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ABSTRACT 

This thesis is concerned with the problem of decision-making 

in the context of automatic pattern recognition. Almost all decision 

strategies which have been employed in practical machines are variants 

of two simple schemes: the perceptron decision strategy and the 

maximum likelihood decision strategy. The main part of this thesis is 

devoted to a critical study of these strategies. 

Although the perceptron decision strategy behaves extremely 

well under favourable conditions, it tends to be misled by patterns 

which are unavoidably misclassified when noise is present. This 

phenomenon is thoroughly investigated (Chapter 3), and a variant of 

the strategy, which has a better chance of performing well in noisy 

conditions, is defined. This variant proves itself in a limited 

series of experiments (Chapter 7). 

The maximum likelihood decision strategy is optimal (in a 

precise sense) under all conditions, but unfortunately its 

implementation is impractical unless restrictive assumptions are made 

(Chapter 4). Implications of these assumptions are considered in some 

detail (Chapter 6). Adaptation of the maximum likelihood strategy can 

only be achieved by estimation of probabilities, and some standard 

procedures for this are discussed, together with problems arising from 

the existence of storage limitations (Chapter 5). 

Part of the research reported here was concerned with the 

problem of finding a basis for theoretical investigation of the two 



decision strategies mentioned above with a view to combining their 

virtues. This is considered in Chapter 8. 
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Chapter 1 

INTRODUCTION, MOTIVATION, AND GOALS 

This thesis is concerned with the problem of decision-making 

in the context of automatic pattern recognition. It is generally 

agreed that pattern recognition is a fundamental, some say the central, 

problem of artificial intelligence: 

The problem of sorting events and situations into useful 
categories arises in so many ways that it is tempting to 
regard it as the central problem of artificial intelligence. 
(Minsky, 1958.) 

It is evident that all problems can be re-formulated in terms of sets, 

and that in this way, problems which are at first sight entirely 

unconnected with pattern recognition can be reduced to what is 

superficially a problem of classification into sets. However, it is a 

fact that very many problems which occur naturally in fields like 

artificial intelligence and process control are usefully treated as 

pattern recognition problems. 

The bewildering variety of sense-data available to a machine 

equipped with receptors or devices which make it sensitive to its 

environment highlights the need for pattern recognition. In the 

context of problem solving, a resourceful machine must classify 

problem situations into categories associated with the domains of 

effectiveness of the machine's different methods, in order not to try 

all possibilities. This process is particularly transparent in the 

"Logic Theory Machine" of Newell et al. (1957). 
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In order to indicate.further the usefulness of a pattern 

recognition approach to problems .which, at first sight, seem to be 

unconnected with pattern recognition, I shall briefly consider 

Samuel's studies in automatic checker playing (1959, 1967). The 

essence of Samuel's strategy is to play by looking ahead a few 

moves and evaluating the resulting board positions, much as a 

human player might do. The best move is chosen by "minimaxing" the 

move chains considered, using the static board evaluation to determine 

the "goodness" of each move at each stage. It is the evaluation 

procedure which can be viewed as a pattern recognition process; 

although it is not strictly a classification procedure, Samuel both 

used techniques and encountered problems which occur in conventional 

pattern classification work. To evaluate the board positions, he 

originally used a linear polynomial whose terms represented features 

or attributes of the board position, with coefficients which indicated 

the importance or weight of that feature. Various methods were used 

for selecting features out of a large man-generated list, and for 

adapting the weights according to the machine's experience. One of 

the major snags encountered was the limitation inherent in the use of 

a linear scoring polynomial--this is a fundamental difficulty in 

pattern recognition work--and a number of different proposals were 

considered for overcoming this. 

Pattern recognition is concerned with the reduction or 

structuring of a complex environment into a relevant and manipulable 

form in order to facilitate goal achievement. Conventional computers 

are not able to organize or classify information in any very subtle 

or generally applicable way--they perform only highly specialized 



-3--

operations on carefully prepared inputs. Only.through classification 

into categories can we hope to introduce "general" or "informal" 

problem-solving methods. Pattern recognition involves both pattern 

classification and pattern discovery, although the latter has been 

rather neglected in the literature. STeLLA (see Chapter 8; Andreae, 

1964, 1969; and Gaines & Andreae, 1966) is a general purpose learning 

machine which discovers patterns in a manner highly relevant to goal 

achievement. Despite their obvious differences, pattern classification 

and pattern discovery require the use of similar techniques; 

unfortunately machines which are intended to discover patterns are 

more liable to instability and oscillation because of the difficulty 

of reinforcing decisions. 

The conventional formulation of the pattern classification 

problem is this: sets of data are supplied to the classifier, either 

as raw sense-data or in some preprocessed form. These sets of data 

are divided by some consensus of opinion (on the basis of usefulness 

of treating them as the same) into pattern classes, and the pattern 

classes are also supplied to the machine. After this training period 

the machine is given data sets, possibly ones which it has not "seen" 

before, and is required to classify these correctly with respect to 

the consensus of opinion. Interesting problems occur when the rules 

governing the correct classifications are not explicitly known (hence 

the similarity between pattern classification and pattern discovery). 

The purpose of the training period is to give the recognizer a chance 

to form its own rules, or to utilize pre-programmed rules to maximum 

effect. It is for this reason that such decision strategies are 

called adaptive. This will be taken up again later. The pattern 
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classification problem has three üatural subproblems: data input, 

description (structuring of-the input data), and decision. 

