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Abstract 

Although cable-stayed bridges have proved to be an efficient bridge system, 

aesthetically appealing and economical for medium and long-span bridges, the 

majority of cable-stayed bridges that have been constructed are of the two-span 

asymmetrical or three-span symmetrical types. 

In this study an efficient statical system and a fast construction method for 

continuous multi-span cable-stayed bridges are described. Also the highway live 

loads for long-span bridges according to the Canadian, American and European 

codes are compared. The proposed statical system consists of stiff, diamond-shaped 

pylons and a slender solid concrete deck of 250 m span suspended from the pylons 

by a multi-cable system. 

To study the static behaviour of such a system, a conventional linear analysis and 

a geometrical nonlinear analysis , taking into consideration the actual behaviour of 

the cables (sagging), the effect of large deflections and the effect of axial forces are 

carried out. For both types of analysis the computer program ANSYS is used and 

the results are compared. 

The effect of the deck-pylon connections on the maximum straining actions in 

the different bridge components (deck, pylon and cables) and on the buckling of the 

slender deck is studied by examining five different types of deck-pylon connections. 

In addition, the influence of the cable areas on the maximum bending moments in 

the deck is investigated. 

Since the stability of the chosen system is achieved by the stiff pylons, a para-

metric study is carried out to find the optimum pylon dimensions for such a system. 
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Concerning the construction of multispan cable-stayed bridges, a fast and 

economical method is described and analysed by the computer program ANSYS. 

In the proposed construction method, the 250 m long concrete deck is poured in one 

operation on a steel truss in an elevated position, and then lowered after hard-

ening to its final position, in which it will be suspended from the cables. The 

truss is then launched to pour the next concrete deck. The lowering process of 

the truss is simulated in the computer analysis by using interface elements. This 

construction procedure will shorten the construction time of multi-span cable-stayed 

bridges significantly. It is estimated that the construction of one span (250 m) 

will take only four to five weeks. 

iv 



Acknowledgements 

I would like to express my deepest gratitude to my supervisor Professor Dr. W. .Dilger 

for his caring guidance, untiring advice, encouragement and support throughout all 

stages of the research program. 

I also wish to express my sincere gratitude to Dr. G.S. Tadros for his generous 

donation of time, constructive criticism and valuable discussions 

The financial support received from the Natural Science and Engineering Re-

search Council of Canada and the Department of Civil Engineering at the University 

of Calgary is deeply appreciated. 

Last, but certainly not least, I am grateful to my dear parents and sister, for 

their unlimited love and support during my whole life. They have always been there 

for me, especially whenever I needed them most. 

v 



Contents 

Signing Page ii 

Abstract iii 

Acknowledgements V 

Contents Vi 

List of Tables xi 

List of Figures xii 

List of Symbols xvii 

List of Matrices xxi 

1 INTRODUCTION 1 
1.1 GENERAL   1 
1.2 OBJECTIVES   7 
1.3 SCOPE   7 

2 LOADS ON LONG BRIDGES 9 
2.1 INTRODUCTION   9 
2.2 THE OWN WEIGHT   10 
2.3 THE HIGHWAY LIVE LOADS   10 

2.3.1 Introduction   10 
2.3.2 Highway live load according to the Canadian Code   11 
2.3.3 Highway live load according to the European Code   16 
2.3.4 Highway live load according to the American Code   18 
2.3.5 Comparison between the three codes   21 

2.4 TEMPERATURE LOADING   21 
2.5 SUMMARY   23 

3 DIMENSIONS AND STRUCTURAL SYSTEMS 
FOR MULTI-SPAN CABLE-STAYED BRIDGES 24 
3.1 INTRODUCTION   24 
3.2 STRUCTURAL SYSTEMS FOR MULTI-SPAN 

CABLE-STAYED BRIDGES   24 

vi 



3.3 DIMENSIONS OF THE PYLONS   28 
3.4 THE CABLES   34 

3.4.1 The different longitudinal cable arrangements   34 
3.4.2 Preliminary design of the cables   37 

3.5 THE DECK   42 
3.5.1 Steel decks versus concrete decks   42 
3.5.2 Concrete cross-section types for the deck   45 

3.6 SUMMARY   47 

4 THE ANALYSIS OF CABLE-STAYED BRIDGES 49 
4.1 INTRODUCTION   49 
4.2 THE DIFFERENT METHODS OF ANALYSIS   49 
4.3 MODEL USED IN THE COMPUTER ANALYSIS   52 
4.4 THE GEOMETRIC NONLINEAR ANALYSIS   55 

4.4.1 Introduction   55 
4.4.2 The behaviour of a cable   55 
4.4.3 The effect of axial forces on the beam stiffness   63 

4.4.3.1 Introduction   63 
4.4.3.2 The general solution approach  63 
4.4.3.3 The Przemieniecki approach   67 
4.4.3.4 The general solution versus the Przemieniecki approach 69 
4.4.3.5 Stability study of structures using the effect of axial 

forces   69 
4.4.4 The effect of large deflections   71 

4.4.4.1 Introduction   71 
4.4.4.2 The Lagrangian Method   71 
4.4.4.3 The Eulerian Method   71 
4.4.4.4 Stability study of structures using a large deflection 

analysis   72 
4.4.5 Iterative procedures for the solution of nonlinear problems . 75 

4.4.5.1 Introduction   75 
4.4.5.2 The Full Newton-Raphson procedure   77 
4.4.5.3 The Incremental Newton-Raphson procedure . . . . 79 
4.4.5.4 The Initial-Stiffness Newton-Raphson procedure . . . 80 

4.5 THE LINEAR ANALYSIS   80 
4.5.1 Introduction   80 
4.5.2 The equivalent modulus of elasticity   81 
4.5.3 Cable tension versus component along inclined chord   84 

4.6 SUMMARY   87 

vii 



5 ANALYSIS OF THE PROPOSED BRIDGE 88 
5.1 INTRODUCTION   88 
5.2 THE DEAD LOAD ANALYSIS   88 

5.2.1 General   88 
5.2.1.1 Horizontal deck in the linear analysis   90 
5.2.1.2 Horizontal deck in the geometric nonlinear analysis 91 

5.2.2 Results and conclusions   96 
5.3 THE HIGHWAY LIVE LOAD ANALYSIS   104 

5.3.1 General   104 
5.3.2 Results and conclusions   104 

5.4 THE TEMPERATURE ANALYSIS   121 
5.4.1 General   121 
5.4.2 Results and conclusions   123 

5.5 SUMMARY   131 

6 PARAMETRIC STUDY 132 
6.1 INTRODUCTION   132 
6.2 THE DECK-PYLON CONNECTIONS   1,32 

6.2.1 Introduction   132 
6.2.2 Effect of the deck-pylon connection type on the deck   135 

6.2.2.1 Deck deflections   135 
6.2.2.2 Deck bending moment envelopes due to highway live 

loads   138 
6.2.2.3 Deck normal force envelopes due to highway live loads 142 
6.2.2.4 Buckling of the deck   144 

6.2.3 Effect of the type of deck-pylon connection on the pylons . .   147 
6.2.3.1 Pylon bending moment envelopes due to highway live 

loads   147 
6.2.3.2 Bending moments in the pylons due to temperature   149 
6.2.3.3 Pylon normal force envelopes due to highway live loads 152 

6.2.4 Effect of the deck-pylon connection type on the maximum cable 
forces   152 

6.2.5 Summary and conclusions   155 
6.3 THE DIMENSIONS OF THE PYLON   156 

6.3.1 Introduction   156 
6.3.2 The width of the pylon at the level of the deck   156 

6.3.2.1 The maximum deck deflections   156 
6.3.2.2 The maximum bending moments in the pylon shaft . 158 

6.3.3 The height of the pylon above the deck   164 
6.3.3.1 The maximum deck deflections   164 

viii 



6.3.3.2 The maximum bending moments in the pylon shaft . 164 
6.3.4 The height of the inclined pylon legs below the deck   167 

6.3.4.1 The maximum deck deflections   167 
6.3.4.2 The maximum bending moments in the pylon shaft   167 

6.3.5 Summary and conclusions   170 
6.4 THE DIMENSIONS OF THE CABLES   171 
6.5 SUMMARY   171 

7 THE CONSTRUCTION OF THE BRIDGE 173 
7.1 INTRODUCTION   173 
7.2 CONSTRUCTION OF CABLE-STAYED BRIDGES   173 

7.2.1 Introduction   173 
7.2.2 The staging method   174 
7.2.3 The incremental launching method   175 
7.2.4 The cantilever method   183 

7.3 THE PROPOSED CONSTRUCTION METHOD   183 
7.3.1 General description of the construction method   183 
7.3.2 Detailed description of the construction method   187 

7.4 INTERACTION BETWEEN CONSTRUCTION 
AND DESIGN   190 
7.4.1 Design of the truss   190 

7.4.1.1 Dimensions of the truss   190 
7.4.1.2 Load cases   193 
7.4.1.3 Initial cable forces anchored to the elevated truss 193 
7.4.1.4 Current forces on the flotation tanks   194 

7.4.2 Computer model used in simulating the construction procedure 197 
7.5 RESULTS AND CONCLUSIONS   206 

7.5.1 General   206 
7.5.2 Deflection of the truss   207 
7.5.3 Forces in the truss   209 
7.5.4 Forces in the cables   211 
7.5.5 Deflection of the deck  211 
7.5.6 Bending moments and normal forces in the deck   213 

7.6 SUMMARY   215 

8 SUMMARY AND CONCLUSIONS 216 
8.1 INTRODUCTION   216 
8.2 SUMMARY   216 
8.3 CONCLUSIONS   217 
8.4 RECOMMENDATION FOR FURTHER RESEARCH   220 

ix 



References 222 

A Element Types 225 
A.1 The two-dimensional elastic beam element   226 

A.1.1 General description   226 
A.1.2 Theory   226 
A.1.3 Element stiffness matrix   227 
A.1.4 Effect of axial forces   228 
A.1.5 Verification of the axial force effect   228 

A.2 The two-dimensional tapered elastic beam element  231 
A.2.1 General description   231 
A.2.2 Theory   231 
A.2.3 Element stiffness matrix   232 

A.3 The two-dimensional truss element   233 
A.3.1 General description   233 
A.3.2 Theory   233 
A.3.3 Element stiffness matrix   234 
A.3.4 Effect of axial forces   234 

A.4 The cable element  235 
A.4.1 General description   235 
A.4.2 Theory   235 
A.4.3 Element stiffness matrix   236 
A.4.4 Effect of axial forces   236 
A.4.5 Verification   237 

A.5 The nonlinear force-deflection spring element   240 
A.5.1 General description   240 
A.5.2 Theory   240 
A.5.3 Element stiffness matrix   240 

A.6 The interface element   242 
A.6.1 General description   242 
A.6.2 Theory   242 
A.6.3 Element stiffness matrix   242 

x 



List of Tables 

2.1 Reduction factors for multi-lane loading according to the Canadian 
Code   15 

2.2 Comparison between the highway live loads for the proposed bridge 
according to the different codes   22 

3.1 Cable areas of the proposed bridge   43 

5.1 Forces in the cables and stress-free lengths L0   93 
5.2 Comparison of reaction forces (kN, kN-m) of different systems . . .   109 
5.3 Critical load cases for deck bending moments and and normal forces   116 

6.1 Maximum total bending moments (MN.m) in pylon for different types 
of deck-pylon connections   151 

6.2 Max tension force (kN) in selected cables due to live load for different 
deck-pylon connections   154 

7.1 Cross-section areas of the truss members (mm 2)   192 
7.2 Cable forces (kN) during construction stages for elevated truss level 

+500 mm   195 
7.3 Cable forces (kN) during construction stages for elevated truss level 

+300 mm   196 
7.4 Selected truss' forces (MN) during the construction stages for truss 

elevations of 300 and 500 mm   210 

A.1 Fixed end moment for a propped cantilever subjected to an axial force 230 
A.2 Comparison between the sags of different cable configurations . . . . 239 

xi 



List of Figures 

1.1 Model of an ancient Egyptian Pharaoh boat   2 
1.2 Typical span arrangements for cable-stayed bridges   3 
1.3 Different statical systems for multispan cable-stayed bridges   4 
1.4 Location of the proposed bridge   6 

2.1 Highway live load according to the Canadian Code   12 
2.2 Distributed portion of highway live load including the dynamic effect, 

calculated from the truck loading proposed by PWC for the Northum-
berland Straight Crossing project.   14 

2.3 Highway live loads including dynamic effect according to the European 
Code (FTP)   17 

2.4 Reduction factors for multi-lane loading according to the European 
Code (FTP)   17 

2.5 Highway live loads as recommended by Ivy et al (1954) for the Amer-
ican Code (converted to SI units).   19 

2.6 Highway live loads including dynamic effect according to the American 
Committee on Loads and Forces on Bridges (1981)   20 

2.7 Reduction factors for multi-lane loading according to the American 
Committee on Loads and Forces on Bridges (1981)   20 

3.1 Deflections of cable-stayed bridges   26 
3.2 Structural systems for multi-span cable-stayed bridges   27 
3.3 Deflections of different systems for multi-span cable-stayed bridges 

(Gimsing, 1976)   29 
3.4 Pylon configuration and dimensions for the proposed bridge   30 
3.5 Alternate pylon configurations in the transversal direction   31 
3.6 Quantity of cable steel as a function of the relative height of the pylons 

(F. Leonhardt, 1987)   33 
3.7 Different systems of longitudinal cable arrangements  35 
3.8 Deck idealized as a continuous beam   39 
3.9 Permissible cable stress o due to dead load as a function of the 

(live load/dead load) ratio 17   41 
3.10 Examples of steel decks (Walther et al, 1988)   44 
3.11 Examples of concrete decks (Podolny et al, 1986)   46 
3.12 Statical system and dimensions of the deck for the proposed bridge 48 

4.1 Nodes and elements for the linear analysis   53 
4.2 Nodes and elements for the geometric nonlinear analysis   54 

xii 



4.3 Sagging cable configurations   58 
4.4 Comparison between catenary and parabola cable configurations 

(Odenhausen, 1965)   60 
4.5 Cable with inclined chord   61 
4.6 Sagging cable   62 
4.7 Beam element subjected to an axial compressive force P and a trans-

verse loading w   64 
4.8 Comparison of end-rotational stiffness k33 for a prismatic beam sub-

jected to an axial force P   70 
4.9 Transformation matrix [Ta] in a large deflection analysis   73 
4.10 Load directions during a large deflection analysis performed by the 

computer program ANSYS  74 
4.11 Force-deflection relationships for different types of structures   76 
4.12 Newton-Raphson techniques for the solution of nonlinear problems .   78 
4.13 Ratio Eeq/E showing the influence of the cable sag on its stiffness . . 83 
4.14 Maximum tension Tm a,, and tension T along the cable chord   85 
4.15 Percentage error of maximum cable tension versus component along 

the inclined cable chord (Podolny, 1971)   86 

5.1 Model used in the dead load analysis   89 
5,2 Calculation of the deflections 61,1 to 822,1   92 
5.3 Iterative procedure for one cable to obtain the required deck alignment 94 
5.4 Iteration number versus horizontal level of the deck node connected 

to cable number 1   95 
5.5 Deck bending moment diagram due to dead load   98 
5.6 Deck normal force diagram' due to dead load   99 
5.7 Bending moment diagram (MN.m)in left pylon due to dead load . . 102 
5.8 Normal force diagram (MN) in left pylon due to dead load   103 
5.9 Model used in the live load analysis   105 
5.10 Investigated highway live load cases   106 
5.11 Force-deflection relationship of the springs simulating shear joints at 

the ends of the deck   107 
5.12 Deck bending moment envelope due to highway live load   111 
5,13 Deck normal force envelope due to highway live load   112 
5.14 Beam-on-elastic-supports analogy   114 
5.15 Elastic support spring constant   114 
5.16 Deck deflection envelope due to highway live load   118 
5.17 Bending moment envelope (MN.m) in left pylon due to live load 119 
5.18 Normal force envelope (kN) in left pylon due to live load   120 
5.19 Model used in the temperature analysis   122 



5.20 Deck bending moment diagram due to temperature distribution 1 . . 125 
5.21 Deck bending moment diagram due to temperature distribution 2 . . 126 
5.22 Deck bending moment diagram due to temperature distribution 3 . . 127 
5.23 Deck deflections due to temperature distributions 1, 2 and 3   129 
5.24 Bending moment diagrams (MN.m) in the left pylon due to tempera-

ture 
distributions 1, 2 and 3  130 

6.1 Different deck-pylon connections   133 
6.2 Force-deflection relationships for different deck-pylon connections 136 
6.3 Deck deflection envelopes due to highway live loads 

for different deck-pylon connections   137 
6.4 Deck bending moment envelopes due to highway live loads 

for deck-pylon connections 1,2 and 3   140 
6.5 Deck bending moment envelopes due to highway live loads 

for deck-pylon connections 3 and 4   141 
6.6 Deck normal force envelopes due to highway live loads 

for different deck-pylon connections   143 
6.7 Deck normal force diagrams at buckling due to live load case 24 for 

different deck-pylon connections   145 
6.8 Deck normal force diagrams at buckling due to live load case 26 for 

different deck-pylon connections   146 
6.9 Bending moment envelopes (MN.m) in left pylon shaft due to 

highway live loads for different deck-pylon connections   148 
6.10 Bending moment diagrams (MN.m) in left pylon shaft due to 

te'mperature distribution number 1 for different deck-pylon connections 150 
6.11. Normal force envelopes (kN) in left pylon due to highway live loads 

for different deck-pylon connections   153 
6.12 Cross-section in the pylon at the level of the deck   157 
6.13 Effect of the pylon width (be) on the maximum deck deflections . . . 160 
6.14 Effect of the pylon width (b) on the maximum bending moments in 

the pylon shaft (3: upper point, 4: lower point)   161 
6.15 Effect of the geometric nonlinearities on the bending moment at the 

upper point of the pylon shaft (point 3)   162 
6.16 Effect of the geometric nonlinearities on the bending moment at the 

fixation of the pylon shaft (point 4)   163 
6.17 Effect of the pylon height (hi) on the maximum deck deflections . . . 165 
6.18 Effect of the pylon height (he) on the maximum bending moments in 

the pylon shaft (3: upper point, 4: lower point)   166 

xiv 



6.19 Effect of the height of the inclined lower pylon legs (di) on the maxi-
mum deck deflections   168 

6.20 Effect of the height of the inclined lower pylon legs (di) on the max-
imum bending moments in the pylon shaft (3: upper point, 4: lower 
point)   169 

6.21 Effect of the cable areas on the maximum bending moments in the deck172 

7.1 Construction procedure using the staging method (Kondo et al, 1972) 176 
7.2 Precast units erected by a launching gantry (Dilger, 1990)   177 
7.3 The sliderule system as an example of supporting the forms from below 

the superstructure   178 
7.4 Supporting the construction forms from above the bridge   179 
7.5 Using a steel nose in the incremental launching method   181 
7.6 The incremental launching method (Beyer, 1964)   182 
7.7 Erection crane supporting the forms in the cantilever method 

(Dilger, 1990)   184 
7.8 Construction procedure of a bridge crossing a waterway using 

the cantilever method (Podolny, 1986)   185 
7.9 Overhead truss used in supporting the form travellers (Dilger, 1990) . 186 
7.10 Construction stages of the proposed method   188 
7.11 Dimensions of the launching truss   191 
7.12 Deflection of the truss due to its own weight   191 
7.13 Step 1 in the construction procedure (12 stressed cables)   202 
7.14 Step 2 in the construction pr'ocedure (14 stressed cables)   202 
7.15 Model used in analysing construction steps 3 to 7   203 
7.16 Model simulating the final lowering process (step 8)   204 
7.17 Lowering process of the launching truss simulated by the computer 

program ANSYS (distorted scale)   205 
7.18 Deflection of truss and deck during construction   208 
7.19 Level of hardened deck during construction steps 3 to 8 for a tempo-

rary truss elevation of 500 mm   212 
7.20 Bending moments in the deck after the truss is removed  214 

A.1 Two-dimensional elastic beam element   226 
A.2 Example of a propped cantilever subjected to an axial force P . . 229 
A.3 Two-dimensional tapered elastic beam element   231 
A.4 Two-dimensional truss element   233 
A.5 Example of a hanging cable   238 
A.6 Example for a defined force-deflection curve for a nonlinear spring 

element   241 

xv 



A.7 The interface element   243 

xvi 



List of Symbols 

All symbols are defined where they first appear. SI units are used throughout the 

study presented herein. The following list contains the most frequently used symbols. 

A = cross-section area 

Aav = average cross-section area for a tapered beam 

Ai = cross-section area for cable number i 

A = projected area of an immersed body, perpendicular to the flow 

direction of the fluid 

Ar = effective area in resisting shear deformations (reduced area) 

A1, A2 = cross-section areas for ends 1 and 2 for a tapered beam 

bi = spacing between the anchor points of the cables in the deck 

bt = width of the pylon at the level of the deck 

(distance between the pylon legs) 

Cd = coefficient of drag for an immersed body 

dt = height of the inclined pylon legs below the deck 

DO-j = vertical deflection of deck node connected to cable j, due to 

dead load and zero initial prestressing force in the cables 

Drcq_j = required final deflection of the deck node connected to cable j, 

due to dead load 

E = modulus of elasticity 

Eeq = equivalent modulus of elasticity (for cables) 

f = cable sag 

xvii 



fPU = rupture stress of the cable material (steel) 

F = concentrated force 

FD = drag force on an immersed body 

g = dead load intensity of the deck 

G = shear modulus 

ht = height of the pylon obove the deck 

H = horizontal component of the end reaction of a hanging cable 

I = moment of inertia of a cross-section about its center of gravity 

I. = average moment of inertia for a tapered beam 

I, 12 = moments of inertia for ends 1 and 2 for a tapered beam 

= spring constant 

kn = stiffness of the interface element normal to its surfaces 

kt9 = slope of the active force-deflection segment of a nonlinear 

spring element 

1 = bridge span 

it = loaded span length of a bridge 

L = element length 

chord length in case of a cable 

L0 = strain-free length of a cable 

M = bending moment on a section 

N = normal force on a section 

P = axial force acting on a beam element 

PBending = point load to be applied on a bridge for calculating bending moments 

xviii 



PShcar = point load to be applied on a bridge for calculating shearing forces 

q = live load intensity on the deck 

qc = critical live load intensity causing buckling of the deck 

Ri = reaction of the idealized continuous beam at cable number i 

tb = depth of beam 

AT = temperature loading 

TC = tension force in the cable assumed to act along its chord 

= tension force in cable number i due to self-weight and permanent 

loads 

T1.1 = initial prestressing force in cable j to obtain the required 

deflections of the deck nodes due to dead load 

Tmav = maximum tension in a cable acting along the cable axis 

U = axial deformation 

= displacement in x-direction 

V = vertical deformation 

= displacement in y-direction 

V = fluid velocity 

W = intensity of transverse loading on a beam 

= weight of cable per unit length of its axis 

(catenary configuration) 

Wcable = cable weight 

WP = equivalent weight of cable per unit length of its span 

(parabola configuration) 

xix 



W = standard truck weight 

Y = distance measured from the center of gravity of a member 

= deflection of a beam element 

Ayj = difference between the vertical displacement obtained from step i, 

and the final required vertical displacement of the deck node 

a = coefficient of thermal expansion 

= specific weight (weight per unit volume) 

bij 

ex 

ei+1 

= vertical displacement of deck node connected to cable i 

due to a unit initial force in cable j 

= axial strain in a layer at a distance y from the centroid of a section 

= initial strain in a cable 

= initial strain in a cable for iteration step (i + 1) 

0 = angle of inclination to the horizontal of the cable chord 

Oj = angle of inclination to the horizontal of the cable chord 

for iteration step i 

= Poisson's ratio 

P = fluid density 

0 = tensile stress in the cable 

= allowed stress in the cable due to self-weight and permanent loads 

a per = permissible tensile stress in the cable 

LOper = permissible stress variation in the cable due to live load 

= roller support 
m71T 

= hinge support 

xx 



List of Matrices 

All matrices are defined where they first appear. [ ]-Brackets stand for a matrix, 

while { }.brackets stand for a vector or array. The following list contains the most 

frequently used matrices. 

