
ThE UNIVERSITY OF CALGARY 

AN RF FEEDBACK AMPLIFIER FOR 

LOW INTERMODULATION DISTORTION PERFORMANCE 

BY 

JOHN GODFREY MCRORY 

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

CALGARY, ALBERTA 

APRIL, 1993 

©JOHN GODFREY MCRORY 1993 



The University of Calgary 

Faculty of Graduate Studies 

The undersigned certify that they have read, and recommend to the 

Faculty of Graduate Studies for acceptance, a dissertation entitled, "An RF 

Feedback Amplifier for Low Intermodulation Distortion Performance" 

submitted by John Godfrey McRory in partial fulfillment of the 

requirements for the degree of Master of Engineering. 

Supervisor, Dr. R. H. Johnston 
Department of Electrical and Computer 
Engineering 

Date: (cc3 

Dr. M. Fattouche   
Department of tiiFand Computer 
Engineering 

Dr. A. B. Sesay 
Department of Electrical and Computer 
Engineering 

Dr. W.Y. Svrcek 
Department of Chemical and Petroleum 
Engineering 



Abstract 

This thesis deals with the linearization of nonlinear amplifiers 

through the application of negative feedback. Conventional feedback 

reduces the level of the harmonic and intermodulation products by a factor 

equal to the loop gain, and it also causes a decrease in the overall circuit 

gain with a subsequent loss of output power. A modified negative feedback 

circuit is proposed which provides the same level of linearization as the 

negative feedback circuit without reducing the output power level. 

The transfer function of the nonlinear amplifier is represented 

through a Volterra series. Analysis of the negative feedback circuit and the 

modified circuit are carried out using both the Volterra series and linear 

system analysis, and performance predictions are made. An experimental 

circuit is designed and tested in order to confirm the analysis. Limitations 

on the circuit's usable bandwidth, stability, and loop gain are derived. 

111 



Acknowledgement  

I would like to acknowledge my supervisor Dr. Ron Johnston for his 

guidance during the course of this work. I would also like to acknowledge 

Dr. Paul Camw(ell, who's encouragement and support set me on the path. 

iv 



This thesis is dedicated to my wife Kim, and to 

Katie and Meg. Thanks for your 

understanding and support for all the times I 

couldn't be there. 

V 



Table of Contents  

Signature Page ii 

Abstract iii 

Acknowledgement iv 

Dedication v 

Table of Contents vi 

List of Tables viii 

List of Figures ix 

List of Symbols and Abbreviations xi 

Chapter One - Introduction 1 

Chapter Two - Linearization Techniques for Nonlinear Amplifiers 4 

2.1) Feed-Forward 4 

2.2) Linear Amplification with Nonlinear Components (LINC) 7 

2.3) Feedback Linearization 9 

2.3. 1) RF Negative Feedback 9 

2.3.2) Active Feedback Linearization 11 

2.3.3) Envelope Feedback 12 

2.3.4) Baseband Linearization 14 

2.4) Predistortion Linearization 15 

2.4,1) RF Cuber Predistortion 16 

2.4.2) Adaptive Complex Gain Predistortion 17 

2.5) Modified Feedback Amplifier 19 

Chapter Three - Nonlinear Amplifier Distortion 21 

3.1) Memoryless Amplitude Distortion 21 

3.1.1) The Two Tone Test 24 

3.2) Group Delay 28 
vi 



3.3) AM to PM Distortion 29 

Chapter Four - The Volterra Series 30 

4.1) The Volterra Functional Series 30 

4.1.2) Nonlinear Transfer Functions 35 

4.1.3) Two Tone Measurement 36 

4.2) Volterra Series Feedback Amplifier Analysis 40 

4.2.1) Nonlinear Distortion Feedback Effects 40 

4.3) Proposed Modified Feedback 44 

Chapter Five - Modified Feedback Circuit Design and Analysis 46 

5.1) Circuit Analysis 47 

5.1.1) Signal Cancellation 47 

5.1.2) Linear System Analysis 52 

5.1.3) Stability 54 

Chapter Six - Experimental Circuit, Measurements, and Results 62 

6.1) Circuit Realization 62 

6.1.2) Circuit Module Specifications 62 

6.1.3) Adjustable Attenuator 65 

6.1.4) Bandpass Filter 66 

6.2) Experimental Procedure and Results 69 

6.2.1) Cancellation of Fundamentals 70 

6.2.2) Circuit Performance Measurements 71 

6.2.3) Volterra Kernels 76 

6.2.4) Loop Gain Measurements and Stability 85 

Chapter Seven - Conclusions and Future Work 90 

References 92 

vii 



Jist of Tables  

Table 5.1) Maximum Available Loop Gain (dB) For Butterworth, 

Bessel and Chebychev Filter Response 59 

Table 6.1) Linear Volterra Kernel Measurements 77 

viii 



List of Figures 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

Figure 2.9 

Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 4.1 

Figure 4.2 

Figure 4.3 

Figure 5.1 

Figure 5.2 

Figure 5.3 

Figure 5.4 

Figure 5.5 

Feedforward Linearization Circuit  5 

LINC Amplifier 7 

Microwave Feedback Amplifier 10 

Active Feedback Linearized Amplifier 11 

Envelope Feedback Linearizer 12 

Cartesian Feedback Linearizer 14 

Basic Cuber Predistortion Linearizer 16 

Adaptive Predistortion Linearization Circuit 18 

Experimental System Block Diagram 19 

Nonlinear Amplitude Characteristic 22 

(a) Input Spectrum . .. 

(b) Third Order Model Ouput Spectrum 26 

Definition of Third Order Intercept Point 26 

(a) Nonlinear System 31 

(b) Functional Expansion of a Nonlinear System 31 

Nonlinear Feedback Control System 41 

(a) Functional Expansion - Nonlinear System with 

Feedback 41 

(b) Volterra Kernel Representation of (a) 41 

Experimental System Block Diagram 46 

Predicted Attenuation at Cancellation Nulls 1, 2, and 3 49 

Cancellation Bandwidth for n = 1, 3, 5, and 7 51 

Signal Flow Diagram 52 

Nyquist Plots for Increasing Delay 57 

ix 



Figure 5.6 Nyquist Plots for Maximum Gain with Increasing Delay 58 

Figure 5.7 Minimum IM3 Reduction vs Circuit Bandwith 61 

Figure 6.1 Experimental Circuit Realization 64 

Figure 6.2 Adjustable Attenuator Circuit Diagram 65 

Figure 6.3 (a) Filter Equivalent Circuit 67 

(b) Filter Circuit Diagram 67 

Figure 6.4 Bandpass Filter Response Curves 68 

Figure 6.5 Measured vs. Predicted Signal Cancellation 70 

Figure 6.6 Two Tone Test Output Spectrum 72 

Figure 6.7 Measured Output Power at 304 MHz 73 

Figure 6.8 Measured Output Power at 302 MHz 74 

Figure 6.9 Measured Gain With Cancellation 75 

Figure 6.10 Normalized IM3 Output Power 75 

Figure 6.11 Measured vs Calculated Fl Output Power 82 

Figure 6.12 Measured vs Calculated IM3 Output Power 82 

Figure 6.13 Measured vs Calculated Fl Output Power With 

Cancellation 83 

Figure 6.14 Measured vs Calculated IM3 Output Power With 

Cancellation 84 

Figure 6.15 Noise Spectrum with Oscillation 85 

Figure 6.16 Noise Spectrum 86 

Figure 6.17 Bandpass Filter Nyquist Plot 87 

Figure 6.18 Open Loop Nyquist Plot, No Cancellation 88 

Figure 6.19 Open Loop Nyquist, Maximum Cancellation  

Figure 6.20 Expanded Open Loop Nyquist Plot, Maximum 

Cancellation 89 

•4. 

x 



Jist of Symbols and Abbreviations  

Chapter 1 

dc direct current 

DSP Digital Signal Processing 

LAN Local Area Network 

QAM Quadrature Amplitude Modulation 

QPSK Quadrature Phase Shift Keying 

RF Radio Frequency 

Chapter 2 

A feedback amplifier gain 

envelope feedback input coupling factor 

al envelope feedback modulator gain 

envelope feedback- amplifier gain 

AM Amplitude Modulation 

B feedback loop transfer function 

13 envelope feedback output coupling factor 

C feedback amplifier tuned cavity transfer function 

CPL Cubic Predistortion Linearizer 

dB logarithmic ratio of powers, ie. 10 log (powerl/power2) 

dBc logarithmic ratio with respect to carrier power 

E(t) general modulation signal. 

ejm feedback amplifier intermodulation products 

ein feedback amplifier input voltage 

Em maximum value of the general modulation signal 

e0 feedback amplifier output voltage 
xi 



G envelope feedback circuit gain 

G LINC amplifier gain 

envelope feedback modulator sensitivity = daj./dV 

11 envelope feedback rectification efficiency of detectors 

I signal component in phase 

IF intermediate frequency 

LINC Linear Amplification with Nonlinear Components 

LO Local Oscillator 

MByte megabyte of random access memory 

PA Power Amplifier 

PM Phase Modulation 

Q signal component in quadrature 

RAM Random Access Memory 

Sia(t) +'ve phase modulated general bandpass signal 

S2a(t) -tve phase modulated general bandpass signal 

Sa(t) general bandpass signal 

UHF Ultra High Frequency 

VC envelope feedback modulator control voltage 

Vi envelope feedback input signal level 

Vin RF cuber input signal 

V0 envelope feedback output signal level from amplifier 

V0 RF cuber output signal 

V0(t) LINC amplifier output signal 

Chapter 3 

2f1 - 2f2 second order intermodulation product 
xii 



2f1 - f2 third order intermodulation product 

2f2 + fj third order intermodulation product 

2oi - 2o second order intermodulation product 

20)1 - third order intermodulation product 

2(02 + col third order intermodulation product 

3°i third harmonic of the first two tone test fundamental 

3o2 third harmonic of the second two tone test fundamental 

A power series input voltage amplitude 

dBm dB with respect to 1 mWatt 

f1 + f3 second order intermodulation product 

fj, first fundamental input tone for a two tone test 

second fundamental input tone for a two tone test 

G amplifier gain 

G1dB amplifier 1 dBcompression point gain 

G0 amplifier linear gain 

TM3 third order intermodulation product 

kn power series nth order coefficient 

P(20)1-o) nonlinear amplifier third order intermodulation product 

output power 

P(o) nonlinear amplifier first fundamental output power 

Pintercept nonlinear amplifier third order intercept point 

Plinear linear amplifier output power 

0 phase angle 

R amplifier input impedance 

td group delay 

v(t) power series input voltage 
xlii 



v0(t) power series output voltage 

() angular frequency 

0)1+ 0)3 second order intermodulation product 

(01 first fundamental input tone for a two tone test 

0)2 second fundamental input tone for a two tone test 

Chapter 4 

(a,b) system memory 

A scalar constant 

A(s) nonlinear amplifier characteristic 

Ak amplitude of ktb input exponential 

b feedback signal 

13(f) feedback loop response 

B1 third order nonlinear transfer function at col 

B2 third order nonlinear transfer function at 20)1-0)2 

FE feedback error signal 

F any given functional 

G feedback amplifier total response 

Gi(f) feedback amplifier's first order Volterra kernel 

G2(f1,f2) feedback amplifier's second order Volterra kernel 

G3(fl,f2,f3) feedback amplifier's third order Volterra kernel 

Gn feedback amplifier nth order Volterra kernel 

H Volterra series 

symmetrized nth order Volterra kernel 

H'(0)1, 2,..., () symmetrized nth order nonlinear transfer function 

H3(-j)1, jcoj., jofl) third order Volterra kernel at col 
xiv 



H3(-jo, ju, jwl) third order Volterra kernel at ol 

hn nonlinear amplifier's nth order Volterra kernel 

hn nth order Volterra kernel 

H()1, 02,..., ()) nth order frequency domain Volterra kernel 

K number of input exponentials 

In integer index of the• frequency mix for the nth order 

transfer function 

n order of the Volterra series kernel 

S any deterministic system 

t time 

u time delay 

oo output frequency from nonlinear transfer function 

x(t) system input signal 

X(CO) Fourier transform of x(t) 

Xk system inputs 

y(20)1CO2)(t) total response at 201-a2 

y(t) system output signal 

Y((o) nonlinear transfer function 

y( 1)(t) total response at co 

y3(c)l) third order nonlinear transfer function for (D] 

yk system outputs 

Yn nth order impulse response 

Y(o) nth order nonlinear transfer function 

y 0(t) nth order impulse response for frequency (00(t) 

xv 



Chapter 5 

11 input combiner 

12 input splitter 

13 cancellation combiner 

TA amplifier combiner 

H(f) feedback loop characteristic 

first delay 

t2 second delay 

relative delay, t2 - 

n number of the cancellation null 

f0 normalized center frequency 

33W circuit 3 dB bandwidth 

fupper upper 3 dB frequency 

flower lower 3 dB frequency 

a splitter/combiner loss, 

H Amplifier gain and delay characteristic, H= heJ°h 

c directional coupler attenuation, 

d lower path delay, e3'Td , 

f variable attenuation, 

B loop amplifier and loop filter characteristic, B(f)e °n . , 

11 intermodulation products. 

