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We use the under-recognized income accounting identity to provide an important theoretical basis for using
the Cobb-Douglas production function in IT productivity analyses. Within the income accounting identity

we partition capital into non-IT and IT capital and analytically derive an accounting identity (AI)-based Cobb-
Douglas form that both nests the three-input Cobb-Douglas and provides additional terms based on wage rates
and rates of return to non-IT and IT capital. To empirically confirm the theoretical derivation, we use a specially
constructed data set from a subset of the U.S. manufacturing industry that involve elaborate calculations of
rates of return—a data set that is infeasible to obtain for most productivity studies—to estimate the standard
Cobb-Douglas and our AI-based form. We find that estimates from our AI-based form correspond with those
of the Cobb-Douglas, and our AI-based form has significantly greater explanatory power. In addition, empirical
estimation of both forms is relatively robust to the assumption of intertemporally stable input shares required
to derive the AI-based form, although there may be limits. Thus, in the context of future research the Cobb-
Douglas form and its application in IT productivity work have a theoretically and empirically supported basis
in the accounting identity. A poor fit to data or unexpected coefficient estimates suggests problems with data
quality or intertemporally unstable input shares. Our work also shows how some returns to IT that do not show
up in output elasticities can be found in total factor productivity (TFP)—the novel ways inputs are combined to
produce output. The critical insight for future research is that many unobservables that have been considered
part of TFP can be manifested in rates of return to IT capital, non-IT capital, and labor—rates of return that
are separated from TFP in our AI-based form. Finally, finding that the additional rates of return terms partially
explain TFP confirms the need for future IT productivity researchers to incorporate time-varying TFP in their
models.
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1. Introduction
The study of returns to IT investment through pro-
duction theory has been the source of substantial con-
tributions to both knowledge and practice. Although
research in this area occurred before, the starting
point for the cumulative tradition is usually seen
to be Brynjolfsson and Hitt (1996). This and subse-
quent work used a mathematical function to represent
a production function that embodies the relation-
ship between inputs and outputs. However, the level
of analysis in which a production function can be

used to measure the relationship between inputs and
output is less clear. This is embodied in part by
the Cambridge Capital Theory Controversies (see,
e.g., Robinson 1953–54, Sraffa 1960, Solow 1955–56,
and Samuelson 1962 for seminal contributions to the
debate, and Cohen and Harcourt 2003 for a recent
review article) whereby Cambridge (UK) theorists
questioned whether a production function could yield
meaningful measures when aggregated to industry or
economy levels and whether an aggregate production
function exists at all. This is due to two concerns.
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One is that different physical inputs have to be aggre-
gated into a single input measure such as aggregating
hardware, software, and telecommunications equip-
ment as IT capital. The other is that the mathemat-
ical conditions to construct an aggregate production
function from a set of different firm-specific produc-
tion functions are quite restrictive. Indeed, the same
aggregation concerns applies to many firm-level stud-
ies where Fortune 500 firms often aggregate dissimilar
divisions, and divisions have portfolios of products,
each with differing inputs and production functions.
Meaningful measurement is complicated because pro-
duction functions contain an element called total
factor productivity (TFP) that represents effects on
productivity that are not directly attributable to indi-
vidual inputs. TFP is often interpreted as technologi-
cal progress and is also known as the Solow residual
or as multifactor productivity (MFP). Consequently,
returns to IT measured through production functions
are sometimes viewed as disconnected from genera-
tors of IT value that occur at the process level.

We counter the issue of whether aggregate produc-
tion functions exist and what this means for measure-
ment by using an important and under-recognized
perspective, the income accounting identity, to pro-
vide a theoretical basis for the Cobb-Douglas produc-
tion function—the form used most extensively in the
literature empirically investigating returns to IT. The
Cobb-Douglas has been commonly used because its
parameters are easily interpretable as economic quan-
tities and its good fit with data as a flexible exponen-
tial form. The theoretical basis for the Cobb-Douglas
that we derive is based on the income accounting
identity, which is always true and measures value
added as the sum of wages and return on capital.
When the latter is partitioned it can be used to iden-
tify returns to IT.

Shaikh (1974) showed that with two inputs, labor
and capital, the income accounting identity leads
to a variant of the Cobb-Douglas. Relative to that
work, we show how an income accounting iden-
tity that separates IT capital from non-IT capital can
lead to an accounting identity-based Cobb-Douglas
form that we refer to as the AI-based Cobb-Douglas.
This form nests the commonly used Cobb-Douglas,
effectively providing a more robust theoretical basis
for the historical studies using the Cobb-Douglas
to estimate returns to IT, and the additional terms
in the AI-based Cobb-Douglas account for part of
TFP. Then we empirically test the new form, which
has not been done before, using a specially con-
structed data set that has the additional measures
we need to estimate the AI-based Cobb-Douglas—a
data set that is impractical to collect in most produc-
tivity studies. We run the estimation and compare

the results with estimates of the Cobb-Douglas show-
ing a strong empirical correspondence between the
forms. Furthermore, we empirically examine the sin-
gle assumption required to derive the AI-based Cobb-
Douglas, constant input shares, and find the forms are
robust to large deviations. Consequently, the account-
ing identity as a key theoretical basis for IT produc-
tivity research is compelling and provides important
insights into why and how high quality estimates are
consistently obtained for the contributions of IT to
productivity in the literature.

We believe this work makes a substantial scien-
tific contribution to future research by providing an
empirically substantiated theoretical basis for the use
of the Cobb-Douglas form in IT productivity analysis,
arguably one of the most important developments in
the IT field in the last 20 years, and a theory-based
explanation for why past results (post-productivity
paradox) in the literature have been so significant.
In the process, we explain how the Cobb-Douglas is
valid for estimation at the firm, industry, sector, and
economy levels, indicating that aggregation does not
invalidate the use of the Cobb-Douglas form. Thus,
there are also beneficial implications of our work for
future researchers: essentially that the Cobb-Douglas
exponential form has a rigorous theoretical account-
ing identity basis.

Our work also shows how some returns to IT that
do not show up in output elasticities can be found
in TFP. The critical insight for future research is that
many unobservables that have been considered part
of TFP can be manifested in rates of return to IT capi-
tal, non-IT capital, and labor—rates of return that are
separated from TFP in our AI-based Cobb-Douglas.
This supports the current research program of drilling
into TFP to uncover otherwise unobservable effects of
IT and supports a potential future focus on explana-
tions behind different rates of return due to IT. This
includes differences in organization processes, labor
quality, IT and overall management, strategy, organi-
zation form, transaction costs and outsourcing, and IT
implementations. Indeed, IT has been hypothesized,
and sometimes shown, to contribute to TFP through
organizational capital (Brynjolfsson and Hitt 2003),
knowledge spillovers (Hitt and Tambe 2006, Tambe
and Hitt 2010), and supply chain spillovers (Cheng
and Nault 2007, 2012).

1.1. Aggregation in Production
Aggregation in production has been studied for more
than a half century in economics, and the goal was
to specify conditions under which aggregation was
internally consistent—that is, whether mathematical
forms of production functions could be aggregated
into a parsimonious and interpretable production
function such as a Cobb-Douglas at the establish-
ment, firm, industry, or economy level. This so-called
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Cambridge Capital Theory Controversy is fundamen-
tally connected to the income accounting identity
because the Cobb-Douglas form can be derived from
this identity. There has been no resolution to the con-
troversy, with Nobel prize–winning scholars weigh-
ing in on each side (e.g., Simon 1979; Samuelson 1979
questioning aggregation; Stiglitz 1974; Solow 1974,
1987 supporting aggregation).

There are three aggregation issues. The first two
are mathematical conditions for aggregation related
to estimation of the same production function form
(e.g., Cobb-Douglas) at different levels of analysis.
The first issue is whether different inputs can be
aggregated into a single input measure. Aggrega-
tions we commonly use are skilled and unskilled
work as labor. Other examples include aggregating
machines, vehicles, etc., together into non-IT capital
and aggregating hardware, software, and telecommu-
nications equipment as IT capital. This aggregation
issue affects even product-level productivity analy-
ses. Leontief (1947a, b) dealt with aggregation of vari-
ables into homogenous groups and showed that if
the marginal rate of substitution of the individual
inputs in the aggregated group of inputs is inde-
pendent of inputs that are not in that group, then
that group of inputs can be aggregated. If the pro-
duction function is a Cobb-Douglas with IT capi-
tal, non-IT capital, and labor inputs, then because
the Cobb-Douglas satisfies these independence con-
ditions we can aggregate within these input groups.
Notice that this aggregation issue does not apply to
the output side with multiple products as this is an
aggregation of output dollars, and not different sub-
categories of inputs that have differing productivity
characteristics. The second issue is whether a firm-,
industry-, or economy-level production function can
be aggregated from a set of establishments (assuming
single-product establishments with production func-
tions that do not suffer from the first aggregation
issue above), each having different production func-
tions. Nataf (1948) proved that such an aggregation is
valid if the individual firm production functions are
additively separable in inputs. This condition holds
for the log-linear Cobb-Douglas form. Nonetheless,
some argue this is a restrictive condition. Using sim-
ulation experiments, Fisher (1971) suggested that the
requirements for aggregation to the economy-level are
unrealistic. However, Stiglitz (1974, p. 899) concludes,
“Under most circumstances and for most problems,
the errors introduced as a consequence of aggregation
of the kind involved in the standard macro-analysis
are not too important …’̇’

The third issue concerns whether an aggregate pro-
duction function can provide useful measures inde-
pendent of the information contained in the income
accounting identity, and as we show, this indirectly

obviates measurement aspects of the first two issues.
Shaikh (1974), whose analytical approach we adopt,
showed with capital and labor that the Cobb-Douglas
was an algebraic manipulation of the accounting iden-
tity. Following this, many Cambridge (UK) scholars
argued that an aggregate production function was
not a useful construct. Indeed, after showing that
the accounting identity leads to the Cobb-Douglas,
Shaikh (1974, p. 117) concludes, “Therefore, precisely
because 45’5 8the resulting Cobb-Douglas9 is a math-
ematical relationship, holding true for large classes
of data associated with constant shares, it cannot be
interpreted as a production function, or any produc-
tion relation at all.”

