Abstract.

During the last ten years computer graphics has graduated from the laboratory into the public domain. In
the last five years the computer animation industry has reached the hundred million dollar mark and is still
growing. Presented here are some of the more important recent developments in computer graphics that have
made this growth possible and how these advances benefit the simulation community.

Keywords Graphics, Animation, Realism, Parallelism, Distributed processor, Man-machine
interfaces.

1. INTRODUCTION

Computer Graphics is a continually evolving field of computer science, in this paper we bring up to date
the developments described in a previous SCS conference, see [Wyvill 85). Graphics as a medium for
interaction has gained much popular support with the development of user interfaces that rely on windows, pop-
up and pull-down menus, icons, scroll bars, buttons etc. Environments for interacting with any application
with litle or no use of the conventional keyboard can be scen on many workstations. Powerful workstations
such as the Sun and Apollo, personal computers such as Macintosh, Atari and Amiga offer the applications
programmer a toolbox of facilities for manufacturing an application with a graphical interface.

There are basically three ways in which graphics can help the field of simulation:

¢ To enhance the simulation results
* To facilitate the debugging and production of simulation programs
¢ To provide an interactive dialogue with a running simulation

Langlois’ SIMSEA [Langlois 84] is a good example of graphics used to enhance the results of a simulation.
SIMSEA couples a general purpose graphics language with a tool specifically designed for simulation, namely
the class SIMULATION of Simula. In SIMSEA the animation of a bank simulation might show simple stick
figures queuing up at the wickets in the bank. The ANDES [Birtwistle et al 84] system takes a different
approach and is an example of a graphical debugging and program development aid. ANDES animates the
underlying mechanism of the simulation in addition to animating the behaviour of the simulation model. ANDES
also allows the user to observe a simulation from several perspectives or views. These views cover the spectrum
from overall pictures of the status of the whole model down to full details of the current data values and actions
of an individual process. Users may supplement the pre-defined views of ANDES with their own views tailored
to specific applications, such as those provided by SIMSEA. The third point was covered by Jean Vaucher in a
panel discussion on future directions in simulation software at the 1984 SCS conference. Vaucher described the
application of the video game paradigm to simulation. To allow a manager or non-programmer to experiment
with a simulation model he must have an easy to use fifth generation style of user interface. Perhaps with an
expert system to guide him, the manager must be able to try out different altematives by using graphical
operations such as picking and pointing or perhaps voice input to the model. The manager may be an expert in
a field other than programming and he should receive graphical feedback in real time to give him a better
understanding of the simulation model. An aircraft simulator is a good example of such a system designed for a
very specific situation which has no keyboard inputs and good animated graphics output and a user whose
expertise is not necessarily in programming. Since computer graphics has reached the stage where realism can
be achieved at progressively smaller costs there are many opportunities to use this technology and enhance the
reputation of simulation by producing systems which non-specialists can immediately find useful. There are
many examples of where better graphics can considerably add to simulation, clearly Langlois’ wire frame

animated figures painstakingly filmed frame by frame would be more convincing produced as full colour 3D
shaded images in real time. Training in situations where danger to life is involved is another example. Beside
pilot training there are other applications such as fighting forest fires or coping with oil and gas blow outs that
could use realistic graphics driven from a simulation model to good effect. It is therefore important for the
simulation community to be aware of what is happening in graphics and how far these developments have gone
to provide the sort of support that will enable the production of real time high quality realistic animation.

2. MODELLING

Mainstream graphics research has been concentrating on image synthesis since the advent of cheap raster
displays. The problem is to design some three dimensional object and render it as realistically as possible. If
animation is desired then motion specifications must be associated with the object and its parts. Three
dimensional model building uses a variety of primitives and various systems offer different ways of constructing
objects. There are three commonly used methods of representing surfaces; Polygon Meshes, Quadric Surfaces
and Parametric Bi-Cubic Surfaces. Although easy to manipulate and render, polygon meshes suffer from some
problems. To achieve the appearance of a curved surface a normal averaging technique is used which produces
a smooth looking interior mesh with some defects such as the polygon sithouette at the edges. This type of
technique is useful for planar surfaces such as modelling buildings and there are many algorithms for
manipulating and rendering polygons.

Quadric surfaces [Math 68] are represented by quadratic functions such as a sphere or cylinder and objects
composed from these primitives. This technique is useful in applications where the world can be so described,
for example modelling a world of spheres as in a molecule display program.

