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Abstract

Although cable-stayed bridges have proved to be an efficient bridge system,
aesthetically appealing and economical for medium and long-span bridges, the
majority of cable-stayed bridges that have been constructed are of the two-span
asymmetrical or three-span symmetrical types.

In this study an efficient statical system and a fast construction method for
continuous multi-span cable-stayed bridges are described. Also the highway live
loads for long-span bridges according to the Canadian, American and European
codes are compared. The pr(;poséd statical system consists of stiff, diamond-shaped
pylons and a slender solid concrete deck of 250 m span suspended from the pylons
by a multi-cable system.

To study the static behaviour of such a system, a conventional linear analysis and
a geometrical nonlinear analysis , taking into consideration the actual behaviour of
the cables (sagging), the effect of large deflections and the effect of axial forces are
carried out. For both types of analysis the computer program ANSYS is used and
the results are compared. 7

The effect of the deck-pylon connectiﬁns on the maximum straining actions in
the different bridge components (deck, pylon and cables) and on the buckling of the
slender deck is studied by examining five different types of deck-pylon connections.
In addition, the influence of the cable areas on the maximum bending moments in
the deck is investigated.

Since the stability of the choéen system is achieved by the stiff pylons, a para-

metric study is carried out to find the optimum pylon dimensions for such a system.
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Concerning the construction of multispan cable-stayed bridges, a fast and
economical method is described and analysed by the computer program ANSYS.
In the proposed construction method, the 250 m long concrete deck is poured in one
operation on a steel truss in an elevated position, and then lowered after hard-
ening to its final position, in which it will be suspended from the cables. The
truss is then launched to pour the next concrete deck. The lowering process of
the truss is simulated in the computer analysis by using interface elements. This
construction procedure will shorten the construction time of multi-span cable-stayed
bridges significantly. It is estimated that the comstruction of one span (250 m)

will take only four to five weeks.
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List of Symbols

All symbols are deﬁned where they first appear. SI units are used throughout the

study presented herein. The following list contains the most frequently used symbols.

A = cross-section area

Ao = average cross-section area for a tapered beam

A; = cross-section area for cable number 7

A, = projected area of an immersed body, perpendicular to the flow

direction of the fluid

A = effective area in resisting shear deformations (reduced area)
A;, A, = cross-section areas for ends 1 and 2 for a tapered beam

b; = spacing between the anchor points of the cables in the deck
be = width of the pylon at the level of the deck

(distance between the pylon legs)

Cq = coefficient of drag for an immersed body
dy = height of the inclined pylon legs below the deck
D,_; = vertical deflection of deck node connected to cable j, due to

dead load and zero initial prestressing force in the cables
Diyeg—j = required final deflection of the deck node connected to cable j,

due to dead load

E = modulus of elasticity
Eeq = equivalent modulus of elasticity (for cables)
f = cable sag
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fou = rupture stress of the cable material (steel)

F = concentrated force

Fp = drag force on an immersed body

g = dead load intensity of the deck

G = shear modulus

hy = height of the pylon obove the deck

H = horizontal component of the end reaction of a hanging cable
I = moment of inertia of a cross-section about its center of gravity
I, = average moment of inertia for a tapered beam

L, I, = moments of inertia for ends 1 and 2 for a tapered beam

k = spring constant

kn = stiffness of the interface element normal to its surfaces

kit = slope of the active force-deflection segment of a nonlinear

spring element

l = bridge span
l = loaded span length of a bridge
L = element length

= chord length in case of a cable

L, = strain-free length of a cable

M = bending moment on a section

N = normal force on a section

P = axial force acting on a beam element

Ppenging = point load to be applied on a bridge for calculating bending moments
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Pspear = point load to be applied on a bridge for calculating shearing forces

q = live load intensity on the deck

qe = critical live load intensity causing buckling of the deck

R; = reaction of the idealized continuous beam at cable number 7

ty = depth of beam

AT = temperature loading

T: = tension force in the cable assumed to act along its chord

Ty = tension force in cable number ¢ due to self-weight and permanent
loads

Tin-; = initial prestressing force in cable j to obtain the required

deflections of the deck nodes due to ‘dead load
Taz = maximum tension in a cable acting along the cable axis
u = axial deformation
= displacement in z-direction
v = vertical deformation

= displacement in y-direction

|4 = fluid velocity
w = intensity of transverse loading on a beam
W, = weight of cable per unit length of its axis

(catenary configuration)
Wegble = cable weight
Wy = equivalent weight of cable per unit length of its span

(parabola configuration)
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w = standard truck weight
Y = distance measured from the center of gravity of a member
= deflection of a beam element
Ay; = difference between the vertical displacement obtained from step ¢,

and the final required vertical diéplacement of the deck node

a = coeflicient of thermal expa,nsioﬁ
0% = specific weight (weight per unit volume)
b; ; = vertical displacement of deck node connected to cable ¢

due to a unit initial force in cable j

€z = axial strain in a layer at a distance y from the centroid of a section
€ = initial strain in a cable

Eit1 = initial strain in a cable for iteration step (¢ + 1)

0 = angle of inclination to the horizontal of the cable chord

0; = angle of inclination to the horizontal of the cable chord

for iteration step ¢

v = Poisson’s ratio
P = fluid density
o = tensile stress in the cable
og = allowed stress in the cable due to self-weight and permanent loads
Oper = permissible tensile stress in the cable
ACper = permissible stress variation in the cable due to live load
mé” = roller support
AN = hinge support
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List of Matrices

All matrices are defined where they first appear. [ ]-Brackets stand for a matrix,
while { }-brackets stand for a vector or array. The following list contains the most

frequently used matrices.

{D} = vector of joint displacements

{D,} = vector of joint displacements for iteration step n

{F} = total load vector

{Fn} = vector of total applied loads at load step m

{F3.} = vector of restoring loads for load step m and iteration n

{Fnr} = vector of restoring loads for iteration n

[%] = member stiffness matrix in the local member coordinates

[kp) = stiffness matrix for a beam taking into account the (P — ) effect
(k5] = stiffness matrix expressing the (P — ) effect on the element

stiffness matrix (sometimes called stress stiffening matrix)

(K] = structure stiffness matrix in the global structure coordinates

(K n) = tangent structure stiffness matrix for load step m and iteration n
(K] = tangent structure stiffness matrix for iteration n

[T%] = coordinate transformation matrix

xxi



Chapter 1

INTRODUCTION

1.1 GENERAL

The cable-stayed bridge is an innovative structure that is both old and new in con-
cept. It is old in the sense that the idea of supporting a beam by inclined ropes or
chains hanging from a mast or tower has been applied by the ancient Egyptians for
their sailing ships (Figure 1.1) several thousands years ago, and it is new in that its
modern-day implementation began in the 1950s in Germany and started to seriously
attract the attention of bridge engineers in North America only as recently as 1970.
The importance of cable-stayed bridges increased rapidly with the enormous pfogress
made in computational facilities and material technology.

Nowadays cable-stayed bridges have become so successful that they have taken
their rightful place among classical bridge systems. A large number of cable-stayed
bridges has been build around the world, most of them are of the two-span
asymmetrical or three-span symmetrical types (see Figure 1.2).

Only a very few of them are of the multispan type, as for example the Maracaibo
bridge in Venezuela, which has a continuous system as shown in Figure 1.3(a).

For the crossing of the Great Belt in Denmark, a system as shown in Figure 1.3(b)
is suggested by Finsterwalder. This system consists of very stiff pylons and expan-
sion joints at the centre of each 'spa,n to reduce the effect of temperature and time

dependent-effects.



Figure 1.1: Model of an ancient Egyptian Pharaoh boat
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(a) Two-span asymmetrical

(Severin Bridge at Cologne, Germany)

(b) Three-span symmetrical
(North Bridge at Diisseldorf, Germany)

Figure 1.2: Typical span arrangements for cable-stayed bridges
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(b) Proposal by Finsterwalder for the Great Belt bridge in Denmark

(c) Proposal by Leonhardt for crossing the Ganges in India

Figure 1.3: Different statical systems for multispan cable-stayed bridges



A similar solution was proposed by Leonhardt for crossing the Ganges in India
as shown in Figure 1.3(c).

In this study the proposal call for a fixed link across Northumberland Strait
between New Brunswick and Prince Edward Island in Canada (see Figure 1.4) is
adopted. The total length of the proposed bridge is about 13 km. The structure
investigated is a multispan cable-stayed bridge with an idealized 12.0x0.60 m solid
concrete slab and 250 m long spans. Diamond-shaped pylons have been chosen to
provide the stiffness required for the resistance of unbalanced live loads.

Since more than 40 identical spans are to be constructed, conventional construc-
tion methods such as precast or cast-in-place segmental construction are not suitable
for such a project, because they would take excessively long to construct such a long
bridge, especially under the harsh environmental conditions existing in the region.
The method discussed in this study is a cast-in-place concrete deck on a steel truss
extending over two spans, leading to the construction of one span (250 m) in only

four to five weeks.



Figure 1.4: Location of the proposed bridge




1.2 OBJECTIVES

The objectives of the research project presented in this thesis are:

1. To compare the highway live loads for long-span bridges according to the

Canadian, American and European codes.

2. To review the basic informations needed for the understanding of the behaviour

and analysis of cable-stayed bridges.

3. To compare between a conventional linear analysis and a geometrical nonlinear
analysis of cable-stayed bridges taking into consideration the actual behaviour

of the cables,the effect of large deflections and the effect of axial forces.
4. To propose an efficient statical system for continuous cable-stayed bridges.

5. To discuss an economical and fast construction method for long continuous

cable-stayed bridges and to simulate the proposed method using the computer

program ANSYS.

1.3 SCOPE

In this study the static behaviour and the construction of continuous cable-stayed
bridges are discussed. 7

In Chapter 2 the highway live loads on long bridges according to the Canadian,
‘American and European codes are compared. |

In Chapter 3 different structural systems for multispan cable-stayed bridges are

presented. The various pylon configurations, cable arrangements and deck types are



discussed.

Chapter 4 presents a literature review needed for the understanding of the be-
haviour and analysis of a cable-stayed bridge, including the characteristical behaviour
of a cable, the effect of axial forces on the beam stiffness and the effect of large deflec-
~ tions in the analysis. The different techniques for the solution of nonlinear problems,
which are available in the used computer program ANSYS are also reviewed.

In Chapter 5 the analysis of the proposed bridge due to dead load, highway live
load and temperature is carried out. The results of a conventional linear and a
geometric nonlinear analysié are compared.

In Chapter 6 a parametric study is carried out to investigate the effect of the
deck-pylon connection type, pylon configuration and cable areas on the behaviour of
a continuous cable-stayed bridge.

The construction method is described and the different construction steps are
analysed in Chapter 7.

Chapter 8 contains a summary of the most important results, conclusions and
recommendations for further research.

Appendix A includes the description of the different element types used in the

computer analysis.



Chapter 2

LOADS ON LONG BRIDGES

2.1 INTRODUCTION

A bridge must be designed to resist all loads and load effects that may be expected
during its intended life. Besides the own weight and highway live load other loads

which have to be considered are:
e Dynamic load effects
o Temperature, creep and shrinkage effects

¢ Wind on structure and on traffic

Longitudinal loads due to braking

Collision

Differential foundation settlement

Earthquake loading
o Ice pressure and stream flow

In this study only the effects of the own weight, highway live load and temperature

on the proposed bridge are investigated.
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2.2 THE OWN WEIGHT

For the serviceability limit state, the permanent loads are taken as the actual
(unfactored) loads. The densities of the different materials are input data for the
computer program for the analysis of the structure due to its own weight. The
concrete density is taken as 2400 kg/m?® and that of the steel as 7850 kg/m?3.

For the 12.0x0.60 m solid concrete slab, this gives a dead load intensity of
170 kN/m. In addition a superimposed dead load of 30 kN/m is applied on the
deck to accommodate the weight of the wearing surface, side rails, curbs ...etc.
This means that the total dead load intensity of the deck for the proposed bridge is
g = 200kN/m.

2.3 THE HIGHWAY LIVE LOADS

2.3.1 Introduction

There are wide disparities throughout the world concerning highway live loads on
bridges. But a comparison of numerous codes (Canadian, American and European
codes) shows that, whereas their make-up may differ widely, their overall effects on
the forces on the structure do so to a much lesser degree.

In general, the highway live load consists of a standard truck and/or a uniformly
distributed lane load. Numerous traffic surveys and associated probabilistic studies
have shown that the actual highway live loads decrease as the area over which they
are moving increases.

The highway live load for the proposed bridge of 250 m span and a two-lane deck

is calculated according to the Canadian Code and compared with the American and .
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European (FIP) Codes.

2.3.2 Highway live load according to the Canadian Code

According to the National Standard of Canada (CAN/CSA-S6-88) specifications,
the highway live load on a bridge consists of a standard truck (W = 600 kN) or of
a lane load as shown in Figure 2.1, whichever produces the maximum load effect.
The lane load consists of a uniformly distributed load of 0.02W=12.0 kN/m on a 3 m
Width, plus concentrated loads representing a reduced truck load of 0.6W=360 kN.
For continuous spans, the lane load shall be continuous or discontinuous, as may be
necessary to produce maximum load effects, and the dynamic load allowance for the
uniformly distributed portion of the lane load is 0.10.

Since the objective of this study is to investigate the overall behaviour of continu-
ous cable-stayed bridges, not to design sections or study local effects such as punching
in the deck, only the distributed portion of the lane load will be considered.

It has to be noted that the Canadian Code is not applicable for long-span bridges
with spans exceeding 150 m. A reduction of the standard truck load needs special
discussions with the authorities. According to the proposal call of Public Works
Canada for the investigated Northumberland Strait Crossing project, the weight of

the design truck is given by the following equation:

W=630+12-.1 for L= 0 to 100m .
(2.1)

W=1750—-04-(;-100) for [;=100 to 500 m

where: W = weight of design truck (kN)
h = loaded length of the bridge (m)
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Using these values of W, and a dynamic load allowance of 0.10, the distributed
portion of the highway live load as a function of the loaded length of a bri(ige is shown
in Figure 2.2, Loading two lanes and using a reduction factor of 0.9 for mﬁitiple lane
loading (see Table 2.1), the live load intensity obtained from Figure 2.2 for a loaded
length of 250 m is ¢=27.3 kN/m (corresponding to a truck load W of 690 kN).

If the standard truck load W=600 kN of the Canadian Code is used, the dis-
tributed lane load is reduced to 23.8 kN/m. As the trend of the different codes (as
will be shown next) is to reduce the loading with an increase of the loaded length,
the load intensity of 23.8 kN/m obtained from the Canadian Code is adopted in this

study.
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Table 2.1: Reduction factors for multi-lane loading according to the Canadian Code

| Number of loaded lanes | Reduction factor |

1 1.00
2 0.90
3 0.80
4 : 0.70
5
6

0.60
or more 0.35
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2.3.3 Highway live load according to the European Code

The European standard truck of 60 tons corresponds to the Canadian 600 kN truck.
In the FIP recommendations for practical design, an attempt has been made to com-
bine all the effects of live loads in a single, uniformly distributed load (see Figure 2.3).
These values include the dynamic effects.

For multi-lane loadings, a reduction in load is assumed as shown in Figure 2.4.
In order to study local effectﬁs (for example punching of the deck), a single point load
has to be considered. The value of this load is 200, 300 or 400 kN for light, normal
or heavy traffic respectively.

For the proposed two-lane bridge with a loaded length of 250 m, the highway live
load would be 20 kN/m for light traffic, 30 kN/m for normal traffic and 40 kN/m

for heavy traflic (compare with the Canadian Code which gives 23.8 kN/m).
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2.3.4 Highway live load according to the American Code

The present American AASHTO Code ( 1983 edition ) specifies the standard
HS 20-44 truck with a total load of only 72,000 Ibs which is about 320 kN (compare
with the Canadian 600 kN truck).

The lane load consists of a uniformly distributed load of 640 1b/ft which is about
9.5 kN/m (compare with 12 kN/m according to the Canadian Code). The magnitude
of the single point load used in studying local effects (such as shear in punching
problems) is about 26,000 Ibs (115 kN). Adding the dynamic effect, this value would
correspond to the 200 kN point load used in the European Code for light traffic. It
should be noted that the AASHTO specifications are only applicable to spans up to
500 ft (152 m), and therefore do not include the long-span bridges.

For spans in excess of 152 m, reductions recommended by Ivy et al (1954) as
shown in Figure 2.5, are generally accepted criteria. The reduction in the lane load
starts for loaded spans exceeding 300 m, whereas in the European Code the reduction
starts for spans exceeding 150 m.

To include the effect of the loaded span length on the highway live loads, and
to distinguish between light, medium and heavy traffic, the ASCE Committee on
Loads and Forces on Bridges (1981) recommends a highway live load as shown in
Figure 2.6. The values 7.5%, 30%, and 100% H.V. (Heavy Vehicles)r correspond to
the European light, medium and heavy traffic. Using the curves of Figure 2.6 and
the reduction factors for multi-lane loading shown in Figure 2.7, the highway live
load for the proposed two-lane bﬁdge with a loaded span length of 250 m is 13.6,
20.4 and 23.8 kN/m for light, medium and heavy traffic respectively.
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2.3.5 Comparison between the three codes

A comparison between the highway live loads for the proposed bridge according to the
different codes is shown in Table 2.2. The Canadian and American Codgs are giving
the same live load intensity of 23.8 kN/m for a heavy traffic. This load correspc‘)nds
approximately to the light traffic value (20 kN/m) of the European Code, which
in general is recommending higher live loads. Using the loading recommended by
Public Works Canada in the project proposal, which is about 27.3 kN/m, would

correspond to the European medium traffic value of 30 kN/m.

2.4 TEMPERATURE LOADING

The temperature in a bridge affects the structure in two ways. First there is an
axial deformation due to minimum and maximum temperature, the second design
parameter is the thermal gradient, which shall be considered in the design of contin-
uous structures according to the Canadian Code. In order to study these two effects,

three cases of temperature distributions are analysed.

o Temperature Distribution No.1
All the elements of the bridge (deck, pylons and cables) are subjected to a

uniform temperature drop of AT = —40°C .

o Temperature Distribution No.2

~ AT = —40°C for the concrete components (deck and pylons)

— AT = —20°C for the steel components (cables)
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Table 2.2: Comparison between the highway live loads for the proposed bridge
according to the different codes

Canadian Code American Code European
Public Works | CAN/CSA | Ivy | ASCE Code
Canada S6-88 et al | Committee ,
Light 13.6 20
g (kN/m) 27.3 23.8 17.8 | Medium 20.4 30

Heavy 23.8 40
Light 100 200
PBending (kN) - - 0 Medium 100 300
Heavy 100 400
Light 100 200
Pspear (kN) - - 0 | Medium 100 300
Heavy 100 400

Note: For the Canadian Code the remaining truck load of
0.6 W = 414 kN is to be added as concentrated axle loads
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¢ Temperature Distribution No.3
In this case a more realistic temperature distribution is applied. It is assumed
that the bridge components near the water will cool down more than the other

components. This leads to a temperature distribution as follows:

— Pylon:
AT = —40°C for lower part of the pylons (below the deck level)

AT = —20°C for upper inclined legs of the pylons (above the deck level)

— Deck:
AT = —40°C for the bottom of the deck
AT = —20°C for the top of the deck

— Cables:
AT = —20°C for the cables

These temperature distributions are constant throughout the length of the bridge.
The thermal expansion coefficient of the concrete is taken as 10 x 107¢/°C' and for

the steel cables 11.7 x 1076/°C.

