpuf' position. That is, an A is comumed at destxuct-tirne, w M e  a 

B is produced. 

How does one map over exp? Clearly one uses the rnap combinator: 

but how are the parameters filied in? Viewing a value of type -(A, B) as an object, we 

draw: 

To rnap this value to a value of type ezp(C, D) we "wrap" it between preprocessing and 

postprocessing func tions: 

Pre : C + A  
post : B -+ D 

to obtain: 

Thus, to rnap over ezp one uses the map combinator: 

map"{C --t A, B -+ D )  : -(A, B) ezp(C, D) 

which encapsulates the input function between preprocessing and postprocessing functions, 



yielding the output func tion. 

Expressing the map as a record we cm write: 

def map-ezp{pre, post ) = f ct un : c c) ps t  fn(pre c, f )). 

5.1 Nondistinct Input/Output Q p e  Variables 

Next, consider the storage datatype: 

dataC -+ storage(A) = write : C + SF(A) + C  1 reod : C -+ SF(A) x C. 

Here. the parameuic type variable A occurs in both an input position ( w i t e )  and an 

output position (read). 

To map over storage one uses the map combinator: 

where its single parameter has both a preprocessing function and a postprocessing function. 

This combinator encapsulates the input stacwqueue behind a read/write front-end. 
Expressing the map as an unfold we can write: 

m i t e  : ict unite(SF{prwrite)i ,s)  

read : SF{postread) read s 

Note that p o s t m d  and preurite need not be inverses. 

A (saictiy) output type variable is caUed a covariant panuneter, a (suictly) input type 

variable is c a e d  a contravariant parameter, and an input/output type variable is caiied a 

divariant parameter. The Iast possibility is that a type variable is introduced but not used 



in a datatype dennition. In this case it is neither an input nor an output variable and is 

calied an invariant panmeter. W e  denote these four possible variances using the symbols 

+, -, *, ? respectively. 

When a datatype R is defined variance analysis must be performed, as: 

1. the type signature of mapR must be calcuiated, and 

2. R is invaiid if its state variable C occurs contravariantly or divariantly. Otherwise 

one could define such undesirable types as 

data C -+ foo = bar : C -t exp(C, C). 

or, equivalently, 

data C + foo = bar : C -r C =+ C. 

To see the problem consider the typings 

unfoidf"(~ x C + C) : C + foo 

bar : f o u  x foo + foo 

When applying bar one must pass in a value of type foo, but this violates the hiding of 

the intemal state C of the unfold. Additionaiiy, the foo datatype models the untyped 

X-calculus. 

Fomaily, each type variable A which occurs in the definition of a datatype R is assigned 

a varfance vR(A) E {+, -, *, ?). The variance-arity, or varïty of a datatype R States the 

assignment of variance to each of its parametric type variables. We write: 



Viiriance analysis is the calculation of V (R) and uR(C). 

5.2 Examples 

Charity provides two fundamental builtin type constmctors for finite products. We state the 

varity of each: 

As stated above, input types are contravariant while output types are covariant. Naively, 

this says type variables are contravariant if they occur to the left of +, and are covariant 

otherwise. Thus one would expect the following va&ies: 

V(ezp) = [-7 +] 

V (proc) = [-, +] 

V (storage) = [*] 

Consider the datatype: 

data C + stmnge(X, Y, 2) = str : C exp(exp(X, Y), 2). 



What is V(strange)? Anythuig to the left of a + would be in a position of negative (-) 

variance. However, in this case everything is in a position of positive (+) variance. But: 

V (ezp) = [-, +]. This means Z occurs in a position of positive variance, but e q ~  (X, Y )  

has been substituted into a position of negative variance. This has the effect of tiipping its 

varity so that X sits in a position of positive variance, while Y sits in a position of negative 

variance. That is, V(strmge) = [ f i  -, +]. 

5.3 Formalizing Variance 

The variance algebra is the triple (v -, V) where 

V = {+, -, *, ?) is the set of variances; 

(-) : V x V -+ V is the substitution operation given by: 

(v) : V x V + V is the join operation given by: 



No te: 

(V, 0) forms a commutative monoid with identity +. 

(V, V) forms a commutative monoid with identity ?. 

0 V forms a lattice: 

The substitution operation says how to "£iipW a variance VI when it sits in a position 

of variance v2. The join operation says how to combine variances vl and v2 when a type 

variable occurs once in a position of q variance, then again in a position of v2 variance. 

W e  lift the join operator to varities: 

We may read a varity v' at index h: 

Gl 

W e  may also update a vanty with u at index h: 



returning the new varity. 

Given the generalized form of a coinductive datatype definition: 

the variance analysis algorithm is as shown in figure 5.1. 

data A. + R(A1, . . . , &) = 

where 

d j  : A. + Ej(Ai7 .. . , Am) =+ e ( A a , .  . . , Am) 

Figure 5.1 : The variance analysis algorithm. 