A more flexible modelling technique is to use a parametric bi-cubic patch. The shape of the patch can be
altered by editing a set of control points. Unfortunately, unless a large number of points are used, moving a
control point changes the shape over a large area. Recent work on beta splines [Barsky and Beatty 84] has
produced a patch whose shape can be finely controlled using two extra parameters at each control point called
bias and tension.

There has been a strong emphasis in the computer graphics research community on modelling natural
phenomena. These objects divide into two broad classes, those that have well defined surfaces and those that
are more amorphous in nature. For many objects of the former class the surface techniques described above are
adequate. However other objects such as a ball hitting the ground, undergoes a shape change in response (o its
surroundings. These objects have been termed as soft [Wyvill et al 86]. None of the above techniques lend
themselves to the description of soft objects. This class of objects includes fabrics, cushions, living forms, mud
and water. Such objects can be represented as a surface of constant value in a scalar field over three
dimensions. The object can then be thought of as a skeleton of control keys (points or lines) which are then
covered by the surface. Depending on the function used to describe the field an individual control key point
will be covered by a sphere, and a key set of 3 line segments give rise to an ellipsoid. As the keys are moved
towards each other the surfaces merge. This technique is particularly useful when describing objects to be
animated. The control keys can be moved independently and the surface added later. Thus objects can be
moved and their shape can change.

Other objects which can be described as amorphous, fluids such as fire or smoke can be described by a
variety of techniques. Scalar fields have also been used to describe amorphous phenomena by merging objects
with simple geometries. Given a threshold value of the scalar function the object is defined by a 3D grid of
cells. An object is placed in a cell where the function is greater than a threshold value. A cruder
representation is obtained compared with the soft technique, but the objects can built in real time. This
approach has been used in medical applications for the display of human organs from tomograms. A summary

of amorphous modelling techniques is given in {Upson 86].

Modelling amorphous phenomena is particularly useful for a class of simulations. For example
simulating a forest fire on a mountain side to help train fire fighters uses objects such as fire and trees which do
not lend themselves to the geometric surface representations. In such a simulation it is important to model these
objects accurately since the more realistic the simulation, the better the effect of the training.

Mandelbrot [Mandelbrot 83] put forward the idea of fractal geometry in which he identifies the self
similarity in natural objects. To obtain the desired complexity a fractal is non-deterministic, each generation
being found from the last using a stochastic process. Unfortunately such processes generate a very large amount
of data and it is difficult to fit such procedurally defined objects in an existing system which uses objects defined
with a more cubist approach as surface patches and polygons. However recent advances using particle
techniques by Reeves [Reeves 83] and others have had some success in generating realistic fuzzy objects. The
genesis effect in the film Wrath of Khan [Smith et al 82] which shows a fire spreading across a planet followed
by a fast flight over the surface populated with fractal mountains has become a landmark in computer graphics.
Since then more work has been done on particle systems. The concept of Graftals [Smith 84] is an idea used to
describe plants and trees. Fractals are strictly non-deterministic whereas with graftals a deterministic procedural
approach is taken which adequately provides sufficient complexity. Using this idea Smith has produced some
extremely realistic images.

Other recent work has tackled the problem of describing waves in water, two recent papers suggest ways
of representing waves approaching and breaking on a sloping beach. Peachey uses a phase function which
produces wave refraction and other depth effects, and a wave profile which changes according to wave steepness
and water depth. Particle systems are used to model the spray and effect of obstacles placed in a waves path.
The waves are finally rendered using small polygons to approximate wave patches defined by a parametric
representation [Peachey 86). Fournier and Reeves use a similar model based on a parametric representation of
waves which also takes into account wave trains {Fournier & Reeves 86].

The trend in modelling techniques is to develop graphical techniques to match more accurate simulation of
natural phenomena.

3. RENDERING TECHNIQUES, THE PRICE OF REALISM

To produce a high quality image on a relatively low quality raster display from some description of the
model is known as rendering. This process is the subject of much research as there are many trade offs
depending what sort of quality is required and how much available machine time there is to perform this
operation. There are a number of basic problems:

o Project the objects in perspective and remove hidden surfaces.

o Shade the objects according to the position and colour of light sources.
¢ Account for reflections and refraction through transparent objects.

» On low resolution displays defocus the edges to reduce aliasing.

o In animation reduce temporal aliasing.

¢ Produce shadows.