2.5 SUMMARY

The highway live loads according to the Canadian, American and European Codes
are compared. The conclusion is that the Canadian and American Codes are giving
_about the same live load intensity, whereas the European Code specifies in general
higher live loads. In addition, the three temperature distributions used to examine

the behaviour of continuous cable-stayed bridges are presented in this chapter.



Chapter 3

DIMENSIONS AND STRUCTURAL SYSTEMS
FOR MULTI-SPAN CABLE-STAYED

BRIDGES

3.1 INTRODUCTION

In this chapter the different structural systems for continuous cable-stayed bridges
are reviewed and compared. Based on this comparison an efficient system is chosen
for the proposed bridge. In addition, the different cable arrangements are discussed

and a preliminary design of the cables is made.

3.2 STRUCTURAL SYSTEMS FOR MULTI-SPAN
CABLE-STAYED BRIDGES

The majority of cable-stayed bridges that have been constructed are of the two-span
asymmetrical or three-span symmetrical types. In such types of cable-stayed bridges
the back-stay cables, which are anchored at the fixed end support, stabilize the pylons
and help the forestays to support the main span in an efficient manner as shown in
Figure 3.1(a). In a continuous (multi-span) cable-stayed bridge those back-stays are
not available, and an eflicient horizontal fixing of the pylon tops is consequently not

obtained. Under unbalanced live loads this leads to a rotation of the inner cable

24
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systems, causing unacceptable vertical deflections of the deck (Figure 3.1(b)).
The stability of multi-span cable-stayed bridges can be achieved according to

Gimsing (1983) by the following structural systems (see Figure 3.2):

1. Stiff superstructure (girder depth = 1/60) as shown in Figure 3.2(b).
This system gives a heavy deck for long span bridges, increasing the cable forces

due to the own weight of the structure.

2. Stiff pylons as shown in Figure 3.2(c),(d).
The inertia of the pylons can be increased in two ways, by using a wall-like
| pylon (Fig. 3.2(c)) or by using twin pyloﬁs with inclined legs (Fig. 3.2(d)).
Since the horizontal forces are resisted in this system by the pylons, which are
fixed at their bases, fairly strong soil conditions are needed for the foundations

of the pylons.

3. Stabilizing the pylon tops by using different cable configurations as shown in
Fig. 3.2 (e), (f) and (g). The major disadvantage of such systems is the sort of

chain reaction created in case of failure of one cable.

Gimsing (1976) also presented a comparison of the deflections of different multi-span
systems (see Figure 3.3). The deflection diagrams are for the central span under a
uniformly distributed load. Similar results are found for uniform load and deflections

in a side span.



(a) Three-span (stabilizing back-stays available)

(b) Multi-span (stabilizing back-stays not available)

Figure 3.1: Deflections of cable-stayed bridges
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(a) Conventional system
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(b) Flexible pylons, stiff deck
(c) Stiff wall-like pylons, flexible deck

(d) Stiff twin pylons, flexible deck
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(e) Back-stays anchored to adjacent pylons
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(f) Continuous cable connecting top of pylons

N

(g) Cables overlapping in midspan regions

Figure 3.2: Structural systems for multi-span cable-stayed bridges
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Conclusions to be drawn from the study of Gimsing are as follows:

1. The fixing of the pylons with common flexural stiffness has a minor influence

on the deflections. Compare System B (hinged pylons) with System C (fixed

pylons).

2. Fixing the pylons and increasing their flexural stiffness by a factor of 10 do not

reduce the deflections significantly. Compare System B with System D.

3. A cable connecting the pylon tops (System E) reduces the deflections of the

bridge significantly.

4. A triangular pylon structure supported on proper bearings (System F) is the

most efficient way to reduce the deflections in a multi-span cable-stayed bridge.

Based on the above discussion, a system composed of stiff triangular pylons and a
relatively flexible deck seems to be the optimum solution for the proposed multi-span
cable-stayed bridge.

The dimensions of the pylons, deck and cables will be discussed next.

3.3 DIMENSIONS OF THE PYLONS

Stiff twin pylons with dimensions as shown in Figure 3.4 are chosen. They consist of
inclined upper legs connected by a horizontal tie-beam at the level of the deck, and
sloped lower legs. In the transverse direction, the pylon legs are not sloped as shown
in Figure 3.5. Inclination of the pylon legs in both directions, the longitudinal and

transversal ones, would complicate the erection of the pylons.
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Figure 3.3: Deflections of different systems for multl -span cable-stayed bridges
(Adapted from Gimsing, 1976)
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120 m

Figure 3.4: Pylon configuration and dimensions for the proposed bridge
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(a) modified A-frame
(b) diamond

(c) modified diamond

Figure 3.5: Alternate pylon configurations in the transversal direction
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The inclination of the upper legs is chosen such that no tension develops in those
members under the maximum unbalanced live load conditions. A hollow cross-section
with a constant depth of 2.0 m (Figure 3.4) is sufficient for those legs, since they are
primarily subjected to axial forces as will be shown later in the analysis.

The cable forces and the required quantity of cable steel decreases with the
height of the pylon above the deck level. This is shown by Leonhardt (1987) in
Figure 3.6. An optimum raﬁge for the ﬁylon height above the deck level is between
0.2] and 0.25! (where ! is the length of the midspan). For the proposed bridge a
height of 45 m (0.18!) for the upper legs is believed to be reasonable.

The height of the sloped lower legs is taken as 21 m to accommodate the truss
used for the construction of the deck, as will be described later. The depth of the
hollow cross-section of those lower legs is increasing from 2.0 m at the deck level to
5.0 m at the vertical pier shaft (Figure 3.4), to resist the bending moments created
by unbalanced live loads as will be shown later in the analysis. .

To reduce the ice loads, a hollow circular pier shaft (with 8.0 m outside diameter
and 1.0 m wall thickness) is selected instead of the parallel vertical pier legs shown

in Figure 3.2(d).
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3.4 THE CABLES

In this section the different cable arrangements for cable-stayed bridges are discussed,

followed by the preliminary design of the cables.

3.4.1 The different longitudinal cable arrangements

A tabular summary of the various cable arrangements is presented in Figure 3.7.
Basically, there are four different cable configurations. These basic systems are

referred to as fan, harp, semi-harp and star systems.

o The fan system
The stays are at a maximum angle of inclination to the deck, which means
that the cables are nearly in an optimum position to support the dead and live
loads and simultaneously produce a minimum axial force component acting on
the deck. In addition the bending moments in the deck are less, if compared
to the harp system. In a parametric study done by Walther et al (1988), it is
shown that for the same bridge, using a fan cable configuration instead of a
harp type, decréases the normal forces in the deck by up to 40 percent and the

maximum bending moments in the deck are reduced by up to 25 percent.

e The harp system '
The cable connections are distributed throughout the height of the pylon,
resulting in an efficient pylon design compared to the fan system, which has
all the cables at the top of the pylon. The concentrated load at the top of -
the pylon (due to unbalanced live loads) produces large shearing forces and

bending moments along the entire height of the pylon. In addition, high



Single

Double

Triple

Muttiple

Combined

e

A

I,

Fan

<2

S,

Harp

<

B

Semi-Harp

Star
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cable forces may cause problems in anchoring the cables to the pylon in the
fan configuration. The harp system may also be preferred over the radiating
system for aesthetic reasons, because it minimizes the visual intersection of

cables when viewed from an oblique angle.

¢ The semi-harp system
This system represents a compromise between the extremes of the harp and
fan systems, and is useful when it becomes difficult to accommodate all the

cables at the top of the pylon.

o The star system
The star system is only used for its unique aesthetic appearance. There are no

major structural advantages of using this system.

The conclusion of the above discussion is that the harp system is beneficial in
designing the pylon (reducing the bending moments), whereas the fan system is
beneficial in designing the deck. So if a triangular pylon configuration in which the
inclined legs are primarily subjected to axial forces is used, then the advantage of
the harp system is reduced. The optimum cable configuration will be the fan type.

The number of cables depends on the length of span, type of loading, height of
pylons, economy and aesthetics. Using only a few cable stays results in large cable
- forces, which require complicated anchorage systems. In addition, deep girdérs are
required to span the long distance between the cable anchor points.

A large number of cables provides a continuous support for the deck, thus per-
mitting the use of a shallow depth girder and increasing the stability of the bridge

against dynamic wind forces (Leonhardt, 1980).
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The following simple equation can be used for the preliminary design of the cables

(Walther et al, 1988):

Ty
A; = -fg’— (3.1)
where:
A; = cross-section area of cable numb”er (¢)
T,; = tension force in cable number (z) due to self-weight
and permanent loads
o, = allowable stress in the cables due to self-weight and permanent loads

The calculation of T, ; and o, is discussed next.

e Calculation of the tension in the cables T ;

If the deformations in the deck and pylons are neglected, it is possible to regard

the deck as a continuous structure, rigidly supported by the cables as shown

in Figure 3.8.

The reactions R; of the idealized continuous beam represent the vertical com-

ponents of the forces in the cables due to dead load. From those reactions the

cable forces Ty,; are obtained using the simple expression:
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- R.
Tyi = —— .
where:
R; = reaction of the idealized continuous beam at cable number (2)
6; = inclination of cable number (7) to the horizontal

Usually the reaction R; can be calculated with acceptable accuracy for the

preliminary design (see Figure 3.8) as:
Ri =4g- b,' (33)

where;

g = dead load intensity of the deck

b; = the spacing between the anchor points of the cables in the deck

Calculation of the allowable cable stress o,

The allowed stress o, in the cables due to self-weight and permanent loads is
governed either by the strength or the fatigue criterion (Walther et al, 1988).
This depends on the ratio n = ¢/g (live load/dead load intensities). If the value
of n is small, the stress variation due to live load (Ac,) is less than the value
of the permissible limit (Aoye,), which enables the use of the full load-carrying
capacity of the cables (strength criterion). For high values of 5, the stress
variation (Ao,) becomes decisive and the fatigue criterion becomes governing

in the design of the cables.
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According to Walther et al (1988), equations giving o, as a function of the

ratio i for those two criteria can be established.

1. The strength criterion:

oy = -g——_g::]- * Oper (3.4)
where:
g = dead load intensity
g = live load intensity
Oper = permissible stress in the cables
= 0.45f,, in case of using a global safety factor
of 2.2 against the rupture strength of the steel
fpu = rupture stress of the steel

2. The fatigue criterion:

Hence,
-1
oy = <2> - AGper (3.5)

where:

Aoy = permissible stress variation due to live load

Using ¢15.2 ASTM A 416-74 Grade 250 strands (rupture stress f,, = 1700N/mm?,
Aope, = 200N/mm? and area of one strand = 140mm?), curves giving o, as a
function of the ratio  can be plotted for the two criteria of strength and fa-

tigue as shown in Figure 3.9. The conclusion is that for values of 7 less than 0.4,
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the strength criterion is governing the design, whereas for values greater than 0.4,
the fatigue criterion is more critical.

In the case of the proposed bridge 7 = ¢/g = 0.12, which m;aans that the strength
criterion (Equation 3.3) is to be used for the design of the cables.

Except for the cables close to the pylons, no later adjustments of the areas cal-

culated by this preliminary method were necessary. The cable areas are listed in

Table 3.1.

3.5 THE DECK

In this section steel and concrete decks are briefly compared, followed by a discussion

about different concrete cross-section types.

3.5.1 Steel decks versus concrete decks

Although steel decks have been extensively used for the first modern cable-stayed
bridges (see Figure 3.10), a number of cable-stayed bridges in the last two decades
have been constructed using a reinforced or prestressed concrete deck system. Pre-
stressed concrete proved to be a strongly competitive construction material compared
to steel for the deck systems of cable-stayed bridges.

A metal deck provides the optimum answer to the demand for economy in the use
of materials. It is, in fact, possible to limit its self-weight to a value which is about
one fifth of that of a concrete deck (Walther et al, 1988). On the other hand, the use
of a steel cross-section is today two to four times as expensive as its equivalent in

concrete. Thus, the reduced self-weight of the deck must result in appreciable savings
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Table 3.1: Cable Areas

| Cable Number || Cross-section Area (mm?) |
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32 x 140 = 4480
32 x 140 = 4480
26 x 140 = 3640
26 x 140 = 3640
22 x 140 = 3080
22 x 140 = 3080
18 x 140 = 2520
18 x 140 = 2520
16 x 140 = 2240
16 x 140 = 2240
10 x 140 = 1400
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in the other load-bearing elements (cables, pylons and foundations), if a steel deck

is to be more economical than a concrete deck.

For the proposed bridge a concrete deck is believed therefore to be the optimum

solution. Different concrete cross-section types are discussed next.

3.5.2 Concrete cross-section types for the deck

Several types of concrete cross-sections are shown in Figure 3.11. The major factors

affecting the choice of the deck cross-section type are:
¢ Suspending system (double or single plane of cables)
o Longitudinal spacing of the cables
o Deck width
¢ Deck span
e Live load to be carried

If the deck is suspended along its edges, a very simple cross-section for the deck can
be used. No torsional rigidity is necessary because the cables give a stiff support
along each edge and the transverse deflections due to unsymmetrical loading are
small. According to Leonhardt (1980), for a deck width up to 15 m, a simple solid or
hollow concrete slab width edge beams is sufficient. The edge beams are beneficial
in anchoring the cables and securing the buckling safety.

A parametric study performed by Walther et al (1988) shows that increasing the
deck inertia in the longitudinal direction is not basically favourable. A deck with a

high inertia attracts considerable bending moments accompanied by an extension of
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Figure 3.11: Examples of concrete decks (Adapted from Podolny et al, 1986)
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the highly stressed zones of the deck, without appreciably reducing the forces in the
pylons and the cables.

Based on the above discussion, an idealized solid concrete slab with dimensions
12.0x0.60 m (see Figure 3.12) is chosen for the proposed bridge. The slab is resting
on two roller supports and one hinge support on each pylon. At both ends of the
500 m long continuous slab, expansion joints which are cé,pable of transferring only
vertical (shear) forces will provide the continuity of the bridge, allowing expansion

and contraction of the deck due to temperature.

3.6 SUMMARY

Based on the comparison of different systems an efficient system for a multi-span

cable-stayed bridge is chosen. This system consists of:
° Stiﬁ diamond-shaped pylons
o A simple solid cross-section of 0.60 m thickness
¢ Fan-type cable configuration

In addition a preliminary design method for the cables is presented in this chapter.
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Chapter 4

THE ANALYSIS OF CABLE-STAYED

BRIDGES

4.1 INTRODUCTION

In this chapter the different methods of analysing cable-stayed bridges are briefly
reviewed, followed by a general description of the model used in the computer
analysis done in this study.

For the geometrical nonlinear analysis, the behaviour of a cable element, effect
of axial forces on the beam stiffness and the effect of large deflections are discussed.
Also the several solution techniques for nonlinear problems available in the used
computer program ANSYS are presented.

At the end of this chapter, the approximations inherent in a linear analysis are

discussed.

4.2 THE DIFFERENT METHODS OF ANALYSIS

The analysis of a cable-stayed bridge requires an appropriate idealization, or
modeling of the structure. The restraints, if any, present at each joint in the
structure should be determined in order to mathematically model the bridge. Con-
nections between the cables, deck and pylons are idealized at their points of inter-

section.
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For a single-plane system the structure may be idealized as a two-dimensional
plane frame. The effect of torsion on the deck would have to be superimposed on the
de‘ck. A two-plane system may be idealized as a three-dimensional space frame with
torsional forces included in the analysis.

Several methods have been employed in the analysis of cable-stayed bridges.

Perhaps the most important methods are:

e The reduction method introduced by Falk in 1956
This method is ideally suited to systems consisting of a number of elements
linked together end to end in the form of a chain, because only successive

matrix multiplications are necessary to fit the elements together.

¢ The simulation method proposed by Protte and Tross in 1966
The main system is chosen as a continuous main girder with independent pylons

having fixed supports, and the cables were introduced as redundants.

e The force-displacement method developed by Smith in 1967
In this method the unknowns in the matrix formulation include displacements

and forces.

o The flexibility method used by Troitsky and Lazar in 1971

In this method the unknowns (redundants) are the forces in the structure.

o The stiffness method used by Podolny in 1971

In the stiffness method the unknowns are the displacements and rotations at

the joints of the structure.
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Detailed description of the previously mentioned methods can be found in
Troitsky (1977). In the present study the computer program ANSYS, which adopts
the stiffness approach, is used for the analysis. Detailed information about the stiff-
ness method are available in numerous textbooks (e.g. Ghali and Neville, 1989).

The following steps describe the outline of the solution procedure (Seif, 1986):

1. The structure is idealized as a set of elements connected together at the joints

(nodes).

2. The global structure coordinates are arbitrarily chosen together with a set of

local coordinates for each member.

3. For each member, the stiffness matrix [k] is generated in the local member

axes, and then rotated into the global structure axes.

4. The structure stiffness matrix [K] is assembled from the member stiffness

matrices obtained in step 3.

5. The load vector {F'} contains loads which are applied directly to the nodes in
the global axes, and equivalent node forces calculated from member loads after

rotated into the global structure axes.
6. [K] and {F'} are corrected for known boﬁndary conditions (support restraints).

7. The joint displacements {D} are found by solving the equilibrium equation:

[K]-{D} = {F} (4.1)
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8. The final member end forces are calculated by multiplying the member stiffness
matrix [k] in the global axes by its end joint displacements, and then adding

the resulting vector to the member fixed end forces.

4.3 MODEL USED IN THE COMPUTER ANALYSIS

Two types of analysis are performed, a geometrical nonlinear analysis and a con-
ventional linear analysis. A two dimensional model as shown in Figure 4.1 (for the
linear analysis) and Figure 4.2 (for the nonlinear analysis) is used. Since the value
of the live load intensity applied on-the deck is only 12 percent of the own weight of
the deck, the torsional effects of unsymmetrical transverse live load casés are not of
major influence. It is believed that there is no need for a three-dimensional model.

In both types of ané,lysié, the deck and the parts of the pylons with constant cross-
sections are represented by a conventional beam element, whereas the lower sloped
legs of the pylons ,which have variable cross-sections, are modeled using tapered
beam elements.

For the cables, truss elements are used in the linear analysis, and cable elements
are used in the geometrical nonlinear analysis.

The expansion joints at the ends of the 500 m long deck, transferring only vertical
reactions, are represented by springs. The stiffness of those springs are calculated
by applying a vertical concentrated force F' at one end of the deck, and calculating

the corresponding vertical deflection of this end.
The deck-pylon connection is simulated by coupling the vertical displacements of

the deck node and the corresponding pylon node to create a roller between them,
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and coupling the vertical and horizontal displacements to create a hinged support.
Coupling of the displacements of two nodes means that the two nodes have the same
displacements.

Shear deformations are taken into account in both types of analysis. A detailed
description of the geometric nonlinear and conventional linear analysis is presented

next.

44 THE GEOMETRIC NONLINEAR ANALYSIS

4.4.1 Introduction

The sources of the nonlinear behaviour of cable-stayed bridges (excluding the mate-
rial nonlinearity) are the cables, the high axial forces in the deck and pylon, and the
large deflections of the system associated with unbalanced live loads. These sources
will be discussed next without detailed technical derivations, because they are avail-
able from many textbooks about the theory and analysis of structures. Therefore,
only those equations considered to be basic for the understanding of the analysis of

cable-stayed bridges are presented.