In contrast, the Cambridge (U.S.) scholars (e.g.,
Solow 1974) argued that an aggregate production
function such as the Cobb-Douglas was a useful
empirical construct relating inputs to outputs with-
out the need for input share data (the basis of the
income accounting identity) and had been success-
ful at estimating marginal products that correspond
with observed input prices. As Solow (1974, p. 121)
states, “When someone claims that production func-
tions work, he means (a) that they give a good fit
to input-output data without the intervention of data
deriving from factor shares; and (b) that the function
so fitted has partial derivatives that closely mimic fac-
tor prices.”

Along with the arguments above, there is empir-
ical evidence that the Cobb-Douglas form is robust.
Gurbaxani et al. (2000) found that a Cobb-Douglas
used to predict IT spending as a function of personnel
and hardware was independent of scale and time and
found that the homotheticity of IT spending supports
the aggregation of hardware and of personnel each
into single measures. Van Garderen et al. (2000) found
that least squares estimates of some aggregate log-
linear models like the Cobb-Douglas can yield con-
sistent estimates of the output elasticities with some
restrictions on the distribution of aggregate shocks.
This is consistent with other research that suggests
that the basic requirements for sensible aggregation
may be met for firms in the same industry or for nar-
row sectors of the economy (Walters 1963).

1.2. Total Factor Productivity
The additional terms in our AI-based Cobb-Douglas
account for part of TFP. Generally, TFP represents the
(unspecified) ways that inputs combine to produce
output outside of their direct representation in the
production function. The result of aggregation to dif-
ferent levels makes it hard to interpret whether TFP
contains product-, firm-, or industry-level effects or
some combination. Isolating the role of IT in TFP is
even more challenging, although it is clear that IT is
an important contributor to TFP at the sector level
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(Oliner and Sichel 2000), the industry level (Stiroh
2002), and the firm level (Brynjolfsson and Hitt 2003).

Several studies have used variants of the Cobb-
Douglas to explain the influence of IT on TFP. Hitt
and Tambe (2006) examined within-industry pro-
ductivity spillovers of IT from an industry knowl-
edge pool using firm-level data from 1987 to 1993,
where the spillovers were modeled as an element
of TFP. They found significant within-industry IT
spillovers, although lower than those previously esti-
mated. In a recent study using employee micro-data,
Tambe and Hitt (2010) found that regional differ-
ences in IT productivity are in part attributable
to knowledge spillovers that come from employ-
ees changing employers—knowledge spillovers con-
tained in TFP. Using manufacturing industry-level
data from 1987 to 1999, Cheng and Nault (2007)
studied between-industry productivity spillovers of
IT that occur from a mismeasurement of the value
of intermediate inputs. Specifying a Cobb-Douglas
that modeled the mismeasurement of intermediate
inputs as an element of TFP, they found signifi-
cant IT spillovers from IT-induced quality improve-
ments in intermediate inputs. Subsequently, using the
data set described above and 1998–2005 economywide
industry-level data, Cheng and Nault (2012) found
that customer-driven IT spillovers depend on relative
industry concentration, where both the spillover and
the relationship with industry concentration are ele-
ments of TFP.

Brynjolffson and Hitt (2003) hypothesized the exis-
tence of unmeasured inputs such as organizational
capital in making up TFP and related this to growth
in computer capital. Using firm-level data from 1987
to 1994 and Cobb-Douglas related forms, they found
that the long-run contribution of computerization is
significantly higher than short-run (annual) returns to
computer capital, and thus computer capital together
with unmeasured inputs in the long run contribute
to TFP. Bulkley and Van Alstyne (2004) hypothesized
that the unmeasured inputs could be captured by
focusing on how information and connectivity influ-
ence productivity distinct from measures of computer
capital. Mittal and Nault (2009) modeled labor and
non-IT capital as an exponential function of IT cap-
ital to capture indirect effects of IT on the produc-
tive efficiency of the other inputs, where the indirect
effects were captured as an additional term in the
Cobb-Douglas, hence explaining part of TFP. Using
industry-level data from 1953 to 2000, they found that
indirect effects of IT on the productive efficiency of
labor and non-IT capital were significant across man-
ufacturing in the United States, and were more signif-
icant in IT-intensive industries.

TFP is usually taken to be the constant in a Cobb-
Douglas related form, but other unspecified ways

that inputs combine to produce output could be
contained in the error term. The stochastic frontier
approach used by Lee and Barua (1999) in overall IT
productivity and by Menon et al. (2000) examining
IT productivity in healthcare partitions the error into
technical and allocative inefficiency. Technical ineffi-
ciency captures the differences between firms in con-
verting inputs to outputs, and allocative inefficiency
captures the degree to which firms are not allocating
resources at their optimal levels. Accounting for these
inefficiencies, Lee and Barua (1999) found higher con-
tributions from IT inputs using the stochastic frontier
approach than from using the standard production
function approach and that IT intensity reduced inef-
ficiency. Menon et al. (2000) found that both IT and
medical IT capital had a positive influence on output.

1.3. Our Results
To begin, we are agnostic about the controversy
regarding whether aggregate production functions
exist independent of specific mathematical functions
that represent input and output relationships. Our
view of this controversy, a controversy that is absent
from the IT literature, is that it confounds the concept
of a production function with measuring productivity
using a mathematical form that yields clean economic
interpretations. Indeed, this is the essence of Solow’s
(1974) response to Shaikh (1974) embedded in the two
quotes we provide in §1.1. At least at the industry
level, numerous articles have shown that a produc-
tion function approach has intellectual contributions
to offer—for instance, those industry-level studies ref-
erenced in the prior subsection. Furthermore, it has
been shown elsewhere that different production func-
tion forms are derivable from the accounting identity,
albeit with more elaborate assumptions (e.g., Felipe
2000 for the Translog or Felipe and McCombie 2001
for the Constant Elasticity of Substitution). There-
fore, we take the accounting identity derivation of
the Cobb-Douglas as a way to add a more rigor-
ous and complementary theoretical basis to the use
of production functions—like the Cobb-Douglas—to
measure the returns to IT. Here we take the con-
cept of theory to mean building from a set of axioms
(accounting rules) to a statement of truth (the income
accounting identity) and then deriving an implication
of that truth (the AI-based Cobb-Douglas that nests
the Cobb-Douglas).

As we discussed briefly above, we extend the alge-
braic steps from Shaikh (1974) to include IT capi-
tal as a separate input, we show analytically that
with the mild condition that input shares are rela-
tively stable—a condition that is likely to hold in the
medium term (for example, six to eight years)—the
income accounting identity can be expressed as a vari-
ant of the Cobb-Douglas, the AI-based Cobb-Douglas,
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that nests the Cobb-Douglas and has additional
terms—terms that relate to input-share weighted rates
of return to each of the inputs. This means that
input shares and rates of return to the inputs are
in part explained by TFP. This, in turn implies that
TFP is time varying. In addition, the income account-
ing identity is an ex post relationship that holds at
all levels of aggregation, which provides a basis for
the Cobb-Douglas and the AI-based Cobb-Douglas
regardless of the level of aggregation. That is, the first
two aggregation issues described above—aggregation
of different inputs into a single input and the aggrega-
tion of production functions from the establishment-
level to higher levels—do not apply. Thus, the income
accounting identity provides a theoretical basis for
the Cobb-Douglas form and is a unifying concept
for the identification of TFP. In this, we highlight an
important and under-recognized phenomenon—the
theoretical relationship between the income account-
ing identity and the Cobb-Douglas form—that under-
lies a substantial amount of IT productivity research.
We also provide a critical and (we hope) insightful
critique of the so-called Cambridge controversies by
concentrating on what these controversies showed—
namely, that the income accounting identity, which
must always be true, leads to the Cobb-Douglas (with
a mild condition), both validating and explaining the
robust estimates and fit of IT productivity data to the
Cobb-Douglas form.

Then we detail a specially constructed set of
industry-level data gathered for the purposes of test-
ing the correspondence between the AI-based Cobb-
Douglas and the Cobb-Douglas. The set of data
is specially constructed because of the additional
terms requiring rates of return in the AI-based Cobb-
Douglas and because U.S. data sources only maintain
the data required to compute these returns for some
industries. Obtaining such a data set is infeasible for
most productivity studies, and our focus is using the
data to empirically confirm the theoretical correspon-
dence between the AI-based Cobb-Douglas and the
Cobb-Douglas rather than suggesting our AI-based
form be used more generally.

We then estimate the Cobb-Douglas and the AI-
based Cobb-Douglas on our specially constructed
data set. In the estimation we find that for peri-
ods when the input share of IT capital is relatively
stable—the condition required for mathematically
expressing the income accounting identity as a vari-
ant of the Cobb-Douglas—the Cobb-Douglas and the
AI-based Cobb-Douglas fit the data very well, the lat-
ter not surprising because it nests the Cobb-Douglas.
More importantly, the estimates from the AI-based
Cobb-Douglas are internally consistent and signif-
icant beyond the Cobb-Douglas, substantiating the
theoretical correspondence between the two forms.

This means that estimation with aggregated data can
yield results that accurately measure the relationship
between inputs and output so that inferences about
productivity can be made.