Various techniques have been developed, although ray tracing seems to solve most of the above mentioned
problems. Goldstein [Goldstein 71] describes the technique as " ... basically a simulation of the physical process
of photographing an object.” Some of these features, such as reflections and refractions can be included in other
hidden surface algorithms, e.g. scan-line and area sub-division [Sutherland et al 74]. However, these algorithms
treat such surfaces as special cases whereas ray tracing deals naturally with them. The final picture quality
provided by ray tracing has to be paid for by a large amount of computation, proportional to the number of
pixels in the picture (or more to accommodate anti-aliasing) times the logarithm of the number of surfaces in the
scene [Rubin and Whitted 80). o

Ray tracing works by reversing the physical passage of a light ray. Rays are traced backwards from the
eye through each pixel into the surfaces representing the scene. When the ray encounters a surface, three things
may happen. If the surface is matte then the light intensity at that point on the surface will be taken as the
intensity of the pixel the ray passed through. If the surface is a (partial) reflector then a new ray is started in the
direction of the reflection. The final intensity of this ray will make a (partial) contribution to the intensity of the
pixel. If the surface is (partially) transparent then a new refracted ray is generated passing through the surface.
Again it will make a (partial) contribution to the pixel’s intensity. Depending on the surface all three of these
effects may occur and their respective intensities will be added to give the final pixel intensity. More than one
ray per pixel must be used if antialiasing is required. Whitted [Whitted 80] uses four rays per pixel increasing
the computer time proportionally.

In practice greater realism is achieved by attention to fine detail, for example modelling shadows gives a
good cue to realism but takes substantially more computer time since the hidden surface algorithm has to be
repeated from the point of view of the light sources. An even better cue is given by modelling light sources
with a finite width thus producing fuzzy shadows (the penumbra). This has been done by a variation to ray
tracing by using thick cone shaped rays [Amanatides 84]. Unfortunately such attention to detail corresponds to
larger amounts of machine time necessary to render the object and real time ray tracing is yet to be done.

Recent work has concentrated on improving the lighting model. In ray tracing lights are modelled as
points in space, thus shadows are sharp and do not show umbra and penumbra. (Although this problem has
been solved using sampling techniques indicated above). The procedure can only model intra environment
reflections in the specular direction and each time a new view is required the calculation must be repeated. The
radiosity method see [Greenberg et al 86] determines the global illumination of the environment independent of
the viewer position. However although this approach produces accurate results and it requires an enormous
amount of computer time to use this method, since each surface in the scene can potentially add to the diffuse
illumination of every other surface. :

High quality pictures can be produced without the cost by faking the effect of surface detail. Texture
mapping plays an important part in enhancing the visual complexity of an image to give the impression of
surface detail, without the cost of manufacturing a geometric model of that detail. It is usually achieved by
using some coordinates of position on a surface as input to a texture function or as selectors in a texture table.
Environmental reflection maps provide the effect of reflections without going to the expense of ray tracing.
Bump maps provide the effect of raising bumps or depressions in a surface by perturbing the direction of the
surface normals. [Blinn 78]. More recently Peachey [Peachey 85] has proposed using a three dimensional
texture space. This has many advantages. For example, the surface of marble or wood-grain are a
consequence of the way in which the surface is part of the continuous solid texture of the material [Perlin 85;
Peachey 85].

4. ANIMATION

It has been pointed out [Thalman and Thalman 85] that in the last ten years much research has been
devoted to the development of rendering algorithms, but little to the equally difficult task of defining complex
motion. One of the reasons is the lack of suitable modelling primitives. In modern animation systems the three
most commonly used modelling primitives are: polygon mesh, spline surface patches and quadric surfaces. These
techniques are not well suited to represent motion of objects which change shape over time. Thalman also
[Thalman and Thalman 85] introduces the concept of laws to define local and global methods for governing the
way in which objects in his system move.

In animation we wish to simulate the motion of real objects. This motion control falls roughly into two
classes: simulation and illusion. In order to look natural, any animation has to represent possible motion in the
physical world. In this sense, the best animation is based on detailed simulation which takes into account the
physical laws which govern motion. In such a simulation, a mathematical model representing these laws,
produces the desired effect automatically. In many applications, it is not necessary for an animation sequence to
follow such a physical model. All that is required is to convince the human eye that the motion is one that
would be seen in the real world. Fairing in hand animation can be regarded as a crude attempt to use a few
simple rules to do this. Such techniques attempt to model the visual effect we refer to in this paper as illusion.
In a sense, any approximation, however crude, can be thought of as simulation.