The input phase was largely circumvented in the early pattern 

recognizers by hand digitization of data. These recognizers were 

usually concerned with optical patterns which were projected on to a 

"retina" consisting of a rectangular matrix of squares. A square 

containing any part of the pattern was considered to be filled. This 

process was not designed to eliminate all stray noise; in fact these 

machines sometimes have a preliminary clean-up stage to take care of 

noise. Selfridge & Neisser's "Pandemonium" (1963) exhibits this. 

Nevertheless, it seems fairly safe to say that noise will appear to a 

much greater extent in real situations. A large number of modern 

pattern classification machines take their input directly from the real 

world via microphones, optical scanners, and the like. This involves 

technical problems in the area of man-machine communication (see for 

example McCarthy at aZ, 1968). 

The description or feature extraction phase has the task of 

extracting some of the relevant and meaningful features from the vast 

mass of input data. In many cases it must first be determined whether 

or not any meaningful data is actually present, and if so, where (in 

time, space, or both) the pattern to be recognized is situated. 

Recognition of connected speech or handwriting exemplifies 

difficulties which can occur in deciding where a pattern starts or 

ends. The conventional approach to this is tentatively to segment 

and/or normalize the input (Gold, 1959), although other approaches 

exist (Hill, 1969). Feature extraction can take place according to 

pre-programmed features (Selfridge, 1958), or according to machine-
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generated masks (Uhr & Vossler, 1963). Early-character recognition 

machines usually computed individual features independently from small 

sub-sections of the retina. While this method of feature extraction 

is quite adequate for many purposes, it does reflect the use of a 

number of computations performed independently of each other (see 

Selfridge, 1958, for a discussion of this). This is not the most 

efficient--though it may be the quickest--way to use computations, and 

it seems that it is not adequate for general pattern recognition. 

Minsky & Papert (1969) devote almost a complete book to a 

consideration of limitations of machines which use features obtained 

in this way--this is discussed briefly at the end of this chapter. 

Several ways of getting round this difficulty exist. One could use 

primitive features for recognition of elementary parts out of which 

patterns may be built (small sections of lines, vertices, etc.) and 

knit these together using list processing techniques (this is 

discussed by Minsky, 1961; Guzman, 1968, provides a practical example 

of such a machine). A rather similar way of overcoming the 

limitations arising from the use of elementary features is to compound 

these features with each other before (or in conjunction with) the 

decision phase. An example is given by Hill (1969). Alternatively, 

multilayer decision networks can be used to give complex decisions by 

"cascading" simple ones. Unfortunately these are beyond the scope of 

this thesis: the subject is touched on briefly in Chapter 9. 

The input to the decision phase consists of a vector of 

measurements, which may or may not be binary, representing the features 

present in the input pattern. This vector is called the query vector 

or feature vector throughout this thesis. During the training period, 



6 

the correct classification of the pattern currently being considered 

must be provided to the decision phase for reinforcement purposes. 

The output of the decision phase is a number representing the pattern 

class thought to contain the input pattern. The pattern classes may 

include a reject class ("information not sufficient for a firm 

decision") and/or a noise only class ("no pattern present"). It is 

important to realize that two identical query vectors may arise from 

two patterns in different classes, owing to either noise perturbation 

or insufficient resolution at the feature extraction or input stages. 

Hence the "correct" (according to the consensus of opinion) class for 

any given pattern is not necessarily a function merely of the query 

vector obtained from that pattern. 

This thesis is concerned with adaptive decision strategies. 

These are used in cases where 

1) the rules governing the classification are not known: adaptive 

techniques can be used to automate data acquisition, 

2) the situation may be changing slowly so that the information is 

context sensitive, 

3) a versatile machine which can be used for different situations 

is required. 

These cases often overlap in practice. Speech recognition is a good 

example of a situation where the rules for classification are not 

known well enough to embody them in an automatic recognition system. 

Slowly changing situations are illustrated by the problem of 

recognizing hand-sent Morse code. When a long message sent by a 

single operator is analysed, it frequently turns out that some dots 

are longer than some dashes, and so an efficient recognizer must use 
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some sort of contextual information (Selfridge & Neisser, 1963). The 

search for a versatile machine is prompted by the fact that it may be 

cheaper to produce a general purpose pattern recognition machine and 

train it for the task in hand than to build special purpose machines. 

I would like to stress that I am not suggesting that 

adaptation is a panacea. Many pattern recognition problems can be 

solved efficiently by techniques which are not adaptive. However, in 

cases where classification is required but the data on which 

classifications are to be based are not sufficiently structured, 

adaptation is certainly a very good tonic until something else turns 

up (sic). 

The feature extraction phase is the major point of attention 

in pattern recognition today--and quite rightly so. Although 

automatic recognition of hand-printed characters has been investigated 

since around 1958, even now there appears to be no consensus of 

opinion on what features are among the best. Automatic speech 

recognition is a field where feature extraction is of paramount 

importance because of the vast mass of data available in speech 

waveforms. 

It is true that if ideal features can be found, the decision 

stage is trivial. Features could consist of a single number 

representing the class to which the pattern belongs, or, less 

trivially, a bit-pattern which requires only 

stored patterns to ascertain the class. One 

speech recognizers currently operating, that 

colleagues (1968, 1969), uses a particularly 

a voting scheme. 

exact matching with some 

of the more successful 

of Bobrow and his 

simple decision scheme--
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It has been experimentally-determined-that the voting scheme 
works as well or better than a number of other measures that 
make use of the same information. (Bobrow & Klatt, 1968.) 