That is, A steps through each destnictor checking its Ej component (if present) and F j  

component The Ej sits in a position of negative variance whiie the Fj sits in a position of 

positive variance. Initially we h o w  nothing about the variances of their variables and set 

them to [?, . . . , ?]. The C function returns this vector, updated with the variances for each 

of the type's variables. Note that the vectors obtained from each Ej and Fj must be joined. 

The C function descends recursively through a type expression and determines the vari- 

ance of each of its variables. In the recmive case for the constant type T we retneve its 

varity, then descend through each of its subexpressions. At each step T sits in a position 

of v variance, so each of its subexpressions si$ in a position of v - uhi variance. A joui of 

the vectors obtained fkom each subexpression must then be fomied. In the base case for the 



variable type Ah we set its variance to be that of the position in which this occurrence sits 

(later join operations may merge this variance with the variance of other occurrences). 

Now R is valid if: 

A(R)[O] = ?  or A(R)[O] = + 

Inductive datatype definitions also require variance analysis, and algonthm A extends 

to them in the obvious way: there is no Ej component to check. 

5.4 Variance and the Map Combinator 

Given a valid datatype R, the type signature of its map combinator is obtained from V (R): 

mapR{s1, . . . , Sm) : R(AI , .  . . , A,) --+ R(&, . . . , B,) 

where each type signature Sh is: 

When mapping the variance information indicates which phrase (the covariant or the 

contravariant) to apply. "Atomic" maps of "compound" types are expanded to "compound" 



maps of "atomic" types: 

where 

and 



Chapter 6 

Translation 

Charity has three distinct notations, each residing at a different level of abstraction. The 

highest, as introduced in chapters 2 and 3, is the extended term logic which is usehl for 

programrning. Next, also previously discussed, is the core term logïc which is used as 

an intermediary representation. The lowest is the combinatory togic which is usefui for 

evaluation. In this chapter we discuss these representations and the translations between 

them. 

6.1 The Extended and Core Term Logics, and the Trans- 

lation Between Them 

The core term logic is a special case of the extended term logic: it's the latter minus pat- 

terns. For the first-order fragment it's the notation as introduced in chapter 2 discounting 

section 2.3.1. For the higher-order extension it's the notation as discussed in chapter 3 dis- 

counting section 3.4. The core terrn logic is described in [7, 51. The extended term logic 

was ûrst proposed in [21] and is fully described in 1221. 

The translation m m  extended to core tenn logic is known as "pattern matching". As 



previously illustrateci, one may express a Charity function as a list of cases where a case 

is an input pattem followed by a term. The case to be taken is the fkst one whose pattern 

matches the input. The pattern matching algorithm translates such "patterned" hinctions as 

a me of nested case functions. thus making the case selection process explicit. 

The higher-order extension has little effect on pattern matching and the precise algo- 

rithm is beyond the scope of this thesis. [22] provides a detailed description. 

6.2 The Combinatory Logic 

The tem logic is a "variable-ful" notation. One could evaiuate it directly, but then one 

would have to deal with variable substitution 121. Instead, we translate the temi logic to a 

"variable-less" notation-the combinatory logic. r6.5, 20, 27, 251 also deal with Charity 

cornbinators. 

A combinator theory consists of a system of types, a set of aromic combinators. a 

system for building compod  combinator expressions, and a set of equations between 

combinator expressions. 

A set of type constructors (with 6xed arities. or kinindr) generates a system of types. ie. the 

set of terms of the fm algebm For example: 

generates types such as: 



6 3 3  Atornic Combinators and Compound Combinator Expressions 

A combinator is a function nom one type to another, paramecric about other functions. 

Compound combinator expressions are buüt from atomic combinators of the fom: 

where 

c is the combinator name, 

each and is a type. 

We write this as a formation rule': 

fl : Tl + T;, a.. , fn : Tn + TA 

6 3 3  Chanity's Combinator Theory: The Combinatory Logic 

Charity's type system is generated from the fundamental type constructors for products: 1 

and - x , the builtins (eg. int), and the user-defined type constructors (eg. list). Charity's 

atomic combinators for manipulating values of these types are described in the following 

paragraphs. 

The identity and composition combinators are delivered as foiIows: 

A m e  identiîy 
id{) : A -+ A 

'Xn f a  such a G e  is inmduced parametrically, meaning tbat the types may be polymorphic. The 
theory must therefore account for type variable substitution and specialization. To test whether a combinator 
expression is vaüd one wouid use the d c a î i o n  algorithm 1241. 



f : A + B , g : B + C  
composition 

m p { f  7 g) : A --+ C 

When writing O-ary combinators such as id the empty braces may be dropped. Also, the 

comp combinator may be written using the in6x notation f ;  g. 

id is the identity combinator which outpuü its input, while comp is the composition 

combinator which pipelines two composable combinator expressions. The id and m p  

combinators satisfy the standard identity and associative laws. 