There are several different approaches to the problem of defining the way in which objects can be made to
move. At the lowest level many animation systems simply offer geometric transformations over time, or
inbetweening of an object from one key position to another. Although these primitives may be built up
hierarchically to obtain motion, to describe something as complex as a human movement simulation requires
more sophistication. For example [Badler et al 80] and [Zelizer 82] use a goal-directed approach. A high
level command such as walk to the door can be given, to which the system will apply a suitable pre-defined
gait. Some computational aspects of this technique can be found in [Korein and Badler 82). Some work has
been done on human facial animation of which [Parke 82] is the best known. A good summary of research in
this area is given in [Badler and Smoliar 79], for a summary of the issues involved, consult [Calvert et al 82].

Recent work has been done on the animation of soft objects (mentioned under modelling above). Shape
change can be achieved by moving the control points and adjusting the spatial relationship between the points in
a controlled manner. Since the object can also change shape, motion specification for these models becomes
more difficult to express than for rigid objects. To some extent this problem is offset when these objects are
represented as an iso-surface in a scalar field, since one or more closed surfaces will be formed no matter how
the control points are moved [Wyvill et al 86]

5. GRAPHICS HARDWARE

The two major bottlenecks in the speed of producing high quality graphics are the time taken to do
floating point operations such as matrix multiplies and clipping operations and the time taken to render the
objects. For example ray tracing may take anywhere from several minutes to several hours of computer time to
produce a single frame. In film animation 24 frames per second have to be produced. For video, thirty frames
per second; thus a few minutes of film can take weeks to generate. For a running simulation to produce high
quality realistic results the problem becomes one of needing processing speeds that cannot be provided by even
todays supercomputers. A glossy magazine provides picture quality of something of the order of 2000 dots per
inch. A 512 by 512 pixel display gives only the order of 40 dots per inch. Assuming a 512 by 512 pixel array
is adequate with sufficient anti-aliasing each frame has to be processed in 1/30th second. Whatever the method
of representing objects to describe any realistic scene requires thousands of data values each of which has to be
pushed through some sort of pipe line of transformation and clipping operations before being rendered. Even if

the data is processed through the geometry pipeline in a reasonable amount of time the rendering process must
be fast enough to produce thirty frames a second.

Much research is going on in hardware to produce parallel and VLSI architectures capable of handling the
problem of speed in computer graphics. A significant contribution in this area is the Clark geometry engine
{Clark 82] which is a series of 12 specialised VLSI processors designed to do the calculations prior to rendering
(matrix multiplies and clipping operations). More recently several hardware manufacturers have developed
specialised graphics hardware. The 32-bit Texas Instruments 34010 graphics processing chip [Asal et al 86]
combines both specialised graphics instructions, such as pixel block transfers, and general-purpose instructions.
This makes it flexible for graphics applications, and also suitable for non-graphics applications. The chip is
designed to retain the speed found in specialised hardware controllers, while giving the flexibility of a general
purpose programmable processor.

One of the properties of ray tracing is that the rays are independent of each other and a particular ray can
be computed in parallel with any other ray. Several groups are working on parallel architectures for ray tracing.
For example at the University of Calgary a four processor machine has been built comprising of a two
dimensional systolic array of M68000 processors. [Cleary et al 83). In the processor array a number of
independent processors are connected by high speed links (comparable to processor speeds). The links are
confined to those processors which are physical neighbours. Because the processors run independently sharing
data only over the links and they execute different instructions on different data, they can be classified as MIMD
(Multiple Instruction Multiple Data) systems [Hockney and Jesshope 81]. The great advantage of such systems
is that because there is no global buss or global shared memory the system can be very easily laid out with
entirely local wiring for signal paths. Using a suitable algorithm which efficiently uses the local communication
links they can provide a very cheap way of constructing significant computing power. Indeed if a two
dimensional network of links is used then there seem to be no limiting factors other than cost to growing the
system indefinitely although ray tracing performance begins to decline after a certain size array is reached.
Software support for developing and testing different distributed algorithms on this machine comes from the
JADE [Unger et al 84] distributed software prototyping environment. JADE provides the tools necessary to
develop, monitor and debug distributed software of this nature. Amongst the many problems faced by such
architectures is to adequately distribute the picture over the available processors. This task can be very complex
for example in the case of a consisting of a parabolic mirror focusing the rays into a small area of the screen.
This problem has been tackled by balancing the load using an adaptive subdivision algorithm [Dippe and
Swensen 84].

