
THE UNIVERSITY OF CALGARY

PERFORMANCE OF SOME OLD AND NEW

ADAPTIVE DECISION STRATEGIES

IN PRACTICAL MACHINES

by

IAN H. WITTEN

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS,

STATISTICS & COMPUTING SCIENCE

CALGARY, ALBERTA

AUGUST, 1970

IAN H. WITTEN, 1970

(date)

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to

the Faculty of Graduate Studies for acceptance, a thesis entitled

"Performance of some old and new adaptive decision strategies in

practical machines" submitted by Ian H. Witten in partial fulfillment

of the requirements for the degree of Master of Science.

Supervisor, D. R. Hill
Mathematics, Statistics,
& Computing Science.

• 4çq-
W.C.Chan
Electrical Engineering.

?7.

C.M. Fenyvesi
Mathematics, Statistics,
& Computing Science.

1IAA
J. Slater

Mathematics, Statistics,
& Computing Science.

(1)

ABSTRACT

This thesis is concerned with the problem of decision-making

in the context of automatic pattern recognition. Almost all decision

strategies which have been employed in practical machines are variants

of two simple schemes: the perceptron decision strategy and the

maximum likelihood decision strategy. The main part of this thesis is

devoted to a critical study of these strategies.

Although the perceptron decision strategy behaves extremely

well under favourable conditions, it tends to be misled by patterns

which are unavoidably misclassified when noise is present. This

phenomenon is thoroughly investigated (Chapter 3), and a variant of

the strategy, which has a better chance of performing well in noisy

conditions, is defined. This variant proves itself in a limited

series of experiments (Chapter 7).

The maximum likelihood decision strategy is optimal (in a

precise sense) under all conditions, but unfortunately its

implementation is impractical unless restrictive assumptions are made

(Chapter 4). Implications of these assumptions are considered in some

detail (Chapter 6). Adaptation of the maximum likelihood strategy can

only be achieved by estimation of probabilities, and some standard

procedures for this are discussed, together with problems arising from

the existence of storage limitations (Chapter 5).

Part of the research reported here was concerned with the

problem of finding a basis for theoretical investigation of the two

decision strategies mentioned above with a view to combining their

virtues. This is considered in Chapter 8.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, David Hill, not only for

his ideas and opinions which prompted the research reported here, but

also for a splendid introduction to the fascinating domain of

Artificial Intelligence.

I am also indebted to Mrs C.M.Fenyvesi for her help in

proofreading this thesis.

Financial support during the preparation of this thesis was

provided by the Commonwealth Scholarship and Fellowship Plan.

(iv)

TABLE OF CONTENTS

Abstract

Acknowledgements

Page

i

List of figures vi

Chapter

1. Introduction, motivation, and goals 1

2. Pattern recognition and linear decision schemes . 14

3. The perceptron decision strategy 27

4. Classification using statistical decision

techniques 38

5. Standard probability estimation techniques, and

some complications arising from storage

limitations 50

6. The independence assumption 61

7. Some experiments which illustrate the differences

between the perceptron and maximum likelihood

decision strategies 74

8. STeLLA-like decision techniques 89

8.1 Introduction 89

8.2 The discriminatory functions 92

8.3 Qualitative aspects of the adaptation

procedure 95

8.4 Perceptron-like behaviour of the STeLLA

strategy 98

(v)

Chapter Page

8.5 Use of the increment/decrement functions

for probability estimation 103

8.6 Discussion 105

9. Conclusion

Bibliography

108

114

Appendix

A. Proofs of theorems quoted in the text 120

Theorem 1 120

Theorem 2 122

Theorem 3 123

Theorem 4 ; 126

B. Glossary 130

(vi)

LIST OF FIGURES

Figure Page

2.1 A classification which is linear if the

features are binary-encoded 24

5.1 The digitization of the L-functions 56

6.1 A situation where the independence assumption

is not true 64

6.2 An example of a striated rectangular figure . . . 68

6.3 Generalization resulting from invalidity of

the independence assumption 69

6.4 A SIC code 72

7.1 The standard environment used in all

experiments 76

7.2 Convergence time for a threshold perceptron . . . 78

7.3 Variations in convergence time for various

pattern classifying methods with a standard

noiseless environment 80

7.4 Success of a threshold perceptron in noisy

conditions 82

7.5 Percentage error for different decision

strategies with varying noise levels 84

7.6 Needless errors as a percentage of points that

could have been classified correctly, for

different decision strategies 86

-1-

Chapter 1

INTRODUCTION, MOTIVATION, AND GOALS

This thesis is concerned with the problem of decision-making

in the context of automatic pattern recognition. It is generally

agreed that pattern recognition is a fundamental, some say the central,

problem of artificial intelligence:

The problem of sorting events and situations into useful
categories arises in so many ways that it is tempting to
regard it as the central problem of artificial intelligence.
(Minsky, 1958.)

It is evident that all problems can be re-formulated in terms of sets,

and that in this way, problems which are at first sight entirely

unconnected with pattern recognition can be reduced to what is

superficially a problem of classification into sets. However, it is a

fact that very many problems which occur naturally in fields like

artificial intelligence and process control are usefully treated as

pattern recognition problems.

The bewildering variety of sense-data available to a machine

equipped with receptors or devices which make it sensitive to its

environment highlights the need for pattern recognition. In the

context of problem solving, a resourceful machine must classify

problem situations into categories associated with the domains of

effectiveness of the machine's different methods, in order not to try

all possibilities. This process is particularly transparent in the

"Logic Theory Machine" of Newell et al. (1957).

-2-

In order to indicate.further the usefulness of a pattern

recognition approach to problems .which, at first sight, seem to be

unconnected with pattern recognition, I shall briefly consider

Samuel's studies in automatic checker playing (1959, 1967). The

essence of Samuel's strategy is to play by looking ahead a few

moves and evaluating the resulting board positions, much as a

human player might do. The best move is chosen by "minimaxing" the

move chains considered, using the static board evaluation to determine

the "goodness" of each move at each stage. It is the evaluation

procedure which can be viewed as a pattern recognition process;

although it is not strictly a classification procedure, Samuel both

used techniques and encountered problems which occur in conventional

pattern classification work. To evaluate the board positions, he

originally used a linear polynomial whose terms represented features

or attributes of the board position, with coefficients which indicated

the importance or weight of that feature. Various methods were used

for selecting features out of a large man-generated list, and for

adapting the weights according to the machine's experience. One of

the major snags encountered was the limitation inherent in the use of

a linear scoring polynomial--this is a fundamental difficulty in

pattern recognition work--and a number of different proposals were

considered for overcoming this.

Pattern recognition is concerned with the reduction or

structuring of a complex environment into a relevant and manipulable

form in order to facilitate goal achievement. Conventional computers

are not able to organize or classify information in any very subtle

or generally applicable way--they perform only highly specialized

-3--

operations on carefully prepared inputs. Only.through classification

into categories can we hope to introduce "general" or "informal"

problem-solving methods. Pattern recognition involves both pattern

classification and pattern discovery, although the latter has been

rather neglected in the literature. STeLLA (see Chapter 8; Andreae,

1964, 1969; and Gaines & Andreae, 1966) is a general purpose learning

machine which discovers patterns in a manner highly relevant to goal

achievement. Despite their obvious differences, pattern classification

and pattern discovery require the use of similar techniques;

unfortunately machines which are intended to discover patterns are

more liable to instability and oscillation because of the difficulty

of reinforcing decisions.

The conventional formulation of the pattern classification

problem is this: sets of data are supplied to the classifier, either

as raw sense-data or in some preprocessed form. These sets of data

are divided by some consensus of opinion (on the basis of usefulness

of treating them as the same) into pattern classes, and the pattern

classes are also supplied to the machine. After this training period

the machine is given data sets, possibly ones which it has not "seen"

before, and is required to classify these correctly with respect to

the consensus of opinion. Interesting problems occur when the rules

governing the correct classifications are not explicitly known (hence

the similarity between pattern classification and pattern discovery).

The purpose of the training period is to give the recognizer a chance

to form its own rules, or to utilize pre-programmed rules to maximum

effect. It is for this reason that such decision strategies are

called adaptive. This will be taken up again later. The pattern

4

classification problem has three üatural subproblems: data input,

description (structuring of-the input data), and decision.

The input phase was largely circumvented in the early pattern

recognizers by hand digitization of data. These recognizers were

usually concerned with optical patterns which were projected on to a

"retina" consisting of a rectangular matrix of squares. A square

containing any part of the pattern was considered to be filled. This

process was not designed to eliminate all stray noise; in fact these

machines sometimes have a preliminary clean-up stage to take care of

noise. Selfridge & Neisser's "Pandemonium" (1963) exhibits this.

Nevertheless, it seems fairly safe to say that noise will appear to a

much greater extent in real situations. A large number of modern

pattern classification machines take their input directly from the real

world via microphones, optical scanners, and the like. This involves

technical problems in the area of man-machine communication (see for

example McCarthy at aZ, 1968).

The description or feature extraction phase has the task of

extracting some of the relevant and meaningful features from the vast

mass of input data. In many cases it must first be determined whether

or not any meaningful data is actually present, and if so, where (in

time, space, or both) the pattern to be recognized is situated.

Recognition of connected speech or handwriting exemplifies

difficulties which can occur in deciding where a pattern starts or

ends. The conventional approach to this is tentatively to segment

and/or normalize the input (Gold, 1959), although other approaches

exist (Hill, 1969). Feature extraction can take place according to

pre-programmed features (Selfridge, 1958), or according to machine-

-5-

generated masks (Uhr & Vossler, 1963). Early-character recognition

machines usually computed individual features independently from small

sub-sections of the retina. While this method of feature extraction

is quite adequate for many purposes, it does reflect the use of a

number of computations performed independently of each other (see

Selfridge, 1958, for a discussion of this). This is not the most

efficient--though it may be the quickest--way to use computations, and

it seems that it is not adequate for general pattern recognition.

Minsky & Papert (1969) devote almost a complete book to a

consideration of limitations of machines which use features obtained

in this way--this is discussed briefly at the end of this chapter.

Several ways of getting round this difficulty exist. One could use

primitive features for recognition of elementary parts out of which

patterns may be built (small sections of lines, vertices, etc.) and

knit these together using list processing techniques (this is

discussed by Minsky, 1961; Guzman, 1968, provides a practical example

of such a machine). A rather similar way of overcoming the

limitations arising from the use of elementary features is to compound

these features with each other before (or in conjunction with) the

decision phase. An example is given by Hill (1969). Alternatively,

multilayer decision networks can be used to give complex decisions by

"cascading" simple ones. Unfortunately these are beyond the scope of

this thesis: the subject is touched on briefly in Chapter 9.

The input to the decision phase consists of a vector of

measurements, which may or may not be binary, representing the features

present in the input pattern. This vector is called the query vector

or feature vector throughout this thesis. During the training period,

6

the correct classification of the pattern currently being considered

must be provided to the decision phase for reinforcement purposes.

The output of the decision phase is a number representing the pattern

class thought to contain the input pattern. The pattern classes may

include a reject class ("information not sufficient for a firm

decision") and/or a noise only class ("no pattern present"). It is

important to realize that two identical query vectors may arise from

two patterns in different classes, owing to either noise perturbation

or insufficient resolution at the feature extraction or input stages.

Hence the "correct" (according to the consensus of opinion) class for

any given pattern is not necessarily a function merely of the query

vector obtained from that pattern.

This thesis is concerned with adaptive decision strategies.

These are used in cases where

1) the rules governing the classification are not known: adaptive

techniques can be used to automate data acquisition,

2) the situation may be changing slowly so that the information is

context sensitive,

3) a versatile machine which can be used for different situations

is required.

These cases often overlap in practice. Speech recognition is a good

example of a situation where the rules for classification are not

known well enough to embody them in an automatic recognition system.

Slowly changing situations are illustrated by the problem of

recognizing hand-sent Morse code. When a long message sent by a

single operator is analysed, it frequently turns out that some dots

are longer than some dashes, and so an efficient recognizer must use

7

some sort of contextual information (Selfridge & Neisser, 1963). The

search for a versatile machine is prompted by the fact that it may be

cheaper to produce a general purpose pattern recognition machine and

train it for the task in hand than to build special purpose machines.

I would like to stress that I am not suggesting that

adaptation is a panacea. Many pattern recognition problems can be

solved efficiently by techniques which are not adaptive. However, in

cases where classification is required but the data on which

classifications are to be based are not sufficiently structured,

adaptation is certainly a very good tonic until something else turns

up (sic).

The feature extraction phase is the major point of attention

in pattern recognition today--and quite rightly so. Although

automatic recognition of hand-printed characters has been investigated

since around 1958, even now there appears to be no consensus of

opinion on what features are among the best. Automatic speech

recognition is a field where feature extraction is of paramount

importance because of the vast mass of data available in speech

waveforms.

It is true that if ideal features can be found, the decision

stage is trivial. Features could consist of a single number

representing the class to which the pattern belongs, or, less

trivially, a bit-pattern which requires only

stored patterns to ascertain the class. One

speech recognizers currently operating, that

colleagues (1968, 1969), uses a particularly

a voting scheme.

exact matching with some

of the more successful

of Bobrow and his

simple decision scheme--

8

It has been experimentally-determined-that the voting scheme
works as well or better than a number of other measures that
make use of the same information. (Bobrow & Klatt, 1968.)

Unfortunately little mention is made of which other decision schemes

were tried, or of how performances compared. The fact that such a

simple scheme proved so effective indicates the suitability of the

features used. system was, however, designed for use with a

single speaker only. If one wishes to recognize many speakers with

large vocabularies, then it seems likely that a more powerful decision

strategy will be required.

Almost all decision strategies which have been employed in

practical machines ("machines" is used in this thesis in an all-

embracing sense which covers programmed computers) are variants of two

simple schemes: the perceptron decision strategy and the maximum

likelihood decision strategy. While I originally intended to use

these as a jumping-off point for my research, preliminary reading

revealed that nowhere in the literature is there a critical review in

depth of the performances of these basic adaptive decision strategies,

and worse still, it is extremely rare to find any treatment of the two

together. This appears to stem from the fact that each strategy has

its proponents who are unwilling to acknowledge the merits of other

strategies. In addition to this, difficulties which occur in

connection with the decision strategies are often ignored altogether,

or brushed aside with an airy remark (the independence assumption is a

good example of this; see Chapter 6).

One of the main difficulties .which crops up while

investigating adaptive decision strategies is the necessary compromise

between the optimal and the practical. A decision strategy which is

9

optimal (in a precise sense) for any situation in fact exists; this is

the maximum likelihood decision strategy. However, implementation of

this strategy in a practical machine requires, for any real situation,

restrictive assumptions to be made, and .these usually impair the

optimality of the decision strategy. Conventional mathematics does

not seem to be well-tailored to situations in which practical

implementation is an important consideration, and on the other hand,

experimentation is a time-consuming process which cannot hope to be

exhaustive. It is this, I feel, that accounts for the lack of

satisfactory treatments of adaptive decision strategies in the

literature.

The foregoing remarks are a necessary prerequisite for a

sympathetic understanding of the goals of the research reported here.

My major objective is to develop a (necessarily) heuristic insight

into the characteristics of the perceptron and maximum likelihood

decision strategies, always bearing in mind that these decision

strategies are intended for use in practical machines. A secondary

objective is to provide a basis for theoretical investigation of these

strategies with a view to combining their virtues.

As mentioned above, experimental investigation, while

worthwhile and necessary in the context of feature extraction for

particular problems, is not well suited for probing into the general

characteristics of decision strategies. Consequently the small amount

of experimental work I have done (reported in Chapter 7) is intended

only to illustrate some of the points made in the course of

theoretical investigation. Mathematics is my major tool, but I try to

remain conscious of the danger of neglecting practical considerations;

- 10 -

the result is that mathematics.is,usedto probe special cases in order

to provide a basis for heuristic generalization. Here I run the risk

of being accused of "sloppiness"; Ihope that the following pages

provide evidence to the contrary. I also hope that non-mathematicians

are able to understand the arguments presented in this thesis, for it

is intended to help designers of practical pattern recognition

machines to select a suitable decision process for their particular

machine. To this end, proofs and occasionally precise statements of

theorems are relegated to Appendix A, unless this would seriously

disrupt the flow of thought through the main arguments. No deep

mathematical results are used, and all the mathematics here is of an

ad hoc character.

Chapter 2 is an introduction to the subject of adaptive

decision processes, on a more technical level than the present chapter.

In Chapters 3 and 4, the two basic decision strategies are considered

in turn. Further topics relevant to maximum likelihood decisions are

dealt with in the next two chapters. These contain rather more

mathematics than I would like, but I feel that the mathematical

arguments are the very essence of these chapters, and so they are left

in the main text. Chapter 7 describes some experiments which were

undertaken in order to illustrate points made earlier. This completes

the investigation of the perceptron and maximum likelihood decision

strategies. My secondary objective, that of providing a basis for

theoretical investigation of the afore-mentioned strategies with a

view to combining their virtues, is considered in Chapter 8. The last

chapter is devoted to some concluding remarks. Appendix A, as

mentioned above, contains proofs of some theorems quoted in the text,

and Appendix Bis a glossaryof special symbols, terms, and

abbreviations used.

The literature on artificial intelligence is somewhat

scattered.among various journals and conference proceedings. A fairly

comprehensive bibliography of papers appears at the end of this thesis;

all the papers therein are referenced at relevant points in the text.

There are few good books on pattern recognition, but I will indicate

those which I have found useful. For background reading in artificial

intelligence, both Feigenbaum & Feldman (1963) and Uhr (1966) provide

a good, if fairly dated, introduction to the field. The latter is

very much neurophysiologically oriented. I should say here that my

research is directed away from the fields of psychology and neuro-

physiology--my aim, in J.H.kndreae's words, is "to build a useful

machine"--but some acquaintance with these subjects is useful because,

after all, the brain is by far the most versatile and competent

pattern recognizer in existence, and studies of the brain may provide

hints relevant to automatic pattern recognition. Further background

material in neurophysiology and associated topics can be found in

McCulloch (1965). Relevant philosophical problems are discussed by

Koestler (1964) and Craik (1952).

So much for general material. Rosenblatt (1962) considers

perceptron-like machines in some detail. Sebestyen (1962) and

Nilsson (1965) both treat much the same topics as I do, but not, I

feel, in a manner so relevant to practical machines. Nagy (1967)

gives a comprehensive "state of the art" report on automatic pattern

recognition, while a collection of papers, many of them concerned with

practical work, is to be found in Tou & Wilcox (1964).

- 12 -

Last year one of th.foremost.workers in -the field of

artificial intelligence, Marvin Minsky, published a book in

collaboration with Seymour Papert (Minsky & Papert, 1969) which has

considerable relevance to this thesis.