Moreover, it means that the additional terms relat-
ing to rates of return to the inputs that are in the AI-
based Cobb-Douglas form explain a significant part
of TFP. From this, future research can incorporate
the insight that many of the impacts of IT that are
hidden in the Cobb-Douglas TFP may be accessible
through rates of return on IT and other inputs. This
would allow researchers to benefit because otherwise-
unobservable effects of IT in a production function
context may become observable when identifying the
impacts of IT on rates of return. This latter point
is particularly important because our results provide
evidence that returns to the inputs related to IT, such
as organizational capital and various spillovers that
have been found to be contained in TFP, may be
effects that are alternatively captured by wage rates
and rates of return. Indeed, relating specific IT invest-
ments to rates of return can be an actionable and com-
pelling way to uncover sources of IT value, and our
results allow these sources of IT value to be directly
related to IT productivity.

1.4. Operational Implications for Researchers
There are several important operational implications
for researchers using production functions in their
work. First, the critical assumption required to derive
the Cobb-Douglas from the accounting identity is the
relative stability of input shares. Consequently, when
using the Cobb-Douglas as a production function in
their work, researchers should examine the intertem-
poral stability of input shares in their data sets.
As we found, the Cobb-Douglas and the AI-based
Cobb-Douglas are robust to fairly large deviations
in input shares, but there may be limits: as will be
detailed in our analysis, our split sample used to
define periods over which the input shares were more
stable produced results that were more consistent
and significant than the results over a longer period.
Moreover, intertemporally stable input shares are less
likely when studying emerging technology phenom-
ena, making the Cobb-Douglas less well suited. This
is perhaps why early returns to IT studies had diffi-
culty finding significant effects of IT.

Second, the income accounting identity as a theo-
retical basis for the Cobb-Douglas means that a good
econometric fit of productivity data to the Cobb-
Douglas should be expected so long as the input
shares are relatively stable. A poor fit or unexpected
coefficient estimates for the output elasticities such
as insignificant or negative coefficients suggest there
are problems with the quality of the underlying data
and/or input shares that change substantially over
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the period of the data set. As we suggest, it is usually
infeasible to obtain the data required to estimate
the AI-based Cobb-Douglas, so it is not possible to
validate the accounting identity directly with most
data sets.

Third, researchers should expect output elasticities
to reflect input shares because these are the dual
interpretations of the exponents (or coefficients in log
form) of the Cobb-Douglas when it is used as a pro-
duction function. Ultimately, to monetize the contri-
bution of an input such as IT capital, it is necessary
to compute the marginal product. It is also useful to
model TFP as time varying because it contains rates
of return on the inputs, which at the minimum can be
done using time fixed effects.

Finally, there are no aggregation issues with using
production functions for measurement at the firm,
industry, sector, or even economy level, so long as
the interpretation of results is applied to that level.
In terms of measurement, because the accounting
identity is invariant to the objectives of an establish-
ment or a firm, the accounting identity basis for the
Cobb-Douglas removes the concerns associated with
heterogeneous objectives of establishments or firms
such as profit maximization, cost minimization, or
even growth maximization.

2. The Aggregate Production Function
and the Income Accounting Identity

2.1. Production Functions
A production function is a technological relationship
confronting a firm that describes output as a func-
tion of inputs. The firm chooses the combination of
inputs that produces a profit-maximizing level of out-
put. At the firm level a production function can be
defined as Y = f 4x5 where Y is output (measured as
value added) and x is a vector of inputs containing
labor L, non-IT capital K, and IT capital Z. We take
f 4x5 to have the usual properties that make a unique
profit-maximizing level of output possible: single val-
ued, nonnegative, and real for all finite x, monotonic,
concave, continuous, and twice continuously differen-
tiable. We use a production function with value added
rather than output because the difference is interme-
diate inputs added to each side and our focus is not
on intermediate inputs. Our analytical results remain
qualitatively the same if we add intermediate inputs.

Because of the issues of aggregation and that
the Cobb-Douglas at the firm level mitigates some
of these issues, the Cobb-Douglas has been the
most frequently used production function in returns
to IT research to estimate output elasticities at indus-
try, sector, and economy levels. We write the Cobb-
Douglas with three inputs

Y = SL�K�Z� 0 (1)

The variables Y , L, K, and Z are as above, and as is
common in production functions these variables are
measured as quantities. That is, Y , K, and Z are mea-
sured in real dollars, and L is measured in hours or
full-time equivalents. The variable Y is a revenue-
based measure that may contain more effects than
simply productivity, an issue we return to at the end
of the conclusion. The parameter S is neutral (or dis-
embodied) technological change otherwise known as
TFP. A neutral technology implies that as S increases,
output increases without the need to increase inputs.
In this way S representing TFP is a “black box” of
effects from the inputs that arise in part through IT-
related omitted variables such as organizational cap-
ital, knowledge spillovers, supply chain spillovers,
and indirect effects. In (1), �, �, and � are the output
elasticities with respect to labor, non-IT capital, and
IT capital, respectively.

2.2. Relationship to the Income Accounting
Identity

Our derivation below extends the algebraic steps of
Shaikh (1974) and Felipe (2001) by separating IT capi-
tal from non-IT capital, focusing on the role of IT cap-
ital in the analysis. The income accounting identity
states that value added is equal to the wage bill plus
the operating surplus—in other words, wages and
total return on capital. For gross output the income
accounting identity includes payments to intermedi-
ate inputs such as materials, energy, and purchased
services in addition to the wage bill and operating
surplus. The operating surplus is the profit made on
capital and in principle can be divided into oper-
ating surplus on IT capital and operating surplus
on non-IT capital, thereby isolating the profits made
from IT capital. Using the income accounting iden-
tity we show that if input shares are constant over
time, then we can derive the Cobb-Douglas form for
value added and inputs in dollars. Thus, there is a
correspondence between the Cobb-Douglas form rep-
resenting an underlying aggregate technological rela-
tionship and aggregate level dollar data underlying
the ex post income accounting identity (Samuelson
1979, p. 933) when input shares are intertemporally
constant.

Adding time subscripts to all variables to indicate
time dependence, our form of the income accounting
identity for the three inputs is

Yt ≡�tLt +utKt + vtZt1 (2)

where �t is the wage rate, ut is the ex post rate of
return on non-IT capital, and vt is the ex post rate of
return on IT capital. The variables Yt , Lt , Kt , and Zt

are as in (1). The relation in (2) is true for all peri-
ods in that the value added in any period equals the
sum of the wage bill and both types of profits in
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that period. As the income accounting identity does
not make any assumptions about profit maximiza-
tion, market structure, the nature of competition, or
technology, it is an identity at any level of aggrega-
tion. That is, the income accounting identity holds at
the business unit, firm, industry, sector, and economy
levels.

We rewrite (2) by dividing on both sides by Yt to get

1 =
�tLt

Yt

+
utKt

Yt

+
vtZt

Yt

= at + bt + ct1 (3)

where at = �tLt/Yt , bt = utKt/Yt , and ct = vtZt/Yt ,
respectively. Each of these terms represents the pro-
portion of the value added accruing to that input.
We now totally differentiate (2) with respect to time.
Denoting the time derivative of an arbitrary variable
X by dX/dt = Ẋ, we get

Ẏt = �̇tLt +�tL̇t + u̇tKt +utK̇t + v̇tZt + vtŻt0

This equation gives the components of growth in
terms of growth in rates of return and in input levels.
Dividing this equation throughout by Yt , using (3),
and denoting the growth rate of a variable X by �X

so that �X = 4dX/dt541/X5 = Ẋ/X, after a small bit of
algebra we have

�yt
= at��t

+ bt�ut
+ ct�vt + at�lt

+ bt�kt
+ ct�zt

1 (4)

where �yt
, �lt

, �kt
, and �zt

are the growth rates of
value added, labor hours, non-IT capital, and IT cap-
ital, respectively. As well, ��t

, �ut
, and �vt

are growth
rates of the wage rate, of the rate of return on non-
IT capital, and of the rate of return on IT capital,
respectively. Thus, the growth rate of value added
is a weighted sum of the growth rates in rates of
return and in input levels, where the weights are
input shares. We do not need any assumptions related
to production technology or profit maximization (the
behavioral view of a production function) to derive
this equation. Combining the first three terms in (4) as

�t = at��t
+ bt�ut

+ ct�vt
1 (5)

then �t represents the weighted average of the growth
rates of the wage rate, of the rate of return on non-
IT capital, and of the rate of return on IT capital.
The weights at , bt , and ct are the proportions of value
added accruing to each input as above. We can then
write the growth rate of value added as

�yt
= �t + at�lt

+ bt�kt
+ ct�zt

0 (6)

Suppose that the proportion of value added accruing
to each input is constant over time. This is most often
the case in the short and medium term (for example,
six to eight years) for most industries. Then we can

drop the time dependence of the input shares: at = a,
bt = b, and ct = c. Multiplying both sides by dt
and noting that for an arbitrary variable X, �xt

dt =

41/Xt54dXt/dt5dt = dXt/Xt , we can rewrite (6) that
describes the growth rate of value added as

dYt

Yt

= a
d�t

�t

+ b
dut

ut

+ c
dvt

vt

+ a
dLt

Lt

+ b
dKt

Kt

+ c
dZt

Zt

0

Integrating yields

Yt =å�a
tu

b
tv

c
tL

a
tK

b
t Z

c
t 1 (7)

where input proportions sum to unity, that is, a+ b+

c = 1 as per the income accounting identity (3). The
form in (7) resembles the Cobb-Douglas in (1) as far
as the two capital terms and the labor term are con-
cerned. However, (7) is simply a different form of the
income accounting identity in (2) under the condi-
tion of intertemporally constant input shares; in other
words, when this condition holds, then (7) and (2) are
equivalent.