Unfortunately little mention is made of which other decision schemes 

were tried, or of how performances compared. The fact that such a 

simple scheme proved so effective indicates the suitability of the 

features used. system was, however, designed for use with a 

single speaker only. If one wishes to recognize many speakers with 

large vocabularies, then it seems likely that a more powerful decision 

strategy will be required. 

Almost all decision strategies which have been employed in 

practical machines ("machines" is used in this thesis in an all-

embracing sense which covers programmed computers) are variants of two 

simple schemes: the perceptron decision strategy and the maximum 

likelihood decision strategy. While I originally intended to use 

these as a jumping-off point for my research, preliminary reading 

revealed that nowhere in the literature is there a critical review in 

depth of the performances of these basic adaptive decision strategies, 

and worse still, it is extremely rare to find any treatment of the two 

together. This appears to stem from the fact that each strategy has 

its proponents who are unwilling to acknowledge the merits of other 

strategies. In addition to this, difficulties which occur in 

connection with the decision strategies are often ignored altogether, 

or brushed aside with an airy remark (the independence assumption is a 

good example of this; see Chapter 6). 

One of the main difficulties .which crops up while 

investigating adaptive decision strategies is the necessary compromise 

between the optimal and the practical. A decision strategy which is 
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optimal (in a precise sense) for any situation in fact exists; this is 

the maximum likelihood decision strategy. However, implementation of 

this strategy in a practical machine requires, for any real situation, 

restrictive assumptions to be made, and .these usually impair the 

optimality of the decision strategy. Conventional mathematics does 

not seem to be well-tailored to situations in which practical 

implementation is an important consideration, and on the other hand, 

experimentation is a time-consuming process which cannot hope to be 

exhaustive. It is this, I feel, that accounts for the lack of 

satisfactory treatments of adaptive decision strategies in the 

literature. 

The foregoing remarks are a necessary prerequisite for a 

sympathetic understanding of the goals of the research reported here. 

My major objective is to develop a (necessarily) heuristic insight 

into the characteristics of the perceptron and maximum likelihood 

decision strategies, always bearing in mind that these decision 

strategies are intended for use in practical machines. A secondary 

objective is to provide a basis for theoretical investigation of these 

strategies with a view to combining their virtues. 

As mentioned above, experimental investigation, while 

worthwhile and necessary in the context of feature extraction for 

particular problems, is not well suited for probing into the general 

characteristics of decision strategies. Consequently the small amount 

of experimental work I have done (reported in Chapter 7) is intended 

only to illustrate some of the points made in the course of 

theoretical investigation. Mathematics is my major tool, but I try to 

remain conscious of the danger of neglecting practical considerations; 
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the result is that mathematics.is,usedto probe special cases in order 

to provide a basis for heuristic generalization. Here I run the risk 

of being accused of "sloppiness"; Ihope that the following pages 

provide evidence to the contrary. I also hope that non-mathematicians 

are able to understand the arguments presented in this thesis, for it 

is intended to help designers of practical pattern recognition 

machines to select a suitable decision process for their particular 

machine. To this end, proofs and occasionally precise statements of 

theorems are relegated to Appendix A, unless this would seriously 

disrupt the flow of thought through the main arguments. No deep 

mathematical results are used, and all the mathematics here is of an 

ad hoc character. 

Chapter 2 is an introduction to the subject of adaptive 

decision processes, on a more technical level than the present chapter. 

In Chapters 3 and 4, the two basic decision strategies are considered 

in turn. Further topics relevant to maximum likelihood decisions are 

dealt with in the next two chapters. These contain rather more 

mathematics than I would like, but I feel that the mathematical 

arguments are the very essence of these chapters, and so they are left 

in the main text. Chapter 7 describes some experiments which were 

undertaken in order to illustrate points made earlier. This completes 

the investigation of the perceptron and maximum likelihood decision 

strategies. My secondary objective, that of providing a basis for 

theoretical investigation of the afore-mentioned strategies with a 

view to combining their virtues, is considered in Chapter 8. The last 

chapter is devoted to some concluding remarks. Appendix A, as 

mentioned above, contains proofs of some theorems quoted in the text, 



and Appendix Bis a glossaryof special symbols, terms, and 

abbreviations used. 

The literature on artificial intelligence is somewhat 

scattered.among various journals and conference proceedings. A fairly 

comprehensive bibliography of papers appears at the end of this thesis; 

all the papers therein are referenced at relevant points in the text. 

There are few good books on pattern recognition, but I will indicate 

those which I have found useful. For background reading in artificial 

intelligence, both Feigenbaum & Feldman (1963) and Uhr (1966) provide 

a good, if fairly dated, introduction to the field. The latter is 

very much neurophysiologically oriented. I should say here that my 

research is directed away from the fields of psychology and neuro-

physiology--my aim, in J.H.kndreae's words, is "to build a useful 

machine"--but some acquaintance with these subjects is useful because, 

after all, the brain is by far the most versatile and competent 

pattern recognizer in existence, and studies of the brain may provide 

hints relevant to automatic pattern recognition. Further background 

material in neurophysiology and associated topics can be found in 

McCulloch (1965). Relevant philosophical problems are discussed by 

Koestler (1964) and Craik (1952). 

So much for general material. Rosenblatt (1962) considers 

perceptron-like machines in some detail. Sebestyen (1962) and 

Nilsson (1965) both treat much the same topics as I do, but not, I 

feel, in a manner so relevant to practical machines. Nagy (1967) 

gives a comprehensive "state of the art" report on automatic pattern 

recognition, while a collection of papers, many of them concerned with 

practical work, is to be found in Tou & Wilcox (1964). 
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Last year one of th.foremost.workers in -the field of 

artificial intelligence, Marvin Minsky, published a book in 

collaboration with Seymour Papert (Minsky & Papert, 1969) which has 

considerable relevance to this thesis. 

