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This paper is concerned with movement from a current operating point so as to reach a two-dimensional,
efficient frontier. After a discussion of different criteria for deciding on which point on the frontier to
target, we focus, as an illustration, on a particular inventory management context and use of the criterion
of minimum distance from the current point to the frontier. Specifically, the efficient frontier turns out
to be an hyperbola in a two-dimensional representation of total (across a population of items) average
stock (in monetary units) versus total fixed costs of replenishments per year. Any current (or proposed)
operating strategy, differing from the class along the frontier, is located above the frontier. Finding the
minimum distance from the current point to the frontier requires determining the smallest root of a quartic
equation within a restricted range.
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1. Introduction

Exchange curves and efficient frontiers play an important role in judging and improving the performance
of organizations. In this paper we focus on a two-dimensional tradeoff, where an exchange curve shows
how, under a specific operating policy, the value of one aggregate dimension of interest is downgraded
as the value of the other dimension of interest is improved. Efficient frontiers represent the best that one
can do in terms of an exchange curve, i.e., the value on one dimension cannot be improved without the
other deteriorating. Under specific assumptions one can sometimes analytically determine the efficient
frontier. Under more general circumstances the efficient frontier, or at least a tradeoff curve, can be
estimated from data on the two-dimensional performance of a sample of organizational units. This
can be done in terms of an input-output model, but also with respect to strategic tradeoffs such as cost-
flexibility or quality-response time. A common procedure for estimating a frontier is Data Envelopement
Analysis (DEA) (see, for example, Alexander et al (2003) or Chen and Zhu (2003)). More generally,
statistical regression methods can be used to estimate tradeoff curves (see, for example, Noble (1995)
or Domberger et al (2000)).

From a strategic standpoint management should be interested in how and where to move from the
current operating position of their organization to a point on the performance frontier. In general, there
is likely to be a relatively small number of points on the frontier attainable from the current operationg
position of organization, each associated with a particular change of strategy and/or course of action
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having related one-time cost/benefits (e.g., cash flows for acquisition and installation of a new software
system or for selling off excess inventory) as well as on-going cost/benefits (such as associated changes
in staffing and training requirements). Ideally, one would wish to select the option that maximizes,
for example, the present value of expected revenues minus costs. In practice this type of analysis is
likely to be very difficult to carry out (due to stochastic, non-stationary elements and uncertainties in
estimates of parameters). In this paper we focus on a simpler, surrogate measure, namely minimum
distance from the current operating point to the efficient frontier. Incidentally, DEA does not directly
provide such information. Schmenner and Swink (1998, p.11), in discussing a theory of performance
frontiers, say “The theory . . . suggests the need to develop metrics that characterize proximity to an
asset frontier.” Finding the closest point on the frontier should be appealing to management. Moving
a minimum distance to the efficient frontier, in a sense, represents minimum departure or disturbance
from current operating conditions.

In this paper we deal with the particular case of a commonly-modelled situation in inventory man-
agement where one is able to analytically determine an exchange curve which represents the efficient
frontier for total average inventory (in monetary units) versus the aggregate replenishment workload
(total fixed costs of replenishments per year) across a population of inventoried items. As will be seen,
the current and proposed operating policies of an organization under study can be represented by points
that lie above the efficient (in a minimizing sense) frontier. We specifically address how to find the point
on the exchange curve that is closest to any given operating point, as well as the associated minimum
distance.

In Section 2 we present the specific (economic order quantity) exchange curve which turns out
to be an hyperbola. We elaborate on options for moving from an operating point to the exchange
curve, including the aforementioned, minimum distance, option. Section 3 outlines the derivation of
the mathematical condition implied by choosing the point on the curve that minimizes the distance
from the (external) operating point. The result is a quartic (i.e., 4th order) equation whose root(s)
must be obtained. Fortunately, normalization reduces the number of parameters involved, and graphical
representations indicate that only one particular root is of interest. Section 4 summarizes the procedure
for finding the closest point on the exchange curve and its associated distance from the current operating
point. Some illustrative results are presented in Section 5 and brief conclusions are provided in Section
6. Details of mathematical derivations and formulae are included in the appendix.