JD} = vector of joint displacements 

{D. = vector of joint displacements for iteration step n 

{F} = total load vector 

{Fm} = vector of total applied loads at load step m 

-( F, nr } = vector of restoring loads for load step m and iteration n 

{Fn!'} = vector of restoring loads for iteration n 

[k] = member stiffness matrix in the local member coordinates 

[kr] = stiffness matrix for a beam taking into account the (P - 5) effect 

[Ic3] = stiffness matrix expressing the (P - 5) effect on the element 

stiffness matrix (sometimes called stress stiffening matrix) 

[K] = structure stiffness matrix in• the global structure coordinates 

[Km,n] = tangent structure stiffness matrix for load step m and iteration n 

[I] = tangent structure stiffness matrix for iteration n 

[Ta] = coordinate transformation matrix 

xxi 



Chapter 1 

INTRODUCTION 

1.1 GENERAL 

The cable-stayed bridge is an innovative structure that is both old and new in con-

cept. It is old in the sense that the idea of supporting a beam by inclined ropes or 

chains hanging from a mast or tower has been applied by the ancient Egyptians for 

their sailing ships (Figure 1.1) several thousands years ago, and it is new in that its 

modern-day implementation began in the 1950s in Germany and started to seriously 

attract the attention of bridge engineers in North America only as recently as 1970. 

The importance of cable-stayed bridges increased rapidly with the enormous progress 

made in computational facilities and material technology. 

Nowadays cable-stayed bridges have become so successful that they have taken 

their rightful place among classical bridge systems. A large number of cable-stayed 

bridges has been build around the world, most of them are of the two-span 

asymmetrical or three-span symmetrical types (see Figure 1.2). 

Only a very few of them are of the multispan type, as for example the Maracaibo 

bridge in Venezuela, which has a continuous system as shown in Figure 1.3(a). 

For the crossing of the Great Belt in Denmark, a system as shown in Figure 1.3(b) 

is suggested by Finsterwalder. This system consists of very stiff pylons and expan-

sion joints at the centre of each span to reduce the effect of temperature and time 

dependent-effects. 

1 
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Figure 1.1: Model of an ancient Egyptian Pharaoh boat 
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(301) (151) m 

(a) Two-span asymmetrical 

(Severin Bridge at Cologne, Germany) 

(108) (260) (108) m 

(b) Three-span symmetrical 

(North Bridge at Düsseldorf, Germany) 

Figure 1.2: Typical span arrangements for cable-stayed bridges 
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(85) (160) (235) (235) • m 

(a) Statical system of the Maracaibo bridge in Venezuela 

349.90 3490 
 '44 

(b) Proposal by Finsterwalder for the Great Belt bridge in Denmark 

(c) Proposal by Leonhardt for crossing the Ganges in India 

Figure 1.3: Different statical systems for multispan cable-stayed bridges 
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A similar solution was proposed by Leonhardt for crossing the Ganges in India 

as shown in Figure 1.3(c). 

In this study the proposal call for a fixed link across Northumberland Strait 

between New Brunswick and Prince Edward Island in Canada (see Figure 1.4) is 

adopted. The total length of the proposed bridge is about 13 km. The structure 

investigated is a multispan cable-stayed bridge with an idealized 12.OxO.60 m solid 

concrete slab and 250 m long spans. Diamond-shaped pylons have been chosen to 

provide the stiffness required for the resistance of unbalanced live loads. 

Since more than 40 identical spans are to be constructed, conventional construc-

tion methods such as precast or cast-in-place segmental construction are not suitable 

for such a project, because they would take excessively long to construct such a long 

bridge, especially under the harsh environmental conditions existing in the region. 

The method discussed in this study is a cast-in-place concrete deck on a steel truss 

extending over two spans, leading to the construction of one span (250 m) in only 

four to five weeks. 
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Figure 1.4: Location of the proposed bridge 
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1.2 OBJECTIVES 

The objectives of the research project presented in this thesis are: 

1. To compare the highway live loads for long-span bridges according to the 

Canadian, American and European codes. 

2. To review the basic informations needed for the understanding of the behaviour 

and analysis of cable-stayed bridges. 

3. To compare between a conventional linear analysis and a geometrical nonlinear 

analysis of cable-stayed bridges taking into consideration the actual behaviour 

of the cables ,the effect of large deflections and the effect of axial forces. 

4. To propose an efficient statical system for continuous cable-stayed bridges. 

5. To discuss an economical and fast construction method for long continuous 

cable-stayed bridges and to simulate the proposed method using the computer 

program ANSYS. 

1.3 SCOPE 

In this study the static behaviour and the construction of continuous cable-stayed 

bridges are discussed. 

In Chapter 2 the highway live loads on long bridges according to the Canadian, 

American and European codes are compared. 

In Chaptr 3 different structural systems for multispan cable-stayed bridges are 

presented. The various pylon configurations, cable arrangements and deck types are 
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discussed. 

Chapter 4 presents a literature review needed for the understanding of the be-

haviour and analysis of a cable-stayed bridge, including the characteristical behaviour 

of a cable, the effect of axial forces on the beam stiffness and the effect of large deflec-

tions in the analysis. The different techniques for the solution of nonlinear problems, 

which are available in the used computer program ANSYS are also reviewed. 

In Chapter 5 the analysis of the proposed bridge due to dead load, highway live 

load and temperature is carried out. The results of a conventional linear and a 

geometric nonlinear analysis are compared. 

In Chapter 6 a parametric study is carried out to investigate the effect of the 

deck-pylon connection type, pylon configuration and cable areas on the behaviour of 

a continuous cable-stayed bridge. 

The construction method is described and the different construction steps are 

analysed in Chapter 7. 

Chapter 8 contains a summary of the most important results, conclusions and 

recommendations for further research. 

Appendix A includes the description of the different element types used in the 

computer analysis. 



Chapter 2 

LOADS ON LONG BRIDGES 

2.1 INTRODUCTION 

A bridge must be designed to resist all loads and load effects that may be expected 

during its intended life. Besides the own weight and highway live load other loads 

which have to be considered are: 

• Dynamic load effects 

• Temperature, creep and shrinkage effects 

• Wind on structure and on traffic 

• Longitudinal loads due to braking 

• Collision 

• Differential foundation settlement 

• Earthquake loading 

• Ice pressure and stream flow 

In this study only the effects of the own weight, highway live load and temperature 

on the proposed bridge are investigated. 

9 
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2.2 THE OWN WEIGHT 

For the serviceability limit state, the permanent loads are taken as the actual 

(unfactored) loads. The densities of the different materials are input data for the 

computer program for the analysis of the structure due to its own weight. The 

concrete density is taken as 2400 kg/m3 and that of the steel as 7850 kg/ml. 

For the 12.0 xO.60 m solid concrete slab, this gives a dead load intensity of 

170 kN/m. In addition a superimposed dead load of 30 kN/m is applied on the 

deck to accommodate the weight of the wearing surface, side rails, curbs ... etc. 

This means that the total dead load intensity of the deck for the proposed bridge is 

g = 200kN/m. 

2.3 THE HIGHWAY LIVE LOADS 

2.3.1 Introduction 

There are wide disparities throughout the world concerning highway live loads on 

bridges. But a comparison of numerous codes (Canadian, American and European 

codes) shows that, whereas their make-up may differ widely, their overall effects on 

the forces on the structure do so to a much lesser degree. 

In general, the highway live load consists of a standard truck and/or a uniformly 

distributed lane load. Numerous traffic surveys and associated probabilistic studies 

have shown that the actual highway live loads decrease as the area over which they 

are moving increases. 

The highway live load for the proposed bridge of 250 m span and a two-lane deck 

is calculated according to the Canadian Code and compared with the American and 
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European (FTP) Codes. 

2.3.2 Highway live load according to the Canadian Code 

According to the National Standard of Canada (CAN/CSA-S6-88) specifications, 

the highway live load on a bridge consists of a standard truck (W = 600 kN) or of 

a lane load as shown in Figure 2.1, whichever produces the maximum load effect. 

The lane load consists of a uniformly distributed load of 0.02W=12.0 kN/m on a 3 m 

width, plus concentrated loads representing a reduced truck load of 0.6W=360 kN. 

For continuous spans, the lane load shall be continuous or discontinuous, as may be 

necessary to produce maximum load effects, and the dynamic load allowance for the 

uniformly distributed portion of the lane load is 0.10. 

Since the objective of this study is to investigate the overall behaviour of continu-

ous cable-stayed bridges, not to design sections or study local effects such as punching 

in the deck, only the distributed portion of the lane load will be considered. 

It has to be noted that the Canadian Code is not applicable for long-span bridges 

with spans exceeding 150 m. A reduction of the standard truck load needs special 

discussions with the authorities. According to the proposal call of Public Works 

Canada for the investigated Northumberland Strait Crossing project, the weight of 

the design truck is given' by the following equation: 

W = 630 + 1.2. h for ij = 0 to 100 rn 

W=750-0.4.(11-100) for l=100 to 500m 

where: W = weight of design truck (kN) 

11 = loaded length of the bridge (m) 

(2.1) 



1 2 3 4 Axle No. 

0.1W 03W 0.3W 0.3W Axle load. kN 

I 
4.orn 6.Orn 

16.0 rn 

I —.I 025  I, 
(typ.) 

W = total load on all axles 

I  
*4  

6.0 rn 

Standard CS-W Truck 

Uniformly d1str1tu1ed load 0.02W/rn 

0.06W 0.18W / 0 0.18W Axle load, kN 

If II I fill / Ilff II I IIIIIIII III  

4.0 m 6.0m 6.0m 

16.0 m 

Lane Load 

Figure 2.1: Highway live load according to the Canadian Code 
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Using these values of W, and a dynamic load allowance of 0.10, the distributed 

portion of the highway live load as a function of the loaded length of a bridge is shown 

in Figure 2.2. Loading two lanes and using a reduction factor of 0.9 for multiple lane 

loading (see Table 2.1), the live load intensity obtained from Figure 2.2 for a loaded 

length of 250 m is q=27.3 kN/m (corresponding to a truck load W of 690 kN). 

If the standard truck load W=600 kN of the Canadian Code is used, the dis-

tributed lane load is reduced to 23.8 kN/m. As the trend of the different codes (as 

will be shown next) is to reduce the loading with an increase of the loaded length, 

the load intensity of 23.8 kN/m obtained from the Canadian Code is adopted in this 

study. 
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Figure 2.2: Distributed portion of highway live load including the dynamic effect, 
calculated from the truck loading proposed by PWC for the Northumberland Strait 
Crossing project 
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Table 2.1: Reduction factors for multi-lane loading according to the Canadian Code 

Number of loaded lanes Reduction factor 

1 1.00 
2 0.90 
3 0.80 
4 0.70 
5 0.60 
6 or more 0.55 
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2.3.3 Highway live load according to the European Code 

The European standard truck of 60 tons corresponds to the Canadian 600 kN truck. 

In the FTP recommendations for practical design, an attempt has been made to com-

bine all the effects of live loads in a single, uniformly distributed load (see Figure 2.3). 

These values include the dynamic effects. 

For multi-lane loadings, a reduction in load is assumed as shown in Figure 2.4. 

In order to study local effects (for example punching of the deck), a single point load 

has to be considered. The value of this load is 200, 300 or 400 kN for light, normal 

or heavy traffic respectively. 

For the proposed two-lane bridge with a loaded length of 250 m, the highway live 

load would be 20 kN/m for light traffic, 30 kN/m for normal traffic and 40 kN/m 

for heavy traffic (compare with the Canadian Code which gives 23.8 kN/m). 
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Figure 2.3: Highway live loads including dynamic effect according to the European 
Code (FTP) 
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Figure 2.4: Reduction factors for multi-lane loading according to the European 
Code (FTP) 
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2.3.4 Highway live load according to the American Code 

The present American AASHTO Code ( 1983 edition ) specifies the standard 

HS 20-44 truck with a total load of only 72,000 lbs which is about 320 kN (compare 

with the Canadian 600 kN truck). 

The lane load consists of a uniformly distributed load of 640 lb/ft which is about 

9.5 kN/m (compare with 12 kN/m according to the Canadian Code). The magnitude 

of the single point load used in studying local effects (such as shear in punching 

problems) is about 26,000 lbs (115 kN). Adding the dynamic effect, this value would 

correspond to the 200 kN point load used in the European Code for light traffic. It 

should be noted that the AASHTO specifications are only applicable to spans up to 

500 ft (152 m), and therefore do not include the long-span bridges. 

For spans in excess of 152 in, reductions recommended by Ivy et al (1954) as 

shown in Figure 2.5, are generally accepted criteria. The reduction in the lane load 

starts for loaded spans exceeding 300 m, whereas in the European Code the reduction 

starts for spans exceeding 150 m. 

To include the effect of the loaded span length on the highway live loads, and 

to distinguish between light, medium and heavy traffic, the ASCE Committee on 

Loads and Forces on Bridges (1981) recommends a highway' live load as shown in 

Figure 2.6. The values 7.5%, 30%, and 100% H.V. (Heavy Vehicles) correspond to 

the European light, medium and heavy traffic. Using the curves of Figure 2.6 and 

the reduction factors for multi-lane loading shown in Figure 2.7, the highway live 

load for the proposed two-lane bridge with a loaded span length of 250 in is 13.6, 

20.4 and 23.8 kN/m for light, medium and heavy traffic respectively. 
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Figure 2.6: Highway live loads including dynamic effect according to the American 
Committee on Loads and Forces on Bridges (1981) 
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Figure 2.7: Reduction factors for multi-lane loading according to the American 
Committee on Loads and Forces on Bridges (1981) 
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2.3.5 Comparison between the three codes 

A comparison between the highway live loads for the proposed bridge according to the 

different codes is shown in Table 2.2. The Canadian and American Codes are giving 

the same live load intensity of 23.8 kN/m for a heavy traffic. This load corresponds 

approximately to the light traffic value (20 kN/m) of the European Code, which 

in general is recommending higher live loads. Using the loading recommended by 

Public Works Canada in the project proposal, which is about 27.3 kN/m, would 

correspond to the European medium traffic value of 30 kN/m. 

2.4 TEMPERATURE LOADING 

The temperature in a bridge affects the structure in two ways. First there is an 

axial deformation due to minimum and maximum temperature, the second design 

parameter is the thermal gradient, which shall be considered in the design of contin-

uous structures according to the Canadian Code. In order to study these two effects, 

three cases of temperature distributions are analysed. 

• Temperature Distribution No.1 

All the elements of the bridge (deck, pylons and cables) are subjected to a 

uniform temperature drop of AT = —40'C 

• Temperature Distribution No.2 

- = —40'C for the concrete components (deck and pylons) 

- AT = —20'C for the steel components (cables) 
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Table 2.2: Comparison between the highway live loads for the proposed bridge 
according to the different codes 

Canadian Code American Code European 
Public Works 

Canada 
CAN/CSA 

S6-88 
Ivy 
et al 

ASCE 
Committee 

Code 

q (kN/m) 27.3 23.8 17.8 
Light 13.6 
Medium 20.4 
Heavy 23.8 

20 
30 
40 

.PBending (kN) - - 0 
Light 100 
Medium 100 
Heavy 100 

200 
300 
400 

PShear (kN) - - 0 
Light 100 
Medium 100 
Heavy 100 

200 
300 
400 

Note: For the Canadian Code the remaining truck load of 

0.6 W = 414 kN is to be added as concentrated axle loads 
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• Temperature Distribution No.3 

In this case a more realistic temperature distribution is applied. It is assumed 

that the bridge components near the water will cool down more than the other 

components. This leads to a temperature distribution as follows: 

- Pylon: 

AT = —40°C for lower part of the pylons (below the deck level) 

AT = —200C for upper inclined legs of the pylons (above the deck level) 

- Deck: 

AT = —40°C for the bottom of the deck 

AT = —20°C for the top of the deck 

- Cables: 

AT = —20°C for the cables 

These temperature distributions are constant throughout the length of the bridge. 

The thermal expansion coefficient of the concrete is taken as 10 x 10 6/°C and for 

the steel cables 11.7 x 10 6/°C. 

2.5 SUMMARY 

The highway live loads according to the Canadian, American and European Codes 

are compared. The conclusion is that the Canadian and American Codes are giving 

about the same live load intensity, whereas the European Code specifies in general 

higher live loads. In addition, the three temperature distributions used to examine 

the behaviour of continuous cable-stayed bridges are presented in this chapter. 



Chapter 3 

DIMENSIONS AND STRUCTURAL SYSTEMS 

FOR MULTI-SPAN CABLE-STAYED 

BRIDGES 

3.1 INTRODUCTION 

In this chapter the different structural systems for continuous cable-stayed bridges 

are reviewed and compared. Based on this comparison an efficient system is chosen 

for the proposed bridge. In addition, the different cable arrangements are discussed 

and a preliminary design of the cables is made. 

3.2 STRUCTURAL SYSTEMS FOR MULTI-SPAN 

CABLE-STAYED BRIDGES 

The majority of cable-stayed bridges that have been constructed are of the two-span 

asymmetrical or three-span symmetrical types. In such types of cable-stayed bridges 

the back-stay cables, which are anchored at the fixed end support, stabilize the pylons 

and help the forestays to support the main span in an efficient manner as shown in 

Figure 3.1(a). In a continuous (multi-span) cable-stayed bridge those back-stays are 

not available, and an efficient horizontal fixing of the pylon tops is consequently not 

obtained. Under unbalanced live loads this leads to a rotation of the inner cable 

24 
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systems, causing unacceptable vertical deflections of the deck (Figure 3.1(b)). 

The stability of multi-span cable-stayed bridges can be achieved according to 

Gimsing (1983) by the following structural systems (see Figure 3.2): 

1. Stiff superstructure (girder depth 1/60) as shown in Figure 3.2(b). 

This system gives a heavy deck for long span bridges, increasing the cable forces 

due to the own weight of the structure. 

2. Stiff pylons as shown in Figure 3.2(c),(d). 

The inertia of the pylons can be increased in two ways, by using a wall-like 

pylon (Fig. 3.2(c)) or by using twin pylons with inclined legs (Fig. 3.2(d)). 

Since the horizontal forces are resisted in this system by the pylons, which are 

fixed at their bases, fairly strong soil conditions are needed for the foundations 

of the pylons. 

3. Stabilizing the pylon tops by using different cable configurations as shown in 

Fig. 3.2 (e), (f) and (g). The major disadvantage of such systems is the sort of 

chain reaction created in case of failure of one cable. 

Gimsing (1976) also presented a comparison of the deflections of different multi-span 

systems (see Figure 3.3). The deflection diagrams are for the central span under a 

uniformly distributed load. Similar results are found for uniform load and deflections 

in a side span. 
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(a) Three-span (stabilizing back-stays available) 

(b) Multi-span (stabilizing back-stays not available) 

Figure 3.1: Deflections of cable-stayed bridges 
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(a) Conventional system 

(b) Flexible pylons, stiff deck 

(c) Stiff wall-like pylons, flexible deck 

(d) Stiff twin pylons, flexible deck 

(e) Back-stays anchored to adjacent pylons 

'."Odo' I, 

(f) Continuous cable connecting top of pylons 

(g) Cables overlapping in midspan regions 

Figure 3.2: Structural systems for multi-span cable-stayed bridges 
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Conclusions to be drawn from the study of Gimsing are as follows: 

1. The fixing of the pylons with common flexural stiffness has a minor influence 

on the deflections. Compare System B (hinged pylons) with System C (fixed 

pylons). 

2. Fixing the pylons and increasing their flexural stiffness by a factor of 10 do not 

reduce the deflections significantly. Compare System B with System D. 

3. A cable connecting the pylon tops (System B) reduces the deflections of the 

bridge significantly. 

4. A triangular pylon structure supported on proper bearings (System F) is the 

most efficient way to reduce the deflections in a multi-span cable-stayed bridge. 

Based on the above discussion, a system composed of stiff triangular pylons and a 

relatively flexible deck seems to be the optimum solution for the proposed multi-span 

cable-stayed bridge. 

The dimensions of the pylons, deck and cables will be discussed next. 

3.3 DIMENSIONS OF THE PYLONS 

Stiff twin pylons with dimensions as shown in Figure 3.4 are chosen. They consist of 

inclined upper legs connected by a horizontal tie-beam at the level of the deck, and 

sloped lower legs. In the transverse direction, the pylon legs are not sloped as shown 

in Figure 3.5. Inclination of the pylon legs in both directions, the longitudinal and 

transversal ones, would complicate the erection of the pylons. 
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A: Conventional system with hinged connections between the superstructure 

and the substructure 

B: Multi-span system with the same member dimensions as System A 

C: Fixed connection between pylons and substructure, same member 

dimensions as in System A 

D: Fixed connection between pylons and substructure, moment of inertia 

of the pylons is increased by an order of magnitude 10 

E: Same as B, except for the addition of the horizontal cable between the pylons 

F: Triangular pylon structures supported on rollers 

Figure 3.3: Deflections of different systems for multi-span cable-stayed bridges 
(Adapted from Gimsing, 1976) 
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Figure 3.4: Pylon configuration and dimensions for the proposed bridge 
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(a) (b) 

(a) modified A-frame 

(b) diamond 

(c) modified diamond 

(c) 

Figure 3.5: Alternate pylon configurations in the transversal direction 



32 

The inclination of the upper legs is chosen such that no tension develops in those 

members under the maximum unbalanced live load conditions. A hollow cross-section 

with a constant depth of 2.0 m (Figure 3.4) is sufficient for those legs, since they are 

primarily subjected to axial forces as will be shown later in the analysis. 