Minsky is primarily concerned with inherent limitations of 

linear decision strategies (see Chapter 2) if features are computed 

independently from small subsections of the retina. While his 

discussion of this topic is not directly connected with my work, since 

I make no assumptions about what kinds of features are used, it should 

be realized that experimental evidence indicates that both the frog 

(Lettvin et al., 1959) and the cat (ilubel & Wiesel, 1962) employ 

"features", in some sense, which are computed independently from small 

subsections of the retina. These elementary features may be combined 

into more complex ones in a hierarchical manner. Indeed, although 

introspective psychology is out of fashion these days, it does seem 

that examining a figure for a topological property like connectedness 

(Minsky discusses this property extensively) involves an essentially 

serial  operation, and Minsky's suggestion that inability to recognize 

such serial properties is a serious limitation of perceptron-like 

machines is perhaps a little trite. On the other hand, Minsky's main 

concern is to debunk the idea, rather prevalent a few years ago among 

some of the perceptron's proponents, that the perceptron is a 

universally applicable learning machine and a panacea for all the 

problems of artificial intelligence, and he certainly accomplishes 

this goal. 

In the sense that independent computations do not provide 
adequate features. 
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Minsky devotes a few pages-to a discussion of.the perceptron 

and maximum likelihood decision strategies, but admits that he can 

offer no general theory of learning (learning and adaptation are used 

synonomously in this thesis). He is interested in genuine foolproof 

mathematics, rather than in the heuristic sort of mathematics used 

here, and I attribute his lack of a theory of learning to the 

difficulties mentioned earlier, that conventional mathematics is 

app3.icable to ideal rather than real situations. 
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Chapter 2 

PATTERN RECOGNITION AND LINEAR DECISION SCHEMES 

An important point which should be kept in mind when 

considering adaptive decision strategies is that the feature 

extraction process is inextricably bound up with the decision phase. 

J,H.Andreae suggests that one should inigine a continuum embracing the 

feature extraction and decision procedures, the distinction between 

the two stages being made on a rate of adaptation/time scale basis. 

He considers any process in a pattern classifier which adapts slowly 

(relative to the rate of adaptation of the other processes) to be part 

of the feature extraction phase. Thus the decision phase has the task 

of attempting short term optimization, while long term optimization is 

achieved by adapting the features. It is, however, convenient to 

separate the two phases because feature extraction is very dependent 

on the particular kind of problem being considered (and also on the 

kind of implementation intended, whether by electronic computer or 

special-purpose hardware), while the decision phase is dependent on the 

characteristics of the features used rather than on the kind of 

recognition problem being considered. 

It is worthwhile looking at some examples of general 

characteristics of features. One such example, mentioned in the last 

chapter, concerns cases where the features are "ideal" and only exact 

matching with stored templates, one for each pattern class, is 

required. Cases where this works well are rarely encountered in 

practice. Features may be non-redundant, in which case if they 
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exhibit perturbations due. to noise no decision strategy can be 

expected to perform well in an absolute.sense, or they may be highly 

redundant, and if so, it is reasonable to expect a decision strategy 

to -perform well in noisy conditions. If the features are. 

statistically independent with respect to the pattern classes then one 

can use a decision strategy which is both optim1 and iinplementable in 

practical machines (see Chapters 4 and 6), while if dependencies exist 

but their form is known, special ad hoc techniques can be used. 

In referring to the interface between the feature extraction 

and decision phases, I often use the term enviroranent. This denotes 

the set of possible query vectors, with their frequencies and classes. 

Two extreme types of environment may be distinguished, although in 

practical situations a combination of both invariably occurs: 

1) environments where the pattern classes are distinct, so that 

the query vectors arising from patterns in each class occupy separated 

portions of hyperspace (feature space or query space); 

2) environments where each pattern class has a single basic query 

vector but random noise perturbations exist, such that the noise acts 

on each feature independently. Here the pattern classes may be thought 

of as unimodal distributions of query vectors in hyperspace, probably 

overlapping to a considerable extent. 

The first kind of environment corresponds to situations in which the 

perceptron strategy works well, while the second kind corresponds to 

situations where the maximum likelihood strategy works well. 

Environments are usually considered in this thesis to comprise 

a core of noiseless query vectors, each with its associated frequency 

of occurrence, with noise superimposed on these. Naturally the 
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noiseless pattern classes-should-be-non--.overlapping if.the pattern 

recognizer is to perform at all well. As far as the decision phase is 

concerned, the pattern recognition process can be thought of as 

selecting points at random from the noiseless pattern classes in 

feature space (inter-dependencies in the presentation sequence are not 

envisaged), choosing each point with its ,associated frequency. 

Features are computed merely by measuring the feature space 

co-ordinates of the selected point. The features are then corrupted 

by noise in the required probabilistic manner, and the corrupted query 

vector is presented to the decision phase. This way of looking at 

environments is found to be helpful, especially for perceptron-like 

decisions. 

The notion of convergence of an adaptive decision machine is 

used freqent1y in this thesis. In noiseless conditions, we say that 

an adaptive decision machine has converged if it correctly 

discriminates between the pattern classes. After convergence, the 

performance of a decision machine may improve or deteriorate if the 

training period is continued. Fortunately this is not true of 

perceptron-like machines, and the term "convergence" is used mainly in 

connection with these. Perceptrons do not adapt themselves after 

convergence has been reached, and so their convergence time (mean 

number of patterns presented before convergence) is a good indication 

of the required length of training period. Further ramifications of 

the idea of convergence are introduced in the following when necessary. 

