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ABSTRACT

This thesis is concerned with the problem of decision-making
in the context of automatic patfern recognition. Almost all decision
strategies Which have been employed in practical machines are variants
of two simple schemes: the perceptron decision strategy and the
maximum likelihood decision strategy. The main part of this thesis is
devoted to a critical study of these strategies.

Although the perceptron decision strategy behaves extremely
well under favourable conditions, it tends to be misled by patterns
which are unavoidably misclassified when noise is present. This
phenomenon is thoroughly investigated (Chapter 3), and a variant of
the strategy, which has a better chance of performing well in noisy
conditions, is defined. This variant proves itself in a limited
series of experiments (Chapter 7).

The maximum likelihood decision strategy is optimal (in a
precise sense) under all conditions, but unfortunately its
implementation is impractical unless restrictive assumptions are made
(Chapter 4). Implications of these assumptions are considered in some
detail (Chapter 6). Adaptation of the maximum 1ikelihopd strategy can
only be achieved by estimation of probabilities, and some standard
procedures for this are discussed, together with problems arising from
the existence of storage limitations-(Chapter 5).

' Part of the research reported here was concerned with the

problem of finding a basis for theoretical investigation of the two



decision strategies mentioned above with a view to combining.their

virtues. This is considered in Chapter 8.



(1id)

ACKNOWLEDGEMENTS

I would like to thank my supervisor, David Hill, not only for
his idéas and opinions which prompted the research reported here, but
also for a splendid introduction to the fascinating domain of
Artificiai Intelligence.

I ém also indebted to Mrs C.M.Fenyvesi for her help in
proofreading this‘thesis.

Financial support during the preparation of this thesis was

provided by the Commonwealth Scholarship and Fellowship Plan.



(iv)

TABLE -OF CONTENTS

ADSETACE « ¢ o ¢ o o s & o o o 2 o o o 5 s o o e o o o o =

Acknowledgements .« « o+ « ¢ ¢ ¢ s s 4 e e 4 e s e e s e e

List of

Chapter

figureS . . . o e & o e o e ¢ o o s o 8 e . . e o

Introduction, motivation, and goals . . . . « . .

Pattern recognition and linear decision schemes .

_The perceptron decision strategy . . « « . . .+ .« .

Classification using étatistical decision
techniques o o « ¢ ¢ ¢ o o o o o o o o o s o « »
Standard probability estimation techniques, and
some complications arising from storage
1imitations « « o o o o o o 0 0 e e e o e o
The independence assumption .+ « « o o ¢ ¢ « o o &
Some experiments which illustrate the differences
between the perceptron and maximum likelihood
decision strategies « « « ¢ o o o & o 4 e .. s
STeLLA-like decision techniques . « + ¢« ¢ ¢ o + &
8.1 Introduction « « o« o ¢ o o ¢ o o+ o s o o o o
8.2 The discriminatory functions . . . . . . .
8.3 Quaiitative aspects of the adaptation
Procedure « « « « ¢ o ¢ ¢ s o s s s e s . s
8.4 Perceptron—-like behaviour of the STeLLA

Strat.egy . . . o o » . . . . s e e . e e .

Page

iii

vi

14

27

38

50

61

74
89
89

92
95

98



Chapter

8.5 Use of .the incrément/decrement,functions

for probability estimation

8.6 Discussion .

9. Conclusion . . . .

)

Bibliography « « « ¢ o« ¢ o ¢ ¢« o o o o o o o

Appendix 
A. Proofs of theorems
Theorem 1 . . .
~ Theorem 2 . . .
Theorem 3 . . .
Theorem 4 . . .

B. Glossary « « « o o

quoted in

Page

103
105

108

114

120
120
122

123

- 126

130



(vi)

LIST OF FIGURES

Figure ‘ Page

2.1 A classification which is linear if the

features are binary-~encoded . « ¢ + ¢ ¢ ¢ o o o 24
5.1 :he digitization of the‘A-functions e e e e e e e 56
6.1 A situation where the independence assumption

is not true . « o + ¢ o ; C e e e e e e e e 64
6.2 An example of a striated rectangular figure . . . . 68
6.3 Generalization resulting from invalidity of

the independence assumption . « « « + « o « o o 69
6.4 A SIG code .« o v ¢ ¢ o o o« o o o o & o s o o s o e 72
7.1 The standard environment used in all

experiments . .« « o o o o o s oo e s e s . s e o e 76
7.2 ‘Convergence time for a threshold perceptron . . . . 78
7.3 Variations in convergence time for various

pattern classifying methods with a standard

noiseless environment . « « o o o o s o 0 o o+ . o 80
7.4 Success of a threshold perceptron in noisy

CONALEIONS « o « o o o b e b e e e e 82
7.5 Percentage error for different decision

strategieé with varying noise levels . . . . . . 84
7.6 Needless errors as a percentage of points that

could have been classified correctly, for

different decision strategies . . . + « « ¢ o o & 86



Chapter 1
INTRODUCTION, MOTIVATION, AND GOALS

This thesis 1s concerned with.the problem of decision-making
in the context of automatic pattern recognition. It is generally
agreed that pattern recognition is a fundamental, some say the central,
problem of artificial intelligence:

The problem of sorting events and situations into useful

categories arises in so many ways that it is tempting to

regard it as the central problem of artificial intelligence.

(Minsky, 1958.)
It is evident that all problems can be re-formulated in terms of sets,
and that in this way, problems which are at first sight entirely
unconnected with pattern recognition can be reduced to what is
superficially a problem of classification into sets. However, it is a
fact that véry many problems which occur naturally in fields 1ike
artificial intelligence and process control are usefully treated as
pattern recognition problems.

The bewildering variety of sense-data available to a machine
equipped with receptors or devices which make it semsitive to its
environment highlighfs the need for pattern recognition. In the
context of problem solving, a resourceful machine must classify
problem situations into categories associlated with the domains of
effectiveness of the machine's different methods, in order not to try

all possibilities. This process is particularly transpareant in the

"Logic Theory Machine" of Newell et al. (1957).



In order to indicate.further.the usefulness of a pattern
recognition épproach to problems .which, at first sight, .seem to be
unconnected yith pattern recognition, I shall briefly comsider

Samuel's studies in automatic checker playing (1959, 1967). The
eséence of Samuel's strategy is to play by looking ahead a few

moves and evaluating the resulting board positions, much as a

human player might do. The best move is chosen by '"minimaxing" the
move chains considered, using the static board evaluation to determine
the "goodness'" of each move at each stage. It is the evaluation
procedure which can be viewed as a pattern recognition process;
although it is not strictly a classification procedure, Samuel both
used techniques and encountered problems which occur in conventional
pattern classification work. To evaluate the board positions, he
originally used a linear polynomial whose terms represented features
or attributes of the board position, with coefficients which indicated
the importance or weight of that feature. Various methods were used
for selecting features out of a large man-generated list, and for
adapting the weights according to the machine's experience. One of
the major snags encountered was the limitation inherent in the use of
a linear scoring polynomial--this is a fundamental difficulty in

- pattern recognition work-—~and a number of different proposals were
considered for overcoming this.

Pattern recognition is concerned with the reduction or
structuring of a complex environment into a relevant and manipulable
form in order to facilitate goal achievement. Conventional computers
are not able to organize or classify information in any very subtle

or generally applicable way--they perform only highly specialized



operations on carefully prepared inputs. Only.through classification
into categories can we hope to introduce '"general' or "informal"
problem-solving methods. Pat;ern recognition involves both pattern
classification and pattern discovery, although the latter has been
rather negiected in the literature. STeLLA (see Chapter 8; Andreae,
1964, 1969; and Gaines & Andreae, 1966) is a general purpose learning
machine which discovers patterns in a manner highly relevant to goal
achievement. Despite their obvious differences, pattern classification
and pattern discovery require the use of similar techniques;
unfortunately machines which are intended to discover patterns are
more liable to instability and oscillation because of the difficulty
of reinforcing decisionms.

The conventional formulation of the pattern classification
problem is this: sets of data are supplied to the classifier, either
as raw sense-data or in some preprocessed form. These sets of data
are divided by some consensus of opinion (on the basis of usefulness
of treating them as the same) into pattern classes, and the pattern
classes are also supplied to the machine. After this training period
the machine is given data sets, possibly ones which it has not "seen"
before, and is required to classify these correctly with respect to
the consensus of opinion. Interesting problems occur wheh the rules
governing the correct classifications are not explicitly known (hence
the similarity between pattern classification and pattern discovery).
The purpose of the training period is to give the recognizer a chance
to form its own rules, or to utilize pre-programmed rules to maximum
effect. It is for this reason that such decision strategies are

called adaptive. This will be taken up again later. The pattern



classification problem has .three natural .subproblems: data. input,
description (structuring of .the input data), and decision.

The input phase was largely éircumvented in .the early pattern
recognizers by hand digitization of data. These recognizers were
usually concerned with optical patterns which were projected on to a
"retina" consisting of a rectangular matrix of squares. A square
containing any part of the pattern was considered to be filled. This
process was not designed to eliminate all stray noise; in fact these
machines sometimes have a preliminary clean-up stage to take care of
noise. Selfridge & Neisser's "Pandemonium" (1963) exhibits this.
Nevertheless, it seems fairly safe to say that noise will appear to a
much greatér extent in real situations. A large number of modern
pattern classification machines take their input directly from the real
world via microphones, optical scanners, and the like. This involves
technical problems in the area of man-machine communication (see for
example McCarthy et al., 1968).

The description or feature extraction phase has the task of
extracting some of the relevant and meaningful features from the vast
mass of input data. In many cases it must first be determined whether
or not any meaningful data is actually present, and if so, where (in
time, space, or both) the pattern to be recognized is situated.
Recognition of connected speech or handwriting exemplifies
difficulties which can occur in deciding where a pattern starts or
ends. The conventional approach to this is tentatively to segment
and/or normalize the input (Gold, 1959), although other approaches
exist (Hill, 1969). Feature extraction can take place according to

pre-programmed features (Selfridge, 1958), or according to machine-



~ generated masks (Uhr & Vossler, 1963). Early .character recognition
machines usually computed individual features independently from small
sub-sections of thé retina. While this method of feature extraction
is quite adequate fo;lmany purposes, it does reflect the use of a
number of computatiﬁns performed independently of each other (see
Selfridge, 1958, for a discussion of this). This is not the most
efficient~—tﬁough it may be the quickest——way to use‘computatioﬁs, and
it seems that it is not adequate for gemeral pattern recognitionm.
Minsky & Papert (1969) devote almost a complete book to a
consideration of limitations of machines which use features obtained
in this way——fhis is discussed briefly at the end of this chapter.
Several ways of getting round this difficulty exist. One could use
primitive features for recognition of elementary parts out of which
patterns may be built (small sections of lines, vertices, etc.) and
knit these together using list processing techniques (this is
discussed by Minsky, 1961; Guzman, 1968, provides a practical example
of such a machine). A rather similar way of overcoming the
limitations arising from the use of elementary features is to compound
these features with each other before (or in conjunction with) the
decision phase. An example is given by Hill (1969). Alternatively,
multilayer decision networks can be used to give complex decisions by
"cascading" simple ones. Unfortunately these are beyond the scope of
this thesis: the subject is touched on briefly in Chapter 9.

The input to the decision phase consists of a vector of
measurements, which may or may not be binary, representing the features
present in the input pattern. This vector is called the query vector

or feature vector throughout this thesis. During the training period,
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the correct classification of .the pattern currently being considered
must be provided to the decision phase for reinforcement purposes.
The output of thé decision phase is a number representing the pattern
class thought to contaiﬁ the input pattern. The pattern classes may
include a reject class ("infofmation not sufficient for a firm
decision") and/or a noise only class ("no pattern present"). It is
important to realize that two identical query vectors may arise from
two patterns in different classes, owing to either noise pertu¥bation
or insufficient resolution at the feature extraction or imput stages.
Hence the "correct" (according to the consensus of opinion) class for
any given pattern is not necessarily a function merely of the query
vector obtained from that pattern.
This thesis is concerned with adaptive decision strategies.

These are used in cases where

1) the rules governing the classification are not known: adaptive
techniques can be used to automate data acquisition,

2) the situation may be changing slowly so that the information is
context sensitive,

3) a versatile machine which can be used for different situations
is required.
These cases often overlap in practice. Speech recognition is a good
example of a situation where the rules for classification are not
known well enough to embody them in an automatic recognition system.
Slowly changing situations are illustrated by the problem of
recognizing hand-sent Morse code. When a long message sent by a
single operator is analysed, it frequently turns out that some dots

are longer than some dashes, and so an efficient recognizer must use



some sort of contextual information (Selfridge & Neisser, i963). The
search for a versatile machine is prompted by the fact that it may be
cheaper to produce a general purpose pattern recognition machine and

train it for the task iﬁ hand than to .build special purpose machines.

I would like to stress that I am not suggesting that
adaptation is a panacea. Many pattern recognition problems can be
solved efficiently by techniques which are not adaptive. However, in
cases where classification is required but the data on which
classifications are to be based are not sufficiently structured,
adaptation is certainly a very good tonic until something else turas
up (sie).

The feature extraction phase is the major point of attention
in pattern reéognition today--and quite rightly so. Although
automatic recognition of hand-printed characters has been investigated
since around 1958, even now there appears to be no consensus of
opinion on what features are among the best. Automatic speech
recognition is a field where feature extraction is of paramount
importance because of the vast mass of data available in speech
waveforms.

It is true that if ideal features can be found, the decision
stage is trivial. Features could consist of a single number
representiﬁg the class to which the pattern belongs, or, less
trivially, a bit-pattern which requires only exact matching with some
stored patterns to ascertain the class. One of the more successful
speech recognizers currently operating, that of Bobrow and his
colleagues.(1968, 1969), uses a particularly simple decision scheme--

a voting scheme.



It has been experimentally determined that the voting scheme

works as well or better than a number of other measures that

make use of the same information. (Bobrow & Klatt, 1968.)
Unfortunately little mention is made of which other decision schemes
were tried;‘or of how performances compared. The fact that such a.
simple scheme proved so effective indicates the suitability of the
features used. Bobrow's system was, however, designed for use with a
single spe;ker oniy. If one wishes to recognize many speakers with
large vocabularies, then it seems likely that a more powerful decision
strategy will be required.

Alm&st all decision strategies which have been employed in
practical machines (hmachines" is used in this thesis in an all-
embracing sense which covers programmed computers) are variants of two
simple schemes: the perceptron decision strategy and the maximum
likelihood decision strategy. While I originally intended to use
these as a jumping-off point for my research, preliminary reading
revealed that nowhere in the literature is there a critical review in
depth of the performances of these basic adaptive decision strategies,
and worse still, it is extremely rare to find any treatment of the two
together. This appears to stem from the fact that each strategy has
its proponents who are unwilling to acknowledge the merits of other
strategies. In addition to this, difficulties which occur in
connection with the decision strategies are often ignored altogether,
or brushed aside with an airy remark (the independence assumption is a
good example of this; see Chapter 6).

One of the main difficulties .which crops up while
investigating adaptive decision strategies is the necessary compromise

between the optimal and the practical. A decision strategy which is



optimal (in a precise sense).for.any situation in fact exists; .this is
the maximum iikelihood decision strategy. . However, imélementation of
this strategy‘in a practical machine requires, for ahy real situation,
restrictive ;ssumptions to be made, and these usually impair the
optimality of the decision strategy. Conventional mathematics does
not seem to be well-failore& to situations in which ﬁgactical
implementation is an important consideration, and on the other hand,
experimentation is a time-consuming process which cannot hope to be
exhaustive. It is this, I feel, that accounts for the lack of
satisfactory treatments of adaptive decision strategies in the
literature,

THe foregoing remarks are a necessary prerequisite for a
sympathetic understanding of the goals of the research reported here.
My major oﬁjective is to develop a (necessarily) heuristic insight
into the characteristics of the perceptroﬁ and maximum likelihood
decision sérategies, always bearing in mind that these decision
strategies are intended for use in practical machines. A secondary
objective is to provide a basis for theoretical investigation of these
strategies with a view to combining their virtues.

As mentioned above, experimental investigation, while
worthwhile and necessary in the context of feature extraction for
particular problems, is not well suited for probing into the general
characteristics of decision strategies. Consequently the small amount
of experimental work I have done (reported in Chapter 7) is intended
only to illustrate some of the points made iﬁ the course of
theoretical investigation. Mathematics is my major tool, but I try to

remain conscious of the danger of neglecting practical considerations;
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the result is that mathematics.is.used to probe special cases in order
to provide a basis for heuristic generalization. Here I run.the risk
of being accused of "§loppiness"; I hope that the following pages
provide evidence to the contrary. I also hope that non-mathematicians
are able to ﬁnderstand the arguments presented in this thesis, for it
is intended to help designers of practical pattern recognition
machines to select a suitable decision process for their particular
machine. To this end, pfoofs and occasionally precise statements of
theorems are relegated to Appendix A, unless this would seriously
disrupt the -flow of thought through the main arguments. No deep
mathematical results are used, and all the mathematics here is of an
ad hoe character,

Chapter 2 is an introduction to the subject of adaptive
decision processes, on a more technical level than the present chapter,
In Chapters 3 and 4, the two basic decision strategies are considered
in turn. Further topics relevant to maximum likelihood decisions are
dealt with‘in the next two chapters. These contain rather more
mathematics than I would like, .but I feel that the mathematical
arguments are the very essence of these chapters, and so they are left
in the main text. Chapter 7 describes some experiments which were
undertaken in order to illustrate points made earlier. This completes
the investigation of the perceptron and maximum likelihood decision
strategies. .My secondary objective, that of providing a basis for
theoretical investigation of the afore-mentioned strategies with a
view to combining their virtues, is considered in Chapter 8. The last
chapter is devoted to some concluding remarks. Appendix A, as

mentioned above, contains proofs of some theorems quoted in the text,
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and Appendix B.is a glossary ,of special symbols, .terms, and
abbreviations used.

The literature on artificial intelligence is somewhai
scattered.among various journals and conference proceedings. A fairly
comprehensive bibliography of p#pers appears at the end of this thesis;
all thg papers therein are referenced at relevant points in the text.
There are few good books on pattern recognition, but I will indicate
those which I have found useful. For background reading in artificial
intelligence, both Feigenbaum & Feldman (1963) and Uhr (1966) provide
a good, if fairly dated, introduction to the field. The latter is
very much neurophysiologically oriented. I should say here that my
research is directed away from the fields of psychology and neuro-
physiology--my aim, in J.H.Andreae's words, is "to build a useful
machine'-~but some acquaintance with these subjects is useful because,
after all,'the brain is by far the most versatile and competent
pattern recognizer in existence, and studies of the brain may provide
hints relevant to automatic pattern recognition. Further background
material in neurophysiology and associated topics can be found in
McCulloch (1965). Relevant philosophical problems are discussed by
Koestler (1964) and Craik (1952).