The difference between the Cobb-Douglas in (1)
and the income accounting identity in (7) is that the
latter contains additional multiplicative terms consist-
ing of the wage rate and the two rates of return each
raised to their input shares. Under a Cobb-Douglas
specification these additional terms would be sub-
sumed in TFP. This can be seen by rewriting (7) as

Yt =åtL
a
tK

b
t Z

c
t 1 (8)

where åt is a time dependent function equal to
å�a

tu
b
tv

c
t , corresponding to S, or TFP, in (1). Referring

back to (6) that represents the growth rate of value
added, we can see that growth in TFP is through �t

in (5).
If input proportions of value added are intertem-

porally constant in our data set and we estimate (8),
then we should get a very good fit to the Cobb-
Douglas. This is because the income accounting iden-
tity directly leads to the Cobb-Douglas form under
the condition of constant intertemporal input shares.
It also occurs when TFP is time invariant because TFP
is a function of time in (8). Consequently, when we
estimate the Cobb-Douglas in (1), we are implicitly
also estimating (7)—the AI-based Cobb-Douglas with
the wage rate and rate of return terms buried in TFP
as per (8).

3. Estimation of Our AI-Based
Cobb-Douglas Form

3.1. Data Sources and Calculations
To estimate a form related to the income account-
ing identity as derived in (7) requires data on input
stocks or flows (labor hours, capital stocks, or capi-
tal inputs) and more critically on rates of return for
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Table 1 NAICS Code 31–33 Manufacturing

NAICS
code Subsector Combined subsector

311 Food manufacturing Food and beverage and
312 Beverage and tobacco product

manufacturing
tobacco products

313 Textile mills Textile mills and textile
314 Textile product mills product mills1

315 Apparel manufacturing Apparel and leather and
316 Leather and allied product

manufacturing
applied products1

321 Wood product manufacturing
322 Paper manufacturing
323 Printing and related support activities
324 Petroleum and coal products

manufacturing1

325 Chemical manufacturing
326 Plastics and rubber products

manufacturing
327 Nonmetallic mineral product

manufacturing
331 Primary metal manufacturing
332 Fabricated metal product

manufacturing
333 Machinery manufacturing
334 Computer and electronic product

manufacturing1

335 Electrical equipment, appliance, and
component manufacturing

336 Transportation equipment
manufacturing

337 Furniture and related product
manufacturing

339 Miscellaneous manufacturing

Note. There are no economic subsectors 310, 317–320, 328–330, and 338.
1These industries are not included in the final data set.

the inputs such as the wage rate and rates of return
on non-IT capital and on IT capital. The raw data
needed for these latter calculations are difficult to
obtain, and the calculations are even more difficult to
generate (as detailed below). As a basis for our cal-
culations, we use times-series data from 1995 to 2007
for 18 three-digit North American Industry Classifi-
cation System (NAICS) manufacturing industries (see
Table 1), which is the only set of industries for which
the data for calculating rates of return were available.
The data set spans 21 industries (NAICS 311–316, 321–
327, 331–337, and 339); however, for six industries, the
data are provided as aggregates between some pairs
of industries, i.e., NAICS 311 and 312 (food and bev-
erage and tobacco products), 313 and 314 (textile mills
and textile product mills), and 315 and 316 (apparel
and leather and applied products). Even though our
data set is limited, it is part of the manufacturing sec-
tor, a sector that has better defined and more accurate
measures of output than the services sector (Mittal
and Nault 2009).

Our data are taken from the Bureau of Labor Statis-
tics (BLS) website on Multifactor Productivity Data

for Major Sectors and Manufacturing and consist of
three files:

Capital in manufacturing: these tables contain figures
on real capital input, capital income, productive cap-
ital stock, capital composition, price deflators, wealth
stock, and depreciation. Capital is divided in equip-
ment, structures, rental residential capital, inventories,
and land.

IT capital in manufacturing: these tables contain fig-
ures on IT capital input, IT capital rental prices,
IT capital income, productive IT capital stock, gross
investment in IT capital, price deflators, wealth stock,
and depreciation. IT capital is divided into computers,
software, communication, and other.

Inputs and output in manufacturing: these tables
contain figures on real sector output, input quanti-
ties and multifactor productivity, output and input
prices, value of production and factor costs, and fac-
tor shares. Input factors are divided in labor and
capital (primary inputs) and energy, materials, and
purchased services (secondary inputs).

We obtained labor hours from an unpublished BLS
file sent to us on request. It contains the labor hours
for 1995 to 2007 for all NAICS industries listed above.
The hours of all persons is divided into hours of all
employees and hours of all proprietors. The nom-
inal wage rate is calculated by dividing the cost
of labor by labor hours. We use the labor hours
for all persons—instead of just labor hours of all
employees—because both cost of labor and payments
to capital include income that is attributed to pro-
prietors. Thus, just using the hours by all employees
would overestimate the wage rate. The real wage rate
is calculated by using the deflated cost of labor.

For the calculation of real value added, we use the
double deflation technique. Hence, we deflate (per
industry) gross output as well as all intermediate or
secondary inputs (energy, materials, and purchased
services) and subtract the values for deflated sec-
ondary inputs from the deflated value of the industry
output. The resulting real value added is the value of
output in constant year 2000 dollars that is due to the
usage of the primary or value-added inputs, together
with capital and labor, in the production process. One
can also think both of real value added and the real
values of primary inputs as quantities because price
movements are eliminated through deflation.

We use the figures for productive capital stock and
productive IT capital stock as a measure for capi-
tal. The BLS determines both figures as direct aggre-
gates in constant year 2000 dollars. Productive capital
stock for equipment and structures is estimated using
the perpetual inventory method. Productive capital
stock for inventories and land is based on Bureau of
Economic Analysis estimates for inventories and Eco-
nomic Research Service/U.S. Department of Agricul-
ture land data, respectively. Productive non-IT capital
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stock is determined by subtracting productive IT cap-
ital stock from productive capital stock.

There is a general problem of additivity in the data:
the Tornqvist index constructs time series as chained
indices and as such has some nice features compared
to the previous (before 1996) fixed weight method.
However, it comes at the costs that additivity of the
components is lost. That is, the deflated figures for
input consumption do not necessarily add up to the
overall output. This seems to be especially severe if
the relative price changes are substantial as can be
observed with respect to IT (Whelan 2000). This prob-
lem of additivity becomes apparent when calculat-
ing real value added on one hand as the sum of the
deflated wage bill and real payments to capital and
on the other hand as deflated output less deflated
intermediate inputs (energy, material, and purchased
services).

To minimize the distortions in the data from the
additivity problem, the problem of imprecise defla-
tors, or other data problems we do the following.
First, we drop some industries from our sample
because of negative real value added in many years
(NAICS 334) or because of large deviations from the
income accounting identity in real terms in many
years (NAICS 313/314, 315/316, and 324). Next, we
use two data subsets, 1995–2000 and 2000–2007, on
the basis that the Internet became a significant eco-
nomic factor between 1994 and 1995. Moreover, the
farther away from the base year (2000), the higher the
distortions, and there may be special Y2K effects in
the data. We note that the additivity problem may
not only be present in the input and output data but
also in the productive capital stock data. However,
because we have no way to check the productive cap-
ital stock data for consistency as we have when using
the double deflation technique, we are forced to take
them as they are, recognizing that there may be poten-
tial for slight error because we determine productive
non-IT capital stock as productive capital stock less
productive IT capital stock.

Using industry-level data requires some assump-
tions about industry production technology. The fol-
lowing assumptions were made by the BLS to derive
the data (Strassner et al. 2005). First, an industry fron-
tier production function was used that includes the
value-added inputs of capital and labor and the inter-
mediate inputs of energy, materials, and purchased
services. Next, the industry production function is
taken to be weakly separable in value-added inputs,
energy inputs, materials inputs, and purchased ser-
vices inputs, which implies that the marginal rates
of technical substitution for an input group are inde-
pendent of the quantities of other input groups (see
also Nataf 1948 and Leontief 1947a, b). Finally, the

industry production function was taken to be linearly
homogeneous, which implies constant returns to scale
and that industries are cost minimizers as they con-
sume inputs. Consequently, the derivation process at
BLS is consistent with our use of the Cobb-Douglas.

3.1.1. Important Calculations. For our estimation
of the AI-based Cobb-Douglas in (7), we need the
following variables: (i) Real Value Added, Yt , which
is gross output less costs of materials, energy, and
purchased services; (ii) (Average) Real Productive Cap-
ital Stock, Ct ; (iii) (Average) Real Productive IT Capital
Stock, Zt ; (iv) (Average) Real Productive Non-IT Capital
Stock, Kt , which is Real Productive Capital Stock less Zt ;
(v) Labor Hours, Lt ; (vi) Real Wage Rate, �t , which is
the labor cost divided by labor hours; (vii) Real Return
on Capital, rt ; (viii) Real Return on IT Capital, vt ; and
(ix) Real Return on Non-IT Capital, ut .