Minsky is primarily concerned with inherent limitations of

linear decision strategies (see Chapter 2) if features are computed

independently from small subsections of the retina. While his

discussion of this topic is not directly connected with my work, since

I make no assumptions about what kinds of features are used, it should

be realized that experimental evidence indicates that both the frog

(Lettvin et al., 1959) and the cat (ilubel & Wiesel, 1962) employ

"features", in some sense, which are computed independently from small

subsections of the retina. These elementary features may be combined

into more complex ones in a hierarchical manner. Indeed, although

introspective psychology is out of fashion these days, it does seem

that examining a figure for a topological property like connectedness

(Minsky discusses this property extensively) involves an essentially

serial operation, and Minsky's suggestion that inability to recognize

such serial properties is a serious limitation of perceptron-like

machines is perhaps a little trite. On the other hand, Minsky's main

concern is to debunk the idea, rather prevalent a few years ago among

some of the perceptron's proponents, that the perceptron is a

universally applicable learning machine and a panacea for all the

problems of artificial intelligence, and he certainly accomplishes

this goal.

In the sense that independent computations do not provide
adequate features.

- 13 -

Minsky devotes a few pages-to a discussion of.the perceptron

and maximum likelihood decision strategies, but admits that he can

offer no general theory of learning (learning and adaptation are used

synonomously in this thesis). He is interested in genuine foolproof

mathematics, rather than in the heuristic sort of mathematics used

here, and I attribute his lack of a theory of learning to the

difficulties mentioned earlier, that conventional mathematics is

app3.icable to ideal rather than real situations.

- 14 -

Chapter 2

PATTERN RECOGNITION AND LINEAR DECISION SCHEMES

An important point which should be kept in mind when

considering adaptive decision strategies is that the feature

extraction process is inextricably bound up with the decision phase.

J,H.Andreae suggests that one should inigine a continuum embracing the

feature extraction and decision procedures, the distinction between

the two stages being made on a rate of adaptation/time scale basis.

He considers any process in a pattern classifier which adapts slowly

(relative to the rate of adaptation of the other processes) to be part

of the feature extraction phase. Thus the decision phase has the task

of attempting short term optimization, while long term optimization is

achieved by adapting the features. It is, however, convenient to

separate the two phases because feature extraction is very dependent

on the particular kind of problem being considered (and also on the

kind of implementation intended, whether by electronic computer or

special-purpose hardware), while the decision phase is dependent on the

characteristics of the features used rather than on the kind of

recognition problem being considered.

It is worthwhile looking at some examples of general

characteristics of features. One such example, mentioned in the last

chapter, concerns cases where the features are "ideal" and only exact

matching with stored templates, one for each pattern class, is

required. Cases where this works well are rarely encountered in

practice. Features may be non-redundant, in which case if they

- 15 -

exhibit perturbations due. to noise no decision strategy can be

expected to perform well in an absolute.sense, or they may be highly

redundant, and if so, it is reasonable to expect a decision strategy

to -perform well in noisy conditions. If the features are.

statistically independent with respect to the pattern classes then one

can use a decision strategy which is both optim1 and iinplementable in

practical machines (see Chapters 4 and 6), while if dependencies exist

but their form is known, special ad hoc techniques can be used.

In referring to the interface between the feature extraction

and decision phases, I often use the term enviroranent. This denotes

the set of possible query vectors, with their frequencies and classes.

Two extreme types of environment may be distinguished, although in

practical situations a combination of both invariably occurs:

1) environments where the pattern classes are distinct, so that

the query vectors arising from patterns in each class occupy separated

portions of hyperspace (feature space or query space);

2) environments where each pattern class has a single basic query

vector but random noise perturbations exist, such that the noise acts

on each feature independently. Here the pattern classes may be thought

of as unimodal distributions of query vectors in hyperspace, probably

overlapping to a considerable extent.

The first kind of environment corresponds to situations in which the

perceptron strategy works well, while the second kind corresponds to

situations where the maximum likelihood strategy works well.

Environments are usually considered in this thesis to comprise

a core of noiseless query vectors, each with its associated frequency

of occurrence, with noise superimposed on these. Naturally the

- 16 -

noiseless pattern classes-should-be-non--.overlapping if.the pattern

recognizer is to perform at all well. As far as the decision phase is

concerned, the pattern recognition process can be thought of as

selecting points at random from the noiseless pattern classes in

feature space (inter-dependencies in the presentation sequence are not

envisaged), choosing each point with its ,associated frequency.

Features are computed merely by measuring the feature space

co-ordinates of the selected point. The features are then corrupted

by noise in the required probabilistic manner, and the corrupted query

vector is presented to the decision phase. This way of looking at

environments is found to be helpful, especially for perceptron-like

decisions.

The notion of convergence of an adaptive decision machine is

used freqent1y in this thesis. In noiseless conditions, we say that

an adaptive decision machine has converged if it correctly

discriminates between the pattern classes. After convergence, the

performance of a decision machine may improve or deteriorate if the

training period is continued. Fortunately this is not true of

perceptron-like machines, and the term "convergence" is used mainly in

connection with these. Perceptrons do not adapt themselves after

convergence has been reached, and so their convergence time (mean

number of patterns presented before convergence) is a good indication

of the required length of training period. Further ramifications of

the idea of convergence are introduced in the following when necessary.

Determining if a machine has converged is not an easy task in

real situations. This is basically because the set of training

patterns is invariably a rather small subset of the total number of

- 17 -

patterns which the machine is .expected to classify (this is discussed

extensively by Nagy, 1967). One must resort to statistical sampling

to determine if convergence has been reached, but because of the very

real danger that the training set is not sufficiently representative

this is not usually reliable. Since the only indication of the length

of training period required for certain types of decision machine is

convergence time, it is difficult to determine when to stop training.

It has been suggested that "tracking" or "selective boot-

strapping" techniques be employed in order to combat possible

inadequacy of the training set (Nagy, 1967). A selective boot-

strapping system employs a teacher to supervise the learning process.

When, in the judgement of the teacher, the performance over long chains

of patterns is acceptable, the machine is left to reinforce its own

decisions (see for example Widrow & Smith, 1963). Instability rears

its ugly head here; for most pattern classes are defined by convention

alone (the consensus of opinion of Chapter 1) and unless the machine

has been taught the bare bones, at the very least, of the convention

it may, when left to itself, begin to reinforce incorrect decisions

and in doing so destroy its whole pra-taught body of knowledge. A few

noisy query vectors could start such a disastrous landslide. I have

not investigated such selective bootstrapping systems.

We now introduce some notation and look at a general

formulation of the decision problem. Query vectors are denoted

throughout this thesis by the symbol . The i'th component,

represents the extent to which the i'th feature is present. The range

of . may be continuous or discrete, binary or many-valued; unless

otherwise specified. Pattern classes are denoted by and the

- 18 -

output of the. decision phase. is a number .representing the. index of .the

pattern class. (Ranges of indices are given in this thesis only when

absolutely necessary to avoid confusion--the ranges of summations etc.

are generally obvious. This simplifies writing and reading

considerably.) Although pains were taken to point out in the last

chapter that two identical query vectors may arise from two patterns

in different classes, the notation

cF(1)

is used for

"The pattern class currently giving rise, to iD belongs to the

class

since this should cause no confusion.

Classification is effected by discriminatory functions

one associated with each pattern class, such that (ideally)

> f(J)() for all j± if and only if

Note that only non-randomized decision strategies are included in this

formulation. These correspond to "pure" rather than "mixed"

strategies in game theory. Chow (1957) showed that optimum strategies

in pattern classification are pure, and mixed strategies are not

considered here. The surfaces in feature space given by

f(1)() = f(J)() (i#j)

are called discriminatory surfaces. It is assumed for convenience

that points lying on discriminatory surfaces are classified according

to some convention.

The decision phase of a pattern classifier is just the

implementation of the discriminatory functions. An adaptive decision

strategy must provide a mechanism for learning the correct

- 19 -

discriminatory functions. This.is practically impossible unless a

special form is assumed for the discriminatory functions, and.adaptive

decision techniques are usually discussed only for linear

discriminatory functions. (Some strategies considered in this thesis

are not in fact linear decisions, but similarly restrictive

assumptions are always made about the form of the discriminatory

functions.) Because of the importance of linear decisions, both

historically and practically, the remainder of this chapter is devoted

to their consideration.

Let us suppose that the query vectors are n-dimensional, and

we are interested in dividing up feature space using linear

discriminatory functions:

f(3)() = + + . . • + '1fl +

The coefficients w are generally called weights, and these are the

only elements of the decision phase which are subject to adaptation.

These weights may be positive or negative, and it is assumed in this

thesis that they may take any values. In order to simplify the

notation, we define the augmented query vector V, dependent on iD and

of dimension n+l, whose components are

for l<i<n;

Let theweight vector for the i'th ciass be defined as

w = , . . (j)
2 ' ,W+l).

Then the discriminatory functions are

f(2) OP) =

and the query vector is assigned to the pattern class

.,

for which

- 20 -

is largest. The introductionof.the.augmented queryvector enables us

to write a linear form in as a homogeneous linear form in P.

This method of linear classification is equivalent to

separating each pair of pattern classes with a hyperplane in feature

space. Thus if there are m pattern classes, in(m-l)/2 hyperplanes

exist, defined by

= (ij).

The pattern classes are said to be linsca'iy separabie if there exist

weight vectors satisfying the following:

> W.4' for all ji if and only if

A necessary and sufficient condition for sets of points in hyperspace

to be linearly separable is that the intersections of the convex hulls

of the sets, taken in pairs, are empty (Papert, 1960). The convex

hull of a set can be Visualized by throwing a cloth round the set and

drawing it tight. If the set is finite, its convex hull is a convex

polyhedron with points of the set as vertices.

Other methods of using hyperplanes to separate sets exist, as

was pointed out by Griffin et al. (1963). For in classes, if p is an

integer such that

in > p-1

it is in principle possible to use just p hyperplanes to separate the

classes, provided that the regions in which the various classes are

concentrated are well spaced out in hyperspace. Alternatively one

could attempt to use a hyperplane to separate one class from all the

other classes taken together. The method described above is at least

as powerful as the latter method, and it seems highly plausible that

it is more powerful than the first alternative. To my knowledge

- 21 -

neither of .these alternative methods has been used in practical

machines.

Minsky & Papert (1969), generalized the above formulation by

allowing situations where each pattern class has many weight vectors,

the vector W being associated with the class F j here is a

mapping,

> rn)

which is onto, that is to say,

for allk (1. < k < in) there exists k' with j(k') = k.

This permits coverage of cases where each F-class is localized into

many relatively isolated regions by allowing a weight vector for each

cluster. This is called a piecwisa Zinear decision scheme, and is a

simple extension of my formulation which is not explicitly catered for

here but to which all results and techniques given here are applicable.

One of the weight vectors is redundant. If we define

VW = - for all j and some particular i,

and assign D to the class F for which V V is largest, we

evidently obtain the same classification as before, with This

is particularly useful in the rather special case where there are only

two pattern classes, F+ and F. This formulation is used frequently

in the following chapters with the single weight vector being denoted

by W instead of V. If the two pattern classes are linearly separable,

then there exists a vector W* with

> 0 for all

< 0 for all F.

This discriminating weight vector is always denoted by .W in the two

class case.

S>O with

- 22 -

It will frequently be necessary to. assume that there exists

W*.' > 6for all ftF

W*.' < -5 for all cF.

This does not follow from the assumption that F+ and F are linearly

separable, as can be seen by considering a one-dimensional feature

space with the pattern classes

= { (1) , (2_i) , (22) , (2) , . . .

F = •i: (-1) , (2 1) , (_2_2) (-2) , . . . i.

If the pattern classes are finite, however, or if the components of

the query vectors are discrete (as will always be the case if a

digital computer is used for implementation), then linear separability

of F + and F does imply the existence of a d>O satisfying the above.

It will be assumed for convenience in this thesis that linear

separability does indeed imply the existence of such a 6 whenever

necessary.

Several common decision methods can be realized using linear

discriminatory functions. One of these is the minimum-distance

decision strategy, where a point PW is chosen for each pattern class

and classification is effected by choosing i such that

1(i) < IP - 4, 12 for all ji.

This is equivalent to choosing i such that

tp(i)I2/2> (J) - for all ji,

which is clearly a linear decision with weights

TT(1) - (j) (i) (i) - IP (i) 12
- 'l 2 n

Some other decision methods which are in fact linear are discussed in

Chapter 4.

- 23 -

The major objection.to linear decision strategies.is that some

environments are not linearly separable. This again is dependent on

the feature extraction phase, but some facts about linear separability

are worth noting. It is manifest that the more features there are,

the more likely it is that the patterns are linearly separable. For

adding a feature cannot destroy the property of linear separability,

but it may separate linearly an environment which was not originally

linearly separable.

When given features which are integral but not binary, it is

common to encode them into binary notation before the decision phase,

and use the new binary features in the decision mechanism. This makes

some decisions easier to implement. It is easy to see that a

positional binary encoding actually enhances. the possibility of linear

separability. Let be the old feature vector, and

ll ' 12 ' ' lk ' 21

be the new binary feature vector, where

ili2 •• ik

is the k-digit positional binary encoding of

• • ' 2k • •

Then if f() is linear in

f(j)() = + W2.c2 + • + + w
n n n+l'

f 3 (*) is clearly linear in

k-1 (j) k-2 (j)
fJ*) = ll + w1 .2 12 + • • +w lElk

+ w (i + + +
21 • • • n nk n+l

nk

However, there are many functions linear in which are not linear

in . For example, if

- 24 -

22 + 01;

then the discrimination is as shown in Figure 2.1, and is certainly

3

2

1

0

0

++

23

Figure 2.1

A classification which is linear if
the features are binary-encoded.

not linear if the non-binary features are used.

One great advantage of linear decisions is that compound

features can be added to make a non-linear decision linear. If one

wishes to implement an adaptive decision then one must in practice

assume some form for the discriminatory functions, and having done

this, the decision may be implemented in a linear manner. For example,

suppose 0 has two components, and the following forms are assumed for

the discriminatory functions:

= a1(1)2 + a2(2)2 + a31 + a42 + a5;

= b1 (4 1)2 + b24142 + b3;

where the a's and b's are constants. Then if we define a new query

vector which can be computed from the old:

= = ((i)2
12 ' ' l ' 2

the discriminatory functions are linear in P. Given any query vector

- 25 -

, we-need only compute 4*() anduse.this as a new query-vector,

discarding the old one.

In conclusion, let us summarize the properties of linear

decisions which make-them worth considering.

1) They may be implemented easily, either by special-purpose

hardware or by digital computer (see for example Highleyman, 1961 and

1962).

2) New or compound features can be added to make a non-linear

decision linear. Thus if the form of the optimum decision is known,

the decision can be implemented and adapted using linear techniques.

3) Piecewise linear decisions can be used to give a more general

classification with the same basic mechanism.

4) Many common types of decision are in fact linear (for example,

the minimum-distance strategy--further examples are provided in

Chapter 4).

Although the properties of linear decisions have been

discussed, no mention has been made of how to achieve adaptation to

best effect. One of the most common adaptation methods is discussed

in the next chapter. Other ways of implementing linear decisions can

be found in Chapter 4, where the decisions, although non-linear in

general, become linear in an important special case.

Before closing this chapter, some further notations should be

introduced. It is frequently necessary in this thesis to use the

Boolean value of an expression. This is done by enclosing it in the

corners and '. Thus

y =

has the value

- 26 -

lif=5,

0 otherwise.

Another term which is often used is the size or length of vectors.

This refers to the modulus of .the vector, as in vector algebra. The

symbol 4)* .is sometimes used to denote a special query vector. This

has no connection with the notation ,W* for a correctly discriminating

weight vector.

- 27 -

Chapter 3

THE PERCEPTRON DECISION STRATEGY

Perceptrons have excited considerable attention since they

were first introduced in 1957 by Rosenblatt (1957, 1962). Over the

years large numbers of mutations and variations have appeared, and

consequently the term "perceptron" has acquired a number of different

and ill-defined connotations. My interest lies solely in the power of

the simple adaptation, learning, or reinforcement procedures which are

employed by perceptrons, to learn to classify abstract vectors. I do

not require randomly connected association networks (Papert, 1960),

nor that features be calculated in an essentially parallel manner from

local or conjunctively local points of a retina on which patterns are

projected (Minsky & Papert, 1969). My terminology and formulation of

the learning procedure are based on Chapter 11 of Minsky & Papert

(1969).

It is assumed in this section that query vectors contain a

completely redundant component, obviating the necessity for the

distinction between iP and V. The weight vectors are initially

chosen at random. If a query vector cF (1) with

< wW. for some j,

is encountered, is replaced by w'4, and by

denotes the unit vector in the direction of , i.e. /lI•)

It is worth noting that the weight vectors are changed only if

the perceptron would have classified the query vector wrongly. In

general this process is sensitive to the outer boundaries of the

- 28 -

F-classes and. relatively . insensitive. to the points inside.

For the two class case we need only a single weight vector W,

and the learning procedure can be represented thus:

START: Choose any value for W;

TEST: Choose Oe F+ U F;

If 00+ then if W.>O then go to TEST,

else go to ADD;

If 4)cF then if W.<O then go to TEST,

else go to SUBTRACT;

ADD: Replace by W+4;

Go to TEST;

SUBTRACT: Replace W by W-;

Go to TEST.

Writing

F' = {JF+} U

this is equivalent to the following:

START: Choose any value for W;

TEST: Choose any sF';

If W. < 0 then replace W by W-K;

(A)

Go to TEST.

One of the reasons for the interest which has been shown in

the perceptron strategy is that there exists a theorem, the oft-quoted

Perceptron Convergence Theorem, which states that the learning scheme

must lead to a weight vector which discriminates correctly between the

pattern classes if one exists, that is, if the environment is linearly

separable. The proof of the theorem involves no assumptions about the

order in which the query vectors are presented, the finiteness of the

- 29 -

set F', or the dimensionality of the feature space. An elegant proof

is given by Minsky & Papert (1969); this is based on a proof by Papert

(1960). The former show how the theorem can be generalized without

difficulty to the case where discrimination between n (n>2) pattern

classes is required. They also point out that the perceptron

convergence theorem is merely another way of looking at the results

obtained on relaxation methods for linear inequalities (see for

example Agmon, 1954).

The Perceptron Convergence Theorem. Let F' be a set of vectors such

that there exists W* and 6>0 with W*.>6 for all 4)cF'. Then the

program (A) above will alter W only a finite number of times, provided

the weight vector W is initialized to have unit modulus.

Assuming that the program is presented a sequence of query

vectors in which each cF' is repeated sufficiently often, it follows

that a weight vector W for which

W.>0 for all ftV

will eventually be found. With such a solution vector, the

discrimination problem is solved for the two class case, since

cF+ implies W.>0;

cF implies W.(-)>0 implies W.<0.

The theorem also applies when a misclassified vector is added

to the weight vector without being normalized first, i.e. when the

program (A) is modified by rep1acing. (in the second line) by ,

provided that the query vectors are bounded in length. This is

always the case in real situations, and since normalization is a time-

consuming operation on conventional computers, this variant is used

henceforth.