So much for general material. Rosenblatt (1962) comsiders
perceptron-like machines in some detail. Sebestyen (1962) and
Nilsson (1965) both treat much the same topics as I do, but not, I
feel, in a manner so relevant to practical machines. Nagy (1567)
gives a comprehensive ''state of the art" report on automatic pattern
recognition, while a collection of papers, many of them concerned with

practical work, is to be found in Tou & Wilcox (1964).
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Last year one of the.foremost .workers in.the field of
~artificial intelligence, Marvin Minsky, published a book iﬁ
collaboration with Seymour Papert (Minsky & Papert, 1969) which has
considerable relevénce to this thesis,

Minsky is primarily concerned with inherent limitations of
linear decision strategies (see Chapﬁer 2) if features are computed
independently from small subsections of the retina. Wﬁilerhis
discussion of this topic is not directly connected with my work, since
I make no assumptions about what kinds of features are used, it should
be realized that experimental evidence iﬁdicates that both the frog
(Lettvin et al., 1959) and the cat (Hubel & Wiesel, 1962) employ
"features", in some sense, which are computed independently from small
subsections of the retina. These elementary features may be combined
into more complex ones in a hierarchical manner. Indeed, although
introspective psychology is out of fashion these days, it does seem
that examiﬂing a figure for a topological property like connectedness
(Minsky discusses this property extensively) involves an essentially
serial1 operation, and Minsky's suggestion that inability to recognize
such serial properties is a serious limitation of perceptron-like
machines is perhaps a little trite. On the other hand, Minsky's main
concern is to debunk the idea, rather prevalent a few years ago among
some of the perceptron's proponents, that the perceptron is a
universally applicable learning machine and a panacea for all the
problems of artificial intelligence, and he certainly accomplishes

this goal.

lIn‘the sense that independent computations do not provide

adequate features.
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Minsky devotes a.few pages.to a discussion of .the .perceptron
and maximum likelihood .decision strategies, but admits.that he caﬁ
offer no general theory of learning (learning and adaptation are used
synonomously in this thesis). . He is interested in genuine foolproof
mathematics, r;ther than in the heuristic sort of mathematics used
here; and I'attribute his lack of a theory of learning to the
difficulties mentioned earlier, that conventional mathematics is

applicable to ideal rather than real situations.
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.Chapter 2
PATTERN RECOGNITION AND LINEAR DECISION SCHEMES

An important point which should be kept in mind when
considering adaptive decision strategies is that the feature
extraction process is inextricably bound up with the decision phase,
J.H.Andreae suggests that one should imagine a continuum embracing the
feature extraction and decision procedures, the distinction between
the two stages being made on a rate of adaptation/time scale basis.

He considers any process in a pattern classifier which adapts slowly
(relative to the rate of adaptation of the other processes) to be part
of the feature extraction phase. Thus the decision phase has the task
of attempéing short term optimization, while long term optimisation is
achieved by adapting the features. It is, however, convenient to
separate the two phases because feature extraction is very dependent
on the particular kind of problem being considered (and also on the
kind of implementation intended, whether by electronic computer or
special~purpose hardware), while the decision phase is dependent on the
characteristics of the features used rather than on the kind of
recognition problem being considered.

It is worthwhile looking at some examples of general
characteristics of features. One such example, mentioned in the last
chapter, concerns cases where the features are "ideal" and only exact
matching with stored templates, one for each pattern class, is
required. Cases where this works well are rarely encountered in

practice. Features may be non-redundant, in which case if they
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exhibit.perturbations.due.to.néise,no.decision strategy can be
expected to perform well in an absolute.sense, of they may be highly
redundant, and if so, it is reasonable to expect a deéision strategy
to perform well inrnoisy condifions. If the features are
statistically independent with respect to the pattern classes then one
can use a decision stfategy Whichiis both optimal and implementgble in
practical machines (see Chapters 4 and 6), while if dependencieé exist
but their form is known, special ad hoc techniques can be used.

In referring to the interface between the feature extraction
and decision phases, I often use the term emviromment. This denotes
the set of possible quéry vectors, with their frequencies and classes.
Two extreme types of environment may be distinguished, although in
practical situations a combination of both invariably occurs:

1) enviromments where the pattern classes are distinct, so that
the query vectors arising from pattérns in each class occupy separated
portions of hyperspace (feature space or query space);

2) environments where each pattern class has a singie basic query
vector but random noise perturbations exist, such that the noise acts
on each feature independently. Here the pattern classes may be thought
of as unimodal distributions of query vectors in hyperspace, probably
overlapping to a considerable extent.

The first kind of enviromment corresponds to situations in which the
perceptron strategy works well, while the second kind corresponds to
situations where the maximum likelihood strategy works well.

Environments are usually considered in this thesis to comprise

a core of noiseless query vectors, each with its associated frequency

of occurrenée, with noise superimposed on these. Naturally the
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nolseless pattern classes.should.be.noﬁvoverlapping if .the pattern
recognizer is to perform at all well. As far as the decision .phase is
concerned, the pattern recognition process can be thought of as
selecting points at random from the noiseless pattern classes in
feature‘Space (inter-dependencies in the presentation sequence are not
envisaged), choosing each point with its‘associated frequency.
Features are computed merely by measuring the feature space
co—ordinates of the selected point. The features are then corrupted
by noise in the.required probabilistic manner, and the corrupted query
vector ig presented to the decision phase. This way of looking at
environments is found to be helpful, especially for perceptron~like
decisions,

$he notion of comvergence of an adaptive decision machine is
used freduéntly in this thesis. In noiseless conditions, we say that
an adaptive decision machine has converged if it correctly
discriminates between the pattern classes. After convergence, the
performance of a decision machine may improve or deteriorate if the
training period is continued. Fortunately this is not true of
perceptron~like machines, and the term "convergence" is used mainly in
connection with these. Perceptrons do not adapt themselves after
convergence has been reached, and so their comvergence time (mean
number of patterns presented before convergence) is a good indication
of the required length of training period. Further ramifications of
the idea of convergence are introduced in the following when necessary.

Detefmining if‘a machine has converged is not an easy task in
real situations. This is basically because the set of training

patterns is invariably a rather small subset of the total number of
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patterns,Which.the-machine iS»eipected.to'classify (this.is discussed
extensively by Nagy, 1967). One must resort to statistical sampling
to determine if convergence has been reached, but because of .the very
real danger that the:training set is not sufficiently representative
this is not usually reliable. Since the only indication of the length
of training period required for certain types of decision machine is
convergence time, it is difficult to determine when to stop training.

It has been suggested that "tracking" or "selective boot-—
strapping" techniques be employed in order to combat possible
inadequacy of the training set (Nagy, 1967). A selective boot-
strapping system employs a teacher to supervise the learning process.
When, in the judgement of the teacher, the performance over long chains
of patterns is acceptable, the machine is left to reinforce its own
decisions (see for example Widrow & Smith, 1963). Instability rears
its uglyrhead heré; for most pattern classes are defined by convention
alone (the consensus of opinion of Chapter 1) and unless the machine
has been taught the bare bones, at the very least, of the convention
it may, when left to itself, begin to reinforce incorrect decisions
and in doing so destroy its whole pre~taught body of knowledge. A few
noisy query vectors could start such a disastrous landslide. I have
not investigated such selective bootstrapping systems.

We now introduce some notation and look at a general
formulatioﬁ of the decision problem. Query vectors are denoted
throughout this thesis by the symbol &. The i'th component, ¢i’
represents the extent to which the i'th feature is present. The range
of ¢i may be continuous or discrete, binary oxr many-ﬁalued; unless

otherwlse specified. Pattern classes are denoted by F(j), and the
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output of .the.decilsion .phase.is a;ﬁumbef,representing.the~index,of.the
pattern class. (Ranges of indices afq given in .this thesis only .when
absolutely necessary to aQoid confusion--the ranges of summations etc.
are generally obvious. This simplifies writing and reading
considerably.) Although pains were taken to point out in the last
chapter that two identical query vectors may arise from two patterns
in different classes, the notation

@eF(i)
is used for

"The patﬁern class currently giving rise to & belongs to the

class F(i>",
since this should cause no confusion.

Classification is effected by discriminatory functions f(i),
one associated with each pattern class, such that (ideally)
£ D (@) > £9)@) for all 41  if and only if  oerd),
Note that only non-randomized decision strategies are included in this
formulation. These correspond to "pure" rather than "mixed"
strategies in game theory. Chow (1957) showed that optimum strategies
in pattern classification are pure, and mixed strategies are not
-considered here. The surfaces in feature space given by
D) = D@
are calle& discriminatory surfaces. It is assumed for convenience
that points lying on discriminatory surfaces are classified according
to some convention.
The decision phase of a pattern classifier is just the

implementation of the discriminatory functions. An adaptive decision

strategy must provide a mechanism for learning the correct
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discriminatory functions. This.is practically impossible unless a
special form is assumed for .the discriminatory functions, and.adaptive
decision techniques are qsually discussed only for linear
discriminatory functions. (Some strategies considered in this thesis
are not im fact lipear decisions, but similarly restrictive
assumptions are always made about the form of the discriminatory
functions.) Because of the importance of linear decisions, both
historically and practically, the remainder of this chapter is devoted
to their consideration.

Let us suppose that the.query vectors are n—-dimensional, and
we are interested in dividing up feature space using linear
discriminatory functions:

T € e I
The coefficients w are generally called weights, and these are the
only elements of the decision phase which are subject to adaptation.
These weights may be positive or negative, and it is assumed in this
thesis that they may take any values. In order to simplify the
notation, we define the augmented query vector ', dependent on ¢ and
of dimension nt+l, whose components are
$1=¢, for 1gign;
bnpy = 10
Let the'weight vector for the i'th class be defined as
W(j> = ( wij) R wéj) s e e o s wéji ).
Then the discriminatory functions are
£ @ () = wd) g1,
and the query vector ¢ is assigned to the pattern class F(j) for which
w(j)'q)'
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is largest. ‘The.introduction,of.tﬁe.augmented query .vector enables us
to write a linear form in ¢ as a homogeneous linear form in ¢'.

This method of linear classification is equivalent to
separating each pair of pattern classes with a hyperplane in feature
space. Thus if there are ﬁ pattern classes, m(m~1)/2 hyperplanes
exist, defined by

W e = D) o ).
The pattern classes are said to be linearly separable if there exist
weight vectors satisfying the following:

w® ot 5 w9 ov for a1l 44 if and only if  oer(d),
A necessary and sufficient condition for sets of points in hyperspace
to be linearly separable is that the intersections of the convex hulls
of the sets, taken in pairs, are empty (Papert, 1960). The convex
hull of a set can be visualized by throwing a cloth round the set and
drawing it tight. If the set is finite, its convex hull is a convex
polyhedron with points of the set as vertices.

Other methods of using hyperplanes to separate sets exist, as
was pointed out by Griffin et ql. (1963). TFor m classes, if p is an
integer such that

2 > m > 2PL
it is in principle possible to use just p hyperplanes to separate the
classes, provided that the regions in which the various classes are
concentrafed are well spaced out in hyperspace. Alternatively one
could attempt to use a hyperplanme to separate one class from all the
other classes taken together. The method described above is at least
as powerful as the latter method, and it seems highly plausible that

it is more powerful than the first alternative. To my knowledge
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neither of .these alternative .methods has been.used in pfacticél
machines.

Minsky & Papert (1969) generalized the above formulation by
allowing situations where each pattern class has mény qughtlvectors,
(1) being associated With the class F<j(i)).

the vector W j here is a

. mapping,

j: {1,2,...,m"} »~ {1,2,...,m} (m' > m)
which is onto, that is to say,

for all'k (1 £ k £ m) there exists k' with j(k') = k.
This permits coverage of cases where each F-class is localized into
many relatively isolated regions by allowing a weight vector for each
cluster. This is called a piecewise linear decision scheme, and is a
simple extension of my formulation which is not explicitly catered for
. here but to which all results and techniques given here are applicable.

One of the weight vectors is redundant. If we define
V(j) = W(j) - W(i) for all j and some particular i,
and assign & to the class F(j) for which V(j).@' is largest, we
evidently obtain the same classification as before,rwith V(i)=0. This
is particularly useful in the rather special case where there are only
two pattern classes, F+ and F . This formulation is used frequently
in the following chapters with the single weight vector being denoted
by W instead of V. If the two pattern classes are linearly separable,
then there exists a vector W* with

W, o' > 0 for all @eF+;

W%.6' < 0 for all 6¢F .
This discriminating weight vector is always denoted by W#* in the two

class case.
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It will frequently be .necessary to.assume that.there. exists

>0 with

We.8' > §  for all ®eF;

W%, ' < -§ for all ¢cF .
This does ﬁot folloﬁ froﬁ the assumption that F+ and F are linearly
separable, as can be seen by considering a one-dimensional feature
space with the pattern classes

TsrwL,eh,eh,eh, ooy

F
(D, 2, 2, 273, ... 0.

F

If the pattern classes are finite, however, or if the components of
the query vectors are discrete (as will always be the case if a
digital computer is used for implementation), then linear separability
of F+ and F does imply the existence of a 8>0 satisfying .the above.
It will be assumed for conveniéﬁce in this thesis that lineax
separability does indeed imply the existence of such a § whenever
necessary.

Several common decision methods can be realized using linear
discriminatory functions. One of these is the minimum-distance
(1)

decision strategy, where a point P is chosen for each pattern class

F(i), and classification is effected by choosing i such that
@)~ 512 < [2D) L 5)%  for a1 j#i.
This is equivalent to choosing i such that
) - 2@ 225 2@ 5 - 222 for a1n 44,
which is clearly a linear decision with weights
W@ o Pfi) , Péi) s v e e s P§i> , —IP(i)lz/z ).
Some other decision methods .which are in fact linear are discussed in

Chapter 4. -
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. .The major objection.to linear .decision strategies.is.that some
environments are not linearly separéble. This again is.debendent on
the feature extraction.phase, but some facts about linear separability
are Wérth noting. It is manifest that the more features there are,
the more likely it is that the patterné aré linearly separable. For
adding a feature cannot destroy the property of linear separability,
but it may separate linearly an environment which was not originally
linearly separable.

When éiven features which are integral but not binary, it is
common to encode them into binary notation before the decision phase,
and use the new binary features in the decision mechanism. This makes
some decisioﬁs easier to implement. It is easy to see that a
positional binary encoding actually enhances. the possibility of linear
separability. Let @ be the old feature vector, and

q’*=(gll,g12"'°’glkﬁgz:ls'"ang""’gn‘k)

be the new binary feature vector, where
841842 ++0 Bax
is the k~digit positional binary encoding of ¢i.

Then if f(J>(¢) is linear in 940

f(j)(q>) = wij).¢l+w2(j).¢2 + ... +w§j).¢n+wrg_i H

f (3) (¢%) is clearly linear in gim:

+ ...+ wij)

€11 €1k

(G) k-1 () G)
+ L) .2 P T v 'gnk + LATERD

However, there are many functions linear in im which are not linear

in ¢4 For example, if
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HCORE NN

£ (a%) + 0.1;

-0

822

then the discrimination is as.shown in Figure 2.1, and is.certainly

S = N W
|
]
i
i

- - +
01 2 3 21
Figure 2.1

A classification which is linear if
the features are binary-encoded.
not linear if the non-binary features are used.

One great advantage of linear decisions is that compound
features can be added to make a non-linear decision linear. If one
wishes to implement an adaptive decision then one must in practice
assume some form for the discriminatory functions, and having done
this, the decision may be implemented in a linear manner. For example,
suppose ¢ has two components, and the following forms are assumed for

the discriminatory fumctions:

f+(@)

]

2 2
al(¢l) + a2(¢2) + a3¢1 + a4¢2 + ags

li

2 ]
by (99)7 + Dygq9, + bgs

where the a's and b's are constants. Then if we define a new query

£ (9)

vector which can be computed from the old:

o = 0%@) = CGp?, o0y 5 @7 5 8y 5 0y )

the discriminatory functions are linear in @%. Given any query vector
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¢, we.need only compute .9%($) and.use.this as a new query .vector,
discarding .the old onme.

In conclusion, let us summarize the properties of linear
decisions which make.them worth considering.

1) They may be implemented easily, either by special-purpose
hardware or by digital coﬁputer (see for example Highleyman, 1961 and
1962). ‘

2) New or compound features can be added to make a non~linear
decision linear. Thus if the form of the optimum decision is known,
the decision can be implemented and adapted using linear techniques.

3) Piecewise linear decisions can be used to give a more general
classification with the same basic mechanism,

4) Many common types of decision are in fact linear (for example,
the minimum-distance strategy-—further examples are provided iﬁ
Chapter 4).

Although the properties of linear decisions have been
discussed, no mention has been made of how to achieve adaptation to
best effect. One of the most common adaptation methods is discussed
in the next chapter. Other ways of implementing linear decisions can
be found in Chapter 4, where the decisions, although non-linear in
general, become linear in an important special case.

Before closing this chapter, some further notations should be
introduced. It is frequently neceséary in this thesis to use the
Boolean value of an expression. This is done by enclosing it in the
corners [ and ). Thus

y = [x=5)

has the value
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1 if x=5,

0 otherwise.
Another term which is often used is.the size or lemgth of .vectors.
This refers to the modulus of .the vector, as in vector algebra. The
éymbol 9% is sometimes used to denote a special query vector. This
has no connection with the notation W* for a correctly discriminating

weight vector.
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Chapter 3
THE PERCEPTRON DECISION STRATEGY

Perceptrons have excitedrconsiderable attention since they
were first introduced in 1957 by:Rosenblatt (1957, 1962). Over the
years large numbers of mutations and variations have appeared, and
consequently the term "perceptron" has acquired a number of different
and ill-defined connotations. My interest lies solely in the power of
the simple adaptation, learning, or reinforcement procedures which are
employed by perceptrons, to learn to classify abstract vectors. I do
not require randomly connected association networks (Papert, 1960),
nor that features be calculated in an essentially parallel manner from
local or conjunctively local points of a retina on Whiqh patterns are
projected (Minsky & Papert, 1969). My terminology and formulation of
the learning procedure are based on Chapter 11 of Minsky & Papert
(1969). |

It is assumed in this section that query vectors contain a
completely redundant component, obviating the necessity for the
distinction between ¢ and &'. The weight vectors W<jj are initially
(1)

chosen at random. If a query vector &cF with

W(i).® < W(j).® for some j,
is encountered, W(i) is replaced by W(i)+5, and W(j) by W(j)?é. (5
denotes the unit vector in the direction of ¢, i.e. ¢/|2].)

It is worth noting that the weight vectors are changed only if

the perceptron would have classified the query vector wrongly. In

general this process is sensitive to the outer boundaries of the
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F-classes and.relatively.insensitive.to.the.points inside.
For .the two class case.we need only a single weight vector W,
and the learning procedure can be represented thus:
START: Choose any valuerfor W3
TEST: Choose %¢ F+ U F_;
If @eF+ then if W.9>0 then go to TEST,
else go to ADD;
If 9cF then if W,3<0 then go to TEST,
| else go to SUBTRACT;
ADD: Replace W by W+5;
Go to TEST;
SUBTRACT: Replace W by W%é;
Go to TEST,
Writing
F' = {0]0eF'} U {~0|ecF },
this is equivalent to the following:
START: Choose any value for W; | oo e (B)
TEST: Choose any ®cF';
If W.9 < 0 then replace W by WH&;
Go to TEST.

One of the reasons for the interest which has been shown in
the perceptron strategy is that there exists a theorem, the oft-quoted
Perceptron Convergence Theorem, which states that the learning scheme
must lead to a weight vector which discriminates correctly between the
pattern classes if one exists, that is, if the environment is linearly
separable. The proof of the theorem involves no assumptions about the

order in which the query vectors are presented, the finiteness of the
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set F', or the dimensionality of the feature space. An elegant proof
is given by Minsky & Papert (1969); this is based on a proof by Papert
(1960). The former show how the theorem can be generaliged without
difficulty to the case where discrimination between n (n>2) pattern
classes is required. They also point out that the perceptron
convergeﬁce theorem is merely another way of looking at the results
obtained on relaxation methods for linear inequalities (see for
example Agmon, 1954).