The structure of graphics systems is another area which is receiving some attention especially when
distributed algorithms must be found to take advantage of multi-processor machines. Earlier graphics systems
held a linear display list of primitives which were continually refreshed by the display processor. Structuring this
into a hierarchy can lead to many advantages. Such a structure is discussed in [Wyvill et al 84a] and [Wyvill et
al 84b). Besides economy of storing a model part only once and reusing it higher in the hierarchy the structure
traversal can take place on a remote processor. The possibility of making each sub-tree a separate process is
being examined in order to take advantage of parallelism. The Apollo 580 uses a similar hierarchical scheme
as its display list [Henderson et al 86; Apollo 85]. The bottleneck however for high quality graphics will still be
the rendering process for the forseeable future. Currently 3D animated graphics can be achieved on a small
display area in real time by leaving out many of the subtler and slow to calculate realism cues such as shadows
and specular reflections. There are also severe limitations on the quantity of data that can handled although
again algorithms are being produced whose processing time tends to depend on the number of pixels rather than
on the number of graphical objects [Cleary et al 86].

Several machines capable of real time rendering a limited number of objects (usually polygon based) are
now available. The most exciting of these is Pixel Planes developed by Henry Fuchs at the University of North
Carolina [Fuchs et al 85]. The machine uses a one processor per pixel architecture at 512 by 512 resolution.
Thus a quarter of a million processors have been built using custom VLSI chips. Polygon descriptions are sent

comparatively high quality is thus possible.

6. GRAPHICS & ROBOT SIMULATION

Graphical simulations of robots are useful in at least two ways:

e as an aid to research, where the robot and its environment need to be easily changed
* as an aid to design of robots, robot systems, and robot tasks

Robots lack teachability and adaptability [MacDonald 84; MacDonald in press; Lozano-Perez 83; McLaughtin
82; Bonner and Shin 82; Hasegawa 82; Ambler et al 82; Rosen 79; Nitzan 79; Benati et al 80]. Advanced robot
systems are limited to specific tasks and their associated environments, and may be difficult to extend [Waltz,
82]. New schemes for teaching and programming robots need to be demonstrated, establishing their consistency
and implementability. Simulations avoid the difficulties of real demonstrations — being flexible and free from
unimportant details — so long as the simulations are correctly validated. We have found it possible to animate a
very simple robot simulation in real time, using a Sun 3 and its graphics processor. The robot comprises only a
few polygons, and responds as quickly as a user can move a controlling mouse. Although crude, we expect this
kind of animation to be suitable for robot teaching and programming experiments. The teacher is able o lead
the simulated robot through a task interactively.

Robots are becoming more popular in manufacturing industries [EIMaraghy 86]. There is an increasing
need for methods of aiding robot programmers. The normal industrial teach method is limited to effectively
teaching fixed- sequences, but modern robots are capable of performing much more complex tasks. Graphical-
simulations aid the design and development of robots by robot designers. Graphical simulations also aid robot
users, enabling them to simulate robots as parts of other systems, and simulate robots performing individual
tasks. The latter may become important as an aid to robot programming; the teacher may have more control of
the simulation than of a real robot, facilitating the programming and debugging of a task.

Below are discussed some systems for animation and simulation of robots and general articulated figures.

[Elmarghy 86] describes a system for modelling and simulating two modem robots; the PUMA 560 and
the ADEPT I The system may be used for interactively simulating assembly tasks carried out by any open chain
mechanism. An expert system under development is intended to produce task plans for a robot, given a
specification of an assembly task.

[MacKay and Tanner 86] describe Adagio, a robotics simulation workstation under development. The
workstation is a multiprocessor, multitasking system, the simulation being implemented as several tasks. Near

real time animation of a robot and environment is planned.