Determining if a machine has converged is not an easy task in 

real situations. This is basically because the set of training 

patterns is invariably a rather small subset of the total number of 
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patterns which the machine is .expected to classify (this is discussed 

extensively by Nagy, 1967). One must resort to statistical sampling 

to determine if convergence has been reached, but because of the very 

real danger that the training set is not sufficiently representative 

this is not usually reliable. Since the only indication of the length 

of training period required for certain types of decision machine is 

convergence time, it is difficult to determine when to stop training. 

It has been suggested that "tracking" or "selective boot-

strapping" techniques be employed in order to combat possible 

inadequacy of the training set (Nagy, 1967). A selective boot-

strapping system employs a teacher to supervise the learning process. 

When, in the judgement of the teacher, the performance over long chains 

of patterns is acceptable, the machine is left to reinforce its own 

decisions (see for example Widrow & Smith, 1963). Instability rears 

its ugly head here; for most pattern classes are defined by convention 

alone (the consensus of opinion of Chapter 1) and unless the machine 

has been taught the bare bones, at the very least, of the convention 

it may, when left to itself, begin to reinforce incorrect decisions 

and in doing so destroy its whole pra-taught body of knowledge. A few 

noisy query vectors could start such a disastrous landslide. I have 

not investigated such selective bootstrapping systems. 

We now introduce some notation and look at a general 

formulation of the decision problem. Query vectors are denoted 

throughout this thesis by the symbol . The i'th component, 

represents the extent to which the i'th feature is present. The range 

of . may be continuous or discrete, binary or many-valued; unless 

otherwise specified. Pattern classes are denoted by and the 



- 18 - 

output of the. decision phase. is a number .representing the. index of .the 

pattern class. (Ranges of indices are given in this thesis only when 

absolutely necessary to avoid confusion--the ranges of summations etc. 

are generally obvious. This simplifies writing and reading 

considerably.) Although pains were taken to point out in the last 

chapter that two identical query vectors may arise from two patterns 

in different classes, the notation 

cF(1) 

is used for 

"The pattern class currently giving rise, to iD belongs to the 

class 

since this should cause no confusion. 

Classification is effected by discriminatory functions 

one associated with each pattern class, such that (ideally) 

> f(J)() for all j± if and only if 

Note that only non-randomized decision strategies are included in this 

formulation. These correspond to "pure" rather than "mixed" 

strategies in game theory. Chow (1957) showed that optimum strategies 

in pattern classification are pure, and mixed strategies are not 

considered here. The surfaces in feature space given by 

f(1)() = f(J)() (i#j) 

are called discriminatory surfaces. It is assumed for convenience 

that points lying on discriminatory surfaces are classified according 

to some convention. 

The decision phase of a pattern classifier is just the 

implementation of the discriminatory functions. An adaptive decision 

strategy must provide a mechanism for learning the correct 
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discriminatory functions. This.is practically impossible unless a 

special form is assumed for the discriminatory functions, and.adaptive 

decision techniques are usually discussed only for linear 

discriminatory functions. (Some strategies considered in this thesis 

are not in fact linear decisions, but similarly restrictive 

assumptions are always made about the form of the discriminatory 

functions.) Because of the importance of linear decisions, both 

historically and practically, the remainder of this chapter is devoted 

to their consideration. 

Let us suppose that the query vectors are n-dimensional, and 

we are interested in dividing up feature space using linear 

discriminatory functions: 

f(3)() = + + . . • + '1fl + 

The coefficients w are generally called weights, and these are the 

only elements of the decision phase which are subject to adaptation. 

These weights may be positive or negative, and it is assumed in this 

thesis that they may take any values. In order to simplify the 

notation, we define the augmented query vector V, dependent on iD and 

of dimension n+l, whose components are 

for l<i<n; 

Let theweight vector for the i'th ciass be defined as 

w = , . . (j) 
2 ' ,W+l). 

Then the discriminatory functions are 

f(2) OP) = 

and the query vector is assigned to the pattern class 

., 

for which 
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is largest. The introductionof.the.augmented queryvector enables us 

to write a linear form in as a homogeneous linear form in P. 

This method of linear classification is equivalent to 

separating each pair of pattern classes with a hyperplane in feature 

space. Thus if there are m pattern classes, in(m-l)/2 hyperplanes 

exist, defined by 

= (ij). 

The pattern classes are said to be linsca'iy separabie if there exist 

weight vectors satisfying the following: 

> W.4' for all ji if and only if 

A necessary and sufficient condition for sets of points in hyperspace 

to be linearly separable is that the intersections of the convex hulls 

of the sets, taken in pairs, are empty (Papert, 1960). The convex 

hull of a set can be Visualized by throwing a cloth round the set and 

drawing it tight. If the set is finite, its convex hull is a convex 

polyhedron with points of the set as vertices. 

Other methods of using hyperplanes to separate sets exist, as 

was pointed out by Griffin et al. (1963). For in classes, if p is an 

integer such that 

in > p-1 

it is in principle possible to use just p hyperplanes to separate the 

classes, provided that the regions in which the various classes are 

concentrated are well spaced out in hyperspace. Alternatively one 

could attempt to use a hyperplane to separate one class from all the 

other classes taken together. The method described above is at least 

as powerful as the latter method, and it seems highly plausible that 

it is more powerful than the first alternative. To my knowledge 
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neither of .these alternative methods has been used in practical 

machines. 