2. The specific efficient frontier

Consider a population of n inventoried items numbered i = 1,2, . . . ,n. We introduce the following no-
tation:

Di - the known, constant, demand rate (units/yr) of item i
νi - the unit variable cost ($ or other monetary unit/unit) of item i
Ai - the fixed cost associated with each replenishment of item i
Qi - the replenishment quantity (units) of item i
r - a common inventory carrying charge ($/$/yr)

The total relevant costs of using Qi for item i are

TRC(Qi) =
Qiνir

2
+

AiDi

Qi
(1)
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The economic order policy selects EOQi that minimizes (1), specifically

EOQi =
√

2AiDi

νir
=

√
2
r

√
AiDi

νi
(2)

The average cycle stock (expressed in $) of item i is

ACSi =
EOQiνi

2
=

√
1
2r

√
AiDiνi (3)

and the fixed costs (again in $) of replenishments of item i per year are

FCRi =
AiDi

EOQi
=
√

r
2

√
AiDiνi (4)

Summing each of (3) and (4) over all items gives total average cycle stock (in $),

TACS =

√
1
2r

n

∑
i=1

√
AiDiνi (5)

and total fixed costs of replenishments per year,

TFCR =
√

r
2

n

∑
i=1

√
AiDiνi (6)

Equations (5) and (6) are parametric equations that trace out an exchange curve of TACS versus
TFCR as one changes the value of the parameter r. Multiplying (5) and (6) gives

(TFCR)(TACS) =
1
2

(
n

∑
i=1

√
AiDiνi

)2

(7)

The right side is just a constant for a given population of items and thus (7) represents an hyper-
bola when TACS is plotted against TFCR. Moreover, for any point on the curve there is an associated
(implied) value of r. As shown by Silver et al (1998) this exchange curve (of TACS versus TFCR)
represents an efficient frontier under the assumptions underlying the EOQ derivation, i.e., one can never
operate below the curve and any policy that deviates from consistent use of economic order quantities
will result in a point above the curve. Other, earlier references on EOQ exchange curves and implicit
values of parameters, such as r, include Starr and Miller (1962), Eaton (1964), Brown (1967), Carlson
and Therp (1977), and Gardner and Dannenbring (1979). Numerical illustrations will be provided in
Section 5, but the situation is shown generically in Figure 1.

Unlike in the general context described in the Introduction, to move to any point on the EOQ ex-
change curve involves the same basic strategy, namely consistently using the EOQ formula of equation
(2) with the same value of r for all items. It is the (implicit) choice of the value of r that defines where
you will be on the curve. Thus there are an unlimited number of possible points to which to move on the
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curve, all using the same basic strategy. So how does one choose to which point on the curve to move?
By moving to any point on the curve between P and Q inclusive, one of TFCR and TACS is improved
(lowered) while the other is kept at the same value (this occurs right at P and Q) or is also improved
(all points between P and Q). From a senior management or business perspective, achieving benefits
on both aggregate dimensions is very attractive. This narrows the search somewhat, but how should
the selection be made in this narrower range? P and Q are appealing in that the maximum reduction is
achieved in one dimension while keeping the other at its value at the current, external operating point.
Another possibility is to move to the closest point (S) on the curve, which will be somewhere between
P and Q. As mentioned above, minimum distance can be viewed as minimum disruption of current
strategy/procedures. Also, in a case where there are two or more operating points off the curve (e.g.,
a current operating point and one associated with another operating policy suggested by someone in
the organization), the associated minimum distances are plausible measures to use to judge the relative
attractiveness of the two or more (non-optimal) operating policies.

Incidentally, the costs in equation (1) are quite insensitive to deviations of Q i away from EOQi

(see for example, Hadley and Whitin (1963), Wagner (1975), Peterson and Silver (1979), Erkenkotter
(1989)). Thus operating somewhat away from the exchange curve or somewhat inaccurately estimating
the position of the curve (i.e., the constant in the right side of (7)) is not a serious issue. Hence high
precision is not needed in determining the minimum distance from the current position to this particular
frontier.

The next issue is how to find the point (S) on the hyperbola that is at a minimum distance from a
given exterior point. We deal with this subject in the next two sections.

3. Normalization and the associated necessary condition for a minimum distance

To simplify the notation we first replace TFCR and TACS by x and y and let the coordinates of the
exterior point be xo and yo. Thus from (7) we have

xy = C (8)

where

C =
1
2

(
n

∑
i=1

√
AiDiνi

)2

. (9)

If we define new variables

t = x/
√

C (10)

and

u = y/
√

C, (11)

we have

tu = 1 (12)
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and the coordinates of the external point are

a = xo/
√

C, b = yo/
√

C. (13)

Note that because the point (xo,yo) must be above the hyperbola, equations (12) and (13) imply

ab > 1. (14)

We use a and b, instead of to and uo, to avoid subscripts in what follows. Figure 2 shows the normalized
exchange curve. Using (12), the square of the Euclidean distance from (a,b) to an arbitrary point on the
curve with horizontal value t is

z(t) = (a− t)2 +(b−1/t)2. (15)

A necessary (but not necessarily sufficient) condition for the t value that minimizes z (and its square
root, which is the distance) is obtained by setting

dz(t)
dt

= 0.