Fundamentai combinators for nnite products (! for 1 and pair, po, and pl for - x -) are 

delivered as follows: 
A type 

voiding (O-tuple) 
!{}: A + 1 

A type, B type 0th projection 

A type, B type 
1st projection 

The pair combinator rnay be written using the angle bracket syntax (f, 9) .  

The voiding combinator ! is the O-tuple constmcting combinator, ie. the unique map 

from A to 1 which forgets its input The pairhg combinator (, -) is the 2-tuple consmict- 

ing combinator parametric about its two component building pluases, while po and pl are 

the 2-tuple destructing combinators, ie. the component projections. The finite product com- 

binators satisfy the standard universal properties for products. 

Charity7s fundamental combinators are summarized in table 6.1. The combinators and 

equations delivered with user-defined datatypes are as describeci in chapters 2 and 3 (fuld, 



un f old. etc.). 

Table 6.1 : Fundamentai combinators. 

Each Charity program is expressible as a combinator expression. Consider, for exam- 

ple, the function 
headd : s 

taiU : (1 D 
which produces an infinite list of input x. The state of the unfold is set to the O-tuple. This 

program is expressed as a combinator expression as 

(!, id) ; ~nfold'~f""{~~, ! ) 

Section 6.3 gives the derivation. 

A combinator is a function, and so takes input Cornbinators with arity 1 or greater (ie. 

combinators with parameters, exclucüng comp, pair, and records) take a pair as input: the 

first component is an input value proper, and the second is a context. In the example 

above, unfo~d'"~"~ is applied to the O-tuple, so the first component of its input is !. It needs 

access to its context (x), so that is propagated inside via id in the second component. Note 

also that each phrase is a function, so it too takes a pair as input: a local context and the 

global context propagated in fkom outride. For example, the hd phrase acts on a pair: the 



O-tuple provided locaily and the x provided globaliy. To access the x it projects away the 

local component. To summarize: as combinators provide a variable-free notation, context 

must be expiicitly propagated inside ai l  cornbinators whose phrases might look up variable 

values in scope. 

6.3 Translation from Core Term Logic to Combinatory 

Logic 

The translation fiom core term logic to combinatory logic for fïrst-order Charity is given 

in several places, includuig [7]. In this section we re-present it pursuant to the higher- 

order extension. First, for clarity and to explain the way context is handled, we discuss the 

translation of Charky's basic framework (see figure 6.1 on page 6 1). 

Each d e  (excepting possibly the last) does the obvious, introducing a fundamental 

combinator discussed in the previous section. The first takes a variable to itseK via the 

identity combinator id. nie second handles O-tuples by the "forgening" combinator !. The 

third decomposes pairs, accessing their variable components by projecting, while the next 

composes pairs. The second last handles function application for functions f. where f is a 

O-arity named function, constructor, or destructor. The las4 and most interesting, handles 

function abstraction, This case also serves as a review of variable elhination and of the 

manner in which this translation makes global and local context management explicit. We 

are translating term {v' H t') t in context u, so dtst translate input terni t with respect to 

u and pair it with id, This has the foiiowing effect when evaiuating: a context is generated 

before this pair combinator is encountered. The first component uses it to evaluate t and 

the second preserves it. Both are then passed on to the abstraction v' c+ t'. However, 

this abstraction may not only access the local context vf, but also the global context v ,  and 

so is actuaiiy translated as [(v', v )  c, tl in anticipation of the pair. The context v is now 



presewed and forwarded inside the abstraction, dong with the input proper, via this pair. 

Having discussed the prelirninaries we can now give the translation of the unfold the 

record, and the map (figure 6.2). The unfold (in context a) translates much as the abstrac- 

tion does, but the input and context are passed into the unfoldR combinator delivered with 

datatype R Each phrase has access to the unfold state v and the context a. Higher-order 

phrases have access to an additional input vj. An important note: this input is the leftrnost 

component of the triple, the state foUows. and the c o n t a  is the rightmost component. 

This is for scoping purposes and is due to the manner in which pairs are decomposed (see 

figure 6.1). 

The record translation is a special case of the unfold translation: it is the non-recursive 

specialization and as such rquires no state. Thus it requires no initial state, hence no input 

(ie. it is a term and not a function), so the context is forwarded directly without pairing. 

The map translation is similar to the unfold translation, respecthg variance. 

For completeness, the remaining translation phrases for the fold, case, inductive map 

(figure 6.3). and combinator (figure 6.4) are given. In facc this last case generalizes those 

preceding it. 

We conclude with some example translations. The ûrst is the derivation promised in 

section 6.2: 

= (!, id); ~nfofd"~'"'@~; [x w X] , !} 
= (!, id);  unfold hphf (m ; id, !) 

A subsequent phase of the Charity system optimizes the id out of the h t  phrase of the 

unfold 1271. 