Vin amplifier input voltage 

Vout amplifier output voltage 

p lowpass frequency variable 

s frequency domain variable 

Q circuit Q, defined as 1IBW 
xvi 



p(s) bandpass filter with delay and gain response 

FM fiberglass circuit board 

fC bandpass filter center frequency 

CO dielectric resonator equivalent parallel capacitance 

L0 dielectric resonator equivalent parallel inductance 

R dielectric resonator equivalent parallel resistance 

C bandpass filter parallel coupling capacitor 

Cs bandpáss filter series coupling capacitor 

2. wavelength 

S11 S parameter input return loss 

521 S parameter transfer function 

MHz Megahertz 

H3(fi,fi,-fi) third order Volterra kernel for f1 

H3(f2,fi,-f2) third order Volterra kernel for f1 

H1(f1) first order Volterra kernel for f1 

Chapter 6 

A(h) reduction in fundamental with the application* of 

feedback 

i(2fi-f2) reduction in third order intermodulation product with 

the application of feedback 

B1 loop equation for f1 

B3 loop equation for 2f1 - 

xvii 



1 

Chapter One  

JntrocIuctior  

The unprecedented growth in demand for wireless services that has 

developed over the last decade has created an urgent need for a more 

efficient use of the available RF spectrum. Services such as cellular radio, 

cordless telephones, or wireless LANs are continuously called upon to pass 

more information through their respective channels without exceeding 

their bandwidth allotment. In response to these pressures, the wireless 

industry has begun to focus on linear digital modulation schemes such as 

QAM or QPSK which are highly bandwidth efficient, but which also place 

more stringent requirements on the system hardware. 

One of the key hardware circuits in the transmission of digital 

signals is the output power amplifier. The market demand for small, 

battery powered digital wireless terminals places conflicting linearity and 

efficiency demands upon this particular component. An amplifier's 

efficiency is a measure of the circuit's ability to convert dc power to RF 

power, which in the case of the battery powered terminal translates directly 

into battery life. However, in order to achieve an efficient operating 

condition the amplifier must be operated in its nonlinear region, which 

causes unacceptable levels of distortion in the linear digital modulation 

schemes. 

In response to these incompatible requirements, a great deal of 

research has focused on the linearization of mildly nonlinear amplifiers. 

The techniques that have been developed allow the amplifier to operate in a 

more efficient nonlinear region by reducing the level of intermodulation 

distortion. Although both analog and digital techniques have been 



2 

proposed, digital schemes such as Cartesian Feedback or Adaptive Pre-

distortion offer a superior level of performance, but at the cost of 

substantially increased system complexity. The digital linearization 

schemes work at baseband, and require a significant amount of additional 

hardware, including down conversion in the feedback loop, demodulation of 

the output signal, and a significant level of DSP in order to perform the 

linearization. 

In an effort to reduce the complexity of the linearization, an 

investigation of analog linearization techniques was undertaken and a new 

circuit proposed, developed and tested. The goals for the circuit were that it 

must be simple to implement, it should operate at RF frequencies in order 

to eliminate the requirements for additional down conversion and baseband 

processing, and that it should offer a significant level of improvement in 

circuit performance. 

Analog linearization can be achieved through the use of either 

negative feedback or feedforward techniques. Although the feedforward 

technique has shown good success in broadband linearization, it requires 

the use of two high power amplifiers as well as the combining of two high 

power signals at the circuit output. Alternatively, negative feedback offers 

a reduction of the distortion products equal to the circuit's loop gain, but 

also causes a reduction of the overall circuit gain thus resulting in a lower 

achievable output power for a given level of distortion. In an attempt to 

develop a circuit that avoides these two problems, a modified feedback 
circuit is developed that uses the feedforward cancellation technique in a 

negative feedback configuration. This circuit has been demonstrated to 

offer a linearization equal to that of the negative feedback amplifier, but 
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does not suffer from the subsequent gain reduction. 

This thesis deals with the design, analysis and testing of the modified 

negative feedback circuit. Chapter 2 offers a summary of the linearization 

techniques available to date with brief descriptions of their operating 

principles, and introduces the modified feedback cirèuit. Chapter 3 details 

the distortion mechanisms present in amplifiers and the figures of merit 

used to characterize them. Chapter 4 introduces the power series and the 

Volterra series representation of nonlinear amplifiers, and then covers the 

Volterra series analysis of the negative feedback amplifier. Chapter 5 

contains the design and linear system analysis of the experimental circuit, 

while Chapter 6 contains the results and measurements of the experiments 

carried out to confirm the analysis. Chapter 7 summarizes the 

experimental results and conclusions, and closes with suggestions for. 

future work. 
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Charter Two  

JJnearization Techniques for Nonlinear Amplifiers  

The steadily increasing traffic load on the present cellular telephone 

networks has created a need for more efficient use of the available 

spectrum. Multi-level digital modulation schemes such as 64 or 256 QAM 

offer improved spectral efficiency, but cannot be utilized partially due to the 

effects of distortion introduced by the nonlinear power amplifiers used in 

the radios. 

Traditionally power amplifiers have been optimized for efficiency, 

operating in the saturation region of the amplifier performance curves. 

This results in a highly nonlinear amplifier operation which generates 

several types of distortion in the output signal. These distortions include 

AM to AM conversion, AM to PM conversion, as well as harmonics and 

orthogonal intermodulation products caused by both the AM to AM and AM 

to PM conversions. Further variations in performance can be caused if the 

amplifier is operated in the mobile environment, with severe temperature 

variations, and changes in the electrical length of the amplifier due to the 

change in frequency during hand-offs. 

Several methods have been proposed to linearize microwave and RF 

amplifiers, using either feedback control or intermodulation cancellation 

techniques. The focus of this section of the thesis is the review of the four 

methods that have been developed to deal with nonlinear amplifier 

operation, and to introduce the proposed modified feedback amplifier. 

2.1) Feed-Forward 

The feed-forward system was first developed in the late 1920's by 
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Harold S. Black. The system requires complex circuitry, and as such has 

been primarily limited to larger systems which can afford the extra 

complexity. 

A functional diagram of the feedforward circuit is shown in Figure 

2.1 [1]. Its operating principle is the reduction of the amplifier's distortion 

through the cancellation of the unwanted signal harmonics at the output of 

the circuit. An error signal is developed by comparing a delayed version of 

the input signal with an attenuated version of the' nonlinear amplifier's 

output signal. The error signal is then amplified by the auxiliary amplifier 

and added to the main amplifier output in such a fashion that the 

unwanted intermodulation products are canceled, and only the amplified 

original signal remains. 

Figure 2.1 Feedforward Linearization Circuit 

As shown in Figure 2.1, two input test tones are fed by the input 

coupler to the nonlinear main amplifier and the first time delay. The delay 

device compensates for the group delay inherent in the main amplifier, 

second coupler, and attenuator, as well as adjusting the phase of the input 

signal such that cancellation of the test tones occurs at the summer. The 
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output of the nonlinear amplifier, containing the amplified input tones as 

well as odd order intermodulation products and AM to PM intermodulation 

products, is sampled and fed to the summer where it is added to the delayed 

input signal. The level and phase of the two signals are adjusted such that 

the input tones cancel, resulting in an error signal which contains 

primarily the unwanted intermodulation components. The error signal is 

then, scaled and recombined with a delayed version of the main amplifier 

output at the output coupler. The error signal scaling and the main 

amplifier signal delay are optimized so that when the signals are combined 

the intermodulation products are canceled and the output spectrum is thus 

an amplified replica of the input spectrum. 

The disadvantages of the Feed-Forward network are: the circuit is an 

open loop system, and so cannot be easily compensated for drift and 

temperature variations; the maximum null of the intermodulation 

distortion occurs at a single frequency, and is not a measure of the systems 

overall capability; and the circuit complexity. Further disadvantages are 

that the auxiliary amplifier must have approximately the same output 

power capacity as the main amplifier, and that the output combiner must 

linearly combine the two high power output signals without adding any 

additional distortion products. 

The advantages of the feed-forward network are that the open-loop 

architecture is unconditionally stable, and that large reductions in 

distortion can be achieved, with reported results as high as 25 dB for the 

third order intermodulation products in a class A amplifier [2], and a 15 dB 

improvement for a class C amplifier [3]. 
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.2) Linear Amplification with Nonlinear Components (LINC)  

LINC, or linear amplification with nonlinear components, is a 

recent extension of the outphasing technique developed by Chireix in the 

1930's which was used to improve the linearity and efficiency of AM 

broadcast transmitters [41. The technique allows the use of highly 

nonlinear components in the amplifier stages, such as class C, D, or E, and 

then cancels the distortion products at the circuit output through signal 

phasing. Raab [4] has shOwn that the resulting efficiency is approximately 

equal to that of the class of amplifier used. Like the feedforward technique, 

LINC does not use a feedback from the output of the power amplifier to 

perform the linearization, resulting in an unconditionally stable system. 

Figure 2.2 LINC Amplifier 

The block diagram is shown in Figure 2.2. The principle of operation 

is that the bandpass input signal Sa(t), which may have both amplitude and 

phase variations, is split into two constant envelope phase modulated 

signals, either by analog techniques [51 or by DSP [6]. The two constant 

envelope signals are then fed to a pair of identical nonlinear RF amplifiers 

and the amplifier outputs combined. The constant envelope signals derived 

from the modulation signal Sa(t) are generated such that when the signals 
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are combined at the output, the distortion products cancel and the desired 

signals reinforce. 

If a general bandpass input signal is used such as 

Sa(t) = E(t)cos(ot+0(t)) (2.1) 

Cox's analysis [51 defines E(t) as 

E(t) = Em5ifl[4(t)] (2.2) 

The component separator generates two sinusoidal signals with phase 

modulations of -i4(t) and -(t), such that 

Sja(t) = -sin (ot.+8(t)+(t)) 

(2.3) 

S2a (t) = Em sin(o)t + 0(t) - 

The two signals are then amplified and passed through the combiner 

which takes the difference between the two signals, yielding 

V0 (t) = GSj2 (t)GS2a(t) 

= G Em Isin[cot + 0(t) + 4(t)]— sin[ot+ 0(t)— 4(t)]} 

= GEm {cos[ot + 0(t)] sin[(t)]} 

= GSa(t) 

(2.4) 
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which is simply an amplified version of the input signal, while canceling 

the distortion products at the summing junction. 

The difficulties in this approach are the generation of the required 

phase modulated signals Sia(t) and S2a(t), the design of two identical 

amplifier chains, and the design of a method which will combine the two 

high power output signals from the amplifiers without introducing further 

nonlinear distortion products. 

2.3) Feedback Linearization  

Amplifier linearization using feedback can be carried out at either 

RF frequencies or at baseband, and can be either analog or a combination of 

analog and DSP techniques. All these techniques share common 

characteristics in the use of the feedback loop with its inherent delays, 

which can give stability problems and can limit the effective bandwidth of 

the amplifier. 

9.3.1) RF Negative Feedback 

Negative feedback is a well known technique for reducing distortion 

in linear amplifiers, but its use at UHF or microwave frequencies requires 

very careful treatment of the loop delay and loop bandwidth. 

A typical circuit configuration is shown in Figure 2.3 [1]. Since the 

feedback loop can contain several cycles of delay from the input to the 

output, a single tuned, band limiting filter is included in the loop. The filter 

characteristic, feedback loss, and amplifier gain must be chosen such that 

the loop gain is less than one for all frequencies that could lead to an 

unstable operating condition. 
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ein 
  ..j Coupler 

A 
C 

Tuned 
Cavity 

Attenuator 

-B 

Coupler 

ejm 

Figure 2.3 Microwave Feedback Amplifier 

The analysis of the circuit in Figure 2.3 can be simplified if it is 

assumed that the amplifier is linear and that the distortion products are 

simply added to the amplifier output, and also that the second order 

interactions are small enough to be neglected. These assumptions allow 

the use of linear system theory for the analysis of the circuit. Consider the 

response of the circuit blocks, where A, B, and C are the transfer functions 

of the amplifier, feedback path including the input and output couplers, 

and the filter respectively. The closed loop gain for the input signal, ejn, 

can be written as 

AC 1  
e0 = l+ ABC e1n + l+ABCejm 

(2.5) 

Thus the 'intermoduiation products are reduced by 11(1 + ABC) and 

the overall amplifier gain is reduced by CI(1 + ABC). It can be seen that the 

reduction of the intermodulation products is numerically equal to the loop 

gain. 

The factor (1 + ABC) is determined by the trade offs that must be 

made between the loop gain, phase margin, and the operating bandwidth, 

resulting in a narrow system bandwidth. A further disadvantage is the 
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reduction of the amplifier gain resulting in additional gain being required 

in the output amplifier. 