The cable forces and the required quantity of cable steel decreases with the 

height of the pylon above the deck level. This is shown by Leonhardt (1987) in 

Figure 3.6. An optimum range for the pylon height above the deck level is between 

0.21 and 0.251 (where l is the length of the midspan). For the proposed bridge a 

height of 45 m (0.181) for the upper legs is believed to be reasonable. 

The height of the sloped lower legs is taken as 21 m to accommodate the truss 

used for the construction of the deck, as will be described later. The depth of the 

hollow cross-section of those lower legs is increasing from 2.0 m at the deck level to 

5.0 m at the vertical pier shaft (Figure 3.4), to resist the bending moments created 

by unbalanced live loads as will be shown later in the analysis. 

To reduce the ice loads, a hollow circular pier shaft (with 8.0 m outside diameter 

and 1.0 m wall thickness) is selected instead of the parallel vertical pier legs shown 

in Figure 3.2(d). 
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Figure 3.6: Quantity of cable steel as a function of the relative height of the pylons 
(Adapted from F. Leonhardt, 1987) 
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3.4 THE CABLES 

In this section the different cable arrangements for cable-stayed bridges are discussed, 

followed by the preliminary design of the cables. 

3.4.1 The different longitudinal cable arrangements 

A tabular summary of the various cable arrangements is presented in Figure 3.7. 

Basically, there are four different cable configurations. These basic systems are 

referred to as fan, harp, semi-harp and star systems. 

• The fan system 

The stays are at a maximum angle of inclination to the deck, which means 

that the cables are nearly in an optimum position to support the dead and live 

loads and simultaneously produce a minimum axial force component acting on 

the deck. In addition the bending moments in the deck are less, if compared 

to the harp system. In a parametric study done by Walther et al (1988), it is 

shown that for the same bridge, using a fan cable configuration instead of a 

harp type, decreases the normal forces in the deck by up to 40 percent and the 

maximum bending moments in the deck are reduced by up to 25 percent. 

• The harp system 

The cable connections are distributed throughout the height of the pylon, 

resulting in an efficient pylon design compared to the fan system, which has 

all the cables at the top of the pylon. The concentrated load at the top of 

the pylon (due to unbalanced live loads) produces large shearing forces and 

bending moments along the entire height of the pylon. In addition, high 



35 

Single Double Triple Multiple Combined 

ZM• _ Fan 

A 44•1 ^ rN 
Harp 

Star 

Figure 3.7: Different systems of longitudinal cable arrangements 
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cable forces may cause problems in anchoring the cables to the pylon in the 

fan configuration. The harp system may also be preferred over the radiating 

system for aesthetic reasons, because it minimizes the visual intersection of 

cables when viewed from an oblique angle. 

• The semi-harp system 

This system represents a compromise between the extremes of the harp and 

fan systems, and is useful when it becomes difficult to accommodate all the 

cables at the top of the pylon. 

• The star system 

The star system is only used for its unique aesthetic appearance. There are no 

major structural advantages of using this system. 

The conclusion of the above discussion is that the harp system is beneficial in 

designing the pylon (reducing the bending moments), whereas the fan system is 

beneficial in designing the deck. So if a triangular pylon configuration in which the 

inclined legs are primarily subjected to axial forces is used, then the advantage of 

the harp system is reduced. The optimum cable configuration will be the fan type. 

The number of cables depends on the length of span, type of loading, height of 

pylons, economy and aesthetics. Using only a few cable stays results in large cable 

forces, which require complicated anchorage systems. In addition, deep girders are 

required to span the long distance between the cable anchor points. 

A large number of cables provides a continuous support for the deck, thus per-

mitting the use of a shallow depth girder and increasing the stability of the bridge 

against dynamic wind forces (Leonhardt, 1980). 
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3.4.2 Preliminary design of the cables 

The following simple equation can be used for the preliminary design of the cables 

(Walther et al, 1988): 

A1= 
0 2 

where: 

(3.1) 

A1 = cross-section area of cable number (i) 

T9,1 = tension force in cable number (i) due to self-weight 

and permanent loads 

= allowable stress in the cables due to self-weight and permanent loads 

The calculation of T9,i and o is discussed next. 

• Calculation of the tension in the cables T,,j 

If the deformations in the deck and pylons are neglected, it is possible to regard 

the deck as a continuous structure, rigidly supported by the cables as shown 

in Figure 3.8. 

The reactions R1 of the idealized continuous beam represent the vertical corn-' 

ponents of the forces in the cables due to dead load. From those reactions the 

cable forces T9,1 are obtained using the simple expression: 
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= 

where: 

RS-
sin O 

(3.2) 

Ri = reaction of the idealized continuous beam at cable number (i) 

Oj = inclination of cable number (i) to the horizontal 

Usually the reaction R can be calculated with acceptable accuracy for the 

preliminary design (see Figure 3.8) as: 

R2=g.b (3.3) 

where: 

g = dead load intensity of the deck 

bi = the spacing between the anchor points of the cables in the deck 

• Calculation of the allowable cable stress o 

The allowed stress o in the cables due to self-weight and permanent loads is 

governed either by the strength or the fatigue criterion (Walther et al, 1988). 

This depends on the ratio q = q/g (live load/dead load intensities). If the value 

of q is small, the stress variation due to live load (Lo q) is less than the value 

of the permissible limit (Lo.), which enables the use of the full load-carrying 

capacity of the cables (strength criterion). For high values of i, the stress 

variation (zo q) becomes decisive and the fatigue criterion becomes governing 

in the design of the cables. 
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Figure 3.8: Deck idealized as a continuous beam 
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According to Walther et al (1988), equations giving crg as a function of the 

ratio i for those two criteria can be established. 

1. The strength criterion: 

where: 

g 

q 

0per 

fpt4 

O9=gq 0per 

= dead load intensity 

= live load intensity 

permissible stress in the cables 

= 0.45fpu in case of using a global safety factor 

of 2.2 against the rupture strength of the steel 

= rupture stress of the steel 

2. The fatigue criterion: 

Hence, 

where: 

LOper 

Tq Tq I Tq 
Oper = = • = 

= —1 LOper 

permissible stress variation due to live load 

(3.4) 

(3.5) 

Using 015.2 ASTM A 416-74 Grade 250 strands (rupture stress fpu = 1700N/mm2) 

per = 200N/min2 and area of one strand = 140mm2), curves giving o as a 

function of the ratio 77 can be plotted for the two criteria of strength and fa-

tigue as shown in Figure 3.9. The conclusion is that for values of 71 less than 0.4, 
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the strength criterion is governing the design, whereas for values greater than 0.4, 

the fatigue criterion is more critical. 

In the case of the proposed bridgeq = q/g = 0.12, which means that the strength 

criterion (Equation 3.3) is to be used for the design of the cables. 

Except for the cables close to the pylons, no later adjustments of the areas cal-

culated by this preliminary method were necessary. The cable areas are listed in 

Table 3.1. 

3.5 THE DECK 

In this section steel and concrete decks are briefly compared, followed by a discussion 

about different concrete cross-section types. 

3.5.1 Steel decks versus concrete decks 

Although steel decks have been extensively used for the first modern cable-stayed 

bridges (see Figure 3.10), a number of cable-stayed bridges in the last two decades 

have been constructed using 'a reinforced or prestressed concrete deck system. Pre-

stressed concrete proved to be a strongly competitive construction material compared 

to steel for the deck systems of cable-stayed bridges. 

A metal deck provides the optimum answer to the demand for economy in the use 

of materials. It is, in fact, possible to limit its self-weight to a value which is about 

one fifth of that of a concrete deck (Walther et al, 1988). On the other hand, the use 

of a steel cross-section is today two to four times as expensive as its equivalent in 

concrete. Thus, the reduced self-weight of the deck must result in appreciable savings 
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11 12 

Table 3.1: Cable Areas 

Cable Number Cross-section Area (mm2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

32 x 140 = 4480 
32 x 140 = 4480 
26 x 140 = 3640 
26 x 140 = 3640 
22 x 140 = 3080 
22 x 140 = 3080 
18 x 140 = 2520 
18 x 140 = 2520 
16 x 140 = 2240 
16 x 140 = 2240 
10 x 140 = 1400 
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Figure 3.10: Examples of steel decks (Adapted from Walther et al, 1988) 



45 

in the other load-bearing elements (cables, pylons and foundations), if a steel deck 

is to be more economical than a concrete deck. 

For the proposed bridge a concrete deck is believed therefore to be the optimum 

solution. Different concrete cross-section types are discussed next. 

3.5.2 Concrete cross-section types for the deck 

Several types of concrete cross-sections are shown in Figure 3.11. The major factors 

affecting the choice of the deck cross-section type are: 

• Suspending system (double or single plane of cables) 

• Longitudinal spacing of the cables 

• Deck width 

• Deck span 

• Live load to be carried 

If the deck is suspended along its edges, a very simple cross-section for the deck can 

be used. No torsional rigidity is necessary because the cables give a stiff support 

along each edge and the transverse deflections due to unsymmetrical loading are 

small. According to Leonhardt (1980), for a deck width up to 15 m, a simple solid or 

hollow concrete slab width edge beams is sufficient. The edge beams are beneficial 

in anchoring the cables and securing the buckling safety. 

A parametric study performed by Walther et al (1988) shows that increasing the 

deck inertia in the longitudinal direction is not basically favourable. A deck with a 

high inertia attracts considerable bending moments accompanied by an extension of 
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Figure 3.11: Examples of concrete decks (Adapted from Podolny et al, 1986) 
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the highly stressed zones of the deck, without appreciably reducing the forces in the 

pylons and the cables. 

Based on the above discussion, an idealized solid concrete slab with dimensions 

12.0x0.60 m (see Figure 3.12) is chosen for the proposed bridge. The slab is resting 

on two roller supports and one hinge support on each pylon. At both ends of the 

500 m long continuous slab, expansion joints which are capable of transferring only 

vertical (shear) forces will provide the continuity of the bridge, allowing expansion 

and contraction of the deck due to temperature. 

3.6 SUMMARY 

Based on the comparison of different systems an efficient system for a. multi-span 

cable-stayed bridge is chosen. This system consists of: 

• Stiff diamond-shaped pylons 

• A simple solid cross-section of 0,60 m thickness 

• Fan-type cable configuration 

In addition a preliminary design method for the cables is presented in this chapter. 
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Figure 3.12: Statical system and dimensions of the deck for the proposed bridge 



Chapter 4 

THE ANALYSIS OF CABLE-STAYED 

BRIDGES 

4.1 INTRODUCTION 

In this chapter the different methods of analysing cable-stayed bridges are briefly 

reviewed, followed by a general description of the model used in the computer 

analysis done in this study. 

For the geometrical nonlinear analysis, the behaviour of a cable element, effect 

of axial forces on the beam stiffness and the effect of large deflections are discussed. 

Also the several solution techniques for nonlinear problems available in the used 

computer program ANSYS are presented. 

At the end of this chapter, the approximations inherent in a linear analysis are 

discussed. 

4.2 THE DIFFERENT METHODS OF ANALYSIS 

The analysis of a cable-stayed bridge requires an appropriate idealization, or 

modeling of the structure. The restraints, if any, present at each joint in the 

structure should be determined in order to mathematically model the bridge. Con-

nections between the cables, deck and pylons are idealized at their points of inter-

section. 

49 
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For a single-plane system the structure may be idealized as a two-dimensional 

plane frame. The effect of torsion on the deck would have to be superimposed on the 

deck. A two-plane system may be idealized as a three-dimensional space frame with 

torsional forces included in the analysis. 

Several methods have been employed in the analysis of cable-stayed bridges. 

Perhaps the most important methods are: 

• The reduction method introduced by Falk in 1956 

This method is ideally suited to systems consisting of a number of elements 

linked together end to end in the form of a chain, because only successive 

matrix multiplications are necessary to fit the elements together. 

• The simulation method proposed by Protte and Tross in 1966 

The main system is chosen as a continuous main girder with independent pylons 

having fixed supports, and the cables were introduced as redundants. 

• The force-displacement method developed by Smith in 1967 

In this method the unknowns in the matrix -formulation include displacements 

and forces. 

• The flexibility method used by Troitsky and Lazar in 1971 

In this method the unknowns (redundants) are the forces in the structure. 

• The stiffness method used by Podolny in 1971 

In the stiffness method the unknowns are the displacements and rotations at 

the joints of the structure. 
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Detailed description of the previously mentioned methods can be found in 

Troitsky (1977). In the present study the computer program ANSYS, which adopts 

the stiffness approach, is used for the analysis. Detailed information about the stiff-

ness method are available in numerous textbooks (e.g. Ghali and Neville, 1989). 

The following steps describe the outline of the solution procedure (Seif, 1986): 

1. The structure is idealized as a set of elements connected together at the joints 

(nodes). 

2. The global structure coordinates are arbitrarily chosen together with a set of 

local coordinates for each member. 

3. For each member, the stiffness matrix [lc] is generated in the local member 

axes, and then rotated into the global structure axes. 

4. The structure stiffness matrix [K] is assembled from the member stiffness 

matrices obtained in step 3. 

5. The load vector {F} contains loads which are applied directly to the nodes in 

the global axes, and equivalent node forces calculated from member loads after 

rotated into the global structure axes. 

6. [K] and {F} are corrected for known boundary conditions (support restraints). 

7. The joint displacements {D} are found by solving the equilibrium equation: 

[K] . {D} = {F} (4.1) 
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8. The final member end forces are calculated by multiplying the member stiffness 

matrix [k] in the global axes by its end joint displacements, and then adding 

the resulting vector to the member fixed end forces. 

4.3 MODEL USED IN THE COMPUTER ANALYSIS 

Two types of analysis are performed, a geometrical nonlinear analysis and a con-

ventional linear analysis. A two dimensional model as shown in Figure 4.1 (for the 

linear analysis) and Figure 4.2 (for the nonlinear analysis) is used. Since the value 

of the live load intensity applied on the deck is only 12 percent of the own weight of 

the deck, the torsional effects of unsymmetrical transverse live load cases are not of 

major influence. It is believed that there is no need for a three-dimensional model. 

In both types of analysis, the deck and the parts of the pylons with constant cross-

sections are represented by a conventional beam element, whereas the lower sloped 

legs of the pylons ,which have variable cross-sections, are modeled using tapered 

beam elements. 

For the cables, truss elements are used in the linear analysis, and cable elements 

are used in the geometrical nonlinear analysis. 

The expansion joints at the ends of the 500 m long deck, transferring only vertical 

reactions, are represented by springs. The stiffness of those springs are calculated 

by applying a vertical concentrated force F at one end of the deck, and calculating 

the corresponding vertical deflection of this end. 

The deck-pylon connection is simulated by coupling the vertical displacements of 

the deck node and the corresponding pylon node to create a roller between them, 
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and coupling the vertical and horizontal displacements to create a hinged support. 

Coupling of the displacements of two nodes means that the two nodes have the same 

displacements. 

Shear deformations are taken into account in both types of analysis. A detailed 

description of the geometric nonlinear and conventional linear analysis is presented 

next. 

4.4 THE GEOMETRIC NONLINEAR ANALYSIS 

4.4.1 Introduction 

The sources of the nonlinear behaviour of cable-stayed bridges (excluding the mate-

rial nonlinearity) are the cables, the high axial forces in the deck and pylon, and the 

large deflections of the system associated with unbalanced live loads. These sources 

will be discussed next without detailed technical derivations, because they are avail-

able from many textbooks about the theory and analysis of structures. Therefore, 

only those equations considered to be basic for the understanding of the analysis of 

cable-stayed bridges are presented. 

4.4.2 The behaviour of a cable 

1. The catenary curve 

Because of its virtually zero stiffness In bending, a cable can only balance its 

own weight by taking the form of a hanging chain, which is the well known 

catenary curve shown in Figure 4.3(a). 
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Considering the equilibrium of a segment of the cable, the equation for the 

catenary elastic curve with respect to the coordinates shown in Figure 4.3 is: 

x 
y = a cosh - 

a 

where: 

a = H/w0 

H = horizontal component of the end reaction 

W, = weight of the cable per unit length along the cable axis 

The cable sag f may be expressed as: 

f = a - (cosh! —1) 
2a 

(4.2) 

(4.3) 

where: 

1 = horizontal projected length of the cable chord (cable span) 

Introducing the parameters n = f/i and m = 2a/i, Equation 4.3 can be 

rewritten as: 

n = 
rn 1 
—.(cosh--.1) (4.4) 

which is an expression for the catenary curve in non-dimensional terms of 

n and in. This expression will be used later in comparing the catenary profile 

with the parabolic one. 
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2. The parabolic curve 

The equilibrium configuration of the cable, if it is assumed to be weight-

less, under a uniformly distributed load along its span, is a parabolic curve 

(Figure 4.3(b)). Using the same coordinate system as for the catenary, the 

basic equation for a parabolic cable supporting a uniformly distributed load 

along its span is: 

x2 

2a 

where: 

a = H/wy 

H = horizontal component of the end reaction 

WP = equivalent weight of the cable per unit length of its span 

In this case the cable sag f can be expressed as: 

(4.5) 

(4.6) 

Substituting the terms n and m as previously defined to convert to a non-

dimensional equation, the following expression for the parabolic curve is 

obtained: 

(4.7) 

3. Catenary versus parabola 

Since the mathematical expression for a parabolic curve is simple when com-

pared with the equation for a catenary curve, it is sometimes preferred to 

use the parabolic equation. So did Ernst (1965) for example, in deriving his 
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equivalent modulus of elasticity for cables (which will be used later in the 

linear analysis). Therefore, it is advantageous to compare the two expressions 

to determine the range for which a parabolic curve may be substituted for a 

catenary curve. This was done by Odenhausen (1965). He introduced a loga-

rithmic plot, as shown in Figure 4.4, of Equations 4.4 and 4.7 with n = f/i as 

abscissa and m = 2a/i as the ordinate. The plot indicates that the two curves 

begin to diverge at a sag ratio n = f/i of approximately 0. 20. For typical cables 

used in cable-stayed bridges, the ratio n = f/i is by far less than 0.20 (in the 

range'of 0.015 in this study), which means that there is no difference between 

the catenary curve and the parabolic curve. The foregoing comparison applies 

to cables with a horizontal chord, while the cables of cable-stayed bridges have 

inclined chords (see Figure 4.5). Francis (1965) showed that a parabolic curve 

may be used instead of catenary curve without introducing any significant er-

rors, if the ratio of the horizontal component of the cable tension H, to the 

cable weight Wcable, is greater than unity and the chord inclination does not 

exceed 70 degrees. These conditions are usually met in cable-stayed bridges. 
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4. Cable element used in the computer nonlinear analysis 

The sagging of a cable is a major cause of the nonlinear behaviour of cable-

stayed bridge systems. Consider the cable between points A and B of 

Figure 4.6. The force needed to move point B to b along the chord AB 

Figure 4.6: Sagging cable 

depends not only on the cross-sectional area and the modulus of elasticity 

of the cable, but also on the cable sag. For a sagging cable, this force is less 

than for a straight cable, and as the tension in the sagging cable increases, 

its sag decreases. This means that even if the stress in the cables is within 

the linear elastic limit of the steel, the relationship between the force and the 

deformation is not linear. 

In the analysis performed by the computer program ANSYS, a nonlinear cable 

element, which has the capability of sagging due to its own weight forming 

a catenary curve, is used. This cable element can resist only a tension force, 

if for any reason an absolute compressive force is applied, the stiffness of this 

element is removed. This feature simulates a slacked cable. Ten elements are 

used to model one cable stay, to obtain an accurate sagging profile of a cable. 

For more information about this cable element refer to Appendix A. 
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4.4.3 The effect of axial forces on the beam stiffness 

4.4.3.1 Introduction 

The main structural characteristic of the cable-stayed system is the integral action 

between the pylons, deck and cables. Horizontal compressive forces due to the cable 

action are taken directly by the deck, while the vertical compressive forces are trans-

mitted by the cables to the pylon. This means that deck and pylon are subjected to 

high compressive axial forces. 

By modeling the deck and pylon by a beam element in the stiffness method 

analysis, the effect of axial forces on the stiffness of a beam element (sometimes 

called P - S effect) has to be considered. As the beam deflects, the moment due to 

axial loads changes and with it the deflections. The equilibrium position is obtained 

by using an iterative procedure. 

Two methods are available to account for the axial force effect through adjusting 

the member stiffness matrix. The general solution approach and the Przemieniecki 

approach. These methods are briefly discussed next. 

4.4.3.2 The general solution approach 

The differential equation governing the deflection y of a prismatic beam element 

(see Figure 4.7(a)) subjected to an axial compressive force P with any boundary 

conditions is (Ghali and Neville, 1989): 

d 4 y P d2y 
+-i i.5;=w 

where: 

W = intensity of transverse loading 

(4.8) 
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Using this equation in deriving the stiffness matrix of the beam element according to 

the degrees of freedom 1 to 6 as shown in Figure 4.7(b) leads to the following member 

stiffness matrix if the beam is subjected to an axial compressive force (Ghali and 

Neville, 1989): 

EA 
L 

2(s+&) P 
£2 

[kr] = 

where: 

0 

EA 
£ 

sc+tc  
£ Sc 

0 0 

o - 2(s+t) + P -  

£ 2 L 

o t £ 

.s c=  - - 

(2-2 cos U '—u sin u) L 

EA 
£ 

0 

0 

i. (sin ii—iZ cos i) El 

- .(— sin ) El 
C(22cossjfl) L 

P 

El 

2(3+t) P 
£2 £ 

P = absolute value of the compressive force 

E = modulus of elasticity 

A = cross-section area-of the beam element 

I = moment of inertia of the beam element 

L = length of beam element 

(4.9) 
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For an axial tensile force, the beam stiffness matrix becomes: 

EA 
L 

2(s-1-t) _j_ P 
L2 '7 

[k2,] = 

where: 

0 

EA 
L 

St+tt 

L 

0 

0 2(st+tt) P 
L2 L 

L 

St 

0 

L 

tt 

EA 
-r 
o 2(st-l-t) + 

L2 

o St+tt St 
£ 

V . (i cosh ii - sinhiZ) El 
.st =  - - - - 

(2-2coshu+usinhu) L 

'.(sinh—)  El 
tt= - 

(2-2coshu+usinhu) £ 

P = tensile force 

E = modulus of elasticity 

A = cross-section area of the beam element 

I = moment of inertia of the beam element 

£ = length of beam element 

(4.10) 
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4.4.3.3 The Przemieniecki approach 

In this method the axial strain used in developing the element stiffness matrix is 

expressed by (Przemieniecki, 1968): 

(,92V  \ 2 ôu 1 IDV\ 
= - y + • OX 19X 2 2 Ox (4.11) 

where: 

= axial strain in a layer at a distance y from the centroid 

U = axial deformation (in x-direction) 

V = vertical deformation (in y-direction) 

Y = distance measured from the center of gravity of the member 

By using the third term of Equation 4.11, the effect of the moment due to axial load 

is included in the solution. The obtained beam matrix can be put in the following 

form: 

where: 

[kr] 

[k] 

[k3] 

[1ev] = [k] + [1cc] (4.12) 

= stiffness matrix for a beam element subjected to an axial force P 

= traditional stiffness matrix for a beam element, would be obtained 

if the first two terms only of Equation 4.11 are used 

= stiffness matrix expressing the effect of the axial force on the 

element stiffness matrix (sometimes called stress stiffening matrix) 

[k] and [k3] are given next. 
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EA 
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0 
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EA 
L 

0 

0 

where: 

0 

0 

0 

0 

0 

0 

12E1 

6I 

0 

12E1 
L3 

4E1 
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6E1 
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6E1 2E1 
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6P 
5L 

P 2PL 
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EA 
L 

0 
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0 0 0 

6P 
5L 

P, 
15 0 

12E1 

6E1 4E1 
--Zr 

6P 
5L 

p PL - 0 -- 2PL 
10 30 10 15 

P = axial force acting on the beam 

(4.f3) 

(4.14) 
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4.4.3.4 The general solution versus the Przemieniecki approach 

A comparison between the stiffness matrices obtained by the two methods shows that 

a difference does exist. According to Seif (1986), this may be because Przemieniecki 

used a group of shape functions to describe the deflected shape of the beam element, 

that do not account for the presence of the axial force, while the general solution is 

based on the elastic shape of the beam that accounts for the presence of the axial 

force. Figure 4.8 illustrates the difference by using the end-rotational stiffness value 

k33 to compare between the two methods. For low values of ti = L (i < 2) 

the difference is negligible. 