As shown in part 1 of Appendix A, this leads to the following 4th-order equation in t:

t4 −at3 +bt−1 = 0 (16)

(An alternate way to derive (16) is to use the fact that to achieve the minimum distance the line connect-
ing the external operating point to the point S on the curve must be perpendicular to the tangent of the
curve at S. In other words, the product of the slopes of these two lines must be equal to minus 1.)

As will be demonstrated shortly, the behaviour is symmetric in a and b. Thus we focus attention on
the situation where b > a. Now, a 4th-order equation can have, in general, up to four real roots. However,
we are only interested in roots between 1/b and a (because, as seen in Figure 2, the minimum distance
to the curve from point (a,b) can never be to a point on the curve outside this range). If we denote the
left side of (16) by F(t), then in part 2 of Appendix A we prove that F(1/b) < 0 and F(a) > 0. Thus
between 1/b and a there has to be precisely either 1 value or 3 values of t where F(t) = 0. Extensive
numerical calculations (determination of the root(s) and evaluation of F(t) for t values between 1/b
and a for many a,b combinations with b > a and satisfying (14)) were carried out. Examination of the
number of roots and the associated behaviour of the distance as a function of t revealed the following
important properties:

i) As shown in Figure 3, the behaviour of the number of roots is symmetric in a and b (we actually
knew this through analytic reasoning, as will be described shortly) with 3 roots being in a fan-shaped
region starting at the point (2,2).

ii) When there is a single root, it is indeed the value of t (position of S) in Figure 2 where the distance
from the external point is minimized.

iii) When there are three roots, the distance as a function of t has two local minima separated by a
local maximum, as shown in Figure 4. Moreover, as illustrated in Figure 4, the global minimum of the
distance occurs at the smallest of the three roots.

If a > b, the whole derivation can be based on using the vertical dimension u, instead of the hori-
zontal dimension t, of point S. Then, instead of (16), we end up with

u4−bu3 +au−1 = 0 (17)
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and the coefficient of u in (17) is larger in absolute value than that of u 3 (as was the case for t versus
t3 in (16) when b > a). Thus for a > b we would determine the single or minimum root of u between
1/a and b. It is seen that (16) and (17) are symmetric in a and b as are the limits on t and u. This is the
underlying reason for the symmetric behaviour of the number of roots observed in Figure 3.

Because of the symmetry of the results, henceforth we focus the discussion on just the case where
b > a. Under such circumstances we can summarize as follows. We either have to find the single root
or the smallest of the 3 roots of (16) lying between 1/b and a. But this is equivalent to simply finding
the smallest root between 1/b and a. The roots of a quartic equation can be expressed in a complicated
algebraic fashion using the approach of Cardano (Boyer 1991), available in Mathematica (Wolfram
Research, Inc., 2002) and shown in Appendix B. When there is only one root between 1/a and b, there
are two imaginary roots.

4. Summary of the procedure for finding the minimum distance and associated point on the ex-
change curve

Step 1: Normalize the original operating point using (9) and (13) to obtain (a,b). (The rest of the pro-
cedure assumes b � a. As discussed in the previous section, if a � b, we are in the southeast portion of
Figure 3 and would use the procedure to find the minimum root of the vertical coordinate u of point S -
see Figure 2).

Step 2: Find the minimum root of (16) using Cardano’s formulae (Appendix B). Denote this root by t ∗.

Step 3: Use (15) to get the normalized squared distance z(t ∗). Convert back to the original problem
dimensions using (10), (11), (12) and

Distance =
√

Cz(t∗) (18)

where the latter comes from use of (10), (11), (13) and (15).

5. Illustrative results

For illustrative purposes we use an exchange curve adapted from a case study reported in Peterson and
Silver (1979), based on consulting experiences of those authors. For a population of items the C value
from (9) was approximately 1,302,400,000 and the estimated current operating point was TFCR=38,400
and TACS=80,000. The hyperbola and the operating point are shown in Figure 5.