[x H x] = id 

[v* 01 = ! 
[(uo, V I )  c, x] = pi; [vi c, x] where i = O if x occurs in uo, and i = 1 otherwise 

[v H (t0,tl)I = ([v - to ] , [v  e t l ] )  
[v H f t] = [V H t ]  ; f where f is a function symbol 

[v H { v f  ct f ) t ]  = ([u * t ] , i d ) ; [ ( d , u )  H t'l 

Figure 6.1: Core term logic to combinatory logic translation, part 1: basics. 

Figure 6.2: Core iemi logic to combinatory logic translation, part 2: coinductive datatypes. 



Figure 6.3: Core term logic to combinatory Iogic translation, part 3: inductive datatypes. 

Figure 6.4: Core terni logic to combinatoy logic translation. part 4: combinators. 



Next we illustrate a transIation for a higher-order datatype. Consider the fmction which 

takes input z and rems a function, where this function takes input y and rems the pair 

( ~ 9  Y): 

The optimization yields: 

r e ~ d e 2 P { ( ~ l c l ,  PO) ) 



Chapter 7 

Compilation and Execution 

Charity prograrns are executed by the Charity abstract machine. Previous versions of the 

machine executed combinators directiy 151. However, it was found that by k s t  cornpiling 

cornbinators to an even lower level representation, computations could be performed much 

more quickly and simply [IO, 271. 

A detailed description of the Charity abstract machine and the compilation function 

from combinators to machine instructions for first-order Charity was the subject of [27]. 

In this chapter, we concentrate on the changes the higher-order extension necessitated in 

both compilation and executiun: the fomer is ueated in section 7.2, and the latter in sec- 

tion 7.3. As neither cm be understood in isolation and without some gïounding in the 

general operation of the machine, we first present a primer in section 7.1. 

7.1 Overview of the Charity Abstract Machine 

The Charity abstract machine consists of 

A heap pointer H with associated value heap for storing data; 

0 A program counter C with associated code s n e m  for storing code; 



A dump stack pointer D with associated d u q  srack for storing temporary results, 

subroutine return addresses, etc. 

The machine state is a triple (H, C, D)'. A Charity expression compiles down into a 

Stream of machine instructions, into which C is an index. Execution begins with C pointing 

to the start of the Stream and ends with a HALT instruction. Wchever value the heap 

pointer addresses when halting is the result of the expression's evaluation2. For larger 

computations execution may need to be suspended occasionally in order to garbage collect 

the heap. Note that, as the code stream is randomly indexable, the machine may execute 

the GOTO instruction as weiï the JUMP and RET instructions for subroutines during the 

course of execution. 

The coinductive datatype operations-unfold, record, and map-are aii treated uni- 

formly, Each is compiled into a short sequence of instructions for building "record" heap 

values (rec's). These are values of the coinductive datatype. In this sense, the cosmetic dif- 

ferences between these three operations are elirninated (fold, case, and the inductive map 

are ai l  also compiled in a d o m  way). 

The operation of the Charity abstract machine on rec's is lay, and supports sharing. A 

rec is an n-element array of dosures, one for each destructor of the n-destructor datatype. 

A closure is itself a (potential) value, but at rec creation time each closure is unevaiuated. 

When destnictor i is applied to rec it forces evaluation of closure i. This is cdled "poking". 

This closure is then updated with the resulting value so  that subsequent pokes do not force 

redundant reevaluation, but rather return the precomputed result. In other words, a value of 

a coinductive datatype is a record whose fields are initiaily unaccessed and unevaluated. As 

we poke this structure b y applying destructors, we access the correspondhg fields, evaluate, 

and update, thus developing the value as needed (the laziness). If we reaccess a previously 

'In fxt. for technical reasons reiating to garbage coiïection and space efficieocy, the heap and dump are 
split into a number of specialized heaps and dumps, for storing a specific kind of value. lhis does not 
affect our description. 

*This value must be decompiled. 



developed field, we don? force any reevaiuation (the shanng). Sections 7.2 and 7.3 explain 

the above concepts M e r .  

7.2 Compilation 

In this section we give the compilation function nom combinators to machine instructions, 

restncted to those cases affected by the higher-order extension. This section and the next 

also correct some errors in the original description for mt-order Charity [27]. 

We begin with the compilation of destructor and record combinators as records are 

simpler than unfolds and maps. yet illustrate most of the issues in compiiing ai i  three. The 

relevant cases are given in figure 7.1. 

(cl* 1 [di] = DESTR{i)  
(ClSb [ -1 = HODESTRC)) 
(Ci,) [remrdR(h,-.-.fn$ = where J W { z )  

x := ALLOC{n).BLDCLO{l,zl}. . . . .BLDCLO{~,Z~).RET 
where := BLDUPDATE 

Figure 7.1 : Destmctor and record compilation. 