Minsky & Papert (1969), generalized the above formulation by 

allowing situations where each pattern class has many weight vectors, 

the vector W being associated with the class F j here is a 

mapping, 

> rn) 

which is onto, that is to say, 

for allk (1. < k < in) there exists k' with j(k') = k. 

This permits coverage of cases where each F-class is localized into 

many relatively isolated regions by allowing a weight vector for each 

cluster. This is called a piecwisa Zinear decision scheme, and is a 

simple extension of my formulation which is not explicitly catered for 

here but to which all results and techniques given here are applicable. 

One of the weight vectors is redundant. If we define 

VW = - for all j and some particular i, 

and assign D to the class F for which V V is largest, we 

evidently obtain the same classification as before, with This 

is particularly useful in the rather special case where there are only 

two pattern classes, F+ and F. This formulation is used frequently 

in the following chapters with the single weight vector being denoted 

by W instead of V. If the two pattern classes are linearly separable, 

then there exists a vector W* with 

> 0 for all 

< 0 for all F. 

This discriminating weight vector is always denoted by .W in the two 

class case. 
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It will frequently be necessary to. assume that there exists 

W*.' > 6for all ftF 

W*.' < -5 for all cF. 

This does not follow from the assumption that F+ and F are linearly 

separable, as can be seen by considering a one-dimensional feature 

space with the pattern classes 

= { (1) , (2_i) , (22) , (2) , . . . 

F = •i: (-1) , (2 1) , (_2_2) (-2) , . . . i. 

If the pattern classes are finite, however, or if the components of 

the query vectors are discrete (as will always be the case if a 

digital computer is used for implementation), then linear separability 

of F + and F does imply the existence of a d>O satisfying the above. 

It will be assumed for convenience in this thesis that linear 

separability does indeed imply the existence of such a 6 whenever 

necessary. 

Several common decision methods can be realized using linear 

discriminatory functions. One of these is the minimum-distance 

decision strategy, where a point PW  is chosen for each pattern class 

and classification is effected by choosing i such that 

1(i) < IP - 4, 12 for all ji. 

This is equivalent to choosing i such that 

tp(i)I2/2> (J) - for all ji, 

which is clearly a linear decision with weights 

TT( 1 ) - (j) (i) (i) - IP  (i) 12 
- 'l 2 n 

Some other decision methods which are in fact linear are discussed in 

Chapter 4. 
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The major objection.to linear decision strategies.is that some 

environments are not linearly separable. This again is dependent on 

the feature extraction phase, but some facts about linear separability 

are worth noting. It is manifest that the more features there are, 

the more likely it is that the patterns are linearly separable. For 

adding a feature cannot destroy the property of linear separability, 

but it may separate linearly an environment which was not originally 

linearly separable. 

When given features which are integral but not binary, it is 

common to encode them into binary notation before the decision phase, 

and use the new binary features in the decision mechanism. This makes 

some decisions easier to implement. It is easy to see that a 

positional binary encoding actually enhances. the possibility of linear 

separability. Let be the old feature vector, and 

ll ' 12 '  ' lk ' 21 

be the new binary feature vector, where 

ili2 •• ik 

is the k-digit positional binary encoding of 

• • ' 2k • • 

Then if f() is linear in 

f(j)() = + W2.c2 + • + + w 
n n n+l' 

f 3 (*) is clearly linear in 

k-1 (j) k-2 (j) 
fJ*) = ll + w1 .2 12 + • • +w lElk 

+ w (i  + + + 
21 • • • n nk n+l 

nk 

However, there are many functions linear in which are not linear 

in . For example, if 
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22 + 01; 

then the discrimination is as shown in Figure 2.1, and is certainly 

3 

2 

1 

0 

0 

++ 

23 

Figure 2.1 

A classification which is linear if 
the features are binary-encoded. 

not linear if the non-binary features are used. 

One great advantage of linear decisions is that compound 

features can be added to make a non-linear decision linear. If one 

wishes to implement an adaptive decision then one must in practice 

assume some form for the discriminatory functions, and having done 

this, the decision may be implemented in a linear manner. For example, 

suppose 0 has two components, and the following forms are assumed for 

the discriminatory functions: 

= a1( 1)2 + a2( 2)2 + a31 + a42 + a5; 

= b1 (4 1)2 + b24142 + b3; 

where the a's and b's are constants. Then if we define a new query 

vector which can be computed from the old: 

= = ( ( i)2 
12 ' ' l ' 2 

the discriminatory functions are linear in P. Given any query vector 
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, we-need only compute 4*() anduse.this as a new query-vector, 

discarding the old one. 

In conclusion, let us summarize the properties of linear 

decisions which make-them worth considering. 

1) They may be implemented easily, either by special-purpose 

hardware or by digital computer (see for example Highleyman, 1961 and 

1962). 

2) New or compound features can be added to make a non-linear 

decision linear. Thus if the form of the optimum decision is known, 

the decision can be implemented and adapted using linear techniques. 

3) Piecewise linear decisions can be used to give a more general 

classification with the same basic mechanism. 

4) Many common types of decision are in fact linear (for example, 

the minimum-distance strategy--further examples are provided in 

Chapter 4). 

Although the properties of linear decisions have been 

discussed, no mention has been made of how to achieve adaptation to 

best effect. One of the most common adaptation methods is discussed 

in the next chapter. Other ways of implementing linear decisions can 

be found in Chapter 4, where the decisions, although non-linear in 

general, become linear in an important special case. 

Before closing this chapter, some further notations should be 

introduced. It is frequently necessary in this thesis to use the 

Boolean value of an expression. This is done by enclosing it in the 

corners and '. Thus 

y = 

has the value 
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lif=5, 

0 otherwise. 