The Perceptron Convergence Theorem. Let F' be a set of vectors such

that there exists W* and 6>0 with ﬁ*.5>6 for all ¢cF'. Then the
program (A) above will alter W only a finite number of times, provided
the weight vector W is initialized to have unit modulus.

Assuming that the program is presented a sequence of query
vectors in which each ¢eF' is repeated sufficiently often, it follows
that a weight vector W for which

W.2>0 for all ¢eF'
Wiil eventually be found. With such a solution vector, the
discrimination problem is solved for the two class case, since
oeF | implies W.0>0;
oeF implies W.(~®)>0 implies W.®<O.

The theorem also applies when a misclassified vector is added
to the weight vector without being normalized first, i.e. when the
program (A) is modified by replacing.% (in the second line) by &,
provided that the query vectors ¢ are bounded in length. This is
always the casé in real situations, and since normalization is a time-
consuming operation on conventional computers, this variant is used

henceforth.
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It is important to realize .that .the theorem guarantees
learning in a stronger sense than merely cycling through, or randomly
trying, the states of a discrete machine until an acceptable state is
found. The 1éarning of a perceptron is‘self-directihg, and can
genuiﬁely be described as goal-seeking; albeit with a goal which is
perhaps rather trivial. There is an interesting parallel here with
the evolutionary process:

Some biologists have argued that the process of random mut-

ation and natural selection is insufficient to account for

evolutionary changes as they have occurred, and that some

other guiding principle must play a part. Whether or not

this is so will not be argued here but, whatever the

mechanism, natural evolution is a slow and wasteful process.

(Andrew, 1963.)
Random selection or mutation of states by a naive perceptron is also a
slow and wasteful process, and the training procedure is designed to
inject a sense of direction into the perceptron's wanderings.

;t is natural to ask what happens to the perceptron learning
scheme if the environment is not linearly separable; It has been
noticed that the weight vector eventually oscillates in this case; the
apparent frustration providing a valuable clue as to whenrto stop
training (Efron, 1963). Minsky & Papert (1969) formalized this in
their "Perceptron Cycling Theorem", showing that the weight vector
remains bounded in length, and thus, if the set F' of query vectors is
finite, the system eventually oscillates.

As far as I know, there has been no indication in the
literature of the performance of the perceptron in situations with a
controlled amount of noise. It is clear that if the size of the

weight vector is roughly the same as that of the query vectors, and a

query vector which has been corrupted by noise is presented and
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identified wrongly by .the.perceptron, then.the wqight;ﬁector will be
changed s;gnificantly. 'This means that a weight vector Which
correctly discrimina;es the noiseless pattern classes could be changed
radicallyiby just one noisy query vector, and if this happens a
correctly diécriminating weight vector will have to be relearnt. In a
cdmputer simulation the perceptron reached a discriminating state on
the 91'st iteration, and for over half of the next 960 moves it was in
an incorrectly discriminating state, due to the effects of noise which
struck on the average only one out of every 20 query vectors. In this
run there was no restriction on the length of the weight vector: it
increased from 7 on the 91'st iteration to 12 on the 1000'th. The
query vectors had an average length of 2.

If the weight vector is significantly longer than the query
vectors, tﬁe perceptron appears to be much more stable during the
learning period‘than it is when a small weight vector is used. The
difference between the partially learned discriminations before and
after modification 9f the weight vector by an incorrectly classified
query vector is usually very great if‘the weight vector is small, and
the perceptron gives the appearance of oscillating wildly. With a
large weight vector, on the othér hand, the transitions of the learning
process take place much more smoothly.

There is reason to suspect that a larger weight vector will be
less vulnerable to noise perturbations. For, suppose W is a correctly
discriminating weight vector for the two class case,

W.8>6 for all ¢5F+,
W.0<~§ for all ¢eF ; for some §>0.

Suppose all query vectors have length at most o. Now if instead of W
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we use the weight vector W'=n.W (n>0), we can permit up to n6/a2

wrongly categorized (due to noise) query vectors to modify W' wi;hout

changing thé discrimination effectedrby the perceptron. For, let

m < n6/a2, and suppose @',@é, . o e ,@& are the corrupted query

vectors. Then the new weight vector W" is given by
W"=W'i¢>ii<1>é:‘:...i¢l;l,

where the alternative signs depend on the class to which @i was
assigned. Now

W'® = nW.® *

né - (n6/a2).a2 = 0,

v

so W".®‘> 0, for all ®8F+;
and similarly,

W'.® < 0 for all deF .
With a sufficiently long and unlucky sequence of noisy query vectors,
the discrimination for the noiseless vectors will eventually become
incorrect no matter how large the weight vector is. ’One hopes that
the learning scheme will put the perceptronm back on the right track
with less loss, in terms of inc¢orrectly classified noisaless points,
than would have been occasioned had the weight vector been small.

The snag is that a longer training sequence is needed if the
weight vector is to be large. The perceptron convergence theorem
provides us with a theoretical upper bound to the number of mistakes
made during the training period, and an extension to this theorem,
given in Appendix A (Theorem 1), shows that this upper bound increases
linearly with the size of the weight vector. This result holds if the

weight vector is set initially to a fixed size and allowed to vary
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during learning, as it does in the perceptron outlined above. Non-
trivial loﬁer bouﬁds for the number of mistakes made are difficult

to find, since the weight vector is initialized arbitrarily and this
arbitrary vector may itself discriminate correctly between the pattern
classes. l

If the size of the weight vector is constrained only initially,
there is a chance that it will decrease significantly during learning,
thus destroying all point in having a size restriction. It is
intuitively clear that this can happen in sufficiently unlucky
circumstances; but for disbelievers the following result is proved in
Appendix A (Theorem 3): If the weight vector is set initially to
length A and allowed to vary according to the usual perceptron
adaptation rules, then there is a non~trivial environment for which
the final weight vector is small in length, provided an unlucky choice
is made for the initial weight vector. It can of course happen that
the length of the weight vector increases during learning.

Because of this variability in the length of the final weight
vector, it was thought best to consider an adaptation rule which
renormalized the ﬁeight vector to length A each time it was changed.
Unfortunately, preliminary investigation revealed that the perceptron
convergence theorem does not hold in this case. For a simple counter-
example to the theorem, suppose A>1 and consider F'={(1,0)},a subset
of R2 (the space of pairs of real numbers) with only one element.
W¥=(1,0) is a unit vector for which

ocF' implies W*.¢>l/2, (with 6=1/2);
but if the initial choice of W is W0=(7A,O), then
1/2 _

Wy o= >\(.—>\+1,0)/[‘(,-A+1)2 + 02] = (=2,0) = W,.
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‘Hence the weight vector remains unchanged.no matter how many times the
quefy vector (1,0) is misclassified. Less trivial counterexamples can
easily be found; and if one is prepared to impose some kind of order
on the sequence in which query vectors are presented it is possible to
find counterexamples which involve a pattern class F of comsiderable
complexity. Howe?er, the convergence theorem in its strict form does
not depend on the order in which the query vectors are presented, and
the above example shows that it does not hold for the adaptation rule
described here.

An obvious solution to our dilemma is to renormalize the
weight vector after convergence has been reached. The snag here is
the difficulty, discussed in the last chapter, of determining when
convergence has been reached. Some feedback about how adaptation is
progressing is often required to decide when to terminate the training
period, and this may be found helpful in determining when to
renormalize. Indeed, if the machine is trained for a certain period
of time and then left to fend for itself, rather than being more or
less continuously monitored and partially trained all its life, then
it seems reasonable to renormalize the weight vector to the desired
length on termination of training. This may be considered undesirable
if the machine is to continue running unmonitored, though, since the
last thing one wants before leaving it to itself is a radical change
in the perceptron's internal structure. Note that since the training
patterns will generally produce nolsy query vectors, the weight vector
should be large during training, and if necessary it could be re-
normalized during this period at the trainer's discretion, provided he

bears in mind that this could considerably retard or even halt the
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learning process. I am of .the.opinion.that .this apparent .requirement
for interfering with .the intermal structure of .the perceptron severely
weakens any claim it may have to.being a "self-organizing" machine.

A modification of the perceptron.learning procedure, used by
Griffin et al. (1963), ensures that the weight vector becomes large
but does not appear to suffer from the disadvantages of the methods
discussed above. It consists of seeking a éorridor of specified width
‘separating the pattern classes, rather than merely a line, and this is
effected by using the rules

If ¢3F+ and W.? < d then replace W by Wté;

If ¢cF and W.® > ~d then replace W by W-9;
for some constant d>0. These rules are rather similar to the use of a
hysteresis corridor to help a machine to '"make up its mind" when
digitizing a continuous input signal (Hill & Wacker, 1969). Griffin
reports "a simple but significant improvement' in his character
recognizer 1f the usual perceptron adaptation strategy is replaced by
these adaptation rules, and I shall call this scheme the threshold
perceptron strategy. The constant d is referred to as the threshold.
The rules can easily be generalized to more than two pattern classes.
A reject class can be used wheﬁ'classifying unknown vectors:

Reject ¢ if ~06d < W.® < 6d,
where © is a positive constant, usually less than 1.

It is easy to see that the threshold perceptron strategy has
the effect of forcing the size of the weight vector up as d increases.
For, suppose € is a number such.that there does not exist a unit
vector X with

X.9>e for all ¢eF',
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where

F' =.{Ql¢€F+} U {-2]%eF } as béfore;
(Such e's exist: e=o will do.the‘trick.) Then if W is a solution
vector for the thréshold perceptron,

W.2>d for all 2¢F’'.
Hence

,%,@ > d/|W| for all ¢cF'.
Now (d/IWl) > ¢ dimplies %.@>€ for all %¢F',
which contradicts the assumﬁtions;
so (d/|W|) < g.
Hence

lw| > d/e.
So given A>0, we can find d such that if the threshold perceptron
converges, its final weight vector has length greater than A (e.g.
take d=Aa). The convergence theorem for the threshold perceptron is
given in Appendix A (Theorem 2); the.upper bound on the number of
times W is changed increases linearly with d.

The threshold perceptron has additional resources to fight

noise, apart from its guarantee of a large weight vector. Suppose a
solution weight vector W has been found, but owing to noisy conditions
this has been perturbed to W' (by misclassified noisy query vectors).
Then the machine is able to "realize'" that its weight vector has been
perturbed before it begins to misclassify noise-free vectors, and it
begins to correct itself before making mistakes. For, suppose W'
gives a digcrimination Whiéh is dangerously close to misclassifying
some noiseffree vectors, i.e.

W',.9<d for some %cF',
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Then if one of the vectors in danger.is encountered soon enough, .the
perceptron adjﬁsts itself to alleviate the danger before a noise-free
vector is misclassified, whereas an ordinary perceptron only ;djusts
itself after a vector has been misclassified.

The threshold perceptron still, however, persists in the
futile attempf to correct itself for noisy vectors, as ddés the
ordinary perceptron. The above argument only applies to situations
where the noise level is low, so that one can think of the query
vectors as comprising a large core of noise-free vectors with some
stray noisy ones. It. is expected that the behaviour of the threshold
perceptron will deteriorate rapidly as the noise level increases.

Having decided that the threshold perceptron has a better
chance of performing well in noisy conditions than any other variant
considered (or any other perceptron~like decision strategy .that I have
found in the literature), it was decided to simulate it to see just
how well it does. The details and results of the simulation are

presented in Chapter 7.
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Chapter 4
CLASSIFICATION USING STATISTICAL DECISION TECHNIQUES

Statistical decision techniques are often used as the basis of
a pattern~classifying system, One of the advantages of this is that
the adaptation of the system can be accomplished simply by estimation
of the appropriate probabilities (or probability distributioms), and
this process is amenable to theoretical treatment. Consequently wé
deal in this chapter only with the decision procedures, and the
learning part is considered separately in Chapter 5.

The problem of statistical classification is usually
formulated in terms of the loss function (cost function) of decision
theory. The loss function is defined on the Cartesian product of the
set of pattern classes (possibly augmented by a reject class or a 'mo
signal present' class) and represents the cost of deciding that a

&Y @)

query vector is in class F when in fact it belongs to class F .
This gives a generality which, from the point of view of this thesis,
is rather vacuous: although the loss function may be both non-trivial
and known for certain commercial applications, it is usually either
trivial or unknown and assumed trivial for convenience. In
experimental situations, where the decision process is used mainly to
test (in order to improve) the feature extraction, a trivial loss
function is invariably used. After formulating the classification
problem in a very general way using the statistical decision model,

Chow (1957) remarked that "an optimum system may prove to be too

expensive for mechanization". His opinion is confirmed by the
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simplifications and approximations.used in.the various implementations
of these decision methods (including his o&n: see .Chow, 196&), and
only techniques which have been used in or seriously proposed for
practical machines are considered here.
The simplest and by far the most frequently used statistical
classification technique is the maximum likelihood decision rule:
Given a query vector &, choose the pattern class whose g
posteriori probability is greatest, i.e.
Choose class i if
prlr® |01 > perr) o] for ail j C e )
This rule is obtained from the general decision theory model if the
loss function is "symmetric', that is, if correct decisions cost

nothing and incorrect decisions all cost the same amount (Nilsson,

1965). For any classification system which has access only to the
query vector ¢ and the various conditional probabilities associated
with the veétors andrpattern classes, the above rule minimizes the
number of mistakes made (Chow, 1957). It is in thié sense that the
decision is often called "optimal" Gninsky & Papert, 1969), but it
should be emphasized that this optiﬁality depends on correct assess—
ment of the conditional probabilities. These probabilities can in
principle be estimated to any desired accuracy if the training period
is sufficiently long and the training patterns are sufficiently
representative, but the amount of space necessary for their storage is
prohibitively large, and so approximations are used which of course
destroy the optimality of the decision.

A variant of this simple statistical classification rule

concerns situations where the decisions may be taken on data resulting
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from noise alone (Middleton, 1960). An additional class, F(noise)’ is
introduced here, and the decision rule is:
Choose class i if
Pr[F(i)|@] > Pr[F(j>|¢j for all j, e« . (B)

and Pe[F®)|e] Pr[F(n°ise)l¢];

v

decidg that noise alone is present if

priF 015 |57 5 prir|o] for a1t 1.

In most classification systems the problem of deciding if a signal is
present or not is assigned to the feature extraction phase rather than
to the decision process, and this extra "noise' pattern class is not
used~-even in speech recognition applications where determining if a
signal is present or not is a difficult problem (Reddy, 1967).

One often wishes to reject a query vector if the recognizer is
uncertain about its class. Chow (1957) showed that the following
decision rule minimizes the error rate for a given rejection rate:

Choose class i if

pro]F D 1eer ™7 5 prio|F P 1ee 7D forazni ... (©

v

and Prle|F P 1per ) 5 g3 pr(e|r &) 1pepr 07

v

reject ¢ if
8.2 Prle|F e [r ™71 5 prro|r @ 1eer )] for at1 3.

The small positive comstant B cont;ols the rejection rate. This rule
corresponds to the decision theory model with a loss function for
which

a) all correct decisions cost nothing,

b) all incorrect decisions cost the same, ¢y
c) all rejections cost the same, Cys

where of course cl>c2. The rule is equivalent to
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Choose class i if

Pr[F(i)LQJ

v

pr[F))8] for all j

and Pr[F(i)L¢] B.Z Pr[F(k)[QJ.

v

Note that‘

£ Pr[F(k>|®] =

=

s

provided that the pattern classes cover the space of query vectors
(this is almost always true if the feéture extractors eliminate '"no
signal present" query vectors, since the pattern classifier is
expected to classify even unusual patterns by generalization). Hence
a query vector is rejected if and only if the a posteriori probability
of every class is less than the constant 8. With this in mind, the
decision rule becomes:

Choose class i if

pr[F o1 > prr@ o] for a1l j )

v

tv .

and Pr[F(i)|@] B3
reject ¢ if

B> Pr[F(j)IQ] for all j.
This decision rule is equivalent to the introduction of a '"noise"
class if Pr[F(nOise?IQ] is considered to be independent of 2. Also,
there is no explicit provision for adaptation of the threshold (noise
probability), since reject decisions cannot be reinforced whereas
"noise only" decisionms can. Adaptation of the threshold could be
introduced during the training period by ad hoe ﬁethods.

To-implement any of these classification schemes properly, we
must store Pr[F(j)|@] for each pattern class j and each query vector

¢. TUnfortunately the space required for storing these probabilities

is, in general, extremely large. If ¢ is n~dimensional and each
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component ¢i can assume one of r values, .the distribution Pr[F(j>|¢]
is specified by r’~1 values for each j, and hence (m-1) (x"~1) values
are required‘for complete storage if there are m pattern classes.

Suppose, to take a modest numerical example, r=n=m=10. Then around

11 quantities are required to specify all the probabilities

10
(Marill & Grgen, 1960).

A‘simplifying assumption is that of independence of the ¢i's
relative to the pattern classes, i.e. assume

Pr[@lF(i)] =1 Pr[¢k|F(i)].

Then we can write

pr(r |21 = pefo|F P 12e[r D /62 (0]

&) .
= P?if@] L.n Pr[¢k|F(1)] e oe (A1)

This decreases storage requirements considerably. The price we pay
for this ¥eduction,‘the indépendence assumption, is discussed at
length in Chapter 6; it is generally acknowledged in the literature
only with a passing warning that it is a "strong" condition. Suffice
it to say here that it seems to be a fundamental stumbling-block to
the statistical classification methods, and one that will not be
overcome except by ad hoc methods applicable only to restricted
classes of problems.

For the decision rule (A), where we choose the pattern class
whose @ poéteriori probability is greatest with no restrictions on the
absolute sizes of the probabilities, we can ignore the common factor
1/Pr[2] in the expression (4.1) to get the standard rule:

Choose class i if

peirPyn Pr[¢k|F(i)] > pe[rd.n Pr[¢k|F(j)] for all j(4.2)
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Only n.r.m quantities are required now for storage of the
probabilities. The introduction of a "noise" pattern class, as in
(B), requires é siﬁple amendment to the rule; the additional
probabilities are éstimated in exactly the same way as those for the
other patte;n“classeé.

Chow's decision rule (C) also does not require storage of
Pr(¢]; it effectively calculates this.using the relation

pria] = z Prfe|F 1pe[r )y c e (4.3)
However, if the independence assumption is used to determine Pr[@[F(k)],
errors are caused both by inéorrect assessment of the values of
Pr[¢j|F(k)] (caused by inadequacy of the training set) and by the
inevitable invalidity of the independence assumption. Hence the
summaéion in (4.3) ieads to an accumulation of errors which will
almost certainly be quite large in normal circumstances, and this will
cause inconsistent and probably rather arbitrary rejection. I have
found no practical work reported in the literature which uses this
rejection criterion--in fact‘few experimental workers in this field
use a reject class at all.

The decision rule (D) requires knowledge of the absclute
values of Pr[F(j)l@]. To use the simple Bayesian inversion and the
independence assumption above, as in (4.1), we must effectively store
Pr[®], which requires around r® values for complete storage.
Alternatively we can assume another form of'indepenéence: that the
components of ¢ are statistically independent. This is much stronger
than the original assumption and its effect in real situations can
only be to increase the rate of misclassifications for a given -

rejection rate.
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~ Another method of implementing .the .rule (D) is to.note.that
maximizing Pr[F<j)L§] is equivalent to maximizing PrIF(j)LQ]/Prlf(j)[Q]
over the j's, and that :
Pr[F(j)|¢] > 8 if and only if
pe[F P[0 1/e 79|01 5 8/ 1-p).