The original nile for destructors, Cl3. has been genedized to Cl% and Cla. where the 

former handles first-order destructors and the latter higher-order destructors. In fact, CI3= is 

the old rule and we simply adding a new instruction, HODESTR, with the new mie. 

HODESTR is the oniy addition to the instruction set which the higher-order extension 

necessitates! Each of the operations DESTR and HODESTR have, as operand, the 

desmictor's position. 

As stated in nile CI4, a record compiles as a jump to a subroutine beginning at la- 

bel x (JUMP). This subroutine, when invoked, will aUocate a new record value on the 



heap (ALLOG'), initialize each of its n closures, (the n BLDCLO instructions), and return 

(RET). Each closure points to the start of a corresponding subroutine to be executed when 

it is poked. The snbroutine is. essentially, a compiled phase of the original record, but 

in the kst-order case it is wrapped within the updating instructions (BLDUPDATE and 

UPDATE). The k s t  prepares for the update and the second carries it out, as explained in 

the next section. We must not update in the higher-order case as extra input will be supplied 

to the closure at poke time ench tim we poke it. That is. the closure is not an expression, 

but afwrchn parametrized by an input. Thus it can never be reduced to one value, but 

must be reevaluated each t h e .  

As explained in chapter 2, the operators delivered with Charity datatypes, most notably 

fold and unfold, are structured recursion operators. That is, the recmive nature of the op- 

eratiens remains implicit down to the combinator level. The compilation from combinators 

to machine instructions makes recursion explicit. Figure 7.2 shows how for unfold. 

(cis) [ u W d R { f ~  . - 3 fn }] = JUMP{z} 
where 
x ALLOC{n).BtDCLO{l, xi). . . . .BLDCLO.(n, Xn).RET 
where zi := BLDUPDATE 

- [(fi. pl); m p F i  b o p  0 , j u ~ p i d  )] 
. UPDATE{i)  
. RET 

zj := [(fj 9 pi ; PI ); m p F j  @O, ~ U ~ P { Z } ] ]  
. RET 

Figure 7.2: Unfold compilation. 

Rule C15 is very similar to nile CI4, but Mers in the compilation of the phrases fi and 

fi. In the first-order case fi is executed in context, the result is paired with the context, 

and the unfold is mapped onto this resuît, making the recursion explicit. The higher-order 

case is nearly identical, but the additional input is taken into account when propagating the 

context to the map. Note that this rule simply restates the recursive definition of unfold 

as expressed in the commuting diagram of chapter 3 (as the d e  for the record restates its 



commuting diagram). The main point of interest is that the recwsive mapping of the unfold 

is via the label x. 

Like d e  C15 for unfold, nile Cie for rnap is derived fiom its diagrammatic definition. 

See figure 7.3. Here f is, in general, aset of rnap phrases fF& f;, . .. , f$& f;-a positive 

and negative phrase for each parameter of a coinductive datatype R with anty m. Thus, 

mapFiT mapEj, and mafi  must respect variance as described in chapter 5. 

Figure 7.3: Coinductive map compilation. 

A machine state transition is a one-step updating of the machine state, one for each ma- 

chine instruction. A computation is a sequence of transitions driven by a sequence of 

instructions. The machine transitions for First-Order Charity are given in 1271. The higher- 

order extension requires the modification of onïy one of those des: rule 17. It is general- 

ized to a case for Mt-order destructors (17a-the same as the original d e  17), and a case 

for higher-order destructors (17b). First, we present some other basic des.  

Rules 10 and 11 deal with subroutine calhg and retuming (table 7.1 on page 69). 

JUMP lends control to a speçified point and pushes the r e m  address onto the dump 

stack. RET retums control and pops the r e m  address off of the dump stack. 



Table 7.1: Subroutine c a h g  and rehiming. 

10 
11 

Iàble 7.2: Record value construction. 

H C D H C D  
v JUMP{d).c d H v d cat{c).d 
v RI3T.c cont{d).d ++ v C' d 

Rules 15 and 16 construct record values on the heap (table 7.2). ALLOC ailocates an 

n-closure record, which the heap pointer H then addresses. The old value addressed by H 

is remembered for subsequent BLDCLO instructions using an auxiliary machine register. 

Each BLDCLO then initializes a given closure of the record. A closure is a pair: some 

code and a value to act on. The start address of the code is supplied by the BLDCLO, and 

the address of the value is supplied by the auxiliary repister- 

Table 7.3: Record value destruction. 

17a 
17b 

Rules 17a and 17 b deal with destnictor application (table 7 -3). In the tînt-order case we 

are polring closure i of the record pointed to by H. Thus we execute closure code at value 

Vi  as a subroutine. pushing the r e m  address ont0 the dump stack. Again, an auxiliary 

register is used to remember the record's address for the BLDUPDATE instruction. The 

higher-order case is similar, but H addresses a pair, nota record. The 6rst component of the 

H C D H C D 
v : rec{(vi, DESTR{i).c d H V+V cont{c}.d 
v : (e, W )  HODESTR{j).c d ++ v ' : ( ~ , v ~ ) . w  cj m t { c ) . d  
W : ?%c{(v~, 



pair is the input supplied at destmct tirne, e, and the second is the record to be destnicted. 