Another term which is often used is the size or length of vectors. 

This refers to the modulus of .the vector, as in vector algebra. The 

symbol 4)* .is sometimes used to denote a special query vector. This 

has no connection with the notation ,W* for a correctly discriminating 

weight vector. 
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Chapter 3 

THE PERCEPTRON DECISION STRATEGY 

Perceptrons have excited considerable attention since they 

were first introduced in 1957 by Rosenblatt (1957, 1962). Over the 

years large numbers of mutations and variations have appeared, and 

consequently the term "perceptron" has acquired a number of different 

and ill-defined connotations. My interest lies solely in the power of 

the simple adaptation, learning, or reinforcement procedures which are 

employed by perceptrons, to learn to classify abstract vectors. I do 

not require randomly connected association networks (Papert, 1960), 

nor that features be calculated in an essentially parallel manner from 

local or conjunctively local points of a retina on which patterns are 

projected (Minsky & Papert, 1969). My terminology and formulation of 

the learning procedure are based on Chapter 11 of Minsky & Papert 

(1969). 

It is assumed in this section that query vectors contain a 

completely redundant component, obviating the necessity for the 

distinction between iP and V. The weight vectors are initially 

chosen at random. If a query vector cF (1) with 

< wW. for some j, 

is encountered, is replaced by w'4, and by 

denotes the unit vector in the direction of , i.e. /lI•) 

It is worth noting that the weight vectors are changed only if 

the perceptron would have classified the query vector wrongly. In 

general this process is sensitive to the outer boundaries of the 
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F-classes and. relatively . insensitive. to the points inside. 

For the two class case we need only a single weight vector W, 

and the learning procedure can be represented thus: 

START: Choose any value for W; 

TEST: Choose Oe F+ U F; 

If 00+ then if W.>O then go to TEST, 

else go to ADD; 

If 4)cF then if W.<O then go to TEST, 

else go to SUBTRACT; 

ADD: Replace  by W+4; 

Go to TEST; 

SUBTRACT: Replace W by W-; 

Go to TEST. 

Writing 

F' = {JF+} U 

this is equivalent to the following: 

START: Choose any value for W; 

TEST: Choose any sF'; 

If W. < 0 then replace W by W-K; 

(A) 

Go to TEST. 

One of the reasons for the interest which has been shown in 

the perceptron strategy is that there exists a theorem, the oft-quoted 

Perceptron Convergence Theorem, which states that the learning scheme 

must lead to a weight vector which discriminates correctly between the 

pattern classes if one exists, that is, if the environment is linearly 

separable. The proof of the theorem involves no assumptions about the 

order in which the query vectors are presented, the finiteness of the 



- 29 - 

set F', or the dimensionality of the feature space. An elegant proof 

is given by Minsky & Papert (1969); this is based on a proof by Papert 

(1960). The former show how the theorem can be generalized without 

difficulty to the case where discrimination between n (n>2) pattern 

classes is required. They also point out that the perceptron 

convergence theorem is merely another way of looking at the results 

obtained on relaxation methods for linear inequalities (see for 

example Agmon, 1954). 

The Perceptron Convergence Theorem. Let F' be a set of vectors such 

that there exists W* and 6>0 with W*.>6 for all 4)cF'. Then the 

program (A) above will alter W only a finite number of times, provided 

the weight vector W is initialized to have unit modulus. 

Assuming that the program is presented a sequence of query 

vectors in which each cF' is repeated sufficiently often, it follows 

that a weight vector W for which 

W.>0 for all ftV 

will eventually be found. With such a solution vector, the 

discrimination problem is solved for the two class case, since 

cF+ implies W.>0; 

cF implies W.(-)>0 implies W.<0. 

The theorem also applies when a misclassified vector is added 

to the weight vector without being normalized first, i.e. when the 

program (A) is modified by rep1acing. (in the second line) by , 

provided that the query vectors are bounded in length. This is 

always the case in real situations, and since normalization is a time-

consuming operation on conventional computers, this variant is used 

henceforth. 
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It is important to realize that the theorem guarantees 

learning in a stronger sense than merely cycling through, or randomly 

trying, the states of a discrete machine until an acceptable state is 

found. The learning of a perceptron is self-directing, and can 

genuinely be described as goal-seeking; albeit with a goal which is 

perhaps rather trivial. There is an interesting parallel here with 

the evolutionary process: 

Some biologists have argued that the process of random mut-
ation and natural selection is insufficient to account for 
evolutionary changes as they have occurred, and that some 
other guiding principle must play a part. Whether or not 
this is so will not be argued here but, whatever the 
mechanism, natural evolution is a slow and wasteful process. 
(Andrew, 1963.) 

Random selection or mutation of states by a naive perceptron is also a 

slow and wasteful process, and the training procedure is designed to 

inject a sense of direction into the perceptron's wanderings. 

It is natural to ask what happens to the perceptron learning 

scheme if the environment is not linearly separable. It has been 

noticed that the weight vector eventually oscillates in this case; the 

apparent frustration providing a valuable clue as to when to stop 

training (Efron, 1963). Minsky & Papert (1969) formalized this in 

their "Perceptron Cycling Theorem", showing that the weight vector 

remains bounded in length, and thus, if the set F' of query vectors is 

finite, the system eventually oscillates. 