_Now

prir) o] prie|F 3 1pe[r )]

peFP)e]  prlo]FD 1eF9))

— oH —_ ]
using our original independence assumption. Following Good (1965), we
define the weight of evidence in favour of X provided by ¥:
Pr[Y|X]
W[X:Y] = log —— .
Pr[Y|X]
Then, writing

rR9) = 1ogerir@ e 790,

prior
R (@) = 108@r1r D 61/p(F 3 |01);
we assign & to the class F(i) which maximizes
(1) - g (1),
Rpost(cb) = Rprior + % W[F TP

This gives a rather natural interpretation of the discriminatory
fgnctions in terms of summing weighté of evidence~-or in fact in terms
of summing the self-information provided by the é-components to the
pattern class, since as Good (op. cit.)'pointed out,

W[X:Y] = I[X:¥Y] - I[X:Y1,

where I denotes the information function.
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We may decide.to.reject.the.query vector ¢ if
PrIF(J)IsD] < 1/2 for all j,
i.e. if

)
RpO.St(CP) '_<: 0.

This, or rather the converse, that ¢ is certainly not rejected if for
some j,

@)
Rpost(é) >0,

is exactly the result obtained by Maron (1962) as.the hypothesized
condition for a neuron's firing.

A price must be paid for the rejection threshold, for now both
Pr[¢k]F(j)] and Pr[¢kf§{j>] must be stored, together with the g prior:i
probabilities, instead of merély the former as before. However, these
need only be stored during the training period since on termination of
training, Pr[¢k|F(j)]/Pr[¢k|F(j?] can be computed and stored instead.
Alternatively an algorithm could be used for estimating weights of
evidence directly, but I know of no such procedure.

For the purposes of pa£tern recognition, decision techniques
are very often used in conjunction with query vectors whose éomponents
are binary-valued. This follows from the fact that the feature
measurements usually serve to denote the presence of absence of soﬁe
attribute, rather than the degree to which it occurs. The statistical
classification method turns out to have a particularly simple form for
binary features because Pr[¢i|F(j)] is represented by a single number
rather than by a probability distribution or density function.
However, a few remarks on the non~binary case are in order here before

proceeding to treat binary features.
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In situations Where.the.que?yuvector,components may take on
continuous or pseudo-continuous range of values, one normally assumes
a probability demsity function which depends on certain parameters
such as the mean, variénce, and .possibly higher momenfs,,which are to
be estimated, It can‘be shown (Highleyman, 1961) that the optimum
decision surface between Gaussian distributiﬁns with equal a priori
probabilities is a hyperplane. If the covariances are not equal,
however, the maximum likelihood boundary is non-linear (Cooper, 1963).
I will not concern myself with cases where the distribution is
considered to be continuous.

In the discrete case, if the number r, of the values wil’wiz’

""wir~ which may be taken on by ¢i is reasonably small, it should be

1
possible to estimate the probabilities Pr[¢i=wimlF(j)] separately.

The decisi&n surface is in gemeral non~linear énd assumes quite
complicated‘shapes.

A limited series of experiments was made to determine if
either of the following two methods of treating a discrete nén—binary
query vector space is significantly better than the other:

a) estimate the quantities Pr[¢i=¢im|F(j)] separately;

b) encode the non—binéry features into the positional binary
notation and use the binary features so generated.
(As noted in Chapter 6, it is probably better to use a binary encoding
which is highly redundant but preserves the topological properties of
the environment. Method (b) is, in this sense, perhaps unfair to the
binary feature system.) The various probabilities were calculated

exactly by a frequency count using each point of the enviromment in

turn. The environments used were mostly linearly separable, but
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because of .the invalidity of .the.independence assumption, mistakes
were normally made by both.methods,

Neither method seemed to be significantly more powerful .than
the other; the discriminatory surfaces for (b), although linear in the
binary hyperspace (see below), assumed as complicated and seemingly
arbitrary shapes when re-encoded into the original non-binary feature
space as those for (a). It appears from this that if the query space
is to be treated as discrete, no significant loss is suffered by
considering the binary encodings of the original query vector
components as new féatures, and the binary method may prove superior
if an appropriate redundant but "helpful” coding scheme is used.

If the featufes ¢i are binary, and if the independence
assumption is used, the maximum likelihood pattern classification
becomes linear. This was shown by Minsky & Selfridge (1960), and the

following is based on their proof.

Define
i
Ppi = Pr[¢ké1|®8F( 1, Qg = 1 7 Pyys
Py = Pr[F(i)].

The discriminatory functions are (see equation 4.2)

gD @) = per@ 1. prpe, |7, |
assuming independence. Since log is a monotonically increasing
function, we may use the amended discriminatory functions

£ @) 0y = 1opiprr 1.1 Pr[¢k|F(%)]}

log(p;) + I log{(pki)¢k.(qki)(l~¢k)}

It

L ¢ptog(py /q ) + log(py) + I log(qy,)

+ 90

2 b 13

where
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Weq = Log(p /q,4)s

ei = log(p,) + I log(qy,).
Defining

w®

= (Wli’WZi’ ‘e ,wni,ei),

the decision rule takes the form of ﬁaxﬁmizing @'.ﬁ(i> by choice of i.

In trying‘tq gain some feeling for this decision rule, we
shall ignore rigour and imagine the n-dimensional binary query space
as being continuous. Consider the decision surface between the

classes F(i) and F(j)

. This has equation

‘P'.(W(i) - w(j)) = 0.
This hyperplane is normal to the join of the points (Wli,WZi, ‘oe ’wni)
and <wlj’w2j’ voo ’wnj) in our n-dimensional space. Note that the
"centre of gravity'" of the class F(l) (mean value of'{QIQEF(l)}) is

represented by the point
c® = (PpysPpys «or sPpy)-
This shows that the discriminatory hyperplane is normal to the join of
the images of C(i) and C(j) under the transformation
x + log{x/(1-x)}
applied to each of the cofordinates. This should be contrasted with
the percéptron learning scheme which is in general sensitive to the
outer boundaries of the pattern classes rather than to their interiors.
As pointed out by Nilsson (1965), the equation of the hyperplane
depends in a feasonable way on the probabilities involved. As P
increases with ij constant, LA and hence (wmi - Wﬁj) increases.

1

This favours an F response for query vectors with

6 = 1.

On the other hand, the m'th component of ¢ is ignored if and only if
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Vi T Wﬁj =0,
i.e. if and ﬁnly if
Phi © ij,
in which case that component contributes .nothing to.the discrimination

between F(i) and F(j). The a priori probabilities of the pattern
classes affect only the thresholds 6, and if F(i) becomes less likely
then Gi decreases and the decision surface moves toward F(j).

With a finite number of samples in the training set it may
happen that some pij or qij becomes zero. Usually, though, the
conditional probabilities are smeared, partly because they are often
estimated by an iterative process which rarely gives zero or ome
(except in storage limited cases where only a small set of values is
available for probabilities), and partly becaﬁse of noise
perturbations. If the independence assumption is valid and the
conditional probabilities are known for separated patterns in
hyperspace, then the maximum likelihood classificat;on becomes trivial
since many of the conditional probabilities will assume their extreme
values of zero or one, causing all but one Pr[@lF(j)] to vanish for
any ¢ (see Chapter 6). However, if one wishes to preserve éhe
formalism in these cases and use log probabilities in the form of
weights of evidence, there is theoretical justification for replacing
the usual frequency estimate Hij)/N(j) for Pr[¢i=l|F(j)], where Héj)
)

is the number of occurremces of ¢'s in F with i-component 1 out of
a sample of N(J), by '{HiJ) + i}]{N(J) + 2}, thus avoiding the problem

of zero probabilities (Good, 1965).
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Chapter 5

‘STANDABDVPROBABILITY ESTIMATION TECHNIQUES, AND SOME

COMPLICATIONS ARISING FROM STORAGE LIMITATIONS

I regard this chapter, or at least the first part of it, as a
necessary evil. Techniques for probability estimation are well known
and have been used in learning machines for some time now, and I feel
that littie if any improvement can be made to these. However, our
discussion of the maximum likelihood decision method is of little
consequence unl;ss these techniques are described; in addition to this
it is difficult to find a complete treatment of more than one
probability -estimation procedﬁre in any ome place in the literature.
An exceptlon to this is provided by Minsky & Papert (1969), and the
first part of this chapter is based on their exposition, with some
alterations and additions of my own. It was not thought worthwhile to
carry the argument to several decimal places, and means, variances,
and limits are assumed to exist whenever this is convenient.i

One often requires learning machines to fepeatedly estimate
the probability of '"favourable" events in some continuing process.,
Normally this cannot be calculated directly, since it is by definition
a limit, and so one must find estimators. The simplest way to
estimate a probability in situations of this kind is to find the ratio
h/n of the number h of favourable events to the total number of events
so far experienced.

Define’

¢n = (the n'th event is favourable\;
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let p be.the true probability.that an event is favourable;
pn‘be,the estimate of p after n trials,

Then .the formula
n

p, = (L-1mp_, + (I/m)é_ R

computes the frequency ratio

P, = %.Z ¢i = h/n.
Making'the“usual assumption that successive events are independent,
and noting that ¢i is binomially distributed, we have

E[Pn] = P, . « « (expectation)

Var[p_] = p(1-p)/n. . « . (variance)
Note that Py is truly arbitrary, since the value of P, (n 2 1) is
independent of Py

The estimate (h+l)/(n+2) was mentioned at the end of the last

chapter; this avoilds some problems which can arise from zero

probabilities. The formula

_ 1 1
pn = (l n+2>'pn_1 + n+2 Oq)n £ L3 L[] * (5-2)
Py = 1/23
computes
- L = btl
Pp= w2 c@Pp I o) = 5

It behaves as the previous procedure would if one ¢=1 and one ¢=0 were
observed in two moves, before starting to observe the $'s proper.
Consider the altermative estimator
P, = (1-e)pn_:L + 04> 0<6<1. e« o (5.3)
This is the exponentially weighted past average (EWPA) procedure, and
has the advantage that the current value of n.need not be stored and

appropriately incremented. The solution of the recurrence relation is
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P_ =.(:L-.e)‘"fp0 +on (1-6)""% (20),

i
. n n
so E[pn] = (1-8) Pyt p(1 -~ (1-8)")
+p as n >, for all:po.

Also,

Var[p_] = p(1-p).0(L - (1-0)%")/(2~6)
- %‘-p(l-p)s "

It can be seen that recency outweighs experience, for this estimation
procedure, since the coefficients qf ¢i decay exponentially with time.
This is an advantage for many pattern recognition systems, since the
feature ex;ractors may be changed (for example by varying thresholds)
in a gradual but unpredictable manner, depending on the performance of
the classifier. In the limit for large n, the expected value of P, is
p, and the variance can be made arbitfarily small by choosing © smali
enough.,

Following Minsky, we can "equate' the variances of procedures
(5.1) and (5.3):

2n
p(i-p) = 9(12‘_%'9) ) p(i-p) = 'igé'.‘p(l—p) ’

so nn 2/8.

Thus the variance of procedure (5.3) is about the same as that
obtained by averaging the last 2/6 observations. We can think of 1/8
as a time-constant for 'forgetting'; For small 6, there is slow
adaptation but the variances are small and the final estimate is
reliable. For large 6 adaptation ié fast but the limiting variance is
large. Initially the situation is as.though the probability had been
estimated at Py on .the basis of &1/6 trials. Hence for small 6 the

influence of the arbitrary Py is present for some time, and for large
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O we run the risk of violent.oscillations at .the beginning. Samuel
(1959) used an iﬁgenious compromise in his checker—pléying program,
He set Py = l/é and used
Ppyg = - 1/Np + (1/N)¢ .o
where
16 if n < 32

N= (2%

if 32 <n < 256 and m is an integer with 2" in <.2m+1
256 if 256 < n . |

This ensures stability at around 1/2 in the early stages, approximates

uniform averaging in the’middle, and finally settles down to an EWPA

to ensure adaptation to changing circumstances.

Minsky & Selfridge (1960) used an adaptation rule which is

only trivially different from the EWPA estimator:

P, = (-8)(p _; +¢,), O<o<l, ’ cee (5.4)

n

Let qn

Then

op /(1-9).

(1-0)q, /8 = (1-0)q,_,.(1-8)/6 + (1-0)9_,
so q = {1-0)q__, + 8¢,
which is the same as rule (5.3). Hence the limiting expectation of P,
is (1-6)p/o,
and the limiting variance is

2
s pep)

One sometimes wishes to estimate the Iikelihood ratio p/(l-p)
directly. This can be done using

Write
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En = E[pnl; E = Lt(En) .as n > o
2.
X, = E[Pn]§ X = Lt(xn) as n + o,
Then’
E,=0p+ (1-0+0p)E ),
n-1 i
so E =6p. 2 (1~-6+6p)” + (1~06+0p)t.p
n 0 0
= o (L= (-e+ep)?)  + p. (1-6+ep)"
provided
p# 1.
Hence

o s as required.

= l—p
Now pﬁ = (1-6+6¢n)2.p§_1 + 26(1—6+6¢n)¢n.pn_1 + ez.¢§ .
We have A
B[(1-6+0¢ )°] = p+ (1-0)%.(1-p) = (1-0) + 0(2-0)p ;
E[(1-0+6¢ J).¢ 1 = p;

and E[¢§] = p.

Hence
o 2 2
Xp = 1(1-8)" +6(2-6)p}.x _, + 20pE , + po~ ,
. 2 2 2
so x = {(1-8)" + 0(2-8)p}.x + 20p°/(1-p) + po° .
This gives
- p(2pte-6p)
= 2 .
(2-8) (1-p)

The limiting variance of P, is given by

V= X—Ez
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.0 P

2-6 (1-p)*
Thus the limiting variénce may be made as small as we please by
choosing 6 sufficiently-small.

'The effect of limited storage for probébilitiesron EWPA
estimation is now considered by means of an example. Suppose the
probabilities are stored as intéger percentages, i.e. write

q, = 100.pn,

where the q's are stored as integers. The EWPA recurrence relation is

P

n (l-e)pn_l + 6¢n

+0(@-p ;)¢ - 0p _;.(L-9) .

= Pn—l n

In terms of the q's, this is

n-1

Let the value of 6 used be 2%. An acceptable digitization of (5.6) is

(see Figure 5.1)

G = Gy F A3 () 0y ¥ Aglay ) (= o),

where
+2 if x <50, c e (5.7)
8, (x) = , :
+1 1if x> 50 ;
-1 if x < 50 ,
Bg(x) =

-2 if x> 50 .
A digitization which sticks closer to the required line is
+2 if xg 25,
Ai(x) = +1 if 25 < x §:75 .

0 if 75<x

we

and similarly for Ad(x), but .this suffers from the disadvantage that

if P, is in the range [25,75] .then P, (m>n) can never be less than 24
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or greater.tham 76. Hence we.use'the digitization (5.7).

A(x)1
2=
~
- .
~ A, (x)
1 ~ '
~
~ ~
~
. ~
0 = > X
T — 50 100
~
~
~

~ .

-1 =~
. ~
~

A &) >~ o -
-2 =

Figure 5.1

The digitization of the A-functions.

Now

E[qn] = Elq ;1 +p.E[A (q )]+ (1-p).E[A4(q )1,
where p, as before, isrPr[¢i=l]. Assuming:for convenience that 9,
always remains above 50,

Elq I = E[q _,] +p - 2(1-p),
so if

p > 2(1~p),
i.e. if

p > 2/3,
then aQ, is expected to increase stgadily until it reaches.the upper

limit.
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.This is cléarly‘éh undesirable state df affairs. .Moreover,
the phenomenon is not confined to.the examp;g given; it will.be present
to a greater or lesser extent in any system which.digitizes.the
probgbilities and adjusts them in a straightforward manner. The
example is not an extreme one which is unlikely to occur in a practical
situation—~on the contrary, the existence of storage limitation
complications was brought home to me while experimenting with a
machine which was é realization of just this example.

We have seen that the EWPA procedure (or in fact any other
conventional probaﬁility.estimation procedure) is spoiled by
digitization unless the parameter 6 is large compared with the
precision to whichrtﬁe probabilities are stored. The only explicit
reference I have seen in the literature to the following technique for
overcoming this difficultyris due to Andreae (1969), although Uhr &
Vossler (1963) used a similar technique without comment.

I propose using this system for incrementation and
decrementation in the above example:

2 with probability (100 - x)%,

A =
i(X) 0 11 " x%
) " 1" x%,
A4 =
o " " (100 - x)%.

Hence Ai and A 4 can be interpreted as random variables dependent on
the argument x, thée expected values, given X, are the same as the.
values of the A-functions given earlier. Fdr a more general treatment,
let us revert to the p's and re-define Ai and Aq by

Pﬁ =P ta e D, ta,0, )-A - o) e .. (5.8)

We choose the A-functions to be
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6  with probability .(1-x),

A, ( =
1(X) 0 " n %
’
_e 11 : " X,
A &) = - |
. 0 | " 1" . (1‘”}() ;

where 6 1s a positive constant, less.than 1, chosen to be a multiple
of the precision to which the p's are stored. We calculate the
expectatiom and variance of the p's: these are assumed to exist.
Let En = E[pn]; ‘E = Lt(En) as n + o,
We need the following facts:

Ef¢ ] =ps  E[1-¢]=1-p; |

E[Ai(Pn)] = E[E[Ai(ph)]pn]]’ by a well-known theorem of

probability theory (see for example Gnedenko, 1962);

It

so E[4,(p )] =E[6(1-p)]

=0(1 - En)'
Similarly, -
E[Ad(pn)]‘= —eEn.

Hence (5.8) becomes, in terms of expectationms,

En = En-l +op(1 - Enfl) -ve(l_p)En-l
Also,

E0 = po;
Hence

E = (1-0) .py, + P(L - (1-6)"),
so E = P

This result is exactly .the same as.that obtained from the conventional

EWPA procedure. For the variance of the p's, we use
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2. 2

R N O R L
RN CREP RN NI NCIER W)
+ Z'Ai(anl)TAd‘pnél)'¢n'(l - ¢n) e+« (5.9)
Write |

o 2
Xa =,E[Pn]; X = Lt(Xn) és n > ®;

these are assumed to exist. We need the following:

Bl42) = ps  ELCL - 0)%) = 1-p;  E[4_.(1 - ¢)] = 0;

B, %) = 0% -5 B[O, 0% = 0hE ;

]

E[pn:Ai(pn)] E[6ép (1 - P )] = O(E - X0
Elp, A4 )] = E[-6.p2] = -0 .

In terms of expectations, (5.9) becomes

It

‘ 2 ’ 2 :
X Xp-1 + po~ (1 - En—l) + 0 (l—P).En_l

n -
+ 2p6(En_l - xn—l) --‘2(l—p)6.)(n___l
2
= (l—26)xn_1 + 6(6 + 2p(l~-6)).En_l + pb~-.
Hence
X'= (1-20)x + 6(0 + 2p(1-0))p + po2,
so x =p(6 +p - po).