2.3.2) Active Feedback Linearization 

The active feedback linearizer was presented in 1988 by Ballesteros, 

Perez, and Perez [7]. An improvement of the passive RF negative feedback, 

this linearizer extends the dynamic range of the feedback amplifier by 

adaptively adjusting the loop gain to compensate for the main amplifier's 

signal compression. 

Auxilary 
Amplifier 

< •O  

Main 
Amplifier 

Input 
Coupler 

Output 
Coupler 

Figure 2.4 Active Feedback Linearized Amplifier 

A qualitative understanding of the linearizer operation can be 

obtained by considering the instantaneous transfer characteristics of the 

main and auxiliary amplifiers. As the input signal increases in power, the 

main amplifier enters compression, which reduces the loop.gain for the 

circuit. The loop gain is also affected through the coupling ratios of the 

input and output couplers, which scales the feedback signal such that the 

compression degree of the auxiliary amplifier compensates for the main 

amplifier's signal compression. In other words, as the auxiliary amplifier 

is forced into compression, the feedback loop gain is reduced which 
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increases the overall circuit gain. The increase in the overall circuit gain 

compensates for the reduced output power of the main amplifier which 

increases the circuit's linear dynamic range. Ballesteros et al [71 report a 

3.2 dB improvement in output power for a fixed level of distortion for a 1 

GHz amplifier. They also report that the structure is sensitive to 

temperature variations since the change in the gain of the active devices 

impairs the performance of the circuit. 

2.3.3) Envelope Feedback  

Another application of feedback for amplifier linearization is 

envelope feedback. In this case, as shown in Figure 2.5 [81, the basis of the 

technique is to compare the envelope of the input signal with the envelope of 

the distorted output signal, and to control the instantaneous gain of the 

amplifier such that the differences between the envelopes are minimized. 

input 
detector 

vi 

difference 
voltage = VC 

aV 

input 
coupler 

differential 
amplifier 

modulator 
gain=a1 

amplifier 
gain=a2 

output 
detector 

A 
iwo 

(1—)V0 
output 
coupler 

Figure 2.5 Envelope Feedback Linearizer 

Figure 2.5 shows the block diagram of the circuit. If the variables are 

defined as: 

al = gain of modulator, 

a2 = gain of amplifier, 



13 

= modulator sensitivity = dai/dV, 

Ve = modulator control voltage, 

Vi = input signal level, 

V0 = output signal level from amplifier, 

a = input coupling factor, 

13 = output coupling factor, 

1 = rectification efficiency of detectors, 

then Arthanayake and Wood [81 have shown that the circuit gain with 

envelope feedback can be written as 

G = (1-13)a2(ai+(xrn'V)  
(1+a213iyyV) 

If the limit of this expression is found as y goes to infinity, then 

urn G = (i_13)() 
oy f3 

(2.6) 

(2.7) 

Equation 2.7 shows that as the modulator sensitivity increases, the 

circuit gain becomes independent of the nonlinear terms al and a, so the 

greater the value of y, the smaller the distortion products. 

Lavrushenkov, Novikov, and Chugunov [9] reported up to a 35 dB 

reduction in distortion products using envelope feedback, but also found 

that the circuit is sensitive to operating conditions such as gain imbalance, 

gain uniformity over the bandwidth, power supply stability, and 

temperature stability. 
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2.3.4) Baseband Linearization 

Also known as Cartesian Feedback [6], this technique is closely 

related to the predistortion and adaptive predistortion schemes, differing 

only in that it uses continuous feedback loop. Again, due to the delay 

inherent in the feedback loop, the amplifier suffers from stability problems 

and a narrow bandwidth. 

I 

Attenuation 

Figure 2.6 Cartesian Feedback Linearizer 

The circuit schematic is shown in Figure 2.6 [6]. The amplifier 

output is first sampled using a coupler. Then the sampled signal is 

attenuated and coherently demodulated to recover the quadrature 

Cartesian components of the modulation signal. These signals are used to 

provide the negative feedback, being subtracted from the modulation I and 

Q channels at the amplifier's input to provide the loop error signal. If the 

loop gain is great enough, the feedback loop will correct for any nonlinearity 

in the up-conversion and RF amplification stages. Although the figure 
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illustrates an analog system, Cartesian feedback has been principally 

realized using DSP techniques for the generation of the error signal. 

Two techniques have been proposed to eliminate the stability 

problems caused by the phase delay in the amplifier. The first is a software 

controlled phase shift in the demodulation oscillator which would 

• minimize the phase error in the feedback signals. The second is to digitize 

the feedback signals and to calculate and correct for the phase errors using 

DSP software. 

Reduction of the intermodulation products achieved for a two tone 

test using this technique have been reported as high as 30 dB [6]. 

.4) Predistortion Linerization 

Predistortion and feedftirward linearization techniques are closely 

related. Both use signal cancellation to remove the unwanted distortion in 

the output signal, but while feedforward splits, processes, and recombines 

the nonlinear amplifier output after amplification, predistortion modifies 

the amplifier's input signal only. 

Predistortion can be applied to the baseband, IF, or RF stages of the 

radio. In all three cases the principle of operation is the same; a signal 

containing the inverse of the output amplifier's distortion products is added 

to the desired signal, which is upconverted if required and then fed to the 

nonlinear amplifier. During the amplification, the distortion products are 

canceled by the predistortion added earlier. 

There are basically two techniques for generating the predistortion 

signal. A nonlinear analog device is used to generate a set of distortion 

products which are phased and added to the original signal [10][11J, or 
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adaptive DSP techniques are used to modify the IF [14] or baseband [12]{13] 

signals. In order to demonstrate the principle, we will consider only the RF 

cuber and adaptive complex gain methods of predistortion. If the reader 

wishes to investigate IF predistortion please see references [1] and [14]. 

.4.1) 1W Cuber Predistortiori 

The cuber technique uses predistortion to compensate for the third 

order intermodulation distortion generated in the power amplifier, which 

is usually the largest of the distortion products. A reduction in distortion of 

more than 20 dB per 25 MHz bandwidth has been reported using this 

technique [10]. 

V. 
in 

Distortion 
Generator 

• Cubic Path 

 HIM-i Phase Shift 

  P..J Delay 

Main Path 

Figure 2.7 Basic Cuber Predistortion Linearizer 

Attenuation Nonlinear 
Amplifier 

The fundamental CPL circuit configuration is shown in Figure 2.7 

[10]. The required characteristics of the CPL are calculated by analyzing 

the distortion characteristics of the nonlinear amplifier. The generation of 

the distortion can be accomplished using either passive [10][11] or active 

components [1]. The phase and amplitudeof the distortion signal are 

adjusted to the required values, and then the signal is added to a delayed 

version of the non distorted signal. 
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The CPL linearizer offers some improvement, but cannot compensate 

for temperature drift, component aging, and dc power variations. In order 

to achieve optimal performance the linearizer can be made self-adjusting. 

An adaptive cuber predistorter has been reported [10] that is realized by 

adding a separate training loop and computer control. The amplifier is 

isolated from the circuit through RF switches, and then fed two tones. The 

third order distortion products are detected and the predistortion circuitry 

adjusted in order to minimize the distortion. The training cycle 'is less than 

5 ms in duration. The circuit achieved greater than 20 dB reduction in 

third order distortion products over temperature and bandwidth ranges. 

2.4,2) Adaptive Complex Gain PredistortiQn  

Adaptive complex predistortion is one of the most promising of the 

new linearization techniques. Several adaptive predistortion techniques 

have been reported, but most have been restricted in modulation scheme or 

order and type of PA nonlinearity. The first general technique was reported 

by Nagata [14] who, through a generalization of the adaptive QAM 

linearizer reported by Saleh and Salz [18], developed a method that was 

independeht of modulation scheme or of the amplifier nonlinearity. 

Although Nagata was able to report -60 dBc out of band emissions for a 33% 

efficient amplifier, there were several problems in the circuit realization, 

including: 

• A large lookup table, 20 MByte of RAM required. 

• Slow convergence time for the adaptation and memory table 

update (approximately 10 sec). 

• Phase shift adjustment and slow reconvergence if amplifier 
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input frequency was changed. 

• A phase shifter was required in the feedback network for 

stability. 

A solution to these realization problems has been proposed by Cavers 

[151 through the use of complex gain predistortion. By treating the 

amplifier distortion as a memoryless nonlinearity, Cavers has been able to 

reduce the look up table by four orders of magnitude, to typically less than 

100 complex word pairs, eliminated the convergence and reconvergence 

problem, and eliminated the need for the phase shifter. 

Cavers' work has been verified experimentally by Wright [16] and 

through simulation by den Otter [17]. The experimental system used by 

Wright is shown in Figure 2.8 [16]. 
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Figure 2.8 Adaptive Predistortion Linearization Circuit 

While den Otter reported an adjacent channel power level reduction 

of better than -30 dB in her simulation, Wright was only able to achieve a -20 

dB reduction. The difference in performance between the simulation and 

hardware was apparently due to the sensitivity of the predistortion to local 
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oscillator feedthrough and gain/phase imbalance for the I and Q channels 

of the modulators and demodulators. den Otter also compared the complex 

gain predistorter and Cartesian feedback, finding that the predistorter gave 

the larger reduction close to the channel, while the Cartesian feedback gave 

a better reduction farther away from the channel. 

2.5) Modified Feedback Amplifier 

The reduction of the amplifier's intermodulation products is 

accomplished through the negative feedback of the intermodulation 

products only, with the fundamentals and their harmonics removed from 

the feedback loop. The effect of the negative feedback on the desired signal 

is reduced through this cancellation of the fundamentals. The block 

diagram illustrating the circuit performance is shown below in Figure 2.9. 

Note that the graphical representation of the IM products shown in the 

figure are derived from the open loop condition and would not necessarily 

be accurate for the closed loop condition. 
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Figure 2.9 Experimental System Block Diagram 

Two equal amplitude input tones are combined at the first summer 



(1) to provide a two tone test test signal, which is fed to the circuit. The 

test signal is then split (2) into two equal amplitude paths. The upper path 

is combined with the feedback signal (4) to form the error signal which is 

fed to the amplifier. The amplifier output signal, containing the harmonic 

and intermodulation distortion products, is sampled by a directional 

coupler, attenuated and then combined with the lower signal path (3). 

The signal in the lower path is passed through a delay which is equal 

to the upper path delay, which consists of of the sum of the combiner, 

amplifier, and coupling delays, plus an additional delay equal to it radians 

at the center frequency. The additional delay can be eliminated if a 00 and 

1800 summer is used at Y,2, The fundamental tones arriving at 13 through 

the upper and lower paths are now of equal amplitude and are 180° out of 

phase at the center frequency. The summation causes cancellation of the 

fundamental tones, while the amplifier's harmonic and IM products 

contained in the upper path are only scaled in amplitude. For the case of 

the additional delay, complete cancellation occurs only at the center 

frequency, with the level of attenuation decreasing as the deviation from the 

center frequency increases. If the 0°/180° splitter is used, then the 

cancellation will occur over a larger bandwidth. 

The output signal from 13 is then bandpass filtered to remove the 

harmonic and out of band intermodulation products, scaled in amplitude 

and shifted in phase, which is represented in Figure 2.9 by R(f). The' 

feedback signal is then combined with the upper path (4) to form the error 

signal. The cancellation of the fundamental in the feedback loop reduces 

the loop gain for the desired signal while leaving the distortion product loop 

gain unaffected. 
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Chapter Three  

Nonlinear Amplifier Distortion  

The ideal transfer function for a linear amplifier produces a scaled 

and delayed replica of the input signal, while nonlinear amplifier effects 

will produce distortion in the amplitude and phase characteristics of the 

output signal. These effects can be characterized by amplitude 

compression, generation of harmonic and intermodulation frequencies, 

group delay and phase distortion. The results of these nonlinearities are 

reduced system dynamic range, spectral growth through the 

intermodulation products, and signal distortion. 

The model of a nonlinear amplifier depends on whether or not the 

circuit can be considered memoryless. If the amplifier is considered 

memoryless with a mild nonlinearity, then its amplitude transfer function 

can be represented by a power series. If the system has memory, then the 

amplifier may be more accurately represented by the Volterra series. In 

• either case, most of the amplifier's distortion characteristics can be 

predicted once the series coefficients are known. 

This section of the thesis deals with the types of distortions found in a 

nonlinear amplifier, and their prediction using a power series. 

3.1) Memoryless Amplitude Distortion 

An amplifier may be considered linear in its amplitude 

characteristic if the output power increases linearly with the input power. 