General methods of representing three dimensional articulated figures are addressed by [Cachola and
Schrack 86], [Badler 86], [Ridsdale et al 86] and [Armstrong et al 86). One system [Cachola and Schrack 86]
enables the description of segments and joints, and the specification of motion in a structured programming
language. Only open kinematic chains can be modelled. Figures can be defined hierarchically, for example a
hand can be defined and then used in an arm definition. Motion can be explicitly specified for each joint for a
set of key frames. These basic motions can then be combined and synchronized, forming complex motions of
articulated figures. One example given is of a motion my_walk, which comprises synchronized motion of
walking_legs and swinging_arms, where walking_legs is defined as a walk by a number of legs, and so on.
[Badler 86] aims at understanding human motion, by simulating and animating human motion. Simulations
verify representations proposed for human motion. A general approach to motion understanding would cover

e geometry, kinematics and dynamics

e the goals of movements

o the agents mode of behaviour (e.g. defensive vs threatening)

® any abstract signs made by the motion (e.g. the same motion can signify a touch, press or punch)
o relationships between a movement and other concurrent or synchronized movements

[Ridsdale et al 86] aim to develop motion descriptions of articulated figures, both at the detailed level and at the
scene level. In the long term they propose using knowledge-based inference in a director's apprentice, a system
that will learn from a human director and then be able to produce motions given scene level descriptions. The
detailed level system has been used by a skating choreographer and a dance choreographer. The scene level
system is expected to be used by film and theater directors. [Armstrong et al 86] describe a user interface to a
human figure dynamics modelling system, intended to alleviate the difficulty of computing the torques and
forces needed for a dynamic analysis for animation. They expect to be able to use l.he techniques to achieve real
time animation on a network of four SUN 3 workstations.

[Drewery and Tsotsos 86] describe a prototype animation system that executes movements in 3D given
English motion commands. A planning system forms a plan for a task goal, using a frame-based knowledge
base. The objective is to enable task level description of animation, where the user does not have to specify
details at the motion level.

[Wilhelms 86] describes an interactive graphical motion editor in which motion can be specified
kinematically as positions over time, or dynamically as motions caused by forces and torques being applied to
masses. While kinematic motion is more easily computed, dynamic motion is easier to specify when there are

-10-

complex interactions between objects.

7. CONCLUSION

During the last ten years computer graphics has graduated from the laboratory into the public domain. In
the last five years the computer animation industry has reached the hundred million dollar mark and is still
growing. Presented here are some of the more important recent developments in computer graphics that have
made this growth possible and how these advances benefit the simulation community.

Graphics as a medium for interaction has gained much popular support with the development of modem
user interfaces. Graphics can help simulation by enhancing results, facilitating debugging and program
production, and providing an interactive dialogue with a running simulation. Since computer graphics has
reached the stage where realism can be achieved at progressively smaller costs there are many opportunities to
use this technology and enhance the reputation of simulation by producing systems which non-specialists can
immediately find useful. It is therefore important for the simulation community to be aware of what is happening
in graphics and how far these developments have gone to provide the sort of support that will enable the
production of real time high quality realistic animation.

Acknowledgements

The JADE project and the Systems Research and Development Group (SRDG) at the University of Calgary have
been particularly supportive of our work in distributed graphics. This work, JADE and SRDG are supported by
the Natural Science and Engineering Research Council of Canada.

References

Amanatides, J. (1984) "Ray Tracing with Cones,” Computer Graphics (Proc. SIGGRAPH 84), 18 (3) July, 129-
135.

Ambler, AP., Popplestone, RJ., and Kempf, K.G. (1982) "An Experiment with the Offline Programming of
Robots" in Proc. 12th Int.Symp. on Industrial Robots; 6th Int.Conf on Industrial Robot Technology., pp
491-504. Paris, June.

Armstrong, W.W., Green, M. and Lake, R. (1986) "Near-Real-Time Control of Human Figure Models"
Proceedings, Graphics Interface’86 147-151 Vancouver 26-30 May

Apollo Computer Inc (1985) "Programming with DOMAIN 3D Graphics Metafile Resource™ Release 9.0,
Chelmsford, Mass.

Asal, M., Short, G., Preston, T., Simpson, R., Roskell, D. and Guttag, K. (1986) "The Texas Instruments 34010
Graphics System Processor" IEEE CG&A 6 (10) 24-39.

Badler, N.L. (1986) "Animating Human Figures: Perspectives and Directions" Proceedings, Graphics Interface
'86 115-120 Vancouver 26-30 May

Badler, N., O’Rourke, J. and Kaufman, B. (1980) "Special Problems in Human Movement Simulation™ Computer
Graphics 14(3) July

Badler, N. and Smoliar, S. (1979) "Digital Representations of Human Movement" Computing Surveys 11(1)
March

Barsky, B. and Beatty, J. (1983) "Local Control of Bias and Tension in Beta-Splines" Computer Graphics (Proc.
SIGGRAPH 83), 17 (13) July, 193-218. '

-11-

Benati, M., Gaglio, S., Morasso, P., Tagliasco, V., and Zaccaria, R. (1980) "Anthropomorphic Robotics, Parts I
and II" Biol.Cybern., 38, 125-150.