4,4,2 The behaviour of a cable

1. The catenary curve
Because of its virtually zero stiffness in bending, a cable can only balance its
own weight by taking the form of a hanging chain, which is the well known

catenary curve shown in Figure 4.3(a).
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Considering the equilibrium of a segment of the cable, the equation for the

catenary elastic curve with respect to the coordinates shown in Figure 4.3 is:
a: ,
y = a - cosh - : (4.2)
where:

a = Hjw,
H = horizontal component of the end reaction

w, = weight of the cable per unit length along the cable axis

where:
I = horizontal projected length of the cable chord (cable span)

Introducing the parameters n = f/I and m = 2a/l, Equation 4.3 can be
rewritten as:

m 1
n = '5' . (COSh-T;; —-1) (44:)

which is an expression for the catenary curve in non-dimensional terms of
~ n and m. This expression will be used later in comparing the catenary profile

with the parabolic one.
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2. The parabolic curve
The equilibrium configuration of the cable, if it is assumed to be weight-
less, under a uniformly distributed load along its span, is a parabolic curve
(Figure 4.3(b)). Using the same coordinate system as for the catenary, the
basic equation for a parabolic cable supporting a uniformly distributed load

along its span is:

z
y=a-+ %‘ (4—5)
where:
a = Hjw,
H = horizontal component of the end reaction
w, = equivalent weight of the cable per unit length of its span

In this case the cable sag f can be expressed as:

l2
f= % (4.6)

Substituting the terms n and m as previously defined to convert to a non-
dimensional equation, the following expression for the parabolic curve is
obtained:

n=-— (4.7

3. Catenary versus parabola
Since the mathematical expression for a parabolic curve is simple when com-
pared with the equation for a catenary curve, it is sometimes preferred to

use the parabolic equation. So did Ernst (1965) for example, in deriving his
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equivalent modulus of elasticity for cables (which will be used later in the
linear analysis). Therefore, it is advantageous to compare the two expressions
to determine the range for which a parabolic curve may be substituted for a
catenary curve. This was done by Odenhausen (1965). He introduced a loga-
rithmic plot, as shown in Figure 4.4, of Equations 4.4 and 4.7 with n = f/l as
abscissa and m = 2a/! as the ordinate. The plot indicates that the two curves
begin to diverge at a sag ratio n = f/I of approximately 0.20. For typical cables
used in cable-stayed bridges, the ratio n = f/l is by far less than 0.20 (in the
range-of 0.015 in this study), which means that there is no difference between
the catenary curve and the parabolic curve. The foregoing comparison applies
to cables with a horizontal chord, while the cables of cable-stayed bridges have
inclined chords (see Figure 4.5). Francis (1965) showed that a parabolic curve
may be used instead of catenary curve without introducing' any significant er-
rors, if the ratio of the horizontal component of the cable tension H, to the
cable weight weepte, is greater than unity and the chord inclination does not

exceed 70 degrees. These conditions are usually met in cable-stayed bridges.



5.0 <
N
AN
N
\ N
N
20 \\
3
10 \
g g
S ~
05
» Catenary
A
N -
0.2 AN T~
ParaboN
0.02 0.05 0.1 0.2 05 10 20 5.0
n=fll

Figure 4.4: Comparison between catenary and parabola cable configurations
(Adapted from Odenhausen, 1965)

60



Figure 4.5: Cable with inclined chord
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4. Cable element used in the computer nonlinear analysis
The sagging of a cable is a major cause of the nonlinear behaviour of cable-
stayed bridge systems. Consider the cable between points A and B of
Figure 4.6. The force needed to move point B to B along the chord AB

Figure 4.6: Sagging cable

depends not only on the cross-sectional area and the modulus of elasticity
of the cable, but also on the cable sag. For a sagging cable, this force is less
than for a straight cable, and as the tension in the sagging cable increases,
its sag decreases. This means that even if the stress in the cables is within
the linear elastic limit of the steel, the relationship between the force and the
deformation is not linear.

In the analysis performed by the computer program ANSYS, a nonlinear cable
element, which has the capability of sagging due to its own weight forming
a catenary curve, is used. This cable element can resist only a tension force,
if for any reason an absolute compressive force is applied, the stiffness of this
element is removed. This feature simulates a slacked cable. Ten elements are
used to model one cable stay, to obtain an accurate sagging profile of a cable.

For more information about this cable element refer to Appendix A.
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4.4.3 The effect of axial forces on the beam stiffness

4.4.3.1 Introduction

The main structural characteristic of the cable-stayed system is the integral action
between the pylons, deck and cables. Horizontal compressive forces due to the cable
action are té,ken directly by the deck, while the vertical compressive forces are trans-
mitted by the cables to the pylon. This means that deck and pylon are subjected to
high compressive axial forces.

By modeling the deck and pylon by a beam element in the stiffness r£1ethod
analysis, the effect of axial forces on the stiffness of a beam element (sometimes
called P — § effect) has to be considered. As the beam deﬂeéts, the moment due to
axial loads changes and with it the deflections. The equilibrium position is obtained
by using an iterative procedure.

Two methods are available to account for the axial force effect through adjusting
the member stiffness matrix. The general solution approach and the Przemieniecki

approach. These methods are briefly discussed next.

4.4.3.2 The general solution approach
The differential equation governing the deflection y of a prismatic beam element
(see Figure 4.7(a)) subjected to an axial compressive force P with any boundary

conditions is (Ghali and Neville, 1989):

— + == - (4.8)

dy P &y
dz* T EI  dz?

where:

w = intensity of transverse loading
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Using this equation in deriving the stiffness matrix of the beam element according to
the degrees of freedom 1 to 6 as shown in Figure 4.7(b) leads to the following member

stiffness matrix if the beam is subjected to an axial compressive force (Ghali and

Neville, 1989):

- B4 -
L
0 2£3c+tcl — B
L? L
sng;tg Se
kl= 4.9
[%,] Ea . . 54 (4.9)
L L
0 _2£3c+tc2 + E _Scj:tg 0 2!3c+tc! - E
L27 L L L2 L _
] 0 % te 0 _ﬁ%ts sc |
where:

T (sinT—TcosT) EI

= 2" 2cosu—usimu) L
b = u - (T — sinT) EI
°* 7 (2—2cosu—Tsin®) L
_ P
U= L . —E-,—I

= absolute value of the compressive force
= modulus of elasticity
= cross-section area of the beam element

= moment of inertia of the beam element

B~ o m N

= length of beam element
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For an axial tensile force, the beam stiffness matrix becomes:

EA
L
2(s¢+t P
0 T T
s!Lit: S
el =1 5 (4.10) -
-5 0 0 £
0 2 S£+te . % ___sch:tc 0 2!-‘»‘;’-&! 4+ '}[3,'
] 0 —i—s‘Lt‘ t: 0 ——-—s‘};t’ St |
where:

- (Tcosh® —sinhw) EI
(2—2coshw +usinh@) L

Sy =

.- % - (sinh @ — W) EI
"~ (2—2coshw+wsinhw) L

_ P
i=Lygr
= tensile force

= modulus of elasticity

= cross-section area of the beam element

= moment of inertia of the beam element

&~ 2 =3 N

= léngth of beam element
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4.4.3.3 The Przemieniecki approach
In this method the axial strain used in developing the element stiffness matrix is

expressed by (Przemieniecki, 1968):

ew____a_z_t_<?_22).y+_l_.<§3)2 (4_..11)
Oz 0x? 2 \0z
where:

€z = axial strain in a layer at a distance y from the centroid

u = axial deformation (in z-direction)

v = vertical deformation (in y-direction)

Y = distance measured from the center of gravity of the member

By using the third term of Equation 4.11, the effect of the moment due to axial load

is included in the solution. The obtained beam matrix can be put in the following

form: |
[%o) = [#] + [k] ’ (4.12)
where:
[kp] = stiffness matrix for a beam element subjected to an axial force P
[%] = traditional stiffness matrix for a beam element, would be obtained

if the first two terms only of Equation 4.11 are used
[ks] = stiffness matrix expressing the effect of the axial force on the

element stiffness matrix (sometimes called stress stiffening matrix)

(k] and [k,] are given next.
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EA
L
o
0 SEL 4E1
k1= g g ot (4.13)
—=4 0 0 24
R e i
DI N A
0
P
0 o
0 i 2PL
[k,] = 10 1 (4.14)
0 0 0 0
P P p
0 -3 -1 0 *
P PL P PL
0 5 &% 0 -3 B
where:

P = axial force acting on the beam
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4.4.3.4 The general solution versus the Przemieniecki approach
A comparison between the stiffness matrices obtained by the two methods shows that
a difference does exist. According to Seif (1986), this may be because Przemieniecki
used a gfoup of shape functions to describe the deflected shape of the beam element,
that do not account for the presence of the axial force, while the general solution is
based on the elastic shape of the beam that accounts for the presence of the axial
force. Figure 4.8 illustrates the difference by using the end-rotational stiffness value
k33 to compare between the two methods. For low values of @ = L - \/gi; (T<2)
the difference is negligible. |

Since the computer program ANSYS which is used in the present study, adopts
the Przemieniecki approach, the lengths of the beam elements in the model are
chosen to give low values of @. By increasing the number of elements, the value of
7 decreases, resulting in obtaining the same solutions whether the general solution
approach is used or the Przemieniecki approach (refer to Appendix A for program
verification).

Since the final axial force (which affects the member stiffness) is not known in

advance, an iterative procedure has to be used in such a type of analysis.

4.4.8.5 Stability study of structures using the effect of axial forces

If the compressive axial force exceeds the buckling load of a member during any of
the iterations of the analysis, an element on the main diagonal of the stiffness matrix
becomes negative, resulting in a singular stiffness matrix and the analysis is stopped.

So the stability or buckling phenomena can be studied using such a type of analysis.



End Rotation Stiffness (EI/1)

70

kas
10
] v
~
7
8 .
Tensile Axial Force L -~
~
7 N\
/w>/

' -

=

L.~

— . .
5 ] — = e —-Przemieniecki —
=
- P = L3
LY SRS General Solution
3 . \\ ]
N ~.
-~
\ e

2
X ~
. . \
1 Compressive Axial N >
~
Force \ ~
N P

1 7 3 Z 5~ 6 7 P
1 \ A "=ty
- N
2 AN
-3

Figure 4.8: Comparison of end-rotational stiffness k33 for a prismatic beam subjected
to an axial force P



71
4.4.4 The effect of large deflections

4.4,4.1 Introduction
Some types of stfuctures (especially those including cables like cable-stayed bridges)
undergo large deflections under certain load cases. The deflections can be large
enough such that the structure stiffness matrix based on the initial geometry does
not characterize the deformed structure. The equilibrium equation of the stiffness
method [K]-{D} = {F'} (Equation 4.1) must be written with respect to the deformed
geometry. But this deformed geometry is not known in advance, so an iterative
procedure has to be used in the analysis.

Two methods are available for solving large deflection problems, the Lagrangian

method and the Eulerian methods. These methods are introduced next.

4.4.4.2 The Lagrangian Method

In the Lagrangian method the equilibrium equations are written with reference to
a structure that remains stationary throughout the analysis. The large deforma-
tion effect is encountered in this method by including more terms in the strain
Equation 4.11 which is used in the development of the element stiffness matrix,

obtaining the following equation for a beam element in bending:

du 1 (ou\® 1 (6w\® (% 9 dv
6w=?a;+§'<5;) +"2'(a_) —(555)'“(555'5;)'“" (4.15)

4,4.4.3 The Eulerian Method
In the Eulerian method (known also as updated Lagrangian), which is used by the
computer program ANSYS, the equilibrium equation [K] - {D} = {F} is written

with respect to the updated geometry of the structure. This is done by ANSYS by
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applying the load in increments, for each load step the large deflection process can

be summarized as a three step process for each element:

1. Determination of the updated transformation matrix [T},] for the element. This
matrix relates the current element coordinate system to the global Cartesian

coordinate system (see Figure 4.9).

2. The displacement field can be decomposed into a rigid body translation, a rigid
body rotation and a component which causes strains. In this step the defor-
mational displacement is extracted from the total element displacement for

computing the stresses

3. After the rotational increments are computed, the node rotations are updated

appropriately.

During a large deflection analysis performed by ANSYS, the loads applied through
the nodal coordinates do not rotate with the node. But pressure loads (distributed
loads on the member) remain normal to the member and follow the rotation (as
shown in Figure 4.10). This may not represent the reality, where gravity loads on
members are acting always downwards, despite the member direction.

For more detailed information about this procedure please refer to ANSYS 4.4

Theoretical Manual.

4.4.4.4 Stability study of structures using a large deflection analysis
Buckling (a stability phenomenon) can be analysed with the large deflection process.
By observing the rate of change in deflection (per iteration), an estimate of the

stability of the structure can be made. If the change of displacement at any node is
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Figure 4.9: Transformation matrix [T,] in a large deflection analysis
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Figure 4.10: Load directions during a large deflection analysis performed by the
computer program ANSYS



5

increasing, the loading is above critical and the structure will eventually buckle. If
the displacement change is constant or decreasing, the structure is at or below the

critical buckling load.

4.4.5 Iterative procedures for the solution of nonlinear problems

4.4.5.1 Introduction

The stiffness method yields to a set of simultaneous equations (Equation 4.1):
[K]-{D} = {F}

If the stiffness matrix [K] of the structure contains only constant elements, then the
displacements {D} are proportional to the loads {F'}, as shown in Figure 4.11(a).
But if the stiffness matrix [K] is itself a function of the unknown displacements (or
their derivatives), as is the case for the geometric nonlinearities discussed before,
then the equilibrium equation (Equation 4.1) is a nonlinear equation. In this case
the force-deflection relationship of the structure is nonlinear, resulting in a stiffening
structure like cables, or in a softening structure like most conventional structures
(Figure 4.11(b),(c)).

Several iterative techniques are available for the solution of such problems (see
Cook, 1989). The Newton-Raphson procedure is an efficient technique used by the

program ANSYS, therefore this method and its modifications are discussed next.



(e)

a- linear behaviour
b- nonlinear behaviour (stiffening)

c— nonlinear behaviour (softening)

Figure 4.11: Force-deflection relationships for different types of structures
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4,4.5.2 The Full Newton-Raphson procedure
In this method the nonlinear equilibrium equation (Eéua,tion 4.1) is written in the

form of (Bathe, 1982):

[K2] - {ADa} = {F} ~ {Fy") (4.16)
{Dns1} = {Dn} + {ADy} (4.17)
where:
[K,] = tangent stiffness matrix for the structure for iteration n
{F} = vector of applied loads
{Frm} = vector of restoring loads for iteration n
{D,} = vector of displacements for iteration n

{AD,} = displacement difference between step n + 1 and ste;; n

The right-hand side of Equation 4.16 is the out-of-balance load vector, or in other
words the amount the structural system is out of equilibrium.
Figure 4.12(a) shows the solution procedure for a one degree of freedom model.

The general algorithm proceeds as follows:

1. Assume {D,}, which is usually the converged solution from the previous step.

For the first step (n = 0) {D,} = {0}.

2. Compute the updated tangent matrix [K,] and the restoring force {F*"} from
the configuration {D,}.

3. Calculate {AD,} using Equation 4.16.

4. Calculate {Dp41} using Equation 4.17.
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The solution obtained at the end of the iteration process would correspond to
load level {F'}. So the final converged solution would be in equilibrium, that is,
the restoring force {F?"}, which is computed from the current stress state, would
equal the applied loads {F}. None of the intermediate steps are in equilibrium.
This method has two limitations. The first one is that if the analysis includes path-
dependent nonlinearities (such as plasticity), then the solution process requires that
some intermediate steps be in equilibrium in order to correctly follow the load path.
The second limitation is that this method guarantees convergence only if the solution
at any iteration {D,} is near the exact solution. To overcome these two limitations,

the following modified methods may be used.

4.4.5.3 The Incremental Newton-Raphson procedure
In this method the final load {F'} is reached by stepping the load in increments
and performing the Newton-Raphson iterations at each step (see Figure 4.12(b)).

Equation 4.16 is then written in formi:

[Kmanl - {ADn} = {Fn} — {F, (4.18)
where:
[Kmn] = tangent stiffness matrix for load step m and iteration n
{Fn} = vector of total applied loads at load step m

{Fp.} = vector of restoring loads for load step m and iteration n
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4.4.5.4 The Initial-Stiffness Newton-Raphson procedure
In the previous two procedures, the stiffness matrix is updated in every iteration.
Alternatively, the stiffness matrix could be formulated only once at the beginning of
the analysis and then used throughout the analysis (see Figure 4.12(c)). This method
converges more slowly, but requires fewer matrix reformulations and inversions.
Since the program ANSYS has the option of choosing which Newton-Raphson
procedure is to be used in the analysis, the incremental Newton-Raphson procedure
has been chosen for its accuracy. A load step is said to be converged if the change
of deflection at all degrees of freedom is less than 0.001. This accﬁracy is reached in
the present analysis after three iterations. For a comparison; tile Initial-Stiffness
Newton-Raphson procedure (no updating of the stiffness matrix) is used in the
‘ana,lysis. A converged solution is not reached even after fifty iterations. It is there-
fore recommended to update the stiffness matrix every iteration in a large deflection

analysis with a large number of degrees of freedom.

4.5 THE LINEAR ANALYSIS

4,5.1 Introduction

Since most of the computer programs available for the analysis of cable-stayed bridges
assume linearity, a linear analysis is performed using the computer program ANSYS.
By comparing the linear analysis with the nonlinear analysis, an estimate of the error
introduced by neglecting the sources of the geometric nonlinearity in cable-stayed
bridges can be achieved.

The structure components which distinguish a cable-stayed bridge from any other
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conventiongl struoture' type, and which need special attention in a linear analysis, are
the cables. As a cable represents a flexible member with virtually no resistance to
applied moments, one traditional truss element may be used for the representation of
each cable stay (see Figure 4.2). The difference between a truss element and a cable
element is the sag of the cable element. This sag causes the nonlinear force-deflection
relationship of a cable. By using a traditional truss element and neglecting the sag,
two errors are introduced. The first error is the linear force-deflection relationship
which is now assumed for the cable stay. The second error comes from the assumption
that the cable fqrce is acting along the inclined chord of the cable stay even though
in reality the force acts along the axis of the sagging cable. The effects of these two

errors are discussed next.

4,5.2 The equivalent modulus of elasticity

As a result of the flexibility of the cable and the changes in its length and sag, it
is necessary té adopt a corrective technique to account for this nonelastic feature.
Several investigators (Ernst, 1965, Tung and Kudder, 1968) have studied this prob-
lem. In this study the fundamental approach provided by Ernst (1965) is adopted.
The solution is based on the idea of assuming a straight member with a varying
modulus of elasticity that depends on the magnitude of the tension force, so that
the behaviour of this substitute member with an equivalent modulus of elasticity is

identical to that of a sagging cable.
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Ernst (1965) developed the following expression for the equivalent modulué of

elasticity:
E
Eeq =77z (4:19)
1203

where:

Eeq = equivalent modulus of elasticity

E = tangent modulus of elasticity

v = specific weight of the cable material, weight per unit volume

o = tensile stress in the cable

l = horizontal projected length of the cable chord

Figure 4.13 shows the ratio (Ee,/F) calculated from Equation 4.19 for the illustrated
specific values of E, f,, and different stress levels in the cable. The equivalent
modulus of elasticity F,, defined in Equation 4.19 is valid only for a single value
of the stress 0. But during the analysis, the stress level in the cables changes with
the applied live load from a lower limit to an upper limit. This means that the
equivalent modulus E., is also changing during the analysis. To take this effect into

consideration, the following modified equation of Ernst (1965) can be used:

E

(v)® (L+p)t
1+ 1203,  16p? B

Eep = (4.20)

where:

lower limit stress Ol

= upper limit stress oy,

Olow + Cup
Im =Ty
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By comparing Equations 4.19 and 4.20, an equivalent stress o can be derived as

a function of ¢,,, and x (Walther et al, 1988):

16u® \°® |
O =0n"\|—— 4.21
() 2
This equivalent stress makes it possible to use Equation 4.19 and Figure 4.13 directly.