The ratio between the input and output power is defined as the amplifier 

gain G. For any practical amplifier, there exists a point at which the 

amplifier will begin to saturate, which results in an output power which is 
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lower than that predicted by the linear gain, causing an amplitude 

distortion of the output signal. This distortion can be characterized by the 1 

dB compression point, which is defined as that point at which the amplifier 

gain drops 1 dB below the linear gain, as shown in Figure 3.1. 
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Figure 3.1 Nonlinear Amplitude Characteristic 

If the amplifier nonlinearity is weak, then its output voltage can be 

represented by a short power series [181, such as 

v0 (t) = k1v1(t)+ k2v(t)+ k3v(t) (3.1) 

If we let vi = A cos(w1t), then v0 can be written as 

v0 (t) = .!k1A2 +(k 1A + .- k3A3 )cos(0 1t)+ -k2A2cos(2(oit) 

+. k3A3cos(3o lt) 

(3.2) 
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This result shows that the output voltage waveform consists of 

the fundamental combined with a dc term and the second and third order 

harmonics of the input signal. Examination of Equation 3.2 shows that in 

order to represent a gain compressive system such as an amplifier, then k3 

must be less than zero. 

This simple model can be used to estimate some of the performance 

characteristics of the amplifier. From Equation 3.2, the gain at the 

fundamental frequency' can be written as 

( 

G = 201og k1A + 3A - 201og(ki+!k3A2) 

A 

I 

(3.3) 

which is dependent on the level of the input signal, unlike the linear gain 

Go = 2010g(k 1). If we consider the 1 dB compression point, which was 

defined above as = G0 - 1, then from Equation 3.3 we can write 

k1+ k3A2 =0.89k 1 (3.4) 

From Equation 3.4, the input amplitude at the 1dB compression point 

is found to be 

A= 
1 

k 
0.1451 , k3<0 

Ik3' 

(3.5) 
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If it is assumed that the input impedance is R ohms, then the input 

power in dBm may be written as 

lolog{ ( A 2 
72  10 3 (3.6) 

If we let R = 50 1, then Equation 3.6 can be written as 

Pi = 2olog{A} +10 dBm (3.7) 

The output power at the 1 dB compression point can be written as 

PjdB = G0 -1+ Pi dBm (3.8) 

Substituting (3.5) and (3.6) into (3.8), and assuming that R = 50 ohms, 

then we can write the 1 dB compression point output power as 

P1dB = 10 log 
l'3i 

The 1 dB compression point is used as a common amplifier 

specification by manufacturers and designers. Equation 3.9 yields a simple 

amplifier model from this specification by solving for k3. 

+0.62 dBm (3.9) 

3.1.1) The Two Tone Test 

A standard test for amplifier amplitude linearity is the two tone test. 

Two equal amplitude sinusoids at different frequencies are combined and 
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applied to the amplifier input. The resulting output signal consists of the 

fundamental frequencies combined with a dc term and several spurious 

frequency products which result from the amplifier's nonlinearity. The 

spurious products are made up of harmonics of the fundamental 

frequencies as well as even and odd order intermodulation products. An 

even order intermodulation product is defined as a spurious frequency in 

which the sum of the coefficients of the fundamental tones add to an even 

number, such as 2f1 - 2f2 or fj. + f3 An odd order intermodulation product is 

defined as a spurious frequency in which the coefficients of the 

fundamental frequencies add to an odd number, such as 2f1 - f2, 3f1 - 2f2, or 

5f2 - 4f1... 

If the system bandwidth is less than an octave, then most of the 

spurious frequency products will fall outside the passband and can be 

filtered out. However, the odd order intermodulation frequencies, such as 

2f2 - f1 or 4f1 - 3f2, usually fall within the system passband and will cause 

output signal distortion. The resulting input and output spectra for a third 

order model are shown in Figure 3.2. 

Another standard measure of the level of distortion introduced by the 

amplifier is the third order intercept point. It is defined as the output 

power level at which the third order intermodulation frequency TM3, at 2f1 - 

f2, or 2f2 - f1 is equal to the output power of the fundamental f1. The TM3 

intercept point can never actually be achieved due to the saturation effects 

within the amplifier, but because it is independent of the input power it is a 

good measure of amplifier linearity. The intercept point is derived through 

the extrapolation of the small signal response of the amplifier as shown in 

Figure 3.3. Note that at low input power the slope of the fundamental is 1:1 
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while the slope of IM3 is 3:1. 
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Figure 3.3 Definition of Third Order Intercept Point 



The third order power series given in Equation 3.1 can also be used to 

estimate the amplifier performance in the two tone test. If we let 

Vi  = A(cos(a 1t)+cos(o2t)}, substitution into equation 3.1 yields Equation 

3.10, which represents the total output for a third order model, 

(3.10) 

V0 (t) = k2A2 + k2A2cos(o1— (2)t +(k1A + 

+(k 1A + .. k3A3 )cos(o 2t) + k3A3cos(2o1 - 

+.. k3A3cos(22 — o1)t + k2A2cos(o)1+ 02)t + -k2A2cos(2colt) 

+. k2A2cos(22t)+ k3Acos(2u)1+(o2)t + . k3A3cos(2u2 + 

+k3Acos(3@1t)+ k3Acos(3w2t) 

Assuming that the load is 50 ohms, then as was shown in Equation 

3.6 we can write 

1iinear = 2olog(k1A)+ 10 dBm 

P(o1) = 2Olog(k1A4k3A3)+ 10 dBm 

P(2w 1 —w2 )=2Olog(-k3A)+1O dBm 

(3.11) 

(3.12) 

(3.13) 

As equations 3.11 and 3.13 are equal at the IM3 intercept point, we 

can write 
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k1A = 

3Ik3I 

Substituting this result into Equation 3.11 yields 

k3 
_J_ 1 11 25 dBm 

Intercept = 10lo[ 1k3 I J 

Substituting Equation 3.9 into 3.15 results in 

1Intercept = 11dB + 10.63 dBm 

(3.14) 

(3.15) 

(3.16) 

Equation 3.16 is a useful result for mildly nonlinear amplifiers as the 

1 dB compression point is an easily measured characteristic, but it will 

suffer an increasing error as the amplifier nonlinearity increases and the 

third order model becomes less accurate, and so should be treated as an 

approximation. 

32) GrOUD Delay  

The nonlinear amplifier characteristics can also result in phase 

distortion. If the phase shift is linear over the passband of the system, then 

there is a constant time delay for all frequency components passing 

through the system. If the phase response is nonlinear, then the various 

frequency components of the signal will experience different degrees of time 

delay as they pass through the system, resulting in phase distortion. 
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The measure of the phase distortion due to the time delay is the group 

delay, which is defined as the negative of the derivative of the phase shift 

versus frequency. 
d 

td 9 

If the system has a linear phase characteristic, then td is a constant and no 

phase distortion results. 

3.3) AM to PM Distortion  

In addition to the phase distortion caused by a nonlinear phase 

response, further phase distortion can be introduced through AM-PM 

modulation. In this case the amplifier's phase characteristic is dependent 

on the instantaneous amplitude of the input signal. 
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Chapter Four  

The Volterra Series  

So far, the systems that have been discussed have been assumed to be 

memoryless, that is the system output is an instantaneous function of the 

input signal. However, there is a second class of systems in which the 

system output is a function of both the present and past values of the input 

signal. These systems are considered to have a memory. 

The power series used earlier can give an adequate model of the 

system response for a weak memoryless nonlinearity, but is limited in two 

areas. First, the power series is dependent on the input signal, and as such 

cannot be considered a true transfer function. Secondly, the power series 

cannot model a system with memory. This presents a serious limitation as 

the components of most communication systems can be considered to 

possess memory to some extent. It is possible to overcome this limitation 

though through an extension of the power series called the Volterra series, 

which is used in the nonlinear transform function approach. 

This section discusses the Volterra series, and considers the 

nonlinear transfer function concept and its application to multitone 

measurements such as the two tone test discussed earlier. 

4.1) The Volterra Functional Series 

The nonlinear transfer function approach models the response of a 

weakly nonlinear system as a sum of N individual 'responses, as is shown 

in Figure 4.1 [241. The model consists of the parallel combination of N 

blocks, all of which share a common input x(t). The total response is 

obtained by summing the outputs of the blocks yielding y(t). 
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Figure 4.1 (a) Nonlinear System 

(b) Functional Expansion of a Nonlinear System 

The nth order block, which is characterized by the nth order transfer 

function, is of the order n in that if the input x(t) is multiplied by A, then the 

output of the block will be multiplied by A. This does not correspond to the 

degree of a power series, which refers to the highest exponent used in .the 

polynomial. This is illustrated by the fact that the order of the ouput of a 

power series is limited to the degree of the polynomial used, while the 

degree of the output of an nth order nonlinear transfer function can be 

greater than the block's order. 

The transfer functions shown above in Figure 4.1 are known as the 

nonlinear system's Volterra series kernels. 

The use of the Volterra series can be considered as a generalization 

of the convolution integral which is used in linear system analysis. The 

linear portion of the system response is characterized by the first order 

kernel hi, the quadratic portion of the response is characterized by the 

second order kernel h2, and so on until the number of terms is sufficient to 

represent y(t). 

It has been shown by Parente [191 that for any time invariant 
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deterministic system S, there exists a functional F such that, for all real t 

and each <x,y> E S, 

y(t) = F[x(t - U) .=a 

where x is the input to the system, y is the system output, and the system S 

is either linear or nonlinear in nature. The interval (a,b) is called the 

memory of the system, where if a = b = 0, then the system is memoryless, or 

if a = b > 0, then the system is a pure delay. S is realizable if a >= 0, but if a < 

0 the system is non-causal and is non-realizable. 

If the nonlinear system S is continuous [21], then it may be 

represented by a functional power series, also known as the Volterra series, 

as is shown by Ha [18]: 

00 00 

y(t)= y(t)= fh1(u1)x(t—u1)du1 
n=1 

00 00 

+ 5 5h2(u1,u2)x(t—u1)x(t—u2)du1du2 (4.1) 
-00 -00 

00 00 00 
+ 5 5 5 h3(u1,u2,u3)x(t—u1)x(t—u2)x(t--u3)du1du2du3+... 
-0000-00 

where 

y(t)=...fh(u1,u2,...,u)x(t—u1)x(t—u2)...x(t--un)du1du2...dun 

(4.2) 

The function hn in the functional power series is called the nth 

kernel of the Volterra series H, and the term it appears in is called the nth 

order functional of H. It can be seen that the first term of Equation 4.1 is 
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simply the convolution of the impulse response of a linear network, and 

that the series is an extension of the convolution integral used in linear 

system analysis. 

The kernels of the Volterra series are not unique in that 

interchanging the order of the arguments of h(u1,u2,...,u) does not effect 

the output of the kernel. However, a unique kernel can be obtained through 

an operation known as the symmetrization of h, where Sym is defined as 

Sym(h)= 1-1 h(u1,u2,...,u) 
n! all permutationsl 
I of ul,u2,...,u3 j 

(4.3) 

=h(u1,u2,...,ufl) 

Sym {h} is the sum of the values of h , which has been evaluated at 

all n! permutations of the arguments, divided by n!. Any kernel hn can be 

replaced by its symmetrization without altering the output. 

An n dimensional Fourier transform of the nth order impulse 

response can be taken, as shown in Equation 4.4, which yields the nth order 

nonlinear transfer function as 

.00 

H(o1,co2,...,o fl)j 
-00 

(4.4) 

+W2u2+...+(Ou)]du1du2 ... dun 

Conversely, an inverse transfer function can be defined as 
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h(ui,u2 ) ... ,ufl)=f...5Hfl(c)i,o)2,...,(on)exP[J(o1u1 

(4.5) 

+o)2u2+...+o)u)Jdolde)2 ... do)fl 

Note that, as in the case of the nth order kernel, the transfer function 

Hn is not unique in that several nth order kernels may give the same nth 

order output yn for the same input x, again due to the fact that 

interchanging the order of the arguments of h(u1,u2,.. . ,u) does not affect 

the output. Hence the transfer function can also be symmetrized as 

1 
H(wl,co2,...,wfl )=— H(w1,w2,...,w) 

L I all permutations of o)l,a,2,...,w3 

(4.6) 

Substitution of the nth inverse transfer function, as given in Equation 

4.5, into the nonlinear transfer function given in Equation 4.2 yields 

n 
y(t) = J°° ...$H ) n X(coi)exp(jwt)dw (4.7) 

where X(c)) is the Fourier transform of x(t) with frequency coi. Taking the 

Fourier transform of Equation 4.7 yields 

Now the frequency domain version of the functional power series as 

shown in Equation 4.1 can be written as 
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00 

= (CO) (4.9) 

4.1.2) Nonlinear Transfer Functions 

Although it is clear that a weakly nonlinear system can be 

represented by the Volterra series, the problem of how to determine a given 

system's nonlinear transfer functions remains. Ha [18] has shown that, 

given the system equations are known and the system's transfer functions 

can be represented by a Volterra series, a system's nonlinear transfer 

functions can be found through the harmonic input method. 