For capital stock data, we use the annual aver-
age ((year beginning + year end)/2) because capital
income and payments to capital are flows, whereas
the capital stocks are year-end figures. A challenge
is the determination of the return figures. To deter-
mine accurate return figures, we need Real Payments
to Capital, Real Payments to IT Capital, and Real Pay-
ments to Non-IT Capital. Unfortunately, only Nominal
Capital Income and Nominal IT Capital Income are avail-
able from the BLS. To make the income accounting
identity hold in nominal terms, Nominal Capital Income
is adjusted ex post by BLS and then called Nomi-
nal Payments to Capital. This adjustment is not made
to Nominal IT Capital Income, and therefore we must
distribute this adjustment between Nominal IT Capi-
tal Income and Nominal Non-IT Capital Income. First we
calculate the adjustment

Nominal Adjustment

=Nominal Value Added−Nominal Cost of Labor

−Nominal Capital Income1

Nominal Payments to Capital

=Nominal Capital Income+Nominal Adjustment1

Nominal Relative Adjustment

= 4Nominal Payments to Capital

−Nominal Capital Income5/Nominal Capital Income0

Based on a recommendation by BLS, we distribute
this adjustment to Nominal IT Capital Income and Nom-
inal Non-IT Capital Income proportionally applying the
above Nominal Relative Adjustment multiplier to both
Nominal IT Capital Income and Nominal Non-IT Capital
Income

Nominal Non-IT Capital Income

=Nominal Capital Income−Nominal IT Capital Income1
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Nominal Payments to IT Capital
= 4Nominal Relative Adjustment+ 15

∗Nominal IT Capital Income1

Nominal Payments to Non-IT Capital
= 4Nominal Relative Adjustment+ 15

∗Nominal Non-IT Capital Income0

The determination of the return figures in real dol-
lars is more involved. For the income accounting
identity to hold, which we term as “balanced,” the
following must be true in real dollars:

Balanced Real Return on Capital
= 4Real Value Added−Real Cost of Labor5
/Real Productive Capital Stock0

The BLS provides each of the right-hand side vari-
ables in nominal figures and their deflators. The BLS
also provides Nominal Payments to Capital and its
deflator. Because of the double deflation technique
and the additivity problems with chained indices, Real
Value Added less the Real Cost of Labor is slightly dif-
ferent from Real Payments to Capital. To calculate bal-
anced real return on IT capital and on non-IT capital,
we must distribute the difference (Real Value Added−

Real Cost of Labor)−Real Payments to Capital between
the two types of capital. To begin, we require an
unbalanced Real Return on IT Capital using Nominal
Payments to IT Capital provided by the BLS and Real
IT Productive Capital Stock, inflated to nominal by the
deflator because the BLS does not provide Nominal
Productive IT Capital Stock directly

Real Return on IT Capital
=Nominal Payments to IT Capital
/Nominal Productive IT Capital Stock0

Next, we use Real Return on IT Capital to compute
unbalanced real payments to IT capital and to non-IT
capital as follows:

Real Payments to IT Capital
=Real Return on IT Capital

∗Real Productive IT Capital Stock1

Real Payments to Non-IT Capital
=Real Payments to Capital

−Real Payments to IT Capital0

To make the income accounting identity balance in
real dollars, we determine the missing payments to
capital in this case; that is

Real Payments to Capital Adjustment
=Real Value Added−Real Cost of Labor

−Real Payments to Capital0

This Real Payments to Capital Adjustment now has to be
allocated to the two types of capital payments. We use
the proportions of the Real Productive Capital Stocks in
order to make this allocation; that is

Real Payments to IT Capital Adjustment

=Real Payments to Capital Adjustment

∗ 4Real Productive IT Capital Stock

/Real Productive Capital Stock51

Real Payments to Non-IT Capital Adjustment

=Real Payments to Capital Adjustment

∗ 4Real Productive Non-IT Capital Stock

/Real Productive Capital Stock51

Balanced Real Payments to IT Capital

=Real Payments to IT Capital

+Real Payments to IT Capital Adjustment1

Balanced Real Payments to Non-IT Capital

=Real Payments to Non-IT Capital

+Real Payments to Non-IT Capital Adjustment0

With these balanced figures, we can now determine
the return figures needed for our estimation

Balanced Real Return on IT Capital

= Balanced Real Payments to IT Capital

/Real Productive IT Capital Stock1

Balanced Real Return on Non-IT Capital

= Balanced Real Payments to Non-IT Capital

/Real Productive Non-IT Capital Stock0

These final balanced real returns are what we use for
Real Return on IT Capital, vt ; Real Return on Non-IT
Capital, ut ; and our earlier figure for Real Return on
Capital, rt .

3.1.2. Derivation When Using Real Capital
Input. Some studies suggest using the real capital
input instead of productive capital stock as a mea-
sure for capital input since it represents a flow mea-
sure of assets that are used but not consumed in
the production process and, thus, may be a superior
measure to stock data (Jorgenson and Griliches 1967,
Chwelos et al. 2010). We run our sets of regressions
below using the Real Productive Capital Stock and then
again using the Real Capital Input. In the following,
we describe the necessary changes to the above cal-
culations when using Real Capital Input.

The BLS determines Real Capital Input and Real IT
Capital Input by adapting the Productive Capital Stock
and Productive IT Capital Stock data using its standard
methodology. The figures are not reported directly in
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the files provided by BLS, but just the capital com-
position is (ratio of Capital Input to Productive Stock).
Hence, we use the productive capital stock data that
are provided as direct aggregates in constant year
2000 dollars and infer the real capital input figures
using the provided capital composition figures. We
note that the additivity problem described earlier may
also be present in real capital input data. However, as
with productive capital stock data, because we have
no way to check the capital input data for consistency
as we can when using the double deflation technique,
we are forced to take them as they are, recognizing
that there may be potential for slight error because
we determine Real Non-IT Capital Input as Real Capital
Input less Real IT Capital Input.

3.1.3. Important Calculations Using Real Capital
Input. When using Real Capital Inputs, there are redef-
initions of the Productive Capital Stock-based mea-
sures we described earlier. For our estimation of (7)
we need (i) Real Value Added as before, Yt ; (ii) Real Cap-
ital Input (instead of Average Productive Capital Stock),
Ct ; (iii) Real IT Capital Input (instead of Average Produc-
tive IT Capital Stock), Zt ; (iv) Real Non-IT Capital Input
(instead of Average Productive Non-IT Capital Stock), Kt ,
which is Real Capital Input less Zt ; (v) Labor Hours as
before, Lt ; (vi) Real Wage Rate, as before, �t ; (vii) Real
Return on Capital Input (instead of Return on Capital),
rt ; (viii) Real Return on IT Capital Input (instead of
Return on IT Capital), vt ; and (ix) Real Return on Non-IT
Capital (instead of Return on Non-IT Capital), ut .

When using Real Capital Inputs, the calculations are
analogous to the ones when using Real Productive Cap-
ital Stock. The main difference is that we do not need
to calculate an average stock figure using two subse-
quent year-end figures since capital input is already
a flow measure that corresponds to the services pro-
vided by the capital stock in one year. To keep our
calculations consistent in order to make the income
accounting identity hold, we use the proportions of
the Real Capital Input, i.e., Real IT Capital Input versus
Real Non-IT Capital Input, instead of the proportions
of capital stocks to distribute the missing payments to
capital. Finally, for inflating the Real IT Capital Input
to nominal, we use the investment deflator—the same
one already referred to above—because the BLS does
not provide Nominal IT Capital Input directly.

3.2. Estimation Forms and Econometric
Adjustments

3.2.1. Estimation Forms. In our analysis we esti-
mate both the Cobb-Douglas and AI-based Cobb-
Douglas. The Cobb-Douglas estimation form of (1) is

yt = s +�lt +�kt +�zt + �cdt 1 (9)

where the lowercase variables represent natural logs
of the uppercase variables. The log of TFP is denoted

by s, and �cdt is a random disturbance. The AI-based
Cobb-Douglas estimation form of (7) is

yt = �+ a1 ln4�t5+ b1 ln4ut5+ c1 ln4vt5

+ a2lt + b2kt + c2zt + �ait 1 (10)

where the lowercase variables are as above, and �ait
is a random disturbance. The parameter � is what
remains of TFP after removing the effects of rates of
return from the income accounting identity.

From (7) we expect that the coefficients of the
(logged) inputs—the output elasticities—are equal to
the coefficients of their (logged) rates of return: a1 =

a2, b1 = b2, and c1 = c2. These in turn should approx-
imate the input shares. If we cannot reject the null
hypotheses on the equivalence of these coefficients,
this indicates—complementing the theoretical deriva-
tion shown above—empirical support for using the
Cobb-Douglas in IT productivity work.

The additional terms for rates of return, a1, b1,
and c1, are somewhat difficult to understand because
they play two roles. One is that they provide some
explanatory power about the effects that are con-
tained in the Cobb-Douglas TFP. This explanatory
power is different from actually measuring an effect
like organizational capital or spillovers—we simply
claim that the explanatory power is likely to contain
effects in TFP found in other studies such as organi-
zational capital and spillovers. The second role comes
from the underlying accounting identity, whereby the
coefficients are input shares and should be the same
as the output elasticities (which can also be inter-
preted as input shares) from the Cobb-Douglas por-
tion of the AI-based CD. This is what allows us to
understand the theoretical and empirical correspon-
dence between the two forms.

3.2.2. Econometric Adjustments. Our 14 three-
digit NAICS industries differ in what they produce
and in size and are subjected to common economy
level shocks. In addition, BLS applies smoothing pro-
cedures to the data. Therefore, we expect that auto-
correlation is present in the data set and that the
degree of autocorrelation differs between industries.
Using the Wooldridge test for autocorrelation in panel
data, we found that AR1 is present in each of our
data sets and that the range of autocorrelation coeffi-
cients varied substantially between industries. Conse-
quently, we use panel-specific AR1 in our estimations,
which in effect acts as an industry-level control. The
presence of AR1 invalidates the use of iterated Gen-
eralized Least Squares to get the maximum likelihood
estimates, and the standard tests of heteroskedastic-
ity such as the likelihood ratio test are not possible
(Greene 2003, §5.2.3). Nonetheless, because we expect
heteroskedasticity, we also control for it at the indus-
try level.



IN
F
O
R
M
S

ho
ld
s
co

p
yr
ig
h
t
to

th
is

ar
tic

le
an

d
di
st
rib

ut
ed

th
is

co
py

as
a
co

ur
te
sy

to
th
e
au

th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
s:
//p

ub
so

nl
in
e.
in
fo
rm

s.
or
g/
.