This is the first error introduced by using a truss element in modeling a cable stay,

the second error is discussed next.

4.5.3 Cable tension versus component along inclined chord

By using a truss member in the analysis, the inclined cable in a cable-stayed bridge
is assumed to be a straight line between the cable anchors at the pylon and the deck.
Although the cable is not actually following the chord iine, because of the sag due
to its own weight, the tension force calculated in the truss member is assumed to be
tile' tension in the cable.

The accuracy of this assumption was investigated by Podolny (1971). He com-
pared the maximum tension in the cable Tm,w- with the tension along the chord T,
(see Figure 4.14). The results of his study are plotted in Figure 4.15 as percentage
error versus the sag ratio n = f/I for various angles of inclination of the chord.

As indicated by Figure 4.15, for sag ratios n between 1/200 to 1/600, which is
normally the case in cable-stayed bridges, the error is negligible. This can also be
concluded by comparing the results of the nonlinear analysis with the results of the

“linear analysis in the next chapter.



Figure 4.14: Maximum tension T},,, and tension T, along the cable chord
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4.6 SUMMARY

In this chapter the different methods of analysing cable-stayed bridges are briefly
reviewed, with an emphasis on the stiffness method which is used in this study. The
models used in the conventional linear and geometric nonlinear analyses are intro-
duced. In addition, the sources of the geometric nonlinear behaviour of cable-stayed
bridges, which are the behaviour of the cables (catenary and parabolic configura-
tions), the effect of axial forces (general solution approach and Przemieniecki ap-
proach) and the effect of large deflections (Lagrangian and Eulerian methods), are
discussed and compared.

Since a difference between the general solution approach and the Przemieniecki
approach does exist in a certain range of element lengths, and since the program
ANSYS uses the Przemieniecki approach, the element lengths of the model are chosen
small enough that both methods are identical. :

Also the different techniques for solving nonlinear problems, which are available
options in the computer program ANSYS, are reviewed. At the end of the chapter
the errors introduced by using a truss member in modeling the cable stays in the
linear analysis are discussed and the equivalent modulus of elasticity for cables is

introduced.



Chapter 5

ANALYSIS OF THE PROPOSED BRIDGE

5.1 INTRODUCTION

In this chapter the proposed bridge is analysed under its own weight, highway live
loads and temperature. In the dead load analysis the presti‘essing forces in the
cables are adjusted to result in a horizontal deck alignment. For the highway live
load analysié, the maximum force and moment envelopes for the diﬁ;arent bridge
components are calculated by in\;'esting several load cases.

The results of the conventional linear and of the geometric nonlinear analyses are

compared. In addition the effect of shear deformations is investigated.

5.2 THE DEAD LOAD ANALYSIS

5.2.1 General

In each construction cycle one pylon with a deck of 250 m length is constructed in
one stage, and this deck will be connected to the previously completed span after the
deformations due to its dead load have occurred. Therefore, the dead load analysis
is perforrnéd for a model consisting of one pylon with a 250 m long double cantilever
deck without springs at its ends, as shown in Figure 5.1. The dead load intensity as
mentioned before is ¢ = 200kN/m. A horizontal deck level due to the own weight

is reached by different methods in the linear analysis and in the geometric nonlinear
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Figure 5.1: Model used in the dead load analysis

(For dimensions see Figure 3.12)
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analysis. A uniform deflection of 8 mm is chosen for the deck alignment, because the

vertical deflection of the pylon at the deck level turned out to be 8 mm.

5.2.1.1 Horizontal deck in the linear analysis

A horizontal deck level (uniform 8 mm downward deflection of the deck nodes)
is reached by adjusting the initial forces (initial strains) in the cables. For the
calculation of these forces, the principle of superposition, which is applicable in

a linear analysis, is used. This leads to the following system of equilibrium equations:

61,1 : T!in—l + 61,2 . ﬂn—z +ee 51,n . le'n—n + -Do—-l = -D'req—l

511,1 * T&n—l + 5n,2 : Tin~—2 + et 5n,n ‘ Tin—n + -Do—n = Dreq—n

or in matrix form:

[]nxn * {Tin}tn + {Do}tn = {Dreg}n (5.1)
where:
i = vertical deflection of deck node connected to cable ¢ due to
a unit initial force in cable j, calculated in a separate analysis
Tin-; = required (unknown) initial prestressing force in cable j
to obtain the required deflections of the deck nodes
D,_; = vertical deflection of deck node connected to cable j

due to dead load and zero initial prestressing forces
in the cables, calculated in a separate analysis
Dieq—; = required final deflection of the deck node connected to cable j

n = number of cables (22 for this study)
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The coefficients of the matrix [6],x, are calculated by introducing an initial unit
force (in form of an initial strain) in cable ¢, and computing the vertical deflections
of the deck nodes. Figure 5.2 shows the case for the first cable (¢ = 1). Solving
Equation 5.1 gives the required initial cable forces to give a horizontal deck of 8 mm

uniform downward deflection. These forces are listed in Table 5.1.

5.2.1.2 Horizontal deck in the geometric nonlinear analysis

As in the linear analysis, the initial strains (prestressing forces) in the cables
required to obtain a horizontal deck of 8 mm uniform downward deflection are calcu-
lated. Since in a nonlinear analysis the principle of superposition (used in the linear
analysis) is in general not applicable, an iterative procedure is used. The initial
strains (prest;,ressing forces) in all cables are adjusted simultaneously according to

the following equation for each cable (see Figure 5.3):

Ayi - sin 0,’

Cit1 = — (5.2)
where:
€41 = initial cable strain for step (4 + 1)
Ay; = difference between the vertical displacement obtained from step ¢
and the final required vertical displacement of the deck node
L; = cable chord length in step ¢
b; = angle of inclination of cable chord in step 3

This procedure is repeated until a satisfying horizontal deck level is reached, as shown
in Figure 5.4 for the deck node connected to cable number 1. The prestressing forces

(= initial strain x EA) obtained by this method are given in Table 5.1.
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Table 5.1: Forces in the cables and stress-free lengths L,

Cable Linear Analysis Nonlinear Analysis
No. | Init. | D.L. L.L. (kN) L, Init. | D.L. L.L. (kN) L,
(kN) | (kN) [Tens. [ Comp. | (m) | (kN) | (kN) [Tens. _Comp. | (m)
1 3061 | 2954 | 306 -29 | 127.697 | 3055 | 2962 | 313 -32 | 127.700
2 2878 | 2757 | 308 -16 118.445 | 2871 | 2763 | 313 -17 118.448
3 2405 | 2305 | 253 -4 109.276 | 2399 | 2309 | 255 -4 109.278
4 2444 | 2338 | 262 -4 100.266 | 2442 | 2346 | 274 -11 1+ 100.268
5 2088 | 1993 | 235 -11 91.460 | 2085 | 1996 | 244 -17 91.461
6 2051 | 1948 | 234 -10 82.924 | 2047 | 1950 | 239 -15 82.925
7 1702 | 1617 | 186 -8 74.733 | 1703 | 1623 | 186 -7 74.733
8 1615 | 1527 | 178 -2 67.041 | 1617 | 1534 | 176 -2 67.041
9 1363 | 1277 | 148 - 60.015 | 1356 | 1275 | 149 - 60.016
10 1447 | 1355 | 128 -2 53.899 | 1444 | 1355.| 128 -2 53.899
11 930 885 47 -3 49.072 | 937 894 47 -3 49.071
12 919 | 886 44 -2 49.074 | 927 | 896 45 -2 49.073
13 1422 | 1354 | 126 -1 53.902 | 1420 | 1354 | 129 -2 53.903
14 1337 | 1277 | 148 - 60.019 | 1331 | 1275 [ 150 -1 60.020
15 1586 | 1527 { 178 -4 67.045 | .1589 | 1534 | 175 -3 67.045
16 1674 | 1617 | 188 -10 74.738 | 1676 | 1623 | 189 -13 74.738
17 1 2018 | 1948 | 241 -20 82.929 | 2016 | 1951 | 249 -30 82.930
18 | 2057 | 1993 | 244 -19 91.465 | 2055 | 1997 [ 260 -33 91.465
19 | 2410 | 2338 | 270 -3 100.271 | 2410 | 2346 | 291 -18 | 100.272
20 2373 | 2305 | 285 -32 109.281 | 2368 | 2309 | 284 -31 109.283
21 2842 | 2757 | 396 -116 | 118.450 | 2836 | 2763 | 405 -119 | 118.453
22 ] 3026 | 2954 | 446 | -212 |127.702] 3022 | 2962 | 464 | -218 |127.705
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To compare between the linear and geometric nonlinear behaviour of the bridge,
the same iterative technique is used in a linear analysis. The results for the linear
analysis are also shown in Figure 5.4.

Knowing the initial strains ¢ in the cables, and the distance L between their two
ends (before any deformations occur), the strain-free length L, of each cable can be

calculated as follows:

L

L, =
1+e

(5.3)

The strain-free lengths of the cables (listed in Table 5.1) are needed later when

discussing the construction steps of the bridge.

5.2.2. Results and conclusions

1. Effect of shear deformations
The effect of shear deformations on the cable forces and moments in the pylons
and deck is negligible, since including shear deformations in the analysis did

not change the results by more than 2%.

2. Forces in the cables (Table 5.1)
For the assumed cross-sections of the cables, the average tensile stress due to
the dead load of the bridge is about o = 0.375f,u, where f,, is the rupture
strength of the cable material. With a maximum horizontal projected cable
length of [ = 120 m, it can be concluded from Figure 4.13 of the previous
chapter that the ratio (E,,/E) for these values of o and [ is about unity. This
means that the cables react like bars which are not influenced by their sags, or in

other words the stress-strain relationships of the cables are more or less linear.
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Furthermore, the sag ratio (n = f/I) for the cables varies from 1/600 for cable
number 1 (6 = 21°) to the value 1/1000 for cable number 11 (6 = 66°). Using
Figure 4.15 (Chapter 4) it can be seen that the error introduced by calculating
the tension force along the cable chord (by using a stré,ight member) instead
of the maximum tension in the curved cable is absolutely negligible. This is
also shown by comparing the cable forces obtained from the linear solution
with those obtained from the geometric nonlinear solution (Table 5.1). The
use of ten nonlinear cable elements for the modeling of one cable stay in the
nonlinear analysis, did not change the cable forces obtained from the linear
analysis, in which one simple truss element represénted one stay cable, by more
than 0.5 percent. This difference is negligible, especially if compared with the
enormous increase in the computational effort and time associated with the

use of the nonlinear cable elements instead of the simple truss elements.

. Deck alignment

Both methods used in obtaining a horizontal deck level, the principle of
superposition for the linear analysis and the iterative technique for the nonlin-
ear analysis, give almost identical initial cable strains (prestressing forces) as

shown in Table 5.1.

. Bending moments and normal forces in the deck (Fig. 5.5 and 5.6)

The bending moments under the effect of dead load are relatively small. This
is due on one hand to the relatively close spacing of the cables, and on the
other to the fact that these cables are tensioned so as to act as point supports.

Further, the deck, instead of being primarily a flexural member, now acts
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Figure 5.5: Deck bending moment diagram due to dead load



Figure 5.6: Deck .normal force diagram due to dead load
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primarily as a compressive member of a cantilever structure suspended from
the pylon by the inclined stays. Therefore, the deck in multicable-stay systems
does not require a large bending stiffness in order to resist bending moments.

Longitudinal bending stiffness is governed in such systems by:

o Deflections due to live loads
o Buckling due to large compressive forces induced by the inclined stays
If the deck system is -considered as a continuous beam, supported on rigid

supports instead of the flexible cables, the negative moments over the supports

can be estimated by the simple equation:

_ g%
M= B (5.4)
where:-
g = dead load intensity of the deck (= 200 kN/m)
b; = the spacing between the anchor points of the cables in the deck

= 10 m in this case

Equation 5.4 gives a moment of 1667 kN-m. Except for the cables near the
pylon and at both ends of the deck, this moment is fairly close to those ob-
tained by the computer analysis. Concerning the difference between linear and
nonlinear a,na,lysés, a maximum difference of 2 percent in the bending moments
and 0.5 percent in the normal forces are obtained. For design purposes these

differences are of course negligible.
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5. Bending moments and normal forces in the pylon (Fig. 5.7 and 5.8)
While the upper inclined legs of the pylon are primarily subjected to axial
compressive forées, for the lower legs the bending moments are increasing
with the increase of the width of those legs. Since the structure is almost
symmetrical about the pylon axis (except the deck-pylon connection consisting
of the unsymmetrical configuration of two rollers and one hinge), the bending
moments in the vertical shaft are almost zero. Again, the maximum difference
in the bending moments between the linear and nonlinear analyses is about

-2 percent. The normal forces obtained from both analyses are almost identical.

6. Conclusions
The conclusion from the previous results is that designing the cables for a high
stress, and keeping the differential deflections of the deck and rotation of the
pylon as low as possible, will lead to a linear behaviour of the structure. This is
the case for the dead load analysis, where the cable stresses are about 0.375 fy4,
the deck is horizontal and the structure is almost symmetrical about the pylon
axis. Thus the use of a simple linear analysis instead of a more complicated

geometric nonlinear analysis due to dead load is justified.
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Figure 5.7: Bending moment diagram (MN-m) in left pylon due to dead load
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Figure 5.8: Normal force diagram (MN) in left pylon due to dead load
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5.3 THE HIGHWAY LIVE LOAD ANALYSIS

5.3.1 General

The highway live loads will act on the complete, continuous bridge. Therefore, the
analysis is performed using a model consisting of two pylons connected by a 500 m
long deck (see Figure 5.9). The load cases used to obtain the maximum bending
moments and normal forces in the bridge are shown in Figure 5.10. The springs at
the ends of the deck are used if only the 500 m long bridge is loaded. They are
removed in other load cases to simulate the loading.on the whole continuous bridge.
By removing the spring at one end, the shearing force at this end becomes zero, and
a case of- symmetry for the whole bridge about this end is achieved.

Since in reality the live loads are superimposed loads on the dead loads, the effect

of the live loads alone in this analysis is achieved by using the foﬂdwing algorithm:

(Effect of live loads) = (Effect of live loads + dead loads) - (Effect of dead loads)

5.3.2 Results and conclusions

1. Effect of shear deformations
The effect of shear deformations on the cable forces and straining actions in the

pylons and deck is less than 3 percent, which is negligible for design purposes.

2. Behaviour of the springs at the ends of the deck
In calculating the force-deflection relationship (see Figure 5.11) of the spring
simulating the shear joint at one end of the 500 m long deck, the boundary
condition (free or hinged) of the far end of the deck has an effect of less than

0.5 percent on the deflection of the deck end under the applied concentrated
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Figure 5.9: Model used in the live load analysis
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load. In the geometric nonlinear analysis the force in the.springs varies between
203 kN compression and 118 kN tension due to the different live load cases.
This range is between 219 kN compression and 122 kN tension in the linear
analysis. Referring to Figure 5.11, these ranges are in the linear part of the
force-deflection relationship of the springs, so the use of the nonlinear spring
element instead of a linear one is not necessary for the used value of live loads.
For the justification of the use of springs for the simulation of the continuity of
the bridge, a model consisting of six pylons is analysed for different load cases.
The results are compared with the two-pylon model in Table 5.2. The results
are identical, which justifies the use of the two-pylon model with springs in

analysing the continuous bridge.

. Behaviour of the cables

- For the linear analysis the equivalent modulus of elasticity E., for each cable
is calculated using Equation 4.20 with the equivalent stress obtained from
Equation 4.21 (Chapter 4). For the outer cable (I = 120 m), this gives the

following values (calculated from Table 5.1):

Olow = tensile stress due to D.L. + maximum compressive stress due to L.L.

= 653N/mm? = 0.384f,,

Tup = tensile stress due to D.L. + maximum tensile stress due to L.L.
= T28N/mm? = 0.428f,,
Olow
- o= = 0.897
K op
— Olow + Oup

5 = 691N/mm? = 0.406 f,,
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thus:

o =0 (——1§L>%—689N/mm2—0405f
~ ) T = 0405

Using Figure 4.13 of Chapter 4 with these values, the ratio (E.,/E) approaches

unity. This again means that the cables act as bars not influenced by their sag.

. Forces in the cables (Table 5.1)

The maximum tensile forces in the cables due to live load is about 14 percent
of the forces due to dead load. For a live load intensity of 12 percent of the
dead load, this means that the effect of loading cases in a multicable system
is minor on the maximum cable forces. A comparison between the geometric
nonlinear analysis, and the linear analysis gives a maximum difference in the
cable tension forces of about 8 percent. Since the cables act as linear bars, the
difference must be caused by the difference in the deflection of the deck (as will

be discussed later), not by the behaviour of the cables.

. Bending moments and normal forces in the deck (Fig. 5.12 and 5.13)

The moment envelope under live load has three distinct zones, where the max-
imum positive and negative moments appear (see Figure 5.12). These zones
are near the joint providing the continuity of the deck (side span), in the vicin-
ity of the pylons, and around the center of the main span. To understand this
bending moment envelope, the beam-on-elastic-supports analogy (Figure 5.14)

may be useful.
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Figure 5.13: Deck normal force envelope due to highway live load
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In this approach the cables are substituted by springs, if the shortening of the
pylon is neglected, the elastic support spring constant k, which is the vertical

force needed to develop a unit displacement (see Figure 5.15), can be calculated

as follows (Troitsky, 1977):

AL =1.5inf = %
where T = tension force in the cables
or
=L jLJA - sin 6 (5.5)
k=T:sinf (5.6)
From Equa,tionsz 5.5 and 5.6
k= EI'IA +sin® 0 (5.7)

~ From Equation 5.7 it can be concluded that the spring constants are increasing
rapidly by moving towards the pylon (angle 6 is increasing while the ratio
(A/L) remains approximately constant). High positive bending moments are
achieved by loading the zones with low spring constants (far away from the
pylon), as shown in Table 5.3. This is comparable with high positive field

bending moments for a beam resting on soft soil (low spring constants).
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The high negative bending moments in the same regions (far away from the py-
lon) are mainly achieved by unbalanced live loads, resulting in large rotations
of the system. For example, load case number 20 causes the maximum nega-
tive bending moments in the side span (see Table 5.3). The deck is connected
to the pylon at three points (Figure 5.14). At two points of them, the deck
is supported directly on the pylon. Due to the infinite stiffness of the pylon,
compared to the deck, these two points may be considered as rigid supports,
causing the high negative bending moments. At the third point, the deck is sup-
ported on the tie-beam, which provides a much more flexible support than the
two other points, resulting in a lower negative bending moment. Although the
live load intensity is only 12 percent of the dead load intensity, the maximum
positive bending moment due to live load reaches-a value of 2500 kN-m, which
is 2.5 times the value of the maximum bending moment due dead load (about
1000 kN-m). For the negative bending moments, the live load gives a maximum
value of about 1800 kN-m, which is about 65 percent of the value due to dead
load (2800 kN-m). Comparing the bending moment envelopes of the linear
and the geometric nonlinear analyses, a maximum difference of 25 percent in
the regions of relatively high bending moments is obtained. This percentage
increases to 100 percent in the regions of low (insignificant) bending moments.
These differences are far less for the normal forces. The maximum difference
is less than 1 percent. Maximum tension due to live load is achieved by load
cases 14 and 22, while maximum compression is achieved by load cases 26 and
24 in the side and main spans of the deck respectively (see Table 5.3). A sud-

den increase in the normal force envelope (Figure 5.13) is caused by the hinged
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Table 5.3: Critical load cases for deck bending moments and and normal forces

Load cases for maximum Load cases for maximum
bending moments normal forces

14 24
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connection between deck and pylon at this point. The normal forces in the

deck are transferred to the pylon by this hinge.