Since the computer program ANSYS which is used in the present study, adopts 

the Przemieniecki approach, the lengths of the beam elements in the model are 

chosen to give low values of U. By increasing the number of elements, the value of 

'iT decreases, resulting in obtaining the same solutions whether the general solution 

approach is used or the Przemieniecki approach (refer to Appendix A for program 

verification). 

Since the final axial force (which affects the member stiffness) is not known in 

advance, an iterative procedure has to be used in such a type of analysis. 

4.4.3.5 Stability study of structures using the effect of axial forces 

If the compressive axial force exceeds the buckling load of a member during any of 

the iterations of the analysis, an element on the main diagonal of the stiffness matrix 

becomes negative, resulting in a singular stiffness matrix and the analysis is stopped. 

So the stability or buckling phenomena can be studied using such a type of analysis. 
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4.4.4 The effect of large deflections 

4,4,4.1 Introduction 

Some types of structures (especially those including cables like cable-stayed bridges) 

undergo large deflections under certain load cases. The deflections can be large 

enough such that the structure stiffness matrix based on the initial geometry does 

not characterize the deformed structure. The equilibrium equation of the stiffness 

method [K].{ D} = {F} (Equation 4.1) must be written with respect to the deformed 

geometry. But this deformed geometry is not known in advance, so an iterative 

procedure has to be used in the analysis. 

Two methods are available for solving large deflection problems, the Lagrangian 

method and the Eulerian methods. These methods are introduced next. 

4.4.4.2 The Lagrangian Method 

In the Lagrangian method the equilibrium equations are written with reference to 

a structure that remains stationary throughout the analysis. The large deforma-

tion effect is encountered in this method by including more terms in the strain 

Equation 4.11 which is used in the development of the element stiffness matrix, 

obtaining the following equation for a beam element in bending: 

ex =+äu 1. tOu) 2 1 (OV ) 
2 

_- - 

ôx 2 

152v\ (02U 5v\ 

— )'y+... 
jX 

ôxj 
(4.15) 

4.4.4.3 The Eulerian Method 

In the Eulerian method (known also as updated Lagrangian), which is used by the 

computer program ANSYS, the equilibrium equation [K] . {D} = {F} is written 

with respect to the updated geometry of the structure. This is done by ANSYS by 
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applying the load in increments, for each load step the large deflection process can 

be summarized as a three step process for each element: 

1. Determination of the updated transformation matrix [Ta] for the element. This 

matrix relates the current element coordinate system to the global Cartesian 

coordinate system (see Figure 4.9). 

2. The displacement field can be decomposed into a rigid body translation, a rigid 

body rotation and a component which causes strains. In this step the defor-

mational displacement is extracted from the total element displacement for 

computing the stresses 

3. After the rotational increments are computed, the node rotations are updated 

appropriately. 

During a large deflection analysis performed by ANSYS, the loads applied through 

the nodal coordinates do not rotate with the node. But pressure lo'ads (distributed 

loads on the member) remain normal to the member and follow the rotation (as 

shown in Figure 4.10). This may not represent the reality, where gravity loads on 

members are acting always downwards, despite the member direction. 

For more detailed information about this procedure please refer to ANSYS 4.4 

Theoretical Manual. 

4.4.4.4 Stability study of structures using a large deflection analysis 

Buckling (a stability phenomenon) can be analysed with the large deflection process. 

By observing the rate of change in deflection (per iteration), an estimate of the 

stability of the structure can be made. If the change of displacement at any node is 
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Figure 4.9: Transformation matrix [T] in a large deflection analysis 
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Figure 4.10: Load directions during a large deflection analysis performed by the 
computer program ANSYS 
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increasing, the loading is above critical and the structure will eventually buckle. If 

the displacement change is constant or decreasing, the structure is at or below the 

critical buckling load. 

4.4.5 Iterative procedures for the solution of nonlinear problems 

4.4.5.1 Introduction 

The stiffness method yields to a set of simultaneous equations (Equation 4.1): 

[K].{D}={F} 

If the stiffness matrix [K] of the structure contains only constant elements, then the 

displacements {D} are proportional to the loads {F}, as shown in Figure 4.11(a). 

But if the stiffness matrix [K] is itself a function of the unknown displacements (or 

their derivatives), as is the case for the geometric nonlinearities discussed before, 

then the equilibrium equation (Equation 4.1) is a nonlinear equation. In this case 

the force-deflection relationship of the structure is nonlinear, resulting in a stiffening 

structure like cables, or in a softening structure like most conventional structures 

(Figure 4.11(b),(c)). 

Several iterative techniques are available for the solution of such problems (see 

Cook, 1989). The Newton-Raphson procedure is an efficient technique used by the 

program ANSYS, therefore this method and its modifications are discussed next. 
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b- nonlinear behaviour (stiffening) 

c- nonlinear behaviour (softening) 

Figure 4.11: Force-deflection relationships for different types of structures 
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4,4,5,2 The Full Newton-Raphson procedure 

In this method the nonlinear equilibrium equation (Equation 4.1) is written in the 

form of (Bathe, 1982): 

[Ku] . {LD} = {F} - {F} (4.16) 

{D 1} = {D} + {zD} (4.17) 

where: 

[Ku] = tangent stiffness matrix for the structure for iteration n 

{F} = vector of applied loads 

{ F } = vector of restoring loads for iteration n 

{ D} = vector of displacements for iteration n 

{AD,,} = displacement difference between step n + 1 and step n 

The right-hand side of Equation 4.16 is the out-of-balance load vector, or in other 

words the amount the structural system is out of equilibrium. 

Figure 4.12(a) shows the solution procedure for a one degree of freedom model. 

The general algorithm proceeds as follows: 

1. Assume {D}, which is usually the converged solution from the previous step. 

For the first step (n = 0) {D} = {0}. 

2. Compute the updated tangent matrix [Ku] and the restoring force {F,r} from 

the configuration {D}. 

3. Calculate {AD} using Equation 4.16. 

4. Calculate {D +1} using Equation 4.17. 
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Figure 4.12: Newton-Raphson techniques for the solution of nonlinear problems 
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The solution obtained at the end of the iteration process would correspond to 

load level {F}. So the final converged solution would be in equilibrium, that is, 

the restoring force {F,"}, which is computed from the current stress state, would 

equal the applied loads {F}. None of the intermediate steps are in equilibrium. 

This method has two limitations. The first one is that if the analysis includes path-

dependent nonlinearities (such as plasticity), then the solution process requires that 

some intermediate steps be in equilibrium in order to correctly follow the load path. 

The second limitation is that this method guarantees convergence only if the solution 

at any iteration {D} is near the exact solution. To overcome these two limitations, 

the following modified methods may be used, 

4.4.5.3 The Incremental Newton-Raphson procedure 

In this method the final load {F} is reached by stepping the load in increments 

and performing the Newton-Raphson iterations at each step (see Figure 4.12(b)). 

Equation 4.16 is then written in form: 

[Km ,,] . {D} - {Fm} rpm,nr (4.18) 1. nf 

where: 

[Km,nl = tangent stiffness matrix for load step m and iteration n 

{Fm} = vector of total applied loads at load step rn 

{ F,"} = vector of restoring loads for load step m and iteration n 
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4.4.5.4 The Initial-Stiffness Newton-Raphson procedure 

In the previous two procedures, the stiffness matrix is updated in every iteration. 

Alternatively, the stiffness matrix could be formulated only once at the beginning of 

the analysis and then used throughout the analysis (see Figure 4.12(c)). This method 

converges more slowly, but requires fewer matrix reformulations and inversions. 

Since the program ANSYS has the option of choosing which Newton-Raphson 

procedure is to be used in the analysis, the incremental Newton-Raphson procedure 

has been chosen for its accuracy. A load step is said to be converged if the change 

of deflection at all degrees of freedom is less than 0.001. This accuracy is reached in 

the present analysis after three iterations. For a comparison, the Initial-Stiffness 

Newton-Raphson procedure (no updating of the stiffness matrix) is used in the 

analysis. A converged solution is not reached even after fifty iterations. It is there-

fore recommended to update the stiffness matrix every iteration in a large deflection 

analysis with a large number of degrees of freedom. 

4.5 THE LINEAR ANALYSIS 

4.5.1 Introduction 

Since most of the computer programs available for the analysis of cable-stayed bridges 

assume linearity, a linear analysis is performed using the computer program ANSYS. 

By comparing the linear analysis with the nonlinear analysis, an estimate of the error 

introduced by neglecting the sources of the geometric nonlinearity in cable-stayed 

bridges can be achieved. 

The structure components which distinguish a cable-stayed bridge from any other 
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conventional structure type, and which need special attention in a linear analysis, are 

the cables. As a cable represents a flexible member with virtually no resistance to 

applied moments, one traditional truss element may be used for the representation of 

each cable stay (see Figure 4.2). The difference between a truss element and a cable 

element is the sag of the cable element. This sag causes the nonlinear force-deflection 

relationship of a cable. By using a traditional truss element and neglecting the sag, 

two errors are introduced. The first error is the linear force-deflection relationship 

which is now assumed for the cable stay. The second error comes from the assumption 

that the cable force is acting along the inclined chord of the cable stay even though 

in reality the force acts along the axis of the sagging cable. The effects of these two 

errors are discussed next. 

4.5,2 The equivalent modulus of elasticity 

As a result of the flexibility of the cable and the changes in its length and sag, it 

is necessary to adopt a corrective technique to account for this nonelastic feature. 

Several investigators (Ernst, 1965, Tung and Kudder, 1968) have studied this prob-

lem. In this study the fundamental approach provided by Ernst (1965) is adopted. 

The solution is based on the idea of assuming a straight member with a varying 

modulus of elasticity that depends on the magnitude of the tension force, so that 

the behaviour of this substitute member with an equivalent modulus of elasticity is 

identical to that of a sagging cable. 
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Ernst (1965) developed the following expression for the equivalent modulus of 

elasticity: 

where: 

Eeq 

E 

-y 

0• 

1 

Eeq = 
i+(1)2 E 

12o'3 

E 

= equivalent modulus of elasticity 

= tangent modulus of elasticity 

= specific weight of the cable material, weight per unit volume 

= tensile stress in the cable 

= horizontal projected length of the cable chord 

(4.19) 

Figure 4.13 shows the ratio (Eeq /E) calculated from Equation 4.19 for the illustrated 

specific values of E, fp, and different stress levels in the cable. The equivalent 

modulus of elasticity E6q defined in Equation 4.19 is valid only for a single value 

of the stress C. But during the analysis, the stress level in the cables changes with 

the applied live load from a lower limit to an upper limit. This means that the 

equivalent modulus Eeq is also changing during the analysis. To take this effect into 

consideration, the following modified equation of Ernst (1965) can be used: 

where: 

Eeq = E  
1 + (1)2 (1+ fL)4  E 

 12cr3 l62 

lower limit stress 

upper limit stress - 

Clow + O•up  
Urn - 

Clow 

(4.20) 
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Figure 4.13: Ratio Eeq/E showing the influence of the cable sag on its stiffness 
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By comparing Equations 4.19 and 4.20, an equivalent stress o can be derived as 

a function of °m and i (Walther et al, 1988): 

=  am 
(  16  

+ y )4 ) ' 
(4.21) 

This equivalent stress makes it possible to use Equation 4.19 and Figure 4.13 directly. 

This is the first error introduced by using a truss element in modeling a cable stay, 

the second error is discussed next. 

4.5.3 Cable tension versus component along inclined chord 

By using a truss member in the analysis, the inclined cable in a cable-stayed bridge 

is assumed to be a straight line between the cable anchors at the pylon and the deck. 

Although the cable is not actually following the chord line, because of the sag due 

to its own weight, the tension force calculated in the truss member is assumed to be 

the tension in the cable. 

The accuracy of this assumption was investigated by Podolny (1971). He com-

pared the maximum tension in the cable Tma with the tension along the chord T 

(see Figure 4.14). The results of his study are plotted in Figure 4.15 as percentage 

error versus the sag ratio n. = f/i for various angles of inclination of the chord. 

As indicated by Figure 4.15, for sag ratios n between 1/200 to 1/600, which is 

normally the case in cable-stayed bridges, the error is negligible. This can also be 

concluded by comparing the results of the nonlinear analysis with the results of the 

linear analysis in the next chapter. 
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Figure 4.14: Maximum tension Tmax and tension T along the cable chord 
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Figure 4.15: Percentage error of maximum cable tension versus component along the 
inclined cable chord (Adapted from Podolny, 1971) 
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4.6 SUMMARY 

In this chapter the different methods of analysing cable-stayed bridges are briefly 

reviewed, with an emphasis on the stiffness method which is used in this study. The 

models used in the conventional linear and geometric nonlinear analyses are intro-

duced. In addition, the sources of the geometric nonlinear behaviour of cable-stayed 

bridges, which are the behaviour of the cables (catenary and parabolic configura-

tions), the effect of axial forces (general solution approach and Przemieniecki ap-

proach) and the effect of large deflections (Lagrangian and Eulerian methods), are 

discussed and compared. 

Since a difference between the general solution approach and the Przemieniecki 

approach does exist in a certain range of element lengths, and since the program 

ANSYS uses the Przemieniecki approach, the element lengths of the model are chosen 

small enough that both methods are identical. 

Also the different techniques for solving nonlinear problems, which are available 

options in the computer program ANSYS, are reviewed. At the end of the chapter 

the errors introduced by using a truss member in modeling the cable stays in the 

linear analysis are discussed and the equivalent modulus of elasticity for cables is 

introduced. 



Chapter 5 

ANALYSIS OF THE PROPOSED BRIDGE 

5.1 INTRODUCTION 

In this chapter the proposed bridge is analysed under its own weight, highway live 

loads and temperature. In the dead load analysis the prestressing forces in the 

cables are adjusted to result in a horizontal deck alignment. For the highway live 

load analysis, the maximum force and moment envelopes for the different bridge 

components are calculated by investing several load cases. 

The results of the conventional linear and of the geometric nonlinear analyses are 

compared. In addition the effect of shear deformations is investigated. 

5.2 THE DEAD LOAD ANALYSIS 

5.2.1 General 

In each construction cycle one pylon with a deck of 250 m length is constructed in 

one stage, and this deck will be connected to the previously completed span after the 

deformations due to its dead load have occurred. Therefore, the dead load analysis 

is performed for a model consisting of one pylon with a 250 m lone double cantilever 

deck without springs at its ends, as shown in Figure 5.1. The dead load intensity as 

mentioned before is g = 200kN/m. A horizontal deck level due to the own weight 

is reached by different methods in the linear analysis and in the geometric nonlinear 

88 
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Figure 5.1: Model used in the dead load analysis 

(For dimensions see Figure 3.12) 
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analysis. A uniform deflection of 8 mm is chosen for the deck alignment, because the 

vertical deflection of the pylon at the deck level turned out to be 8 mm. 

5.2.1.1 Horizontal deck in the linear analysis 

A horizontal deck level (uniform 8 mm downward deflection of the deck nodes) 

is reached by adjusting the initial forces (initial strains) in the cables. For the 

calculation of these forces, the principle of superposition, which is applicable in 

a linear analysis, is used. This leads to the following system of equilibrium equations: 

Ti.-1 + 8 1,2 . T_2 + + 8i,n + D0...1 = Dreq_i 

T_1 + 8n,2 + + 8n,n + Do-n = Dreq_n 

or in matrix form: 

[8] < {T} + JDo}n = {Dreq}n 

where: 

Sj,j = vertical deflection of deck node connected to cable i due to 

a unit initial force in cable j, calculated in a separate analysis 

Tin-j = required (unknown) initial prestressing force in cable j 

to obtain the required deflections of the deck nodes 

= vertical deflection of deck node connected to cable j 

due to dead load and zero initial prestressing forces 

in the cables, calculated in a separate analysis 

Dreq_j = required final deflection of the deck node connected to cable j 

= number of cables (22 for this study) 

(5.1) 
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The coefficients of the matrix [S] are calculated by introducing an initial unit 

force (in form of an initial strain) in cable i, and computing the vertical deflections 

of the deck nodes. Figure 5.2 shows the case for the first cable (i = 1). Solving 

Equation 5.1 gives the required initial cable forces to give a horizontal deck of 8 mm 

uniform downward deflection. These forces are listed in Table 5.1. 

5.2.1.2 Horizontal deck in the geometric nonlinear analysis 

As in the linear analysis, the initial strains (prestressing forces) in the cables 

required to obtain a horizontal deck of 8 mm uniform downward deflection are calcu-

lated. Since in a nonlinear analysis the principle of superposition (used in the linear 

analysis) is in general not applicable, an iterative procedure is used. The initial 

strains (prestressing forces) in all cables are adjusted simultaneously according to 

the following equation for each cable (see Figure 5.3): 

sinoi  
= (5.2) Li 

where: 

= initial cable strain for step (i + 1) 

Ayi = difference between the vertical displacement obtained from step i 

and the final required vertical displacement of the deck node 

Li = cable chord length in step i 

Oi = angle of inclination of cable chord in step i 

This procedure is repeated until a satisfying horizontal deck level is reached, as shown 

in Figure 5.4 for the deck node connected to cable number 1. The prestressing forces 

(= initial strain x EA) obtained by this method are given in Table 5.1. 



Figure 5.2: Calculation of the deflections 61 ,1 to 822,1 
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Table 5.1: Forces in the cables and stress-free lengths L. 

Cable 
No. 

Linear Analysis Nonlinear Analysis 
Init. 
(kN) 

D.L. 
(kN) 

L.L. (kN) L0 
(m) 

Init. 
(kN) 

D.L. 
(kN) 

L. L. (kN) 
(m) Tens. Comp. Tens. Comp. 

1 3061 2954 306 -29 127.697 3055 2962 313 -32 127.700 
2 2878 2757 308 -16 118.445 2871 2763 313 -17 118.448 
3 2405 2305 253 -4 109.276 2399 2309 255 -4 109.278 
4 2444 2338 262 -4 100.266 2442 2346 274 -11 100.268 
5 2088 1993 235 -11 91.460 2085 1996 244 -17 91.461 
6 2051 1948 234 -10 82.924 2047 1950 239 -15 82.925 
7 1702 1617 186 -5 74.733 1703 1623 186 -7 74.733 
8 1615 1527 178 -2 67.041 1617 1534 176 -2 67.041 
9 1363 1277 148 - 60.015 1356 1275 149 - 60.016 
10 1447 1355 128 -2 53.899 1444 1355. 128 -2 53.899 
11 930 885 47 -3 49.072 937 894 47 -3 49.071 
12 919 886 44 -2 49.074 927 896 45 -2 49.073 
13 1422 1354 126 -1 53.902 1420 1354 129 -2 53.903 
14 1337 1277 148 - 60.019 1331 1275 150 -1 60.020 
15 1586 1527 178 -4 67.045 .1589 1534 175 -3 67.045 
16 1674 1617 188 -10 74.738 1676 1623 189 -13 74.738 
17 2018 1948 241 -20 82.929 2016 1951 249 -30 82.930 
18 2057 1993 244 -19 91.465 2055 1997 260 -33 91.465 
19 2410 2338 270 -3 100.271 2410 1 2346 291 -18 100.272 
20 2373 2305 285 -32 109.281 2368 2309 284 -31 109.283 
21 2842 2757 396 -116 118.450 2836 2763 405 -119 118.453 
22 3026 2954 446 -212 127.702 3022 2962 464 -218 127.705 
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Required Horizontal Deck level 

Figure 5.3: Iterative procedure for one cable to obtain the required deck alignment 
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To compare between the linear and geometric nonlinear behaviour of the bridge, 

the same iterative technique is used in a linear analysis. The results for the linear 

analysis are also shown in Figure 5.4. 

Knowing the initial strains e in the cables, and the distance £ between their two 

ends (before any deformations occur), the strain-free length L of each cable can be 

calculated as follows: 

£ 

1+e 
(5.3) 

The strain-free lengths of the cables (listed in Table 5.1) are needed later when 

discussing the construction steps of the bridge. 

5.2.2. Results and conclusions 

1. Effect of shear deformations 

The effect of shear deformations on the cable forces and moments in the pylons 

and deck is negligible, since including shear deformations in the analysis did 

not change the results by more than 2%. 

2. Forces in the cables (Table 5.1) 

For the assumed cross-sections of the cables, the average tensile stress due to 

the dead load of the bridge is about o' = 0.375f, where f is the rupture 

strength of the cable material. With a maximum horizontal projected cable 

length of 1 = 120 m, it can be concluded from Figure 4.13 of the previous 

chapter that the ratio (Eeq/E) for these values of o and 1 is about unity. This 

means that the cables react like bars which are not influenced by their sags, or in 

other words the stress-strain relationships of the cables are more or less linear. 
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Furthermore, the sag ratio (n = f/i) for the cables varies from 1/600 for cable 

number 1 (0 = 21°) to the value 1/1000 for cable number 11 (0 = 66°). Using 

Figure 4.15 (Chapter 4) it can be seen that the error introduced by calculating 

the tension force along the cable chord (by using a straight member) instead 

of the maximum tension in the curved cable is absolutely negligible. This is 

also shown by comparing the cable forces obtained from the linear solution 

with those obtained from the geometric nonlinear solution (Table 5.1). The 

use of ten nonlinear cable elements for the modeling of one cable stay in the 

nonlinear analysis, did not change the cable forces obtained from the linear 

analysis, in which one simple truss element represented one stay cable, by more 

than 0.5 percent. This difference is negligible, especially if compared with the 

enormous increase in the computational effort and time associated with the 

use of the nonlinear cable elements instead of the simple truss elements. 