The harmonic input method is based on the fact that for a Volterra 

series a harmonic input must result in a harmonic output. If we let the 

input be a sum of k exponentials 

K 

x(t) = Ak exp(j(kt) 
k=1 

(4.10) 

where Ak can be complex and (Ok can be any positive or negative real 

number. Substitution of Equation 4.10 into the expression given for the nth 

order Volterra kernel given in Equation 4.2 yields 

n  

yn(t)=.jhn(ui,u2, ... ,un)[J YAk exp{jok(t — u)]du 
i=lk=1 

(4.11) 

K K  n 
= Z  flAk exp(jokt)J° <,.jhn (ul,u2,...,un )fl exp(jwku)du 
k1=1 k=1i=1 i=1 
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The second half of Equation 4.11 can be seen to be the Fourier 

transform of the nth order impulse response as was given in Equation 4.4. 

Substitution of Equation 4.4 into Equation 4.11 yields Equation 4.12 in which 

Hn is a complex constant dependent on the defined input frequencies. 

(4.12) 

K K  Kin 

y (t) = k : I [JA1ç exp(j( t) 
k1=1k2=1 =1Li=1 

K K KI(n 

k1=1k2=1 k=1Li=1 

This result can be used to develop the nonlinear transfer function for 

any order n and number of inputs k. As an example, consider the case for 

two input exponentials (k=2) with the desired kernel being y2(t). In this 

case the input becomes x(t)=Alexp(j(olt)+A2exp(i02t). Using Equation 4.12 

yield 

H(jok1,jak2,...,j(k) 

Ak )Hn (iwk1 , ..., jCOkn  )exp[j(0k1t+. .. +O)t)J 

(4.13) 
2 2 

Y2(t) = Ak Ak H2(j0k I ,i0k2 )exp{j(0k + 'k2 Al 
k1=1 k2=1 

= A1A1H2 (YO 1,jo1)exp(j2olt)+A1A2H2(iCO1,iCO2)eXP[i((j)1+ 0)2)t 

+A2A 1H2(jo2 , j01)exp[j(02 + o1)tl+ A2A2H2(jo2 , j( 2)exp(j2o 2t) 

4.1.3) Two Tone Measurement 

Now that expressions have been derived for the nonlinear transfer 

functions in terms of the Volterra kernels, the remaining problem is to 

relate these results to measurable circuit parameters. This will be 

accomplished by first considering the nonlinear transfer function response 



37 

to a multitone input, and then the specific response for the two tone case 

which corresponds to the two tone test discussed earlier. 

Consideration of Equation 4.12 shows that for any given output 

frequency, y(t) contains n! terms at that frequency, each of which 

corresponds to a permutation of the argument of the exponential o + (02 + 

+o. Ha [18] has shown that the output will contain no other terms at 
this frequency other than those in y(t) if the input frequencies are linearly 

independent, that is, there is no set of rational numbers such that 

=0 (4.14) 

where not all of m can be equal to zero. 

Further examination of equation 4.12 shows that any of the possible 

output frequencies, (Oo = (01 + (02 + ••. +(O, can be represented as ml'01 + 

M2(02 + ... + mko)k, where mj , i = 1, 2, ..., k, are non-negative integers. If 

mi + m + ... + mk=n, then (o = mlo)1 + m20)2 + ... + mkcok is the frequency 

output of the nth order nonlinear transfer function. 

If the nth order transfer function is symmetrized, and if the input 

frequencies are linearly independent, then the sum of all the terms 

containing the frequency (oo = mlo)1 + m202 + ... + mkCOk for the nth 

nonlinear transfer function is given by 

KAmk 
y(t)=n![J  k  k=lmk ! ]Hn (mi[i 1], m2[j 2],... ,mk [iwk ]) exp(j0t) (4.15) 1  

where 

i times 
K F A 

mk = n and m[j'0] = (jot, jco ,.. . ,jU)) 
k=1 
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Now if we consider a K tone real input signal, x(t) 

K 

x(t) = IAkIcos(Ckt+ ZAk) 
k=1 

(4.16) 

K 

= 

k=1 
.exP(i(t)kt)+_t exP(_iU)kt)] 

If we denote A_k = 4, and co = -0k then Equation 4.16 can be 

written as 
KA 

x(t)= _k.exp(j(Okt) 
k=-K 2 
k#O 

then Equation 4.15 can be rewritten as 

y0 (t)=n! 
Mk! 

(A/2)m'  

k•. 
k#O 

(4.17) 

(4.18) 

Hfl(m_k[jco_k],.. . , m_1[ j_1],... mk[jo)kl)exp(jo)ot) 

Equation 4.18 can be used to find the nonlinear transfer function for 

any value of n. As an example, consider one of the third order nonlinear 

transfer functions for a two tone input, at the fundamental frequency u, 

which would be written as R3(-jo1, jwi, iw1). 

The system input would be written as 
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2 

X(t) = : Lexp(jo)kt) 
k=-2 
k#O 

Applying Equation 3.34 with n=3, K=2, and m=[O, 1, 2, 0] where 

o0=[mi(-o), m2(-o)1), ma((ol), m11((2)1, yields 

Y3 (co ) = 3! ri 
2 (Ak/2)mk 

k=-2 k• 
k#O 

H(-jo1,jo1,jco1)exp(jcolt) 

= 6[][IAi / 212 ]H3 
(—ju 1, 

2! 

= I IAlI2AlH3(_jl,jo)l,jo)l)exp(jlt) 

Using this procedure, Ha has shown that for a two tone input and a 

third order nonlinear transfer function, the outputs for the fundamentals 

and the third order intermodulation frequency can be written as 

= IBiIcos(it+ ZB1) (4.19) 

(4.20) 

where 

B1 = AlHl(jcil)+..AAlR3(_jal,jol,jQl)+IA2I2AlH3(_i(O2,iO)1,i(O2) 
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and B2 =.AAH3(jo 1,j(0l,—j()2) 

Although there is some similarity between Equations 4.19 and 4.20, 

and Equation 3.9 which was developed earlier from the power series 

representation, the nonlinear transfer functions are different in that they 

are independent of the input function. These equations will be used as a 

part of the experiment in order to determine the first and third order 

Volterra kernels of the amplifier used. 

42) Volterra Series Feedback Amplifier Analysis  

The analysis of a feedback loop containing a nonlinear element 

cannot make use of linear techniques. Through the Volterra series 

representation of the nonlinear amplifier, the circuit can be successfully 

analyzed with the standard linear control theory techniques. This section 

of the thesis deals with the analysis of the feedback amplifier using the 

Volterra series representation, and the derivation of the nonlinear transfer 

functions for the overall feedback circuit. These equations will be used in 

the prediction of the performance of the proposed modified feedback circuit. 

4.2.1) Nonlinear Distortion Feedback Effects 

The negative feedback amplifier circuit can be represented as a 

feedback control system such as those used in linear system control, as 

shown in Figure 4.2. 
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b 

A(e) 

{3(f) 

y 

Figure 4.2 Nonlinear Feedback Control System 

Narayanan [201 has shown that if the nonlinear amplifier, A(c), is 

represented in a functional expansion by the first three of its Volterra 

kernels, and if linear and frequency dependent feedback is assumed, then 

expressions can be derived for the overall feedback amplifier circuit's 

nonlinear transfer function in terms of the open loop kernels and the 

feedback network as shown below in Figure 4.3 [201. 

h1(f) 

h2(f1,f2) 

h3(f1,f 

(a) 

-"H G1(f) 

x G2(f1,f2) 

-"j G3(f1,f2,f3) 

(b) 
Figure 4.3 (a) Functional Expansion - Nonlinear System with Feedback 

(b) Volterra Kernel Representation of (a) 

The relationships in Figures 4.2 and 4.3 (a) can be written as 
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y = A(E) y = G(x) e = x - b b = 

where A(c), f(y), and G(x) are the operators corresponding to the open loop 

amplifier, the feedback network, and the closed loop amplifier respectively. 

If the variables y, b, and c are eliminated from the system as is shown in 

Figure 4.3 b, then the system equation can be written as 

G(x) = hEx - (G(x))] (4.21) 

If Equation 4.21 is expanded in terms of the closed loop Volterra 

kernels, and the first, second, and third order terms equated, then 

expressions for the closed loop Volterra kernels can be derived [20]. The 

first order linear terms yield 

G1(f) = h1(f)[1—I31(f)G1(f)] (4.22) 

or h1(f)  
1+ 1(f)h1(f) 

(4.23) 

which is simply the linear equation demonstrating that feedback reduces 

the linear gain h1(f) by the loop gain. Equating the second degree terms 

results in 
2 

h2(f1,f2)f[(1—!3(f )G1(f)) 
i=1  

G2(f1,f2) 1+ 1(f1+f2)h1(f1+f2) 
(4.24) 
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Substitution for G1 in Equation 4.24 yields 

(4.25) 

G2 (f 1'2) f h2(f1,f2)  
[1+ 1(f1)h1(f1)J[1+I 1(f2)h1(f2)][1+ 1(f1+ f2)h1(f1-Ff2)] 

Equation 4.25 shows that the reduction of the second order distortion 

products is not only due to feedback of the product frequencies f1 + f2, but is 

also dependent on the feedback of the fundamental frequencies f1 and f2. 

The second order distortion products do not have a serious effect on 

the amplifier linearity performance as they usually fall outside the system 

passband. Of greater concern is the third order distortion products which 

produce the inband intermodulation terms. The effect of feedback on the 

third order products can be examined through equating the third order 

terms in Equation 4.21, resulting in 

G3(f1,f2,f3) = 1h3(f1,f2,f3)ñl(fh)h() 

—2h2(f1,f2 +f3) 1  1(f2 +f3)G2(f2,f3)] 
1-i- 1(f1)h1(f1) (4.26) 

.[ 1 

i+ 1(f1+f2+f3)h1(f1+f2+f3) 

Substitution for G2 in Equation 4.26 yields Equation 4.27, which 

shows that the third order open loop amplifier distortion is reduced through 

a complex interaction of fundamental, second order, and third order 

products. The first part of the equation shows that the third order distortion 

is reduced by both the feedback of both the fundamental frequencies and the 
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third order product frequencies (ie. f1 + f2 + f3). The second term is the 

result of a second order feedback term being combined with a first order 

input and then being acted on by a second order kernel, h2(fi, f243). This 

term is reduced by the feedback at the fundamental, second order, and third 

order products, and is also effected by the second order feedback 3j(f2+f3). 

(4.27) 

G3(f1,f2,f3) = lh3(fl,f2,f3)11 lp(fl)h(f) 

1 
-I. 

—2h2(f1,f2 +f3) i+1(f1)h1(f1) 

.p1(f2+f3)h2(f2,f3) 1+p1(f2)h1(f2) 1+ i(f3)hi(f3)J 

.[ 1 1  

i+ 1(f2+f3)h1(f2+f3)J i+ 1(f1+f2+f3)h1(f1+f2 +f3) 

4.3) Proposed Modified Feedback  

Examination of Equation 4.27 shows that if I h2 I << I h3 I, then the 

second order effects in G3 can be neglected. As this is a realistic 

assumption for a mildly nonlinear amplifier, then Equation 4.27 can be 

written as 

G3(f l,f2,f3) = h3(f l,f2,f3 )rI 1+ Pl(fi)h 

(4.28) 

1+ 1(f1+f2 +f3)h1(11+ f2 + f3) 
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If Equation 4.28 is considered with respect to the lower third order 

intermodulation product of a nonlinear amplifier at 2f1-f2, then Equation 

4.28 yields 

h3(2f1—f2)  •  1  •  1  
G3(f1,f1,—f2) = 1+ 1(f1)h1(f1) 1+f 1(f1)h1(f1) 1+ 1i(f2)hi(f2) 

(4.29) 

1 
• 
1+ 1(2f 1 - f2)h1(2f1— f2) 

Equation 4.29 shows that the reduction of the third order 

intermodulation products is dependent on both the loop gain for the 

fundamental input frequencies and the loop gain for the third order 

intermodulation product itself. Examination of Equations 4.23 and 4.29 

together suggest that it is possible to achieve a reduction of the IM3 product, 

without affecting the circuit gain for the fundamentals, if the loop gain for 

the fundamentals is made small. This would greatly reduce or eliminate 

the effect of the negative feedback on the circuit gain for the desired signal, 

while still supplying some level of reduction of the intermodulation 

products. This idea has been tested through experimentation, the details of 

which are given in the next section. 
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Chapter Five  

Modified Feedback Circuit Design and Analysis  

In order to test whether or not the distortion products can be reduced 

without affecting the circuit gain for the input signal, it is necessary to 

design a negative feedback amplifier that can allow independent control of 

the loop gain of the fundamentals. It was decided that the control of the 

fundamental levels would be best implemented through the cancellation of 

the fundamental signal by combining the input and output signals with the 

required amplitude and phase adjustments at a combiner within the 

feedback loop. The resulting circuit was discussed in Section 2.5, with the 

block diagram shown in Figure 2.9, which is repeated here as Figure 5.1 for 

the reader's convenience. 

A(c) &'i°2 

11 

 Op- C 

H f)ei3 

 NO-
I 110 dB 

Coupler 

Variable 
Attenuation 

Figure 5.1 Experimental System Block Diagram 

This section deals with the analysis of the circuit shown in Figure 

5.1. The principle concern is with those areas which are responsible for 

limitations in the circuit performance, such as cancellation of the 
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fundamental signal in the feedback loop and its effect on bandwidth, and a 

linear system model which leads to a stability and performance analysis of 

the closed loop system. 