- 30 -

It is important to realize that the theorem guarantees

learning in a stronger sense than merely cycling through, or randomly

trying, the states of a discrete machine until an acceptable state is

found. The learning of a perceptron is self-directing, and can

genuinely be described as goal-seeking; albeit with a goal which is

perhaps rather trivial. There is an interesting parallel here with

the evolutionary process:

Some biologists have argued that the process of random mut-
ation and natural selection is insufficient to account for
evolutionary changes as they have occurred, and that some
other guiding principle must play a part. Whether or not
this is so will not be argued here but, whatever the
mechanism, natural evolution is a slow and wasteful process.
(Andrew, 1963.)

Random selection or mutation of states by a naive perceptron is also a

slow and wasteful process, and the training procedure is designed to

inject a sense of direction into the perceptron's wanderings.

It is natural to ask what happens to the perceptron learning

scheme if the environment is not linearly separable. It has been

noticed that the weight vector eventually oscillates in this case; the

apparent frustration providing a valuable clue as to when to stop

training (Efron, 1963). Minsky & Papert (1969) formalized this in

their "Perceptron Cycling Theorem", showing that the weight vector

remains bounded in length, and thus, if the set F' of query vectors is

finite, the system eventually oscillates.

As far as I know, there has been no indication in the

literature of the performance of the perceptron in situations with a

controlled amount of noise. It is clear that if the size of the

weight vector is roughly the same as that of the query vectors, and a

query vector which has been corrupted by noise is presented and

- 31 -

identified wrongly bytheperceptron, then.the weight vector will be

changed significantly. This means that a weight vector which

correctly discriminates the noiseless pattern classes could be changed

radically by just one noisy query vector, and if this happens a

correctly discriminating weight vector will have to be relearnt. In a

computer simulation the perceptron reached a discriminating state on

the 91'st iteration, and for over half of the next 900 moves it was in

an incorrectly discriminating state, due to the effects of noise which

struck on the average only one out of every 20 query vectors. In this

run there was no restriction on the length of the weight vector: it

increased from 7 on the 91'st iteration to 12 on the l000'th. The

query vectors had an average length of 2.

If the weight vector is significantly longer than the query

vectors, the perceptron appears to be much more stable during the

learning period than it is when a small weight vector is used. The

difference between the partially learned discriminations before and

after modification of the weight vector by an incorrectly classified

query vector is usually very great if the weight vector is small, and

the perceptron gives the appearance of oscillating wildly. With a

large weight vector, on the other hand, the transitions of the learnii,g

process take place much more smoothly.

There is reason to suspect that a larger weight vector will be

less vulnerable to noise perturbations. For, suppose W is a correctly

discriminating weight vector for the two class case,

W.>s for all •DeF 51

W,<-ô for all 'cF; for some 5>0.

Suppose all query vectors have length at most c. Now if instead of W

- 32 -

we use.the weight vector W'=n.W (n>.0), we can.permit up to

wrongly categorized (due to noise) query vectors to modify W' without

changing the discrimination effected by the perceptron. For, let

m < nô/c 2, and suppose . . . ,' are the corrupted query

vectors. Then the new weight vector W" is given by

WV' = WV ±)? ± 1) ± • . .
1 2 in

where the alternative signs depend on the class to which was

assigned. Now

= nW. ± ±

> wS - ma
2

> no - (nO/c 2).c 2 0,

so W",' > 0, for all

and similarly,

W". < 0 for all cF.

With a sufficiently long and unlucky sequence of noisy query vectors,

the discrimination for the noiseless vectors will eventually become

incorrect no matter how large the weight vector is. One hopes that

the learning scheme will put the perceptron back on the right track

with less loss, in terms of incorrectly classified noiseless points,

than would have been occasioned had the weight vector been small.

The snag is that a longer training sequence is needed if the

weight vector is to be large. The perceptron convergence theorem

provides us with a theoretical upper bound to the number of mistakes

made during the training period, and an extension to this theorem,

given in Appendix A (Theorem 1), shows that this upper bound increases

linearly with the size of the weight vector. This result holds if the

weight vector is set initially to a fixed size and allowed to vary

- 33 -

during learning, as it does in the perceptron outlined above. Non-

trivial lower bounds for the number of mistakes made are difficult

to find, since the weight vector is initialized arbitrarily and this

arbitrary vector may itself discriminate correctly between the pattern

classes.

If the size of the weight vector is constrained only initially,

there is a chance that it will decrease significantly during learning,

thus destroying all point in having a size restriction. It is

intuitively clear that this can happen in sufficiently unlucky

circumstances; but for disbelievers the following result is proved in

Appendix A (Theorem 3): If the weight vector is set initially to

length A and allowed to vary according to the usual perceptron

adaptation rules, then there is a non-trivial environment for which

the final weight vector is small in length, provided an unlucky choice

is made for the initial weight vector. It can of course happen that

the length of the weight vector increases during learning.

Because of this variability in the length of the final weight

vector, it was thought best to consider an adaptation rule which

renormalized the weight vector to length A each time it was changed.

Unfortunately, preliminary investigation revealed that the perceptron

convergence theorem does not hold in this case. For a simple counter-

example to the theorem, suppose A>l and consider F'{(l,O)J,a subset

of R2 (the space of pairs of real numbers) with only one element.

W=(l,O) is a unit vector for which

eF' implies W*.>l/2, (with ô1/2);

but if the initial choice of W is W0=(-A,O), then

W1 = A(-A+l,O) /[(--A+l)2 + 02)1/2 (A0) = W0.

- 34 -

Hence the weight vector remains unchanged.no matter how many times the

query vector (1,0) is misclassified. Less trivial counterexamples can

easily be found; and if one is prepared to impose some kind of order

on the sequence in which query vectors are presented it is possible to

find counterexamples which involve a pattern class F of considerable

complexity. However, the convergence theorem in its strict form does

not depend on the order in which the query vectors are presented, and

the above example shows that it does not hold for the adaptation rule

described here.

An obvious solution to our dilpmma is to renormalize the

weight vector after convergence has been reached. The snag here is

the difficulty, discussed in the last chapter, of determining when

convergence has been reached. Some feedback about how adaptation is

progressing is often required to decide when to terminate the training

period, and this may be found helpful in determining when to

renormalize. Indeed, if the machine is trained for a certain period

of time and then left to fend for itself, rather than being more or

less continuously monitored and partially trained all its life, then

it seems reasonable to renormalize the weight vector to the desired

length on termination of training. This may be considered undesirable

if the machine is to continue running unmonitored, though, since the

last thing one wants before leaving it to itself is a radical change

in the perceptron's internal structure. Note that since the training

patterns will generally produce noisy query vectors, the weight vector

should be large during training, and if necessary it could be re-

normalized during this period at the trainer's discretion, provided he

bears in mind that this could considerably retard or even halt the

- 35 -

learning process. I am ofthe.opinion.thatthis apparent requirement

for interfering with -the internal structure ,of the perceptron severely

weakens any claim it may have to.being a "self-organizing" machine.

A modification of the perceptron.learning procedure, used by

Griffin et al. (1963), ensures that the weight vector becomes large

but does not-appear to suffer from the disadvantages of the methods

discussed above. It consists of seeking a corridor of specified width

separating the pattern classes, rather than merely a line, and this is

effected by using the rules

If ftF+ and W. < d then replace W by W+;

If ftF and W. > -d then replace W by W-;

for some constant d>O. These rules are rather similar to the use of a

hysteresis corridor to help a machine to "make up its mind" when

digitizing a continuous input signal (Hill & Wacker, 1969). Griffin

reports "a simple but significant improvement" in his character

recognizer if the usual perceptron adaptation strategy is replaced by

these adaptation rules, and I shall call this scheme the threshold

perceptron strategy. The constant d is referred to as the threshold.

The rules can easily be generalized to more than two pattern classes.

A reject class can be used when classifying unknown vectors:

Reject 1P if -Gd < W. < Gd,

where 0 is a positive constant, usually less than 1.

It is easy to see that the threshold perceptron strategy has

the effect of forcing the size of the weight vector up as d increases.

For, suppose c is a number such that there does not exist a unit

vector X with

X.>c for all ftV,

- 36 -

where

F' = {JcF+} u {-cF} as before.

(Such c's exist: c=a will do.the trick.) Then if W is a solution

vector for the threshold perceptron,

W.>d for all cF'.

Hence

W. > d/ IWI for all cF'.

Now (d/IWJ) > c implies W.>c for all ftV,

which contradicts the assumptions;

so (d/IWI) < c.

Hence

IWI > d/c.

So given A>O, we can find d such that if the threshold perceptron

converges, its final weight vector has length greater than A (e.g.

take d=Ac). The convergence theorem for the threshold perceptron is

given in Appendix A (Theorem 2); the upper bound on the number of

times W is changed increases linearly with d.

The threshold perceptron has additional resources to fight

noise, apart from its guarantee of a large weight vector. Suppose a

solution weight vector W has been found, but owing to noisy conditions

this has been perturbed to W' (by misclassified noisy query vectors).

Then the machine is able to "realize" that its weight vector has been

perturbed before it begins to misclassify noise-free vectors, and it

begins to correct itself before making mistakes. For, suppose W'

gives a discrimination which is dangerously close to misclassifying

some noise-free vectors, i.e.

for some ftFl.

- 37 -

Then if one of the vectors in danger.is encountered soon enough, the

perceptron adjusts itself to alleviate the danger before a noise-free

vector is misclassified, whereas an ordinary perceptron only adjusts

itself after a vector has been misclassified.

The threshold perceptron still, however, persists in the

futile attempt to correct itself for noisy vectors, as does the

ordinary perceptron. The above argument only applies to situations

where the noise level is low, so that one can think of the query

vectors as comprising a large core of noise-free vectors with some

stray noisy ones. It. is expected that the behaviour of the threshold

perceptron will deteriorate rapidly as the noise level increases.

Having decided that the threshold perceptron has a better

chance of performing well in noisy conditions than any other variant

considered (or any other perceptron-like decision strategy that I have

found in the literature), it was decided to simulate it to see just

how well it does. The details and results of the simulation are

presented in Chapter 7.

- 38 -

Chapter 4

CLASSIFICATION USING STATISTICAL DECISION TECHNIQUES

Statistical decision techniques are often used as the basis of

a pattern-classifying system. One of the advantages of this is that

the adaptation of the system can be accomplished simply by estimation

of the appropriate probabilities (or probability distributions), and

this process is amenable to theoretical treatment. Consequently we

deal in this chapter only with the decision procedures, and the

learning part is considered separately in Chapter 5.

The problem of statistical classification is usually

formulated in terms of the loss function (cost function) of decision

theory. The loss function is defined on the Cartesian product of the

set of pattern classes (possibly augmented by a reject class or a "no

signal present" class) and represents the cost of deciding that a

query vector is in class F when in fact it belongs to class

This gives a generality which, from the point of view of this thesis,

is rather vacuous: although the loss function may be both non-trivial

and known for certain commercial applications, it is usually either

trivial or unknown and assumed trivial for convenience. In

experimental situations, where the decision process is used mainly to

test (in order to improve) the feature extraction, a trivial loss

function is invariably used. After formulating the classification

problem in a very general way using the statistical decision model,

Chow (1957) remarked that "an Optimum system may prove to be too

expensive for mechanization". His opinion is confirmed by the

- 39 -

simplifications and approximations.usedin.the various implementations

of these decision methods (including his own: see.Chow, 1962), and

only techniques which have been used in or seriously proposed for

practical machines are considered here.

The simplest and by far the most frequently used statistical

classification technique is the maximum likelihood decision rule:

Given a query vector , choose the pattern class whose a

posteriori probability is greatest, i.e.

Choose class i if

PrJ:F(1)l] > PrIF] for all j . • . (A)

This rule is obtained from the general decision theory model if the

loss function is "symmetric", that is, if correct decisions cost

nothing and incorrect decisions all cost the same amount (Nilsson,

1965). For any classification system which has access only to the

query vector and the various conditional probabilities associated

with the vectors and pattern classes, the above rule minimizes the

number of mistakes made (Chow, 1957). It is in this sense that the

decision is often called "optimal" (Minsky & Papert, 1969), but it

should be emphasized that this optimality depends on correct assess-

ment of the conditional probabilities. These probabilities can in

principle be estimated to any desired accuracy if the training period

is sufficiently long and the training patterns are sufficiently

representative, but the amount of space necessary for their storage is

prohibitively large, and so approximations are used which of course

destroy the optimality of the decision.

A variant of this simple statistical classification rule

concerns situations where the decisions may be taken on data resulting

- 40 -

from noise alone (Middleton, 1960). An additional class, F0iS, is

introduced here, and the decision rule is:

Choose class i if

Pr[F ' J] > PrIFIj for all j, . . . (B)

and Pr[F'Jfl

decide that noise alone is present if

PriF(0iSJc1] > Pr[P] for all j.

In most classification systems the problem of deciding if a signal is

present or not is assigned to the feature extraction phase rather than

to the decision process, and this extra "noise" pattern class is not

used--even in speech recognition applications where determining if a

signal is present or not is a difficult problem (Reddy, 1967).

One often wishes to reject a query vector if the recognizer is

uncertain about its class. Chow (1957) showed that the following

decision rule minimizes the error rate for a given rejection rate:

Choose class I if

Pr[clr(1)]Pr[F)] > for all j . . . (C)

and Pr[IF]Pr(F] > 0.Z Pr[IF]Pr[F];

reject if

.Z Pr[IF]PrF] Pr for all j.

The small positive constant controls the rejection rate. This rule

corresponds to the decision theory model with a loss function for

which

a) all correct decisions cost nothing,

b) all incorrect decisions cost the same,

c) all rejections cost the same,

where of course cfc2. The rule is equivalent to

- 41 -

Choose class iif

Pr[F 1 J] > PrIFj] for all j

and PrJF ' J] > O.E PrIFJJ.

Note that

E PrfF 1 J] = 1,

provided that the pattern classes cover the space of query vectors

(this is almost always true if the feature extractors eliminate "no

signal present" query vectors, since the pattern classifier is

expected to classify even unusual patterns by generalization). Hence

a query vector is rejected if and only if the a posteriori probability

of every class is less than the constant 13. With this in mind, the

decision rule becomes:

Choose class I if

PrtF 1 I] > Pr[F] for all j . . . (D)

and PrfF(1] 13;

reject 1D if

13 > Pr[Ffl for all j.

This decision rule is equivalent to the introduction of a "noise"

class if Pr[F(h1015Ij is considered to be independent of 11 . Also,

there is no explicit provision for adaptation of the threshold (noise

probability), since reject decisions cannot be reinforced whereas

"noise only" decisions can. Adaptation of the threshold could be

introduced during the training period by ad hoc methods.

To implement any of these classification schemes properly, we

must store Pr[FI] for each pattern class j and each query vector

'. Unfortunately the space required for storing these probabilities

is, in general, extremely large. If is n-dimensional and each

- 42 -

component can assume one of r values, the distribution

is specified by r11-1 values for each j, and hence (m-i) (r'1-l) values

are required for complete storage if there are in pattern classes.

Suppose, to take a modest numerical example, r=n=m=10. Then around

10 11 quantities are required to specify all the probabilities

(Mariii & Green, 1960).

A simplifying assumption is that of independence of the

relative to the pattern classes, i.e. assume

Pr[IF1] = U Pr[qIF].

Then we can write

Pr[F(1)J] =

Pr[F 1]
Pr 4) • Pr[4kIF] (4.1)

This decreases storage requirements considerably. The price we pay

for this reductiony the independence assumption, is discussed at

length in Chapter 6; it is generally acknowledged in the literature

only with a passing warning that it is a "strong" condition. Suffice

it to say here that it seems to be a fundamental stumbling-block to

the statistical classification methods, and one that will not be

overcome except by ad hoc methods applicable only to restricted

classes of problems.

For the decision rule (A), where we choose the pattern class

whose a posteriori probability is greatest with no restrictions on the

absolute sizes of the probabilities, we can ignore the common factor

1/Pr[] in the expression (4.1) to get the standard rule:

Choose class I if

Pr[F(1)].11 Pr[4kIF] > PrjF].II Pr[4klFW] for all j(4.2)

- 43 -

Only n.r.m quantities are required now for storage of the

probabilities. The introduction of a lmnoiset,! pattern class, as in

(B), requires a simple amendment to the rule; the additional

probabilities are estimated in exactly the same way as those for the

other pattern classes.

Chow's decision rule (C) also does not require storage of

Pr[]; it effectively calculates this-using the relation

= E Pr[IF)]Pr[F(1] (43)

However, if the independence assumption is used to determine PrJ451F (k) 11

errors are, caused both by incorrect assessment of the values of

PrI4.jF 1] (caused by inadequacy of the training set) and by the

inevitable invalidity of the independence assumption. Hence the

summation in (4.3) leads to an accumulation of errors which will

almost certainly be quite large in normal circumstances, and this will

cause inconsistent and probably rather arbitrary rejection. I have

found no practical work reported in the literature which uses this

rejection criterion--in fact few experimental workers in this field

use a reject class at all.

The decision rule (D) requires knowledge of the absolute

values of Pr[FJ]. To use the simple Bayesian inversion and the

independence assumption above, as in (4.1), we must effectively store

Pr[J, which requires around r ii values for complete storage.

Alternatively we can assume another form of independence: that the

components of are statistically independent. This is much stronger

than the original assumption and its effect in real situations can

only be to increase the rate of misclassifications for a given

rejection rate.

- 44 -

Another method of :Liuplementing.the.rule (D) is to note that

maximizing PrIFI.] is equivalent to maximizing

over the j's, and that

Pr[FI] > if and only if

Now

PrjFIfl

=

PrfF] PrI k IF W]
= _(4) .11 _(4 '

Pr[F PrfkIF J•)]

using our original independence assumption. Following Good (1965), we

define the weight of evidence in favour of I provided by I:

Pr[YIX]
W[X:Y] = log -

PrEYl X]

Then, writing

=

prior

() = iog(Pr[F]/Pr[J]); post

we assign tP to the class which maximizes

R(1) () = R 1 + W[F:4 1.
post prior k

This gives a rather natural interpretation of the discriminatory

functions in terms of summing weights of evidence--or in fact in terms

of summing the self-information provided by the -components to the

pattern class, since as Good (op. cit.)-pointed out,

W[X:Y] = I[X:Y] -

where I denotes the information function.

- 45-

We may decide.to reject the query vector if

PrIFI] < 1/2 for all j,

i.e. if

() < 0. post =

This, or rather the converse, that is certainly not rejected if for

some j,

(') > 0, post

is exactly the result obtained by Maron (1962) as the hypothesized

condition for a neuron's firing.

A price must be paid for the rejection threshold, for now both

and Pr[4kIF] must be stored, together with the a priori

probabilities, instead of merely the former as before. However, these

need only be stored during the training period since on termination of

training, Pr[kIF W]/Pr[kI 3)] can be computed and stored instead.