We use the procedure of the preceding section to find the minimum distance from the operating point
to the exchange curve:

Step 1: From (13)

a = 38,400/
√

1,302,400,000 = 1.0640

and

b = 80,000/
√

1,302,400,000 = 2.2168.
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Step 2: For this example the four roots of (16) are shown in Appendix B. The only root in the range 1/b
to a is t∗ = 0.480285.

Step 3: From (15), z(t ∗) = .35891. Then (10) to (12) give the coordinates of the estimated point on
the curve where the distance is minimized as TFCR = 17,333 and TACS = 75,140. Finally, use of (18)
results in an estimated minimum distance of 21,620.

For demonstration purposes, by adjusting the position of the external operating point we were able
to generate a variety of (a,b) values. For four illustrative cases the (hypothetical) operating points are
shown in Figure 5 and the associated results are presented in Table 1. Note that in two of the cases there
are 3 real roots between 1/b and a.

6. Conclusions

In this paper we have been concerned with moving from a current operating point to a specified, two-
dimensional, efficient frontier. This included a discussion of the managerial relevance of selecting the
point on the frontier that is at the minimum distance from the external point. Attention was focussed on
a particular efficient frontier relevant in inventory management where the exterior point corresponds to
the current or a proposed ordering policy. The frontier in an EOQ context is an hyperbola representing
aggregate average cycle stock plotted against total fixed costs of replenishments per year, expressed in
the same monetary units. It was shown that finding the minimum distance requires determining the
smallest root of a quartic equation within a specified domain.

Our approach is obviously restricted to the situation where the frontier can be represented as an
hyperbola. Perhaps there are other managerial tradeoffs (besides the inventory one) where such is the
case. Possible extensions of the work would be to deal with other analytic forms (such as a quadratic or
parabola) given that these provide accurate representations of tradeoffs of interest to management. As
pointed out by Erlenkotter (1989), the inventory cost function of (1) is a special case (m = 1,n = 1) of
a more general function

f (Q) = C1Qm +C2Q−n

(with C1, C2, m and n all positive). He also indicates that the case of m = 0.5 and n = 1 occurs in a
market area model. Another extension, mentioned in the Introduction, would be towards incorporating
the differing revenues and costs associated with moves to different points on the frontier.
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Appendix A. Derivations

1. Derivation of (16)



8 of 16 E.A. SILVER, D. P. BISCHAK, G. J. C. DA SILVEIRA

dz(t)
dt

= −2(a− t)+2(b−1/t)(1/t2) = 0.

Multiplying through by t 3 leads directly to (16).

2. F(1/b),F(1) and F(a) (for b > a)

From (16)

F(1/b) = (1/b)4−a(1/b)3 +b(1/b)−1

= (1/b)3(1/b−a) < 0.

F(1) = 1−a+b−1> 0.

F(a) = a4 −a4 +ba−1

= b(a−1/b) > 0.

Appendix B. Cardano’s Formulae to Find the Roots of (16)

Using Mathematica, the roots of the quartic equation given in (16) are found to be

t =
a
4
− f

2
± 1

2

√
−(a3 −8b)

4 f
+g

and

t =
a
4

+
f
2
± 1

2

√
a3 −8b

4 f
+g

where

f =

√
a2

4
+

ab−4
h

+
h
3

g =
a2

2
− ab−4

h
− h

3

and

h =
((

27(b2−a2)+
√
−4(3ab−12)3 +(27(b2 −a2))2

)
/2

) 1
3

.

For the case of a = 1.0640 and b = 2.2168 given in Section 5 above, these expressions evaluate to
t = −1.17181, t = 0.480285, t = 0.877784−1.00315i, and t = 0.877784+1.00315i.
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Figure 3: Number of roots as a function of a and b (i.e., the location of the external operating point)
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Figure 4: Distance function for b > a when there are 3 roots of (16)
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Figure 5: Illustrative examples (units are in thousands)
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Number of Roots Closest Point on
Example Between Exchange Curve
Number TFCR TACS a b 1/b and a t ∗ TFCR TACS

1 90,200 97,400 2.4994 2.6989 3 .43246 15607 83449

2 72,500 72,600 2.0089 2.0117 1 .86776 31316 41589

3 144,300 162,400 3.9985 4.5000 3 .23278 8400 155037

4 28,600 144,400 0.7925 4.0012 1 .25209 9097 143161

Table 1: Additional illustrative results