The results will show that the useable bandwidth of the circuit 

depends directly on the delay inherent in the amplifier being linearized, 

and that the amount of distortion reduction possible is directly dependent on 

both the amount of total circuit delay and the characteristic of the bandpass 

filter used as the loop filter in the feedback loop. 

5.1) Circuit Analvsi  

This section deals with the analysis of the circuit's effective 

bandwidth and stability performance. The analysis shows that the useable 

bandwidth is directly dependent on the level of cancellation of the input 

signal at the cancellation node (Z3). The circuit stability is analyzed using 

linear control system methods and applying the Nyquist criteria. 

5.1.1) Signal Cancellation 

The level of cancellation of the input signal at the summing node 13 

is cricitcal because it determines the feedback loop gain for the input 

signals, which in turn affects the overall circuit gain, with greater levels of 

cancellation resulting in a greatly reduced loop gain for the input signal. 

The problem of predicting the level of cancellation of the 

fundamentals at the summing node (3) can be reduced to that of the sum 

of two equal amplitude sinusoids, with the same frequency, arbitrary phase 

difference, and different delays. This is shown in Equation 5.1, with the 

starting phases arbitrarily set to zero 



V0 (t) = cos( 0t—( 0t1)+cos(ci 0t—(00't2) 

If we declare that 't2 is greater than 'rj., then 'c2 can be written as 

'C2 = 'tl+'t8 
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(5.1) 

where 't > 0 (5.2) 

Substitution of Equation 5.2 into Equation 5.1 and using an algebraic 

identity yields 

V0(t) = 2cos(o0t— ( o't1 coo T8  )cos(0)0't) 
2 2 

(5.3) 

Equation 5.3 shows the output from the combiner to be a phase shifted 

version of the original signal multiplied by an attenuation factor, which can 

be considered as a sinusoidal envelope in the frequency domain, the 

characteristics of which are determined by the fixed relative delay 'to. The 

envelope magnitude goes to zero when the argument of the second cosine 

term in Equation 5.3 is some integer multiple of it/2. The magnitude of the 

envelope can be represented as 

2cos( OT 
(0 ) (5.4) 

This envelope produces nulls at regularly spaced intervals in the 

frequency domain for each value of c& Equation 5.4 shows that with 

increasing relative delay the frequency spacing between the nulls becomes 

smaller and the bandwidth of the nulls becomes narrower. If we define 
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cancellation bandwidth as the frequency span, centered at a given null, 

over which the attenuation of the signal is equal to or greater than a given 

value, then it can be seen that the cancellation bandwidth decreases with 

increasing relative delay. This effect is shown below in Figure 5.2, which 

plots the cancellation bandwidth for differences in phase of 0't3 = nit radians 

for n=1, 3, and 5, at a normalized center frequency. 

Signal Cancellation at Nulls 1, 2, and 3 
Normalized Center Frequency 

.. 

I 

10 

0 

-10 

-20 

-30 

-40 
0.65 0.75 0.85 - 0.95 1.05 1.15 1.25 

Norma'ized Center Frequency 

1.35 

Figure 5.2, Predicted Attenuation at Cancellation Nulls 1, 2, and 3 

In order to predict the level of cancellation, we first rewrite the 

argument of Equation 5.4 as 

CDt3 
- = n--
2 2f0 

(5.5) 
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where 'ris found tobe 'c= n ----. 
2i 

The level of attenuation for a given normalized frequency relative to 

the unattenuated signal is found from Equation 5.6. 

Attenuation =20 log 
icf 

2 cosl fl ( —•;-- 
2 fo) 3 (5.6) 

Equation 5.6 allows an estimation of the cancellation bandwidth if it 

is assumed that the cancellation envelope is symmetrical about f0. A 

common definition for % bandwidth is 

BW 'upper - lower  = 
fo 

Assuming symmetry about f0, Equation 5.7 can be written as 

or 

BW = 2(f0 - flower) 
fo 

BW 

fo 2 

(5.7) 

(5.8) 

Substitution of Equation 5.8 into Equation 5.6 allows the calculation of 

cancellation bandwidth versus the cancellation level of the fundamentals. 

The cancellation bandwidth determines the feedback amplifier circuit 

useable bandwidth. The calculated bandwidths for n = 1, 3, 5, and 7 are 

shown below in Figure 5.3, where 
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I 
I 

Attenuation = 2O lo( 2cos((n..)1 BW -i-)J 

Cancellation Bandwidth 
Nulls 1, 3, 5, and  

10 

5 

0 

-5 

-10 

-15 

-20 

-25 

-30 
0 5 10 15 20 25 

Percent Bandwidth 

:1 

30 35 40 

Figure 5.3 Cancellation Bandwidth for n = 1, 3, 5, and 7 

(5.9) 

Figure 5.3 illustrates the effect of the difference in delay between the 

two signals at the cancellation node on the cancellation bandwidth. For 

example, for a minimum 10 dB cancellation of the fundamental signal, a 

20% bandwidth can be achieved at the first frequency null, but the 

bandwidth is reduced to 6.6%, 3.9%, and 2.9% for the nulls at n = 3, 5, and 7 

respectively. 

The effect of the loop delay may severely limit the bandwidth of the 

circuit in high frequency applications, where several cycles of energy may 

be stored in the feedback loop. This would result in the cancellation 

occurring at the higher order nulls as shown in Figure 5.3 resulting in a 
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much narrower cancellation bandwidth. 

5.1,2) Linear System Analysis 
TI 

Vin C Vout 

Figure 5.4 Signal Flow Diagram 

Although the nonlinear nature of the amplifier does not allow 

traditional linear system analysis, the performance of the circuit can be 

approximated through the use of a linear amplifier stage with an 

additional noise term. This model is shown in the signal flow graph shown 

in Figure 5.4, where: 

a = splitter/combiner loss, 

H = Amplifier gain and delay characteristic, H= he 3 , 

c = directional coupler attenuation, 

d = lower path delay, e 30 , 

P = variable attenuation, 

B = loop amplifier and loop filter characteristic, B(f)e 30 , 

Ti = intermodulation products. 

The system equations for the signal flow diagram can be written as 
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Vout = eH+rj 

P- = a2V + a2B(adV1 + cfV0t) 

Vout = a2HV + a3BdHV1 + a2BcfHV0t + ii 

a2H(1+aBd)V +11 
V0  (1_ a2BcfH) 

(5.10) 

Note that the denominator of Equation 5.10 contains a difference 

term, rather than the sum which is the usual result given as the transfer 

function for a linear control system. This sign inversion is the result of 

using a combiner at the feedback circuit input node rather than the usual 

difference node. Equation 5.10 can be reduced if we consider the conditions 

necessary for the cancellation of the input signals at the lower summing 

node, which require 

adV + a2 CfHVin = 0 

or acfh(e3° )+e_0)ti = 0. 

Equation 5.11 requires that 

1 
acf= 

(5.11) 

and oYrj = th +nit n=1,3,5,... (5.12) 
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Substitution of Equation 5.12 into Equation 5.10 yields 

Vout = a2HV +  
(1_aBe) 

(5.13) 

Examination of Equation 5.13 shows that for perfect cancellation of 

the input signals, the overall circuit gain is unaffected by the feedback loop. 

This means that the reduction of circuit gain caused by the negative 

feedback has been eliminated. Although it was shown in section 5.2.1 that 

perfect cancellation of the input signal is not possible over a useable 

bandwidth, significant cancellation is possible which implies that the 

performance of the negative feedback amplifier can be improved. 

Secondly, Equation 5.13 demonstrates that a reduction of the 

distortion products will still occur, and also that the amount of that 

reduction can be determined through the characteristic oft he feedback 

filter and amplifier. This characteristic can be directly related to the 

Volterra kernels for the feedback amplifier derived earlier. 

The amount of reduction in the distortion products is limited by the 

stability of the feedback loop, which is investigated in the next section. 

5.1.3) Stability 

In order to investigate the stability requirements, the circuit will be 

approximated by a linear system with delay. Since time domain techniques 

such as the Root Locus are not suitable for the analysis of a system with 

delay, the Nyquist plot was chosen to investigate the system stability. 

The Nyquist plot is a frequency domain analysis which predicts the 

stability of the closed loop system through graphically examining the polar 
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plot of the response of the open loop. For a system with delay such as the 

circuit examined here, the Nyquist criteria for a stability can be stated as 

follows: for the closed loop system to be stable, all intersections with the real 

axis of the Nyquist locus must occur to the right of the -1 + jO point [22]. In 

this case, because of the sign inversion seen in Equation 5.10, the critical 

point becomes 1+j0, and the intersections of the locus with the real axis 

must appear to the left of the critical point. 

As an example of the effects of delay on the system stability, consider 

the characteristic equation of Equation 5.13. The loop response is seen to be 

aBe J° h, which is a combination of the loop filter, feedback amplifier, and 

combiner responses. If the combiner loss is absorbed into the overall 

feedback amplifier characteristic, the loop response can be represented by a 

filter characteristic with gain and delay. 

In order to determine the optimum filter response for the feedback 

loop, several different types and orders of filters were examined. Lowpass 

prototypes for Butterworth, Bessel, and Chebychev filters were transformed 

to bandpass prototypes using alowpass to bandpass transformation, and 

the Nyquist plot of the responses examined for the maximum loop gain for 

different levels of loop delay. In this case, the maximum available loop gain 

is defined as the gain at which the Nyquist locus first intersects the critical 

1 + jO point on the real axis. 

As an example of the procedure used, consider a second order 

Butterworth filter. In order to test the gain and delay effects, a second order 

Butterworth bandpass filter was derived by transforming the normalized 

lowpass, shown in Equation 5.14, 
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F(p)= p2+p+i 

to a bandpass characteristic using a standard lowpass to bandpass 

transformation {23], 

(5.14) 

p=(s+.Q (5.15) 
s) 

where Q is defined as the inverse of the filter bandwidth. Equation 5.15 is 

substituted into Equation 5.14, and the result is scaled with gain and delay 

terms, resulting in Equation 5.16. 

= 
9 2 

1 

54+53+ 2Q2+152+s+l 

Q Q2 Q 

• Gain • e_St (5.16) 

The effect of the loop delay on the open loop feedback response can be 

illustrated by examining the Nyquist plot for Equation 5.16 for various gains 

and delays. First, with the gain set to unity, the loop response can be 

observed for different values of delay. The Nyquist plots for Equation 5.16 

with delays of 0, it, 5m, and 9it radians are shown in Figure 5.5. 

Examining Figure 5.5 shows that with the introduction of delay into 

the system, the locus of the Nyquist plot begins to spiral about the origin, 

with the number of intersections with the real axis increasing with 

increasing delay. In the limiting case, with enough delay the Nyquist locus 

will become essentially circular and the maximum loop gain will be limited 

to 1. 
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Nyquist Plot 
Second Order Butierworth 
Q1O, Gain-1, DelayO 

(a) 

Nyquist Plot 
Second Order Butterworth 
QmiO, Gain1, Delay= 5p1 

(d) (c) 

(b) 

Nyquist Plot 
Second OrierButtetworda 
Q=iO, Gain-1, Delay-ipi 

Nyquist Plot 
Second Order Butterworth 
Q.iO, Gain-1, Delay-9 p1 

Figure 5.5 Nyquist Plots for Increasing Delay 

Since the intent is to maximize the loop gain of the circuit, it is clear 

that the overall circuit delay must be minimized. Figure 5.6 shows the 

Nyquist plots for the maximum achievable gains for delays of lit, 3it, Sm, 

and 9m radians, with gains of 18, 10, 6, and 3 dB respectively. The delays 

and gains result in a corresponding maximum reduction in distortion of 

19, 12.4, 9.5, and 7.6 dB. 
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Nyqulst Plot 
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Im 

Figure 5.6 Nyquist Plots for Maximum Gain with Increasing Delay 

This procedure was carried out for first, second, and third order 

Butterworth and Bessel lowpass prototype filters, as well as second and 

third order Chebychev filters with passband ripples of 0.1, LO, and 3 dB. 