This time we execute closure code q at value (e, %). 

Table 7.4: Closure updating. 

Last, niles 18a and 18b handle closure updating (table 7.4). BLDUPDATE is exe- 

cuted at the start of closure execution, and pushes the address of the record being poked 

ont0 the dump stack. UPDATE is executed at the end of closure execution, and updates 

that closure of that record in the following way: the result value is stored in the closure 

with an "empty" subroutine for evaluating it (ie. a single RET). Subsequent pokes of the 

same closure wiU simply retm the precomputed value. 



Chapter 8 

Conclusion 

In this final chapter we summarize our resuits, briefiy discuss how they might be appüed, 

and look towards the future. 

In this thesis we have described the higher-order extension of first-order Charity: a gener- 

aüzation of its coinductive datatype definition mechanism by parameterizhg destructors. 

Higher-order Charity reaüzes some expressive gains over its first-order predecessor, includ- 

hg: 

the ability to define the exponential datatype, rendering functions first-class values; 

the ability to define objects generally, opening the door to object-oriented program- 

ming in Chaity; 

the ability to define simuitaneously recursive functions, leadhg to a much more nat- 

ural implementation of severai common functions. 

The effect of the extension on Charity syntax is slight, and is backwards compatible 

with kst-order Charity. The effects on the various stages of Charity interpretation are 



also clean, as witnessed by the minimal updates required in the compilation and execution 

phases. 

8.2 Future Work 

Higher-order Cha15ty suggests at least two possible topics of research: 

1. Now that we may express classes and objects in Charity, we may also wish to incor- 

porate other standard features of object-oriented programming. Most noteworthy is 

inhen'tance and the construction of a class hierarchy. 

2. One would like to write Charity programs with graphical user inte$uces. Interface 

entities such as windows and buttons are usually programmed as objects in modem 

programming languages. Now that Charity supports objects, one should be able 

to define window and button objects, assign them a graphical representation, and 

interact with them. 
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Appendix A 

This appendix gives a formal definition of higher-order Chdty syntax, type-theoretically. 

It is based on a first-order core term logic type theory by Peter Vésely [25], and was ex- 

tended to a higher-order extended term logic type theory by Charles Tuckey [22]. The 

figures presented here are those of [22] minus completeness information. 

The type theory is spread over three figures: figure A. 1 deals with terms and their Srpes, 

figure A.2 deals with patterns and their types. and figure A.3 combines the two. yielding 

functions and their types signatures. 
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record 

application 

Figure A. 1 : Term Type Theory 



pair 

record 

int 

char 

pattern 
abstraction 

Figure A.2: Pattern me Theory 
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Figure A.3: Function 'ISrpe Theory 



Appendix B 

A Catalogue of Charity Datatypes 

This appendix lists the most common Charity datatypes, higher-order and otherwise. We 

begin with the builtins (section B. l), then user-definable inductive (B.2) and coinductive 

(B.3) datatypes, and briefiy type aliases (B.4). 

B.l Builtin Datatypes 

The nullary product datatype: 1. Value: 

0 

a The binary product datatype: - x -. Value format 

( t o ,  ti) 

The boolean datatype: 

data bool -+ C = f&e 1 true : 1 + C. 



The integer datatype: int (machine-level builtin). Values: 

The character datatype: char (machine-level buiïtin). Example values: 

\CA ('A'). \cB ('B.), \CC ('C'), . . . 

B.2 Inductive Datatypes 

a The copmduct datatype: 

The success-or-failure datatype: 

The natural-number datatype: 

The list datatype: 

datanat + C = zero : 1 C 

succ : 1 + C. 

data h t  A -+ C = ni1 : 1 + C 
c o n s :  A x C  + C. 



The binary tree datatype: 

data blPree(A, B) -+ C = 

B.3 Coinductive Datatypes 

a The cotist datatype: 

data C + colist A = delist : C -+ SF(A x C). 

a The infinite üst datatype: 

a The exponential datatype: 

d a t a C - + q ( A , B ) = f n : C - t A + B .  

data C --+ i n f i t  A = 

The process datatype: 

& t a c - + p r o c ( A , B ) = p r : C + A + C x  B. 

head : C + A 

tail : C C. 

a The string datatype: 

data string = list char. 



Appendix C 

The Implementation 

Higher-order Charity is implemented. As of the the of writing the version is 1.9 (alpha) 

of June 1997. The interpreter consistr of about 30000 lines of C code. 