Birtwistle, G., Joyce, J. and Wyvill, B. (1984) "Andes an Environment for Animated Discrete Event
Simulation" Proc. UKSC, Bath, Sept

Blinn, J.F. (1978) "Simulation of Wrinkled Surfaces," Computer Graphics (Proc. SIGGRAPH 78), 12 (2) July,
286-292.

Bonner, S. and Shin, K.G. (1982) "A Comparative Study of Robot Languages" Computer, 15 (12) 82-96.

Cachola, D. and Schrack, G. (1986) "Modelling and Animating Three-Dimensional Articulate Figures"
Proceedings, Graphics Interface’86 152-157 Vancouver 26-30 May

Calvert, T.W., Chapman, J. and Patla, A. (1982) "Aspects of the Kinematic Simulation of Human Movement"
IEEE Computer Graphics and Applications Nov

Clark, J.H. (1982) "The geometry engine, a VLSI system for graphics" Proc. SIGGRAPH '82 July 127-133

Cleary, J., Wyvill, BL.M., Birtwistle, G. and Vatti, R. (1983) "Design and Analysis of a Parallel Ray Tracing
Computer” Proc. XI Association of Simula Users Conference Paris

Cleary, J.G., Wyvill, B., Birtwistle, GM. and Vatt, R. (1986) "Multiprocessor ray tracing” (in press)
Eurographics

Dippe, M. and Swensen, J. (1984) "An adaptive subdivision algorithm and parallel architecture for realistic
image synthesis” Proc. SIGGRAPH’84 July 149-158

Drewery, K. and Tsotsos, J. (1986) "Goal Directed Animation using English Motion Commands" Proceedings,
Graphics Interface '86 131-135 Vancouver 26-30 May

EIMaraghy, H.A. (1986) "Kinematic and Geometric Modelling and Animation of Robots" Proceedings, Graphics
Interface ’86 15-19 Vancouver 26-30 May

Fournier, A and Reeves, W (1986) "A simple model of Ocean Waves" Computer Graphics (Proc. SIGGRAPH
86) 20 (4) 715-84

Fuchs, H., Goldfeather, J., Hultquist, J.P., Spach, S., Austin, J.D., Brooks, F.P.Jr., Eyles, J.G. and Poulton, J.
(1985) "Fast Spheres, Shadows, textures, transparencies, and Image Enhancements in Plxcl Planes”
Proc SIGRAPH '85 19 (3) 111-120

Goldstein, R.A. (1971) "The System for Computer Ammauon by 3-D Objects,” Proc. 1971 UAIDE Annu.
Meet., Stromberg Datagraphix.

Greenberg, D, and Cohen, M and Torrance, K (1986) "The visual simulation of amorphous phenomena” The
Visual Computer 2 (5) 291-297

Hasegawa, T. (1982) "An Interactive System for Modeling and Monitoring a Manipulation Environment" IEEE
Trans.SMC, SMC-12 (3) 250-8.

Henderson, P., Bremser, C. and Lopez, A. (1986) "Understanding the DOMAIN Graphics Environment” Apollo
White Paper, Apollo Computer Inc., Chelmsford, Mass.

Hockney, R.W. and Jesshope, C.R. (1981) "Parallel computers™ Bristol, England, Adam Hilger Ltd.

Korein, J. and Badler, N.I. (1982) "Techniques for Generating the Goal-Directed Motion of Articulated
Structures" IEEE Computer Graphics and Applications Nov

Langlois, L. (1984) "Simulation visualization with SIMSEA, a general purpose animation language" Proc. SCS
Conf. on Simulation in Strongly Typed Languages. San Diego Feb

Lozano-Perez, T. (1983) "Robot Programming" IEEE Proc, 71 (7) 821-41, Invited paper.

MacDonald, B.A. (1984) "Designing Teachable Robots” PhD thesis, University of Canterbury, Christchurch,
New Zealand

MacDonald, B.A. (in press) "Improved Robot Design" Transactions of IPENZ, Elect/Mech/Chem section,
Wellington, New Zealand.