. Deck deflections (Figure 5.16)

The maximum downward deflection (330 mm) occurs at the expansion joint,
this gives a deflection/span ratio of about 1/760. This ratio is 1/1100 for
the maximum deflection of the midspan. Because of the hinged connection
between deck and pylon, the maximum horizontal displacement of the deck
is less than 30 mm. Such a displacement can be easily accommodated By the
expansion joints. The maximum difference in the deflections between the linear

and nonlinear analyses is about 7 percent.

. Bending moments and normal forces in the pylons (Fig. 5.17 and 5.18)

As in the dead load analysis, the upper inclined legs of the pylons are subjected
primarily to axial forces (in this case tension or compression). For the lower
legs, the bending moments increase rapidly towards the vertical shaft, due
to unbalanced live load cases. And since horizontal forces in the deck are
transferred to the pylon through the hinge at the deck level, very high bending
moments are created in the vertical pylon shaft. The maximum difference in
the bending moments between the two analyses (linear and nonlinear) is about

2 percent. The normal forces obtained from both analyses are almost identical.
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Figure 5.16: Deck deflection envelope due to highway live load
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8. Conclusions
From this discussion, it is concluded that the bending moments in the deck
due to live load are significantly larger when the geometric nonlinear effects are
included in the analysis. This is mainly caused by the ef‘fect)of high axial forces
and large deflections of the flexible deck. Bending moments in the stiff pylon
are much less affected. The normal forces in the deck and pylons are almost
identical in both types of analyses. Another conclusion is that for a multicable
system the maximum forces in the cables are almost p:roportional to the load
intensity applied on the deck, whereas the maximum bending moments in the

deck are greatly affected by cases of loading.

54 THE TEMPERATURE ANALYSIS

5.4.1 General

Three types of temperature distributions (as indicated in Figure 5.19) are investi-
gated. It is assumed that these temperature distributions are constant throughout
the wholellength of the bridge. Therefore the temperature analysis is performed
using the same model used in the highway live load analysis. Since symmetry exists
at both ends of the 500 m long deck, no springs are used at the ends of the deck (see
Figure 5.19).
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Deck AT = —40°C Shaft AT = —40°C

Pylon AT = —40°C

Figure 5.19: Model used in the temperature analysis
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5.4.2 Results and conclusions

1. Forces in the cables
Except for the cables next to the pylons, the forces in the cables due to the three
temperature distributions are negligible. A maximum tensile force of 10 kN,
which is about 20 percent of the maximum tensile force due to the highway live
load, is reached in the cable next to the pylon. This force is due to temperature

distribution 1 (the whole structure is exposed to AT = —40°C).

2. Bending moments and normal forces in the deck (Fig. 5.20, 5.21 and 5.22)
For temperature distributions 1 and 2 (constant temperature throughout the
deck thickness), the high bending moments occur in the vicinity of the pylon
and at the centre of the main span (Fig. 5.20 and 5.21). The moments in the
side span, which is connected to the expansion joint capable of transferring
only shear forces, are almost zero. It should be noted, that due to symmetry of
the temperature loadings for the whole continuous bridge about axes through
the expansion joints, the shear forces are zero at these joints. Therefore no
springs are used at the ends of the deck, or in other words the side spans of
the two-pylon model are free and acting as a suspended cantilever, resulting
in those zero bending moments. For temperature distributions 1 and 2, the
maximum difference between the linear and geometric nonlinear analyses in
the regions of relatively high bending moments is about 8 percent. This dif-
ference increases to 22 percent in regions of relatively low bending moments.
The temperature distribution 3 (linear temperature gradient through the deck

thickness) causes high bending moments reaching the maximum values of the
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highway live load analysis of about 3000 kN-m at the centre of the main span.

The average bending moment along the deck is about 2600 kN-m, which is
reached after a certain transition length (0.45 of the side span length) as shown
in Figure 5.22. Comparing this moment with the fixed end moment of a beam,
with the same cross-section and material properties of the deck, and exposed
to the same linear temperature distribution, the later case can be calculated

using the following equation (Ghali and Neville, 1989):

EI.
M==""2_AT (5.8)
b
where:

M = fixed end moment
ty, = depth of the beam
o = coefficient of thermal expansion of the material
AT = temperature difference between the top and bottom

fibres of the beam

Not surprisingly, Equation 5.8 gives a moment of 2567 kN.m, which is almost
identical with the moment obtained from the complicated nonlinear computer
analysis. This means that after a certain transition zone, the deck may be
considered as a fixed beam, and Equation 5.8 may be used in calculating the
moment in the deck due to a linear temperature distribution through its depth.
Since the forces in the cables are negligible, the normal forces in the deck, which

are a result of the cable forces are also negligible.
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3. Deck deflections (Figure 5.23)
The maximum vertical deﬂection (about 230 mm) is caused by temperature
distribution number 2 . This value is the same as the maximum vertical de-
flection at the centre of the main span induced by the highway live loads. The
maximum horizontal displacement of the 500 m long continuous deck at the
expansion joint is about 100 mm. This results in a gap of 200 mm, which can

be accommodated by traditional expansion joints.

4. Bending moments in the pylons (Figure 5.24)
In the chosen structural system consisting of stiff pylons and a flexible deck,
the horizontal force created by the contraction (or expansion) of the deck is
resisted by the stiff pylons via the hinged connection between the deck and
the pylon. This leads to very high bending moments in t.he vertical pylon
shaft. The moments are reaching the values obtained in the highway li\;e load
analysis. The maximum difference in the bending moments between the linear
analysis and the geometric nonlinear analysis is about 18 percent for the upper
legs (low bending moments) and less than 1 percent for the vertical shaft (high

bending moments).
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5.5 SUMMARY

A conventional linear and a geometric nonlinear ana,lysis are performed for the
proposed bridge to study its behaviour under its own weight, highway live loads and
temperature. |

In the dead load analysis two methods are used to calculate the required initial
strains (forces) in the cables to obtain a horizontal deck due to dead load. A superpo-
sition technique for the linear and an iterative procedure for the nonlinear analysis.
Both methods gave same results.

In the live load analysis different load cases are investigated to obtain the en-
velopes for the maximum straining actions in the different components of the bri:dge.
The b:ea,m-on-elastic-support analogy is used in trying to explain the moment enve-
lope of the deck.

In the temperature analysis three cases of temperature distributions are investi-
gated. For the bending moments in the deck, the linear varying temperature through
the deck thickness is the critical case. The resulting moment is compared with the
fixed end moment of a beam subjected to the same temperature distribution. Almost

identical moment values are obtained after a certain transition length in the deck.



Chapter 6

PARAMETRIC STUDY

6.1 INTRODUCTION

The static behaviour of a cable-stayed bridge is the result of the complex interaction
between its three structural components which are the deck, the pylons and the

cables.
Based on the system chosen for the proposed bridge which consists of a flexible
deck and stiff pylons, the influence of the following parameters on the characteristics

of continuous cable-stayed bridges are examined in this chapter:
1. The different connection types between deck and pylon.
2. The dimensions of the pylon.

3. The areas of the cables.

6.2 THE DECK-PYLON CONNECTIONS

6.2.1 Introduction

In the proposed bridge the deck is resting at three points on each pylon (including
the tie-beam). To study the effect of the connection type between deck and pylons
on the behaviour of a continuous cable-stayed bridge, five different connection types

(see Figure 6.1) are investigated.

132
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Figure 6.1: Different deck-pylon connections
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e Connection 1
In this connection type the bridge system consists of a 500 m long continuous
slab resting on two pylons. At both ends of the slab shear jo.ints (expansion
joints), capable of transfefring only a shear force, provide the continuity of the
about 13 km long bridge. Each deck-pylon connection consists of two rollers,
which allow a horizontal movement of the deck ;)'n the pylon, and one hinge

preventing such a type of movement.

¢ Connection 2
For this type of connection the bridge has the same structural system as in
Connection 1, except that each deck-pylon connection consists of three rollers

allowing a free horizontal movement of the deck against the pylon.

e Connection 3
In this connection the bridge system consists of a 500 m long continuous slab
resting on two pylons (as in Connection 1). Each deck-pylon connection consists
of one hinge, while the other two points of the deck are suspended by cables

instead of being supported directly on the pylon.

e Connection 4
* For this connection the bridge consists of the same structural system as in
Connection 3, except that a shear joint (expansion joint) is introduced at the

midspan of the system.
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¢ Connection 5
In this type of connection the bridge system consists of a 750 m long continuous
slab resting on three pylons. Each of the deck-pylon connéctions for the two
outer pylons consists of three rollers. Whereas for the pylon in the middle, the

deck is connected to the pylon by two hinges and one roller.

The effect of these different connections on the behaviour of the deck, pylons and

cables are discussed next.

6.2.2 Effect of the deck-pylon connection type on the deck

6.2.2.1 Deck deflections
| From Figure 6.2 and Figure 6.3 it can be seen that the minimum deflections are
obtained by connection types 1 and 3, which consist of a 500 m long deck connected
to each pylon with at least one hinge preventing the horizontal movement of the
deck against the pylons. Deck and pylons form a sort of frame action resulting in
decreasing the deflections to a deflection/span ratio of 1/1000.

Introducing an expansion joint at the midspan (Connection 4) is increasing the
deck deflections to reach a maximum deflection/span ratio of 1/500, which is double
the value obtained in connection types 1 @nd 3. Deck and pylons are acting almost
as a double cantilever system, but still the ratio 1 /500 may be accepted.

Using a floating deck resting on the pylons via rollers only (Connection 2), or even
permitting a horizontal movement of the deck against one pylon, and preventing such
a movement at the other pylon (Connection 5) leads to unacceptable deck deflections

with a maximum deflection/span ratio of over 1/200 (see Figure 6.3).
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In such a system the horizontal movement of the deck is resisted by the cables
which provide a much more flexible support against the horizontal movement com-
pared to a rigid hinge between deck and pylon. In addition the horizontal forces in
the deck are transferred to the top of the pylon via the cables, causing large bending

of the pylon leading to excessive deck deflections.

6.2.2.2 Deck bending moment envelopes due to highway live loads

A comparison between the bending moment envelopes for the first three deck-pylon
connections as shown in Figure 6.4 shows that having only rollers between the deck
and the pylons results in increasing the maximum moments in the deck significantly.
In the mid- and side-spans the maximum negative moments in the deck are caused
by unbalanced live loads leading to large rotations of the system. Using rollers only
(Connection 2) increases the deck deflections and rotations significantly. In the side-
span for example, this leads to an increase in the spring force at the end of the deck
from 118 kN (Connection 1) to 318 kN (Connection 2) for the critical load cases.
The maximum negative moments are increasing with the same ratio of the spring
forces from 1000 kN-m (Connection 1) to 2670 kN-m (Connection 2).

The increase in the positive moments in the side-span is also caused by large
deflections of the deck leading to an increase in the spring force due to critical load
cases from 203 kN (Connection 1) to 384 kN (Connection 2). The maximum positive
moment is increasing again by the same ratio of the spring forces from 1602 kN-m
(Connection 1) to 3232 kN-m (Connection 2).

The large deflections of the deck cause a high curvature of the deck at the points

over the roller supports producing very high positive and negative bending moments
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at these points (see Figure 6.4).

The conclusion is that allowing a horizontal movement of the deck against the
pylons by using only rollers to connect the deck with the pylon (Connection 2)
increases the bending moments in the deck to unacceptable values. Even if this
horizonta,l movement is allowed at one pylon and prevented at another one (as in
Connection 5), these unacceptable high moments would not be reduced, since the
deflections are not significantly reduced in Connection 5.

To decrease the high I;egative moments over the supports in Connection 1, it is
useful to suspend the deck from cables instead of the rigid supports. This is achieved
in Connection 3. The cables provide a much more flexible support for the deck than
the rigid rollers, so the negative moments at the two additional cables are decreased
significantly, but the negative moment at the hinge support also increases to a high
value (see Figure 6.4).

This means that fré;m an economical point of view it is not advantageous to
introduce additional cables (which are the most expensive elements in a cable-stayed
bridge) for the deck-pylon connection to decrease the bending moments in the deck,
instead of éupporting the deck directly on the pylon.

Introducing an expansion joint at the midspan (Connection 4) reduces the mo-
ments at this point to zero, but at the same time increases the moments'in the
side-span (see Figure 6.5), since the deﬂeci:ions of the deck are increased in this
system which acts almost as a double cantilever.

From the previous discussion Connection 1 seems more efficient than the other
connection types regarding the decrease of the maximum bending moments produced

in the deck.
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6.2.2.3 Deck normal force envelopes due to highway live loads

A comparison between the normal force envelopes of different deck-pylon connection
systems (see Figure 6.6) shows that the main difference between using a hinge and
not using a hinge, is the sudden jump in the normal force at the location of the hinge,
representing the amount of horizontal force transferred to the pylon at the deck level.
This is true except for C(;nnection 4, where the system is symmetrical about each
pylon axis, so that the maximum normal forces in the deck are also symmetrical
about those axes. For the side-span the different deck-pylon connections give almost
the same normal force envelopes. The difference appears in the main span as shown in
Figure 6.6. Connections 1 and 3 (continuous deck and using a hinge between deck
and pylon) cause high compressive forces (load case 24) and relatively high tension
forces (load case 22), this may cause fatigqe problems, especially if the live load is a
high percentage of the dead load.

In general, a compression force in the deck is advantageous, since it reduces
the amount of prestressing required. To reduce the maximum tension forces in the
deck significantly, an expansion joint at the midspan is useful, which is the case of
Connection 4. This joint decreases the maximum compression forces too as shown in
Pigure 6.6. Such a system may be efficient regarding fatigue problems in the deck.
Connection 2 (only rollers) gives a more or less constant maximum compression force
and an increasing tension force in the main span.

The conclusion from the above discussion is that Connection 4 is to be considered
should fatigue due to high compression and tension forces is a problem in the systems

consisting of connection types 1 and 3.
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6.2.2.4 Buckling of the deck

Since the slender deck in the chosen multicable-stay system is acting primarily as
compression chord member of a cantilever structure suspended from the pylon by
inclined stays, buckling due to large compressive forces induced by the inclined stays
may be a problem.

To study the buckling phenomenon of such a system, and the effect of the type of
deck-pylon connection on the critical buckling load of the deck, the live load on the
deck is increased gradually in a geometric nonlinear analysis until a negative pivot
on the main diagonal of the structure stiffness matrix is reached. This indicates
buckling. The analysis is carried out for live load cases 24 and 26 superimposed on
the dead load, and the normal force diagrams due to the critical buckling loads for
the different deck-pylon connections are shown in Figure 6.7 and Figure 6.8.

For load case 24, Connection 1 gives the minimum critical buckling load ¢, of
199 kN/m, while the system of Connection 2 gives the maximum critical buckling
load, the deck starts to buckle at ¢, equal to 2563 kN/m, which is over 12 times
the critical load of Connection 1. For load case 26 the critical buckling load (g, ~
660 kN/m) is almost the same for all the different deck-pylon connections.

At this point it should be mentioned, that even the smallest buckiing load ¢,
of 199 kN/m for Connection 1 is over eight times the highway live load intensity
q of 23.8 kN/m for which the bridge is designgd. This means that the previously
mentioned critical buckling loads are only theoretical values, iridicating the behaviour
and resistance of the different deck-pylon connection systems against the buckling
phenomena of the deck. Actually the various structural components of the bridge

(for example the cables) will fail before reaching the critical buckling loads mentioned
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before.
This means that the chosen system of a multicable-stayed bridge with a slender

deck is effective in preventing instability of the deck.

6.2.3 Effect of the type of deck-pylon connection on the pylons

6.2.3.1 Pylon bending moment envelopes due to highway live loads

A comparison between the bending moment envelopes in the vertical shaft of the
pylon (see Figure 6.9) shows that the highest bending moment values are reached
in Connection 2 (only rollers). In this connection type the horizontal forces in the
deck due to unbalanced live loads are transferred to the top of the pylon via the
cables, thus increasing the moment arm and producing very high bending moments
(a maximum of 361 MN-m) in the vertical shaft of the pylon.

Transferring the horizontal forces in the deck to the pylons by using a hinge at
every second pylon (Connection 5) decreases the maximum moment by 33 percent
from 361 MN-m to 241 MN-m.

Transferring the horizontal forces in the deck to the pylons directly by a hinge at
each pylon (connection types 1 and 3) creates a mucih more efficient system decreasing
the maximum moments to 110 MN-m.

Using an expansion joint in the midspan (Connection 4) produces a constant
maximum bending moment of 175 MN.m in the pylon shaft. This system is acting
as a double cantilever.

The conclusion is that the best system,é regarding the bending moments in the
vertical pylon shaft due to highway live loads are connection types 1 and 3 (using a

hinge at each pylon). An expansion joint in the midspan increases the moments by
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60 percent, and the other connection types cause unacceptably high moments.

6.2.3.2 Bending moments in the pylons due to temperature
The most efficient system is Connection 4 as shown in Figure 6.10. An expansion
joint at the midspan allows a free contraction (or expansion) of the deck due to
temperature without being resisted by the pylons, so almost zero bending méments
are created in the vertical pylon shaft due to temperature. A continuous deck and a
hinge between the deck and each pylon (as in connection types 1 and 3) causes the
highest bending moments (see Figure 6.10). In such a system a free contraction (or
expansion) of the deck due to temperature is resisted by the pylons via the hinges.
Comparing between those two systems with regard to the maximum total
moments (highway live load and temperature combined) and using a temperature
load factor of 0.8 for the serviceability limit state according to the Canadian Code,
the maximum total moments are listed in Table 6.1. For Connection 1 the maximum
total bending moment is 213.2 MN-m. If an expansion joint is used (Connection 4),
this value is reduced to 175 MN-m. This means that the expansion joint at the
midspan reduces the maximum total moment in the pylon shaft by only 18 percent,
although the maximum moment due to highway live loads alone was reduced by
60 percent. The total maximum moments reached in Connection 2 (only rollers)
is 354 MN-m, and it is 266 MN-m for Connection 5 (hinge at every second pylon).

These values are by far higher than the values of the previous systems.



Connection 1

—3
2

o
3 o
E
N
¥ &

Connection 2

T

-———— N W i
7r nromm T m
Connection 3 . / \ / \

Connection 4 / \ /

—— -3 ,A, Yy

A

Connection 5

m

+4+++++ e
- i}

Figure 6.10: Bending moment diagrams (MN-m) in left pylon shaft due to
temperature distribution number 1 for different deck-pylon connections

39

gb

§I>

081



151

Table 6.1: Maximum total bending moments (MN-m) in pylon for different types of

deck-pylon connections

| Connection Type |

L.L. | Temp. | L.L. 4+ 0.8 Temp.

1 110 | 129 213.2
2 350 5 354.0
3 110 | 128 212.4
4 175 0 175.0
5 238 35 266.0
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6.2.3.3 Pylon normal force envelopes due to highway live loads

The maximum compression and tension force envelopes in the pylons for the differ-
ent deck—pyl’on connections are shown in Figure 6.11. As expected, the maximum
normal forces in the pylon are not significantly influenced by the type of deck-pylon
connection, except for the tension forces in the vertical shaft. The values vary from
125 kN for Connection 1 to 602 kN for Connection 3. But it should be noticed that
these values are negligible compared with the values of the compression force due to

dead load (between 70,063 and 90,256 kN).