Thus the limiting variance of p,asn > ® is
2
X = E" = ép(1-p).
Note that this is slightly largér than the variance
8
35 ‘P(1-P)

of the conventional EWPA procedure. .This is only to be expected since
the additional random element in the A-functions introduces a new

degree of possible variation, so to speak. However for small 6 the
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difference in the variances is negligible, and these probabilistic
incrementation and decrementation techmiques provide an acceptable

method for overcoming difficulties arising from storage limitationms.
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Chapter 6
~THE INDEPENDENCE ASSUMPTION

The single failing of the maximum likelihood decision strategy
(in its usual form) is that the independence assumption is almost
never true. While wendering through numerous papers on this decision
strategy and associated topics in preparation for this thesis, I was
forcibly struck by the lack of space devoted to this assumption and
its implications. Although passing references are made to the
difficulty at several places in the 1itetature (see for example
Minsky, 1961; Nagy, 1967), the problem is usually dismissed in a
sentence or two. Having given the subject considerable thought, I am
now of the opinion that in fact not much can be said aboutlit; one
must accept the assumption if one wishes’to build a practical machine
embodying a maximum likelihood decision strategy, and features should
be chosen innsuch a way as to help;the decision. For this reason the
present chapter is cautionarylrather than constructive, and a large
part is devoted to an examination of some implications of the
independence assumption.

' It seems that the problems of implementing a maximum
likelihood decision scheme using a weaker form of the independence
assumption are almost insurmountable.‘ Lewis (1959) developed a method
of successively approximating to probability distributions; his first-
order approximation is equivalent to assuming independence, and
higher~order approximations are given which refine the estimate of the

probability distribution at the expense of increased storage
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requirements and considerable additional complexity. As far as I know,
however, these higher—order approximations have never been embodied in
practical machines. Lewls himself, when simulating an experimental
pattern classification machine, used only his first-order
approximafion (Lewis, 1962), and it is instructive to examine his
reasons for doing so: |
It [the indepéndenbe assumption] was made . . . because
1) the assumption yields a simple realization for the
recognition systenm,
2) there are a great many situations for which such an
assumption is adequate,
3) a study of this simple case furnishes a first step
in the study of more general situations.
(1) appears to me to be the most binding consideration as far as
designers of practical machines are concerned. Note that in (2),
Lewis claims only that the independence assumption is adequate, rather
than valid, for many situations. It is shown below that the
assumption is wvalid only for a greatly restricted class of situations;
unfortunately its adequacy is rather more difficult to investigate,
and the evidence for (2) is presumably that maximum likelihood
classifie&s using:the independenée assumption have been shown to
function reasonably well. Concerning (3), the conspicuous absence in
the literature of investigations of more general situations seems to
indicate the difficulty of implementing higher-order approximations.
It 1is possible to implement weaker forms of the independence
assumption in an ad hoc manner depending on the particular features
usea. An example of this is provided by Chow (1962), who simulated a
machine for‘recognition of hand-printed characters using the binary.

matrix representation of a character as its feature vector.

Approximate size normalization and registration had already been
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performed. Chow assumed a "nearest-hgighbour" dependence:

‘ : . p(®)
T Prle; le; 5q5 053 53 F 0 1

PrI@|F(k)] =
where |

¢ij = fthe (i,3) 'th matrix équare is occupied by part of the

character’.
This form of dependence is justified by intuition and &epends strongly
on the particular kind of features used, and on the ordering of
features. The dependence is on the north and west neighbours: the

other two neighbours are not explicitly needed. The number of
ﬁrobabilities to be stored is about four times that required if the
usual independence assumptioﬁ is‘qsed. Recognition was achieved with
97% success (on previously seen samﬁles taken from the set of ten
numerals), which represents a considerable improvement over the 80%
success achieved using the usual independence assumption.

We next look at some of the implications of the independence

assumption. Our starting-point is the following definition of

independence:
The events E; and E, are independent if Pr[ElIEZJ = PrE;I;
The events E, and E, are independent with respect to the event A

if Pr[El|E2 & A] = Pr[E1|A].

Thus E1 and E2 are independent w.r.t. (with respect to) A if given A,

tells us nothing further about E It is easy to show that this

l.
and El are independent w.r.t. A, as it should. We deal

Ea
implies that E2
for the moment with only two events for the sake of simplicity: all
results generalize easily.

When using independence to simplify the maximum likelihood

decision scheme, one assumes that
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Prp, & ¢,|F] = Prly, |F1.xl4,|7]. ... (6.1)
This is exacﬁly'equivalent to essuming thet
¢1 and ¢2 are independent w.r.t. F, : . ; . (6.2)
For, (6.1).is true if and only if -
Prl¢, |F1.Prls,|F] = Prigylo, & _;F].Pr[q>2|F],
which is equivalent to (6.2) (provided Pr[¢2|F]#O, which must be true
if Pr[¢1|¢2 & F] is‘to have:meaning).
| Let us‘egamiﬁe‘a simple situation where the independence
assumption is not true. Consider the features given by two
rectangulat‘Qartesian co-ordinates; let A be the set of points (see
Figure 6.1)
A= 1{(,0) , (0,1) , (1,1)},
where the points are encountered with equal frequencies, i.e.
Prl$,=0, ¢,=0]A] = 1/3,
and similarly for thehother points in A. (The event (¢1,¢2)8A is

denofed by A where this will cause no confusion.)

¢2A

1% - %
05 1 %

Figure 6.1 .

A situation where the independence
assumption is not true.
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Then

number of points in A with ¢1=0

Pr[¢léoiA]. = 2/3,

number of points in A

1/3.

and Pr[¢2=o|A]
Independence implies
Pr[¢,=0, ¢2=0|A] = Pr[¢1=0[A].Pr[¢2=0[A]

(2/3).(1/3) = 2/9,

il

and this is not true.
Note that

Pr[9,=0|¢,=0 & A] = 1,

so Pr[¢,=0, ¢2=01A] Pr[¢1=0|¢2=0 & A].Pr[¢2=o|A]

1. (1/3) = 1/33

I

which is as it should be.
Suppose now that we have another pattern class B which

contains the point (1,0), and such that

Prl¢,=1, ¢,=0|B] < 1/9.
This is easily accomplished by taking

B={(,0) , (2,0) , (3,0) , . . ., (10,0)}.
Then the features are independent w.r.t. B, and

Pri¢,=1, ¢2=0|B] = 1/10.
If we assume independence for A, the point (1,0) will be categorized

wrongly, since

Pr[¢,=1, ¢,=0|A] = Pr[¢,=1|A].Pr[¢,=0|A]

(1/3).(1/3) = 1/9

v

Pr{¢ =1, ¢,=0|B].
Note that if we do not assume Iindependence for A, then

Prl¢,=1, ¢2=O|A] = Pr[¢1=1|¢2=0 & A].Pr[¢2=0|A] =0,
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since no point (¢l,¢2)8A with ¢2=0 has ¢l=1.
| Whétﬁer or not the independence assumption holds for a patternr

class F dépends on the freqﬁencies with which points of F are
encountered. This can be seen by considering the sef of points

A=1{00,0) , 0,1, 1,0 , @, |
If all the points in A have equal frequencies, then tﬁe independence
assumptiqn clearly holds. However, if the frequencies are

0.25 , 0.25 , 0.49 , 0.01

respectively, then

Pr[¢,=1]A] = 0.50,

Pri¢,=1]A]

0.26,
so 0.01 = Pr[¢1=l,:¢2=l[A] # Pr[¢1=1LAJ.Pr[¢ZflIA] = 0.13,
so the independence assumption doesrnot hold. Thus a pattern class F
may be said to consist of.a set A of points, each with frequencies
attached, where the set A and;the frequenciesjare defined by

A = {X|Pr[e=X|F]>0};

perceﬂtage frequency (X) = 100.frt¢=X|F] for all XeA.
The next reéult gives a characteristic which must be possessed by all
sets of pointé cofrésponding to pattern classes which satisfy the
independence assumption, irrespective of the associated frequencies.
It is proven here fbr the case where the set of points is discrete;
the extension to the continuous case can be shown similarly but is not
relevant to this thesis.

Let F Be a péttern class which satisfies the independence

assumption, and denote by A its associated set of points as defined
above. Suppose the query vectors are n-dimensional and discrete. We

assume that all points in A have integral (not necessarily bimary)
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co-ordinates--this is easily arranged since the feature space is
discrete. Let Ai be the projection of A on the i'th feature axis, i.e.

A, = {x|there exist X; 5%

5 X with

2’ "" ’xi—l’xi-l'l, e o e

(gl,xz, oo 3Ky 15ToXK 05 eee ,xn)eA}, 1<1i<n,
By the definitiqn‘of A,
Pr[¢ =x, for all i, 1 < 1 < n|%F] > 0 - if and only if
(xl,xz, cee ,xn)sA.
Also,

Pr[¢i=xi|®eF] >0 if and only if x eAi.

i

The independence assumption for F is
Pr[¢imxi|¢j=x3 for all jeB, & %cF] = Pr[¢i=xi|¢eF],

for any subset B of {1,2, ... ,i~l,i+l, ... ,n} and all i. Note that

this is stronger than merely pairwise independence of the co-ordinates

of ¢ w.r.t., the gvent ¢eF. The independence assumption for F implies

that

Pr¢,=x, for all i, 1 2 i3 n|®eF]

I Pr[¢i=xi|¢j=xj for all j, 1 < j < n, & 2¢F]

1

I Pr[¢i=xi|¢eF]..
Hence
(xl,xz, con ,xn)eA if and only if I Pr[¢i=xi|¢eF] >0
if and only if Pr[¢i=xi|®eF] >0 for all i
if and only if xieAi for all 1.
Hence
A= {(x],%y, «oo % )|x;eA, for all 4, 121 ¢ al;
that is, A is exactly the Cartesian product of its projections on each
of the axes. The best way I can describe figures satisfying this

restriction is to call them striated rectangular figures, with
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striations parallel to.the feature axes. An example in 2-space is

~given in Eigufe 6.2.

Yowvvwoi B swsse)

| /@ v/

7

X

Figure 6.2

An example of a striated rectangular figure.

We have shown thétvif a pattern class satisfies the
independepce assumption, then its associated set of poiﬁts must have "
the form of:é striated rectanguiar figure, as Aesgribed above. It is
easy ﬁo see that if a pattern class Frdoes not satisfy the
independehce assumption, and its associated set of points does not
have this form, then a maximum likelihood classification scheme which
assumes independence will gssign all points in the smalléest striated
rectangular figure céntaining A to F with a‘non-zero probability. For,
suppose ﬁhére‘exists a point in A, for each i, with i-component X
Then

Pr[¢i=xi|®eF] > 0 for all i,
so Pr[o = (xl,xz, cee ,Xh)|¢€F] > 0.

Hence there is a sort of generalization of the pattern class to the
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smallest striated rectangular figure containing A. An example is

given in F;gure 6.3.

3

generalization

Figure 6.3
Generalization resulting from invalidity
of the independence assumption.
A further consequence of fhe indepeﬁdence assumption is that

if it ié really tfue, and if the pattern classes are separated (i.e.
do not intersect), then a maximum like;ihood decision can be
accompiished by a form of exact matching of the query vector with
templates associated with the pattern,classes. This is shown for the
case ﬁherg the features are binary-valued{ the extension to many-
valued features is obVioﬁs. Using'the terminolpgy of Chapter 4, and
assuming ?ndependence,

Pr[F]

- (4 . =1) {1.=0)
Pr(F|e] = LI p.‘¢j‘1 (1 - p.) 030"
Prle] : , J

Now Pr[F|e] > O if and only if @cF,
since the classes are sepérated. Take any particular‘ééf, the
complement of F. |

Pr[F|e] = O,

so there exists j such that
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pjf‘pj:]f\ 1 p) '0‘ = 0.
Hence either pjéO and ¢j¥1 or pj=l and ¢j=0. In either case, it
"follows that the j'th bit (feature) is the same for all query vectors
in F. Define E

='{j|¢j is the same for all %eF}, a non-empty set.
Take any pérticular o%*eF, Thén

%P if and only if PrlF|e] > 0
if énd only if ¢j = ¢§‘ for al; jef.

Hence one can tell if a query véctor ¢ is in any particular pattern
class by exact matching of certain bits (depending, of course, on the
pattern class) of the vector ¢ with any representative of that class.
All that need be stored is a & in that class, together with pointers
- to the bits of @ which ate importanmt for thét class.

~In the light of the above discussion, it is evident that the
independence assumption is actually va;id only for an extremely
restricted class of situations. Fortunately it is adequate for
pattern classification purposes in a rather 1a¥ger class of situationms.
Each pattern class can}be viewed as competing for any given qﬁery
vector &--~we assign ¢ ﬁo”the class F(j) which maximizes Pr[F(j)IQ],
without requiring that

pr(r3) )1 > 0 and Prl[F(i)IQ] = 0 for all i#j.
I have found no genéralrway of examining the édequacy of the assumptipn
except by experiment.
At the beginning of this chapter it was mentioned that since

one virtually has to accept the rather dubious independence assumption

to implement a maximum likelihood deciéion, the features should be
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chosen in‘sﬁch’é way as to help.the decision. Although a discﬁssion
of éhe feature éxgréétion pfodeSs is beyond the scope of this thesis,
a brief considération‘of the'important special case whe?e a binary
encoding of measurements is used to prévide b%nary feature§ is din
ofde? here, éince this encoding pfocéssrcan affect the indepegdence
property. The next result shows by an example that iﬁdependence can
be-lost just by encoding numerical measurements iﬁto the usual
positionai binary motation. It is interesting to recall that encoding
features into the positional binary notation. actually enhances the
possibilit§ of linear separability (see Chapter 25.,
Let A be the set

A= {(0,1) , (0,2)},
and let F be the pattern class associaped with A, where the points in
A are encountered with equal frequency. Then F evideﬂtly satisfies
thé independence assumption. Consider |

A' = 1(0,0,0,1) , (0,0,1,0)},
obtained from A by a two-bit positional binary encoding of the feétures.
Let F' be the pattern class associatéd ﬁith A',
Then

Pr[¢3=1|¢eF'] =1/2,
but Pz[¢,=1]¢,=0 & 2eF'] = 1.
Hence F' does not satisfy the,indepéndence assumption.

Aﬁdreae (1969) discusses a situation where the feature
extraction process consists merely §fic0ding the points of a 10 x 10
matrix.” Although he is primarily concerned with STeLLA-like decisions
ﬁsee Chapter 8), I feelﬂthat his remarks are also relevant to m;ximum

likelihood decisions. He suggests that the kind of input encoding
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scheme uSed'is vital to the.performance of an adaptive pattern
classifier, and recommends the use of a SIG (snake in .the grass) code

(see Figure 6.4). For Andreae's particular situation, each point is

Number | Code

00000
00001
00011
00111
01111
11111
11110
11100
11000
10000

CvENOUINWN R

=

Figure 6.4

A SIG code,

represenied by ordinary rectangular Cartesian co-ordinates, each
converted into the‘corresponding SIG code. This, he points out, has
the advantage of preserving environmental céntinuity.

" The input coding [see above] . . . is particularly helpful to
the machine because it reflects the natural topology of the
environment. The Hamming distance (number of digits in
opposite state) between code words reflects quite accurately
the proximity of the lattice points in the 2-dimensional
input space. :

He goes on to compare this with a positional binary encoding scheme
which, of course, preserves environmental continuity only to a very
limited extent, if at all.

SIG coding also has the effect of introducing a high degree of
redundancy. This is vital in noisy situations, but has disastrous

implications for the independence éssumption when little or no noise

is present. Nevertheless, I believe that the adequacy of the
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independence assumption will not be greatly impaire& by the use of
this kind of redundant input éoding; although its validity will
cefﬁainly be‘deétroyed. Unfortunately I can offer no concrete

evidence for this conjecture.
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Chapter 7

SOME EXPERIMENTS WHICH ILLUSTRATE THE DIFFERENCES BEIWEEN THE

PERCEPTRON AND MAXIMUM LIKELIHOOD DECISION STRATEGIES

It was ﬁentioﬁed iﬁ Ché?ter 1l that few attempts to compare the
performances of different decision strategies have been repogted in
the literature. I feellthat the following reasons account, at least
in part, for this regrettable fact:

1) Adaptive decision techﬁiques are specifiéallyﬂintended for
situations where incomplete and possibiy unreliable information is
available to the decision takér. Hence if comparison is attempted
using envifonments taken from real life situations, these environments
are unsuiiable for weil—éontrolled experimeﬁts, especially when reason
(2) is considered. 1f, on the other:hand, abstract environments are
used, one runs the very real risk of "favﬁﬁritism"——see (3) and (4).

| 2)‘Wﬁile the emphasis in adaptive machine design is usually on
economical hardware reélization, machines are usually simulated by
digital computer in the expériméntal'sqage." This simulation is father
costly in:terms of computer time.

3) Different decision strategies have different characteristics
which render fair comparison difficult.

4) There is no way of grading or comparing the complexity of
environments except by way of the decision strategies which are to be
evaluated.

At first sight, (3) looks a little out of place since after all,

decision strategies are designed to perform roughly the same tasks.



- 75 -

For me, one of.thé ﬁain benefits .which came from attempting an
experimental comparison of decision strategies was that I was forced
to consider théir différent characteristics in order to make ‘the
comparison fair. This is one of the chief interests of the present
chapter, and will become appareﬁt in the‘following pages. - .
Normally‘when one tests a pgﬁtern—cléssifying machine, it is
the particular feaiures uséd that are under test, ratﬁer than thé
&ecision strategy itself. Such tests are reported fairly well in the
literature, although comparisons of fhe effect of different features
on the same data are rather more difficult to come by. (A nétable
exception to this is provided by Bledsoe & Bisson, 1962; in connection
with this see also Chow, 1963). As meﬁtionedrin Chapter 2, the
performance of different decision strategies will depend critically on
‘ fhe features used; éhus a compa;ison §f decision strategies would be a
gargantuan task if,noranalytic techﬁiques were used. For this reason
thé experiments reported here are inten&ed to illustrate some points
madévin brevious chapters; they are presented to augment the arguments,
not to carry fhem. |
The decision data for thé experiments were specially chosen in

order to investigate the following phenomena:

1) the influencé of threshold siée on convergence time for a
threshold perceptron;

2) the behavioﬁr of a threshbid perceptron in noisy conditions;

3) convergeﬁce time of a maximumrlikelihood classifier using the
independence assumption; |

4) behaviour of a maximum likelihood classifier in noisy conditioms.

(1) evidently requires an enviromment which is linearly separable.
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Moreover, f&r (3),‘£he environment must be such.that .the independence
assumption'is adequate, though not neceséarily valid; To investigate
(2) and (4), éome mechanism for introducing noise in a contréllable
manner is required.

The environment used is illustréted in Figure 7.1. The blank
"don't care" points in the 8 x 8‘two—dimensional matrix are never
presented to the decision machine, but theyrmay be received b& it

because of noise corruption. Features were obtained from any

+4+++++
+ 4+ +
+ +
i
1 1
i

Eigure 7.1
The standard environmeni used in
all experiments.

particular point by a positional binmary encoding of the two
rectangular co-ordinates, giving a 6-component binary feature vector.
A further componént was addeé to each query vector & fo obtain the
augmented query vector ¢': this component was always 1. Using these
features, the two pattérn classes F+ and F are linearly separable.
In addition, the independence assumption, while not valid, was
adequate for discrimination between the classes.