Kundisch, Mittal, and Nault: Income Accounting for Measuring IT Productivity
460 Information Systems Research 25(3), pp. 449–467, © 2014 INFORMS

In our use of panel-specific AR1 we implicitly
assume that industry-level effects that are generated
by omitted variables that differ between industries can
be captured by industry-specific autocorrelation func-
tions. However, these omitted variables may not fol-
low industry-specific autocorrelation functions over
time. Rather, there may be omitted variables that are
constant over time and differ between industries and
others that are constant over industries but change
over time. Therefore, we also generate estimates using
industry random effects with common AR1.

Finally, we expect year-to-year differences due to
changes in overall economic conditions and monetary
and fiscal policy. In all of our estimations we also
control for time fixed effects, although this has little
impact on the qualitative meaning of our results.

4. Results
4.1. Results from the Cobb-Douglas
We begin the discussion of our results by comparing
our Cobb-Douglas estimates with those from a sam-
ple of prior IT productivity studies to confirm that our
data set is not unusual. The results from prior IT pro-
ductivity studies are provided in Table 2. The classic
paper by Brynjolfsson and Hitt (1996) bundles inter-
mediate inputs (expenses) with labor, which causes
their estimates to be weighted toward labor. In the
other studies the output elasticity of IT capital ranges
from 0.051 to 0.122, although we recognize that dif-
ferent studies have included different assets in their
measures of IT capital. The output elasticity of non-IT
capital is less than half that of labor.

Our estimates of output elasticities from the Cobb-
Douglas form in (9) are contained in Tables 3
and 4, which correspond to our different economet-
ric adjustments: heteroskedasticity, industry-specific

Table 2 Output Elasticity Estimates from Selected Past Studies

Elasticity estimates of

Description Data level Production function Labor Non-IT capital IT labor IT capital Sum of O.E.

Lichtenberg (1995) Firm Cobb-Douglas 0.507 0.333 — 0010 0.94
Computerworld

Lichtenberg (1995) Firm Cobb-Douglas 0.489 0.390 — 00122 1.001
Info-week

Brynjolfsson and Firm Cobb-Douglas 0.472 0.242 — 000522 0.77
Hitt (1995)

Brynjolfsson and Firm Cobb-Douglas 0.883 0.0608 0.0178 000169 0.98
Hitt (1996)

Dewan and Firm CES-Translog 0.601 0.281 — 00104 0.99
Min (1997)

Dewan and Kraemer Country Cobb-Douglas 0.955 0.176 — 00051 1.18
(2000) developed
countries

Mittal and Industry Cobb-Douglas 0.700 0.250 — 00120 1.07
Nault (2009)

autocorrelation (Table 3) versus industry random
effects and common autocorrelation (Table 4). For the
results in both tables we also control for time fixed
effects. In each table we provide results using a stock
measure of capital and a flow measure of capital:
average real productive capital stock and real capi-
tal input, respectively. In addition, we provide results
over our complete period 1995–2007, and for two sub-
periods centered on 2000, 1995–2000, and 2000–2007,
noting that 2000 is the base year. We also have results
for 2001–2007 (available from the authors), and they
are almost identical to the 2000–2007 subperiod.

Examining the odd-numbered (CD) rows in Table 3,
we find roughly a 65-35 split between labor and cap-
ital across our measures of capital and across our dif-
ferent time periods. All but one of the elasticities are
significant at p < 0001. The output elasticity of labor is
relatively consistent at between 0.606 and 0.673 across
the six Cobb-Douglas regressions. The output elastic-
ity of IT capital is substantially higher than in prior
studies and is twice as large in the 2000–2007 period
as in the 1995–2000 period. In contrast, the output
elasticity of non-IT capital is smaller than in most of
the prior studies and is not significantly different from
zero in the 2000–2007 period. The results are fairly
consistent across our two different measures of capi-
tal, suggesting that whether we measure capital as a
stock or as a flow is not critical to the results. The sum
of the output elasticities in the Cobb-Douglas results
are all within about 3% of 1.0, which suggests con-
stant returns to scale.

Examining the odd-numbered (CD) rows in Table 4
across our six regressions, 13 of 18 output elastici-
ties are significant at p < 0001 and one at p < 0005.
Although significant in the overall period, the out-
put elasticity of non-IT capital in both subperiods is
insignificant using both our stock and flow measures
of capital. The output elasticity estimates for labor
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Table 3 Estimation Results: Controls for Heteroskedastic Errors, Industry-Specific AR1, and Time Fixed Effects

Elasticity/coefficient estimates for

Return Return
Labor Wage Non-IT Non-IT capital IT IT capital Sum

hours l rate ln4�5 capital k ln4u5 capital z ln4v 5 of O.E.

Capital as average real productive capital stock
1995–2007 1. CD 00668∗∗ — 00143∗∗ — 00217∗∗ — 1.028
Obs: 182 2. AI 00724∗∗ 00734∗∗ 00283∗∗ 00220∗∗ 00025 00099∗∗

1995–2000 3. CD 00657∗∗ — 00224∗∗ — 00134∗∗ — 1.015
Obs: 84 4. AI 00724∗∗ 00603∗∗ 00233∗∗ 00203∗∗ 00067∗∗ 00093∗∗

2000–2007 5. CD 00606∗∗ — 00082 — 00282∗∗ — 0.970
Obs: 112 6. AI 00644∗∗ 00725∗∗ 00282∗∗ 00281∗∗ 00058∗∗ 00081∗∗

Capital as real capital input
1995–2007 7. CD 00666∗∗ — 00152∗∗ — 00209∗∗ — 1.027
Obs: 182 8. AI 00732∗∗ 00739∗∗ 00285∗∗ 00218∗∗ 00020 00101∗∗

1995–2000 9. CD 00673∗∗ — 00194∗∗ — 00151∗∗ — 1.018
Obs: 84 10. AI 00733∗∗ 00633∗∗ 00239∗∗ 00199∗∗ 00057∗∗ 00101∗∗

2000–2007 11. CD 00606∗∗ — 00082 — 00281∗∗ — 0.969
Obs: 112 12. AI 00641∗∗ 00723∗∗ 00277∗∗ 00284∗∗ 00063∗∗ 00076∗∗

Note. CD is the Cobb-Douglas, AI is the income accounting identity-based Cobb-Douglas.
∗∗Significant at p < 0001.

and IT capital are significant in all of the regressions;
as compared to the results in Table 3, the output elas-
ticities of labor are more variable and of IT capital are
less variable. Again, the output elasticities of IT cap-
ital are almost twice as large in the latter subperiod
and substantially larger than those from prior stud-
ies. As with the results in Table 3, whether we mea-
sure capital as a stock or as a flow is not critical, and
the sum of the output elasticities (0.978 to 1.043) in
the Cobb-Douglas results suggest constant returns to
scale.

Table 4 Estimation Results: Controls for Industry Random Effects, AR1, and Time Fixed Effects

Elasticity/coefficient estimates for

Return Return
Labor Wage Non-IT Non-IT capital IT IT capital Sum

hours l rate ln4�5 capital k ln4u5 capital z ln4v 5 of O.E.

Capital as average real productive capital stock
1995–2007 1. CD 00590∗∗ — 00260∗∗ — 00161∗∗ — 1.011
Obs: 182 2. AI 00676∗∗ 00759∗∗ 00308∗∗ 00201∗∗ 00025 00129∗∗

1995–2000 3. CD 00678∗∗ — 00137 — 00223∗∗ — 1.038
Obs: 84 4. AI 00681∗∗ 00512∗∗ 00223∗∗ 00182∗∗ 00105∗∗ 00105∗∗

2000–2007 5. CD 00557∗∗ — 00205 — 00222∗∗ — 0.984
Obs: 112 6. AI 00615∗∗ 00681∗∗ 00327∗∗ 00300∗∗ 00060∗ 00093∗∗

Capital as real capital input
1995–2007 7. CD 00611∗∗ — 00256∗∗ — 00148∗ — 1.015
Obs: 182 8. AI 00685∗∗ 00781∗∗ 00304∗∗ 00200∗∗ 00020 00130∗∗

1995–2000 9. CD 00694∗∗ — 00126 — 00223∗∗ — 1.043
Obs: 84 10. AI 00687∗∗ 00534∗∗ 00232∗∗ 00181∗∗ 00098∗∗ 00110∗∗

2000–2007 11. CD 00553∗∗ — 00202 — 00223∗∗ — 0.978
Obs: 112 12. AI 00611∗∗ 00664∗∗ 00318∗∗ 00308∗∗ 00072∗∗ 00082∗∗

Note. CD is the Cobb-Douglas, AI is the income accounting identity-based Cobb-Douglas.
∗Significant at p < 0005; ∗∗significant at p < 0001.

4.2. Results from Our AI-Based Cobb-Douglas
Our estimates of output elasticities and logged rate of
return coefficients from the AI-based Cobb-Douglas
form in (10) are in the even-numbered (AI) rows
of Tables 3 and 4. As with the Cobb-Douglas we
described above, we provide results for two differ-
ent measures of capital—a stock and a flow, and
for three different time periods—1995–2007 and two
subperiods.

To begin, because the Cobb-Douglas in (9) is nested
in the AI-based Cobb-Douglas in (10), we ran Wald
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tests with the null hypothesis that a1, b1, c1 = 0. This
hypothesis tests whether the additional input rate
of return terms in the AI-based Cobb-Douglas adds
significant explanatory power. In all 12 cases (two
sets of econometric controls, two measures of cap-
ital, three time periods) the hypothesis is rejected
at all significance levels (p < 000001) so that in each
case the additional terms add significant explanatory
power. Because these three terms make up the ele-
ments of TFP that are measured in (10) as compared
to the Cobb-Douglas in (9), the Wald tests indicate
that our AI-based Cobb-Douglas is explaining a sig-
nificant portion of TFP.