The delays used were ic, 3it, 5it, and 7m radians. The resulting maximum 

available loop gain in dB is given in Table 5.1. 
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Filter Q 3 5 10 
Loop Delay g 37c 57c 77c 7c 37c 57c 7n n 37c 5ic 7it 

Butterworth 1 9.9 4.9 2.4 1.6 13.5 6.9 4.4 3.1 19.2 11.4 8.2 6.4 
2 .8.9 2.7 1.1 .54 12.2 5.5 2.9 1.6 18.0 10.0 6.0 4.7 

3 4.0 1.0 0.3 0 5.7 2.4 1.1 0.4 7.3 3.6 3.0 1.9 

Bessel 1 9.9 4.9 2.4 1.6 13.5 6.9 4.4 3.1 19.2 11.4 8.2 6.4 

2 6.9 2.2 1.1 0.6 10.5 4.2 2.3 1.5 15.9 8.2 5.4 3.7 

3 3.9 1.2 0.6 0.3 6.0 2.4 1.3 0.8 8.6 4.6 3.0 2.2 

Chebychev 
ripple=0.1 dB 

ripple=1 dB 

ripple=3dB 

2 4.0 0.2 0 0 7.5 1.6 0 0 13.2 5.2 2.5 1.2 

3 1.5 0 0 0 2.9 0 0 0 4.4 1.9 0.9 0 

2 0 0 0 0 9.9 2.4 0 0 15.9 7.3 3.6 1.7 

2 4.7 0 0 0 9.1 0.9 0 0 14.9 6.0 2.3 0 

Table 5.1) Maximum Available Loop Gain (dB) For Butterworth, Bessel an 
Chebychev Filter Response 

Examination of Table 5.1 shows that the maximum loop gain is 

obtained with the single pole Butterworth bandpass filter. It is also clear 

that the total amount of delay is a critical parameter for the circuit 

performance. In order to achieve useful reductions in the distortion level 

the total loop delay should be less than 5ic radians, which may not be 

possible for high frequency amplifiers. 

Another limitation is in the Q, or bandwidth, of-the feedback loop, as 

the maximum loop gain is inversely proportional to the circuit bandwidth. 

Table 5.1 shows that levels of cancellation comparable to those achieved by 

the DSP techniques, such as 20 dB or greater reduction in TM3, are only 

possible for circuits with a total delay of it radians and less than a 5% 

bandwidth. This limits the circuit applications to relatively narrow band 

systems such as cellular radio. 

If we make some assumptions about the circuit operation, then we 

can make a prediction of the bandwidth / IM3 reduction trade off. The 

required assumptions are: 
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1) The cancellation node is operating at relative delay between the 

two signals of 7t radians, allowing the greatest cancellation 

bandwidth. 

2) The minimum acceptable cancellation of the fundamentals in the 

feedback loop is 10 dB, giving a 20% maximum circuit bandwidth, 

as shown in Figure 5.3, and a maximum reduction in the 

amplifier gain of about 1 dB. 

3) The feedback loop filter is a single pole Butterworth. 

4) The cancellation of the fundamentals is large enough to neglect 

their effect, allowing us to consider the loop gain at the IM3 

frequency only. 

5) The circuit bandwidth is the inverse of the Q of the Butterworth 

bandpass filter used in the feedback loop. 

While assumption four makes the calculation much simpler, it is not 

entirely true and results in a slightly optimistic result. Now considering 

those frequencies that are at the -3dB points of the loop characteristic, a 

calculation of the minimum reduction in the IM3 for a given bandwidth can 

be made using 

IM3 = 20Log 
1  

1— 1h1(f_adB) 
I 

dB. (5.17) 
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Equation 5.17 has been plotted in Figure 5.7 for 3 dB bandwidths of 0 

to 20 %, and for total circuits delays of it, 3ic, 5ir, and 7ir radians. 

Minimum IM3 Reduction 

vs 
3 d Loop Bandwidth 

t "x total loop delay 

lit 

= 3ir 

0 5 10 
3 d BaIUhVidth (%) 

15 

Figure 5.7 Minimum IM3 Reduction vs Circuit Bandwith 
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Chapter Six 

Experimental Circuit .Measurements. and Results  

This section deals with the construction of the test circuit, the 

experimental procedures used, and the test results obtained. The 

experiments address the cancellation bandwidth, reduction of the distortion 

products, and the circuit stability issues discussed in Chapters four and 

five.. A comparison between the predicted and measured performance is 

also made. 

6.1) Circuit Realization 

In constructing the test circuit, it was decided to use available 

modules wherever possible. RF Minicircuits® was the primary choice due 

to the component availability and relatively low cost. It was necessary to 

build a custom variable attenuator and a bandpass filter in order to 

complete the circuit hardware requirements. Due to the type of circuit 

construction used, the delays inherent in the circuit became quite large, 

which resulted in relatively low, test frequency of 305 MHz. 

The final realization is given below in Figure 6.1, which shows the 

test circuit and corresponding test set up. The required delays for tj and 'C3 

were realized using lengths of coaxial cable. 

6.1.2) Circuit Module Specifications 

RF Minicircuits ZA3PD-1.5 combiner 

Frequency Range 500 - 1500 MHz 

Isolation 20 dB 

Insertion Loss 6.2 dB 
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RF Minicircuits ZFSC -2-5 combiner 

Frequency Range 10- 1500 MHz 

Isolation 30 dB 

Insertion Loss 3.3 dB 

Main Amp RF Minicircuits ZHL-2-8 amplifier 

Frequency Range 10- 1000 MHz 

Gain 27 dB 

1 dB Compression Point +29 dBm 

3rd Order IP +38 dBm 

FB Amp RF Minicircuits ZFL 1000GH amplifier 

Frequency Range 10- 1000 MHz 

Gain (variable) 24 dB 

1 dB Compression Point +13 dBm 

3rd Order IP +25 dBm 

Coupler RF Minicircuits ZFDC-10-2 directional coupler 

Frequency Range 10- 1000 MHz 

Coupling 10.75 dB 

Insertion Loss 1.5 dB 

Directivity 30 dB 

Note that although the frequencies used fell below the specified 

values for 1, the module performed satisfactorily with a slightly increased 

insertion loss over the specification given by RF Minicircuits. The values 
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given for 1 in the specification above are measured results. 

Although the commercial parts were satisfactory for most of the 

experimental circuit, it was necessary to develop a continuously adjustable 

attenuator and a bandpass filter centered on the cancellation circuit's 

passband. 

6.1.3) Adjustable Attenuator 

In order to achieve the required amplitude balance between the 

coupled output signal and the sampled input signal at E3, it was necessary 

to have a continuously adjustable attenuator with a fine resolution. 

Available commercial attenuators are indexed in 1 dB steps, which did not 

give the required level of cancellation at 13. To ensure good cancellation, a 

custom attenuator was constructed. 

5dBPad I 2-4dBPad 5dBPad 

3M I. p.. 

-j-

Figure 6.2 Adjustable Attenuator Circuit Diagram 

The attenuator was built on FR4 fiberglass protoboard using surface 

mount resistors and a single 50 ohm potentiometer, with SMA connectors 

at the input and output ports. A 5 dB resistive pad is placed at each port of 

the attenuator in order to reduce the effects of the mismatch caused by the 

potentiometer. The result was a broad band attenuator with good return 



66 

loss and a continuous adjustment range of 12 to 14 dB insertion loss. The 

circuit diagram is shown in Figure 6.2. 

6.1.4) Banclpass Filter 

In order to ensure circuit stability, and to isolate the effects of the 

fundamental and TM3 feedback from the harmonics, it was necessary to 

place a bandpass filter in the feedback loop. In order to match the feedback 

loop's center frequency, which was determined by the delay inherent in the 

cancellation circuit, the filter's center frequency was set to 305 MHz. 

Again, because commercial alternatives were deemed to be either too 

expensive or have an excessively long delivery time, a custom filter was 

required. It was decided to construct a simple custom bandpass filter in 

order to demonstrate the principles of the circuit. 

A single pole, quarter waveresonator filter was chosen due to its 

simplicity of construction. The equivalent circuit and its realization are 

shown below in Figure 6.3. The ceramic resonator is a quarter wave length 

of transmission line that has been shorted at one end. The transmission 

line is made up of a low loss, high dielectric constant material with an Cr of 

90, that has been coated with a conductive material. At the quarter wave 

frequency, the impedance appearing at the open circuit end of the resonator 

exhibits a high Q parallel resonance characteristic. In this case, the 

resonator used was a Murata Erie DRRO6OKER46OT, with fc = 460 MHz and 

aQof450. 

The resonator was matched to 50 ohms through capacitive 

impedance transformers as shown in Figure 5.6. As the equivalent values 

of the resonator's CO, L0, and R are unknown, a circuit analysis and design 
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was not performed. 

The filter was built and tuned on the bench on FR4 board using 

surface mount capacitors and SMA connectors. Qualitatively, the filter's f 

is primarily determined by C, while the coupling, and hence the insertion 

loss and passband Q, are determined by Cs. 

 II II  
Cs LI CS 

Cp 

T 
6 pF 

 II  
22 pP 

(a) 

11  
18 pF 

4 Ceramic Resonator I 7 pF 
f=46O MHz, 2..=9O - 

Q=450 

(b) 

Figure 6.3 a) Filter Equivalent Circuit 

b) Filter Circuit Diagram 
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The filter passband and reflection loss were measured on a network 

analyzer, with the resulting plots shown in Figure 6.4. It is a 

characteristic of coupled quarter wave resonator filters to exhibit a spurious 

passband, which can be observed in Figure 6.4. In most systems the 

spurious passband falls outside the system passband but in this case, 

because of the high bandwidth of the Minicircuits components, the 

spurious response falls within the circuit's limits. This was initially a 

concern because it was felt that the spurious passband could have led to 

stability problems. This was disproved later in the experiment. 

6.2) Experimental Procedure and Results  

In order to prepare for the experiments, the circuit went through a 

two stage set up. In the initial stage, the feedback loop was tuned for stable 

operation, at a maximum loop gain, as a negative feedback amplifier 

centered at 305 MHz. The second stage was to tune the cancellation loop 

and attenuators such that optimum fundamental cancellation was 

achieved at a 305 MHz center frequency. This cancellation corresponds to a 

difference in delay of it radians between the two signals, as was discussed 

earlier. 

During the construction of the cancellation loop, a single SMA 

adapter was inserted as a part of ti. This adapter was of the same phase 

length as the set of SMA attenuators which were to be used in the 

experiment to attenuate the feedforward of the input signal in order to vary 

the level of fundamental cancellation within the feedback loop. 
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6.2.1) Cancellation of Fundamentals 

The initial set of measurements were intended to confirm the 

operation of the cancellation node 13, and to compare the results with those 

predicted in section 5.2.1. 

A single constant amplitude low power tone, which was swept 

several times from 200 to 400 MHz, was input to the circuit and the 

resulting output captured on a spectrum analyzer that had been set for 

maximum hold on the trace. The relative delay was then increased from lit 

radians to 3it and then to 5ir radians and further measurements taken. The 

results were then normalized in amplitude to give a zero dB reference level, 

and plotted against Equation 5.6 with f0=305 MHz. Both the measured and 

calculated results are plotted below in Figure 6.5, with good agreement 

being achieved in all cases. 
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Figure 6.5 Measured vs. Predicted Signal Cancellation 
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The level of agreement between the measured data and predicted 

cancellation also supports the prediction of the cancellation bandwidth, 

which was given in Figure 5.3, as the same equation was used in both 

cases. The measurement also confirms that the circuit's cancellation node 

is operating at its optimum point, with only it radians difference in phase 

between the two input signals. 

6.2,2) Circuit Performance Measurements  

The second test was to measure the amplifier's output and IM3 

performance for open loop, closed loop, and closed loop with various levels 

of cancellation of the fundamentals at E4. A two tone test was used with 

f1=304 MHz and f2 = 306 MHz, with the input signal power to the circuit 

ramped from -14 to + 6 dBm. The cancellation level was adjusted by 

inserting different values of SMA attenuators into the cancellation loop. 

Attenuator values of 0, 3, 6, 10, and 20 dB were used, resulting in 

cancellation levels of 30, 11.8, 7.5, 4.5, and 0.81 dB respectively for f1 and f2 

at the output of 13. 

The amplitudes.of the fundamentals and IM3 frequencies, f1, f2, 2ff-

f2, and 2f2-f1, were measured for the open loop, closed loop, and closed loop 

with cancellation. The resulting plots are shown below in Figures 6.6, 6.7, 

and 6.8. Figure 6.6 shows an example of a typical output spectrum 

measured for the two tone test for both the open and closed loop cases. 

Figures 6.7 and 6.8 give the measured results for the fundamental output 

power and the IM3 output power respectively. Only the information for f1 

(304 MHz) and 2f1-f2 (302 MHz) have been plotted in figures 6.7 and 6.8 

because of the symmetry of the results. 
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Figure 6.6 Two Tone Test Output Spectrum 

311 

Examination of Figures 6.7 and 6.8 yields three observations. The 

first is that the gain of the negative feedback amplifier can be modified 

through the cancellation of the input signal in the feedback loop. 

The second observation is that there is a minimum level of distortion 

reduction even if the input signal is effectively completely canceled in the 

feedback loop. This is shown by the 30 dB cancellation case, where the 

output power is unaffected by the negative feedback, while there is still an 8 

dB reduction in IM3, which is equal to the loop gain. This supports the 

results of the Volterra series analysis of the feedback amplifier discussed in 

section 4.3. 