Noise was added to the environment by corrupting the
components of each qﬁery vector with a specified prébability in an

independent manner thus:
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Replace ¢i sy l—¢i with probabilipy p (1 ig 6).
The last component of each augmented query vector was never corrupted,
since its use is merely a notationai trick to simplify writing and
programming. The probability p is referred to as the noise level and
is expressed as a percentage. Thus if the noise level is 10%, the
probability that any particular query vector is not corrupted is
@ - (1/100)° = 0.53 .
Fof all experiments, pointsAin F+ U F were chosen at random.
The process of choosing and corrupting a query vector can be stated as
follows: :
START: Select a point P at randomrfrom the 8 x 8 matrix;
If P is not classified as + or - then go to START;
If P is classified as + then TYPE = +, else TYPE = =~
Compute the uncorrupted binary ¢'-vector from the
co~ordinates of P;
For 1 = 1 step 1 until 6 tﬁen
replace ¢i by l—¢i with probability (noise level/100);
Present the corrupted query vector to the decision strategy
for recognition, together with TYPE.
Figu*e 7.2 shows the relationship between convergence time for
a threshold perceptron and threshold size, when no noise is present.
The vertical axis indicates the number of mistakes made before
convergence was reached. The initial weight vector for the perceptron
was randomly chosen with length 1. All query vectors were normalized
to length 1 before being added to the weight vector. For each
threshold value the perceptron was run ten times, each run being

terminated when convergence was reached. Each run took place with a
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different initial weight vector, and with.the pseudo-random number
generator in a different state (this ensured that the sequence of
points examined was different for each rumn). Figure 7.2 shows the

mean number of mistakes before convergence, plotted against the

Figure 7.2

Convergence time for a threshold perceptron.

threshold, Larger threshold values were not used because of the
amount of coﬁputing time required, but a smaller number of rumns with
thresholds 3 and 4 indicated that the linear relationship continues at
least up to threshold 4. The theoretical upper bound shown is
calculated from the formula obtained imn the proof of the convergence

theorem for the threshold perceptron (Theorem 2):
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1+ 24 +.26

62
The value of § which waé used was .the maximum § found in the
simulation‘rﬁns:

§ = 0.187 .

. The results obtained in‘the simulation are strikingly close to half
the theoretical upper bound--a fqrther 1iﬁe is given‘in Eigure'7.2 to
emphasize this.

In Figure 7.3 the ranges of convergence times are shown for
perceptrons with various thresholds and for the maximum likelihood
(independence assumed) classifier.~ Note that the vertical axis gives
the total number of cycles té convqrgence; and not merely the number
of misclassified points as in Figure 7.2. Ten simulation runs were
made for each method, and the maximum and minimum convergence times
were deleted in an éttempt to eliminate exceptional cases. The range
between tﬁe maximum and ‘minimum of the amended set is shown. The
results are not very reliable--they depend rather critically on the
particular sequence of points used for adaptation.‘ Nevertheless, it
can be seen that the maximum 1ikelihooé classifier can be expected.to
converge in roughly the same length of time és a perceptron with zero
threshold, for this particular environment.

The question of convergence time in nois& conditions now
arises., We provisioﬁally define this to be the time taken for the
adaptive machine to reach a state where it correctly classifies all -
noiselessippints, since clearly the maéhine cannof be expected to
classify all noisy points corréétly. Certain types of decision scheme,

however, improve their performance after theyrréach the stage where
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they cén:cofrectly classify.all.noiseless.points~etﬁe maximum
likelihood gecision‘stra;égy is an e#aﬁple,of fhis. Hence convergence
time as defiﬁed above is not necessarily an indication of the length
of training perioa required for a classification machine if noise is

present.

Figure 7.3

Variations in convergence time for various
pattern classifying methods with a
standard noiseless environment.
In cases where the details of the environment and the noise
statisti@s are known, the optimum performance of a maximum likelihood

classifier (both With and without the independence assumption) can be

calculated, and one useful measure of the length of training period
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required for:ghis type of;deéisi§n s;ra;egy is .the mean‘fime taken to
reach this optimum performancé. This is discussed later.»

For pe;Céptron—like machines, .which do not eventually settle
down to a fairly constant @erfdrmance level, convergence time as
definéd above has little meaﬁing, since the performance méy
detefioratenconsiderébly after the machine has "converged". I can
propose no satisfactory measure of convergence time for perceptron—
like ﬁachiﬁgs in noisy conditions, althquéh clearly the confusing
effect of‘noise means that the higher the noise level the longer the
training period required. Some rather inconclusive experiments were
made to investigate the expected time taken by perceptrons to reach a
sfate which correctly classifies all nOise—freerpoints: it was found
that therfimes takeﬁ on Aifferent oécasions under the same conditioms
varied so much thaé the results were rather meaningless. For these
reasons, the following investigations of fhe perceptron's performance
in noisy conditions were conducted after the perceptron had converged
in conditions of no noise, since experience of £he noisé during
convérgence would not have helped the perceptron.

In‘order to compare the performances of threshold perceptrons
with different thresholds . in noisy conditions, points corrupted by
noise were ignored in the success count for the perceptfon. These
points had an implicit influence on.ﬁhe success counﬁ because
adaptation continued throughéut ;he experiments, and all misclassified
points;—noisy“or not--modified the weiéht vector. Thé effect of the
perceptron's futile attempts to adapt iﬁself to the nbisy points was
sought, and since it cannot be expected to claésify noisy points

correctly (except by chance), the inclusion of these in the frequency
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count would only cloud.the issue. Figure 7.4 shows.the.percentage
misclassification for points .which were uncorrupted by noise, plotted

against threshold values, for various .noise levels.’ As predicted in

Figure 7.4

Success of a threshold perceptron in
noisy conditions.
Chapter 3, misclassification of noise-free points can be almost
completeiy eliminated by using a perceptrom with a threshold of three
or four times the length of the query vectors (the query vectors in
these simulations were normalized to 1qﬁgth 1), provided the noise

level is low. If the noise level is high, in our case greater than
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about 15%, it is.much more difficult.to.eliminaﬁe.thé:perturbing
effect of noise on the weight vector. It.should be pointed.out that
no decision‘strapeg& works well in cdn&itions where a large aﬁount of
noise is present—--one of the purposes of feature extraction is to
reduce the aﬁouﬁt of noise passed,tq the decision é;ége--and so, in
normalﬁconditions, it will be highly béneficial to use a threshold
perceptron ratﬁer than one of the basic variety.

| dne of the adyantages‘of using an artificial environment with
controlled noise is that it is possible to determine the expected
performance of a true maximum likelihood knot assuming independence)
claésifier by exact calculation. To do this, omne firét determines the
machine's correct strategy for classification of eaéh query vector ¢,
using the relation | |

prir® o] = 1 £¢er,0). farerN,
where the sum is takén over all possible vectors %', and
f(@',@j‘ = Prié' is trénsformed toré‘by noise corruption].

%(@';@) can be calculated using the number of un}ike bits of ¢' and 92,
and the noise level. The machine's correct strategy for classifying a
query vector is now known, viz.'choose i such that Pr[F(i?|®] is
greatest. Naturally the "don't‘care" class (blank points in
Figure 7.1) is never chosen, although its probability may be greater
than the others. For low noise levels (up to 40% in fact), the
machine's éorrect strategy differs frém the true dichotomy, as in
Figure 7.1, only in the classification of the "doh;t care" points.
Having determined this optimum claésification, the probability of a

mistake being made can be calculated:
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.Pr[ﬁistakej = % {Pr[¢' .chosen]. 2'£f(¢',¢).
. : ' ltrue élassification of &' # machine's
‘classificatién of &) 5 },
where the summations are takén ovéfré' and ¢ respectively.

Thisrprobability of error is plotted in Figure 7.5 as line E.

W

i $ ‘ &
o 0 2
Figure 7.5
Percentage error for different decision strategies
with varying noise levels.
Line B shows the probability of error if all noise-free points are
classified correctly, but all "don't care" points in Figure 7.1 are

giﬁeh the class opposite to that dictated by the optimal policy. This
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provides an upper bound to.the'number of mistakes made by machines
‘ which corre&tly claésify all noiseless points. A further decisioﬁ
strategy is always to decide the class which has the highest a pribri
probability, without referencg to thé query vector. The percentage of
mistakes made if this str%;egy isrused is unaffected by noise; it is
shown as A in Figure %.5.' |

| Lipeé C and D in Figure 7.5 show the performances achieved
experimeﬁtally by perceptrons with threshol&s 0 an& 4 respectively.
Theéé simulaéions took place under the same conditions as those
reported earlier, except that the percentage probability of any
mistake is‘given, rather than the percentage probab;lity of a mistake
being made bn a point uncorrupted by noise.

Figure 7.6 is a distortion of Figure 7.5 designed to show more
clearly both the relationships between the lines, and the
pefturbations in lines C and ﬁ which give some indication of the
experimental error.‘ it ié obtained as follows: in 100 trials,
decision strategy A (for example) will make A(N) mistakes at noise
léﬁel4N, wﬁere | |

y = A(x)
is the equation of line A ip Figure 7.5, At the same noise level, E,
the optimal strategy, will make E(N) mistakes. Thus there are only
100 - E(N)
trials in which A could péséibly be‘expected to identify the quéry
ve;tor correctly, and of these,
AN) - EQ) |

mistakes occur. Thus
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AN) - E(N)
100 - E(N)

x 100

represents the percentage of needless mistakes made by decision
strategy A. It is this which is plotted as A in Figure 7.6, and
similarly for B, C, and D. The line obtained from E evidently

coincides with the horizontal axis, as shown.

M

0 40

20
NOISE LEVEL

Figure 7.6
Needless errors as a percentage of points that
could have been classified correctly, for
different decision strategies.
One can deduce from Figure 7.6 that if the noise level is
greater than about 27%, a perceptron with zero threshold performs so

badly that the chance of error is reduced by ignoring the query

vectors and always deciding the class whose a priori probability is
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greatest, - Althqugh,this,result.qvidehtly depends on.the particular
. environmeﬁt ﬁsed, it indicatesrrather‘Strikingly just how badly
standard pe?ceptrons behave in noisy éonditions. The. vast. improvement
in performgnce which results from using a perceptron with a threshold
of about 4 is also apparent. :

| So far no mention has been ma&e of the performance of the
usual maximum likelihood decision stfategy in noisy conditioms.
Although the envirénment was chosen so that the independence
éssumption was adequate fdrrdiscrimination between the noilseless
pattern  -classes, the assumption is not in fact valid for this
environméﬁt. It was thouéht that this would detract considerably from
the performance of the usualrmaximum likelihood strategy in noisy
conditions; however, this was not so. |

It is possible to célcﬁlate the expected error for the usual
maximum likelihood strategy in a manner similar to that described for
the true ﬁaximum likelihood strategy. it was found that the difference
in perfoémaﬁée‘resulting'from assuming independence was less than 0.2%,
for all.nQise levels between éero‘and 35%. Thus an errér curve for
the maximum likeliﬁood strategy with independence assumed would be
almost indistinguisﬁable from E in Figures 7.5 and 7.6;

Since probability estimation is a stable process, a practical
machine embodying a maximum likelihood decision (independence assumed)
wili reach within an arbitrary latitude of ﬁhe above expected
performance level, given sufficient training time. It was found
experimentally that after 706 training cycles, the error probability
was within 0.8% of that indicated above; that is, a line in Figure 7.5

indicating the performance attained experimentally by a maximum
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likelihood.classifier with -700. training cycles would lie less than one
vertical unit above E.

Thus there is no doubt that for.the environment shown in
Figu?e 7.1, a maximum 1ikelihoo§ strategy is superior to all
perceptron-like s;rapegies that have been considered, whether oxr not
néise is preseht. It would be interesting to know if adequacy of the
independence assumption for discrimination between the noiseless
pattern classes guarantees near—optimal performance for the usual
maximum likelihood strategy in noisy conditions, or whether the
phemonemon occured here because of a lucky choice of environment. As

far as I am aware, no investigation of this question has been reported.
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.Chapter 8
STeLLA~LIKE DECISION TECHNIQUES

8.1 Introduction.

We have seen that neitherrthe perceptron nor the maximum
'likeiihood (with the independence assumption) decision strategy can be
described as a general purpose classification éechnique. Each behaves
unsatisfactorily in some kinds of environment, but is very competent
under certain circumstances: the perceptron strategy guarantees
discrimination between patterns provided they are linearly separable
but does not work well in noisy conditions, whereas the independence
assumption, so vital to the implementation of the maximum likelihood
decision strategy in any practical situation, almost never holds and
is very often violaﬁed flggrantly enough to ruin the classification.
If, however, the independence assumption is valid then the maximum
likelihood decision strétegy is optimal, even in noisy conditioms.
This chapter 1s devoted to a discussion of a compromise’

decision strategy, one which combinés”the characteristics of the
perceptron and maximum likelihood schemes. If W% is such that

Wk, o > § for all ®8F+,

W#.96 < ~§ for all @sF—;
and if X is a vector with

x| < 8/a,
where g iévthe maximum size of the query vectors ¢; then
.|2]

> 8 - (8/a).0 = 0 for all oeF',

(W + X).0 > 6 - |X
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and similarly,
(W* + X).¢ < 0 for.all oeF ;

so (W* + X) aléo‘discriminates between .the pattern classes. Among
these vectors which discriminate between the classes, some must behave
better than others in noisy situations. The perceptron strategy is
content with any vector wﬁich discriminates between the pattern
classes: the decision gtrategy discussed here attempts to find a
discriminating vector which gives good behaviour in noisy conditioms.
The strategy we will consider is derived from STelLLA, a learning
machine whose rules were chosen on an empirical basis. It is
remarkable. how such rules give rise to a decision scheme with the very
characteristics we seek.,

STeLLA is a general purpose learning machine, described by
Andreae (1964, 1969) and Gaines & Andreae (1966). She sees her
environment at any one time as a binafy‘input pattern, and selects one
of a spegified set of actions. The téking of this action changes the
state of the environment, and the new state is reflected in a new
input pattern which is presented to STeLLA. Thus by .selecting various
actions and observing the input patterns she attempts t§ build an
internal model of her environment.- Some input patterns are considered
to be desirable states and this is communicated to STeLLA by a reward
system. Her goal is to get reward as often as possible. The control
policy is responsible for choosing the best sequence of actions with
respect to the goal, and it calls on a neutral predictor for aid. The
predictor is that part of the machine which models the behaviour of
the environment, independently of rewarded states; while the control

policy models the environment as it relates to goal achievement.
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Adaptive decision procedures occur in several places in éTeLLA,
and the details of adaptétion vary according to the purpoéel. Because
of this, it was decided to treat the problem in as general a manner as
possibie. The.discriminatory functions described below are
representative of the various forms of discriminatory fumction which
STeLLA uses, and the form of the a@aptive rules given is designed so
that every set of rules used by her can be considered as a special
case. To facilitate this, the quantitative amounts of adaptation are
left unspe;ified as far as possible. The resulting model is a flexible
tool for theoretical and experimental investigation of adaptive
pattern recognition techniqueé, and I shall refer to it in all that
follows as the STeLLA method, or some such term. Unfortunately the
STeLLA method sacrifices elegance for generality. We have seen how
the perceptron and maximum likelihood decision strategies are embedded
in a precise mathematical framework: I have not been able to build
such a mathematical edifice for STeLLA-like strategies, although a few

bricks appear here and there in the following pages. Hence this

lFor example, the predictor in more recent versions models the
environment by partitioning the input patterns into sets called
elumps, and examining the effect, in terms of reaching other
clumps, of each action at each clump. The association of input
patterns with clumps is accomplished using adaptive pattern
classification techniques. A predicted clump is used to
determine the next prediction, and, sihce there are two rein-
forcable steps here, the reinforcement is spread over the two
moves, . A further complication arises from the fact that both
clumps and elements of the control policy are competitive in
the sense that the total number of each is strictly limited.
This means that unused or infrequently used clumps or policy
elements will be forced out of existence to make way for new
ones, and the adaptation procedures used are tailored
accordingly. Unfortunately most of these details of STeLLA's
operation are unpublished.
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Chapter takes on a rather vague and imppecise.gﬁaracter iﬁ parts, and
most solid theoretigal résults are applicable only to‘certain special
cases of the decision strategy. |

We consider'fﬁe case where just two pattern classés, F+ and F ,
are pfeéent;Athe‘results and methods generalize easily to multi-class
cases: Thg discussion is restricted to quéry #ectofs with-binary
components——és indeed is STeLLA. The query vectors are assumed to
contain a completely redundant component so that the augmented query
vectors &' are not needed. To each pattern class is assigned a
prototype:“a query vector, generally contained in the ciass, which is
assumed to be representative of that class. The prototype of class F+
is denoted by P+, and similarly for F . Each binary component of the
prototype has an associated pattern digit weight (PDW) which
represents the danger of overlooking a disparity between the k'th bit
of.a quer& vector ¢ and the prototype's k'th component, whén assigning
9 to the pattern class associated with that prototype. PDW's are
constrainédtto lie in the interval [0,1], even if one of the

adaptation rules below attempts to take the PDW out of the range.

8.2 The discriminatory functions.
The discriminatory functions used by the STeLLA method are
@) = 1 (1 - pl“:)(q‘kﬂ’?
and similarly for f—, where the pk's (1 £ k < n, where n is the
dimensionality of ®) are the appropriate PDW's. This function takes
into account the dissimilarities of the prototype and the query vector.
Its value isrl if the query wvector is ekactly the same as the

prototype. If differences exist the function takes a value less than
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1, the value being smaller if many unlike components exist,or:if,the
‘unlike componentsrare important ones.

There are ‘two ways of interpreting these discriminatory
functions heuristically, corresponding to éituations in .which the
maximum likelihood strategy works well and situations in which the
perceptron strategy workg WEll; In eacﬁ case, the prototype P+ is
considered to be a typical member of the class F+.

Firstly, suppose the clasé F+ consists of only oﬁe element
whose components may be corrupted by noise in an independent manner.
This element shall be chosen for the prototype. Let us take our null
hypothesis to be that the query vector ¢ belongs to F+. Evidence
against this hypothesis is provided by the bits of & unlike the
corresponding bit of P+, and these represent features which were
obscured by noise., In this case we interpret

p; = ?r[feature k is not obscured by noise],
and this ié certainly a measure of the danger of overlooking a
disparity of the k'th bit of & when assigning ¢ to the class F+.

The second interpretation of the discriminatory function
concerns cases where there is no noise present but the class F&
consists of many members. We describe it by means of an example:
Suppose

PY = 1111 (a=4),
and the query vector
% = 1001
is presentéd. Since the PDW's represent the danger of neglecting the

digit, we can write
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pI = Pr[011l £ ¥'1,

p; = Pr[101l £ F'1,

ph = Pr[1101 ¢ Fl,

p: = Pr[1110 £ F'1.
Hence

£7(1001) = Pr[1011 ¢ ¥'1.Pr[1101 ¢ ¥ 1.
Since we know that

Pt = 1111 ¢ F,
the discriminatory function can be interpreted as a measure of our
confidence thét

1001 € F',
provided that the enviromment is "continuoué" (to some degree), that
is, provided that 7

111 e 7, 1011¢ ¥, 1l0Le BT
provides evidence for the proposition

1001 ¢ F*.
It is sugpgested that this requirement of envirommental continuity
explains why helpful coding schemes, discussea in Chapter 6, are
especially important for STeLLA-like decisions, although fhey-would
probably help most maximum likelihood schemes as well (Andreae, 1969;
Gaines & Andreae, 1966).