Alternatively an algorithm could be used for estimating weights of

evidence directly, but I know of no such procedure.

For the purposes of pattern recognition, decision techniques

are very often used in conjrnction with query vectors whose components

are binary-valued. This follows from the fact that the feature

measurements usually serve to denote the presence or absence of some

attribute, rather than the degree to which it occurs. The statistical

classification method turns out to have a particularly simple form for

binary features because Pr[4jJFJ)] is represented by a single number

rather than by a probability distribution or density function.

However, a few remarks on the non-binary case are in order here before

proceeding to treat binary features.

- 46 -

in situations where the query vector components may take on

continuous or pseudo-continuous range of values, one normally assumes

a probability density function whichdepends on certain parameters

such as the mean, variance, and.possibly higher moments, which are to

be estimated. It can be shown (Highley311, 1961) that the optimum

decision surface between Gaussian distributions with equal a priori

probabilities is a hyperplane. If the covariances are not equal,

however, the maximum likelihood boundary is non-linear (Cooper, 1963).

I will not concern myself with cases where the distribution is

considered to be continuous.

In the discrete case, if the number r of the values

which may be taken on by 4 i is reasonably small, it should be

possible to estimate the probabilities Pr[4j=tpJF] separately.

The decision surface is in general non-linear and assumes quite

complicated shapes.

A limited series of experiments was made to determine if

either of the following two methods of treating a discrete non-binary

query vector space is significantly better than the other:

a) estimate the quantities Pr[4.=pIF) separately;

b) encode the non-binary features into the positional binary

notation and use the binary features so generated.

(As noted in Chapter 6, it is probably better to use a binary encoding

which is highly redundant but preserves the topological properties of

the environment. Method (b) is, in this sense, perhaps unfair to the

binary feature system.) The various probabilities were calculated

exactly by a frequency count using each point of the environment in

turn. The environments used were mostly linearly separable, but

- 47 -

because . of . the invalidity of . the. independence assumption, mistakes

were normally made by both methods.

Neither method seemed to be significantly more powerful than

the other; the discriminatory surfaces for (b), although linear in the

binary hyperspace (see below), assumed as complicated and seemingly

arbitrary shapes when re-encoded into the original non-binary feature

space as those for (a). It appears from this that if the query space

is to be treated as discrete, no significant loss is suffered by

considering the binary encodings of the original query vector

components as new features, and the binary method may prove superior

if an appropriate redundant but "helpful" coding scheme is used.

If the features are binary, and if the independence

assumption is used, the maximum likelihood pattern classification

becomes linear. This was shown by Minsky & Selfridge (1960), and the

following is based on their proof.

Define

ki =

p1 PrfP].

The discriminatory functions are (see equation 4.2)

g(i)() = Pr[F].II Pr[qkJF '],

assuming independence. Since log is a monotonically increasing

function, we may use the amended discriminatory functions

f(i)() = log{PrfF].II PrI*kIF9j}

= log(p.) + E logi 1-4k

= E k log kd + log (p1) + E log (q)

where

- 48 -

Wkj =

= log (p + Z log(q).

Defining

(1)
w = (wii ,w2i,

the decision rule takes the form of maximizing V.W(1) by choice of i.

In trying to gain some feeling for this decision rule, we

shall ignore rigour and imagine the n-dimensional binary query space

as being continuous. Consider the decision surface between the

classes F and F This has equation

- = 0.

This hyperplane is normal to the join of the points (w1 .w2 , ... ,w.)

and (W1J W2 ,w nj .) in our n-dimensional space. Note that the

"centre of gravity" of the class FM (mean value of {jcF(1)}) is

represented by the point

(i)
C(pli''2i' '

This shows that the discriminatory hyperplane is normal to the join of

the images of C(i) and C(j) under the transformation

X + log{ x/ (l-x) }

applied to each of the co-ordinates. This should be contrasted with

the perceptron learning scheme which is in general sensitive to the

outer boundaries of the pattern classes rather than to their interiors.

As pointed out by Nilsson (1965), the equation of the hyperplane

depends in a reasonable way on the probabilities involved. As p.

increases with p . constant, w and hence (w - w .) increases.
Mi mi mi mj

This favours an FM response for query vectors with

= 1.

On the other hand, the m'th component of iP is ignored if and only if

- 49 -

w
mi mj

i.e. if and only if

ini = mj'

in which case that component contributes nothing to the discrimination

between F 1 and The a pri0r1probabilities of the pattern

classes affect only the thresholds G, and if FM becomes less likely

then 6 decreases and the decision surface moves toward

With a finite number of samples in the training set it may

happen that some p. or q jj becomes zero. Usually, though, the

conditional probabilities are smeared, partly because they are often

estimated by an iterative process which rarely gives zero or one

(except in storage limited cases where only a small set of values is

available for probabilities), and partly because of noise

perturbations. If the independence assumption is valid and the

conditional probabilities are known for separated patterns in

hyperspace, then the maximum likelihood classification becomes trivial

since many of the conditional probabilities will assume their extreme

values of zero or one, causing all but one Pr[jF] to vanish for

any (see Chapter 6). However, if one wishes to preserve the

formalism in these cases and use log probabilities in the form of

weights of evidence, there is theoretical justification for replacing

the usual frequency estlmte for PrI4i1].lFJ, where

is the number of occurrences of Vs in with i-component 1 out of

a sample of by + l}/{N' + 2), thus avoiding .the problem

of zero probabilities (Good, 1965).

- 50 -

Chapter 5

STANDARD PROBABILITY ESTIMATION TECHNIQUES, AND SOME

CONPLICATIONS ARISING FROM STORAGE LIMITATIONS

I regard this chapter, or at least the first part of it, as a

necessary evil. Techniques for probability estimation are well known

and have been used in learning machines for some time now, and I feel

that little if any improvement can be made to these. However, our

discussion of the maximum likelihood decision method is of little

consequence unless these techniques are described; in addition to this

it is difficult to find a complete treatment of more than one

probability estimation procedure in any one place in the literature.

An exception to this is provided by Minsky & Papert (1969), and the

first part of this chapter is based on their exposition, with some

alterations and additions of my own. It was not thought worthwhile to

carry the argument to several decimal places, and means, variances,

and limits are assumed to exist whenever this is convenient.

One often requires learning machines to repeatedly estimate

the probability of "favourable" events in some continuing process.

Normally this cannot be calculated directly, since it is by definition

a limit, and so one must find estimators. The simplest way to

estimate a probability in situations of this kind is to find the ratio

h/n of the number h of favourable events to the total number of events

so far experienced.

Define

= (the n'th event is favourable';

- 51 -

let p be -the true probability that an -event is favourable;

Pbe the estimate of p after n trials.

Then the formula

pn = (1 - 1/fl)I + (1/n)4

computes the frequency ratio

pti = = h/n.

. . . (5.1)

Making the usual assumption that successive events are independent,

and noting that 4. is binomially distributed, we have

E[p] = p, . . . (expectation)

Var[p] = p(l-p)/n. . . (variance)

Note that p0 is truly arbitrary, since the value of p (ii > 1) is

independent of p0.

The estimate (h+l)/(n+2) was mentioned at the end of the last

chapter; this avoids some problems which can arise from zero

probabilities. The formula

1
= (1 n+2'n-1 +

PO = 1/2;

computes

1
n+2

h+l
= 1 • (2p0 + Z 4) =

. . . (5.2)

It behaves as the previous procedure would if one 41 and one 40 were

observed in two moves, before starting to observe the 4,'s proper.

Consider the alternative estimator

Pu = (l-0)P 1 +

This is the e.'zrponentiaily weighted past average (EWPA) procedure, and

has the advantage that the current value of nneed not be stored and

appropriately incremented. 'The solution of the recurrence relation is

- 52 -

Pn =(10)flp + OE

so EJpJ = (1-0)'1p0 + pa - (10)r)

+p as , for all P0.

Also,

Var[p] = p(l-p).0(l - (10) 2n)/(20)

0
• .P(l-P).

It can be seen that recency outweighs experience, for this estimation

procedure, since the coefficients of decay exponentially with time.

This is an advantage for many pattern recognition systems, since the

feature extractors may be changed (for example by varying thresholds)

in a gradual but unpredictable manner, depending on the performance of

the classifier. In the limit for large n, the expected value of p is

p, and the variance can be made arbitrarily small by choosing 0 small

enough.

Following Minsky, we can "equate" the variances of procedures

(5.1) and (5.3):

p(l-p) = 0(1 - (10) 2fl)

n 2 -• 0 •i :11_)

so n"2/0.

Thus the variance of procedure (5.3) is about the same as that

obtained by averaging the last 2/0 observations. We can think of 1/0

as a time-constant for "forgetting". For small 0, there is slow

adaptation but the variances are small and the final estimate is

reliable. For large 0 adaptation is fast but the limiting variance is

large. Initially the situation is as though the probability had been

estimated at p0 on the basis of l/0 trials. Hence for small 0 the

influence of the arbitrary p0 is present for some time, and for large

- 53 -

o we run the risk of violent.osciilatjons atthe beginning. Samuel

(1959) used an ingenious compEomise in his checker-playing program.

He set yo = 1/2 and used

= (1 - 1/N)p + (liN)+i

where

16 if n<32

N = 2m if 32 < n < 256 and m is an integer with 2" < n <2111+1

256 if 256<n

This ensures stability at around 1/2 in the early stages, approximates

uniform averaging in the middle, and finally settles down to an EWPA

to ensure adaptation to changing circumstances.

Minsky & Selfridge (1960) used an adaptation rule which is

only trivially different from the EWPA estimator:

Pu = (1_O)(p_ + 0<0<1.

Let qn = 0Pn/(l_0)•

Then

so

(1-O)q/6 = (l-0)cj. (l-0)/0 + (l_0)4,

qn = (l•O) 1 +

(5.4)

which is the same as rule (5.3). Hence the limiting expectation of

is (l-O)p/O,

and the limiting variance is

()2

0(2-0) •P1P

Pn

One sometimes wishes to estimate the likelihood ratio p/ (]-p)

directly. This can be done using

Pn = (l-e)p 1 + 0(1 + p)4
n-1 n

Write

0co<l. . . . (5.5)

- 54 -

E = EIpj; E = Lt(E) as n -'-

x=EIp]; X=Lt() as n+,

Then

E n 8p+(i-O+Op)E1,

n-i
so E 0p. Z(i-O+Op) 1 +(1-O+ fl

n °' 0

= . (l - (1-O+Op)'1.) + p0. (i-O+Op)'
i-p

provided

p # 1.

Hence

R = as required.
i--p

Now p n n2)2.pn2—i + 2O(1-O+O i +

We have

e2. 2

E[(i-8+84)2] = p + (i—O) 2 .(1—p) = (i-8) 2 + O(2—O)p ;

E[(i-O+e)

and E[4 2] = P.

Hence

xl-'

so

=

= { (i—o) + 0 (2-0)p} . + 26 p n—i + p0 2

= {(10) + 0(2-0)p}. + 20p2/(i—p) + pG 2

This gives

x

p(2p+e—op)

(2-o)(i-p) 2

The limiting variance of p' is given by

V= X — E

- 55 -

= 2-0 (1-p) 2

Thus the limiting variance maybe made as small as we please by

choosing 0 sufficiently small.

The effect of limited storage for probabilities on EWPA

estimation is now considered by means of an example. Suppose the

probabilities are stored as integer percentages, i.e. write

q = lOO.p,

where the q's are stored as integers. The EWPA recurrence relation is

pn = (l-O)P - i + 04, n n

= n-1 + 0(1 - - 0p 1. (l -

In terms of the q's, this is

qn = q 1 + 0(100 - q_1 4, - Oq 1.(l - 4). (5.6)

Let the value of 0 used be 2%. An acceptable digitization of (5.6) is

(see Figure 5.1)

where

= q_1 4(q_ 1) + d'n-1 (1 -

=

=

5 +2 if x < 50 , . . . (5.7)

if x>5O;

if x<50,

1-2 if x> 50

A digitization which sticks closer to the required line is

+2 if x25

= +1 if 25 < x 75

0 if 75<x;

and similarly for 1d(x), but this suffers from the disadvantage that

if p is in the range 125,75] then m (m>n) can never be less than 24

- 56 -

or greater than 76. Hence we.usethe digitization (5.7).

5-

5-

- S

1
-5-

- S

0

1

-2

Now

IT

-5-

5-

5-S

- S

5--

5--

- S

50 100

I -

- 1

Figure 5.1

The digitization of the A-functions.

E[q] = E[q 1] + p.E[A1(ç1)] +

x

where p, as before, is Pr[il]. Assuming for convenience that q

always remains above 50,

Eq] = E[q 1] +p -

so if

p >

i.e. if

p>2/3,

then q is expected to increase steadily until it reaches the upper

limit.

- 57 -

This is clearly an undesirable state of affairs. ..Moreover,

the phenomenon is not confined to-the example given; it willbe present

to a greater or lesser extent in any system which digitizes the

probabilities and adjusts them in a straightforward manner. The

example is not an

situation--on the

complications was

machine which was

extreme one which is unlikely to occur in a practical

contrary, the existence of storage limitation

brought home to me while experimenting with a

a realization of just this example.

We have seen that the EWPA procedure (or in fact any other

conventional probability estimation procedure) is spoiled by

digitization unless the parameter 0 is large compared with the

precision to which the probabilities are stored. The only explicit

reference I have seen in the literature to the following technique for

overcoming'this difficulty is due to Andreae (1969), although tlhr &

Vossler (1963) used a similar technique without comment.

I propose using this system for incrementation and

decrementation in the above example:

2 with probability (100 -

0 ' 11 xl,

II

IV

X%,

(100 - x)%.

Hence A. and Ad can be interpreted as random variables dependent on

2.the argument x, whose expected values, given x, are the same as the.

values of the a-functions given earlier. Fdr amore general treatment,

let us revert to the p's and re-define1 andd by

p n = p n - i +L(p).c + l n-1 n d

We choose the s-functions to, be

. . . (5.8)

- 58 -

= { o with probability

o it VI

15 0 " It

where 0 is a positive constant, less than 1, chosen to be a multiple

of the precision to which the p's are stored. We calculate the

expectation and variance of the p's: these are assumed to exist.

Let En = E=Lt(E) as n+.

We need the following facts:

EI] = p; E[l - =

E[.(p)] = E[E[t.(p:)JpJ], by a well-known theorem of

probability theory (see for example Gnedenko, 1962);

so E[(p)] = EjO(l - p)J

= 0(1 - E).

Similarly,

= -OE.

Hence (5.8) becomes, in terms of expectations,

E = E 1 + Op (1 - E 1) - 0 (l-p) En_i

Also,

= (l-0)E 1 + Op.

= p0.

Hence

E = (1_0)n• + (1 -

so E = p.

This result is exactly .the same as that obtained from the conventional

EWPA procedure. For the variance of the p's, we use

- 59 -

= 1A (p •y}2;2 dn-l> (1 -

+ 2p •1{1(p.1) . + (1 - }

(5.9)

Write

X = E.fp]; x = Lt(X) as n --

these are assumed to exist. We need the following:

E[2] = p; EI(l - n)2) = i-p.; E.(l - = 0;

E[(1(p))2] = 02 .(i. - E); E[(I d (p)) 2] = 02.E;

Etpn A (p)] = E[ep(1 - = 0(E -

EIp.(n , d p)J = E[-0 .p) =

In terms of expectations, (5.9) becomes

Xn = X_i + P' (1 - E 1) + 02 (l-p).E 1

+ 2p0(E :i. - Xn_i) -,

= (l-20)x n-i + 0(0 + 2p(1-0)).E + p0 2.

Hence

x (i-20)x + 0(0 + 2p(l-O))p + p0 2,

° XP(O+PPO).

Thus the limiting variance of p as n + is

x - = 0p(i-p).

Note that this is slightly larger than the variance

0
.p(l-p)

of the conventional EWPA procedure. This is only to be expected since

the additional random element in the 1-functions introduces a new

degree of possible variation, so to speak. However for small 6 the

- 60 -

difference in the variances is negligible, and these probabilistic

incrementation and decrementation techniques provide an acceptable

method for overcoming difficulties arising from storage limitations.

- 61 -

Chapter 6

THE INDEPENDENCE ASSUMPTION

The single failing of the maximum likelihood decision strategy

(in its usual form) is that the independence assumption is almost

never true. While wandering through numerous papers on this decision

strategy and associated topics in preparation for this thesis, I was

forcibly struck by the lack of space devoted to this assumption and

its implications. Although passing references are made to the

difficulty at several places in the literature (see for example

Minsky, 1961; Nagy, 1967), the problem is usually dismissed in a

sentence or two. Having given the subject considerable thought, I am

now of the opinion that in fact not much can be said about it; one

must accept the assumption if one wishes to build a practical machine

embodying maximum likelihood decision strategy, and features should

be chosen in such a way as to help the decision. For this reason the

present chapter is cautionary rather than constructive, and a large

part is devoted to an examination of some implications of the

independence assumption.

It seems that the problems of implementing a maximum

likelihood decision scheme using a weaker form of the independence

assumption are almost insurmountable. Lewis (1959) developed a method

of successively approximating to probability distributions; his first-

order approximation is equivalent to assuming independence, and

higher-order approximations are given which refine the estimate of the

probability distribution at the expense of increased storage

- 62 -

requirements and considerable additional complexity. As far as I know,

however, these higher-order approximations have never been embodied in

practical machines. Lewis himself, when simulating an experimental

pattern classification machine, used only his first-order

approximation (Lewis, 1962), and it is instructive to examine his

reasons for doing so:

It [the independence assumption] was made . . . because
1) the assumption yields a simple realization for the

recognition system,
2) there are a great many situations for which such an

assumption is adequate,
3) a study of this simple case furnishes a first step

in the study of more general situations.

(1) appears to me to be the most binding consideration as far as

designers of practical machines are concerned. Note that in (2),

Lewis claims only that the independence assumption is adequate, rather

than valid, for many situations. It is shown below that the

assumption is valid only for a greatly restricted class of situations;

unfortunately its adequacy is rather more difficult to investigate,

and the evidence for (2) is presumably that maximum likelihood

classifiers using the independence assumption have been shown to

function reasonably well. Concerning (3), the conspicuous absence in

the literature of investigations of more general situations seems to

indicate the difficulty of implementing higher-order approximations.

It is possible to implement weaker forms of the independence

assumption in an ad hoc manner depending on the particular features

used. An example of this is provided by Chow (1962), who simulated a

machine for recognition of hand-printed characters using the binary.

matrix representation of a character as its feature vector.

Approximate size normalization and registration had already been

- 63 -

performed. Chow assumed a "nearest-neighbour" dependence:

Pr[IF] = II ii j_,j; F],

where

(the (i,j) 'th matrix square is occupied by part of the

character.