Finally, it is clear that the effects of the feedback and cancellation are 

reduced as the amplifier begins to saturate, resulting in a convergence of 

the traces. 
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Although Figures 6.7 and 6.8 give an an adequate representation of 

the circuit performance, a more accurate understanding can be obtained 

by plotting the circuit gain and distortion reduction normalized with 

respect to the Fl output power as in Figures 6.9 and 6.10. 

Measured Circuit Gain 
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-.-
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Fl Output Power (dflm) 

Figure 6.9 Measured Gain With Cancellation 
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Figure 6.10 Normalized IM3 Output Power 
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Figure 6.9 clearly shows the effects of the cancellation of the 

fundamentals in the feedback loop and the resulting effect on the circuit 

gain. At the maximum cancellation point, the circuit gain is equal to the 

open loop case, while reducing the level of cancellation correspondingly 

reduces the circuit gain. 

Figure 6.10 shows the TM3 output power normalized with respect to 

the f1 output power, and plotted against the f1 output power. The 

normalization removes the reduction in the intermodulation products 

caused by the lower ouput power due to the the negative feedback. The 

remaining reduction, which is shown in Figure 6.10, is the effect of the loop 

gain of the circuit at the intermodulation frequency as shown in the 

Volterra series analysis. 

When both figures are considered, it is clear that the circuit with 

cancellation can achieve a reduction in the distortion products equal to that 

of the closed loop amplifier without the subsequent reduction in circuit gain 

that is a result of the closed loop case. 

It is clear then that the key parameter in the reduction of the 

intermodulation products is the loop gain of the circuit at the IM3 

frequency. The level of loop gain achievable is determined by the stability 

limits of the circuit. 

6.2.3) Volterra Kernels  

The next set of measurements were to determine the amplifier and 

feedback loop Volterra kernels. With reference to Figure 6.1, the input was 

taken to be at M, while the open circuit output was taken to be at the output 

of the directional coupler, and the output of the feedback loop with various 
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levels of cancellation was taken to be at the second input to combiner E4. 

All of the linear kernel measurements were taken on an HP 8510 network 

analyzer. 

Cancellation 111(302 MHz) 

(dB) 

111(304 MHz) 

(dB) 

111(306 MHz) 

(dB) 

H1(308 MHz) 

(dB) 

Open Loop 23.5 L-150.9° 23.5 L144° 

Closed Loop 0.094 Z 196° 0.1155 L 187° 0.0998 L 178° 0.070 L 168° 

30 dB -30.0 L195° -30.1L186° -30.5 Z179° -30.1L161° 

11.8 dB -11.8 L 196° -11.8 L 185° -11.8 L 178° -11.8 L 164° 

7.5 dB -7.4L195° -7.4L185° -7.5L175° -7.5L166° 

4.5 dB -4.48 L 195° -4.49 L 185° -4.5 L 176° -4.5 Z 167° 

0.8]. dB -0.81 L 195° -0.81 L 185° -0.81 L 176° -0.82 L 167° 

Table 6.1 Linear Volterra Kernel Measurements 

Although the linear Volterra kernels do not give enough information 

to model the amplifiers nonlinear response, they can be used to make an 

estimate of the relative performance between the open and closed loop 

cases. The reduction in the output of the fundamental tones can be written 

as 

i(f1) = 20log(B1) (6.1) 

where 

B1= 1 
1- 31h1(f1) 

and the reduction in the output of the third order intermodulation tones can 

(6.2) 
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be written as 

A(2f1—f2)= 2Olog(B3) (6.3) 

where 

B3(2f1—f2)= (6.4) 
(i 1  1 1 — 1h1(f1))2 1— f31h1(f2) 1— 131h1(2f1 - 

As an example, consider the performance for the amplifier as shown 

in Figures 6.7 and 6.8. At an input level of -5 dBm, the reduction in the 

output of the fundamental is shown in the figure to be 5.9 dB, while the 

reduction in the third order intermodulation product is shown to be 26.7 dB. 

In comparison, by converting the dB values to linear for the closed loop 

kernels given in Table 1, and then substituting them into Equations 6.2 and 

6.4, B1 and B3 can be calculated as 

B1(3O4MHz)= 1  O.4976L-3.5° 
1-1.01339Z187° 

B3 (302MHz) =  1  •  1  •  1  
(i_ 1.61339z 1870)2 1— 1.01156Z178° 1-1.01088Z1960 

B3 (302MHz) = O.06182Z— 10.5° 

which yields 

(3O4) = 2O1og(BiI) = —6.06dB 

and i(3O2)= 20 log (IB3I)= —24.2 dB. 

The result for f1 is in good agreement with the measured results 
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shown in Figure 6.7, while there is an error of 2.5 dB in the reduction of the 

2f1 - 12 intermodulation frequency as shown in Figure 6.8. 

In order to fully predict the performance of the negative feedback 

amplifier using the Volterra series, it is also necessary to determine the 

third order kernels, as was shown in Equation 4.9. Although it is not 

possible to measure these kernels directly on the network analyzer, they 

can be extrapolated from the amplitude data gathered from the two tone test 

described in section 6.2.2. As the linear kernel Hi(fi) is known from the 

measurements, H3(f1,11,-f1) and H3(f2,f1,-f2) can be determined through 

curve fitting equation 3.27 to the amplitude data gathered as discussed in 

section 6.2.2. As shown in equation 3.27, the outputs at fj. and 211-12 can be 

written as 

y() (t) = jBilcos(01t+ ZB1) (6.5) 

Y(2(1_w,)(t) = IB2Icos((2i-2)t+ LB2) 

(6.6) 

where 

(6.7) 

B1 = A1H1(jo 1)+ .AA1H3 HO) 1,jo1,jw1)+ .JA2l2AjH3(_jco2,jcol,jw2) 

and B2 =.AAH3(jo1,ja 1,—jo2) (6.8) 

If we assume a 50 ohm load, the power in dBm delivered to the load for 

either f1 or 211-12 can be found as 
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load = Re[ 10 log( 10B2)] dBm (6.9) 

The values for H3(f1,f1,-f1) and H3(f2,fl,-f2) were found by using the 

measured value for H1(304 MHz) and curve fitting to the 304 MHz data 

using Equation 6.9. The constraints for the curve fit were that the resulting 

values must predict both the f1 power output in dBm and the IM3 output 

power at 302 MHz in dBm. H3(f1,f1,-f1) and H3(f2,fi,-f2) were found to be 

H3(fi,fi,-fi) = 2 +j6 and H3(f2,fl,-f2) = 5.5 +j8. 

A comparison between the measured and calculated output powers 

for the open and closed loop cases have been plotted in Figures 6.9 and 6.10. 

The output powers for the closed loop calculations were found using the 

Volterra feedback amplifier Equations 4.3 and 4.9, shown again below as 

6.10 and 6.11, 

G3(304MHz) = 

G1(304MHz) = H1(304MHz)  

1+131h1(304MHz) 
(6.10) 

(6.11) 
H3(304MHz) 1  1  

1+31h1(304MHz) 1+31h1(304MHz) 1+ 1h1(306MHz) 

1 

1+ 1h1(302MHz) 

with the measured values of the feedback Volterra kernels shown in table 

6.1 used for the loop gains in the equations. Examination of Figures 6.11 

and 6.12 show good agreement between the calculated and measured values 
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for the open loop and closed loop cases. A similar calculation was 

performed for the cancellation cases, also using Equations 6.10 and 6.11. 

Figures 6.13 and 6.14 also show good agreement between the measured and 

calculated cases for different levels of fundamental cancellation within the 

feedback loop. 
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6.2.4) Loop Gain Measurements and Stability 

In order to optimize the intermodulation product reduction, it was 

necessary to maximize the open loop gain. To investigate the stability and 

loop gain limits of the circuit, measurements were taken in both the stable 

and unstable circuit conditions. 

The maximum loop gain condition was determined by increasing the 

gain of the feedback loop until a 260 MHz oscillation started, and then 

backing off the gain just enough to stop the oscillation. This condition was 

determined by observing the output of the circuit on a spectrum analyzer 

with the circuit input terminated in 50 ohms. The resulting noise spectra 

are shown below in Figures 6.15 and 6.16. Examination of these figures 

shows that the circuit has a tendency to oscillate at certain frequencies, 

which will be shown later to be related to the intersections of the Nyquist 

locus with the real axis as was discussed in Section 5.2.3. 
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Noise Spectrum With Oscillation 
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Figure 6.15 Noise Spectrum with Oscillation 
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Figure 6.16 Noise Spectrum 
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Figures 6.16 and 6.17 show a 40 dB decrease in power at 260 MHz 

between the stable and oscillating conditions. The drop in power was very 

abrupt as the loop gain was decreased by about 0.5 dB, which indicated that, 

even though the noise floor indicates a tendency toward oscillation, the 

circuit was no longer oscillating. This was taken to be the maximum loop 

gain case. 

With the maximum loop gain condition set, the next step was to 

observe the effects of the feedback loop characteristic and delays. An initial 

measurement was made of the bandpass filter without any delay, which is 

shown in Figure 6.17. The filter's spurious passband can be clearly 

observed in the Nyquist plot, but it will be shown in the next set of 

measurements that it does not play a role in determining the stability of the 
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system. 
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Figure 6.17 Bandpass Filter Nyquist Plot 

The next measurements taken were of the open loop frequency 

response for both the no cancellation and maximum cancellation cases. 

The Nyquist plots of the resulting measurements are shown in Figures 

6.18, 6.19, and 6.20. 

Figure 6.18 shows the open loop response for the no cancellation case. 

When this figure is compared to the circuit noise plots shown in Figures 

6.15 and 6.16, it can be seen that those frequencies which showed a tendency 

toward oscillation in the noise plots are the same as those frequencies at 

which the Nyquist locus intersects the real axis just to the left of the 1 + jO 

point. This result supports the shifting of the stability critical point from 

the standard value of -1 + jO to 1 + jO as was discussed in the linear analysis 

given in Section 5.2.2. The figure also shows the values for the Volterra 

kernels for the negative feedback amplifier. 
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Nyquist Plot 
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Figure 6.20 Expanded Open Loop Nyquist Plot, Maximum Cancellation 

Figure 6.19 shows the effect of the addition of the cancellation of the 

fundamentals to the feedback loop. In order to see these effects, the 

information was replotted in Figure 6.20 in an expanded scale with the 

frequency range limited to 250 MHz to 350 MHz. It can be seen in Figure 

6.20 that the loop gain for the fundamentals has been reduced by more than 

20 dB. 

Examination of the Nyquist plots confirms that the key parameter in 

determining the loop gain, and hence the reduction in the IM products, is 

the characteristic of the loop filter. In order to improve the response of the 

circuit, it would be necessary to either reduce the level of circuit delay or to 

modify the amplitude/phase characteristic of the filter in order to reduce 

the magnitude of the loop gain at the intersections with the real axis. 
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Chapter Seven  

Conclusions and Future Work 

The analysis and experimentation have clearly demonstrated that 

the intermodulation products of a mildly nonlinear amplifier can be 

reduced through the use of negative feedback without the loss of gain that is 

characteristic of the standard negative feedback amplifier. Alternatively, 

the proposed circuit would allow an increase in output power from the 

amplifier for a given level of intermodulation output power. 

It was also demonstrated that the Volterra series and the resulting 

nonlinear transfer functions can be used in the analysis and prediction of 

the amplifier's performance, by using only the system level parameters. Of 

particular interest is the use of the linear Volterra kernels to predict the 

effect of feedback on the fundamental and third order intermodulation 

products. The linear kernels can be easily measured on a network analyzer 

and the amplifier's relative performance predicted using two equations. 

The circuit proposed has limitations and tradeoffs in useable 

bandwidth and degradation of the amplifier gain, which are dependent on 

the total delay within the feedback loop, the operational class of the 

amplifier, and the reduction of the fundamentals in the feedback loop 

achieved at the cancellation node. The relatively narrow bandwidth of the 

circuit would make it unsuitable for broadband applications, but could be 

used in a narrow band application such as digital cellular. 

Although the prototype circuit successfully demonstrated the 

principle of the circuit, the 8 dB reduction in the intermodulation products 

cannot be considered adequate considering the levels of reduction achieved 

by the Cartesian Feedback or the Adaptive Linearization techniques 
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discussed in Chapter 2. The prototype circuit does compare favorably 

though in its simplicity and ease of implementation. 

Future work would focus on both the reduction of the total circuit 

delay, and the improvement of the response characteristic of the feedback 

loop. The reduction of the circuit delay would be accomplished through the 

design of circuit using discrete components, which would minimize the 

delays seen in the experiment. If reduction in delay was great enough, the 

phase shift in the feedback network would be reduced enough to allow for a 

greater loop gain and hence an improved level of linearization. 

The improvement of the response characteristic of the feedback loop 

would require either the development of bandpass filter that was optimized 

for this application, such that its magnitude/phase response would allow 

for a greater loop gain, or the use of a nonlinear element in the feedback 

loop to tailor the magnitude/phase response. In either case the focus would 

be to increase the stability of the circuit such that a greater loop gain could 

be used resulting in a greater level of distortion reduction. 
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