These two heuristic interpretations, while admittedly vague
and rather unsatisfacﬁory, illustrate the compromise which was made in
STeLLA between the maximum likelihood and perceptron decision
procedures. As we have seen, the maximum likelihood decision is

linear if binary features are used, and could in principle be used

with "compromise" adaptation rules like those described below.
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However;.this is difficult in practice.because .the linear form of this
decision is réther iﬁvolved, and .the omission of query vector
components which are like the corresponding profotype components from
the discriminatory functions, as above, reduces the "comprqmise"

- adaptation rules from an interesting theoretical possibility to a
practical proposition. Obtaining'practical‘approximations to ideal

schemes is, after all, one of the main themes of this thesis.

8.3 Qualitative aspects of the adaptation procedure.

Although facilities exist in STeLLA for generating and
adapting prototypes, they will not be discussed here. Our concern is
with the generalized adaptation process for PDW's. This is governed
qualitatively by the rules below,'whiéh are suggested by common sense.
If a query vector ¢6F+ is found with

4 £,

f+(¢) < e
where d is a non—negagive constantz, so that ed > 1 (the
exponentiation:is used for later conﬁenience), then & is incorrectly
assigned to class F (or rather ¢ is not assigned to class F+ with
sufficient confidence), and the adaptation rules are:

decrease PDW's of P corresponding to ®-components unlike P+ (8.1)

increase PDW's of P~ corresponding to ¢-components unlike P (8.2)
1If ¢8F+ is such that

£ @) > dE (@,

+
then @ is correctly assigned to class F , and the rules are:

21n the STeLLA machine, this threshold was always taken to be

zero, It is introduced here for generality.
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decrease PDW's of Pf.co;responding.to ®-components unlike pt (8.3)

incregse.fDW's of P+ corresponding to $-components like P+‘ (8.4)
Similar rules are‘gsedrfor query vectors in F—'(chqnge all +'s to -'s,
ana vice versa, in the above). Rules (8.2) and (8.3) alone were qsed
in the adaétation of STeLLA's control policy elements.

'Ruiés (8.1) and (8.2) are used when the query vector & is
either misclassified or correctly glassified by only a small margin.‘
Only PDW's corfespondiﬁg to‘é-components unlike the respective
prototype bits are adjusted since only these PDW's, affect the
categorization of ®. Rule (8.1) increases f+(¢); rule (8.2) decreases
£ (9). Rules (8.3) and (8.4) come into play only if the query vector
® is correctly classified. Rule (8.3) generalizes on the basis of the
justifiably ignored ¢-components, and incidentally strengthens the
association of ¢ with E+. Rule (8.4) is intended to balance the
effects of (8.3) and prevent the PDW's from conséantiy decreasing if
no mistakes afe made. Note that these last rules‘involve only the
pattern qlass whichrcontains $: in a sense the effect of the
adaptation is local if the query veétor'is correctly classified (by a
sufficiently iarge margin), whereas for incorrect classifications the
rules have a global effect--they alter the values of some PDW's of all
the pattern classes. This also accordsryith common sense, for the
effect of the adaptation‘should be rather more drastic when miétakes
are being made than when the maéhine~is functioning correctly, when
delicate adjustments are‘required in order to improve but not disturb
the balance of weights. |

The quantitative amounts of adaptation used in the STeLLA

method are governed by the increment/decrement functions; these have
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as their only argument .the PDW currently under consideration. For
reasons mentioned earlier, we shall .deal with the .rules iﬁ terms,df
general increment/decrement functions as far as possible, .but shall
rapidly be forced to specialize in many ways since the‘STeLLA method
is mathematically rather int;actable. It is as well to mention here
that the problem of instability can occur; for example thé machine,
when startéd in a correctly discriminating state, may run away and end
up in a situation where all PDW's are constantly bouncing‘off their
lower bound. This cannot happen with the perceptron (érovided its
environment is noiseless and linearly separable) since the convergence
theorem guarantees that a discriminating weight vector will be found
and no adaptation takes piace after such a vector is found; nor cam it
happen with the maximum likelihoq&‘decision (provided that the query
vectors are reasonably representative) éince the probability
estimatioﬁ procedures discussed earlier force the probabilistic
weights to settle down eventually. Both these procedures; when
started in a "cor?eét" staée, will retain this, with minor variations
in the case of the m;ximum likelihood decision, indefinitely in the
absence 6f noise. For STeLLA-like decisions, however, this is not
necessarily true: stability depends on the exact form of the
incremen£/decrement functions used. It is possible that instability
could bé enﬁironment—depéndent——althqugh«I consider this to be rather
unlikely for ﬁon—éathological environments--and if so, to suggest that
any particular increment/decreﬁent‘functions‘are "the best' or even
"fairly gobd" would be rather presumptious. Whenever increment/

decrement functions are suggested below, they are intended as

plausiple specializations whose purpose is to give a lower bound to
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the power and versatility .of.the STeLLA .method.

The incremént/decrement .functions are denoted as follows:

A,
. for rules (8.1) and (8.2),
A 4(x)
A, ()

for rules (8.3) and (8.4);
44(x)

where the‘argument x is the PDW currently under consideration
© 2xg 1). We use the convention that the decrement functions are
such that
Ad(x) i 0, Zd(x) <0 for all x (0 £ x £ 1);
so that a decrement is added to the PDW, rather than an increment

being subtracted.

8.4 Perceptron-like behaviour of the STeLLA strategy.

Any query vector ¢ is assigned to class f+ or F_ according as

+ - -
+ (gt — (g 4P
I (1-p) $FPk 2 T (1-p) WP
i.e. accoxding as
2 (o #210g(1 - p1) - (¢ #P7).1og(1 - p)} > O
¥k & k k' Tk k :

<

Unfortunately this decision is not, in general, linear in ¢, It can,
however, be made linear by assuming that |

P; = P; =0 (or 1) for all k (1 Skg n); R -9
suitable rules for prototype adaptation will ensure that if a linear
dichotomy is required, this condition is eventually satisfied. Note
that prototypes which satisfy (A) cannot be comsidered to be
representative of their respective ciasses. The somewhat hopeful

assumption is made that since non~representative prototypes are, in a

sense, "unfair" to the decision strategy, better performance will be
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obtained without restriction.(4d), sq.that by using this assumption we
run the risk of underestimating rather.than.overestimating.the power
of the decision strategy.

The process of adaptation to successfully classified query
vectors (rules (8.3) and (8.4)) is now considered to be suspended for
the time being, so that we can concentrate on the machine's attempts
to improve itself when confronted with query vectors which it
classifies incorrectly (or which it classifies correctly but only by a
small margin). For reference purposes this is called assumption (B).
We also assume that there ‘are no attempts to make out—of-range
adaptations (C).

The discriminatory functions are now

+ +
£(0) =1 (1 - Pk)q)k ;
and ¢ is assigned to F-*T or F -according as
L ¢ W 20,
where
W, = log(l - pr) - log(l - p) .
k k : k
The adaptation rules are as follows:
Suppose a query vector ¢3F+ is encountered with
+ d -
n@-phtk < e - ppfk
k k
i.e. with
L g W < d . ' S “ . ... (8.5)
+ - +! -1
Then Py and p, are changed to Py and Py respectively, where
+! +, 7+
Py by + AR (3,710,

1

A (o). (g =1
Py P T A, (R "o =10

Now
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i

log(l - x - A(x))

R

‘1og(l - x) - Ax)/(L-x),
provided

iA(k)‘&#ll ;'xl;. L

log(l - x) + logll - AGK)/(1-x)}

(D)

We consider for the moment only increment/decrement functions which

satisfy (D)3 it is shown later that this condition can be relaxed.

Now'

=
i

A 4! ]
e log(l - p. ) =~ Zlog(l-p )

Azd(P;) ) by (2)

}.f¢k=1‘ .

o +
l—pk l-—pk

It is clear that.the following increment/decrement functions will

simplify the problem‘cohsiderably:
CA ) = p(l-x) = -0 (x)

for some constant pu. Using these functions,

W= W +‘éu (. =1) ;
k k Tk ?
so W' =W+ 2ud,
Similarly, if ¢eF and
| Aod o .-
e . (1~ pk)q?k > (1 - pk)¢k >
then |
‘W' = W - 2ud.

Combining (8;5), (8.6), (8.7); and writing

¢t = {2us|eeF'},
G =‘{2u¢|®eF_};

we can write the adaptation rules in this restricted case in

of a program:

e o (E)

. . (8.6)

.. (8.7)

the form
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TEST:‘ Choose ?e‘G+‘U G_;
If YeG" and W.¥<2ud then replace W by WHY;
If YeG and W.W>—é;d then replace W by W;Y;
Go to TEST.
This is exactly the procedure used by a perceptron with threshold 2ud.
Hence we can apply Theorem 2, using as upper limit for fhe length of
query veétors‘
o=2wa >|¥| forall¥ec UG,
where n is the dimensionality of the query vectors 9:
If there exists a unit n-vector W¥* and some 6>0 with

e F' {¢|®3F+} U {~-2|¢eF } implies W#.®& > &,

]

so that

¥ e G

{2u¢|®eF'} implies W#.Y > 2ud;
then if W is initially chosen to be an n-vector of length A, the above
program will change W at most

4u2n + 4ud + 4Aud pn + d + AS
p262 2

4 ué
times.
Thus a STeLLA-like pattern classifier behaves like a threshold

perceptron if

4) P; = P; =0 forallk (Lgkg n);

B) no adaptations are made for correctly classified (by a large
enough margin) query vectors;

C) there are no attempts to make out~of-range adaptations;

D) u << 1, so that the approximations in the expaﬁsions of

log(l = n) arehvalid;
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E) the functions Ai and Ad have .the form givén.

Theorem 4 (see Appendix .A) was begun in an attempt to generalize

restriction (E): wupper and lower bounds were sought for the function
A, (x) | a,(3)

&) - Logz- L
1-x 1-vy

n(x,y) = Llog(l - )

so that the theorem would remain true. It was found, however, that it
was necessary to assume that the upper and lower bounds were rather
close together; the allowable latitude depended on § in such a way
that the bounds must actually be .equal if the theorem was to hold for
all linearly separable environments. Thus

n(x,y) = constant, |
so if p; and p; vary independently, which they can do if rules (8.3)
and (8.4) are:brought back, then the increment/decrement functions
must be c¢f the form (E).V This does not of course prove that the
increment /decrement functions necessarily have the form (E), it merely
shows that I was unable to prove the convergence theorem without this
assumption., I cgnjecture, however, that it is indeed true that the
convergenbe'theorem holds in general only if (E) is assumed, but I
have not been able to prove thié..

Two interesting corollories come out of Theorem 4: firstly
that restriction (D) is not necessary, and secondly that if the
components of the discriminating weight vector Wk are all positive
then the only condition that need be“placed on n is

‘nx,y) > 0 for all x,y.
This condition is always true if the increment/decreﬁent functions
satisfy

Ai(x) > 03 Zd(x) < 0 for all x.
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8.5 Use of the increment/decrément functions for probability
estimatioa. | |

Iﬁ order to consider .the behaviqur of the STeLlA pattern
classification method for classifications which are correct (by a
large enough margin), we can dispense with all the restrictions used
above: all that is assumed is that rules (8.1) and (8.2) are never
applied. The difficulty here is not the mathematical intractability
of the general problem that troubled us in the last few pages; rather
it is the vagueness of the probabilistic interpretation of the PDW's.
It shall be assumed in the following that the PDWfs are required to
estimate -

Pr[¢k=P;|<1>eF+], |
but it is clear that many éIternative strategies could be adopted, and
as usual the increment/decrement functions givenAbelow are intended as
examples rather than as recommendations.

Let us write‘ﬁz(t) for the value of the k'th PDW of class F+
at time t: &suppose that rules (8.1) and (8.2) are never applied at
times t > O. If & is correctly identified in'f‘+ (by a sufficiently
large mazgin) at time t, then according. to the increment/decrement
rules, _

SRRy = ph(o) + A, @HE). (4T + 8. ()
Let p = Pr[¢ka;|®sF#];, q=1-p.
Suppose
+, ..
P, (t7 = P,
i.e. the value of ﬁ; at time t equals the quantity which ﬁ; is required

+
to estimate. Then the expected value (over all @'s) of pk(t+l) should
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be.the same; namely p. Hence

il

p = E[p,(cHD] = pj(t) + A, (P (D)) + q.b (5 (£))

P+ pd (p) + q.8,(p) 3

where E denotes statistical expectation. (This is not strictly true.
The expectation should be taken over all ¢ such that

I (1 ) p;) %ﬁ?ﬂ‘ S | Q- p:) "t
rather than over all ¢ such that

¢6F+
as above. It is assumed that the discrepancy between these will make
very little difference, especially if d is small, and this point is
igﬁored in the following. Note however that the discrepancy exists
even for 4=0, if the machine is not in a correctly discriminating
state.) Hence the increment/decrement functions must satisfy

P, () = ~(1-B).A, (@) -

Consider the functionsi

Ai(x) v (l-x); : . . . . (8.8)
Ad(x) = =y ,X}
where v is a positive constant with v<l. These give us no trouble

with attempts to make out~of-range adaptations, for

0

A

¥ <1 dimplies

v(i—x) = v + %(I—v) <v+l-vs= 1;

+

b3
and x - vx = (1-v)x > 0;
since

v < 1.
Using these functions,

ph(er) = pi(e) + v(L - pp(e)). (0B - vp (e Fo )
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o, (l-v).p;(t) + v  with probability p,
so pk(t+l) = ‘

(l—v).p;(t) with probability q.
This is an EWPA formula (see Chapter 5), and so
Blp ()] = p(L - (-0 + @-»E.pr(0) ,
Varlp, ()] = p(l-p)(L - (1-)2%).v/(2v) ;

and the limiting expectation and variance of p;(t) for large t are
p and p(l-p).v/(2-v) 7
respectively. Hence these increment/decrement functions ensure that
if all classifications are correct (by a gufficieﬁtly large margin),
then the expected value of the k'th PDW of class F+ approaches
Pr[¢k=PZ|®aF+]; 7
and its variance can be made as small as we please by choosing a small

enough v,

8.6 Discussion.

Both the probabilistic and the perceptroﬁ4like aspects of the
STeLLA decision strategy have noﬁ been investigated to a limited
extent. I have found no way of systeﬁatically investigating  the
combined effect of both, but the following remarks give a qualitative
picture of what should happen.

Unless the PDW's are specially chosen initially, most
classifications will be inﬁorrect at first, and rules (8.1) and (8.2)
will be used most of the time. This period of perceptron-~like
behaviour can be prolonged by inéréasing the threshold d, but too
large a tnreshold may stall tbe learning pr&cedure. For, if d is

large then the size of the final weight vector must be large (see
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Chapter 3), and hence some components of .the final inght vector must

be large in size. This means that

1 —;p:

log —

1- Py

is large, and so
.
1 - Py
1 - p;

is either large or small, for some k. Hence the PDW's take values at
or near the ends of their ranges. Now if the increment/decrement
functions are like those in (E), it is inevitable that the PDW's will
make contiﬁuai frust?ated attempts to adapt out of range, causing
erratic and perhaps seemingly irrationél behaviour. But if the
increment/decrement functions are like those in (8.8), which by their
very nature cannot. attempt out-of-range adaptations, the changes made
in the PDW's will be very.small if the latter are near the ends of
their ranges. This in itself may stall the learning procedure.

After the initial period of frequent misclassifications is
over, but before the machine has converged to a correctly
discriminatiné state, both sets of rules will be used fairly often.
This invalidates the convergence theorem beéause the intervention of
ruleé (8.3) and (8.45 coﬁld nullify the converging effects of rules
(8.1) and‘(8.2). This seems unlikely, though, if rules (8.3) and (8.4)
are well chosen, since both sets‘of rules are designed to achieve the
same endj(improving the performance of the machine) and it is probable
that they will help rather than hinder each other. This of course

depends on the exact form of the increment/decrement functions.
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In the final stages of 1earning,.rules (8.3) and (8.4) will be
used most often in an attempt to.refine.the machine's discrimination.
No matter how well these rules work, it is inevitable.that in a long
sequence of correct classifica;ionsithe PDW's will wander away from
theirx optimum positions (provided that the patterns are nét presented

in a systematic order), unless the funmctions Ai and A, are identically

d
zero. Hence rules (8.1) and (8.2) must be invoked sometimes during
this stage, and the purpose of the threshold d is to prevent
misclassifications occurring while these ruleé put the machine back on
the right track. |

The above arguments can hardly be called watertight or
indisputable, and are natural targets for criticism in the form of
counter—examples. It is possible that the éTéLLA strategy, in
attempting to combine the advantages of the perceptron and maximum
likelihood methods, in fact turns out to combine their disadvantages
instead. One cannot point to STeLLA for confirmation and say "she
works"--she does, but it is difficult to isolate the success of just
the pattern classification part, for it forms only a small sub-section
of a ratber complex machine. Further mathematical and experimental
investigation of this pattern—classificafion techniqﬁe is required,
and becausefof the many variables involved this could form a complete
research topic. It was for this reason that the STeLLA technique was

not simulated, as were the perceptron and maximum likelihood decision

schemes.
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Chapter 9
CONCLUSION

, The pfincipal goal of this work has been thé develépment of an
understéndiné of the characteristiés of the perceptron and magimum
iikelihood decisioﬁ strategies. We shall discuss here the'results of
the investigation for each method in furn. -

The perceptron was found to behave perfectly provided the
conditions ére favourable, that is, pr§vided the environment is
noiseless and linearly separable (note that this is not true of the
maximum jikelihood decision strategy if independence is incorrectly
assumed) . It was found experimentally that, for the environment used,
the mean number of mistakes made dﬁring training was approximately
half the smallest upper bound obtainable from the- perceptron
convergence theorem. Since a lower bound to the number of mistakes
made is zero (the arbitrarily chosen initial weight vector may itself
discriﬁinate between the pattern classes), the mean nﬁmber of mistakes
to convgrgenée found experimentally wés the same as the mean of the
upper and lower bounds for this quantity. Unfortunately a
discriminéting weight vector must be knéwn before the upper bound can
be calculated; nevertheless the very existence of this bound--even
though it may not be known——iust surely provide some comfort to
trainers of perceptrons. |

In nois& conditions, tﬁe perceptron tends to be misled by i

query vectors which are unavoidably misclassified. This is basicaliy

. |
because the perceptron is sensitive to the outer bounds of the "clouds"
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repregenting.t%e pattefn classes in feature spaée, rathe: than to the
centres of gravity of these clduds. After some deliberation, a variant
of the pe}ceptron;:which I called.the "threshold perceptron", was
 defined. ‘Heﬁristig arguments were used to show that this appears to
have a bettér chance of béhaving well in noisy conditions than the
standard perceptron, especiélly when the noise level is low, and this
was confirmed by e#pe;iment.‘ As predicted, the beﬁaviour of the
threshold perceptrén deteriorated rapidlyras the noise level increased.
This deterioration can be partially restrained by increasing the
threshold, but additional cost is entailed here since convergence time
increasésﬁlinearly with threshold size. ”

The second adaptive decision strategy investigated, the
maximum likelihood method, is optimal (in a précise senge) under all
conditioné, but unfortunately its implementation is impractical unless
restrictive'assumptions-about‘statistiéél independence of features are
made. This prompted an examination of éituations for which the
independence assumpgion is valid, and it was found that the assumption
holds only for a greatly restricted class of environments. It is
clear, however, that adequacy rather than validity of the assumption
is the key factor here. This opéns a new field for investigation
which is hardly touched upon in this thesis. I feel that some theory
of adequacy of the assumption would prove extreﬁely usefu; to
designers of practical machines, The main difficulty thét such a
theory would have to face is that:adequécy is goal dependent--adequaﬁe
for what?--whereas validity can be investigated without consideration
of goals. One surprising result that came out of the experimental

work is that for the environment used, adequacy of the assumption for
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the noiseless pattern classes ensured.adequacy (or near—adequacy--there
was a small error raté)\when independent noise waé added.
The work on the independence assumption showed that if a
pattern classification situation is such that
1) the features used are binary (in fact this restriction is not
necessary),
2) the independence assumption is valid,
3) the pattern classes are separated in hyperspace;
then one might as well forget weighted decisions and use exact
matching procedures based on the features indicated as important.
(This is equivalent to a STeLLA-like decision with binary weights.)
If most of the features are important for all of the classes, then an
efficient way of implementing this decision is to store a
representative query vector for each class, and use as discriminatory
functions the negative of the Hamming distance between the query
vector and the stored representatives. This is in fact a voting
schemel, and I suggest Fhat this accounts for the fact that voting
schemes have often préved as successful as weighted decisions (see
Chapter 1).
The gap betweén adequacy and validity of the independence
~assumption is particularly striking here. If we replace condition (2)
above by

2) the independence assumption is assumed to be adequate,

lVoting schemes can be similarly defined for non-binary
features: instead of the Hamming distance one uses the number
of query vector components whose value is different from the
corresponding component of the stored representative. Bobrow
& Klatt (1968) provide a practical example of this. The
arguments given are easily modilified to cover this case.
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then Irhave not shown, and indeed I do not believe, that a voting
schemé is as‘powerful asﬂthe resulting maximum likelihood (independence
assumed) decision strategy. ~ A.theory of adequacy of the aésumption
would enable us not to close this gap but at least to chart it.