4.2.1. Overall Period Regressions. Next, with the
AI-based Cobb-Douglas for the overall period (1995–
2007) in Table 3, we find that the output elasticities of
labor and non-IT capital increase at the expense of IT
capital as compared to the Cobb-Douglas results and
are significant to p < 0001. In fact, the output elasticity
of IT capital is not significant in either regression—
using capital stocks or capital inputs—for the overall
period. The coefficients of the logged wage rate and
the logged return on non-IT capital are very close to
those of the output elasticities of labor and non-IT
capital. The coefficient of the logged rate of return to
IT capital, 0.099 for IT capital stock regression and
0.101 for IT capital input regression, is close to the
output elasticities of IT capital in prior studies. All of
the coefficients of the input rate of return terms are
significant to p < 0001. As we discuss in our robust-
ness section below, one reason that may explain why
the IT capital output elasticity is insignificant is that
the input shares for IT capital changed more in per-
centage terms over the 13 years, 1995–2007, than did
the shares of the other inputs.

Similarly in the two regressions for the overall
period in Table 4 we find significant estimates for the
output elasticities of labor and of non-IT capital that
are higher than those from the Cobb-Douglas and an
insignificant output elasticity for IT capital. The coef-
ficients of the logged wage rate and the logged return
on non-IT capital are again close to those of the out-
put elasticities of labor and non-IT capital, although
not as close as those in Table 3. The coefficient of the
logged rate of return to IT capital, 0.129 for IT capital
stock regression and 0.130 for IT capital input regres-
sion, is on the upper end of the output elasticities of
IT capital in prior studies. All of the coefficients of the
input rate of return terms are significant to p < 0001.

4.2.2. Subperiod Regressions. Examining the two
subperiods, 1995–2000 and 2000-2007, in Table 3, we
find that all of the coefficient estimates are significant
to p < 0001. More striking is the effect of the inclusion
of the rates of return terms on the output elasticities
of non-IT and IT capital. Across both measures of cap-
ital (capital stock and capital input) and across both

subperiods, the output elasticities of non-IT capital
and IT capital are much closer to their levels in prior
studies. Moreover, their magnitudes are very close
to those of their (logged) rate of return coefficients,
consistent with the income accounting identity result
in (7). In particular, the subperiod regressions show
results for IT capital that are consistent with results
from prior studies. The output elasticity of IT capital
ranges between 0.057 and 0.067 across the four sub-
period regressions, and the coefficients of the logged
rate of return to IT capital range between 0.076 and
0.101. We believe that these significant and histori-
cally consistent results are because the input shares
of the inputs are more stable over the shorter subpe-
riods, consistent with the condition required for the
derivation of the AI-based Cobb-Douglas form.

We find similar results for the two subperiods in
Table 4. All of the six coefficient estimates across the
subperiods and the measures of capital are significant
to p < 0001, and the magnitudes of the output elastic-
ities of the three inputs are close to the magnitudes
of the coefficients of their respective logged rates of
return. As with the results from the other econometric
adjustments, the output elasticities are similar to their
levels in prior studies, ranging from 0.060 to 0.105,
and the coefficients of the rates of return to IT capital
range from 0.082 to 0.110.

In both Tables 3 and 4, the consistency in the esti-
mates of output elasticities and the coefficients of their
corresponding logged rates of return demonstrate the
empirical regularity of the income accounting identity
in its AI-based Cobb-Douglas form.

4.2.3. Tests of Differences in Coefficients. From
the income accounting identity form in (7), for each
input the coefficient of the logged input (the output
elasticity) is equal to the coefficient of the logged rate
of return. Examining our AI-based Cobb-Douglas esti-
mation form in (10), there are three null hypotheses:
a1 = a2 for the output elasticity of labor and the logged
wage rate, b1 = b2 for the output elasticity of non-IT
capital and its logged rate of return, and c1 = c2 for
the output elasticity of IT capital and its logged rate
of return. The results of our Wald tests of differences
in coefficients are given in Table 5.

Directly from the table, there is perfect consistency
in the significance results across econometric adjust-
ments and across time periods. Overall, 24 of 36 tests
show that there is not a significant difference in coeffi-
cients, and most of the tests that find significant differ-
ences are in the overall period where we would expect
input shares to be less stable. More importantly, in the
two subperiods, where our AI-based Cobb-Douglas
regressions yielded a complete set of significant coeffi-
cients, 20 of 24 tests show that there is not a significant
difference in coefficients, and if we set p = 0001, none
of the tests of differences would be significant. In the
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Table 5 P -Values for Test of Difference of Coefficients

Test of difference of coefficients

He + PSAR1 RE + AR1

a1 = a2 b1 = b2 c1 = c2 a1 = a2 b1 = b2 c1 = c2

Capital as average real productive capital stock
1995–2007 N.S. 0.001 0.002 N.S. 0.001 0.003
1995–2000 0.012 N.S. N.S. 0.019 N.S. N.S.
2000–2007 N.S. N.S. N.S. N.S. N.S. N.S.

Capital as real capital input
1995–2007 N.S. 0.002 0.003 N.S. 0.002 0.004
1995–2000 0.044 N.S. N.S. 0.045 N.S. N.S.
2000–2007 N.S. N.S. N.S. N.S. N.S. N.S.

Notes. He + PSAR1: Controls for heteroskedastic errors, industry-specific
AR1, and time fixed effects. RE+AR1: Controls for industry random effects,
AR1, and time fixed effects. N.S. = not significant at p ≥ 0005.

second subperiod, there is no evidence of difference
between output elasticities and coefficients of logged
rates of return; in the first subperiod the only sig-
nificant difference is in the labor-related coefficients.
As we discuss later, there may be a skill-level effect
over time that has affected the relationship between
labor hours and wage rates. Nonetheless, the results
in Table 5 provide relatively strong statistical support
for the equality of coefficients in (10).

4.3. Robustness

4.3.1. Intertemporal Consistency of Input Shares.
In our derivation of the mathematical form in (7) from
the income accounting identity, we supposed that the
input shares were intertemporally constant. Indeed,
this is the only substantive assumption needed to
derive the AI-based Cobb-Douglas form. To examine
this we ran fixed effects (to capture industry hetero-
geneity) regressions of year on the input share for
each input and for our overall and subperiods. All
nine fixed effects regressions had significant effects
of year (p < 0001) on input share. However, the esti-
mates of changes in share were relatively small: for
IT capital the annual changes were no greater than
0.5%, for non-IT capital the annual changes were no
greater than 2%, and for labor the annual changes
were no greater than 2.5%. Nonetheless, taken over
several years these annual changes in input shares are
considerable.

To determine the cumulative effects of input share
changes, we examined the annual growth rates of the
inputs and the resulting changes in the input share of
each for the overall periods and each of the subpe-
riods, by industry and averaged over the industries
in our data set in Table 6. For the overall period, the
change in input share of labor was roughly a 35%
decrease, for non-IT capital a 100% increase, and for
IT capital a 210% increase. The changes were corre-
spondingly lower for the two subperiods: for labor

the change was a 10%–30% decrease; for non-IT cap-
ital, a 33%–63% increase; and for IT capital, an 85%–
86% increase.

The constancy in our results, in particular the regu-
larity between coefficients on the logged rate of return
to an input and that input’s output elasticity, is sug-
gestive that changes in input share of the magnitude
found in our data may not be sufficiently substantial
to invalidate the process of going from the income
accounting identity to the AI-based Cobb-Douglas
form. Indeed, given the magnitude of the changes
reported above, it may be taken as evidence that the
AI-based Cobb-Douglas form is reasonably robust to
substantial changes in input share. However, there
may be a limit—in the overall period we found that
the output elasticity of IT capital was not significant,
and this corresponds to a period over which the input
share of IT capital more than tripled.

4.3.2. Endogeneity, Errors in Variables, Omitted
Variables, and Historical Data. We ran endogene-
ity tests across each of our overall periods and two
subperiods for each of the inputs in our Cobb-
Douglas form and for each of the inputs and the
two logged rates of return to capital in our AI-based
Cobb-Douglas form using a Generalized Method of
Moments model with lagged variables as instruments
(hence, without AR1 but with industry-level controls)
to generate Hansen J statistics and the C (differ-
ence in Sargan) statistic. Although using lagged vari-
ables as instruments is common in the literature when
alternative instruments are unavailable, it is not ideal
because unobservables that can affect inputs and out-
puts are likely to persist over time, which we recog-
nize can weaken the tests.