3. Deck alignment 

Both methods used in obtaining a horizontal deck level, the principle of 

superposition for the linear analysis and the iterative technique for the nonlin-

ear analysis, give almost identical initial cable strains (prestressing forces) as 

shown in Table 5.1. 

4. Bending moments and normal forces in the deck (Fig. 5.5 and 5.6) 

The bending moments under the effect of dead load are relatively small. This 

is due on one hand to the relatively close spacing of the cables, and on the 

other to the fact that these cables are tensioned so as to act as point supports. 

Further, the deck, instead of being primarily a flexural member, now acts 
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Figure 5.5: Deck bending moment diagram due to dead load 
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Figure 5.6: Deck normal force diagram due to dead load 
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primarily as a compressive member of a cantilever structure suspended from 

the pylon by the inclined stays. Therefore, the deck in multicable-stay systems 

does not require a large bending stiffness in order to resist bending moments. 

Longitudinal bending stiffness is governed in such systems by: 

• Deflections due to live loads 

• Buckling due to large compressive forces induced by the inclined stays 

If the deck system is considered as a continuous beam, supported on rigid 

supports instead of the flexible cables, the negative moments over the supports 

can be estimated by the simple equation: 

• b2 
M - 

12 

where: 

g = dead load intensity of the deck (= 200 kN/m) 

bi = the spacing between the anchor points of the cables in the deck 

10 m in this case 

Equation 5.4 gives a moment of 1667 kNm. Except for the cables near the 

pylon and at both ends of the deck, this moment is fairly close to those ob-

tained by the computer analysis. Concerning the difference between linear and 

nonlinear analyses, a maximum difference of 2 percent in the bending moments 

and 0.5 percent in the normal forces are obtained. For design purposes these 

differences are of course negligible. 
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5. Bending moments and normal forces in the pylon (Fig. 5.7 and 5.8) 

While the upper inclined legs of the pylon are primarily subjected to axial 

compressive forces, for the lower legs the bending moments are increasing 

with the increase of the width of those legs. Since the structure is almost 

symmetrical about the pylon axis (except the deck-pylon connection consisting 

of the unsymmetrical configuration of two rollers and one hinge), the bending 

moments in the vertical shaft are almost zero. Again, the maximum difference 

in the bending moments between the linear and nonlinear analyses is about 

2 percent. The normal forces obtained from both analyses are almost identical. 

6. Conclusions 

The conclusion from the previous results is that designing the cables for a high 

stress, and keeping the differential deflections of the deck and rotation of the 

pylon as low as possible, will lead to a linear behaviour of the structure. This is 

the case for the dead load analysis, where the cable stresses are about 0.375f, 

the deck is horizontal and the structure is almost symmetrical about the pylon 

axis. Thus the use of a simple linear analysis instead of a more complicated 

geometric nonlinear analysis due to dead load is justified. 
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Figure 5.7: Bending moment diagram (MN.m) in left pylon due to dead load 
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Figure 5.8: Normal force diagram (MN) in left pylon due to dead load 
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5.3 THE HIGHWAY LIVE LOAD ANALYSIS 

5.3.1 General 

The highway live loads will act on the complete, continuous bridge. Therefore, the 

analysis is performed using a model consisting of two pylons connected by a 500 in 

long deck (see Figure 5.9). The load cases used to obtain the maximum bending 

moments and normal forces in the bridge are shown in Figure 5.10. The springs at 

the ends of the deck are used if only the 500 in long bridge is loaded. They are 

removed in other load cases to simulate the loading on the whole continuous bridge. 

By removing the spring at one end, the shearing force at this end becomes zero, and 

a case of symmetry for the whole bridge about this end is achieved. 

Since in reality the live loads are superimposed loads on the dead loads, the effect 

of the live loads alone in this analysis is achieved by using the following algorithm: 

(Effect of live loads) = (Effect of live loads + dead loads) - (Effect of dead loads) 

5.3.2 Results and conclusions 

1. Effect of shear deformations 

The effect of shear deformations on the cable forces and straining actions in the 

pylons and deck is less than 3 percent, which is negligible for design purposes. 

2. Behaviour of the springs at the ends of the deck 

In calculating the force-deflection relationship (see Figure 5.11) of the spring 

simulating the shear joint at one end of the 500 m long deck, the boundary 

condition (free or hinged) of the far end of the deck has an effect of less than 

0.5 percent on the deflection of the deck end under the applied concentrated 
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Figure 5.9: Model used in the live load analysis 
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load. In the geometric nonlinear analysis the force in thesprings varies between 

203 kN compression and 118 kN tension due to the different live load cases. 

This range is between 219 kN compression and 122 kN tension in the linear 

analysis. Referring to Figure 5.11, these ranges are in the linear part of the 

force-deflection relationship of the springs, so the use of the nonlinear spring 

element instead of a linear one is not necessary for the used value of live loads. 

For the justification of the use of springs for the simulation of the continuity of 

the bridge, a model consisting of six pylons is analysed for different load bases. 

The results are compared with the two-pylon model in Table 5.2. The results 

are identical, which justifies the use of the two-pylon model with springs in 

analysing thecontinuous bridge. 

3. Behaviour of the cables 

For the linear analysis the equivalent modulus of elasticity Eeq for each cable 

is calculated using Equation 4.20 with the equivalent stress obtained from 

Equation 4.21 (Chapter 4). For the outer cable (1 = 120 m), this gives the 

following values (calculated from Table 5.1): 

Clow 

CUP 

= tensile stress due to D.L. + maximum compressive stress due to L.L. 

= 653N/mm2 = 0.384f 

= tensile stress due to D.L. + maximum tensile stress due to L.L. 

= 728N/mm2 = 0.428f 

= Clow — 0.897 
oup 
Clow + CUP 

2 
= 691N/mm2 = 0.406fpu 
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Ak\\ 
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thus: 
16M 2 

= • ((1i +)4) = 689N/mm2 

Using Figure 4.13 of Chapter 4 with these values, the ratio (Eeq/E) approaches 

unity. This again means that the cables act as bars not influenced by their sag. 

4. Forces in the cables (Table 5.1) 

The maximum tensile forces in the cables due to live load is about 14 percent 

of the forces due to dead load. For a live load intensity of 12 percent of the 

dead load, this means that the effect of loading cases in a. multicable system 

is minor on the maximum cable forces. A comparison between the geometric 

nonlinear analysis, and the linear analysis gives a maximum difference in the 

cable tension forces of about 8 percent. Since the cables act as linear bars, the 

difference must be caused by the difference in the deflection of the deck (as will 

be discussed later), not by the behaviour of the cables. 

5. Bending moments and normal forces in the deck (Fig. 5.12 and 5.13) 

The moment envelope under live load has three distinct zones, where the max-

imum positive and negative moments appear (see Figure 5.12). These zones 

are near the joint providing the continuity of the deck (side span), in the vicin-

ity of the pylons, and around the center of the main span. To understand this 

bending moment envelope, the beam-on-elastic-supports analogy (Figure 5.14) 

may be useful. 
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Figure 5.12: Deck bending moment envelope due to highway live load 



112 

1.000 

2000 

-2000 

-1.000 

-6000 

-8000 

N (kN) 

Figure 5.13: Deck normal force envelope due to highway live load 



113 

In this approach the cables are substituted by springs, if the shortening of the 

pylon is neglected, the elastic support spring constant k, which is the vertical 

force needed to develop a unit displacement (see Figure 5.15), can be calculated 

as follows (Troitsky, 1977): 

AL =1.sinO= 

where T = tension force in the cables 

or 

From Equations 5.5 and 5.6 

E  
  sin  (5.5) 

k=T•sint9 (5.6) 

E.A 2 
sinO (5.7) 

From Equation 5.7 it can be concluded that the spring constants are increasing 

rapidly by moving towards the pylon (angle 0 is increasing while the ratio 

(AIL) remains approximately constant). High positive bending moments are 

achieved by loading the zones with low spring constants (far away from the 

pylon), as shown in Table 5.3. This is comparable with high positive field 

bending moments for a beam resting on soft soil (low spring constants). 
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Figure 5.14: Beam-on-elastic-supports analogy 

Figure 5.15: Elastic support spring constant 
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The high negative bending moments in the same regions (far away from the py-

lon) are mainly achieved by unbalanced live loads, resulting in large rotations 

of the system. For example, load case number 20 causes the maximum nega-

tive bending moments in the side span (see Table 5.3). The deck is connected 

to the pylon at three points (Figure 5.14). At two points of them, the deck 

is supported directly on the pylon. Due to the infinite stiffness of the pylon, 

compared to the deck, these two points may be considered as rigid supports, 

causing the high negative bending moments. At the third point, the deck is sup-

ported on the tie-beam, which provides a much more flexible support than the 

two other points, resulting in a lower negative bending moment. Although the 

live load intensity is only 12 percent of the dead load intensity, the maximum 

positive bending moment due to live load reachesa value of 2500 kN.m, which 

is 2.5 times the value of the maximum bending moment due dead load (about 

1000 kN.m). For the negative bending moments, the live load gives a maximum 

value of about 1800 kN.m, which is about 65 percent of the value due to dead 

load (2800 kN.m). Comparing the bending moment envelopes of the linear 

and the geometric nonlinear analyses, a maximum difference of 25 percent in 

the regions of relatively high bending moments is obtained. This percentage 

increases to 100 percent in the regions of low (insignificant) bending moments. 

These differences are far less for the normal forces. The maximum difference 

is less than 1 percent. Maximum tension due to live load is achieved by load 

cases 14 and 22, while maximum compression is achieved by load cases 26 and 

24 in the side and main spans of the deck respectively (see Table 5.3). A sud-

den increase in the normal force envelope (Figure 5.13) is caused by the hinged 
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Table 5.3: Critical load cases for deck bending moments and and normal forces 

Load cases for maximum 
bending moments 

Load cases for maximum 
normal forces 

14 

22 

26 

14 24 
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connection between deck and pylon at this point. The normal forces in the 

deck are transferred to the pylon by this hinge. 

6. Deck deflections (Figure 5.16) 

The maximum downward deflection (330 mm) occurs at the expansion joint, 

this gives a deflection/span ratio of about 1/760. This ratio is 1/1100 for 

the maximum deflection of the midspan. Because of the hinged connection 

between deck and pylon, the maximum horizontal displacement of the deck 

is less than 30 mm. Such a displacement can be easily accommodated by the 

expansion joints. The maximum difference in the deflections between the linear 

and nonlinear analyses is about 7 percent. 

7. Bending moments and normal forces in the pylons (Fig. 5.17 and 5.18) 

As in the dead load analysis, the upper inclined legs of the pylons are subjected 

primarily to axial forces (in this case tension or compression). For the lower 

legs, the bending moments increase rapidly towards the vertical shaft, due 

to unbalanced live load cases. And since horizontal forces in the deck are 

transferred to the pylon through the hinge at the deck level, very high bending 

moments are created in the vertical pylon shaft. The maximum difference in 

the bending moments between the two analyses (linear and nonlinear) is abut 

2 percent. The normal forces obtained from both analyses are almost identical. 
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Figure 5.16: Deck deflection envelope due to highway live load 
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a- Nonlinear Analysis b- Linear Analysis 

Figure 5.17: Bending moment envelope (MN.m) in left pylon due to live load 



120 

a- Nonlinear Analysis b- Linear Analysis 

Figure 5.18: Normal force envelope (kN) in left pylon due to live load 
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8. Conclusions 

From this discussion, it is concluded that the bending moments in the deck 

due to live load are significantly larger when the geometric nonlinear effects are 

included in the analysis. This is mainly caused by the effect of high axial forces 

and large deflections of the flexible deck. Bending moments in the stiff pylon 

are much less affected. The normal forces in the deck and pylons are almost 

identical in both types of analyses. Another conclusion is that for a multicable 

system the maximum forces in the cables are almost proportional to the load 

intensity applied on the deck, whereas the maximum bending moments in the 

deck are greatly affected by cases of loading.' 

5.4 THE TEMPERATURE ANALYSIS 

5.4.1 General 

Three types of temperature distributions (as indicated in Figure 5.19) are investi-

gated. It is assumed that these temperatur6 distributions are constant throughout 

the whole length of the bridge. Therefore the temperature analysis is performed 

using the same model used in the highway live load analysis. Since symmetry exists 

at both ends of the 500 m long deck, no springs are used at the ends of the deck (see 

Figure 5.19). 



122 

Temperature 1 Temperature 3 

Cables AT = —40°C Cables AT = —20°C 

Deck AT=-40°C 
Deck Top AT = —20°C 

Pylon IT = —40°C 
Bottom AT = —40°C 

Temperature 2 Pylon Upper legs AT = —20°C 

Cables AT = —20°C Lower legs AT = —40°C 

Deck AT = —40°C Shaft AT = —40°C 

Pylon AT = —40°C 

Figure 5.19: Model used in the temperature analysis 
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5.4.2 Results and conclusions 

1. Forces in the cables 

Except for the cables next to the pylons, the forces in the cables due to the three 

temperature distributions are negligible. A maximum tensile force of 10 kN, 

which is about 20 percent of the maximum tensile force due to the highway live 

load, is reached in the cable next to the pylon. This force is due to temperature 

distribution 1 (the whole structure is exposed to AT = —40°C). 

2. Bending moments and normal forces in the deck (Fig. 5.20, 5.21 and 5.22) 

For temperature distributions 1 and 2 (constant temperature throughout the 

deck thickness), the high bending moments occur in the vicinity of the pylon 

and at the centre of the main span (Fig. 5.20 and 5.21). The moments in the 

side span, which is connected to the expansion joint capable of transferring 

only shear forces, are almost zero. It should be noted, that due to symmetry of 

the temperature loadings for the whole continuous bridge about axes through 

the expansion joints, the shear forces are zero at these joints. Therefore no 

springs are used at the ends of the deck, or in other words the side spans of 

the two-pylon model are free and acting as a suspended cantilever, resulting 

in those zero bending moments. For temperature distributions 1 and 2, the 

maximum difference between the linear and geometric nonlinear analyses in 

the regions of relatively high bending moments is about 8 percent. This dif-

ference increases to 22 percent in regions of relatively low bending moments. 

The temperature distribution 3 (linear temperature gradient through the deck 

thickness) causes high bending moments reaching the maximum values of the 
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highway live load analysis of about 3000 kN.m at the centre of the main span. 

The average bending moment along the deck is about 2600 kN.m, which is 

reached after a certain transition length (0.45 of the side span length) as shown 

in Figure 5.22. Comparing this moment with the fixed end moment of a beam, 

with the same cross-section and material properties of the deck, and exposed 

to the same linear temperature distribution, the later case can be calculated 

using the following equation (Ghali and Neville, 1989): 

(5.8) 
tb 

where: 

M = fixed end moment 

tb = depth of the beam 

= coefficient of thermal expansion of the material 

ET = temperature difference between the top and bottom 

fibres of the beam 

Not surprisingly, Equation 5.8 gives a moment of 2567 kN.m, which is almost 

identical with the moment obtained from the complicated nonlinear computer 

analysis. This means that after a certain transition zone, the deck may be 

considered as a fixed beam, and Equation 5.8 may be used in calculating the 

moment in the deck due to a linear temperature distribution through its depth. 

Since the forces in the cables are negligible, the normal forces in the deck, which 

are a result of the cable forces are also negligible. 
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Figure 5.20: Deck bending moment diagram due to temperature distribution 1 
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Figure 5.21: Deck bending moment diagram due to temperature distribution 2 
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Figure 5.22: Deck bending moment diagram due to temperature distribution 3 
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3. Deck deflections (Figure 5.23) 

The maximum vertical deflection (about 230 mm) is caused by temperature 

distribution number 2 . This value is the same as the maximum vertical de-

flection at the centre of the main span induced by the highway live loads. The 

maximum horizontal displacement of the 500 m long continuous deck at the 

expansion joint is about 100 mm. This results in a gap of 200 mm, which can 

be accommodated by traditional expansion joints. 

4. Bending moments in the pylons (Figure 5.24) 

In the chosen structural system consisting of stiff pylons and a flexible deck, 

the horizontal force created by the contraction (or expansion) of the deck is 

resisted by the stiff pylons via the hinged connection between the deck and 

the pylon. This leads to very high bending moments in the vertical pylon 

shaft. The moments are reaching the values obtained in the highway live load 

analysis. The maximum difference in the bending moments between the linear 

analysis and the geometric nonlinear analysis is about 18 percent for the upper 

legs (low bending moments) and less than 1 percent for the vertical shaft (high 

bending moments). 
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Figure 5.23: Deck deflections due to temperature distributions 1, 2 and 3 
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5.5 SUMMARY 

A conventional linear and a geometric nonlinear analysis are performed for the 

proposed bridge to study its behaviour under its own weight, highway live loads and 

temperature. 

In the dead load analysis two methods are used to calculate the required initial 

strains (forces) in the cables to obtain a horizontal deck due to dead load. A superpo-

sition technique for the linear and an iterative procedure for the nonlinear analysis. 

Both methods gave same results. 

In the live load analysis different load cases are investigated to obtain the en-

velopes for the maximum straining actions in the different components of the bridge. 

The beam-on-elastic-support analogy is used in trying to explain the moment enve-

lope of the deck. 

In the temperature analysis three cases of temperature distributions are investi-

gated. For the benaing moments in the deck, the linear varying temperature through 

the deck thickness is the critical case. The resulting moment is compared with the 

fixed end moment of a beam subjected to the same temperature distribution. Almost 

identical moment values are obtained after a certain transition length in the deck. 



Chapter 6 

PARAMETRIC STUDY 

6.1 INTRODUCTION 

The static behaviour of a cable-stayed bridge is the result of the complex interaction 

between its three structural components which are the deck, the pylons and the 

cables. 

Based on the system chosen for the proposed bridge which consists of a flexible 

deck and stiff pylons, the influence of the following parameters on the characteristics 

of continuous cable-stayed bridges are examined in this chapter: 

1. The different connection types between deck and pylon. 

2. The dimensions of the pylon. 

3. The areas of the cables. 

6.2 THE DECK-PYLON CONNECTIONS 

6.2.1 Introduction 

In the proposed bridge the deck is resting at three points on each pylon (including 

the tie-beam). To study the effect of the connection type between deck and pylons 

on the behaviour of a continuous cable-stayed bridge, five different connection types 

(see Figure 6.1) are investigated. 

132 
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Connection 1 
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Figure 6.1: Different deck-pylon connections 
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• Connection 1 

In this connection type the bridge system consists of a 500 m long continuous 

slab resting on two pylons. At both ends of the slab shear joints (expansion 

joints), capable of transferring only a shear force, provide the continuity of the 

about 13 km long bridge. Each deck-pylon connection consists of two rollers, 

which allow a horizontal movement of the deck on the pylon, and one hinge 

preventing such a type of movement. 

• Connection 2 

For this type of connection the bridge has the same structural system as in 

Connection 1, except that each deck-pylon connection consists of three rollers 

allowing a free horizontal movement of the deck against the pylon. 

• Connection 3 

In this connection the bridge system consists of a 500 m long continuous slab 

resting on two pylons (as in Connection 1). Each deck-pylon connection consists 

of one hinge, while the other two points of the deck are suspended by cables 

instead of being supported directly on the pylon. 

• Connection 4 

• For this connection the bridge consists of the same structural system as in 

Connection 3, except that a shear joint (expansion joint) is introduced at the 

rnidspan of the system. 
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• Connection 5 

In this type of connection the bridge system consists of a 750 m long continuous 

slab resting on three pylons. Each of the deck-pylon connections for the two 

outer pylons consists of three rollers. Whereas for the pylon in the middle, the 

deck is connected to the pylon by two hinges and one roller. 

The effect of these different connections on the behaviour of the deck, pylons and 

cables are discussed next. 

6.2.2 Effect of the deck-pylon connection type on the deck 

6.2.2.1 Deck deflections 

From Figure 6.2 and Figure 6.3 it can be seen that the minimum deflections are 

obtained by connection types 1 and 3, which consist of a 500 m long deck connected 

to each pylon with at least one hinge preventing the horizontal movement of the 

deck against the pylons. Deck and pylons form a sort of frame action resulting in 

decreasing the deflections to a deflection/span ratio of 1/1000. 

Introducing an expansion joint at the midspan (Connection 4) is increasing the 

deck deflections to reach a maximum deflection/span ratio of 1/500, which is double 

the value obtained in connection types 1 and 3. Deck and pylons are acting almost 

as a double cantilever system, but still the ratio 1/500 may be accepted. 

Using a floating deck resting on the pylons via rollers only (Connection 2), or even 

permitting a horizontal movement of the deck against one pylon, and preventing such 

a movement at the other pylon (Connection 5) leads to unacceptable deck deflections 

with a maximum deflection/span ratio of over 1/200 (see Figure 6.3). 
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Figure 6.2: Force-deflection relationships for different deck-pylon connections 
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In such a system the horizontal movement of the deck is resisted by the cables 

which provide a much more flexible support against the horizontal movement com-

pared to a rigid hinge between deck and pylon. In addition the horizontal forces in 

the deck are transferred to the top of the pylon via the cables, causing large bending 

of the pylon leading to excessive deck deflections. 

6.2.2.2 Deck bending moment envelopes due to highway live loads 

A comparison between the bending moment envelopes for the first three deck-pylon 

connections as shown in Figure 6.4 shows that having only rollers between the deck 

and the pylons results in increasing the maximum moments in the deck significantly. 

In the mid- and side-spans the maximum negative moments in the deck are caused 

by unbalanced live loads leading to large rotations of the system. Using rollers only 

(Connection 2) increases the deck deflections and rotations significantly. In the side-

span for example, this leads to an increase in the spring force at the end of the deck 

from 118 kN (Connection 1) to 318 kN (Connection 2) for the critical load cases. 

The maximum negative moments are increasing with the same ratio of the spring 

forces from 1000 kN.m (Connection 1) to 2670 kN.m (Connection 2). 

The increase in the positive moments in the side-span is also caused by large 

deflections of the deck leading to an increase in the spring force due to critical load 

cases from 203 kN (Connection 1) to 384 kN (Connection 2). The maximum positive 

moment is increasing again by the same ratio of the spring forces from 1602 kN•m 

(Connection 1) to 3232 kN•m (Connection 2). 

The large deflections of the deck cause a high curvature of the deck at the points 

over the roller supports producing very high positive and negative bending moments 
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at these points (see Figure 6.4). 

The conclusion is that allowing a horizontal movement of the deck against the 

pylons by using only rollers to connect the deck with the pylon (Connection 2) 

increases the bending moments in the deck to unacceptable values. Even if this 

horizontal movement is allowed at one pylon and prevented at another one (as in 

Connection 5), these unacceptable high moments would not be reduced, since the 

deflections are not significantly reduced in Connection 5. 