6.2.4 Effect of the deck-pylon connection type on the maximum cable

forces

Table 6.2 contains the maximum tensile forces in selected cables for different deck-
pylon connections. Except for connections allowing a horizontal movement between
deck and pylon, the type of the deck-pylon connection does not significantly influence
the maximum cable forces. For example, in case of Connection 2 an increase of about
17 percent in the maximum force in cable number 1 (most outside one) is caused by
transferring the horizontal forces in the deck due to unbalanced live loads via the
cables to the pylon, instead of transferring these forces directly to the pylon by using

a hinge.
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Table 6.2: Max tension force (kN) in selected cables due to live load for different

deck-pylon connections

Cable Connection
Number | 1 | 2 [ 3 [ 45
1 313 1365 | 313 | 313 | 365
10 128 [ 127 | 147 | 148 | 127

offo

. 7
Connectlon | S DA S Y =
v T -
Connection 2 ~—F+—px—5= 7. e
o w o T
Connection 3 .- / A\ / A\ —-
Connection 4 _5 / Q\ - / ,Q\ -
Connection 5 -3 o
- =" 5 5 A
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6.2.5 Summary and conclusions

The effects of different deck-pylon connection types on the behaviour of the structural
components (deck, pylons and cables) of cable-stayed bridges have been discussed.
The conclusion is that the most efficient deck-pylon connection type is Connection 1
with the continuous deck prevented from the horizontal movement against the pylon.
Connection 3 decreases the moments in the deck at the points suspended by addi-
tional cables instead of resting directly on the pylons, but still may be not economical
since the cables are the most expensive components of a cable-stayed bridge. Connec-
tion 2 (only rollers) gives unacceptable deck deflections, which are not significantly

decreased by using a hinge at every second pylon as in Connection 5.
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6.3 THE DIMENSIONS OF THE PYLON

6.3.1 Introduction

The longitudinal stiffness of the proposed bridge, which is required for the resistance
of uﬁbalanced live loads, is provided by the stiff pylons. The diamond shape is
therefore believed to be an efficient configuration for the pylons. Using deck-pylon
connection type 1 (two rollers and one hinge), the effect of three dimensions on the

behaviour of the proposed bridge are examined next. These dimensions are:
1. The width of the pylon diamond (see Figure 6.12) at the level of the deck (b;).
2. The height of the pylon above the deck (k).
3. The height of the inclined pylon legs below the deck (dy).

The effects of these parameters on the maximum deck deflections and on the maxi-

mum bending moments in the pylons are investigated.

6.3.2 The width of the pylon at the level of the deck

6.3.2.1 The maximum deck deflections

Figure 6.13 shows the maximum upward and downward deck deflections as a function
of the pylon width (b;). It is obvious that an increase in the width (b;) leads to a
decrease in the maximum deck deflections. This decrease is significant until a ratio
(b:/1), where [ is the span, of 0.06 is reached. At this point the curves are almost
asymptotic, or in other words the maximum deck deflections are almost constant
despite the increase in the pylon width (b;). Trying to understand this behaviour

the following concept may be useful.
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Figure 6.12: Cross-section in the pylon at the level of the deck
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By increasing the width (b;), two factors influencing the deck deflections are
affected. The first factor leads to a decrease in the deck deflections, while the second
factor leads to an increase in the these deflections. The first factor is dominant
until a ratio (b;/1) of about 0.06. After that, both factors are balancing each other,
resulting in an almost constant value of the maximum deck déﬂections.

The first factor is that increasing the width (b;) is increasing the moment of inertia
of the pylon cross-section at the deck level about the axis z — z (see Figure 6.12).
This rapid increase in the moment of inertia increases the pylon stiffness lea(iing to
a decrease in the deck déﬂections.

At the same time the increase of the pylon width (b;) increases the inclination
to the vertical of the lower legs of the pylon, decreasing their resistance to vertical
loads and increasing the bending moments in those legs, causing an increase in the

deck deflections. This may be the second factor affected by changing the parameter

(be).

6.3.2.2 The maximum bending moments in the pylon shaft
As shown in Figure 6.14, the maximum bending moments in the pylon shaft are not
caused by the same case of loading for all (b;/!) values. For example, the maximum
positive bending moment envelope for the top point of the pylon shaft (point 3 in
Figure 6.14) is formed by' load cases 24 and 30.

For (b;/1) values less than 0.015 load case 24 is the critical case, whereas for values
greater than 0.015 load case 30 causes the maximum positive bending moments.
This means that the smallest maximum positive bending moment at the top point

of the vertical pylon shaft is obtained at a (:/) ratio of about 0.015, this ratio is



159

about 0.027 for the smallest maximum positive and negative bending moments at
the bottom point of the pylon shaft (point 4 in Figure 6.14).

At this point it should be mentioned, that decreasing the pylon width reduces the
stiffness of the pylon significantly, and so the deflections are increased. The impor-
tance of a geometric nonlinear analysis which includes .the effect of large deflections,
becomes obvious if Figure 6.15 and Figure 6.16 are studied. This figure illustrates
the bending moment at the fixation of the pylon (point 4) due to load case 24 for
different b; va,lués. A linear analysis is compared with a geometric nonlinear analy-
sis. The curves start to deviate sigﬁiﬁcantly for a pylon width less than 4 m which
corresponds to a (/1) value of 0.016.

This difference is mainly due té the effect of large deflections, not due to the
(P — ) effect. Since excluding the (P — §) effect from the analysis, did not change

the results of the geometric nonlinear analysis.
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6.3.3 The height of the pylon above the deck

6.3.3.1 The maximum deck deflections
Figure 6.17 shows the maximum upward and downward deck deflections as a function
of the height of the pylon above the deck (h:). An increase in (h;) decreases the
maximum downward deflections of the deck. This is because an increase in (h;)
leads to an increase in the cable inclination to the horizontal (8), causing an increase
in the equivalent elastic support spring constant (k) of the cables, which was given
by Equation 5.7 in Chapter 5 as k = EA/L - sin? 4.

A feasible range for the ratio (h./!) is between 0.18 and 0.24 (see Figure 6.17). It
should be noted that for values greater than 0.16 for the ratio (h;/!) a slight increase

in the maximum upward deck deflection is obtained.

6.3.3.2 The maximum bending moments in the pylon shaft
As shown in Figure 6.18, an increase in the pylon height above the deck level decreases
the maximum bending moments in the pylon. However, it may be not economical to
increase the pylon height, because increasing the pylon height (%:) say by 50 percent
from 40 to 60 m, decreases the maximum positive bending moments at the top of
the pylon shaft from 106 MN-m to only 94.5 MN.m i.e. by 12 percent.

As in the case of the deck deflections, a feasible range for the ratio (h:/!) lies

between 0.18 and 0.24.
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6.3.4 The height of the inclined pylon legs below the deck

6.3.4.1 The maximum deck deflections

Figure 6.19 illustrates the effect of the height of the pylon legs below the deck (d:)
on the maximum upward and downward deck deflections. The figure shows that the
trend is a decrease in thé deck deflections if (d;) is increased. The upward deflections
are much more affected than the downward deflections.

A feasible range of the ratio (d;/!) is between 0.06 and 0.10. At this point it
should be mentioned that for construction purposes, the depth (d;) is restricted for"
the proposed bridge to 21 m (d;/{=0.08) to accommodate the truss used in the
construction of the deck. This will be described later in Chapter 7 discussing the

construction method.

6.3.4.2 The maximum bending moments in the pylon shaft
As illustrated in Figure 6.20, an increase in the height of the lower pylon legs (d;) leads.
to continuous decrease in the moments at the top of the vertical pylon shaft. This
result may howevwer not be taken without care, since by increasing (d;) the position
of the top point of the pylon shaft is changing (total pylon height is constant), so
that a comparison of moments is not totally justified.

For the bottom point of the vertical pylon shaft the maximum moment is increas-
ing slightly reaching a maximum at a (d;/!) ratio of 0.09, and starts to decrease after
this value. But in general, for the bottom point of the pylon shaft, the maximum

moments are not significantly affected by the parameter (d;).
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Figure 6.19: Effect of the height of the inclined lower pylon legs (d;) on the maximum
deck deflections
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Figure 6.20: Effect of the height of the inclined lower pylon legs (d;) on the maximum
bending moments in the pylon shaft (3: upper point, 4: lower point)
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6.3.5 Summary and conclusions

The effects of the pylon dimensions on the maximum deck deflections and maximum
bending moments in the pylon shaft have been discussed. Based on the results the

following pylon dimensions are recommended for a diamond-shaped pylon:

e Pylon width
(b/1) should lie between 0.06 and 0.08 to decrease the maximum deck deflec-

tions (actually 0.08 for the proposed bridge).

e Height of pylon above the deck
(h¢/1) should lie between 0.18 and 0.24 for reasonable deck deflections and

bending moments in the pylon shaft (actually 0.18 for the proposed bridge).

e Height of inclined lower legs of the pylon
(d:/1) should be greater than 0.09 to decrease the maximum deck deflections
and bending moments in the pylon shaft (actually restricted to 0.084 for the

proposed bridge for construction purposes).

It is recommended to use a large deflection analysis in investigating the pylon mo-

ments for flexible pylons with a (4;/1) value of less than 0.016.
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6.4 THE DIMENSIONS OF THE CABLES

Since the deck of a cable-stayed bridge can be idealized as a beam supported on
springs with a spring coefficient (k) given in Equation 5.7 as k = EA/L - sin?4,
an increase in the cable area (A) would increase the stiffness of the spring linearly.
High spring stiffnesses simulate a firm soil condition, if the system is compared with
the beam-on-elastic foundation model, leading to a decrease in the positive bending
moments of the beam-on-elastic foundation or in other words of the deck.

To examine the effectiveness of increasing the cable areas in reducing the maxi-
mum bending moments in the deck, the cable areas are increased by up to 80 percent
of the values originally required. The results are shown in Figure 6.21. Increasing
the cable areas by 80 percent, the maximum positive bending moment in the deck
is decreased by only 12 percent from 2432 KN-m to 2164 KN.m. Since the cables
are the most expensive structural elements in arcable-sta,yed bridge, it is certainly
not economical to reduce the bending moments in the deck by increasing the cable

areas.

6.5 SUMMARY

In this chapter a parametric study is carried out to study the effects of the deck-
pylon connection type, the pylon dimensions and the cable areas on the behaviour
of multispan cable-stayed bridges. An efficient deck-pylon connection and optimum
dimensions for diamond-shaped pylons are recommended as a conclusion of this

parametric study.
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Figure 6.21: Effect of the cable areas on the maximum bending moments in the deck



Chapter 7

THE CONSTRUCTION OF THE BRIDGE

7.1 INTRODUCTION

In this chapter the construction of cable-stayed bridges is discussed. The chapter is
divided into four parts. The first part contains a review of the major construction
methods for cable-stayed bridges. In the second part a new, economical method
suitable for multi-span cable-stayed bridges is described. In the third part of this
chapter, the computer model simulating the proposed construction method is intro-
duced. And part four contains the results and conclusions obtained from the used

computer model.

7.2 CONSTRUCTION OF CABLE-STAYED BRIDGES

7.2.1 Introduction

Since the method of construction of a bridge is the decisive factor for the success of
a contractor’s bid, many different methods have been developed over the years to
build cable-stayed bridges. Because of high fabrication and erection costs, present
trends are to fabricate components as large as possible for simplified construction.
The erection method not only affects the stresses in the structure during construc-
tion, but may also have an effect on the final stresses of the completed structure,

which is an important factor in chosing which method is to be used.
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Other important factors affecting the construction method are (Difger, 1990):
o Bridge geometry -

— total length
— span lengths

— pier height
o Site conditions

— level terrain
— sloped or rugged terrain

- water\;vay
o Traffic during construction
o Distance from precasting plant
o Availability and cost of formwork system

The methods of erection for cable-stayed bridges are broadly described by three
general methods (Podolny, 1986), the staging method, the incremental launching

method and the cantilever method. These methods are described next.

7.2.2 The staging method

In this method the entire suspended structure (deck) is erected on témpora,ry piers,
followed by the pylon erection and cable connections. Finally, the pylon saddles are

jacked to stress the cables to the desired tensile load to obtain the required profile
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and the temporary piers are removed (see Figure 7.1).

If precast units are used for the suspended deck, these units may reach a length
of 105 m, which is the case of the Great Belt Bridge proposal in Denmark. Such
heavy units are floated in on barges and lowered into position hydraulically or by
submerging the barges. Small precast units are erected by a launching gantry as
shown in Figure 7.2.

If cast-in-place concrete is used for the suspended deck, medium spans (35 to
60 m) can be constructed economically with travelling forms which are either sup-
ported from below or from above the bridge. An example for supporting the forms
from below the bridge superstructure is the so-called sliderule system shown in
Figure 7.3. The trussed system shown in Figure 7.4 represents the way of supporting
the forms from above the bridge.

The staging method of erection is most often used where there is a low clearance
requirement to the underside of the structure and temporary piers will not interfere
with any traffic below the bridge. Its advantage is its accuracy in maintaining the
required geometry and grade, and its relatively low cost for low clearance. The
major disadvantage if long, continuous bridges are to be built with this method, is

the numerous temporary piers and their foundations which have to be built.

7.2.3 The incremental launching method

The bridge is constructed behind the abutment in a stationary form in segments
which are 10 to 30 m long. The segment under construction is cast against the
previously cast segment and connected to it by overlapping longitudinal bars. In

case of a steel superstructure the segments are connected by welding or bolts. The



176

Installation of main girder and tower
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Figure 7.1: Construction procedure using the staging method (Adapted from Kondo

et al, 1972)



Figure 7.2: Precast units erected by a lau_nching gantry (Dilger, 1990)
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Figure 7.3: The sliderule system as an example of supporting the forms from below
the superstructure
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Figure 7.4: Supporting the construction forms from above the bridge
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segment is then launched by means of hydraulic jacks together with the already
completed portion over the piers on rollers or sliding teflon bearings. A steel nose as
shown in Figure 7.5 is used to decrease the cantilever length during launching, but
for large spans temporary supports are necessary. Launching may be from one side |
as shown in Figure 7.6, or from both ends of the bridge.

In order for this method to be applicable, the bridge axis must lie in one plane
and if the axis is curved in plan, the curvature must be constant. To overcome this
restraint in case of a curved box girder bridge, the box part of the deck may be
launched using a constant curvature for its axis, while the deck slab may be cast
later following the road alignment.

Spans of up to 140 m and bridges with a total length up to 1200 m (Podolny,
1986) have been built by the incremental launching method. The major advantage
of this method is that it combines the advantages of prefabrication, with those of

cast-in-situ concrete. The main advantages of prefabrication are:
o The concrete is cast in a protected (ideal) environment
o Good dimensional control during casting
¢ Repetitive work cycles
e Short transportation distances of the construction materials
e No interference with the traffic below the bridge

o No costly falsework required
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Figure 7.5: Using a steel nose in the incremental launching method

181



182

= — . — .

B e ——

(c)

1G]

(e)

n

|

!

|
Kk

)

Figure 7.6: The incremental launching method (Adapted from Beyer, 1964)
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Where the main advantages of cast-in-place concrete are:
e Monolithic structure without weak joints

o No heavy lifting of the segments is required

7.2.4 The cantilever method

In this coﬁstruction method, relatively short segments of a cantilever are constructed
either at one end or simultaneously at both ends of a balanced cantilever: The
forms are supported by an erection crane as shown in Figure 7.7. If the bridge is
constructed across a waterway, the erection crane may be supported on a flotation
barge. A typical construction sequence of this method is illustrated in Figure 7.8.
The major disadvantage of this method is the slow progress of the construction,
namely at about 3 m per week at each end of the cantilever. The construction process
can be ac.celera,ted if an overhead truss or plate girder is used in support'ing the form

travellers as shown in Figure 7.9.

7.3 THE PROPOSED CONSTRUCTION METHOD

7.3.1 General description of the construction method

The total length of the proposed bridge is approximately 13 km, with 250 m long
spans this means that more than 40 identical spans are required. Due to harsh
weather conditions, the construction season is relatively short in the region. So
conventional construction methods as previously described are not suitable for such

a project. They would take excessively long time to construct such a long bridge (the
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L L7777

Figure 7.7: Erection crane supporting the forms in the cantilever method
(Dilger, 1990) '
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Figure 7.8: Construction procedure of a bridge crossing a ;ivai;ers}vay using
the cantilever method (Adapted from Podolny, 1986)



~ Figure 7.9: Overhead truss used in supporting the form travellers (Dilger, 1990)
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cantilever method), or require advanced complicated technology (the incremental
launching method).

As a result new techniques had to be developed. The method proposed by
Dilger et al (1990 and 1991) is a cast-in-place concrete deck on a steel truss ex-
tending over two spans (see Figure 7.10). The truss fits between the space provided
below the b;'idge deck and is launched by means of hydraulic jacks. To support the
free ends of the cantilevers during launching, flotation tanks are lowered from the
inside of the truss and submerged in the water to produce a constant uplift force
of about 2.5 MN. This is approximately the reaction of the truss during launching.
The method is considered relatively economical because of the many repetitive cy-
cles. The completing of one cycle, which consists of a 250 m long deck, is estimated

-at 5 weeks only.

7.3.2 Detailed description of the construction method

Consider stage 1 of Figure 7.10 and assume that the 250 m long span over pier 2
has been completed on the truss. The following steps describe a typical construction

cycle:

1. The truss is lowered by about one meter and the flotation tanks are submerged.
Each of these tanks produces an uplift force of about 2.5 MN, which represents
approximately the end reaction of the truss during launching. This step is

shown in Figure 7.10, stage 1.

2. The truss is launched by means of hydraulic jacks (Figure 7.10, stage 2), fol-

lowed by the withdrawal of the flotation tanks and some additional launching
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Figure 7.10: Construction stages of the proposed method
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to reach a position from which the tanks can be lowered into the water again

after the construction of the span is completed (Figure 7.10, stage 3).

. The truss is lifted till the deck form is 300 to 500 mm above the final position of
the deck soffit. When désigning the truss, a comparison will be made between
lifting it 300 or 500 mm. Note the one meter step in the top chord of the truss

at point (a) to accommodate the already finished span.

. In this elevated deck position, the stay-cables are installed by temporarily
anchoring them to the top chord of the truss. The cables near the pylon will

be slacked at this time because of the elevated deck position.

. After placing the rebars and prestressing tendons, the concrete deck (1800m?)

is poured in one continuous pour.

. After the concrete has reached sufficient strength, the temporary anchors are

released, thus transferring the cable forces to the concrete deck.

. The truss is lowered until the deck is freely suspended from the cables. At
this stage, all cables have reached their desired forces and the deck level is

horizontal. Cable force adjustments can be made if necessary.

. While the deck is being produced, the precast segments for the new pylon are

erected.
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74 INTERACTION BETWEEN CONSTRUCTION
AND DESIGN

7.4.1 Design of the truss

In this section the dimensions of the truss are given, then the load cases occurring
during the construction are investigated. Followed by the calculation of the initial
cable forces anchored to the truss, and at the end the current forces acting on the

flotation tanks are calculated.

7.4.1.1 Dimensions of the truss

The dimensions of the 550 m long launching truss are shown in Figure 7.11. The
truss is divided into five regions using symmetry. For each region four cross-section
areas are chosen, one for the top chord members, one for the bottom chord members,
one for the inclined diagonal members and another for the vertical diagonal members.
These areas are listed in Table 7.1.