Charity is installed localiy and rnay be Uivoked at a sheii prompt by typing: 

charity 

It is available world-wide, together with literature, examples, etc., via the Charity home- 

page: 

The Ch- Developrnent Group may be contacteci at: 



Appendix D 

A Simple Parser 

This appendix gives a simple expression calculator whose scanning and parsing phases 

make heavy use of higher-order datatypa. This example is due to Schroeder and Cock- 

ett. The calculator takes a string involving binary addition and multiplication of numbers 

0,1,2, . . . (as weU as optional white space), and rems "success-or-faiiure" of an integer 

resuit, respecting operator precedence. For example: 

Charity>> calculate " 2  + 10 * 4 " .  

ss(42)  : SF(int) 

Chari ty>> 

The Marc Schroeder's calculator code is: 

rf mPRELUDE.chw. % THE BASIC Rnmmwmm 
rf gsyntax-troes.chm. % ROBIN COCKCIT'S PARSINC DTILITIES 

(+ 

THE SCANNER 



data le~states  -> C = s0 1 si: 1 -> C. O SaWNEEt STATES s0, sl 

def char2int: char -> int % CONvER!r ' O *  TO O, Erc. .. 

= c => C \cO..\c9 =, sub-iat (code c, code \ C O )  

I - => O 

1 
C .  

data tokens A -> C = PLUS : 1 -> C 

1 TZMES: 1 -> C 

1 NUM : A -> C. 

def lex: 1 -w rS (char, list tokens int) 

% MKEXS FOR NATTJRAL NüEtERS, +, AND + 

= ( 1  =, (1 ( s0 ,  (f, ,)) => tok: c => 

(. \ tu2  => MORE (s0, (f, O)) 

1 \c+ =w MORE (sO, ((fn: 1 - fa (cons (PLUS, 11, f ) ) ,  O)) 

1 \c+ => MORE (s0, ((fn: 1 => fa (cou (TIMES, 11, f)), O)) 

1 \CO. .\cg 
=> MORE (SI, (f, charlint c)) 

1 - => FAIL 

1 end: se fn ( [ ] ,  f) 

1 (sl, ( f ,  s)) => tok: c =w 

{ \d32 5 MORE (sO, ((fa: 1 => fn (cons (NüM s, 11, f ) ) ,  O)) 

1 \c+ => MORE (s0, ((fn: 1 =, fn (cons (NUM s, coas (PLUS, I)), f)), O)) 

1 \c+ 3 MORE (s0, ((fn: 1 => in (cons (m s, coas (m, 1) ) , f) ) , O) ] 
1 \CO. .\cg 

=> MORE (SI, [f, add-int (mul,int (s, IO), char2int c))) 

1 - => FAIL 

1 
C 



def scan: striag -> SF list tokens int % THE SCANNER PRûPER 

= s * pO PARSE (lex, s) . 

data oxpr -w C = Add: C * C -> C 

I M u l : C * C - > C  

1 Val: i n t  -> C. 

data smstates -> C  = psO 1 gsl: 1 -> C .  % PARSER STATES ps0, psl 

O UPDATE AN INCOMPLETE EXPRESSION TREE WITX A NEW SVBTREE: 

def update-expr: tokens i n t  * expr + exp (expr, expr) tokens Fnt -> 

tokens int expr exp (expr, expr) 

{ (PLUS, PLUS) => ((PLUS, val), (fn: e =, Add (fn (val, f ) ,  e))) 

1 (PLUS, TIMES) => ((TïMES, val), (fn: e =, fa (Mu1 (val, el, f) 1 )  

1 (TIMES, PLUS) => ((PLUS, val),  (fn: e => Aüd (fn (val, f ) ,  e))) 

1 (TIMES, TIMES) => ((TIMES, val), (fa: a = >  fn (Muï (val, e), f))) 

I - => ((op, vail r f) 



def syn: 1 -> rS (tokens int, expr) % A PARSING AUTOMATON 

1 end: f f  

I end: ss fn (val, f )  

de€ parse: list tokeas int -> SP expr % THE PARSER PROPER 

( 

* THE EVALUATOR 

* 1 

def evaï: exgr -> iat 



Robin Cockett's syntax- trees utillty code is: 

Pklcsing usiag 'recursive syntax diagrams' 

Author: Robin C o c k e t t  

Date: 25 Sept ' 96  

Recursive syatax diagrans were invented and wed by W i r t h  to 

write the syntax of Pascal. The way Ehey are defined here 

guarantees an LL (1) (one token look ahead graramar) 

and it allows a very simple implementation. Attributes 

can be added quite easily after the fact -... 

def Id = x => x. 

def foldleftCh: C A -> Cl: C list(A) -> c 
= (c,L) =) fn(c, ( 1  1 :  ) => (fn: X =) X) 

def tail: list (A) - l i s t : ( A )  

= ni1 =, ni1 

1 cons(-,L) => La 

% Data structures for rocursive syntw diagrams 

% After a token is taken in various t u s  cap happen 



(1) The parser can FAIL 

(2) The parser can decide the token is meant for the nexf 

garsing stop and it can PASS the token and any structures 

it has built forward. 