This form of dependence is justified by intuition and depends strongly

on the particular kind of features used, and on the ordering of

features. The dependence is on the north and west neighbours: • the

other two neighbours are not explicitly needed. The number of

probabilities to be stored is about four times that required if the

usual independence assumption is used. Recognition was achieved with

97% success (on previously seen samples taken from the set of ten

numerals), which represents a considerable improvement over the 80%

success achieved using the usual independence assumption.

We next look at some of the implications of the independence

assumption. Our starting-point is the following definition of

independence:

The events E1 and E2 are independent If PrIE1IE2J =

The events E1 and E2 are independent with respect to the event A

if Pr[E11E2 & A] = Pr[E1IA].

Thus E and E2 are independent w.r.t. (with respect to) A If given A,

tells us nothing further about E1. It is easy to show that this

implies that E2 and E are independent w.r.t. A, as it should. We deal

for the moment with only two events for the sake of simplicity: all

results generalize easily.

When using independence to simplify the maximum likelihood

decision scheme, one assumes that

- 64 -

Pr[1 & q2lF] = PrIq1IFJ.PrJ2IF].

This is exactly ,equivalent to assuming that

and are independent w.r.t. F.

For, (6.1) ,is true if and only if

Prt1IF].Pr[2IF] Pr[41q2 &.'F].Pr142IFJ,

(6.1)

(6.2)

which is equivalent to (6.2) (provided Pr[4 2 JF19&O, which must be true

if Pr[1 l4 2 & F] is to have meaning).

Let us examine a simple situation where the independence

assumption is not true. Consider the features given by two

rectangular Cartesian co-ordinates; let A be the set of points (see

Figure 6.1)

A={(O,O) , (0,1) ,

where the points are encountered with equal frequencies, i.e.

Pr[f 1=O, 2=OIA] = 1/3,

and similarly for the other points in A. (The event (4 1, 2)cA is

denoted by A where this will cause no confusion.)

Figure 6.1

A situation where the independence
assumption is not true.

- 65 -

Then

number of points in A with

PrIq 1=OjA]. -

number of points in A

and Pr[4 2=OIA] = 1/3.

Independence implies

Pr[4 1=O, q2=OA] = Pr[4 1=O IA] .Prfl 2=O IA]

= (2/.3).(1/3) = 2/9,

= 2/3,

and this is not true.

Note that

Pr[1=0I4 2=0 & A] = 1,

so Prj4 1=0, 42=01A] = Pr[$1=OI4 2=0 & A].PrH 2 0IA]

= 1.(1/3) = 1/3,

which is as it should be.

Suppose now that we have another pattern class B which

contains the point (1,0), and such that

Prf1::1, 2OIB] < 1/9.

This is easily accomplished by taking

B = {(1,O) , (2,0) , (3,0) , . . . , (1O,O)}.

Then the features are independent w.r.t. B, ,and

Prt4 1=1, 2=OIBJ = 1/10.

If we assume independence for A, the point (1,0) will be categorized

wrongly, since

Pr[4 1=1, ,2=OIA] = Pr[p1=1IA].Prjcp2=OIA]

= (1/3).(1/3) = 1/9

> Pr[4 1=l, 42=OIB].

Note that if we do not assume independence for A, then

Pr[1=1, 42=OIA] = Pr[1=1I4f0 & A].Pr[42=OIA] = 0,

- 66 -

since no point (1 ,4 2)cA with 40 has 4i=l.

Whether or not the independence assumption holds for a pattern

class,, F depends on the frequencies with which points of F are

encountered. This can be seen by considering the set of 'points

A {(0,0) , (0,1), (1,0)

If all the points in A have equal frequencies, then the independence

assumption clearly holds. However, if the frequencies are

0.25 , 0.25 , 0.49 , 0.01

respectively, then

PrI 1=ll,A] = 0.50,

Prt2=lI,A] = 0.26,

so 0.01 Prt 1=1, ,2=1I,AJ 0 PrI 1=1I.AJ.PrI 2=1JA] = 0.13,

so the independence assumption does not hold. Thus ,a pattern class F

may be said to consist of a set A of points, each with frequencies

attached, where the set A and the frequencies are defined by

A = {XIPr(=XIF] >0 };

percentage frequency(X) 100.Pr[=XI.F] for all XcA.

The next result gives a characteristic which must be possessed by all

sets of points corresponding to pattern classes which satisfy the

independence assumption, irrespective of the associated frequencies.

It is proven here for the case where the set of points is discrete;

the extension to the continuous case can be shown similarly but is not

relevant to this thesis.

Let F be a pattern class which satisfiesthe independence

assumption, and denote by A its associated set of points as defined

above. Suppose the query vectors are n-diiuensional and discrete. We

assume that all points in A have integral (not necessarily binary)

- 67 -

co-ordinates--this is easily arranged since the feature space is

discrete. Let A1 be the projection of A on the i'th feature axis, i.e.

Ai = {xl there , exist x1 ,x2, ... ,x1 1 ,x 1, ... ,X with

(x1 ,x2, ... ,x1_1 ,x,x 1, ... ,x)eA}, 1 < I < n.

By the definition of A,

Pr[4 1=x1 for all i, 1 < I .nIcF] > 0 if and only if

(X 1:'x2:' ... ,x)A.

Also,

Pr[.=x.IcF] > 0 if and only if x1cA1.

The independence assumption for F is

Pr[41=x1I=x. for all jB, & cF]

for any subset B of {l,2, ... ,i-1,i+l, ... ,n} and all 1. Note that

this is stronger than merely pairzaise independence of the co-ordinates

of w.r.t. the event 7?€F. The independence assumption for F implies

that

Pr 1=x1 for all 1, 1 < i < nIcF]

= II Pr[+..x.I.=x. for all j, i < j < n, & CF]

= II Pr[.=x1leF].

Hence

(x 1 ,x2, ... ,x)cA if and only if II PrI.x1lcF] > 0

if and only if Prf 1 x1 jcFJ > 0 for all i

if and only if x..cA1 for all 1.

Hence

A = {(x1 ,x2, ... x)IX cA for all i, 1 I

that is, A is exactly the Cartesian product of its projections on each

of the axes. The best way I can describe figures satisfying this

restriction is to call them striated rectangular figures, with

- 68 -

striations parallel to the feature axes. An example in 2-space is

given in Figure 6.2.

y

A
y

IZI V//I/A

Figure 6.2

An example of a striated rectangular figure.

We have shown that if a pattern class satisfies the

x

independence assumption, then its associated set of points must have

the form of a striated rectangular figure, as described above. It is

easy to see that if a pattern class F does not satisfy the

independence assumption, and its associated set of points does not

have this form, then a maximum likelihood classification scheme which

assumes independence will assign all points in the smallest striated

rectangular figure containing A to F with a non-zero probability. For,

suppose there exists a point in A, for each I, with i-component x1.

Then

Pr[41=X1ICF] >0 for all I,

so Pr[= (x1 ,x2, ... ,x)IcF] > 0.

Hence there is a sort of generalization of the pattern class to the

- 69 -

smallest striated rectangular figure containing A. An example is

given in Figure 6.3.

-y

x

generalization

y

Figure 6.3

Generalization resulting from invalidity
of the independence assumption.

x

A further consequence of the independence assumption is that

if it is really true, and if the pattern classes are separated (i.e.

do not intersect), then a maximum likelihood decision can be

accomplished by a form of exact matching of the query vector with

templates associated with the pattern classes. This is shown for the

case where the features are binary-valued; the extension to many-

valued features is obvious. Using the terminology of Chapter 4, and

assuming independence,

Pr[F] (=l (
'J i

Pr[] 3

Now Pr[Fl] > 0 if and only if 4)cF,

since the classes are separated. Take any particular sF, the

complement of F.

Pr[Fk'] '0,

so there exists j such that

- 70-

14; =l' (4) =&
pi i .(l - = o.

Hence either p=O and 4).=l or p.=l and 4).0. In either case, it

follows that the j'th bit (feature) is the same for all query vectors

in F. Define

f = {j J4 is the same for all cF}, a non-empty set.

Take any particular *cF. Then

cF if and only if Pr[P In > 0

if and only if 4). = 4 for all jcf.

Hence one can tell if a query vector 4P is in any particular pattern

class by exact matching of certain bits (depending, of course, on the

pattern class) of the vector with any representative of that class.

All that need be stored is a Vin thatciass, together with pointers

to the bits of which are iñiportart for that class.

In the light of the above discussion, it is evident that the

independence assumption is actually valid only for an extremely

restricted class of situations. Fortunately it is adequate for

pattern classification purposes in a rather larger class of situations.

Each pattern class can be viewed as competing for any given query

vector --we assign 1P to the class which maximizes

without requiring that

Pr[FI'] > 0 and Pr[F ' Ifl = 0 for all i#j.

I have found no general way of examining the adequacy of the assumption

except by experiment.

At the beginning of this chapter it was mentioned that since

one virtually has to accept the rather dubious independence assumption

to implement a maximum likelihood decision, the features should be

- 71 -

chosen in such a way as to help the decision. Although a discussion

of the feature extraction process is beyond the scope of this thesis,

a brief consideration 'of the important special case where a binary

encoding of measurements is used to provide binary features is in

order here, since this encoding process can affect the independence

property. The next result shows by an example that independence can

be lost just by encoding numerical measurements into the usual

positional binary notation. It is interesting to recall that encoding

features into the positional binary notation, actually enhances the

possibility of linear separability (see Chapter 2).

Let A be the set

A = {(0,l) , (0,2)),

and let F be the pattern class associated with A, where the points in

A are encountered with equal frequency. Then F evideitly satisfies

the independence assumption. Consider

A' = {(0,0,0,l) , (0,0,1,0)),

obtained from A by a 'two-bit positional binary encoding of the features.

Let F' be the pattern class associated with A'. ,

Then

Pr[3=lI'cF'] = 1/2,

but Pr[4 3 114 4 0 & eF'] 1.

Hence F" does not satisfy the independence assumption.

Andreae (1969) discusses a situation where the feature

extraction process consists merely of coding the points of a 10 x 10

matrix.' Although he is primarily concerned with STeLLA'-like decisions

(see Chapter 8), I feel that his remarks are also relevant to maximum

likelihood decisions. He suggests that the kind of input encoding

- 72 -

scheme used is vital to the performance of an adaptive pattern

classifier, and recommends the use of a SIG (snake in the grass) code

(see Figure 6.4). For .Andreae's particular situation, each point is

Number •Code

11 00000
2 00001
3 00011
4 .00111
5 01111
6 11111
7 11110
8 11100
9 11000

10 10000

Figure 6.4

A SIG code.

represented by ordinary rectangular Cartesian co-ordinates, each

converted into the corresponding SIG code. This, he points out, has

the advantage of preserving environmental continuity.

The input coding [see above] . . . is particularly helpful to
the machine because it reflects the natural topology of the
environment. The Hamming distance (number of digits in
opposite state) between code words reflects quite accurately
the proximity of the lattice points in the 2-dimensional
input space.

He goes on to compare this with a positional binary encoding scheme

which, of course, preserves environmental continuity only to a very

limited extent, if at all.

SIG coding also has the effect of introducing a high degree of

redundancy. This is vital in noisy situations, but has disastrous

implications for the independence assumption when little or no noise

is present. Nevertheless, I believe that the adequacy of the

- 73 -

independence assumption will not be greatly impaired by the use of

this kind of redundant input èoding, although its validity will

certainly be destroyed. Unfortunately I can offer no concrete

evidence for this conjecture.

- 74 -

Chapter 7

SOME EXPERIMENTS WHICH ILLUSTRATE THE DIFFERENCES BETWEEN THE

PERCEPTRON AND MAXIMUM LIKELIHOOD DECISION STRATEGIES

It was mentioned in Chapter 1 that few attempts to compare the

performances of different decision strategies have been reported in

the literature. I feel that the following reasons account, at least

in part, for this regrettable fact:

1) Adaptive decision techniques are specifically intended for

situations where incomplete and possibly unreliable information is

available to the decision taker. Hence if comparison is attempted

using environments taken from real life situations, these environments

are unsuitable for well-controlled experiments, especially when reason

(2) is considered. If, on the other hand, abstract environments are

used, one runs the very real risk of "favouritism"--see (3) and (4).

2) While the emphasis in adaptive machine design is usually on

economical hardware realization, machines are usually simulated by

digital computer in the experimental stage. This simulation is rather

costly in terms of computer time.

3) Different decision strategies have different characteristics

which render fair comparison difficult.

4) There is no way of grading or comparing the complexity of

environments except by way of the decision strategies which are to be

evaluated.

At first sight, (3) looks a little out of place since after all,

decision strategies are designed to perform roughly the same tasks.

75 -.

For me, one of the main benefits which came from attempting an

experimental comparison of decision strategies was that I was forced

to consider their different characteristics in order to make 'the

comparison fair. This is one of the chief interests of the present

chapter, and will become apparent in the following pages.

Normally when one tests a pattern-classifying machine, it is

the particular features used that are under test, rather than the

decision strategy itself. Such tests are reported fairly well in the

literature, although comparisons .of the effect of different features

on the same data are rather more difficult to come by. (A notable

exception to this is provided by Bledsoe & Bisson, 1962; in connection

with this see also Chow, 1963). As mentioned in Chapter 2, the

performance of different decision strategies will depend critically on

the features used; thus a comparison of decision strategies would be a

gargantuan task if-no analytic techniques were used. For this reason

the experiments reported here are intended to illustrate some points

made in previous chapters; they are presented to augment the arguments,

not to carry them.

The decision data for the experiments were specially chosen in

order to investigate the following phenomena:

1) the influence of threshold size on convergence time for a

threshold perceptron;

2) the behaviour of a threshold perceptron in noisy conditions;

3) convergence time of a maximum likelihood classifier using the

independence assumption;

4) behaviour of a maximum likelihood classifier in noisy conditions.

(1) evidently requires an environment which is linearly separable.

- 76. -

Moreover, for (3), the environment must be such .that the independence

assuniptionis adequate, though not necessarily valid. To investigate

(2) and (4), some mechanism for introducing noise in a controllable

manner is required.

The environment used is illustrated in Figure 7.1. The blank

"don't care" points in the 8 x 8 two-dimensional matrix are never

presented to the decision machine, but they may be received by it

because of noise corruption. Features were obtained from any

Figure 7.1

The standard environment used in
all experiments.

particular point by a positional binary encoding of the two

rectangular co-ordinates, giving a 6-component binary feature vector.

A further component was added to each query vector to obtain the

augmented query vector ': this component was always 1. Using these

features, the two pattern classes F+ and F are linearly separable.

In addition, the independence assumption, while not valid, was

adequate for discrimination between the classes.

Noise was added to the environment by corrupting the

components of each query vector with a specified probability in an

independent manner thus:

- 77 -

Replace by 1- with probability p (1 < I < 6).

The last component of each augmented query vector was never corrupted,

since its use is merely a notational trick to simplify writing and

programming. The probability p is referred to as the noise level and

is expressed as a percentage. Thus if the noise level is 10%, the

probability that any particular query vector is not corrupted is

(1 - (1/10))6 = 0.53

For all experiments, points in F+ U F were chosen at random.

The process of choosing and corrupting a query vector can be stated as

follows:

START: Select a point P at random from the 8 x 8 matrix;

If P is not classified as + or - then go to START;

If P is classified as + then TYPE = +, else TYPE = -;

Compute the uncorrupted binary '-vector from the

co-ordinates of P;

For i = 1 step 1 until 6 then

replace 4 by 1-4 with probability (noise level/100);

Present the corrupted query vector to the decision strategy

for recognition, together with TYPE.

Figure 7.2 shows the relationship between convergence time for

a threshold perceptron and threshold size, when no noise is present.

The vertical axis indicates the number of mistakes made before

convergence was reached. The initial weight vector for the perceptron

was randomly chosen with length 1. Al]. query vectors were normalized

to length 1 before being added to the weight vector. For each

threshold value the perceptron was run ten times, each run being

terminated when convergence was reached. Each run took place with a

- 78 -

different initial weight vector, and with the pseudo-random number

generator in a differentstate (this ensured that the sequence of

points examined was different for each run). Figure 7.2 shows the

mean number of mistakes before convergence, plotted against the

a I I
0.0 0.5 i3O i.5 2.0

Figure 7.2

Convergence time for a threshold perceptron.

threshold. Larger threshold values were not used because of the

amount of computing time required, but a smaller number of runs with

thresholds 3 and 4 indicated that the linear relationship continues at

least up to threshold 4. The theoretical upper bound shown is

calculated from the formula obtained in the proof of the convergence

theorem for the threshold perceptron (Theorem 2):

- 79 -

1.+ 2di-.2tS
Ii =

The value of 6 which was used was the maximum ô found in the

simulation runs:

ô = 0.187

The results obtained in the simulation are strikingly close to half

the theoretical upper bound--a further line is given in Figure 7.2 to

emphasize this.

In Figure 7.3 the ranges of convergence times are shown for

perceptrons with various thresholds and for the maximum likelihood

(independence assumed) classifier. Note that the vertical axis gives

the total number of cycles to convergence, and not merely the number

of misclassified points as in Figure 7.2. Ten simulation runs were

made for each method, and the maximum and minimum convergence times

were deleted in an attempt to eliminate exceptional cases. The range

between the maximum and'minimum of the amended set is shown. The

results are not very reliable--they depend rather critically on the

particular sequence of points used for adaptation. Nevertheless, it

can be seen that the maximum likelihood classifier can be expected to

converge in roughly the same length of time as a perceptron with zero

threshold, for this particular environment.

The question of convergence time in noisy conditions now

arises. We provisionally define this to be the time taken for the

adaptive machine to reach .a state where it correctly classifies all

noiseless points, since clearly the machine cannot be expected to

classify all noisy points correctly. Certain types of decision scheme,

however, improve their performance after they reach the stage where

- 80 -

they can correctly classify.allnoiselesspoints---the maximum

likelihood decision strategy is an example of this. Hence convergence

time as defined above is not necessarily an indication of the length

of training period required for a classification machine if noise is

present.

I
MAXIM1
LIIHflW

Figure 7.3

Variations in convergence time for various
pattern classifying methods with a

standard noiseless environment.

In cases where the details of the environment and the noise

statistics are known, the optimum performance of a maximum likelihood

classifier (both with and without the independence assumption) can be

calculated, and one useful measure of' the length of training period

- 81 -

required for ;ths type of decision strategy is the mean time taken to

reach this optimum performance. This is discussed later.

For perceptron-like machines, which do not eventually settle

down to a fairly constant performance level, convergence time as

defined above has little meaning, since the performance may

deteriorate, considerably after the machine has "converged". I can

propose no satisfactory measure of convergence time for perceptron-

like machines in noisy conditions, although clearly the confusing

effect of noise means that the higher the noise level the longer the

training period required. Some rather inconclusive experiments were

made to investigate the expected time taken by perceptrons to reach a

state which correctly classifies all noise-free points: it was found

that the times taken on different occasions under the same conditions

varied so much that the results were rather meaningless. For these

reasons, the following investigations of the perceptron's performance

in noisy conditions were conducted after the perceptron had converged

in conditions of no noise, since experience of the noise during

convergence would not have helped the perceptron.