To decrease the high negative moments over the supports in Connection 1, it is 

useful to suspend the deck from cables instead of the rigid supports. This is achieved 

in Connection 3. The cables provide a much more flexible support for the deck than 

the rigid rollers, so the negative moments at the two additional cables are decreased 

significantly, but the negative moment at the hinge support also increases to a high 

value (see Figure 6.4). 

This means that from an economical point of view it is not advantageous to 

introduce additional cables (which are the most expensive elements in a cable-stayed 

bridge) for the deck-pylon connection to decrease the bending moments in the deck, 

instead of supporting the deck directly on the pylon. 

Introducing an expansion joint at the midspan (Connection 4) reduces the mo-

ments at this point to zero, but at the same time increases the moments in the 

side-span (see Figure 6.5), since the deflections of the deck are increased in this 

system which acts almost as a double cantilever. 

From the previous discussion Connection 1 seems more efficient than the other 

connection types regarding the decrease of the maximum bending moments produced 

in the deck. 
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6.2.2.3 Deck normal force envelopes due to highway live loads 

A comparison between the normal force envelopes of different deck-pylon connection 

systems (see Figure 6.6) shows that the main difference between using a hinge and 

not using a hinge, is the sudden jump in the normal force at the location of the hinge, 

representing the amount of horizontal force transferred to the pylon at the deck level. 

This is true except for Connection 4, where the system is symmetrical about each 

pylon axis, so that the maximum normal forces in the deck are also symmetrical 

about those axes. For the side-span the different deck-pylon connections give almost 

the same normal force envelopes. The difference appears in the main span as shown in 

Figure 6.6. Connections 1 and 3 (continuous deck and using a hinge between deck 

and pylon) cause high compressive forces (load case 24) and relatively high tension 

forces (load case 22), this may cause fatigue problems, especially if the live load is a 

high percentage of the dead load. 

In general, a compression force in the deck is advantageous, since it reduces 

the amount of prestressing required. To reduce the maximum tension forces in the 

deck significantly, an expansion joint at the midspan is useful, which is the case of 

Connection 4. This joint decreases the maximum compression forces too as shown in 

Figure 6.6. Such a system may be efficient regarding fatigue problems in the deck. 

Connection 2 (only rollers) gives a more or less constant maximum compression force 

and an increasing tension force in the main span. 

The conclusion from the above discussion is that Connection 4 is to be considered 

should fatigue due to high compression and tension forces is a problem in the systems 

consisting of connection types 1 and 3. 
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6.2.2.4 Buckling of the deck 

Since the slender deck in the chosen multicable-stay system is acting primarily as 

compression chord member of a cantilever structure suspended from the pylon by 

inclined stays, buckling due to large compressive forces induced by the inclined stays 

may be a problem. 

To study the buckling phenomenon of such a system, and the effect of the type of 

deck-pylon connection on the critical buckling load of the deck, the live load on the 

deck is increased gradually in a geometric nonlinear analysis until a negative pivot 

on the main diagonal of the structure stiffness matrix is reached. This indicates 

buckling. The analysis is carried out for live load cases 24 and 26 superimposed on 

the dead load, and the normal force diagrams due to the critical buckling loads for 

the different deck-pylon connections are shown in Figure 6.7 and Figure 6.8. 

For load case 24, Connection 1 gives the minimum critical buckling load q of 

199 kN/m, while the system of Connection 2 gives the maximum critical buckling 

load, the deck starts to buckle at q equal to 2563 kN/m, which is over 12 times 

the critical load of Connection 1. For load case 26 the critical buckling load (q 

660 kN/m) is almost the same for all the different deck-pylon connections. 

At this point it should be mentioned, that even the smallest buckling load q 

of 199 kN/m for Connection 1 is over eight times the highway live load intensity 

q of 23.8 kN/m for which the bridge is designed. This means that the previously 

mentioned critical buckling loads are only theoretical values, indicating the behaviour 

and resistance of the different deck-pylon connection systems against the buckling 

phenomena of the deck. Actually the various structural components of the bridge 

(for example the cables) will fail before reaching the critical buckling loads mentioned 
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before. 

This means that the chosen system of a multicable-stayed bridge with a slender 

deck is effective in preventing instability of the deck. 

6.2.3 Effect of the type of deck-pylon connection on the pylons 

6.2.3.1 Pylon bending moment envelopes due to highway live loads 

A comparison between the bending moment envelopes in the vertical shaft of the 

pylon (see Figure 6.9) shows that the highest bending moment values are reached 

in Connection 2 (only rollers). In this connection type the horizontal forces in the 

deck due to unbalanced live loads are transferred to the top of the pylon via the 

cables, thus increasing the moment arm and producing very high bending moments 

(a maximum of 361 MN-m) in the vertical shaft of the pylon. 

Transferring the horizontal forces in the deck to the pylons by using a hinge at 

every second pylon (Connection 5) decreases the maximum moment by 33 percent 

from 361 MN.m to 241 MN-m. 

Transferring the horizontal forces in the deck to the pylons directly by a hinge at 

each pylon (connection types 1 and 3) creates a much more efficient system decreasing 

the maximum moments to 110 MN-m. 

Using an expansion joint in the midspan (Connection 4) produces a constant 

maximum bending moment of 175 MN.m in the pylon shaft. This system is acting 

as a double cantilever. 

The conclusion is that the best systems regarding the bending moments in the 

vertical pylon shaft due to highway live loads are connection types 1 and 3 (using a 

hinge at each pylon). An expansion joint in the midspan increases the moments by 
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60 percent, and the other connection types cause unacceptably high moments. 

6.2.3.2 Bending moments in the pylons due to temperature 

The most efficient system is Connection 4 as shown in Figure 6.10. An expansion 

joint at the midspan allows a free contraction (or expansion) of the deck due to 

temperature without being resisted by the pylons, so almost zero bending moments 

are created in the vertical pylon shaft due to temperature. A continuous deck and a 

hinge between the deck and each pylon (as in connection types 1 and 3) causes the 

highest bending moments (see Figure 6.10). In such a system a free contraction (or 

expansion) of the deck due to temperature is resisted by the pylons via the hinges. 

Comparing between those two systems with regard to the maximum total 

moments (highway live load and temperature combined) and using a temperature 

load factor of 0.8 for the serviceability limit state according to the Canadian Code, 

the maximum total moments are listed in Table 6.1. For Connection 1 the maximum 

total bending moment is 213.2 MN-m. If an expansion joint is used (Connection 4), 

this value is reduced to 175 MN-m. This means that the expansion joint at the 

midspan reduces the maximum total moment in the pylon shaft by only 18 percent, 

although the maximum moment due to highway live loads alone was reduced by 

60 percent. The total maximum moments reached in Connection 2 (only rollers) 

is 354 MN-m, and it is 266 MN.m for Connection 5 (hinge at every second pylon). 

These values are by far higher than the values of the previous systems. 
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Table 6.1: Maximum total bending moments (MN.m) in pylon for different types of 
deck-pylon connections 

Connection Type L.L. Temp. L.L. + 0.8 Temp. 

1 110 129 213.2 
2 350 .5 354.0 
3 110 128 212.4 
4 175 0 175.0 
5 238 35 266.0 
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6.2.3.3 Pylon normal force envelopes due to highway live loads 

The maximum compression and tension force envelopes in the pylons for the differ-

ent deck-pylon connections are shown in Figure 6.11. As expected, 'the maximum 

normal forces in the pylon are not significantly influenced by the type of deck-pylon 

connection, except for the tension forces in the vertical shaft. The values vary from 

125 kN for Connection 1 to 602 kN for Connection 3. But it should be noticed that 

these values are negligible compared with the values of the compression force due to 

dead load (between 70,063 and 90,256 kN). 

6.2.4 Effect of the deck-pylon connection type on the maximum cable 

forces 

Table 6.2 contains the maximum tensile forces in selected cables for different deck-

pylon connections. Except for connections allowing a horizontal movement between 

deck and pylon, the type of the deck-pylon connection does not significantly influence 

the maximum cable forces. For example, in case of Connection 2 an increase of about 

17 percent in the maximum force in cable number 1 (most outside one) is caused by 

transferring the horizontal forces in the deck due to unbalanced live loads via the 

cables to the pylon, instead of transferring these forces directly to the pylon by using 

a hinge. 
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Table 6.2: Max tension force (kN) in selected cables due to live load for different 
deck-pylon connections 

Cable 
Number 

Connection 
1 2 3 4 5 

1 313 365 313 313 365 
10 128 127 147 148 127 

Connection 1 - 3,' I  
14 
r r 

Connection 2 J  

Connection 3 j  

Connection 4 

Connection 5 

777 

I7 77 •7 '77 

I. 
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6.2.5 Summary and conclusions 

The effects of different deck-pylon connection types on the behaviour of the structural 

components (deck, pylons and cables) of cable-stayed bridges have been discussed. 

The conclusion is that the most efficient deck-pylon connection type is Connection 1 

with the continuous deck prevented from the horizontal movement against the pylon. 

Connection 3 decreases the moments in the deck at the points suspended by addi-

tional cables instead of resting directly on the pylons, but still may be not economical 

since the cables are the most expensive components of a cable-stayed bridge. Connec-

tion 2 (only rollers) gives unacceptable deck deflections, which are not significantly 

decreased by using a hinge at every second pylon as in Connection 5. 
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6.3 THE DIMENSIONS OF THE PYLON 

6.3.1 Introduction 

The longitudinal stiffness of the proposed bridge, which is required for the resistance 

of unbalanced live loads; is provided by the stiff pylons. The diamond shape is 

therefore believed to be an efficient configuration for the pylons. Using deck-pylon 

connection type 1 (two rollers and one hinge), the effect of three dimensions on the 

behaviour of the proposed bridge are examined next. These dimensions are: 

1. The width of the pylon diamond (see Figure 6.12) at the level of the deck (be). 

2. The height of the pylon above the deck (he). 

3. The height of the inclined pylon legs below the deck (di). 

The effects of these parameters on the maximum deck deflections and on the maxi-

mum bending moments in the pylons are investigated. 

6.3.2 The width of the pylon at the level of the deck 

6.3.2.1 The maximum deck deflections 

Figure 6.13 shows the maximum upward and downward deck deflections as a function 

of the pylon width (be). It is obvious that an increase in the width (be) leads to a 

decrease in the maximum deck deflections. This decrease is significant until a ratio 

(b/1), where 1 is the span, of 0.06 is reached. At this point the curves are almost 

asymptotic, or in other words the maximum deck deflections are almost constant 

despite the increase in the pylon width (be). Trying to understand this behaviour 

the following concept may be useful. 
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Figure 6.12: Cross-section in the pylon at the level of the deck 
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By increasing the width (be), two factors influencing the deck deflections are 

affected. The first factor leads to a decrease in the deck deflections, while the second 

factor leads to an increase in the these deflections. The first factor is dominant 

until a ratio (b/1) of about 0.06. After that, both factors are balancing each other, 

resulting in an almost constant value of the maximum deck deflections. 

The first factor is that increasing the width (be) is increasing the moment of inertia 

of the pylon cross-section at the deck level about the axis z - z (see Figure 6.12). 

This rapid increase in the moment of inertia increases the pylon stiffness leading to 

a decrease in the deck deflections. 

At the same time the increase of the pylon width (be) increases the inclination 

to the vertical of the lower legs of the pylon, decreasing their resistance to vertical 

loads and increasing the bending moments in those legs, causing an increase in the 

deck deflections. This may be the second factor affected by changing the parameter 

(be). 

6.3.2.2 The maximum bending moments in the pylon shaft 

As shown in Figure 6.14, the maximum bending moments in the pylon shaft are not 

caused by the same case of loading for all (b/1) values. For example, the maximum 

positive bending moment envelope for the top point of the pylon shaft (point 3 in 

Figure 6.14) is formed by load cases 24 and 30. 

For (b/l) values less than 0.015 load case 24 is the critical case, whereas for values 

greater than 0.015 load case 30 causes the maximum positive bending moments. 

This means that the smallest maximum positive bending moment at the top point 

of the vertical pylon shaft is obtained at a (b/1) ratio of about 0.015, this ratio is 
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about 0.027 for the smallest maximum positive and negative bending moments at 

the bottom point of the pylon shaft (point 4 in Figure 6.14). 

At this point it should be mentioned, that decreasing the pylon width reduces the 

stiffness of the pylon significantly, and so the deflections are increased. The impor-

tance of a geometric nonlinear analysis which includes the effect of large deflections, 

becomes obvious if Figure 6.15 and Figure 6.16 are studied. This figure illustrates 

the bending moment at the fixation of the pylon (point 4) due to load case 24 for 

different bt values. A linear analysis is compared with a geometric nonlinear analy-

sis. The curves start to deviate significantly for a pylon width less than 4 m which 

corresponds to a (b/1) value of 0.016. 

This difference is mainly due to the effect of large deflections, not due to the 

(P - 5) effect. Since excluding the (P - 8) effect from the analysis, did not change 

the results of the geometric nonlinear analysis. 
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Figure 6.13: Effect of the pylon width (be) on the maximum deck deflections 
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Figure 6.14: Effect of the pylon width (be) on the maximum bending moments in the 
pylon shaft (3: upper point, 4: lower point) 
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6.3.3 The height of the pylon above the deck 

6.3.3.1 The maximum deck deflections 

Figure 6.17 shows the maximum upward and downward deck deflections as a function 

of the height of the pylon above the deck (he). An increase in (he) decreases the 

maximum downward deflections of the deck. This is because an increase in (he) 

leads to an increase in the cable inclination to the horizontal (9), causing an increase 

in the equivalent elastic support spring constant (k) of the cables, which was given 

by Equation 5.7 in Chapter 5 as k = EA/L sin 2 0. 

A feasible range for the ratio (hill) is between 0.18 and 0.24 (see Figure 6.17). It 

should be noted that for values greater than 0.16 for the ratio (hell) a slight increase 

in the maximum upward deck deflection is obtained. 

6.3.3.2 The maximum bending moments in the pylon shaft 

As shown in Figure 6.18, an increase in the pylon height above the deck level decreases 

the maximum bending moments in the pylon. However, it may be not economical to 

increase the pylon height, because increasing the pylon height (he) say by 50 percent 

from 40 to 60 m, decreases the maximum positive bending moments at the top of 

the pylon shaft from 106 MN.m to only 94.5 MN.m i.e. by 12 percent. 

As in the case of the deck deflections, a feasible range for the ratio (h/l) lies 

between 0.18 and 0.24. 



M
a
x
i
m
u
m
 
u
p
w
a
r
d
 
d
e
f
l
e
c
t
i
o
n
(
m
m
)
 

M
a
x
i
m
u
m
 
d
o
w
n
w
a
r
d
 
d
e
f
l
e
c
t
i
o
n
(
m
m
)
 

150 

120 

90 

60 

30 

0.0 

400 

300 

200 

100 

0.0 

10 20 30 40 50 60 70 

1/2 

1/2 

Load 

Load case .1;7 

22 
CD 

24 

dt 

bi  = 20 

d = 21 in 

rn 

0.0 0.04 0.08 0.12 0.16 0.20 0.24 

a— Upward deflection 

0.28 

10 20 30 40 50 60 70 

Load ca se27-

1/ 

1 / 

\ Load  
case2 

CD 

2q 
2 

- 

ht 

----

bt 

d4 

I 

=20 fl2 

= 21 Tfl 

I I 
0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 

b— Downward deflection 

h(ni) 165 

000 

500 

000 

(m) 

33 

250 

500 

D
e
f
l
e
c
t
i
o
n
/
S
p
a
n
 

D
e
f
l
e
c
t
i
o
n
/
S
p
a
n
 

Figure 6.17: Effect of the pylon height (he) on the maximum deck deflections 
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6.3.4 The height of the inclined pylon legs below the deck 

6.3.4.1 The maximum deck deflections 

Figure 6.19 illustrates the effect of the height of the pylon legs below the deck (di) 

on the maximum upward and downward deck deflections. The figure shows that the 

trend is a decrease in the deck deflections if (di) is increased. The upward deflections 

are much more affected than the downward deflections. 

A feasible range of the ratio (d/l) is between 0.06 and 0.10. At this point it 

should be mentioned that for construction purposes, the depth (di) is restricted for 

the proposed bridge to 21 m (4/l=0.08) to accommodate the truss used in the 

construction of the deck. This will be described later in Chapter 7 discussing the 

construction method. 

6.3.4.2 The maximum bending moments in the pylon shaft 

As illustrated in Figure 6.20, an increase in the height of the lower pylon legs (di) leads 

to continuous decrease in the moments at the top of the vertical pylon shaft. This 

result may however not be taken without care, since by increasing (di) the position 

of the top point of the pylon shaft is changing (total pylon height is constant), so 

that a comparison of moments is not totally justified. 

For the bottom point of the vertical pylon shaft the maximum moment is increas-

ing slightly reaching a maximum at a (d/l) ratio of 0.09, and starts to decrease after 

this value. But in general, for the bottom point of the pylon shaft, the maximum 

moments are not significantly affected by the parameter (d). 
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Figure 6.19: Effect of the height of the inclined lower pylon legs (di) on the maximum 
deck deflections 
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Figure 6.20: Effect of the height of the inclined lower pylon legs (di) on the maximum 
bending moments in the pylon shaft (3: upper point, 4: lower point) 
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6.3.5 Summary and conclusions 

The effects of the pylon dimensions on the maximum deck deflections and maximum 

bending moments in the pylon shaft have been discussed. Based on the results the 

following pylon dimensions are recommended for a diamond-shaped pylon: 

• Pylon width 

(b/1) should lie between 0.06 and 0.08 to decrease the maximum deck deflec-

tions (actually 0.08 for the proposed bridge). 

• Height of pylon above the deck 

(h/l) should lie between 0.18 and 0.24 for reasonable deck deflections and 

bending moments in the pylon shaft (actually 0.18 for the proposed bridge). 

• Height of inclined lower legs of the pylon 

(d/l) should be greater than 0.09 to decrease the maximum deck deflections 

and bending moments in the pylon shaft (actually restricted to 0.084 for the 

proposed bridge for construction purposes). 

It is recommended to use a large deflection analysis in investigating the pylon mo-

ments for flexible pylons with a (b/1) value of less than 0.016. 
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6.4 THE DIMENSIONS OF THE CABLES 

Since the deck of a cable-stayed bridge can be idealized as a beam supported on 

springs with a spring coefficient (k) given in Equation 5.7 as k = EA/L . sin' 0, 

an increase in the cable area (A) would increase the stiffness of the spring linearly. 

High spring stiffnesses simulate a firm soil condition, if the system is compared with 

the beam-on-elastic foundation model, leading to a decrease in the positive bending 

moments of the beam-on-elastic foundation or in other words of the deck. 

To examine the effectiveness of increasing the cable areas in reducing the maxi-

mum bending moments in the deck, the cable areas are increased by up to 80 percent 

of the values originally required. The results are shown in Figure 6.21. Increasing 

the cable areas by 80 percent, the maximum positive bending moment in the deck 

is decreased by only 12 percent from 2432 KN.m to 2164 KN.m. Since the cables 

are the most expensive structural elements in a cable-stayed bridge, it is certainly 

not economical to reduce the bending moments in the deck by increasing the cable 

areas. 

6.5 SUMMARY 

In this chapter a parametric study is carried out to study the effects of the deck-

pylon connection type, the pylon dimensions and the cable areas on the behaviour 

of multispan cable-stayed bridges. An efficient deck-pylon connection and optimum 

dimensions for diamond-shaped pylons are recommended as a conclusion of this 

parametric study. 
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Figure 6.21: Effect of the cable areas on the maximum bending moments in the deck 



Chapter 7 

THE CONSTRUCTION OF THE BRIDGE 

7.1 INTRODUCTION 

In this chapter the construction of cable-stayed bridges is discussed. The chapter is 

divided into four parts. The first part contains a review of the major construction 

methods for cable-stayed bridges. In the second part a new, economical method 

suitable for multi-span cable-stayed bridges is described. In the third part of this 

chapter, the computer model simulating the proposed construction method is intro-

duced. And part four contains the results and conclusions obtained from the used 

computer model. 

7.2 CONSTRUCTION OF CABLE-STAYED BRIDGES 

7.2.1 Introduction 

Since the method of construction of a bridge is the decisive factor for the success of 

a contractor's bid, many different methods have been developed over the years to 

build cable-stayed bridges. Because of high fabrication and erection costs, present 

trends are to fabricate components as large as possible for simplified construction. 

The erection method not only affects the stresses in the structure during construc-

tion, but may also have an effect on the final stresses of the completed structure, 

which is an important factor in chosing which method is to be used. 
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Other important factors affecting the construction method are (Dilger, 1990): 

• Bridge geometry 

- total length 

- span lengths 

- pier height 

• Site conditions 

- level terrain 

- sloped or rugged terrain 

- waterway 

• Traffic during construction 

• Distance from precasting plant 

• Availability and cost of formwork system 

The methods of erection for cable-stayed bridges are broadly described by three 

general methods (Podolny, 1986), the staging method, the incremental launching 

method and the cantilever method. These methods are described next. 

7.2.2 The staging method 

In this method the entire suspended structure (deck) is erected on temporary piers, 

followed by the pylon erection and cable connections. Finally, the pylon saddles are 

jacked to stress the cables to the desired tensile load to obtain the required profile 
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and the temporary piers are removed (see Figure 7.1). 

If precast units are used for the suspended deck, these units may reach a length 

of 105 m, which is the case of the Great Belt Bridge proposal in Denmark. Such 

heavy units are floated in on barges and lowered into position hydraulically or by 

submerging the barges. Small precast units are erected by a launching gantry as 

shown in Figure 7.2. 

If cast-in-place concrete is used for the suspended deck, medium spans (35 to 

60 m) can be constructed economically with travelling forms which are either sup-

ported from below or from above the bridge. An example for supporting the forms 

from below the bridge superstructure is the so-called sliderule system shown in 

Figure 7.3. The trussed system shown in Figure 7.4 represents the way of supporting 

the forms from above the bridge. 

The staging method of erection is most often used where there is a low clearance 

requirement to the underside of the structure and temporary piers will not interfere 

with any traffic below the bridge. Its advantage is its accuracy in maintaining the 

required geometry and grade, and its relatively low cost for low clearance. The 

major disadvantage if long, continuous bridges are to be built with this method, is 

the numerous temporary piers and their foundations which have to be built. 