The‘sécbndary objective df this resgarch Qas to prgvide a
basis for theoretical investigation of thertwo main decision
strategies with a view to .combining their virtues. Such a basis was
found in the SfeLLA method, a decision scheme which combines the
various strategies ﬁhich exist in the learning machine STeLLA. It was
found that an appropriate specialization of the STeLLA strategy is
almost equivalent to the threshold perceptron method. Amother version
of the STeLLA strategy can be shown to behave in a manner similar to
the maximum likelihood (independence assumed) method. It is not
possible fo find arversion‘which beh;ves in exactly the same manner as
the maximum likelihood strategy because it was found necessary to use
somewhat simplified discriminatory functioms. Further investigation
of the STelLLA method was not undertaken because of the enormity ofrthe
problem, but I feel tﬁat this may prove to be a fruitful topic for
both theorgtical and‘experimental investigation.

ﬁowever, although this thesis has been conéerned with some
very basic adaptive decision mechanisms, for reasons given in Chapter
1, it would be wrong td omit mention of several more advanced topics,
apart frém the few mentioned above, which are of vital importance to
designers of practical decision ﬁachines.

Géneral ways of impleménting non-linear decisions have long
been sought. The inclusion of logical combihations of features as new

features has been used fairly successfully (see for example Uhr &
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* Vossler, 1963), but.the number of possible combinations isnextremely
large; especially if more.than pairwise iﬁteractions are envisaged.
One compromise method is éroposed by Samuel (1967). Another way of
realizing a general non-linear decision is to use layered machines
T(Niléson, 1965). TThese consist of hieré£chies of linear decision
machines, the outpuﬁ of one layer being used as input to'the>ﬂext. In
view of the proven effectiveness of hierarchical solutionsrto problems
in artificial intelligence generally, layered machines seem worthy of
detailed invegtigation. One difficulty is the problem of deciding
which part of a complex machine is to be Jrewarded" (reinforced) for a
correct degision——the "eredit assignment problem". Very little is
known about layered ﬁachiﬁes; theronly operational example I can‘give
is Widrow's ﬁMadaline"v(1962, 1963).

A further topic relevant to adaptive decision strategies is
the feature selection problem. At présent, feature selection is
usually undertéken by the designer of the machine. it is concéivable,
however, that the decision strategy could provide soﬁe assistance here
by evaluating the usefulness (to the decision) of each feature,”and
perhaps generating new features comprising logical combinations §r
random mutations of useful features. Uhr & Vossler's machine (1963)
attempts this in a primitive manner. Some theoretical wo;k has been
done on the probiem of feature'evaluation and selection by Lewis (1962)
and Kamentéky & Liu (1963).

As decision maéhines become mo?e compliéated; the problem of
instabiiiéy will ariée. Tﬁis has already been méntioned iﬁ“connection
with both bootstrapping machines (Chapter 2) and the STeLLA method

(Chapter 8). It seems. highly prébablé,that it will occur to a much
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~ greater extent in layered maChineg. Ihre Pohl contends that there is
an optimum amount of information storage ability for learning machines,
above which they begin to break down (as far as I know, .this is

unpublished)., This appears to be an interesting topid for research.
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Appendix A
PROOFS OF THEOREMS QUOTED IN THE TEXT

Theorem 1: The convergence theorem for a perceptron whose weight

vector is of a given initial length.

This simple extension of the convergence theorem is given here
for‘completéness. The result is directly applicable to the two class
case and generalizes easily if there are more than two pattern classes,
as shown by Minsky & Papert (1969).

THEOREM 1.
Let F be a set of real n-vectors with
¢eF implies |o| < o.
Suppose there exists a unit n-vector W* and some §>0 with
®eF dmplies W*,9>8.,
Then if W i1s initially chosen to be an n-vector of length A, the
program
TEST: Choose Q¢eF;
If W.220 then assign W+2 to W;
Go to TEST;
will change W at most (az +‘2A6)/62 times.
Proof. Define
GN) = W < 1.
Consider the behaviour of G(W) on successive performances of the
assignment statement.

Wt+l t+l

ety = we.wt T = we Wt + o)/ Wt + of.

Now We, (W° + @) > W.W° + &;
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so after the m'th execution of the assignment statement,
we, (0 +'0) > ms - AL

Also,

IWt + @lz Ay |Wt|2E+ az, since Wt.QEO;
so |Wml2‘: mo? fV}Z.

Hence

1> c™ '; @S - )/ (mo? + 12,

mo~ + A2 ;‘mz 2

- 228m + A2,

NIV

é

so m < (a2'+ 216)/62.
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Theorem‘Z. The convergence theorem for 'a threshold perceptron.

THEOREM 2.
Lef F be a set qf real n—vectorsrwith
deF iﬁplies ‘Ql‘érd._
Suppose there exists a unit n-vector W# and some §>0 with
oeF dmplies W#,9>8.
Then if W is initially chosen to be an n-vector of length A, the
prograﬁ
TEST: Choose 9¢F;
If W.%<d then assign W@ to W;
Go to TEST;
will change W at most (az + 2d +.2A6)/62 times for amy d 2 0.
Proof. Using the same notation as in the previous fheorem, we find

Trl*.(Wm-'1 + @) >mé = A as before,

but |W®)2 < m@@? + 2d) + 2% since WE.e __<;&.
Hence 7 .
126G 2 @ - )\)/(m(a + 2d) + A )1/2
< (0% +2a + 2;\6)/5 .

SO m
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Eercegtron.

The quoted result concerning the length of the final weight

vector of a perceptron-whose initial weight vector is comstrained to a

certain size is proved here.

THEOREM 3.

If the weight vector of a perceptron is set initially to length X and

allowed to vary according to the usual perceptron adaptation procedure,

then for any €>0 there exists a non-trivial environment for which the

final weight vector Wt satisfies

thl <1+e¢,

provided an unlucky choice is made for the initial weight vector.

Proof. Lét F consist of unit vectors clustered around some vector

o*cF, i.e.
¢eF Jmplies ¢%.,¢ > 1 - 8, for some small 9.
Let the initial choice of W be

W = —agk,

Denote the weight vector after the k'th mistake has been made during

training‘by Wk; 1et‘Wt be the fipal weight vector.
Then |

wk’= @k +‘Wk"l (t>2k2>1), where‘@kéF.
Hence
@+t a4 aly.es
[+ . L L+ oh

>£Q'_-_—el=l_.e.

t

'(I)* ==

Now (Wt - 2%).eF = wtL

. .. (AL

.Qt‘é 0 'since o" was misclassified; hence
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t .t

Wt < [of)2 = 1.
Let x = &° - a%; ‘
x]% = [o% - ex|2 < 2 - 2(L - o) = 2e.
Hence
whoes = wt, et - x)
s

1 + /26| C e (A.2)
Also, :

lwt|:’_:_ (Wt-@*)|‘1>*rl + |wt - (Wt.cb*)@*l

< 1+ /28|wt| + |wh - Wh.e%)ex| from (A.2) c .. (AL3)
Let v = ~W° + (W5.0%)0%,
w=wt - WO,

w=W - (W.ex)o%,
Then u,v,w form a triangle with a right angle between v and w, and the
acute angzle ¥ between u and w satisfies

cosp > 1 - 0 from (A.1).

Hence

sin®y = 1 - cos?p < 20 - 0% < 2,

so |v| = |w|tany |

< W0 - (iF.o%)e%| ./T5/ (1-0)

= (A +’wt.q>*)__./2_6/(1-eﬁ

< O+ 1+ /i'e';wtl).;/'ié”/(l-e) from (A.2)
Now W < 1+ /26[W| + |v] from (A.3)

< 1+ /Z0|WE| + G+ 1+ /Z8|W]).V26/ (1-8),

oo 1+ (141).Y26/ (1-6) -

so |W| <
1-7/20 - 20/(1-8)
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1.-68.+.0+.1).20

(1-0) (1 - /26) - 28
+1 as 6 +~ 0 for any fixecl Ao
Hence given €>0 there exists 6 with

W] < 1+ e.
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pattern classifiers.

Before stating the theorem we introduce some notation, and
state the adaptive rules for STeLLA in a concise and’traqtable form.
’The prototyée bits are assumed to be all zero, and the process of
adaptatioﬁ,to successfully classified query vectors is éonsidered to
‘be suspended, és ﬁefore. The rules (8.1) and (8,2)'ofIChapter 8 are:

¢cF" and W.0<d implies :
~ + ! ~

- A, (p,) A (P—)'
W' =W + [log(l -, d 'k ) - log(l ~ 1k )10 =1
k k ‘ + k
1 - Pk 1- Pk

A
e
ftA
2

where W' is the modified (new) weight vector, n is the dimensionality

of the query vectors, and

~

n(x,y) = log(1 - - ) - log(l ~ ).
“ 1-x . 1l -y

~

Similarly,

®eF - and W.9>-d implies

IR ~
A, (p;) A (p,) .

W= W - [log( - =Ko ) - 10g1 - L)), 0 2D
1-p T-p

- + .
Wy - n(psp )¢, (15 k<),
We write the adaptive rules in the form of a program as follows:
TEST: Choose $cF' U F 3 - | | C e (A)
- If @sF+ then let ¥=0; else let}W=4®;
If W.¥<d then
If @eF+ then replacé W lby W, + n(p+ D) W, for 1 <k <n;
k k k>F k7" 7k =" =

- -+
If ocF then replaqe Wk by Wk + n(pk,pk).xpk for 1 <k zn;
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Go to TEST.

We use thernotation n¢k) for n(p:,p;)‘or n(p;,p;) in places
where the distinction is eithe? not important or adeqﬁately made by
the context; the argument (k) is shown ‘explicitly because the
dependency of n on k is vital. The notation ¥ for & or ~o depending
on the classification of ¢, as above, is also used.

THEOREM 4.
Let F+ and ¥ be classes of én n—dimenéional binary query space,
and suppose there exists a unit n-vector W* and some §>0 such that
@eF+ impliés W, 5>83
%eF  dmplies W#,0<-§.
Suppose not only that there are no attempts to make out-of-range
adaptations (§8.4, Assumption C), but also that there exists 9>0 such
that no attempt is made to take any PDW out of the range
[1/G+eh ,1-1/a+eY 1. |
(This condition ensures that each component of all weight vectors
obtained in the course of adaptation satisfies
lw | < e,
as can be readily-verified.)
Let 1 be a real valued function defined on the Cartesian product of
the interval [O,l] with itself, such that the;e exist & and z with
0<&gnExy s T fpr all 0<x,yxz1, ?
and £ < £(1 + 8/n).
Then if W is initial;y chosen to Be an n~vector qf 1ength A, the
program (A) above will change W at most

nz® + 20d + 2AE8 + 20(z-£) (2-1)

[£@ + §) - nz]?
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times.
Proof. Define
GQW) = WhW < 1.

Consider the behaviour of G(W) on successive changes of .the weight

vector. ,
ety = wewtywttl
t+1 . t
% = %
WEWCST = 0 WE. (W + n (K )
= whoWE 43 (W, + D@k = 2 n(k).
Now‘[W§| < 1 since W* is a unit vector;
|¢k| < 1 since the query vectors ¢ are binary.
Hence

WEay, + 1z 0.

‘t+l

So WEWET 5 whT 4 £D (W, + 1) - ng

WS + WY+ n(E-z)

v

wewt o+ £s + n(g-;)'

v

weaH +g's

v

where
§' =g + 8) - ng
>‘0 by the conditions of the theorem.
Hence after the m'th change of W,
we ™ » ms' - A
Also,

t+1,2 2
L

i

R UNERYOR

HA

512+ 22 y| %+ 2.3 @y + D@ - 20.2 n(R)

A

IWt|2 + n;z + 2r.3 (W;.wk + Q) - 2nQ¢
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< |‘Wt|2 + nz? + 200(z-€) + 2cd.
So lelz < m[n?._’.2 + 2nQ(g-g) + 2zd] + A2,
Hence .
m m§' - A .
1 > 6Wm) > ' — . s
B {m[n;2 + 2nQ(z-g) + 2zd] + }\2}1/2
n;z + 2nQ(r-&) + 2zd + 2§'A
so m <
6'2

n;z + 2zd + 2)E8 + 2n(z-§) (Q-2)

&G + &) - nz]?

Corollary 1. The convergence theorem is satisfied if

Zi(x) =:u(l - x) = *Zd(x);
for any coastant u>0., If these increment/decrement functions are used
then no restriction is required on the éize of each component of all
weight vectors, so one need only assume that no out-of-range PDW
adaptaticns are attempted.
Corollary 2. If in ad&ition torthe conditions of thé theorem,

W0 (Lskgw, |
then the théorém holds even if

z > g(1 + &/n),

provided none of the other conditions are violated.
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Appendix.B
GLOSSARY -

Thisrglossarf egpléins importagt terms, abbreﬁiations, and
some‘notaﬁions which are uséd throughout this theéis; Although no
attempt has been made to include every symbol used, all frequently
used gigbal symbois are given. The order of items in the gloésary‘
corresponds roughly to tﬁe order in which the ideas are introduced in
the thesis, althqugh a coupie of miscellaneous‘notatioﬁs appear at the

end.

Query (feature) vector, The query or feature vector is the input to
&, %, n, ¥, . ‘ the'decision phase. Its i'th component
| indicates the extent to which the i'th
feature is pigsent. :Query veétors are always
.‘denbted by @;VQ* is sometimes used for a
particular query vector. ¢ is n-dimensional;
¢i can take on r values; and the maximum

length of ¢ is a.

Query (feature) space, Query or feature space is the n-~dimensional
Environment. , hyperspace in which query vectors lie. The
environment is the set of possible query

vectors, with .their frequencies and classes.



- 131 -

Pattern class, . The .purpose of a pattern classifier is to

reject and noise only classify inputs into pattern classes. These
classes, -may include a reject class (information not

i) + - . . s
F(l), m, F, F, F'. sufficient for a firm decision) and/or a noise

only class (no ﬁaﬁtern present). Pattern
classes ére denoted by F(i) (1 é i< m), or,
in the two class case, by F+ and F . It is
found‘convenient to define

F' = {0]0eF'} U {-0]0cF }.

Convergence, An adaptive pattern classification machine is

Convergence time. said té have converged if it can classify all
possible query vectors correctly; If noise
is present we only require it to classify all
noiseless query vectors correctly. The
convergence time of a particular machine for
a pafticular enviroﬁment is the mean number

of patterns presented before convergence is

reached.
Discriminatory Classification is effected by discriminatory
s ' . (1) ot e
functions, surfaces, . functions £ (f and £ in the two class
i) A+ -~ ' ‘ . _—
£ , £, £ . case), one associated with each pattern class,

such that (ideally)

£ (6> (0) for all j#i 1if and only if
(i)

®eF /. The surfaces in feature space given

by f(i)(é) = f(j)(é) (j#1) are called



Weights,
weight vector,

w(i) A

b

Augmented query vector,

o',

Linear separability,
discriminating weight

vector, W%, §.

W
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discriminatory surfaces.

Linear discriminatory functions are of the
form

f(i)(é)f Wii)¢l + wéi)¢2 + s..0 + wéi)¢n + wﬁii.

The coefficients w are called weights, and

the weight vector is

(1) (1) (i)
R s oo e s WD ).

The length of the initial weight vector (for

= (w
a perceptron) is denoted by A.

Linear discriminatory functions can be
written as f(l)(é) = W(i>.®', where the
augmented query vector @' is such that

¢3‘= ¢j for 1 < j 2 n; =1,

L}
The two pattern classes Fﬁ and F are said to
be linearly separable if there exists a weight
vector W* and some §>0 with

W%.9'>8 for all 9cF

Wk.9'<-8 for all ¢cF .

W# is called the discriminating weight vector.
The notioﬁ ofrlinear separability extends to
the case where there are more than two

pattern classes.



Threshold perceptron,

d'

Pr[A], Pr[A|B],

E[X], VarlX].

EWPA.

Prototype,

Pattern Digit Weight,

.+ -
PDW, Pk’ pk;
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The notion of a.threshold ﬁefceptron is-
explained in Chapter 3. d denotes the

threshold of a threshold perceptrom.

PrA] (Pr[A[B]) denotes the probability of
the event A (given the event B). E[X],
Var[X] denote the expectation and variance,

respectively, of the random variable X,

Abbreviation for the exponentially weighted
past average probability estimation procedure

(see Chapter 5).

A prototype is a query vector, generally
contained in the pattern class with which the
prototype is associated, which is assumed to
be representative of that class. It is

B . + - - E + -~
denoted by P , P (for classes ¥ and F

respectively).

The k'th pattern digit weight (PDW) of the
i'th éIass is a number which represents the
danger of oveflooking a disparity betwe;n the
k'th (binary) component of a query vector ¢
and the prototype, when assigning @_té the
i'th class. PDW's are denoted by,p;, p; (for

F# and ¥ respectively).



?
i

. :‘: -~

Increment/decrement

functions,
B,(x), A (),

NONNOE

Corners,

[

s .

Unit vectors,

A.
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These specify.the quantitative amounts of
adaptation.used in the STeLLA method (see
Chapter 8). Ai and Ad are also used to

denote increment/decrement functions in

Chapter 5.

The Boolean value of an expression is denoted
by enclosing the expression in corners. Thus
1 if x=5,

[4=5) =
0 otherwise.

A denotes the unit vector in the direction of

the vector A, i.e. A= A/|al.