In order to compare the performances of threshold perceptrons

with different thresholds in noisy conditions, points corrupted by

noise were ignored in the success count for the perceptron. These

points had an implicit influence on the success count because

adaptation continued throughout the experiments, and all misclassified

points--noisy, or not--modified the weight vector. The effect of the

perceptron's futile attempts to adapt itself to the noisy points was

sought, and since it cannot be expected to classify noisy points

correctly (except by chance), the inclusion of these in the frequency

- 82 -

count would only cloud the issue. Figure 7.4 shows .the percentage

misclassification for points whichwere uncorrupted by noise, plotted

against threshold values, for various noise levels. As predicted in

Figure 7.4

Success of a threshold perceptron in
noisy conditions.

Chapter 3,, misclassification of noise-free points can be almost

completely eliminated by using a perceptron with a threshold of three

or four times the length of the query vectors (the query vectors in

these simulations were normalized to length 1), provided the noise

level is low. If the noise level is high, in our case greater than

- 83 -

about 15%, it is much more difficult.to.eliminate.the.perturbing

effect of noise on the weight vector. It.should be pointed out that

no decision strategy works well in conditions where a large amount of

noise is present--one of'the purposes of feature extraction is to

reduce the amount of noise passed to the decision stage--and so, in

normal conditions, it will be highly beneficial to use a threshold

perceptron rather than one of the basic variety.

One of the advantages of using an artificial environment with

controlled noise is that it is possible to determine the expected

performance of a true maximum likelihood (not assuming independence)

classifier by exact calculation. To do this, one first determines the

machine's correct strategy for classification of each query vector 0,

using the relation

prtr(1)I) = E

where the sum is taken over all possible vectors V, and

= Pr[' is transformed to 0 by noise corruption].

f(',) can be 'calculated using the number of unlike bits of V and ,

and the noise level. The machine's correct strategy for classifying a

query vector is now known, viz. choose i such that Pr[F1) is

greatest. Naturally'the "don't care" class (blank points in

Figure 7.1) is never chosen, although its probability may be greater

than the others. For low noise levels (up to 40% in fact), the

machine's correct strategy differs from the true dichotomy, as in

Figure 7.1, only in the classification of the "don't care" points.

Having determined this optimum classification, the probability of a

mistake being made can be calculated:

84 -

Primistalce] =). {Pr.[' .chosenj. E

.1true classification of V 0 machine's

classification of } },

where the summations are taken over ' and D respectively.

This probability of, error is plotted in Figure 7.5 as line E.

jo I ED

NOM LEV

Figure 7.5

Percentage error for different decision strategies
with varying noise levels.

Line B shows the probability of error if all noise-free points are

classified correctly, but all "don't care" points in Figure 7.1 are

given the class opposite to that dictated by the optimal policy. This

- 85 -

provides an upper bound to .the number of mistakes made by machines

which correctly classify all noiseless points. A further decision

strategy is always to decide the class which has the highest a priori

probability, without reference to the query vector. The percentage of

mistakes made if this strategy is used is unaffected by noise; it is

shown as A in Figure 7.5.

Lines C and in Figure 7.5 show the performances achieved

experimentally by perceptrons with thresholds 0 and 4 respectively.

These simulations took place under the same conditions as those

reported earlier, except that the percentage probability of any

mistake is given, rather than the percentage probability of a mistake

being made on a point uncorrupted by noise.

Figure 7.6 is a distortion of Figure 7.5 designed to show more

clearly both the relationships between the lines, and the

perturbations in lines C and D which give some indication of the

experimental error. It is obtained as follows: in 100 trials,

decision strategy A (for example) will make A(N) mistakes at noise

level N, where

yA(x)

is the equation of line A in Figure 7.5. At the same noise level, E,

the optiil strategy, will makeE(N) mistakes. Thus there are only

100 - E(N)

trials in which A could possibly be expected to identify the query

vector correctly, and of these,

A(N) - E(N)

mistakes occur. Thus

- 86 -

A(N) - E(N)
100 - E(N) x 100

represents the percentage of needless mistakes made by decision

strategy A. It is this which is plotted as A in Figure 7.6, and

similarly for B, C, and D. The line obtained from E evidently

coincides with the horizontal axis, as shown.

1D

BD

NOM LEVEL

Figure 7.6

Needless errors as a percentage of points that
could have been classified correctly, for

different decision strategies.

One can deduce from Figure 7.6 that if the noise level is

greater than about 27%, a perceptron with zero threshold performs so

badly that the chance of error is reduced by ignoring the query

vectors and always deciding the class whose a priori probability is

- 87 -

greatest. Although this resultevidently depends on.the particular

environment used, it indicates rather strikingly just how badly

standard perceptrons behave in noisy conditions. The. vast improvement

in performance which results from using a perceptron with a threshold

of about 4 is also apparent.

So far no mention has been made of the performance of the

usual maximum likelihood decision strategy in noisy conditions.

Although the environment was chosen so that the independence

assumption was adequate for discrimination between the noiseless

pattern classes, the assumption is not in fact valid for this

environmen t. It was thought that this would detraOt considerably from

the performance of the usual maximum likelihood strategy in noisy

conditions; however, this was not so.

It is possible to calculate the expected error for the usual

maximum likelihood strategy in a manner similar to that described for

the true maximum likelihood strategy. It was found that the difference

in performance resulting from assuming independence was less than 0.2%,

for all noise levels between zero and 35%. Thus an error curve for

the maximum likelihood strategy with independence assumed would be

almost indistinguishable from E in Figures 7.5 and 7.6.

Since probability estimation is a stable process, a practical

machine embodying a maximum likelihood decision (independence assumed)

will reach within an arbitrary latitude of the above expected

performance level, given sufficient training time. It was found

experimentally that after 700 training cycles, the error probability

was within 0.8% of that indicated above; that is, a line in Figure 7.5

indicating the performance attained experimentally by a maximum

- 88 -

likelihoodelassifier with 700. training cycles would lie less than one

vertical unit above E.

Thus there is no doubt that for-the environment shown in

Figure 7.1, a maximum likelihood strategy is superior to all

perceptron-like strategies that have been considered, whether or not

noise is present. It would be interesting to know if adequacy of the

independence assumption for discrimination between the noiseless

pattern classes guarantees near-optimal performance for the usual

maximum likelihood strategy in noisy conditions, or whether the

phemonemon occured here because of a lucky choice of environment. As

far as I am aware, no investigation of this question has been reported.

- 89 -.

Chapter 8

STeLLA-LIKE DECISION TECHNIQUES

8.1 Introduction.

We have seen that neither the perceptron nor the maximum

likelihood (with the independence assumption) decision strategy can be

described as a general purpose classification technique. Each behaves

unsatisfactorily in some kinds of environment, but is very competent

under certain circumstances: the perceptron strategy guarantees

discrimination between patterns provided they are linearly separable

but does not work well in noisy conditions, whereas the independence

assumption, so vital to the implementation of the maximum likelihood

decision strategy in any practical situation, almost never holds and

is very often violated flagrantly enough to ruin the classification.

If, however, the independence assumption is valid then the maximum

likelihood decision strategy is optimal, even in noisy conditions.

This chapter is devoted to a discussion of a compromise

decision strategy, one which combines the characteristics of the

perceptron and maximum likelihood schemes. If W* is such that

> S for all

< S for all cF;

and if X is a vector with

lxi <

where c is the maximum size of the query vectors '; then

(W* + X). > tS - lXl.Il

> S - (S/c).c = 0 for all ftF

- 90 -

and similarly,

(W* + X). < 0 for.all PeF;

so (W* + X) also discriminates between.the pattern classes. Among

these vectors which discriminate between the classes, some must behave

better than others in-noisy situations. The perceptron strategy is

content with any vector which discriminates between the pattern

classes: the decision strategy discussed here attempts to find a

discriminating vector which gives good behaviour in noisy conditions.

The strategy we will consider is derived from STeLLA, a learning

machine whose rules were chosen on an empirical basis. It is

remarkable how such rules give rise to a decision scheme with the very

characteristics we seek.

STeLLA is a general purpose learning machine, described by

A.ndreae (1964, 1969) and Gaines & Andreae (1966). She sees her

environment at any one time as a binary input pattern, and selects one

of a specified set of actions. The taking of this action changes the

state of the environment, and the new state is reflected in a new

input pattern which is presented to STeLLA. Thus by -selecting various

actions and observing the input patterns she attempts to build an

internal model of her environment.

to be desirable states and this is

system. Her goal is to get reward

policy is responsible for choosing

Some input patterns are considered

communicated to STeLLA by a reward

as often as possible. The control

the best sequence of actions with

respect to the goal, and it calls on a neutral predictor for aid. The

predictor is that part of the machine which models the behaviour of

the environment, independently of rewarded states; while the control

policy models the environment as it relates to goal achievement.

- 91 -

Adaptive decision procedures occur in several places in STeLLA,

and the details of adaptation vary according to the purpose1. Because

of this, it was decided to treat the problem in as general a manner as

possible. The discriminatory functions described below are

representative of the various forms of discriminatory function which

STeLLA uses, and the form of the adaptive rules given is designed so

that every set of rules used by her can be considered as a special

case. To facilitate this, the quantitative amounts of adaptation are

left unspecified as far as possible. The resulting model is a flexible

tool for theoretical and experimental investigation of adaptive

pattern recognition techniques, and I shall refer to it in all that

follows as the STeLLA method, or some such term. Unfortunately the

STeLLA method sacrifices elegance for generality. We have seen how

the perceptron and maximum likelihood decision strategies are embedded

in a precise mathematical framework: I have not been able to build

such a mathematical edifice for STeLLA-like strategies, although a few

bricks appear here and therein the following pages. Hence this

1
For example, the predictor in more recent versions models the
environment by partitioning the input patterns into sets called
clumps, and examining the effect, in terms of reaching other
clumps, of each action at each clump. The association of input
patterns with clumps is accomplished using adaptive pattern
classification techniques. A predicted clump is used to
determine the next prediction, and, since there are two rein-
forcable steps here, the reinforcement is spread over the two
moves. A further complication arises from the fact that both
clumps and elements of the control policy are competitive in
the sense that the total number of each is strictly limited.
This means that unused or infrequently used clumps or policy
elements will be forced out of existence to make way for new
ones, and the adaptation procedures used are tailored
accordingly. Unfortunately most of these details of STeLLA's
operation are unpublished.

- 92 -

chapter takes on a rather vague and imprecisecharacter in parts, and

most solid theoretical results are applicable only to certain special

cases of the decision strategy.

We consider the case where just two pattern classes, F+ and F,

are present; the results and methods generalize easily to multi-class

cases. The discussion is restricted to query vectors with binary

components--as indeed is STeLLA. The query vectors are assumed to

contain a completely redundant component so that the augmented query

vectors 40 are not needed. To each pattern class is assigned a

prototype:' a query vector, generally contained in the class, which is

assumed to be representative of that class. The prototype of class

is denoted by P, and similarly for F. Each binary component of the

prototype has an associated pattern digit weight (PDW) which

represents the danger of overlooking a disparity between the k'th bit

of a query vector ' and the prototype's k'th component, when assigning

to the pattern class associated with that prototype. PDW's are

constrained to lie in the interval [0,1], even if one of the

adaptation rules below attempts to take the PDW out of the range.

8.2 The discriminatory functions.

The discriminatory functions used by the STeLLA method are

= fl (1 p+)

and similarly for f, where the ')kS (1 < k < n, where n is the

dimensionality of) are the appropriate PDW's. This function takes

into account the dissimilarities of the prototype and the query vector.

Its value is 1 if the query vector is exactly the same as the

prototype. If differences exist the function takes a value less than

- 93 -

1, the value being smaller if many unlike components exist or if the

unlike components are important ones.

There are two ways of interpreting these discriminatory

functions heuristically, corresponding to situations in which the

maximum likelihood strategy works well and situations in which the

perceptron strategy works well. In each case, the prototype P is

considered to be a typical member of the class F+.

Firstly, suppose the class F consists of only one element

whose components may be corrupted by noise in an independent manner.

This element shall be chosen for the prototype. Let us take our null

hypothesis to be that the query vector belongs to F+. Evidence

against this hypothesis is provided by the bits of unlike the

corresponding bit of P+, and these represent features which were

obscured by noise. In this case we interpret

Pk
= Pr[feature k is not obscured by noise],

and this is certainly a measure of the danger of overlooking a

disparity of the k'th bit of when assigning to the class F+.

The second interpretation of the discriminatory function

concerns cases where there is no noise present but the class

consists of many members. We describe it by means of an example:

Suppose

= 1111 (n=4),

and the query vector

=lOOl

is presented. Since the PDW's represent the danger of neglecting the

digit, we can write

- 94 -

pl = Prf 0111

4 = Pr[l0ll I

4 = Pr[1101 F]

P4 Pr[1110 F].

Hence

f(1001) = Pr[1011 c F±].PrI1101 e el.

Since we know that

the discriminatory function can be interpreted as a measure of our

confidence that

1001 5

provided that the environment is "continuous" (to some degree), that

is, provided that

1111 e F, 1011 s F+, 1101 s F

provides evidence for the proposition

1001 s

It is suggested that this requirement of environmental continuity

explains why helpful coding schemes, discussed in Chapter 6, are

especially important for STeLLA-like decisions, although they would

probably help most maximum likelihood schemes as well (Andreae, 1969;

Gaines & Andreae, 1966).

These two heuristic interpretations, while admittedly vague

and rather unsatisfactory, illustrate the compromise which was made in

STeLLA between the maximum likelihood and perceptron decision

procedures. As we have seen, the maximum likelihood decision is

linear if binary features are used, and could in principle be used

with ttComproifljsett adaptation rules like those described below.

- 95 -

However, .this is difficult in practice because the linear forin,of this

decision is rather involved, and the omission of query vector

components which are like the corresponding prototype components from

the discriminatory functions, as above, reduces the "compromise"

adaptation rules from an interesting theoretical possibility to a

practical proposition. Obtaining practical approximations to ideal

schemes is, after all, one of the main themes of this thesis.

8.3 Qualitative aspects of the adaptation procedure.

Although facilities exist in STeLLA for generating and

adapting prototypes, they will not be discussed here. Our concern is

with the generalized adaptation process for PDW's. This is governed

qualitatively by the rules below, which are suggested by common sense.

If a query vector IeF+ is found with

<

where d is a non-negative constant 2, so that e > 1 (the

exponentiation is used for later convenience), then is incorrectly

assigned to class F (or rather 1D is not assigned to class F+ with

sufficient confidence), and the adaptation rules are:

decrease PDW's of P+ corresponding to -coirtponents unlike P (8.1)

increase PDW's of P corresponding to -components unlike P (8.2)

If cF+ is such that

>

then D is correctly assigned to class F+, and the rules are:

2 In the STSLLA machine, this threshold was always taken to be
zero. It is introduced here for generality.

- 96 -

decrease PDW's of Pt .corresponding.to -components unlike p+ (8.3)

increase. PDW's + s of P corresponding to + -components like P (8.4)

Similar rules are used for query vectors in F (change all +'s to -'s,

and vice versa,, in the above). Rules (8.2) and (8.3) alone were used

in the adaptation of STeLLA's control policy elements.

Rules (8.1) and (8.2) are used when the query vector is

either misclassified or correctly classified by only a small margin.

Only PDW's corresponding to -components unlike the respective

prototype bits are adjusted since only these PDW's,affect the

categorization of D. Rule (8.1) increases f+(); rule (8.2) decreases

f(). Rules (8.3) and (8.4) come into play only,if the query vector

is correctly classified. Rule (8.3) generalizes on the basis of the

justifiably ignored -components, and incidentally strengthens the

association of with Ft. Rule (8.4) is intended to balance the

effects of (8.3) and prevent the PDW's from constantly decreasing if

no mistakes are made. Note that these last rules involve only the

pattern class which contains : in a sense the effect of the

adaptation is local if the query vector is correctly classified (by a

sufficiently large margin), whereas for incorrect classifications the

rules have a global effect--they alter the values of some PDW's of all

the pattern classes. This also accords with common sense, for the

effect of the adaptation should be rather more drastic when mistakes

are being made than when the machine is functioning correctly, when

delicate adjustments are required in order to improve but not disturb

the balance of weights. ,

The quantitative amounts of adaptation used in the STeLLA

method are governed by the increment/decrement functions; these have

- 97 -

as their onlyargument the PDW currently under consideration. For

reasons mentioned earlier, we shall deal with the rules in terms of

general increment/decrement-functions as far as possible, but shall

rapidly be forced to specialize in many ways since the STeLLA method

is mathematically rather intractable. It is as well to mention here

that the problem of instability can occur; for example the machine,

when started in a correctly discriminating state, may run away and end

up in a situation where all PDW's are constantly bouncing off their

lower bound. This cannot happen with the perceptron (provided its

environment is noiseless and linearly separable) since the convergence

theorem guarantees that a discriminating weight vector will be found

and no adaptation takes place after such a vector is found; nor can it

happen with the maximum likelihood decision (provided that the query

vectors are reasonably representative) since the probability

estimation procedures discussed earlier force the probabilistic

weights to settle down eventually. Both these procedures, when

started in a "correct" state, will retain this, with minor variations

in the case of the maximum likelihood decision, indefinitely in the

absence of noise. For STeLLA-like decisions, however, this is not

necessarily true: stability depends on the exact form of the

increment/decrement functions used. It is possible that instability

could be environment-dependent--although I consider this to be rather

unlikely for non-pathological environments--and if so, to suggest that

any particular increment/decrement functions are "the best" or even

"fairly good" would be rather presumptious. Whenever increment/

decrement functions are suggested below, they are intended as

plausible specializations whose purpose is to give a lower bound to

- 98 -

the power and versatility of the STeLLA method.

The increment/decrement functions are denoted as follows:

Ifor rules (8.1) and (8.2),

Ai(x) 1
for rules (8.3) and (8.4);

J
where the argument x is the PDW currently under consideration

(0 < x <). We use the convention that the decrement functions are

such that

< 0, t(x) < 0 for all x (0 < x < 1);

so that a decrement is added to the PDW, rather than an increment

being subtracted.

8,4 Perceptron-like behaviour of the STeLLA strategy.

Any query vector 0 is assigned to class F+ or r according as

- +) kPk
Pk

II (1 - p)kk ,

i.e. according as

E {1 4 &P. log (l - p) - ;)} 0

Unfortunately this decision is not, in general, linear in . It can,

however, be made linear by assuming that

P = P = 0 (or 1) for all k (1 < k < n); . . . (A)

suitable rules for prototype adaptation will ensure that if a linear

dichotomy is required, this condition is eventually satisfied. Note

that prototypes which satisfy (4) cannot be considered to be

representative of their respective classes. The somewhat hopeful

assumption is made that since non-representative prototypes are, in a

sense, "unf air" to the decision strategy, better performance will be

- 99 -

obtained without restriction.(A), so.that by using this. assumption we

run the risk of underestimating rather thanoverestimating .the power

of the decision strategy.