7.2.3 The incremental launching method 

The bridge is constructed behind the abutment in a stationary form in segments 

which are 10 to 30 rn long. The segment under construction is cast against the 

previously cast segment and connected to it by overlapping longitudinal bars. In 

case of a steel superstructure the segments are connected by welding or bolts. The 
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A 

1. Installation of main girder and tower 

2. Jack up 

3. Installation of cables 

4. Jacks were released 

Figure 7.1: Construction procedure using the staging method (Adapted from Kondo 

et al, 1972) 



Figure 7.2: Precast units erected by a launching gantry (Dilger, 1990) 
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a- Casting position - Span completed 

b- Launching of main girders 

c- Main girders in casting position 

Figure 7.3: The sliderule system as an example of supporting the forms from below 
the superstructure 
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Figure 7.4: Supporting the construction forms from above the bridge 
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segment is then launched by means of hydraulic jacks together with the already 

completed portion over the piers on rollers or sliding teflon bearings. A steel nose as 

shown in Figure 7.5 is used to decrease the cantilever length during launching, but 

for large spans temporary supports are necessary. Launching may be from one side 

as shown in Figure 7.6, or from both ends of the bridge. 

In order for this method to be applicable, the bridge axis must lie in one plane 

and if the axis is curved in plan, the curvature must be constant. To overcome this 

restraint in case of a curved box girder bridge, the box part of the deck may be 

launched using a constant curvature for its axis, while the deck slab may be cast 

later following the road alignment. 

Spans of up to 140 m and bridges with a total length up to 1200 m (Podolny, 

1986) have been built by the incremental, launching method. The major advantage 

of this method is that it combines the advantages of prefabrication, with those of 

cast-in-situ concrete. The main advantages of prefabrication are: 

• The concrete is cast in a protected (ideal) environment 

• Good dimensional control during casting 

• Repetitive work cycles 

• Short transportation distances of the construction materials 

• No interference with the traffic below the bridge 

• No costly falsework required 



Complete Units 
Casting Unit 

Steel Nose 

Sliding Bearings 

Sliding Bearing 

Figure 7.5: Using a steel nose in the incremental launching method 
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Figure 7.6: The incremental launching method (Adapted from Beyer, 1964) 
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Where the main advantages of cast-in-place concrete are: 

• Monolithic structure without weak joints 

• No heavy lifting of the segments is required 

7.2.4 The cantilever method 

In this construction method, relatively short segments of a cantilever are constructed 

either at one end or simultaneously at both ends of a balanced cantilever: The 

forms are supported by an erection crane as shown in Figure 7.7. If the bridge is 

constructed across a waterway, the erection crane may be supported on a flotation 

barge. A typical construction sequence of this method is illustrated in Figure 7.8. 

The major disadvantage of this method is the slow progress of the construction, 

namely at about 3 m per week at each end of the cantilever. The construction process 

can be accelerated if an overhead truss or plate girder is used in supporting the form 

travellers as shown in Figure 7.9. 

7.3 THE PROPOSED CONSTRUCTION METHOD 

7.3.1 General description of the construction method 

The total length of the proposed bridge is approximately 13 km, with 250 m long 

spans this means that more than 40 identical spans are required. Due to harsh 

weather conditions, the construction season is relatively short in the region. So 

conventional construction methods as previously described are not suitable for such 

a project. They would take excessively long time to construct such a long bridge (the 
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Figure 7.7: Erection crane supporting the forms in the cantilever method 
(Dilger, 1990) 
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.•••flf..*#fl 

Figure 7.8: Construction procedure of a bridge crossing a waterway using 
the cantilever method (Adapted from Podolny, 1986) 



Figure 7.9: Overhead truss used in supporting the form travellers (Dilger, 1990) 
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cantilever method), or require advanced complicated technology (the incremental 

launching method). 

As a result new techniques had to be developed. The method proposed by 

Dilger et al (1990 and 1991) is a cast-in-place concrete deck on a steel truss ex-

tending over two spans (see Figure 7.10). The truss fits between the space provided 

below the bridge deck and is launched by means of hydraulic jacks. To support the 

free ends of the cantilevers during launching, flotation tanks are lowered from the 

inside of the truss and submerged in' the water to produce a constant uplift force 

of about 2.5 MN. This is approximately the reaction of the truss during launching. 

The method is considered relatively economical because of the many repetitive cy-

cles. The completing of one cycle, which consists of a 250 m long deck, is estimated 

at 5 weeks only. 

7.3.2 Detailed description of the construction method 

Consider stage 1 of Figure 7.10 and assume that the 250 m long span over pier 2 

has been completed on the truss. The following steps describe a typical construction 

cycle: 

1. The truss is lowered by about one meter and the flotation tanks are submerged. 

Each of these tanks produces an uplift force of about 2.5 MN, which represents 

approximately the end reaction of the truss during launching. This step is 

shown in Figure 7.10, stage 1. 

2. The truss is launched by means of hydraulic jacks (Figure 7.10, stage 2), fol-

lowed by the withdrawal of the flotation tanks and some additional launching 
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STAGE I 

STAGE 2 

STAGE 3 

SPAN COMPLETED - LOWERING OF TRUSS BY LOO  

© 
LAUNCHING OF TRUSS 

PLACEMENT OF 
- FOOTING 
- PIER 
-PIER CAP 

WATER LEVEL 

LAUNCHING OF TRUSS WITH TANKS LIFTED 
RAISING OF TRUSS BY I.Om 

-PLACEMENT OF REBARS 
-CASTINQ OF DECK 
(1800 m) 

- PLACEMENT OF CABLES 

Figure 7.10: Construction stages of the proposed method 

ERECTION 
OF TOWER 
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to reach a position from which the tanks can be lowered into the water again 

after the construction of the span is completed (Figure 7.10, stage 3). 

3. The truss is lifted till the deck form is 300 to 500 mm above the final position of 

the deck soffit. When designing the truss, a comparison will be made between 

lifting it 300 or 500 mm. Note the one meter step in the top chord of the truss 

at point (a) to accommodate the already finished span. 

4. In this elevated deck position, the stay-cables are installed by temporarily 

anchoring them to the top chord of the truss. The cables near the pylon will 

be slacked at this time because of the elevated deck position. 

5. After placing the rebars and prestressing tendons, the concrete deck (1800m3) 

is poured in one continuous pour. 

6. After the concrete has reached sufficient strength, the temporary anchors are 

released, thus transferring the cable forces to the concrete deck. 

7. The truss is lowered until the deck is freely suspended from the cables. At 

this stage, all cables have reached their desired forces and the deck level is 

horizontal. Cable force adjustments can be made if necessary. 

8. While the deck is being produced, the precast segments for the new pylon are 

erected. 
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7.4 INTERACTION BETWEEN CONSTRUCTION 

AND DESIGN 

7.4.1 Design of the truss 

In this section the dimensions of the truss are given, then the load cases occurring 

during the construction are investigated. Followed by the calculation of the initial 

cable forces anchored to the truss, and at the end the current forces acting on the 

flotation tanks are calculated. 

7.4.1.1 Dimensions of the truss 

The dimensions of the 550 m long launching truss are shown in Figure 7.11. The 

truss is divided into five regions using symmetry. For each region four cross-section 

areas are chosen, one for the top chord members, one for the bottom chord members, 

one for the inclined diagonal members and another for the vertical diagonal members. 

These areas are listed in Table 7.1. 

The total reight of the truss members is about 22,000 kN. The weight of the 

transversal bracing members and the steel forms is estimated at 11,000 kN, and 

this weight is distributed proportionally to the cross-section areas of the top chord 

members as joint loads over the whole truss. So the total weight of the truss is about 

33,000 kN including the weight of the formwork of the concrete. These loads cause 

a maximum truss deflection of 270 nun as shown in Figure 7.12. 

A geometric nonlinear analysis, taking the effects of axial forces and large deflec-

tions into consideration, is performed in analysing the truss. Thus, the stability of 

the truss can be studied, should buckling occur. 



Regionl 4 3 2 

II 250 m 

2 3 4 5 

25 x 10 = 250 m 

Figure 7.11: Dimensions of the launching truss 

40m  

Figure 7.12: Deflection of the truss due to its own weight 

19 m 
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Table 7.1: Cross-section areas of the truss members (mm2) 

Region 
1 2 3 4 5 

Top chord 171,150 62,750 53,800 36,200 20,900 
Bottom chord 295,050 79,450 19,950 19,950 13,300 

Diagonal vertical 11,250 10,150 4,750 550 9,000 
inclined [] 164,000 55,950 13,300 6,500 13,650 
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7.4.1.2 Load cases 

In designing the truss, the following load cases occurring during the construction are 

investigated: 

1. (own weight of the truss) 

2. (own weight of the truss) + (temporary cable forces anchored to the truss) 

3. (own weight of the truss) + (temporary cable forces anchored to the truss) 

+ (weight of poured concrete) 

4. (own weight of the truss) + (weight of hardened concrete deck) 

+ (cable forces anchored to the hardened concrete deck) 

5. (own weight of the truss) + (forces acting on the notation tanks due to water 

currents during launching of the truss) 

These load cases (except load case 5) are not only of major interest for designing 

the truss, but in order to achieve a level deck for the completed bridge, all the 

deformations occurring during those load cases have to be considered. At this point 

it should be noted that time-dependent effects are not considered in this study. 

7.4.1.3 Initial cable forces anchored to the elevated truss 

The initial strains (prestressing forces) in the cables temporarily anchored to the 

truss, are based on the unstressed cable lengths L. established in the previous dead 

load analysis of the bridge, and the elevated position of the truss according to the 

following equation for each cable: 
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e = L —L0 (7.1) 
LO 

where: 

e = initial strain in the cable 

L = distance between the two ends of the cable i.e. between the top of the 

pylon and the truss node when connecting the cables to the truss 

L0 = strain-free length of the cable 

These initial strains (prestressing forces) in the cables decrease by increasing the 

elevation of the truss for the production of the deck. Two elevated positions, 300 

and 500 mm above the final deck level are investigated. The prestressing forces 

are calculated by multiplying the initial strain e obtained from Equation 7.1 by the 

quantity EA, where A is the cross-section area of the cable. The results are listed 

in Tables 7.2 and 7.3. 

7.4.1.4 Current forces on the flotation tanks 

During launching, when the truss is supported at its ends on the flotation tanks, 

these tanks will be subjected to current forces. These forces are a function of the 

shape and dimensions of the tanks and of the current velocity. The volume of the 

tank required to provide an uplift force equal to the end reaction of the truss due to 

its own weight is about 255 m3. This gives two cylindrical tanks of 4.5 m diameter 

each and 8 m length at each end of the truss. The drag force on the tank can be 

calculated using the following equation (Gerhart, 1985): 
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Table 7.2: Cable forces (kN) during construction stages for elevated truss level 
+500 mm 

Step 
No. 1 2 3 4 5 6 7 8 D.L. 

Init. Final 

1, 2425 1736 2376 2617 2720 2869 2947 2976 2950 2962 
2 2085 1361 2076 2316 2441 2623 2718 2753 2762 2763 
3 1580 979 1620 1796 1919 2103 2205 2250 2322 2309 
4 1397 800 1476 1624 1780 2012 2143 2201 2351 2346 
5 955 470 1085 1178 1341 1587 1726 1787 2005 1996 
6 578 221 741 800 1010 1329 1511 1593 1946 1950 
7 - - 346 365 575 908 1099 1183 1632 1623 
8 - - - - 

- 477 731 846 1517 1534 
9 - - - - - 

- 345 472 1314 1275 
10 - - - - - - 

- 192 1331 1355 
11 - - - - - - - 

- 887 894 
12 - - - - - - - 

- 890 896 
13 - - - - - - 

- 194 1330 1354 
14 - - - - -. 

.- 347 475 1314 1275 
15 - - - - 

- 476 733 851 1517 1534 
16 - - 344 360 571 908 1101 1187 1631 1623 
17 431 222 739 793 1005 1329 1514 1598 1946 1951 
18 817 473 1084 1172 1337 1587 1729 1793 2005 1997 
19 1245 804 1475 1618 1775 2012 2147 2209 2352 2346 
20 1438 984 1620 1790 1916 2104 2210 2258 2323 2309 
21 1923 1368 2077 2309 2437 2625 2723 2758 2755 2763 
22 fi 2287 1737 2392 2627 2733 2890 2972 2997 2955 1 2962 

Note: Step 1 : truss weight 

Step 2 : truss weight + deck weight 

Step 3 : cables connected to hardened deck 

Step 4 to 8: truss lowering steps 

D.L. : forces calculated in the dead load analysis of the bridge 
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Table 7.3: Cable forces (kN) during construction stages for elevated truss level 
+300 mm 

Step 
No. 1 

Init. Final 
2 3 4 5 D.L. 

1 2888 1972 2589 2900 2983 2955 2955 
2 2624 1643 2334 2646 2747 2759 2763 
3 2094 1268 1888 2132 2250 2320 2309 
4 2009 1173 1828 2049 2201 2349 2346 
5 1576 86T 1475 1628 1787 2006 1996 
6 1336 662 1265 1383 1593 1946 1950 
7 904 402 906 965 1183 1634 1623 
8 515 150 523 552 846 1515 1534 
9 - - 151 164 471 1318 1275 
10 - - - - 192 1330 1355 
11 - - - - 

- 886 894 
12 - - - - 

- 888 896 
13 - - - - 194 1330 1354 
14 - - 153 164 475 1318 1275 
15 383 153 526 554 851 1516 1534 
16 777 406 908 966 1187 1634 1623 
17 1188 668 1268 1385 1599 1946 1951 
18 1438 874 1479 1630 1793 2006 1997 
19 1856 1182 1834 2053 2210 2350 2346 
20 1953 1278 1894 2135 2258 2320 2309 
21 2461 1657 2343 2649 2753 2756 2763 
22 2750 1973 2607 2911 2995 2957 2962 

Note: Step 1 : truss weight 

Step 2 : truss weight + deck weight 

Step 3 : cables connected to hardened deck 

Step 4 to 5: truss lowering steps 

D.L. : forces calculated in the dead load analysis of the bridge 
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FD=CD.P..AP 

where: 

(7.2) 

FD = drag force on immersed body 

CD = coefficient of drag 

0.46 for two cylinders beside each other idealized as an elliptical shape 

P = fluid density 

= 1000 kg/m' for water 

V = fluid velocity 

= 2 m/s in the investigated case 

= projected area of immersed body, perpendicular to the flow direction 

Equation 7.2 gives a drag force of 33 kN. This drag force, acting on the center of 

gravity of the tank, produces a torsional moment of about 670 KN.m on the truss. 

7.4.2 Computer model used in simulating the construction procedure 

The planar model, which is used in the geometric nonlinear analysis, consists of 

a truss resting on one pylon (hinge support) and having two rollers as end supports 

(see Figure 7.13). There is no need for using pylons as end supports in the analysis, as 

in reality, because the end reactions of the truss due to its own weight (about 2.5 MN) 

are small compared to the intermediate reaction (about 27 MN), so that the vertical 

displacements of the end supports, if pylons are used instead of rollers, are negligible. 

The hinged support between truss and pylon is achieved in the analysis by coupling 

the vertical and horizontal displacements of the two nodes of the hinge connection 
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(see Figure 7.15). Two dimensional truss elements, resisting only axial forces, are 

used in modeling the truss, whereas the elements used for the pylon, deck and cables 

are the same as the ones used in the geometric nonlinear dead load analysis of the 

bridge. However, a new element (interface element) is used for simulating the contact 

between deck and truss, and for the lowering procedure of the truss. This interface 

element has two nodes (surfaces), and is capable of resisting a vertical compressive 

force in case its two nodes (surfaces) are in contact, otherwise its vertical stiffness 

is removed. In the horizontal direction the two nodes (surfaces) are allowed to slide 

against each other, if not otherwise specified. These features are used in simulating 

the contact between deck and truss during the lowering process. The lowering process 

itself is simulated by the use of an initial gap between the two nodes (surfaces) of 

the interface elements which are used as the truss supports (see Figure 7.15). The 

truss is then lowered until this gap is closed. For more information about the used 

interface element refer to Appendix A. 

The analysis of the construction procedure for the case of a 500 mm elevated 

truss will be described next. The same was also done for a 300 mm elevated truss 

and the results are compared. For a 500 mm elevation of the truss the construction 

procedure is divided into 8 steps (these are 5 steps in case of 300 mm elevation of 

the truss). 

• Step 1 (Figure 7.13) 

The truss is elevated so that the steel form supported on the top chord, is 

500 mm above the final level of the soffit of the concrete deck and is left to 

deflect under its own weight. From this deflected shape, which is obtained 
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from a separate dead load analysis, the cables are temporarily anchored to the 

truss. For this purpose, a computer program is written to convert the results 

of a previous ANSYS analysis (deflected shape of the truss and final strains in 

its members), to input data (joint coordinates of the truss and initial strains in 

its members) for the next analysis. The initial strains (prestressing forces) of 

the cables temporarily anchored to the truss are calculated from the strain-free 

length L0 of each cable and the distance L between the end nodes of the cables 

in this elevated position of the truss using Equation 7.1. The resulting initial 

cable forces are listed in Table 7.2 (Table 7.3 for the 300 mm elevation). Only 

the outer 12 cables are stressed as shown in Figure 7.13. 

• Step 2 (Figure 7.14) 

The results of step 1, which are the deflected shape of the truss and final strains 

in the cables and in the truss members, are the input data for step 2, i.e. they 

are the joint coordinates of the truss and initial strains in the cables and truss 

members. The concrete weight of the deck, which is poured in this position, 

is added as joint loads on the truss, resulting in stressing the outer 14 cables. 

This means that two more cables pick up load as the concrete is placed. 

• Step 3 (Figure 7.15) 

Again, the results of step 2 are the input data for step 3. The concrete deck is 

represented in this stage by a beam element to model the hardened concrete, 

and the cables are now anchored to the concrete deck. Interface elements are 

used between the truss nodes and the deck nodes as shown in Figure 7.15. An 

interface element has the capability of resisting a vertical compressive force 
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in case its two surfaces (nodes) are in contact, thus deck and truss nodes are 

coincident, or in other words the deck is resting on the truss. In this stage part 

of the deck weight is supported by the stressed cables, while the other part 

of the deck weight is supported by the truss through the interface elements. 

Interface elements without an initial gap, which means that they are capable 

of resisting vertical compressive forces (reactions), are used in this step to 

model the roller supports at the truss ends. The hinge support between truss 

and pylon is achieved by using an interface element between the truss node 

and the pylon node to restrain the vertical displacement of the truss node, 

and coupling of the horizontal displacements of the two nodes to restrain the 

horizontal displacement of the truss node. 

• Step 4 (Figure 7.15) - Truss lowered 87 mm 

The results of step 3 are the input data for step 4. In this step 14 cables are 

stressed. The truss is now lowered to a level at which the next two inner cables 

(cable 8 and 15) start picking up forces. The lowering process is achieved by 

the three interface elements representing the supports of the truss. The initial 

gap, which is chosen between the two surfaces of the elements, is the distance 

the truss is to be lowered. This means that the truss will undergo a downward 

motion until the two surfaces of the interface elements representing its supports 

get into contact. 

• Steps 5 to 7 (Figure 7.15) - Truss lowered 235 mm 

The procedure of step 4 is repeated in these steps. In each step the truss 

is lowered to a level at which the following two inner cables start picking up 
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forces. At the end of step 7 a level is reached, at which all cables will pick 

up forces in the next step. During those steps the cables get more and more 

stressed, as a result the part of the deck weight which is supported by the 

cables is increasing, while the part of the deck weight supported by the truss 

through the interface elements is decreasing. At the outer cables, which are 

the most highly stressed ones, the deck becomes supported by cables only, and 

the interface elements at those cables allow the separation of deck and truss 

gradually. 

• Step 8 (Figure 7.16) - Truss lowered 178 mm 

Again, the results of step 7 are the input data for step 8. The final lowering 

process of the truss is simulated by using nonlinear force-deflection spring el-

ements (elements 1, 2 and 3 in Figure 7.16). The special behaviour of those 

spring elements is that the force picked up by them is constant regardless of 

their shortening (see Figure 7.16). So if the forces (F) for springs 1, 2 and 3 

are chosen equal to the reactions of the truss due to its own weight only, then 

the truss will undergo a downward rigid body motion as long as a part of the 

deck weight is carried by the truss. This downward motion of the truss results 

in stressing the cables gradually until the whole deck weight is picked up by 

the cables, and so no forces are transmitted by the interface elements to the 

truss. As the springs 1, 2 and 3 are giving the reactions of the truss due to 

its own weight, which is now the case, stability is reached and the truss stops 

moving downwards (see Figure 7.17). 
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Figure 7.13: Step 1 in the construction procedure (12 stressed cables) 

Concrete weight 

1' 

Figure 7.14: Step 2 in the construction procedure (14 stressed cables) 
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Figure 7.15: Model used in analysing construction steps 3 to 7 
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Figure 7.16: Model simulating the final lowering process (step 8) 
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a- At the end of step 7 

Interface Elements 

/ 

b- At the end of step 8 

Figure 7.17: Lowering process of the launching truss simulated'ly the computer 
program ANSYS (distorted scale) 
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Originally the deck is supported on the tie-beam and on the pylon at three 

points (two rollers and one hinge). This is simulated during the lowering pro-

cess by springs 4, 5 and 6 as shown in Figure 7.16. The force (F) in each 

spring is chosen equal to the reaction between the deck and the pylon (tie-

beam) calculated from the previous dead load analysis of the bridge. The 

springs restrain the vertical displacements of the rollers, in order to achieve 

the hinge connection the horizontal displacements of the corresponding nodes 

are coupled. 

7.5 RESULTS AND CONCLUSIONS 

7.5.1 General 

In this section the analysis results of the construction procedure are discussed. 

Two elevated position for the truss (300 and 500 mm) during pouring of the concrete 

deck are investigated and compared. The results are divided into five groups: 

1. Deflection of the truss 

2. Forces in the truss 

3. Forces in the stay-cables 

4. Deflections of the deck 

5. Bending moments and normal forces in the deck 
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7.5.2 Deflection of the truss 

The deflections of the truss during the different construction stages, as shown in 

Figure 7.18(a) for the 500 mm elevation and Figure 7.18(b) for the 300 mm case, are 

now discussed. 

1. Without any precambering, the truss deflects under its own weight and form-

work of the concrete deck a maximum of 270 mm. This gives an acceptable 

deflection/span ratio of 1/925 (curve 1). 

2. The application of the temporary cable forces results in an upward deflection 

of the truss. In case of a truss elevation of +500 mm, the part of the truss on 

which the deck will be produced is almost level again (curve 2 in Fig. 7.18(a)). 

3. The weight of the poured concrete produces a deflection of 280 mm at the 

centerline of the span in case of a 500 mm truss elevation. This deflection is 

reduced to 260 mm in case of a 300 mm truss elevation (curve 3). 

4. The transfer of the cable forces from the truss to the hardened deck adds 

50 mm to the deflection of the truss in case of a 500 mm truss elevation. This 

deflection is 70 mm if the truss elevation is 300 mm (curve 4). This results 

in the same difference of about 330 mm at the centerline of the span between 

curve 2 (own weight of truss + cables anchored to truss) and curve 4 (after 

transfer of cable forces to deck) for both investigated deck elevations. 
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Figure 7.18: Deflection of truss and deck during construction 
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7.5.3 Forces in the truss 

The maximum forces in selected truss members in region 1 (over the intermediate 

support) and region 3 (at the midspan of the truss) during the different construction 

stages are listed in Table 7.4. 