In the Cobb-Douglas form we found evidence that
labor hours was endogenous in both the overall
period and the later subperiod across both definitions
of capital (capital stock and capital input) and that IT
capital stock was mildly endogenous (p < 00036) in the
later subperiod. Given the Wald tests indicating that
the additional terms in the AI-based Cobb-Douglas
were significant—terms that are part of TFP, finding
some level of endogeneity in the Cobb-Douglas form
is not surprising. More importantly, we found no evi-
dence of endogeneity in the AI-based Cobb-Douglas
regressions even with a large number of tests: five
variables, three time periods, and two definitions of
capital provided 30 separate tests and none were sig-
nificant at p < 0005. We were unable to perform the
endogeneity test on the logged wage rate because
the estimated covariance matrix of moment condition
was not of full rank, and GMM estimation failed. We
believe this is because the wage rate across time after
adjusting for inflation shows a much smaller variance
than the remaining variables.
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Table 6 Annual Growth Rates in Input Factor Shares

Annual growth rates in input factor share of1

Labor (%) Non-IT capital (%) IT capital (%)

Industry 1995–2007 1995–2000 2000–2007 1995–2007 1995–2000 2000–2007 1995–2007 1995–2000 2000–2007

311, 312 −105 −005 −203 −009 −407 109 504 602 408
321 −204 −101 −304 500 208 606 805 902 800
322 −300 −106 −400 400 208 500 407 408 406
323 −209 −106 −308 800 604 901 1108 1503 904
325 −504 −209 −701 301 200 309 704 709 700
326 −207 −405 −104 507 1104 109 800 1307 401
327 −203 −202 −203 206 302 202 904 1107 708
331 −309 −106 −504 703 507 806 900 001 1508
332 −201 −009 −300 302 102 406 906 1107 801
333 −304 −106 −407 606 105 1003 1205 1804 804
335 −301 003 −504 300 −100 509 508 305 706
336 −501 −206 −609 1101 900 1207 1103 1806 604
337 −301 −107 −400 803 703 901 1407 1802 1202
339 −307 −400 −305 1203 2102 604 1006 1306 804
Average2 −302 −109 −401 507 409 603 902 1009 800
Overall input 6506 8901 7106 20501 13304 16300 31305 18604 18506
share change3

1The annual growth rates are calculated as compound annual growth (CAGR) rate using the first and the last year in the respective period.
2The average is calculated as the arithmetic mean over all industries (without weighing of the industries).
3The overall input share change is calculated using the following formula: (1+ average)#years in period.

As with all productivity data, and perhaps even
more so with industry-level data, there can be errors
in variables due to measurement. In our case it is
reasonable that such errors are not correlated with
any particular variable (the classical errors in variable
problem) because they arise from different sampling
and estimation procedures used by the government
agencies that collect the data we use. Measurement
error in the dependent variable, in our case value
added, typically increases the variance of the esti-
mates, making them less efficient, but there is no bias
(see Levi 1973 and later work). Measurement error in
our independent variables—labor, non-IT capital, IT
capital, and their corresponding rates of return—are
likely to cause attenuation bias whereby estimates are
likely to be biased toward zero. Together, these two
types of measurement errors make it less likely that
we would find significant results, which strengthens
our confidence in the significant results we found.

Because our Cobb-Douglas and AI-based Cobb-
Douglas form are theoretically based, we do not suffer
from a functional form misspecification problem that
is a common concern with omitted variables. Indeed,
this is the strength of theoretically derived estima-
tion forms. In our setting, the remaining concern is
industry-specific effects, and we described the differ-
ent ways we account for those effects in §3.2.2.

In terms of historical data, there are data sources of
the measures we use as far back as 1987. However,
we found the older data to be problematic for several
reasons and chose to begin our analysis with 1995.

First, with the Internet era beginning in roughly 1995,
the input shares of IT capital changed considerably
as the economy and methods of production changed.
In addition, there is a substantial problem with chain
aggregates. First, the use of chain aggregates began in
1996 for most of the measures we employed to gen-
erate our data—this is when the U.S. Department of
Commerce began using the new method to construct
all aggregate “real” series in the National Income
and Product Accounts. Second, if relative prices are
changing, then those products that decline in rela-
tive price have a smaller impact on a chain aggre-
gate growth after the base year and a larger impact
prior to the base year. Given the decrease in relative
prices for IT in recent decades, chain index aggre-
gates grow more slowly after the base year (2000 in
our data sources) and faster before the base year rel-
ative to fixed weight index aggregates (see Whelan
2002, p. 223). This means that the further the data is
from the base year, especially before the base year,
the more distortion is introduced. This has a strong
impact on our analysis because it means there are
greater distortions in our IT capital measures, and
because chain aggregates are the source of the addi-
tivity problem converting from the nominal to the real
income accounting identity, as described in §3.1. This
was a main reason for our choice of centering our
subperiods on the base period, yielding six years in
the early subperiod and eight years in the later subpe-
riod. It is also possible that the recoding of industries
to NAICS around 2000, and then reclassifying earlier
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years from Standard Industrial Classification coding,
introduced additional distortion in the data for years
increasingly earlier than 2000.

5. Conclusion
Our results can be summarized as follows. First, the
Cobb-Douglas form used for estimation in much of
the IT productivity research can be recovered directly
from the income accounting identity, and the addi-
tional terms in the income accounting identity can
identify additional information embedded in TFP.
Second, using a very specific data set spanning 13
years and 14 industries that has the additional mea-
sures we need to estimate our theoretically based
estimation form, our estimations and the resulting
Wald tests show significant additional explanatory
power of the AI-based Cobb-Douglas over the Cobb-
Douglas. Third, the consistency in the estimates of
output elasticities and the coefficients of logged rates
of return for our two subperiods and the tests of
the equality of coefficients in our AI-based Cobb-
Douglas form demonstrate the empirical regularity
of the income accounting identity-derived estimation
form. This further provides evidence for the AI-based
Cobb-Douglas as an empirically supported theoretical
justification for using the Cobb-Douglas form.

Using the income accounting identity, its analyti-
cal equivalence to the AI-based Cobb-Douglas form,
and the nesting of the Cobb-Douglas form within the
AI-based form as a unifying concept, this research
makes two important and previously unrecognized
contributions.

The first is to provide a rigorous and more gen-
eral theoretical model to justify the measurement of
returns to IT through the Cobb-Douglas, a theoret-
ical model that we validate empirically. It is more
rigorous because it is derived from an identity. It is
more general because it does not require the behav-
ioral assumptions that underlie production theory,
and only requires a mild assumption that input shares
are relatively constant in the measurement period.
Moreover, because the identity holds at all levels
of analysis from the establishment level up to the
economy level, our derivation and test applies to all
levels of aggregation. These findings are important
because they allow us to better understand why the fit
between output and inputs has been so strong in prior
returns to IT research while validating the source
of the measured output elasticities—effectively, the
direct returns to IT measured in that work. In addi-
tion, our findings provide support for consistent and
compelling insights obtained from past productiv-
ity research using the Cobb-Douglas form and more
importantly provide a theoretical basis for future
work such that the Cobb-Douglas form can be confi-
dently used to estimate returns to IT at varying levels

of analysis if input shares are reasonably stable over
time.

The second is to our understanding and mea-
surement of TFP. Our analytical derivation AI-based
Cobb-Douglas shows that elements of TFP from the
Cobb-Douglas can be explained by wages and rates
of return on IT and non-IT capital and that the
only remaining element is a constant of integra-
tion. Although we cannot make a definitive empiri-
cal connection due to lack of available data, the rates
of return to IT likely capture indirect effects from
IT capital such as IT-related organizational capital
(Brynjolfsson and Hitt 2003), IT knowledge spillovers
(Hitt and Tambe 2006, Tambe and Hitt 2010), and sup-
ply chain IT spillovers (Cheng and Nault 2007, 2012).
That is, the significance of the coefficients of logged
rates of return in the AI-based Cobb-Douglas is solid
empirical evidence that our form that contains rates
of returns on inputs explains a significant part of TFP.
Thus, many unobservables that have been considered
part of TFP can be identified in rates of return, and
this supports the current research program of decom-
posing TFP to uncover unobservable effects of IT.
Moreover, it supports an actionable and compelling
way to uncover sources of IT value by relating specific
IT investments to rates of return.

These contributions also serve to provide action-
able recommendations for IT productivity researchers.
When considering the use of the Cobb-Douglas form,
the first is to examine the intertemporal stability of
input shares and where possible conduct split sample
estimates where input shares are more stable. Next,
a poor fit to productivity data or unexpected signs
or magnitudes of coefficient estimates suggest prob-
lems with data quality or substantial intertemporal
instability of input shares. With the additional terms
in the AI-based Cobb-Douglas being rates of return
that vary over time, TFP should be modeled as time
varying. Finally, the use of aggregate data such as
industry-level data is not an issue so long as input
shares are reasonably stable because in that case the
income accounting identity holds at all levels.

Our analyses have highlighted three specific lim-
itations and a broader limitation of much IT pro-
ductivity research for which there may be fruitful
future research. The robustness of the AI-based Cobb-
Douglas in estimation to substantial changes in input
shares is surprising—even with share changes up to
85% over eight years (e.g., IT capital in our later sub-
period) the estimation shows strong empirical regu-
larity. Better understanding the limits of input share
changes while still providing robust estimation would
broaden the domain of applications to which the use
of the Cobb-Douglas in IT productivity work is appro-
priate. Even though empirically we found the Cobb-
Douglas form is robust to substantial changes in input
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shares, this is not always the case. Indeed, as we
suggest above, large changes in input shares is a
solid explanation for lack of fit to data or problem
estimates.

We also noticed apparent differences between the
two subperiods in the magnitudes of the output elas-
ticity of labor and the coefficient of the logged wage
rate. In the earlier subperiod the output elasticity is
higher and the coefficient of the logged wage rate is
correspondingly lower than in the later subperiod.

Third, our results point to elements of IT’s impact
on productivity captured in rates of return to IT capi-
tal that are not necessarily captured in its output elas-
ticity. We take these elements as part of TFP and make
the conceptual connection that these may also sum-
marize the effects through IT-based organizational
capital and various IT spillovers. However, we do
not have the data to more thoroughly examine the
relationship between the rate of return to IT capital
and these other effects that have been substantiated
in the literature—this would be an important avenue
for future work.

Finally, there is a stream of literature in productiv-
ity research that recognizes revenue-based measures
of output, whereby output (or value added) in real
terms is calculated by revenue divided by a price
deflator, and may not represent true production quan-
tities (e.g., Foster et al. 2008). This is because idiosyn-
cratic demand shifts or market power variations can
affect prices, which in turn affect revenue, and nei-
ther these shifts nor variations are related to quality
or productive efficiency as captured by a production
function. Moreover, they remain through aggregation.
If these effects on prices are substantial, then they may
be important considerations in the accounting identity
and our resulting analyses would be different. This is
also a possible direction for future research.
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