The process of adaptation to successfully classified query

vectors (rules (8.3) and (8.4)) is now considered to be suspended for

the time being, so that we can concentrate on the machine's attempts

to improve itself when confronted with query vectors which it

classifies incorrectly (or which it classifies correctly but only by a

small margin). For reference purposes this is called assumption (B).

We also assume that there are no attempts to make out-of-range

adaptations (C).

The discriminatory functions are now

= II (1 - Pk

and is assigned to F. or F according as

E kWk 0,

where

= log(l - + - iog(l -

The adaptation rules are as follows:

Suppose a query vector F+ is encountered with

n (1 p)k < e'.fl (1 - p)4k

i.e. with

E4kWk<d.

+' -'
Then + - and are changed to and k respectively, where

+' +
Pk = k + k 1

Pk p + k=1

Now

- 100 -

log(l - - (x)) logl - x) + iog{l -

log (1 - x) -

provided

'A (X) << Ii xl.. . . . (D)

We consider for the moment only increment/decrement functions which

satisfy (D); it is shown later that this condition can be relaxed.

Now

W k = log (1 - p) - iog(1 - p)

= Wk

- +

{ +

1 - Pk 1

It is clear that the following increment/decrement functions will

simplify the problem coisiderab1y:

i(l-x) = d(X)

for some constant p. Using these functions,

= wk+211.cbk_l

so W' =W+2.

Similarly, ifP and

d e.11 (1- p)4k >n(l

(8.6)

then

W' = W - 20. . . . (8.7)

Combining .5), (8.6), (8.7); and writing

G+ =

G = {2 p(D

we can write the adaptation rules in this restricted case in the form

of a program:

- 101 -

TEST: Choose "l'c G+ IJ G;

If YG+ and W.'1'<2itd then replace W by W±'i';

If TE:G7 and W.Y>21.td then replace W by W-T;

Go to TEST.

This is exactly the procedure used by a perceptron with threshold 2pd.

Hence we can apply Theorem 2, using as upper limit for the length of

query vectors

= 2p& > ITI for all Te G+ 13 G ,

where n is the dimensionality of the query vectors :

If there exists a unit n-vector W and some cS>0 with

c Ft = {IcF+} U {— lcF} implies W*. >

so that

'1! c = {2pF'} implies W*.'1! > 2j;

then if W is initially chosen to be an n-vector of length A, the above

program will change W at most

4ji2n + 4iid + 4Xi

times.

i.in + d +• AS

4ii 2 5 2 - 2

Thus a STeLLA-like pattern classifier behaves like a threshold

perceptron if

A)P=Pk0 for all k (1<k<n);

B) no adaptations are made for correctly classified (by a large

enough margin) query vectors;

C) there are no attempts to make out-of-range adaptations;

D) p << 1, so that the approximations in the expansions of

log(1 ± p) are valid;

- 102 -

E) the functions A and A d have the form given.

Theorem 4 (see. Appendix .A) was begun in an attempt to generalize

restriction (E): upper and lower bounds were sought for the function

n(x,y) log (l log(l)
1-x l - y

so that the theorem would remain true. It was found, however, that it

was necessary to assume that the upper and lower bounds were rather

close together; the allowable latitude depended on S in such a way

that the bounds must actually be equal if the theorem was to hold for

all linearly separable environments. Thus

ri(x,y) = constant,

so if p and vary independently, which they can do if rules (8.3)
k Pk

and (8.4) are brought back, then the increment/decrement functions

must be of the form (E). This does not of course prove that the

increment/decrement functions necessarily have the form (E), it merely

shows that I was unable to prove the convergence theorem without this

assumption. I conjecture, however, that it is indeed true that the

convergence theorem holds in general only if (E) is assumed, but I

have not been able to prove this.

Two interesting corollories come out of Theorem 4: firstly

that restriction (D) is not necessary, and secondly that if the

components of the discriminating weight vector W* are all positive

then the only condition that need be placed on n is

(x,y) > 0 for all x,y.

This condition is always true if the increment/decrement functions

satisfy

Ai (x) > 0; A d(X) < 0 for all x.

- 103 -

8.5 Use of the increment/decremént.fuflctioflsfOr'PrObabi'litY

estimation.

In order to consider the behaviour of the STeLLA pattern

classification method for classifications which are correct (by a

large enough margin), we can dispense with all the restrictions used

above: all that is assumed is that rules (8.1) and (8.2) are never

applied. The difficulty here is not the mathematical intractability

of the general problem that troubled us in the last few pages; rather

it is the vagueness of the probabilistic interpretation of the PDW's.

It shall be assumed in the following that the PDW's are required to

estimate

Pr(kPI cF3,

but it is clear that many alternative strategies could be adopted, and

as usual the increment/decrement functions given below are intended as

examples rather than as recommendations.

Let us write p(t) for the value of the k'th PDW of class

at time t: 'suppose that rules (8.1) and (8.2) are never applied at

times t > 0. If P is correctly identified in (by a sufficiently

large ma:gin) at time t, then accordingto the increment/decrement

rules,

p(t+l) = p(t) +k k i(p(t))k + d(pk(t)).køk

Let p = Pr[kPIcF+];. q = 1 - p.

Suppose

+
pk(t1 = P,

i.e. the value of p at time tequals the quantity which p is required

to estimate. Then the expected value (over all s) of pk (t+l) should

- 104 -

be the same; 'namely p. Hence

p = E[pk(t+l)] = p(t) + p.A.(p(t)) +

= p + p.L.(p) + q.Lt(P) ;

where E denotes statistical expectation. (This is not strictly true.

The expectation should be taken over all such that

p Pk) k0 k' > ed.n (1 - p)

rather than over all such that

(DeFrl

as above. It is assumed that the discrepancy between these will make

very little difference, especially if d is small, and this point is

ignored in the following. Note however that the discrepancy exists

even for d=0, if the machine is not in a correctly discriminating

state.) Hence the increment/decrement functions must satisfy

=

Consider the functions

=

= -v.x;

where v is a positive constant with v<l. These give us no trouble

with attempts to make out-of-range adaptations, for

0xl implies

• x+v(i-x)v+x(I-v)v+lvl;

and x-vx(l-v)x0;

since

v<l.

Using these functions,

p(t+1) = p(t) + v(l - p(t)). 1 k=P - vp(t). 1 k,P

(8.8)

- 105 -

I.pW

p(t) + \)so p(t+l) = (l-v)
with probability

with probability

This is an EPA formula (see Chapter 5), and so

E[p(t)] = p Ci - (i v)t) + (l_v)t. p (0)

VarEp(t)] = p(l-p)(l - (iv)2t)v/(2v) ;

P3,

q.

and the limiting expectation and variance of p(t) for large t are

p and p(1-p).v/(2-v)

respectively. Hence these increment/decrement functions ensure that

if all classifications are correct (by a sufficiently large margin),

then the expected value of the k'th PDW of class f+ approaches

Pr[4k=PI p+]

and its variance can be made as small as we please by choosing a small

enough v,

8.6 Discussion.

Both the probabilistic and the perceptron-like aspects of the

STeLLA decision strategy have now been investigated to a limited

extent. I have found no way of systematically investigating the

coinbined,effect of both, but the following remarks give a qualitative

picture of what should happen.

Unless the PDW's are specially chosen initially, most

classifications will be incorrect at first, and rules (8.1) and (8.2)

will be used most of the time. This period of perceptron-like

behaviour can be prolonged by increasing the threshold d, but too

large a threshold may stall the learning procedure. For, if d is

large then the size of the finalwaight vector must be large (see

- 106 -

Chapter 3), and hence some components of the final weight vector must

be large in size. This means that

+
1 -

is large, and so

log

is either large or small, for some k. Hence the PDW's take values at

or near the ends of their ranges. Now if the increment/decrement

functions are like those in (E), it is inevitable that the PDW's will

make continual frustrated attempts to adapt out of range, causing

erratic and perhaps seemingly irrational behaviour. But if the

increment/decrement functions are like those in (8.8), which by their

very nature cannot, attempt out-of-range adaptations, the changes made

in the PDW's will be very small if the latter are near the ends of

their ranges. This in itself may stall the learning procedure.

After the initial period of frequent misclassifications is

over, but before the machine has converged to a correctly

discriminating state, both sets of rules will be used fairly often.

This invalidates the convergence theorem because the intervention of

rules (8.3) and (8.4) could nullify the converging effects of rules

(8.1) and (8.2). This seems unlikely, though, if rules (8.3) and (8.4)

are well chosen, since both sets of rules are designed to achieve the

same end (improving the performance of the machine) and it is probable

that they will help rather than hinder each other. This of course

depends on the exact form of the increment/decrement functions.

- 107 -

In the final stages of learning, rules (8.3) and (8.4) will be

used most often in an attempt to.refine the discrimination.

No matter how well these rules work, it is inevitable that in a long

sequence of correct classifications the PDW's will wander away from

their optimum positions (provided that the patterns are not presented

in a systematic order), unless the functions LI. and Ad are identically

zero. Hence rules (8.1) and (8.2) must be invoked sometimes during

this stage, and the purpose of the threshold d is to prevent

misclassifications occurring while these rules put the machine back on

the right track.

The above arguments can hardly be called watertight or

indisputable, and are natural targets for criticism in the form of

counter-examples. It is possible that the STeLLA strategy, in

attempting to combine the advantages of the perceptron and maximum

likelihood methods, in fact turns out to combine their disadvantages

instead. One cannot point to STeLLA for confirmation and say "she

works"--she does, but it is difficult to isolate the success of just

the pattern classification part, for it forms only a small sub-section

of a rather complex machine. Further mathematical and experimental

investigation of this pattern-classification technique is required,

and because' of the many variables involved this could form a complete

research topic. It was for this reason that the STeLLA technique was

not simulated, as were the perceptron and maximum likelihood decision

schemes.

- 108 -

Chapter 9

CONCLUSION

The principal goal of this work has been the development of an

understanding of the characteristics of the perceptron and maximum

likelihood decision strategies. We shall discuss here the results of

the investigation for each method in turn.

The perceptron was found to behave perfectly provided the

conditions are favourable, that is, provided the environment is

noiseless and linearly separable (note that this is not true of the

maximum likelihood decision strategy if independence is incorrectly

assumed). It was found experimentally that, for the environment used,

the mean number of mistakes made during training was approximately

half the smallest upper bound obtainable from the-perceptron

convergence theorem. Since a lower bound to the number of mistakes

made is zero (the arbitrarily chosen initial weight vector may itself

discriminate between the pattern classes), the mean number of mistakes

to convergence found experimentally was the same as the mean of the

upper and lower bounds for this quantity. Unfortunately a

discriminating weight vector must be known before the upper bound can

be calculated; nevertheless the very existence of this bound--even

though it may not be known--must surely provide some comfort to

trainers 'of perceptrons.

In noisy conditions, the perceptron tends to be misled by

query vectors which are unavoidably misclassified. This is basically

because the perceptron is sensitive to the outer bounds of the "clouds"

- 109 -

representing the pattern classes in feature space, rather than to the

centres of gravity of these clouds. After some deliberation, a variant

of the perceptron, which I called.the "threshold perceptron", was

defined. Heuristic arguments were used to show that this appears to

have a better chance of behaving well in noisy conditions than the

standard perceptron, especially when the noise level is low, and this

was confirmed by experiment. As predicted, the behaviour of the

threshold perceptron deteriorated rapidly as the noise level increased.

This deterioration can be partially restrained by increasing the

threshold, but additional cost is entailed here since convergence time

increases linearly with threshold size.

The second adaptive decision strategy investigated, the

maximum likelihood method, is optimal (in a precise sense) under all

conditions, but unfortunately its implementation is impractical unless

restrictive assumptions about statistical independence of features are

made. This prompted an examination of situations for which the

independence assumption is valid, and it was found that the assumption

holds only for a greatly restricted class of environments. It is

clear, however, that adequacy rather than validity of the assumption

is the key factor here. This opens a new field for investigation

which is hardly touched upon in this thesis. I feel that some theory

of adequacy of the assumption would prove extremely useful to

designers of practical machines, The main difficulty that such a

theory would have to face is that adequacy is goal dependent--adequate

for what?---whereas validity can be investigated without consideration

of goals. One surprising result that came out of the experimental

work is that for the environment used, adequacy of the assumption for

110 -

the noiseless pattern classes ensured.adequacy (or near-adequacy--.there

was a small error rate) when independent noise was added.

The work on the independence assumption showed that if a

pattern classification situation is such that

1) the features used are binary (in fact this restriction is not

necessary),

2) the independence assumption is valid,

3) the pattern classes are separated in hyperspace;

then one might as well forget weighted decisions and use exact

matching procedures based on the features indicated as important.

(This is equivalent to a STeLLA-like decision with binary weights.)

If most of the features are important for all of the classes, then an

efficient way of implementing this decision is to store a

representative query vector for each class, and use as discriminatory

functions the negative of the Hamming distance between the query

vector and the stored representatives. This is in fact a voting

schem 1, and I suggest that this accounts for the fact that voting

schemes have often proved as successful as weighted decisions (see

Chapter 1).

The gap between adequacy and validity of the independence

assumption is particularly striking here. If we replace condition (2)

above by

2) the independence assumption is assumed to be adequate,

1
Voting schemes can be similarly defined for non-binary
features: instead of the Hamming distance one uses the number
of query vector components whose value is different from the
corresponding component of the stored representative. Bobrow
& Klatt (1968) provide a practical example of this. The
arguments given are easily modified to cover this case.

then I have not shown, and indeed I do not believe, that a voting

scheme is as powerful as the resulting maximum likelihood (independence

assumed) decision strategy. 'A .theory of adequacy of the assumption

would enable us not to close this gap but at least to chart it.

The secàndary objective of this research was to provide a

basis for theoretical investigation of the two main decision

strategies with a view to combining their virtues. Such a basis was

found in the STeLLA method, a decision scheme which combines the

various strategies which exist in the learning machine STeLLA. It was

found that an appropriate specialization of the STeLLA strategy is

almost equivalent to the threshold perceptron method. Another version

of the STeLLA strategy can be shown to behave in a manner similar to

the maximum likelihood (independence assumed) method. It is not

possible to find a version which behaves in exactly the same manner as

the maximum likelihood strategy because it was found necessary to Iuse

somewhat simplified discriminatory functions. Further investigation

of the STeLLA method was not undertaken because of the enormity of the

problem, but I feel that this may prove to be a fruitful topic for

both theoretical and experimental investigation.

However, although this thesis has been concerned with some

very basic adaptive decision mechanisms, for reasons given in Chapter

1, it would be wrong to omit mention of several more advanced topics,

apart from the few mentioned above, which are of vital importance to

designers of practical decision machines.

General ways of implementing non-linear decisions have long

been sought. The inclusion of logical combinations of features as new

features has been used fairly successfully (see for example Uhr &

- 112 -

Vossler, 1963), but thenuruber of possible combinations is extremely

large, especially if more-than pairwise interactions are envisaged.

One compromise method is proposed by Samuel (1967). Another way of

realizing , general non-linear decision is to use layered machines

(Nilsson, 1965). These consist of hierarchies of linear decision

machines, the output of one layer being used as input to the next. In

view of the proven effectiveness of hierarchical solutions to problems

in artificial intelligence generally, layered machines seem worthy of

detailed investigation. One difficulty is the problem of deciding

which part of a complex machine is to be "rewarded" (reinforced) for a

correct decision--the "credit assignment problem". Very little is

known about layered machines; the only operational example I can give

is Widrow's "Madaline" (1962, 1963).

A further topic relevant to adaptive decision strategies is

the feature selection problem. At present, feature selection is

usually undertaken by the designer of the machine. It is conceivable,

however, that the decision strategy could provide some assistance here

by evaluating the usefulness (to the decision) of each feature, and

perhaps generating new features comprising logical combinations or

random mutations of useful features. tJhr & Vossler's machine (1963)

attempts this in a primitive manner. Some theoretical work has been

done on the problem of feature evaluation and selection by Lewis (1962)

and Kamentky & Liu (1963).

As decision machines become more complicated, the problem of

instability will arise. This has already been mentioned in connection

with both bootstrapping machines (Chapter 2) and the STeLLA method

(Chapter 8). It seems, highly probable that it will occur to a much

- 113 -

greater extent in layered machines. Ihre Pohl contends that there is

an optimum amount of infOrmation storage ability for learning machines,

above which they begin to break down (as far as I know, .this is

unpublished). This appears to be an interesting topic for research.

- 114 -

BIBLIOGRAPHY

Agmon, S. (1954) The relaxation method for linear inequalities. Can.

J. Math. 6(3): 382-392.

Andreae, J.H. (1964) STeLLA: A scheme for a learning machine. In

Automatic and Remote Control, ed. by Broida, V., 407-502. Proc.

2nd IFAC Congress. London: Butterworths.

Andreae, J.H. (1969) Learning machines: A unified view. In

Encyclopaedia of Information., Linguistics., and Control, ed. by

Meetham, A.R. & Hudson, R.A., 261-270. Oxford: Pergainon.

Andrew, A.M. (1963) Pre-requisites of self-organization. In Tou &

Wilcox (1964): 381-391.

Bledsoe, .W. & Bisson, C.L. (1962) Improved memory matrices for the

n-tuple pattern recognition method. IRE Trans. Electron. Comps.

(corresp.) EC-11(3): 414-415; June.

Bobrow, D.G. & lClatt, D.H. (1968) A limited speech recognition system.

Proc. Fall Joint Comp. Conf. 33, Part 1: 305-318.

Bobrow, D.G., Hartley, A.K., & l(.latt, D.H. (1969) A limited speech

recognition system II. BBN Rept. No. 1819, Job No. 11254, under

Contract NAS 12-138, Cambridge, Mass..

Chow, C.K. (1957) An optimum character recognition system using

decision functions. IRE Trans. Electron. Comps. EC-6(4): 247-254;

December.

Chow, C.K. (1962) A recognition system using neighbour dependence.

IRE Trans. Electron. Comps. EC-11(5): 683-690; October.

Chow, C.K. (1963) An experimental result on character recognition.

IEEE Trans. Electron. Comps. (corresp.) EC-12(l): 25; February.

- 115 -

Cooper, P.W. (1963) Hyperplanes, hyperspheres, and hyperquadrics as

decision boundaries. In Tou & Wilcox (1964): 111-138.

Craik, K.J.W. (1952) The nature of explanation. Cambridge (England)

Univ.. Press.

Efron, B. (1963) The perceptron correction procedure in non-separable

situations. In Stanford Res. Inst. Applied Physics Labo.ratory

Research Note; August.

Feigenbaum, E .A. & Feldman, J. (Eds.) (1963) Computers and thought.

McGraw , Hill.