The total weight of the truss members is about 22,000 kN. The weight of the
transversal bracing members and the steel forms is estimated at 11,000 kN, and
this weight is distributed proportionally to the cross-section areas of the top chord
members as joint loads over the whole truss. So the total weight of the truss is about
33,000 kN including the weight of the formwork of the concrete. These loads cause
a maximum truss deflection of 270 mm as shown in Figure 7.12.

A geometric nonlinear analysis, taking the effects of axial forces and large deflec-
tions into consideration, is performed in analysing the truss. Thus, the stability of

the truss can be studied, should buckling occur.
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Figure 7.11: Dimensions of the launching truss
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Table 7.1: Cross-section areas of the truss members (mm?)

Region
1 | 2 | 3 4 | 5
Top chord 171,150 | 62,750 | 53,800 | 36,200 | 20,900
Bottom chord 295,050 | 79,450 | 19,950 | 19,950 | 13,300
Diagonal | vertical || 11,250 | 10,150 | 4,750 550 9,000
inclined || 164,000 | 55,950 | 13,300 | 6,500 | 13,650
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7.4.1.2 Load cases
In designing the truss, the following load cases occurring during the construction are

investigated:

1. (own weight of the truss)

S}

. (own weight of the truss) + (temporary cable forces anchored to the truss)

w

. (own weight of the truss) + (temporary cable forces anchored to the truss)

+ (weight of poured concrete)

4. (own weight of the truss) + (weight of hardened concrete deck)

+ (cable forces anchored to the hardened concrete deck)

o

. (own weight of the truss) + (forces acting on the flotation tanks due to water

currents during launching of the truss)

These load cases (except load case 5) are not only of major interest for designing
the truss, but in order to achieve a level deck for the completed bridge, all the
deformations occurring during those load cases have to be considered. At this point

it should be noted that time-dependent effects are not considered in this study.

7.4.1.3 Initial cable forces anchored to the elevated truss

The initial strains (prestressiﬁg forces) in the cables temporarily anchored to the
truss, are based on the unstressed cable lengths L, established in the previous dead
load analysis of the bridge, and the elevated position of the truss according to the

following equation for each cable:
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L-1L, :
€= I (7.1)
where:
€ = initial strain in the cable
L = distance between the two ends of the cable i.e. between the top of the

pylon and the truss node when connecting the cables to the truss

L, = strain-free length of the cable

These initial strains (prestressing forces) in the cables decrease by increasing the
elevation of the truss for the production of the deck. Two elevated positions, 300
and 500 mm above the final deck level are investigated. The prestressing forces
are calculated by multiplying the initial strain € obtained from Equation 7.1 by the
quantity EA, where A is the cross-section area of the cable. The results are listed

in Tables 7.2 and 7.3.

7.4.1.4 Current forces on the flotation tanks

During launching, when the truss is supported at its ends on the flotation tanks, |
these tanks will be subjected to current forces. These forces are a function of the

shape and dimensions of the tanks and of the current velocity. The volume of the

ténk required to provide an uplift force equai to the end reaction of the truss due to

its own weight is about 255 m®. This gives two cylindrical tanks of 4.5 m diameter

each and 8 m length at each end of the truss. The drag force on the tank can be

calculated using the following equation (Gerhart, 1985):
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Table 7.2: Cable forces (kN) during construction stages for elevated truss level
+500 mm

[ Step :
No. | 1 2 3 4 5 6 7 8 D.L.
| Init. | Final )
1 ]| 2425 | 1736 | 2376 | 2617 | 2720 | 2869 | 2947 [ 2976 | 2950 | 2962
2 ]| 2085 | 1361 | 2076 | 2316 | 2441 | 2623 | 2718 | 2753 | 2762 || 2763
3 || 1580 | 979 | 1620 | 1796 | 1919 | 2103 | 2205 | 2250 | 2322 | 2309
4 1397 | 800 | 1476 | 1624 | 1780 | 2012 | 2143 | 2201 | 2351 || 2346
5 955 | 470 | 1085 | 1178 | 1341 | 1587 [ 1726 | 1787 | 2005 || 1996
6 978 | 221 | 741 | 800 | 1010 [ 1329 | 1511 [ 1593 | 1946 || 1950
7 - - 346 | 365 | 575 | 908 | 1099 | 1183 | 1632 | 1623
8 - - - - - 477 | 731 | 846 | 1517 || 1534
9 - - - - - - 345 | 472 | 1314 || 1275
10 - - - - - - - 192 | 1331 || 1355
11 - - - - - - - - 887 || 894
12 - - - - - - - - 890 || 896
13 - - - - - - - 194 | 1330 || 1354
14 - - - - - - 347 | 475 | 1314 || 1275
15 - - - - - 476 | 733 | 851 | 1517 || 1534
16 - - 344 | 360 | 571 | 908 | 1101 | 1187 1631 | 1623
17 || 431 | 222 | 739 | 793 | 1005 | 1329 | 1514 | 1598 | 1946 || 1951
18 i 817 | 473 | 1084 | 1172 | 1337 [ 1587 | 1729 | 1793 [ 2005 || 1997
19 | 1245 | 804 | 1475 | 1618 | 1775 [ 2012 [ 2147 | 2209 | 2352 || 2346
20 || 1438 | 984 | 1620 | 1790 | 1916 | 2104 | 2210 | 2258 | 2323 [ 2309
21 111923 | 1368 | 2077 | 2309 | 2437 | 2625 | 2723 | 2758 | 2755 || 2763
22 | 2287 | 1737 | 2392 | 2627 | 2733 | 2890 [ 2972 [ 2997 | 2955 [ 2962
Note: Step 1 : truss weight
Step 2 : truss weight + deck weight
Step 3 : cables connected to hardened deck

Step 4 to 8: truss lowering steps
D.L. : forces calculated in the dead load analysis of the bridge
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Table 7.3: Cable forces (kN) during construction stages for elevated truss level
+300 mm

Step
No 1 | 2 3 4 5 D.L.
Init. | Final
1 | 28881 1972 | 2589 | 2900 | 2983 | 2955 [ 2955
2 |[ 2624 | 1643 | 2334 | 2646 | 2747 | 2759 || 2763
3 2094 | 1268 | 1888 | 2132 [ 2250 [ 2320 || 2309
4 2009 | 1173 | 1828 | 2049 | 2201 | 2349 [ 2346
5 1576 | 867" | 1475 | 1628 | 1787 | 2006 || 1996
6 1336 | 662 | 1265 | 1383 | 1593 | 1946 || 1950
7 904 | 402 | 906 | 965 | 1183 | 1634 || 1623
8 815 | 150 | 523 | 552 | 846 | 1515 || 1534
9 - - 151 | 164 | 471 | 1318 |[ 1275
10 - - - - 192 | 1330 | 1355
11 - - - - - 886 894
12 - - - - - 888 {I 896
13 - - - - 194 | 1330 || 1354
14 - - 183 | 164 | 475 | 1318 || 1275
15 383 153 | 526 | 554 | 851 | 1516 | 1534
16 || 777 | 406 | 908 | 966 | 1187 | 1634 || 1623
17 | 1188 | 668 | 1268 | 1385 | 1599 | 1946 || 1951
18 || 1438 | 874 | 1479 | 1630 | 1793 | 2006 || 1997
19 |1 1856 | 1182 | 1834 | 2053 | 2210 | 2350 || 2346
20 J| 1953 | 1278 [ 1894 | 2135 | 2258 | 2320 || 2309

S}
et
[\
[
[=2]
Pt
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2343 | 2649 | 2753 | 2756 || 2763
2607 | 2911 | 2995 | 2957 || 2962
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ot
o
frd
©
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Note: Step 1 : truss weight
Step 2 : truss weight + deck weight
Step 3 | : cables connected to hardened deck
Step 4 to 5: truss lowering steps
D.L. : forces calculated in the dead load analysis of the bridge
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V2
FD=CD-p-7-Ap (7.2)
where:
Fp = drag force on immersed body
Cp = coeflicient of drag
*~ 0.46 for two cylinders beside each other idealized as an elliptical shape
P = fluid density
= 1000 kg/m? for water
v = fluid velocity
= 2 m/s in the investigated case
Ap = projected area of immersed body, perpendicular to the flow direction

Equation 7.2 gives a drag force of 33 kN. This drag force, acting on the center of

gravity of the tank, produces a torsional moment of about 670 KN-m on the truss.

7.4.2 ‘Computer model used in simiilating the construction procedure

The planar model, which is used in the geometric nonlinear analysis, consists of
a truss resting on one pylon (hinge support) and having two rollers as end supports
(see Figure 7.13). There is no need for using pylons as end supports in the analysis, as
in reality, because the end reactions of the truss due to its own weight (about 2.5 MN)
are small compared to the intermediate reaction (about 27 MN), so that the vertical
displacements of the end supports, if pylons are used instead of rollers, are negligible.
The hinged support between truss and pylon is achieved in the analysis by coupling

the vertical and horizontal displacements of the two nodes of the hinge connection
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(see Figure 7.15). Two dimensional truss elements, resisting only axial forces, are
used in modeling the truss, whereas the elements used for the pylon, deck and cables
are the same as the ones used in the geometric nonlinear dead load analysis of the
bridge. However, a new element (interface element) is used for simulating the contact
between deck and truss, aﬁd for the lowering procedure of the truss. This interface
element has two nodes (surfaces), and is capable of resisting a vertical compressive
force in case its two nodes (surfaces) are in contact, otherwise its vertical stiffness
is removed. In the horizontal direction the two nodes ‘(surfaces) are allowed to slide
against each other, if not otherwise specified. These features are used in simulating
the contact between deck and truss during the lowering process. The lowering process
itself is simulated by the use of an initial gap between the two nodes (surfaces) of
the interface elements which are used as the truss supports (see Figure 7.15). The
truss is then lowered until this gap is closed. For more information about the used
interface element refer to Appendix A.

The analysis of the construction procedure for the case of a 500 mm elevated
truss will be described next. The same was also done for a 300 mm elevated truss
and the results are compared. For a 500 mm elevation of the truss the construction
procedure is divided into 8 steps (these are 5 steps in case of 300 mm elevation of

the truss).

e Step 1 (Figure 7.13)
The truss is elevated so that the steel form supported on the top chord, is
500 mm above the final level of the soffit of the concrete deck and is left to

deflect under its own weight. From this deflected shape, which is obtained
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from a separate dead load analysis, the cables are temporarily anchored to the
truss. For this purpose, a computer program is written to convert the results
of a previous ANSYS analysis (deflected shape of the truss and final strains in
its members), to input data (joint coordinates of the truss and initial strains in
its members) for the next analysis. The initial strains (prestressing forces) of
the cables temporarily anchored to the truss are calculated from the strain-free
length L, of each cable and the distance L between the end nodes of the cables
in this elevated position of the truss using Equation 7.1. The resulting initial
cable forces are listed in Table 7.2 (Table 7.3 for the 300 mm elevation). Only

the outer 12 cables are stressed as shown in Figure 7.13.

Step 2 (Figure 7.14)

The results of step 1, which are the deflected shape of the truss and final strains
in the cables and in the truss members, are the input data for step 2, i.e. they
are the joint coordinates of the truss and initial strains in the cables and truss
members. The concrete weight of the deck, which is poured in this position,
is added as joint loads on the truss, resulting in stressing the outer 14 cables.

This means that two more cables pick up load as the concrete is placed.

Step 3 (Figure 7.15)

Again, the results of step 2 are the input data for step 3. The concrete deck is
represented in this stage by a beam element to model the hardened concrete,
and the cables are now anchored to the concrete deck. Interface elements are
used between the truss nodes and the deck nodes as shown in Figure 7;15. An

interface element has the capability of resisting a vertical compressive force
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in case its two surfaces (nodes) are in contact, thus deck and truss nodes are
coincident, or in other words the deck is resting on the truss. In this stage part
of the deck weight is supported by the stressed cables, while the other part
of the deck weight is supported by the truss through the interface elements.
Interface elements without an initial gap, which means that they are capable
of resisting vertical compressive forces (reactions), are used in this step to
model the roller supports at the truss ends. The hinge support between truss
and pylon is achieved by using an interface element between the truss node
and the pylon node to restrain the vertical displacement of the truss node,
and coupling of the horizontal displacements of the two nodes to restrain the

horizontal displacement of the truss node.

Step 4 (Figure 7.15) - Truss lowered 87 mm

The results of step 3 are the input data for step 4. In this step 14 cables are
stressed. The truss is now lowered to a level at which the next two inner cables
( cable 8 and 15) start picking up forces. The lowering process is achieved by
the three interface elements representing the supports of the truss. The initial
gap, which is chosen between the two surfaces of the elements, is the distance
the truss is to be lowered. This means that the truss will undergo a downward
motion until the two surfaces of the interface elements representing its supports

get into contact.

Steps 5 to 7 (Figure 7.15) - Truss lowered 235 mm
The procedure of step 4 is repeated in these steps. In each step the truss

is lowered to a level at which the following two inner cables start picking up
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forces. At the end of step 7 a level is reached, at which all cables will pick
up forces in the next step. During those steps the cables get more and more
stressed, as a result the part of the deck weight which is supported by the
cables is increasing, while the part of the deck weight supported by the truss
through the interface elements is decreasing. At the outer cables, which are
the most higlﬂy stressed ones, the deck becomes supported by cables only, and
the interface elements at those cables allow the separation of deck and truss

gradually.

Step 8 (Figure 7.16) - Truss lowered 178 mm

Again, the results of step 7 are the input data for step 8. The final lowering
i)rocess of the truss is simulated by using nonlinear force-deflection spring el-
ements (elements 1, 2 and 3 in Figure 7.16). The special behaviour of those
spring elements is that the force picked up by them is constant regardless of
their shortening (see Figure 7.16).: So if the forces (F) for springs 1, 2 and 3
are chosen equal to the reactions of the truss due to its own weight only, then
the truss will undergo a downward rigid bod3; motion as long as a part of the
deck weight is carried by the truss. This downward motion of the truss results
in stressing the cables gradually until the whole deck weight is picked up by
the cables, and so no forces are transmitted by the interface elements to the
truss. As the springs 1, 2 and 3 are giving the reactions of the truss due to
its own weight, which is now the case, stability is reached and the truss stops

moving downwards (see Figure 7.17).
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Figure 7.14: Step 2 in the construction procedure (14 stressed cables)
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a- At the end of step 7

Interface Elements

ﬁ-/
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b- At the end of step 8

Figure 7.17: Lowering process of the launching truss simulated by the computer
program ANSYS (distorted scale)
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Originally the deck is supported on the tie-beam and on the pylon at three
points (two rollers and one hinge). This is simulated during the lowering pro-
cess by springs 4, 5 and 6 as shown in Figure 7.16. The force (F) in each
spring is chosen equal to the reaction between the deck and the pylon (tie-
beam) calculated from the previous dead load analysis of the bridge. The
springs restrain the vertical displacements of the rollers, in order to achieve
the hinge connection the horizontal displacements of the corresponding nodes

are coupled.

7.5 RESULTS AND CONCLUSIONS

7.5.1 General

In this section the analysis results of the construction procedure are discussed.
Two elevated position for the truss (300 and 500 mm) during pouring of the concrete

deck are investigated and compared. The results are divided into five groups:
1. Deflection of the truss
2. Forces in the truss
3. Forces in the stay-cables

4. Deflections of the deck

(@41

. Bending moments and normal forces in the deck
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7.5.2 Deflection of the truss

The deflections of the truss during the different construction stages, as shown in
Figure 7.18(a) for the 500 mm elevation and Figure 7.18(b) for the 300 mm case, are

now discussed.

1. Without any precambering, the truss deflects under its own weight and form-
work of the concrete deck a maximum of 270 mm. This gives an acceptable

deflection/span ratio of 1/925 (curve 1).

2. The application of the temporary cable forces results in an upward deflection
of the truss. In case of a truss elevation of +500 mm, the part of the truss on

which the deck will be produced is almost level again (curve 2 in Fig. 7.18(a)).

3. The weight of the poured concrete produces a deflection of 280 mm at the
centerline of the span in case of a 500 mm truss elevation. This deflection is

reduced to 260 mm in case of a 300 mm truss elevation (curve 3).

4. The transfer of the cable forces from the truss to the hardened deck adds
50 mm to the deflection of the truss in case of a 500 mm truss elevation. This
deflection is 70 mm if the truss elevation is 300 mm (curve 4). This results
in the same difference of about 330 mm at the centerline of the span between
curve 2 (own weight of truss + cables anchored to truss) and curve 4 (after

transfer of cable forces to deck) for both investigated deck elevations.
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Figure 7.18: Deflection of truss and deck during construction



209

7.5.83 TForces in the truss

The maximum forces in selected truss members in region 1 (over the intermediate
support) and region 3 (at the midspan of the truss) during the different construction
stages are listed in Table 7.4.

If the truss elevation is +500 mm when producing the deck, the maximum com-
pression force (29.02 MN) occurs in the bottom chord member over the intermediate
support after pouring the deck. The maximum tension (33.36 MN) develops in the
top chord member over the intermediate support after the cable forces are trans-
ferred to the hardened deck. The maximum cable force to be anchored to the truss
is 2.43 MN (Table 7.2).

For a truss elevation of +300 mm, the maximum cable force to be anchored to the
truss is 2.90 MN (Table 7.3), which cor.:cesponds to an increase of 19 percent relative
to the +500 mm case. The maximum compression force in the truss is 25.14 MN
(16 percent reduction) and the highest tension decreases by 19 percent to 27.16 MN.
This means that producing the deck on a low elevated truss will decrease the forces
in the truss during the construction of the deck. Chosing how low the truss level may
bé, depends mainly on the maximum cable force that can be anchored temporarily
to the upper chord of the truss.

The drag force (Fp = 33 kN) on the flotation tanks and the corresponding
torsional moment on the truss (670 kN-m) are of minor effect, not causing any

significant forces in the truss.



Table 7.4: Selected truss forces (MN) during the construction stages for truss
elevations of 300 and 500 mm

Construction Stage ' Region 1 Region 3
Top | Bott. | Vert. | Incl. | Top | Bott. | Vert. | Incl.
1-Truss o.w. 16.43 | -12.92 | -0.42 | -7.56 |-2.48 | 2.39 | -0.11 | -1.00

2-Temp. cables + (1) -2.71 | -7.31 | -0.41 | -5.50 | -1.69 | -1.26 | -0.11 | -0.97

3-Concrete wt. + (2) 27.70 | -29.02 | -1.42 | -16.17 | -4.62 | 2.25 [ -0.11 | -1.46

500 || 4-After cable forces 33.36 | -25.89 | -1.45 | -16.03 [ -3.32 | 3.31 | -0.11 [ -1.08
mm || transferred to deck

5-Deck in final position | 16.43 | -12.92 [ -0.42 | -7.56 | -2.48 | 2:39 | -0.11 | -1.00

6-Temp. cables + (1) -6.20 | -4.29 | -041 | -4.28 |-1.44 | -2.09 | -0.11 | -1.09

7-Concrete wt. + (6) 20.30 | -25.14 | -1.41 | -14.44 | -4.23 | -1.24 | -0.11 | -1.37

300 || 8-After cable forces 27.16 { -20.68 | -1.43 | -13.94 | -2.79  2.73 | -0.11 1| -1.03
mm || transferred to deck

9-Deck in final position | 16.43 | -12.92 | -0.42 | -7.56 | -2.48 | 2.39 | -0.11 | -1.00

Note: Region 1:  over the intermediate support

Region 3:  at the midspan of the truss

012



211

7.5.4 7 Forces in the cables

The cable forces during the different construction steps are listed in Tables 7.2
and 7.3. The final cable forces obtained by the used model simulating the low-
ering process are within 1 percent of those established in the previous dead loaci
analysis of the bridge.
At this point it should be mentioned, that trying to lower the truss in one step
“using the program ANSYS failed. Initially slacked cables connected to the flexible
deck, did not reach a converged solution (the cable elements are nonlinear and need
an iterative solution procedure till convergence is achieved). This problem occurred
only when initially slacked cables are connected to the flexible deck. It seems that if
the truss is lowered in one step, and the initially slacked cables start picking up forces
due to their elongation, the flexibility of the deck allows the deck nodes connected
to the suddenly stressed cables, to undergo an upward motion resulting in slacking
the cables again. This process results in unrealistically small (unconverged) forces
in the cables which were initially slacked during the lowering process. To overcome
this problem, the truss is lowered in steps. During each step only the stressed cables

are included in the computer model.