MacKay, S.A. and Tanner, PP.(1986) "Graphics Tools in Adagio, A Robotics Multitasking Multiprocessor
Workstation" Proceedings, Graphics Interface '86 98-103 Vancouver 26-30 May

McLaughlin, J.R. (1982) "TRIG: An Interactive Robotic Teach System” Working Paper 234, MIT AI Lab, June.
53p.

Mandelbrot, Benoit. (1983) The Fractal Geometry of Nature W.H. Freeman and Company. (First Edition
1977).

Mathematical Applications Group (1968) "3D Simulated Graphics" Datamation Feb.

Nitzan, D. (1979) "Flexible Automation Program at SRI" Proc JACC, pp 754-9. Denver, June.

.12-

Parke, Fl. (1982) "Parameterized Models for Facial Animation" IEEE Computer Graphics and Applications, 2
(9) 61-68.

Peachey, D. (1985) "Solid Texturing of Complex Surfaces” Computer Graphics (Proc. SIGGRAPH 85) 19 (3)
11-20

Peachey, D. (1986) "Modelling Waves & Surf" Computer Graphics (Proc. SIGGRAPH 86) 20 (4) 65-75

Perlin, K. (1985) "An Image Synthesizer" SIGGRAPH 85, Computer Graphics 19 (3) 287-296

Reeves, W. (1983) "Particle Systems - A Technique for Modeling a Class of Fuzzy Objects” ACM Transactions
on Graphics 2 91-108

Ridsdale. G., Hewitt, S. and Calvert, T.W. (1986) "The Interactive Specification of Human Animation"
Proceedings, Graphics Interface '86 121-130 Vancouver 26-30 May

Rosen, C.A. (1979) "Machine Vision and Robotics: Industrial Requirements” in Computer Vision and Sensory-
Based Robots., edited by Dodd, G and Rossol, L., pp 3-20. Plenum, N.Y., Symp. held at GM Labs..

Rubin, S. and Whitted, T. (1980) "A 3-Dimensional Representation for Fast Rendering of Complex Scenes,”
Computer Graphics (Proc. SIGGRAPH 80), July, 110-116.

Smith, A.R. (1984) "Plants, Fractals and Formal Languages" Proc. ACM SIGGRAPH ’84 July 1-10

Smith, A.R., Carpenter, L., Cole, P., Evans, C., Porter, T. and Reeves, W. (1982) "Genesis Demo in Star Trek
II: The wrath of Khan" Lucasfilm Computer Graphics Project for Industrial Light and Magic. June

Sutherland, WR., Sproull, R.F. and Schumacker, R.A. (1974) "A Characterization of Ten Hidden-Surface
Algorithms," Computing Surveys, 6(1), March, 1-55.

Thalman N. and Thalman D. (1985) "Three Dimensional Computer Animation: More an Evolution Than a
Motion Problem” IEEE Computer Graphics & Applications 5 (10) 47-57

Unger, B., Birtwistle, G., Cleary, J., Hill, D., Lomow, G., Neal, R., Peterson, M., Witten, LH. and Wyvill,
B.L.M. (1984) "JADE: A distributed software prototyping environment" Proc. SCS Conf. on Simulation
in Strongly Typed Languages San Diego Feb

Upson, C. (1986) "The visual simulation of amorphous phenomena” The Visual Computer 2 (5) 321-326

Waltz, D. (1982) "Artificial Intelligence” Scientific American, October, 78- 83.

Whitted, T. (1980) "An Improved Illumination Model for Shaded Display,” Communications of the ACM, 23 (6),
June, 343-349,

Wilhelms, J. (1986) "Virya - A Motion Control Editor for Kinematic and Dynamic Animation"Proceedings,
Graphics Interface '86 141-146 Vancouver 26-30 May

Wyvill, B (1985) "Current Trends in Graphics and Animation” Proc. SCS Conf. on Simulation, San Diego.

Wyvill, B, Liblong, B, and Hutchinson, N (1984a) "Using Recursion to Describe Polygonal Surfaces” Proc.
Graphics Interface 84, Ottowa, June

Wyvill, B, Neal, R, Levinson, D and Bramwell, R (1984b) "JAGGIES: A Distributed Hierarchical Graphics
System" Proc. CIPS Session 84 Calgary, May i

Wyvill G., Wyvill B. and McPheeters C. (1986) "Soft Objects” Advanced Computer Graphics, Proceedings of
CG Tokyo 113-128

Zeltzer, D. (1982) "Motor Control Techniques for Figure Animation” /EEE Computer Graphics and Applications
Nov