(3) The parser can eat a token and continue asking for MORE 

(4) It can recursively cal1 a substructure before contirsuhg 

with the parse. 

At any stage in the parse one can ask supply a coken (the tok 

destxuctor) or see whether one can legally end (the end destructor 

M c a t e s  the final states) - 

data POLLOW(A,R,S) -> C = PASS: A R -> C 

1 PAIL: 1 -> C 

1 MORE: S -> C 

1 RMORE: S exp(R,S) -> C .  

% Recursive syntax troos 

data C -> rS (A,R) = tok: C -> A => FOLLOW(A,R,C) 

1 end: C -> SF(R) . 

% An attribute recursive syntax diagraxns aïlows an input attribute to 

% transform the diagram (Fnherited attributes and synthesized attributes 

% handled in this m e r ) .  

data C -> rSA(A, R) = rsa: C -a R => rS (A, R) . 

% Two basic attribute recursive syntax diagrams 

% Failure (always fa1 1s) 

def r-L: 1 -> rSA(A,R) 

= ( )  =, (rsa:, =w (tok: , => PAIt,end: ff 1 ) . 

% Pass (always passes) 

def rSLPASS : 1 -> rSA(A, R) 

= () => (rsa:r (tok: a => PASS (a,r) , end: ss r) ) , 

% Seguencing rectxsive syntax tree generators: 

% When the syntax tree of one ends i t  passes the last 

% token and the result it i s  building to the next syntax tree 

% generator. 



data SüM(A, B) -> C = b-O : A -w C 

( b-l: B -> C. 

def seq: rSA(T,R) + rSA(T,R) -* rSA(T,R) 
= (p,q) =, (rsa: r * 

( 1  b-O t => tok: a => 

( PASS(a',rr) => POLLOW(Id,Id6rId,b-1) tok(a8,rsa(r',q)) 

1 MORE t ' MORE b-0 t' 

1 RMORE(t1,c) => RMORE(b-1 el, (fa: r =, b-O fn(r,c) 1 )  

1 FAIL => PAIL 

1 tok(a,t) 

1 end: flatte- SFC r =a end rsa(r,q) ) end t 

1 b-1 t => tok: a => FOLLOW(Id,Id&Id,b,l) tok(a,t) 

I end: enâ t 

1 1 b-0 rsa (r,p) 

1 - 

% Kïeene's star operator: regeating an attrribute recursive syntax tree. 

% When the tree passes a symbol inmiediately it is donei 

% Alternathg over recursive syatax trees: 

% If the first syn tw  mue fa i l  itmneüiately the second i s  used. 

der ait: rSA(T,R) rSA(T,R) -> rSA(T,R) 

= (p,q) =w (rsa: r => (tok: a => (FAZL => tok(a, rsa(r,g) ) 

) z = > z  

1 tok(a,rsa(r,p) 1 

,end: (ff => end rsa(r,g) 

( z = > z  

1 end rsa(r,p) 

1 



% Pars* using an attribute recursive syntax tree: 

O The pars* uses a stack of recursive syntw tree generators w h f c h  

% it develops every t h  it hits a recursive sub-syntw-diagram and 

% gops every thne iE fiafshes a parse pushed by a recursive 

% sub-syntax-diagram . 

O This routine gresents the PASSed values to each member of the stack 

% until one of the generators does not sfmgly pass it ou ..- 

def use-s tack 

= ( (a,r) ,St) => ( (MORE T* ,St) => ss(T9,St) 

% This routine checks that a parse has successfully ended: 

% to do t h i s  we mst check that what remains on the stack agrees 

% that the current state fs a successful end point! 

de€ eastack 

= (T,St) => 

foldleftC (ss r,c)  => end fn(r,c) 

I - => ff 

) (end T,St). 

% The garsing uses a stack (St) to hold the wcontinuationw syntax trees 

def PARSE: rS (A, R) * list (A) -> SP (R) list (A) 

= (T, L) => ( (8s (T, St) , L) => (end,stack(T,St) , L) 
1 ( - 8  LI => (ff,L) 1 

foldleft( ( (ss :Y, St) , L) ,a) => ( MORE T* => (ss (T' , St) , tail L) 
1 l?.MORE(T, fT) =, (8s (T,cons (fT,St) 1 , tail LI 
1 PASS(a,r) => ( ss x => (ss x, tail L) 

1 rr =, (rf,~) 

) use,stack( (a, r) , St) 
1 FAlL => ( f f , L )  

1 tok(a,T) 

1 ((ff,L) ,a) =, (ff,L) 



The Charity Standard Relude (PRELUDE . ch) is a basic environment of common data- 

types and functions. 
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