Gaines, B.R. &Andreae, J.H. (1966) A learning machine in the context

of the general control problem. Proc. 3rd IFAC Congress, paper

14B. London: Inst. Mech. Engrs..

Gnedenko, B.V. (1962) The theory of probability. New York: Chelsea.

Gold, B. (1959) Machine recognition of hand-sent Morse code. IRE

Trans. Info. Theory IT-5(1): 17-24;March.

Good, I.J. (1965) The estimation of probabilities. Res. Mono. No. 30,

M.I.T. Press.

Griffin, J.S., King, J.H., & Tunis, C.J. (1963) A pattern-

identification' device using linear decision functions. In Tou &

Wilcox (1964): 169-193.

Guzman, A. (1968) Decomposition of a visual scene into bodies. Proc.

Fall Joint Comp. Con!. 33, Part 1: 291-304.

Highleyman, W.H. (1961) Linear decision functions with application to

pattern recognition. PhD dissertation, Elec. Engrg. Dept.,

Polytech. Inst. Brooklyn, N.Y.; June.

Highleyinan, W.H. (1962) Linear decision functions with application to

patte'n recognition. Proc. IRE 50(6): 1501-1514; June.

-, 116 -

Hill, D:R. (1969) An ESOTerIC approach to some problems in automatic

speech recognition. Intern. J. Man-Machine Studies 1(1): 101-121;

January.

Hill, D.R. & Wacker, E.B. (1969) ESOTerIC II--An approach to practical

voice control: Progress report 69. In Machine Intelligence 5,

ed. by Meltzer, B. & Michie, D., 463-493. Edinburgh Univ. Press.

Hubel, D.H. & Wiesel, T.N. (1962) Receptive fields, binocular

interaction, and functional architecture in the cat's visual

cortex. J. Phjs'Lol. 160: 106-154.

Kamentsky, L.A. & Liu, C.N. (1963) A theoretical and experimental

study of a model for pattern recognition. In Tou & Wilcox (1964):

194-218.

Koestler, A. (1964) The act of creation. London: Hutchinson.

Lettvin, J.Y., Maturana, H., McCulloch, W.S., & Pitts, W. (1959) What

the frog's eye tells the frog's brain. Proc. IRE 47(11): 1940-1951.

Also in McCulloch (1965): 230-255.

Lewis, P.M. (1959) Approximating probability distributions to reduce

storage requirements. Info. & Control 2(3): 214-225; September.

Lewis, P.M. (1962) The characteristic selection problem in recognition

systems. IRE Trans. Info. Theory IT-8(2): 171-178; February.

McCarthy, J., Earnest, L.D., Reddy,D.R., & Vicens, P.J. (1968) A

computer with hands, eyes, and ears. Proc. Fall Joint Comp. Conf.

33, Part 1: 329-338.

McCulloch, W.S. (1965) Embodiments of mind. M.I.T. Press.

Marill, T. & Green, D.M. (1960) Statistical recognition functions and

the design of pattern recognizers. IRE Trans. Electron. Comps.

EC-9 (4): 472-477; December.

- 117 -

Maron, M.E. (1962) Design principles.for an intelligent machine. IRE

Trans. Info. Theory IT-8(5): 8179-5185; September.

Middleton, D. (1960) Introduction to statistical communication theory.

New York:. McGraw Hill.

Minsky, M. (1958) Some methods of artificial intelligence and

heuristic programming. In Mechanisation of thought processes,

Vol. 1: 5-27. London: HMSO (1961).

Minsky, M. & Selfridge, O.G. (1960) Learning in random nets. In

Information Theory, ed. by Cherry, C., 335-347. Proc. 4th London

Symposium. London: Butterworths (1961).

Minsky, N. (1961) Steps toward artificial intelligence. Proc. IRE

49(1): 8-30; January. Also in Feigenbaum & Feldman (1963): 406-450.

Minsky, N. & Papert, S. (1969) Perceptrons--an introduction to.

computational geometry. M.I.T. Press.

Nagy, G. (1967) Prospects in hyperspace: State of the art in pattern

recognition. IBMRes. Paper RC-1869; June. The first part of

this report was published under the title "Classification

algorithms in pattern recognition" in IEEE Trans. Audio and

Electro-Aäoustics ATJ-16(2): 203-212; June, 1968.

Newell, A., Shaw, J.C., & Simon, H.A. (1957) Empirical explorations

with the logic theory machine: A case study in heuristics. Proc.

Western Joint Comp. Conf. 15: 218-239. Also in Feigenbaum &

Feldman (1963): 109-133.

Nilsson, N.J. (1965) Learning machines: Foundations of trainable

pattern-classifying systems. McGraw Hill.

- 118 -

Papert, S. (1960) Some mathematical models of learning. In

Information Thor, ed. by Cherry, C., 353-363. Proc. 4th London

Symposium. 'London: Butterwotths (1961).

Reddy, D.R. (1967) Computer recognition of connected speech. J.

Acoust.' Soc. Am. 42(2): 329-347; August.

Rosenblatt, F (1957) The perceptron: A perceiving and recognizing

automaton. In Cornell Aaron. £cth. Rapt., No. 85-460-1; January.

Rosenblatt, F. (1962) Principles of neurodynamics. New York:

Spartan Books.

Samuel, ,A.L. (1959) Some studies in machine learning using the game

of checkers. IBM J. of Res. & Develop. 3(3): 211-229; July. Also

in Feigenbaum & Feldman (1963): 71-105.

Samuel, A.L. <1967) Some studies in machine learning using the game

of checkers II--recent progress. IBM J. of Res. &'Deveiop. 11(6):

601-617; November.

Sebestyen, G.S. (1962) Decision-making processes in pattern

recognition. New York: MacMillan.

Selfridge, O.G. (1958) Pandemonium: A paradigm for learning. In

Mechanisation of thought processes, Vol. 1: 513-526. London:

HMSO (1961).

Selfridge, O.G. & Neisser, U. (1963) Pattern recognition by machine.

In Feigenbaum & Feldman (1963): 237-250.

Tou, J.T. & Wilcox, R.H. (Eds.) (1964) Computer and information

sciences. Washington: Spartan Books.

Uhr, L. & Vossler, C. (1963) A pattern recognition machine that

generates, evaluates, and adjusts its own operators. In

Feigenbaum & Feldman (1963): 251-268; and Uhr(1966): 349-364.

- 119 -

Ular, L. (Ed.) (1966) Pattern.recognition. New York: Wiley.

Widrow, B. (1962) Generalization and information storage in networks

of Adaline "neurons". In Self-Orgaiiizing Systems, ed. by Yovits,

Jacobi, & Goldstein, 435-461. Washington: Spartan Books.

Widrow, B. & Smith, F.W. (1963) Pattern-recognizing control systems.

In Tou & Wilcox (1964): 288-317.

- 120 -

Appendix A

PROOFS OF THEOREMS QUOTED IN THE TEXT

Theorem 1: The convergence theorem for a perceptron whose weight

vector is of a given initial length.

Thi3 simple extension of the convergence theorem is given here

for completeness. The result is directly applicable to the two class

case and generalizes easily if there are more than two pattern classes,

as shown by Minsky & Papert (1969).

THEOREM 1.

Let F be a set of real n-vectors with

cF implies k1
Suppose there exists a unit n-vector W and some S>O with

eF implies W*.Z>ô.

Then if W is initially chosen to be an n-vector of length A, the

program

TEST: Choose OcF;

If W.O then assign W-14 to W;

Go to TEST;

will chance W at most (a2 + 2AS)/iS2 times.

Proof. Define

G(W) = w*.w < 1.

Consider the behaviour of G(W) on successive performances of the

assignment statement.

G(W t+1) = wt+l = w*. (wt +) / I
Now W*. (Wt +) > W* . + ;s

+ I.

- 121 -

so after the m'th execution of the assignment statement,

+) > mo - A.

Also,

lwt+l2 t2 2 1W I + c , since W. (1<0;

so lmI2 2 2 < mc + A

Hence

1> G (ñ > (mO - A) / m 2 + A2)h/2

ma 2 + A2 >22 - 2AOm + A'2,

2 2
so m< (c+2AO)/O.

- 122 -

Theorem 2: The coxiergence 'théOrém for a threshold perceptron.

THEOREM 2.

Let F be a set of real n-vectors with

cF implies

Suppose there exists a unit n-vector W* and some ô>O with

cF implies W*.>5

Then if W is initially chosen to be an n-vector of length A, the

program

TEST: Choose F;

If W. '<d then assign W-I4 to W;

Go to TEST;

will change W at most (c 2 + 2d + 2AiS)/ô 2 times for any d > 0.

Proof. Using the same notation as in the previous theorem, we find

w*• +) > md - A as before,

but ImI2 < (2 + 2d) + A2 since wt'. < d.

Hence

1 > G(Wm)> (mô - A)/(m(a2 + 2d) + A2)112

2
so m < (+ 2d + .2X6)/ 6-

- 123 -

Thëorern3: COncernitig:the size'of:thefinai weight vector of a

perceptron.

The quoted result concerning the length of the final weight

vector of a perceptronwhose initial -weight vector is constrained to a

certain size is proved here.

THEOREM 3.

If the weight vector of a perceptron is set initially to length A and

allowed to vary according to the usual perceptron adaptation procedure,

then for any €>O there exists a non-trivial environment for which the

final weight vector W satisfies

IwtI < 1 + C,

provided an unlucky choice is made for the initial weight vector.

Proof. Let F consist of unit vectors clustered around some vector

sP implies > 1 - 8, for some small 0.

Let the initial choice of W be

=

Denote the weight vector after the k'th mistake has been made during

training by let Wt be the final weight vector.

Then

Wk k k-i
= +W (t > k > 1), where

Hence

wt_wO

Iw t
- w°I

>

(t + t_1 + • +

(t + t_1 + • • + l)

ti - e)
t

Now (W t t t t-1 t, t
- lb). = W . < 0 since was misclassified; hence

(A. 1)

- 124 -

= 1

Let x t _*;

1x12 = 1,Dt 4z * 12 - 2-2(1-0) 20.

Hence

,x)

:< 1 + 1iWl

Also,

(w.4*)1*J + 1W, - (Wt.*)*l

< 1+ + jWt - (Wt.*)*l from (A.2)

Let v = +

t' 0
•uW -W,

w = W -, (Wt.*)*.

(A.2)

(A.3)

Then u,v,w fotin a triangle with a right angle between v and w, and the

acute an1e 4' between u and w satisfies

cosp > 1 - 0 from (A.1).

Hence

sin 2ip = 1 - c0524, < 20 - o2 < 20,

so lvi = lwltanp
< l° '-

(A + Wt. *).//(l_o)

<(x + 1+ Iwtl)./2o/(l_e) from (A.2)

Now W < 1 + v2O1W 1 + lvi from (A.3)

< 1 + /2oIW + Cx + 1 + /1wt1)./2o/(l_o),

1 +
so lwtl

1 - - 20/(1-0)

- 125 -

(1-O)(1 - v') - 20

+1 as 0+0 for any fixed A.

Hence given c>O there exists 0 with

Wj < 1 +

126 -

Theorem 4: Generalization of :the convergence theorem for STeLLA-like

pattern classifiers.

Before stating the theorem we introduce some notation, and

state the adaptive rules for STeLLA in a concise and tractable form.

The prototype bits are assumed to be all zero, and the process of

adaptation to successfully classified query vectors is considered to

be suspended, as before. The rules (8.1) and (8.2) of Chapter 8 are:

and W.<d implies

W W + (log) logPk k

+ k'kk (1 < k <

where W' is the modified (new) weight vector, n is the dimensionality

of the query vectors, and

n(x,y) = log (1 -
l-x

Similarly,

cI,cF and W.>-d implies -

log(1).
1- y

W = W - [log(1•- - log (1 1 Pk
+)]. 1 k=1

'Pk l Ik

W 71 -+
= - PkPk)1k (1 < k n).

We write the adaptive rules in the form of a program as follows:

+
TEST: Choose sF U F_;

-If ftF+ then let 'i'=; else let' '=;

(A)

If W.'1<d then

If DeF+ then replace Wk by Wk + for 1 <k <n;

If cF then replace Wk by Wk + h1(Pkpk).k for 1 <k n;

- 127 -

Go to TEST..

We use the notation (k) for 1--
k` pk or rl(pk,pk) in places

where the distinction is either not important or adequately made by

the context; the argument (k) is shown explicitly because the

dependency of r on k is vital. The notation Y for or -4 depending

on the classification of , as above, is also used.

THEOREM 4.

Let F + and F be classes of an n-dimensional binary query space,

and suppose there exists a unit n-vector W* and some s>O such that

cF+ implies W*.>S';

cF implies W*.<_S.

Suppose not only that there are no attempts to make out-of-range

adaptations (8.4, Assumption C), but also that there exists 0>0 such

that no attempt is made to take any PDW out of the range

+ e 92 + e 62)].

(This condition ensures that each component of all weight vectors

obtained in the course of adaptation satisfies

IWkJ

as can be readily verified.)

Let r be a real valued function defined on the Cartesian product of

the interval [0,1] with itself, such that there exist g and with

0 < < n(x,y) < 4 for all 0 < x,y < 1,

and < (l + ô/n).

Then if W is initially chosen to be an n-vector of length A, the

program (A) above will change W at most

+ 2d + 2AS + 2n(-)(2-A)

[(n + s) - fl]

- 128 -

times.

Proof. Define

G(W) = W*,W< 1.

Consider the behaviour of G(W) on successive changes of the weight

vector.

G (Wt+l) = w*.wt+1,Iwt+11.

= i; w, (W + r(k)p)

= W*.W+ E (W4k+ 1) TI - E r(k).

Now, Wj < 1 since W is a unit vector;

I 'PI S 1 since the query vectors are binary.

Hence

+ 1 ?. 0.

So W*.W 1 > W*.W + .E (W.*k + 1) -

w*.wt + w*.II + n(-)

:

where

= +) -

> 0 by the conditions of the theorem.

Hence after the m'th change of W,

W*.>m'_A.

Also,

I w' E + (k) *k)

1 2 1wt + 2 I'I2 + 2.E +).(k) - 2Q .Z (k)

T 1W + n + (W4k + c) - 2n2

- 129 -

jwtl2 + + 2n(-) + 2d.

So < mIne + 2n(-) + 2dJ t A2

Hence

1 > 2
- {mIn + 2n2(-) + 2dJ ±

so in • <

+ 2n(-) + 2d + 'A

6 ,2

+ 2d + 2AS + 2n(-) (2-A)

f(n +) -

Corollary 1. The convergence, theorem is satisfied if

= (1 - x) =

for any co.istant O. If these increment/decrement fUnctions are used

then no restriction is required on the size of each component of all

weight vectors, so one need only assume that no out-of--range PDW

adaptations are attempted.

Corollary 2. If in addition to the conditions of the theorem,

W>O (lkn),

1/2

'then the theorem holds even if

> (l + S/n),

provided none of the other conditions are violated.

- 130 -

Appendix B

GLOSSARY

This glossary explains important terms, abbreviations, and

some notations which are used throughout this thesis. Although no

attempt has been made to include every symbol used, all frequently

used global symbols are given. The order of items in the glossary

corresponds roughly to the order in which the ideas are introduced in

the thesis, although a couple of miscellaneous notations appear at the

end.

Query (feature) vector, The query or feature vector is the input to

, , n, r, c. the decision phase. Its i'th component

indicates the extent to which the i'th

feature is present. Query vectors are always

denoted by ; * is sometimes used for a

particular query vector. is n-dimensional;

can take on r values; and the maximum

length, of is a.

Query (feature) space, Query or feature space is the n-dimensional

Environment. hyperspace in which query vectors lie. The

environment is the set of possible query

vectors, with their frequencies and classes.

- 131 -

Pattern class,

reject and noise only

classes,

m, F+, F, F'.

Convergence,

Convergence time.

Discriminatory

functions, surfaces,

f(1) 31 f+ , -

The purpose of a pattern classifier is to

classify inputs into pattern classes. These

may include a reject class (informationnot

sufficient for a firm decision) and/or a noise

only class (no pattern present). Pattern

classes are denoted by F(1) (1 < i < m), or,

in the two class case, by F and

found convenient to define

F' = {l cF+} u

F. It is

An adaptive pattern classification machine is

said to have converged if it can classify all

possible query vectors correctly. If noise

is present we only require it to classify all

noiseless query vectors correctly. The

convergence time of a particular machine for

a particular environment is the mean number

of patterns presented before convergence is

reached.

Classification is effected by discriminatory

-

functions Mf (f+ and f in the two class

case), one associatedwith each pattern class,

such that (ideally)

for all ji if and only if

Ci)
The surfaces in feature space given

by f(i)O) = f(j,) () (ji) are called

- 132 -

discriminatory surfaces.

Weights,

weight vector,

A.

Linear discriminatory functions are of the

form

+ w' q2 + •.. + q(i)q, + M
n n n+1

The coefficients w are called weights, and

the weight vector is

MM (1)
=(w1 ,w2 ,...

The length of the initial weight vector (for

a perceptron) is denoted by A.

Augmented query vector, Linear discriminatory functions can be

V. written as

Linear separability,

discriminating weight

vector, W*, S.

= where the

augmented query vector V ,is such that

for l<j<n; .q;+=l.

The two pattern classes f+ and F are said to

be linearly separable if there exists a weight

vector W* and some 6>0 with

W*.I'>6 for all

W*.'<-6 for all DeF.

W* is called the discriminating weight vector.

The notion of linear separability extends to

the case where there are more than two

pattern classes.

- 133 -

Threshold perceptron,

d.

Pr[A], PrfAj.BI,

E[X], Var[X].

EWPA.

Prototype,

P+, P_.

The notion of a threshold perceptron is

explained in Chapter 3. d denotes the

threshold of a threshold perceptron.

PrIA] (Pr[AI,B]) denotes the probability of

the event A (given the event B). E[XJ,

Var[X] denote the expectation and variance,

respectively, of the random variable X.

Abbreviation for the exponentially weighted

past average probability estimation procedure

(see Chapter 5).

A prototype is a query vector, generally

contained in the pattern class with which the

prototype is associated, which is assumed to

be representative of that class. It is

+
denoted by - P , P (for classes F and F

respectively).

Pattern Digit Weight, The k'th pattern digit weight (PDW) of the

-

PDW, k' k i'th class is a number which represents the

danger of overlooking a disparity between the

k'th (binary) component of a query vector

and the prototype, when assigning to the

i'th class. PDW's are denoted by p, k (for

and F respectively).

- 134 -

Increment/decrement These specify the quantitative amounts of

functions, adaptation.used in the STeLLA method (see

(x), (x), Chapter 8). A and A are also used to

d(X). denote increment/decrement functions in

Chapter 5.

Corners, The Boolean value of an expression is denoted

by enclosing the expression in corners. Thus

(x=51 =

ji if x=5,

0 otherwise.

Unit vectors, A denotes the unit vector in the direction of

A. the vector A, i.e. A = A/IA.