If the truss elevation is +500 mm when producing the deck, the maximum com-

pression force (29.02 MN) occurs in the bottom chord member over the intermediate 

support after pouring the deck. The maximum tension (33.36 MN) develops in the 

top chord member over the intermediate support after the cable forces are trans-

ferred to the hardened deck. The maximum cable force to be anchored to the truss 

is 2.43 MN (Table 7.2). 

For a truss elevation of +300 mm, the maximum cable force to be anchored to the 

truss is 2.90 MN (Table 7.3), which corresponds to an increase of 19 percent relative 

to the +500 mm case. The maximum compression force in the truss is 25.14 MN 

(16 percent reduction) and the highest tension decreases by 19 percent to 27.16 MN. 

This means that producing the deck on a low elevated truss will decrease the forces 

in the truss during the construction of the deck. Chosing how low the truss level may 

be, depends mainly on the maximum cable force that can be anchored temporarily 

to the upper chord of the truss. 

The drag force (FD = 33 kN) on the flotation tanks and the corresponding 

torsional moment on the truss (670 kN.m) are of minor effect, not causing any 

significant forces in the truss. 



Table 7.4: Selected truss forces (MN) during the construction stages for truss 
elevations of 300 and 500 mm 

Construction Stage Region 1 Region 3 
Top Bott. Vert. Incl. Top Bott. Vert. Incl. 

1-Truss o.w. 16.43 -12.92 -0.42 -7.56 -2.48 2.39 -0.11 -1.00 

2-Temp. cables + (1) -2.71 -7.31 -0.41 -5.50 -1.69 -1.26 -0.11 -0.97 
3-Concrete wt. + (2) 27.70 -29.02 -1.42 -16.17 -4.62 2.25 -0.11 -1.46 

500 
mm 

4-After cable forces 
transferred to deck 

33.36 -25.89 -1.45 -16.03 -3.32 3.31 -0.11 -1.08 

5-Deck in final position 16.43 -12.92 -0.42 -7.56 -2.48 2.39 -0.11 -1.00 

6-Temp. cables + (1) -6.20 -4.29 -0.41 -4.28 -1.44 -2.09 -0.11 -1.09 
7-Concrete wt. + (6) 20.30 -25.14 -1.41 -14.44 -4.23 -1.24 -0.11 -1.37 

300 
mm 

8-After cable forces 
transferred to deck 

27.16 -20.68 -1.43 -13.94 -2.79 2.73 -0.11 -1.03 

9-Deck in final position 16.43 -12.92 -0.42 -7.56 -2.48 2.39 -0.11 -1.00 

Note: Region 1: over the intermediate support 

Region 3: at the midspan of the truss 
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7.5.4 Forces in the cables 

The cable forces during the different construction steps are listed in Tables 7.2 

and 7.3. The final cable forces obtained by the used model simulating the low-

ering process are within 1 percent of those established in the previous dead load 

analysis of the bridge. 

At this point it should be mentioned, that trying to lower the truss in one step 

using the program ANSYS failed. Initially slacked cables connected to the flexible 

deck, did not reach a converged solution (the cable elements are nonlinear and need 

an iterative solution procedure till convergence is achieved). This problem occurred 

only when initially slacked cables are connected to the flexible deck. It seems that if 

the truss is lowered in one step, and the initially slacked cables start picking up forces 

due to their elongation, the flexibility of the deck allows the deck nodes connected 

to the suddenly stressed cables, to undergo an upward motion resulting in slacking 

the cables again. This process results in unrealistically small (unconverged) forces 

in the cables which were initially slacked during the lowering process. To overcome 

this problem, the truss is lowered in steps. During each step only the stressed cables 

are included in the computer model. 

7.5.5 Deflection of the deck 

If the truss is not precambered, then the concrete hardens in the deflected configu-

ration represented by curve 3 in Figure 7.19, which means that there is some initial 

curvature built into the deck. After lowering the truss, the deck level is almost 

horizontal as obtained from the previous dead load analysis of the bridge. 
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Figure 7.19: Level of hardened deck during construction steps 3 to 8 for a temporary 
truss elevation of 500 mm 
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7.5.6 Bending moments and normal forces in the deck 

During the lowering process, the bending moments in the deck do not differ in a sig-

nificant manner from those obtained from the dead load analysis. The final bending 

moments after the truss is removed are shown in Figure 7.20. The only noticeable 

difference between the dead load analysis and the analysis of the construction proce-

dure, is the negative moment in the deck under the two cables next to the pylon (see 

Figure 7.20). The reason may be the springs connecting the deck with the pylon in 

the last lowering step (step 8). The constant forces, which are equal to the reactions 

between deck and pylon of the dead load analysis, develop suddenly in those springs 

during the lowering process. They create a positive moment at the nodes connected 

to the two cables next to the pylon. So the negative bending moment at these points 

are reduced. 

If a force-deflection relationship is chosen, so that the forces in those springs are 

developing gradually, this difference between the two bending moments is reduced. 

But the forces picked up by the cables connected to the considered points (next 

to the pylon) are much greater than those obtained from the dead load analysis. 

A gradually increasing reaction, instead of reaching its required value suddenly as 

shown in Figure 7.16, allows more deck weight to be supported by the two cables next 

to the pylon instead of supporting this weight by the pylon through the deck-pylon 

connections. So the cables forces increase and the forces in the springs decrease. 

As the final cable forces obtained from the used model are almost identical to 

those obtained from the dead load analysis, the normal forces in the deck are the 

same in both analyses. 
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Figure 7.20: Bending moments in the deck after the truss is removed 
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7.6 SUMMARY 

An economical method for the construction of multi-span cable-stayed bridges is 

introduced. In the proposed method, the deck is poured in one stage on an elevated 

truss, and then lowered to its final position. In general, decreasing the elevation 

of the truss decreases the forces in the truss during the construction stages, but 

increases the cable forces to be anchored temporarily to the top chord of the truss. 

These forces are determining the practical elevation of the truss. 

A computer model is used in simulating the lowering process of the truss in steps, 

including only stressed cables. Interface elements are used to model the resting of 

the deck on the truss and allowing their separation during the lowering process. 

After the truss is lowered, the deck is almost horizontal and the cable forces are 

identical to those calculated in the dead load analysis of the bridge. Since the deck 

is flexible, the final moments are not much affected by the lowering process. 



Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1 INTRODUCTION 

This chapter gives an overall summary of the study. The most important results 

and conclusions are outlined. At the end, recommendations for further research are 

presented. 

8.2 SUMMARY 

The main objective of this study is to present an efficient structural system and a fast 

construction method for continuous cable-stayed bridges. To achieve this objective 

the thesis was divided into four parts. 

• Part .1: Highway live loads (Chapter 2) 

The highway live loads for long continuous bridges according to the Canadian, 

American and European codes are compared. 

• Part 2: Literature review (Chapters 3 and 4) 

In this part of the study the different structural systems ior multispan cable-

stayed bridges are reviewed. Different pylon configurations, cable arrangements 

and deck types are compared. The basic concepts in the analysis of cable-stayed 

bridges are discussed, and the sources and solution techniques of the geometric 

nonlinear behaviour of cable-stayed bridges are presented. 

216 
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• Part 3: Analysis and parametric study (Chapters 5 and 6) 

In this part the proposed bridge is analysed for the dead load, highway live 

loads and for temperature. The results of a conventional linear and a geomet-

rical nonlinear analysis are compared. To study the effects of the deck-pylon 

connection types on the bridge behaviour, five different deck-pylon connec-

tions are investigated. Since the longitudinal stability of the chosen system is 

achieved by stiff diamond-shaped pylons, the effect of the pylon dimensions are 

investigated in a parametric study. In addition the effect of the cable areas on 

the maximum bending moments in the deck is examined. 

• Part 4: The construction method (Chapter 7) 

An economical and fast construction method for long multispan cable-stayed 

bridges is discussed. The method is a cast-in-place deck poured on a launching 

steel truss at an elevated position and then lowered into its final position. The 

different steps of this method are simulated and analysed by using the computer 

program ANSYS. 

8.3 CONCLUSIONS 

The major conclusions of the present study are: 

1. While the Canadian and American Codes give about the same highway live 

load intensity, the European Code specifies in general a much higher value. 

For the proposed bridge, loading two lanes and for a 250 m long loaded span, 

the Canadian and American Codes give a live load intensity of 23.8 kN/m, 

while the European Code gives 40 kN/m for heavy traffic. This is almost 
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70 percent higher. With the increasing traffic volume and truck capacities 

in North America the highway live loads for long continuous bridges should 

perhaps be reviewed. 

2. Designing the cables for a high stress, and keeping the differential deflections 

of the deck as low as possible by adjusting the initial strains in the cables in 

the dead load analysis, leads to a more or less linear behaviour of the structure, 

thus justifying the use of a simple linear analysis instead of a more complicated 

geometric nonlinear analysis for the dead load. 

3. The maximum moment envelope in the deck under live loads has three distinct 

zones, where the maximum positive and negative moments appear. These zones 

are at the end of the side span, in the vicinity of the pylons, and at the centre 

of the main span. Comparing the bending moment envelopes of the linear and 

geometric nonlinear analyses, a maximum difference of 25 percent in the regions 

of relatively high bending moments is observed. This percentage increases to 

100 percent in regions of low (insignificant) bending moments. These results 

indicate the significance of a geometric nonlinear analysis for the live loads. 

4. Regarding the temperature analysis, the maximum difference in the deck bend-

ing moments between the linear and geometric nonlinear analyses in the regions 

of relatively high bending moments is about 8 percent. This difference increases 

to 22 percent in regions of relatively low bending moments. This means that 

the geometric nonlinearity affects the analysis results in case of a temperature 

analysis to a lesser degree than it does in a highway live load analysis. 
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5. The statical system recommended for multispan cable-stayed bridges consists 

of a slender solid concrete deck suspended by closely spaced cables. The deck 

is acting primarily as a compression member and the bending moments are 

relatively low. The longitudinal stability of the system is achieved by using 

stiff diamond-shaped pylons. 

6. The optimum dimensions for the pylon in such a system related to the main 

span (1) are: 

• (b/l) should lie between 0.06 and 0.08 

where (b1) is the pylon width or the distance between the inclined pylon 

legs at the deck level 

• (h/l) should lie between 0.18 and 0.24 

where (he) is the height of the pylon above the deck 

• (d/l) should be greater tha 0.09 

where (di) is the height of the inclined legs below the deck level 

7. The optimum deck-pylon connection system consists of a 500 m long continuous 

deck resting on two pylons, and the deck-pylon connection consists of two 

rollers and one hinge to prevent a horizontal movement of the deck against the 

pylons. The continuity of the bridge is provided by expansion joints capable 

of transferring only shear forces at both ends of the 500 m long deck. 
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8. Trying to decrease, the maximum bending moments in the deck by increas-

ing the areas of the cables is not economical. An increase in the cable areas 

by 80 percent decreases the maximum bending moment in the deck by only 

12 percent. 

9. The proposed construction method is an efficient and fast way to construct 

multiple span cable-stayed bridges. Because of the flexibility of the slen-

der solid concrete slab, the deformations of the steel truss supporting the 

cast-in-place concrete deck during the different construction stages do not have 

a significant effect on the final stresses in the deck. 
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8.4 RECOMMENDATION FOR FURTHER RESEARCH 

1. This study is limited to a static analysis, research is needed to investigate the 

dynamic response of continuous cable-stayed bridges. 

2. In addition to the geometrical nonlinearities considered in this study, the effect 

of the material nonlinearity should be included. 

3. The importance of time-dependent effects such as creep and shrinkage on 

multi-span cable-stayed bridges should be examined. 
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Appendix A 

Element Types 

In this Appendix the different element types used in the analysis are presented. The 

elements described are: 

1. The two-dimensional elastic beam element 

2. The two-dimensional elastic tapered beam element 

3. The two-dimensional elastic truss element 

4. The cable element 

5. The nonlinear force-deflection spring element 

6. The interface element 

The description of the elements (as far as applicable) includes: 

• General description of the element 

• The theory of the element 

• The element stiffness matrix 

• The effect of axial forces (P - S effect) 

• Verification 
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A.1 The two-dimensional elastic beam element 

A.1.1 General description 
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Figure A.1: Two-dimensional elastic beam element 

The two-dimensional beam element is a uniaxial element with tension-compression, 

and bending capabilities. The element has three degrees of freedom at each node 

(see Figure A.1). These are translations in the nodal x and y directions (u and v) 

and rotation 0 about the nodal z-axis. 

A.1.2 Theory 

The displacement functions are a first order polynomial in the element axial direction 

and a cubic polynomial in bending. These functions have the following form: 

U - Ci +C2 ' X 

v=03+C4•x+Cs.x2+C6.x3 

where C1, C2. 06 are constants, and the rotation 0 is given by dv/dx. 
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A.1.3 Element stiffness matrix 

The element stiffness matrix in the element coordinates if shear deformations are 

taken into account is: 

EA 
L 

0 

{k}= 

EA 
£ 

0 

where: 

12E1 
£3.(1+cb) 

6E1 £El-(4+0)2.(1+cb) L.(1+çb) 

0 

12E1 eEl 

- L3.(1+ct') 

6E1  

A = cross-section area 

E = modulus of elasticity 

L = element length 

I = moment of inertia 

12E1  

- GArP 
E  

G = shear modulus - 

2.(1+u) 

I/ = Poisson's ratio 

EA 
£ 

0 12E1 

0 6E1 EI.(4+c6)  
L2.(1+cb) L.(1+cb) - 

Ar = effective area in resisting shear deformations (reduced area) 

(A.1) 
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A.1.4 Effect of axial forces 

The computer program ANSYS uses the Przemieniecki approach, in which the effect 

of axial forces is taken by adding a stress stiffening matrix [k3] to the conventional 

matrix [k] of the element. The stress stiffening matrix for the elastic beam element 

(as given before in Chapter 4) is: 

0 

6P 
SL 

{k3} = 

where: 

P 2PL 
V 10 15 

o 0 0 0 

o 6P P 0 
5L 15 

n P PL 
10 30 

P = axial force acting on the beam 

6P 
U-

P 2PL 
10 15 

(A.2) 

A,1.5 Verification of the axial force effect 

The computer program ANSYS is using the Przemieniecki approach, and not the 

general method, when considering the effect of axial forces. Therefore, an example 

is calculated by hand using the general method (Ghali and Neville, 1989), and the 

results are compared with the results obtained by the computer program ANSYS. 

The example is a propped cantilever as shown in Figure A.2 subjected to a uniform 

distributed load and an axial force P acting one time as a compression force, and 

another time as a tension force. 



229 

q = 32/unit length 

4  
R 

4.4 4 L 4 + 

L = 

I P = 160 
A 
III ,' 

C 

Figure A.2: Example of a propped cantilever subjected to an axial force P 

The results of both methods are shown in Table A.1. It is obvious that increas-

ing the number of elements used in the computer model, or in other words decreas-

ing the lengths of the individual elements, leads to the decrease of the quantity 

= LJP/EI. But for low values of i both methods give identical results as dis-

cused before in Chapter 4, and as can be seen by comparing the results in Table A.1. 



Table A.1: Fixed end moment for a propped cantilever subjected to an axial force 

Exact ANSYS 

Axial 
1 Element 2 Elements 3 Elements 

Force MANSYS 
MANSYS 

MANSYS 
MANSYS 

MANSYS 
MANSYS 

MEXACT MEXACT MEXACT 

Tens. 88.716 94.380 1.064 89.123 1.005 88.760 1.001 
Comp. 116.392 107.300 0.922 115.925 0.996 116.381 1.000 
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A.2 The two-dimensional tapered elastic beam element 

A.2.1 General description 

02 
4U2 
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Figure A.3: Two-dimensional tapered elastic beam element 

This element is a conventional elastic beam element except it allows a different 

unsymmetrical geometry at each end, as shown in Figure A.3. 

A.2.2 Theory 

The displacement functions for this element are the same for the conventional elastic 

beam element. For the purpose of the stiffness matrix calculation, the average area 

A,, is taken as: 

A A1+./A1.A2-I-A2 
av 3 

And the average moment of inertia 'av is taken as: 

Where the 1 and 2 subscripts refer to the end 1 and 2 of the element. It should 

be mentioned that if A2/A1 or 12/1, is between 0.2 and 5, which is the case in the 
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analysed bridge, the values above are close to the values calculated for an average 

cross-section between end 1 and end 2. 

A.2.3 Element stiffness'matrix 

The element stiffness matrix is the same as for the conventional beam element, the 

cross-section area and moment of inertia used are those calculated using the previous 

expressions. 
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A.3 The two-dimensional truss element 

A.3.1 General description 
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Figure A.4: Two-dimensional truss element 

This element is a uniaxial tension-compression element with two degrees of freedom 

at each node (see Figure A.4). These are translations in the nodal x and y directions 

(u and v). No bending of the element is considered. 

A.3.2 Theory 

The displacement function for the truss element is assumed to be linear as follows: 

U = C1 + C2 X 

where the element x-axis is oriented along the length of the element from node i 

towards j. This displacement function implies a uniform stress in the element. 
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A.3.3 Element stiffness matrix 

The element stiffness matrix in the local element coordinates is: 

k EA EL L 

where: 

A = cross-section area 

E = modulus of elasticity 

L = element length 

A.3.4 Effect of axial forces 

1 

o 0 

—1 0 1 

o 0 0 0 

The element stress stiffening matrix is: 

0 

0 1 

o 00 

0 —1 0 1 

where: 

P = axial force 

L = element length 

(A.3) 

(A.4) 
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A.4 The cable element 

A.4.1 General description 

This element is a truss element having the unique feature of resisting uniaxial ten-

sion only. The stiffness is removed if the element goes into compression, simulating 

a slacked cable condition. As the truss element, the cable element has two degrees 

of freedom at each node, translations in the nodal x and y directions (u and v). 

A.4.2 Theory 

The displacement function for this element is assumed to be linear for positive forces 

(tension). The function is of the form: 

U = CI + X 

Where the element x-axis is oriented along the the length of the element from node i 

to node j. The stiffness of the element is removed if a negative relative displacement 

between node i 'and node j occurs. 

The element is nonlinear and requires an iterative solution. The solution proce-

dure is as follows: 

The element condition at the beginning of the first iteration is determined from the 

initial strain input: 
L—L0 

6-

where: 

L 

L = element length defined by the location of its nodes 

L0 = unstressed (unstrained) length of the cable 
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If this value is less than zero, the element stiffness is taken as zero for this iteration. 

If at the end of the iteration the element is in tension (L > L0), the element stiffness 

is included in the next iteration. The effect of axial forces on the stiffness matrix 

should always be included to provide numerical stability. 

A.4.3 Element stiffness matrix 

The element stiffness matrix in the local element coordinates is: 

C 

EA 0 0 
H = L 

where: 

—c 0 C 

0 0 0 0 

C = 1.0 if previous iteration resulted in a tensile stress 

c = 0.0 if previous iteration resulted in a compressive stress 

(A.5) 

A.4.4 Effect of axial forces 

The stress stiffness matrix, which should always be included to provide numerical 

stability, is: 

[k]=. 

0 

0 C 

0 0 0 

0 -C 0 C 

where: c = 1.0 if previous iteration resulted in a tensile stress 

c = 0.0 if previous iteration resulted in a compressive stress 

(A.6) 
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A.4.5 Verification 

The sag of a cable hanging between two hinged supports (see Figure A.5) is calculated 

for the parabola configuration and for the catenary configuration and compared with 

the results obtained by the ANSYS analysis in Table A.2. 

From the comparison it can be shown, that the difference between the catenary 

and the parabola configurations are almost negligible for small sag/span ratios. The 

results obtained by the computer program ANSYS are almost identical to the results 

of the catenary configuration. 
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H ----

1 = 120m 

Figure A.5: Example of a hanging cable 

= material density = 77 kN/m3 

A = cross-section area = 0.0042 m2 

W P = weight of cable per unit length measured along the horizontal chord 

= 'y. A = 0.323 kN/m (for parabolic configuration) 

= weight of cable per unit length measured along the cable center-line 

= w, . i/ic (for catenary configuration) 

= horizontal projected length of the cable (120 m) 

length of the catenary 

H (2H) lw2•—•sinhWc  

H = horizontal reaction at the hinged support 

1 f = catenary sag = H —.(cosh lWc —1 

12 
fp = parabola sag = 8H 
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Table A.2: Comparison between the sags of different cable configurations 

H (KN) fANSYS (m) fparabola (m) 
fANSYS 

fcatenary (in) 
fANSYS 

fparabola fcatenary 

397 1.46608 1.46454 1.0010 1.46424 1.0010 
79 7.33677 7.36329 0.9964 7.32583 1.0015 
35 16.09183 16.42011 0.9800 15.98471 1.0067 



240 

A.5 The nonlinear force-deflection spring element 

A.5.i General description 

This is a unidirectional element with a nonlinear generalized force-deflection rela-

tionship explicitly defined by the user (see Figure A.6). The used element has one 

degree of freedom at each node, which is a translation in the nodal x-direction (u). 

A.5.2 Theory 

The element is nonlinear and requires an iterative solution. During the stiffness 

pass of a given iteration, the element will use the results of the previous iteration 

to determine which segment of the force-deflection curve is active and calculate the 

slope ktg, which will be used in the calculation of the stiffness matrix. The deflections 

of the current iteration are examined to see whethera different segment of the force-

deflection curve should now be active. If so, the solution is not converged. 

A.5.3 Element stiffness matrix 

The element stiffness matrix in the element local coordinates is: 

1 —1 

—1 1 

where: 

I (A.7) 

ktg = slope of the active force-deflection segment from the previous iteration 



241 

Force A 

U2 

Deflection 

/ 

Figure A.6: Example for a defined force-deflection curve for a nonlinear spring 
element 
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A.6 The interface element 

A.6.1 General description 

This element represents two surfaces which may maintain or break physical contact 

and may slide relative to each other (see Figure A.7). 

The used element is capable of supporting only compression in the direction 

normal to the surfaces, and has two degrees of freedom at each node, translations in 

the nodal x and y directions (u and v). The element may be given an initial gap, 

the specified normal stiffness is active when this gap is closed. 

A.6.2 Theory 

The element is nonlinear and requires an iterative solution. The element condition at 

the beginning of the first iteration is determined from the initial gap. If the interface 

is open, no stiffness is associated with this element for this iteration. If the interface 

is closed, k (the normal stiffness) is used in the gap resistance. 

A.6.3 Element stiffness matrix 

If the two nodes i and j of the element are coincident (the two surfaces are in contact), 

then the element stiffness matrix in the local element coordinates is: 

0 

o kn 

where: kn 

[k]= 
0 0 0 

0 —kn 0 kn 

= stiffness of the interface element normal to its surfaces 

(A.8) 
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Figure A.7: The interface element 