7.5.5 Deflection of the deck

If the truss is not precambered, then the concrete hardens in the deflected configu-
ration represented by curve 3 in Figure 7.19, which means that there is some initial
curvature built into the deck. After lowering the truss, the deck level is almost

horizontal as obtained from the previous dead load analysis of the bridge.
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Figure 7.19: Level of hardened deck during construction steps 3 to 8 for a temporary
truss elevation of 500 mm
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7.5.6 Bending moments and normal forces in the deck

During the lowering process, the bending moments in the deck do not differ in a sig-
nificant manner from those obtained from the dead load analysis. The final bending
moments after the truss is removed are shown in Figure 7.20. The only noticeable
difference between the dead load analysis and the analysis of the construction proce-
dure, is the negative moment in the deck under the two cables next to the pylon (see
Figure 7.20). The reason may be the springs connecting the deck with the pylon in
the last lowering step (step 8). The constant forces, which are equal to the reactions
between deck and pylon of the dead load analysis, develop suddenly in those springs
during the lowering process. They create a positive moment at the nodes connected
to the two cables next to the pylon. So the negative bending moment at these points
:a,re reduced. |

If a force-deflection relationship is chosen, so that the forces in those springs are
developing gradually, this difference between the two bending moments is reduced.
But thé forces picked up by the cables connected to the considered points (next
to the pylon) are much greater than those obtained from the dead load analysis.
A gradually increasing reaction, instead of reaching its required value suddenly as
shown in Figure 7.16, allows more deck weight to be supported by the two cables next
to the pylon instead of supporting this weight by the pylon through the deck-pylon
connections. So the cables forces increase and the forces in the springs decrease.

As the final cable forces obtained from the used model are almost identical to
those obtained from the dead load analysis, the normal forces in the deck are the

same in both analyses.
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7.6 SUMMARY

An economical method for the construction of multi-span cable-stayed bridges is
introduced. In the proposed method, the deck is poured in one stage on an elevated
truss, and then lowered to its final position. In general, decreasing the elevation
of the truss decreases the forces in the truss during the construction stages, but
increases the éable forces to be anchored temporarily to the top chord of the tfuss.
These forces are determining the practical elevation of the truss.

A computer model is used in simulating the lowering process of the truss in steps,
including only stressed cables. Interface elements are used to model the resting of
the deck on the truss and allowing their separation during the lowering process.

After the truss is lowered, the deck is almost horizontal and the cable forces are
identical to those calculated in the dead load analysis of the bridge. Since the deck

is flexible, the final moments are not much affected by the lowering process.



Chapter 8

SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION

This chapter gives an overall summary of the study. The most important results
and conclusions are outlined. At the end, recommendations for further research are

presented.

8.2 SUMMARY

The main objective of this study is to present an efficient structural system and a fast
construction method for continuous cable-stayed bridges. To achieve this objective

the thesis was divided into four parts.

o Part 1: Highway live loads (Chapter 2)
The highway live loads for long continuous bridges according to the Canadian,

American and European codes are compared.

o Part 2: Literature review (Chapters 3 and 4)
In this part of the study the different structural systems for multispan cable-
stayed bridges are reviewed. Different pylon configurations, cable arrangements
and deck types are compared. The basic concepts in the analysis of cable-stayed
bridges are discussed, and the sources and solution techniques of the geometric

nonlinear behaviour of cable-stayed bridges are presented.

216
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¢ Part 3: Analysis and parametric study (Chapters 5 and 6)
In this part the proposed bridge is analysed for the dead load, highway live
loads and for temperature. The results of a conventional linear and a geomet-
rical nonlinear analysis are compared. To study the effects of the deck-pylon
connection types on the bridge behaviour, five different deck-pylon connec-
tions are investigated. Since the longitudinal stability of the chosen system is
achieved by stiff diamond-shaped pylons, the effect of the pylon dimensions are
investigated in a parametric study. In addition the effect of the cable areas on

the maximum bending moments in the deck is examined.

¢ Part 4: The construction method (Chapter 7)
An economical and fast construction method for long multispan cable-stayed
bridges is discussed. The method is a cast-in-place deck poured on a launching
steel truss at an elevated position and then lowered into its ﬁna,l position. The

different steps of this method are simulated and analysed by using the computer

program ANSYS.

8.3 CONCLUSIONS

The major conclusions of the present study are:

1. While the Canadian and American Codes give about the same highway live
load intensity, the European Code speciﬁeé in general a much higher value.
For the proposed bridge, loading two lanes and for a 250 m long loaded span,
the Canadian and American Codes give a live load intensity of 23.8 kN/m,

while the European Code gives 40 kN/m for heavy traffic. This is almost
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70 percent higher. With the increasing traffic volume and truck capacities
in North America the highway live loads for long continuous bridges should

perhaps be reviewed.

. Designing the cables for a high stress, and keeping the differential deflections
of the deck as low as possible by adjusting the initial strains in the cables in
the dead load analysis, leads to a more or less linear behaviour of the structure,
thus justifying the use of a simple linear analysis instead of a more complicated

geometric nonlinear analysis for the dead load.

. The maximum moment envelope in the deck under live loads has three distinct
zones, where the maximum positive and negative moments appear. These zones
are at the end of the side span, in the vicinity of the pylons, and at the centre
of the main span. Compa:ring the bending moment envelopes of the linear and
geometric nonlinear analyses, a maximum difference of 25 percent in the regions
of relatively high bending moments is observed. This percentage increases to
100 percent in regions of low (insignificant) bending moments. These results

indicate the significance of a geometric nonlinear analysis for the live loads.

. Regarding the temperature analysis, the maximum difference in the deck bend-
ing moments between the linear and geometric nonlinear analyses in the regions
of relatively high bending moments is about 8 percent. This difference increases
to 22 percent in regions of relatively low bending moments. This means that
the geometric nonlinearity affects the analysis results in case of a temperature

analysis to a lesser degree than it does in a highway live load analysis.
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5. The statical system recommended for multispan cable-stayed bridges consists
of a slender solid concrete deck suspended by closely spaced cables. The deck
is acting primarily as a compression member and the bending moments are
relatively low. The longitudinal stability of the system is achieved by using

stiff diamond-shaped pylons.

6. The optimum dimensions for the pylon in such a system related to the main

span ([) are:

e (b:/1) should lie between 0.06 and 0.08
where (b;) is the pylon width or the distance between the inclined pylon

legs at the deck level

e (h;/1) should lie between 0.18 and 0.24
where (h;) is the height of the pylon above the deck

e (d./l) should be greater tha 0.09
where (d;) is the height of the inclined legs below the deck level

7. The optimum deck-pylon connection system consists of a 500 m long continuous
deck resting on two pylons, and the deck-pylon connection consists of two -
rollers and one hinge to prevent a hoﬁzontal movement of the deck against the
pylons. The continuity of the bridge is provided by expansion joints capable

of transferring only shear forces at both ends of the 500 m long deck.
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8. Trying to decrease the maximum bending moments in the deck by increas-
ing the areas of the cables is not economical. An increase in the cable areas
by 80 percent decreases the maximum bending moment in the deck by only

12 percent.

9. The proposed construction method is an efficient and fast way to construct
multiple span cable-stayed bridges. Because of the flexibility of the slen-
der solid concrete slab, the deformations of the steel truss supporting the
cast-in-place concrete deck during the different construction stages do not have

a significant effect on the final stresses in the deck.
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8.4 RECOMMENDATION FOR FURTHER RESEARCH

1. This study is limited to a static analysis, research is needed to investigate the

dynamic response of continuous cable-stayed bridges.

2. In addition to the geometrical nonlinearities considered in this study, the effect

of the material nonlinearity should be included.

3. The importance of time-dependent effects such as creep and shrinkage on

multi-span cable-stayed bridges should be examined.
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Appendix A
Element Types

In this Appendix the different element types used in the analysis are presented. The

elements described are:
1. The two-dimensional elastic beam element
2. The two-dimensional elastic tapered beam element
3. The two-dimensional elastic truss element
4. The cable element
5. The nonlinear force-deflection spring element
6. The interface element
The description of the elements (as far as applicable) includes:
e General description of the element
e The theory of the element
o The element stiﬁ'nesé matrix
o The effect of axial forces (P — § effect)

e Verification

225
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A.1 The two-dimensional elastic beam element

A.1.1 General description

Y
2
Uq i J‘j Ug X
— [ L  J ———regie.
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Figure A.1: Two-dimensional elastic beam element

The two-dimensional beam element is a uniaxial element with tension-compression,
and bending capabilities. The element has three degrees of freedom at each node
(see Figure A.1). These are translations in the nodal z and y directions (u and v)

and rotation @, about the nodal z-axis.

A.1.2 Theory

The displacement functions are a first order polynomial in the element axial direction

and a cubic polynomial in bending. These functions have the following form:
U= 01 + Cz T

U=03+C4'$+O5-$2+06'$3

where C1,C;. .. C’G are constants, and the rotation 8, is given by dv/dz.
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A.1.3 Element stiffness matrix

The element stiffness matrix in the element coordinates if shear deformations are

taken into account is:

EA
L
0 1251
L3.(1+4)

6EI BI(4+$
0 T2.(1+9) _(—L-(1+qs'5l

(k] = (A1)
EA
—E4 0 0 £4
0 ___12EBTI ___6EI 0 1281
L3.(1+4) LZ.(1+9¢) I3.(1+¢)
0 6E1 EI.(2—¢ 0 __6EI EI.(4+4)
I L2{1+9) L(1+¢) LZ.(1+9) L-(1+¢) |
where:
A = cross-section area
E = modulus of elasticity
L = element length
I = moment of Inertia
5 _ 12E]
T GA,L? E
G = shear modulus = ————
2.-(1+v)

v = Poisson’s ratio

A, = effective area in resisting shear deformations (reduced area)
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A.1.4 Effect of axial forces

The computer program ANSYS uses the Przemieniecki approach, in which the effect
of axial forces is taken by adding a stress stiffening matrix [k,] to the conventional

matrix [k] of the element. The stress stiffening matrix for the elastic beam element

(as given before in Chapter 4) is:

0
0 3
0 P 2PL

[ks] — 10 15 (A.Q)
0 0 0 0
o - -5 0 S

o 5 B o -5 om
where:
P = axial force acting on the beam

A.1.5 Verification of the axial force effect

The computer program ANSYS is using the Przemieniecki approach, and not the
general method, when considering the effect of axial forces. Therefore, an example
is calculated by hand using the general method (Ghali and Neville, 1989), and the
results are compared with the results obtained by tile computer program ANSYS.
The example is a propped cantilever as shown in Figure A.2 subjected to a uniform

distributed load and an axial force P acting one time as a compression force, and

another time as a tension force.
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q = 32/unit length
y Y 1 R ) )

g AN

Figure A.2: Example of a propped cantilever subjected to an axial force P

The results of both methods are shown in Table A.1. It is obvious that increas-
ing the number of elements used in the computer model, or in other words decreas-
ing the lengths of the individual elements, leads to the decrease of the quantity
T = L\/m . But for low values of @ both methods give identical results as dis-

cused before in Chapter 4, and as can be seen by comparing the results in Table A.1.



Table A.1: Fixed end moment for a propped cantilever subjected to an axial force

Exact ANSYS
1 Element 2 Elements 3 Elements

Axial

M M M
Force Mansys | =225 | Mansys | 2228 | Mynsys | —2ns¥s

MEgxacT Mgx acT MEgxscr
Tens. || 88.716 || 94.380 | 1.064 | 89.123 | 1.005 | 88.760 | 1.001
Comp. " 116.392 " 107.300 0.922 115.925 0.996 116.381 1.000

08¢
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A.2 The two-dimensional tapered elastic beam element

A.2.1 General description

Y1 ‘
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Figure A.3: Two-dimensional tapered elastic beam element

This element is a conventional elastic beam element except it allows a different

unsymmetrical geometry at each end, as shown in Figure A.3.

A.2.2 Theory

The displacement functions for this element are the same for the conventional elastic
beam element. For the purpose of the stiffness matrix calculation, the average area

A, is taken as:

A AL+ VA A+ Ay
av 3

And the average moment of inertia I, is taken as:

; _EtYB L+ VE L+ L B+D
av 5

Where the 1 and 2 subscripts refer to the end 1 and 2 of the element. It should

be mentioned that if Ay/A; or I,/I; is between 0.2 and 5, which is the case in the
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analysed bridge, the values above are close to the values calculated for an average

cross-section between end 1 and end 2.

A.2.83 FElement stiffness matrix

The element stiffness matrix is the same as for the conventional beam element, the
cross-section area and moment of inertia used are those calculated using the previous

expressions.
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A.3 The two-dimensional truss element

A.3.1 General description

Y
w 1 )
> —s —» ——=X.
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Figure A.4: Two-dimensional truss element

This element is a uniaxial tension-compression element with two degrees of freedom
at each node (see Figure A.4). These are translations in the nodal = and y directions

(v and v). No bending of the element is considered.

A.3.2 Theory

The displacement function for the truss element is assumed to be linear as follows:
U=C +C T

where the element z-axis is oriented along the length of the element from node ¢

towards j. This displacement function implies a uniform stress in the element.
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A.3.3 Element stiffness matrix

The element stiffness matrix in the local element coordinatgs is:

1
EA 0 0
(k] = A (A.3)
-1 0 1

where:
A = cross-section area
E = modulus of elasticity
L = element length

| A.3.4 Effect of axial forces

The element stress stiffening matrix is:

0
P 0 1
[ks] = I (A4)
0 0 0
0 -1 0 1
where;
P = axial force

L = element length
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A.4 The cable element

A.4.1 General description

This element is a truss element having the unique feature of resisting uniaxial ten-
sion only. The stiffness is removed if the element goes into compression, simulating
a slacked cable condition. As the truss element, the cable element has two degrees

of freedom at each node, translations in the nodal z and y directions (u and v).

A.4.2 Theory

The displacement function for this element is assumed to be linear for positive forces

(tension). The function is of the form:
U=¢+C- T

Where the element z-axis is oriented along the the length of the element from node 2
to node j. The stiffness of the element is removed if a negative relative displacement
between node ¢ and node j occurs.

The element is nonlinear and requires an iterative solution. The solution proce-
dure is as follows:
The element condition at the beginning of the first iteration is determined from the

initial strain input:

where:

L = element length defined by the location of its nodes

L, = unstressed (unstrained) length of the cable
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If this value is less than zero, the element stiffness is taken as zero for this iteration.
If at the end of the iteration the element is in tension (L > L,), the element stiffness

is included in the next iteration. The effect of axial forces on the stiffness matrix

should always be included to provide numerical stability.

A.4.3 Element stiffness matrix

The element stiffness matrix in the local element coordinates is:

¢
EA 0 0
k] = =~ (A.5)
—c 0 c
0 0 0 0
where:

¢ = 1.0 if previous iteration resulted in a tensile stress
¢ = 0.0 if previous iteration resulted in a compressive stress

A.4.4 Effect of axial forces

The stress stiffness matrix, which should always be included to provide numerical

stability, is:

0
P 0 c
[k] = 7 (A.6)
0 0 0
L 0 —C 0 c |
where: ¢ = 1.0 if previous iteration resulted in a tensile stress

¢ = 0.0 if previous iteration resulted in a compressive stress .
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A.4.5 Verification

The sag of a cable hanging between two hinged supports (see Figure A.5) is calculated
for the parabola configuration and for the catenary configuration and compared with
the results obtained by the ANSYS analysis in Table A.2.

From the comparison it can be shown, that the difference between the catenary
and the parabola configurations are almost negligible for small sag/span ratios. The
results obtained by the computer program ANSYS are almost identical to the results

of the catenary configuration.
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Figure A.5: Example of a hanging cable

v = material density = 77 kN/m?

A = cross-section area = 0.0042 m?

w, = weight of cable per unit length measured along the horizontal chord
= v-A = 0.323 kN/m (for parabolic configuration)

w, = weight of cable per unit length measured along the cable center-line
= wy - /I, (for catenary configuration)

[ = horizontal projected length of the cable (120 m)

L. = length of the catenary

H . lw,
= Z-E-smh (2H>

H = horizontal reaction at the hinged support

fe = catenary sag = -g; . (cosh ;QZ; - 1)

2
wp'l

8H

- fp = parabola sag =



Table A.2: Comparison between the ‘sa,gs of different cable configurations

H (I(N) fANSYS (m) fpa'ra.bola. (m) M{E fca'tenary (m) fANSYS
f parabola f catenary
397 1.46608 1.46454 1.0010 1.46424 1.0010
79 7.33677 7.36329 0.9964 7.32583 1.0015
35 16.09183 16.42011 0.9800 15.98471 1.0067
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A.5 The nonlinear force-deflection spring element

A.5.1 General description

This is a unidirectional galement with a nonlinear generalized force-deflection rela-
tionship explicitly defined by the user (see Figure A.6). The used element has one

degree of freedom at each node, which is a translation in the nodal z-direction (u).

A.5.2 Theory

The element is nonlinear and requires an iterative solution. During the stiffness
pass of a given iteration, the element will use the results of the previous iteration
to determine which segment of the force-deflection curve is active and calculate the
slope k%, which will be used in the calculation of the stiffness matrix. The deflections
of the current iteration are examined to see whether-a different segment of the force-

deflection curve should now be active. If so, the solution is not converged.

~

A.5.3 Element stiffness matrix
The element stiffness matrix in the element local coordinates is:

1 -1
[k] = k% . (A7)
-1 1

where:

k¥ = slope of the active force-deflection segment from the previous iteration
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Figure A.6: Example for a defined force-deflection curve for a nonlinear spring
element ‘
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A.6 The interface element

A.8.1 General description

This element represents two surfaces which may maintain or break physical contact
and may slide relative to each other (see Figure A.T).

The used element is capable of supporting only compression in the direction
normal to the surfaces, and has two degrees of freedom at each node, translations in
the nodal = and y directions (v and v). The element may be given an initial gap,

the specified normal stiffness is active when this gap is closed.

A.6.2 Theory

The element is nonlinear and requires an iterative solution. The element condition at
the beginning of the first iteration is determined from the initial gap. If the interface
is open, no stiffness is associated with this element for this iteration. If the interface

is closed, k, (the normal stiffness) is used in the gap resistance.

A.6.3 Element stiffness matrix

If the two nodes ¢ and j of the element are coincident (the two surfaces are in contact),

then the element stiffness matrix in the local element coordinates is:

0
0k
[K] = (A.8)
0 0 0
0 ka0 k|

where: k, = stiffness of the interface element normal to its surfaces
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Figure A.7: The interface element