As far as I know, there has been no indication in the 

literature of the performance of the perceptron in situations with a 

controlled amount of noise. It is clear that if the size of the 

weight vector is roughly the same as that of the query vectors, and a 

query vector which has been corrupted by noise is presented and 
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identified wrongly bytheperceptron, then.the weight vector will be 

changed significantly. This means that a weight vector which 

correctly discriminates the noiseless pattern classes could be changed 

radically by just one noisy query vector, and if this happens a 

correctly discriminating weight vector will have to be relearnt. In a 

computer simulation the perceptron reached a discriminating state on 

the 91'st iteration, and for over half of the next 900 moves it was in 

an incorrectly discriminating state, due to the effects of noise which 

struck on the average only one out of every 20 query vectors. In this 

run there was no restriction on the length of the weight vector: it 

increased from 7 on the 91'st iteration to 12 on the l000'th. The 

query vectors had an average length of 2. 

If the weight vector is significantly longer than the query 

vectors, the perceptron appears to be much more stable during the 

learning period than it is when a small weight vector is used. The 

difference between the partially learned discriminations before and 

after modification of the weight vector by an incorrectly classified 

query vector is usually very great if the weight vector is small, and 

the perceptron gives the appearance of oscillating wildly. With a 

large weight vector, on the other hand, the transitions of the learnii,g 

process take place much more smoothly. 

There is reason to suspect that a larger weight vector will be 

less vulnerable to noise perturbations. For, suppose W is a correctly 

discriminating weight vector for the two class case, 

W.>s for all •DeF 51 

W,<-ô for all 'cF; for some 5>0. 

Suppose all query vectors have length at most c. Now if instead of W 
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we use.the weight vector W'=n.W (n>.0), we can.permit up to 

wrongly categorized (due to noise) query vectors to modify W' without 

changing the discrimination effected by the perceptron. For, let 

m < nô/c 2, and suppose . . . ,' are the corrupted query 

vectors. Then the new weight vector W" is given by 

WV' = WV ± )? ± 1) ± • . .  
1 2 in 

where the alternative signs depend on the class to which was 

assigned. Now 

= nW. ± ± 

> wS - ma 
2 

> no - (nO/c 2).c 2 0, 

so W",' > 0, for all 

and similarly, 

W". < 0 for all cF. 

With a sufficiently long and unlucky sequence of noisy query vectors, 

the discrimination for the noiseless vectors will eventually become 

incorrect no matter how large the weight vector is. One hopes that 

the learning scheme will put the perceptron back on the right track 

with less loss, in terms of incorrectly classified noiseless points, 

than would have been occasioned had the weight vector been small. 

The snag is that a longer training sequence is needed if the 

weight vector is to be large. The perceptron convergence theorem 

provides us with a theoretical upper bound to the number of mistakes 

made during the training period, and an extension to this theorem, 

given in Appendix A (Theorem 1), shows that this upper bound increases 

linearly with the size of the weight vector. This result holds if the 

weight vector is set initially to a fixed size and allowed to vary 
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during learning, as it does in the perceptron outlined above. Non-

trivial lower bounds for the number of mistakes made are difficult 

to find, since the weight vector is initialized arbitrarily and this 

arbitrary vector may itself discriminate correctly between the pattern 

classes. 

If the size of the weight vector is constrained only initially, 

there is a chance that it will decrease significantly during learning, 

thus destroying all point in having a size restriction. It is 

intuitively clear that this can happen in sufficiently unlucky 

circumstances; but for disbelievers the following result is proved in 

Appendix A (Theorem 3): If the weight vector is set initially to 

length A and allowed to vary according to the usual perceptron 

adaptation rules, then there is a non-trivial environment for which 

the final weight vector is small in length, provided an unlucky choice 

is made for the initial weight vector. It can of course happen that 

the length of the weight vector increases during learning. 

Because of this variability in the length of the final weight 

vector, it was thought best to consider an adaptation rule which 

renormalized the weight vector to length A each time it was changed. 

Unfortunately, preliminary investigation revealed that the perceptron 

convergence theorem does not hold in this case. For a simple counter-

example to the theorem, suppose A>l and consider F'{(l,O)J,a subset 

of R2 (the space of pairs of real numbers) with only one element. 

W=(l,O) is a unit vector for which 

eF' implies W*.>l/2, (with ô1/2); 

but if the initial choice of W is W0=(-A,O), then 

W1 = A(-A+l,O) /[(--A+l)2 + 02)1/2 (A0) = W0. 
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Hence the weight vector remains unchanged.no matter how many times the 

query vector (1,0) is misclassified. Less trivial counterexamples can 

easily be found; and if one is prepared to impose some kind of order 

on the sequence in which query vectors are presented it is possible to 

find counterexamples which involve a pattern class F of considerable 

complexity. However, the convergence theorem in its strict form does 

not depend on the order in which the query vectors are presented, and 

the above example shows that it does not hold for the adaptation rule 

described here. 

An obvious solution to our dilpmma is to renormalize the 

weight vector after convergence has been reached. The snag here is 

the difficulty, discussed in the last chapter, of determining when 

convergence has been reached. Some feedback about how adaptation is 

progressing is often required to decide when to terminate the training 

period, and this may be found helpful in determining when to 

renormalize. Indeed, if the machine is trained for a certain period 

of time and then left to fend for itself, rather than being more or 

less continuously monitored and partially trained all its life, then 

it seems reasonable to renormalize the weight vector to the desired 

length on termination of training. This may be considered undesirable 

if the machine is to continue running unmonitored, though, since the 

last thing one wants before leaving it to itself is a radical change 

in the perceptron's internal structure. Note that since the training 

patterns will generally produce noisy query vectors, the weight vector 

should be large during training, and if necessary it could be re-

normalized during this period at the trainer's discretion, provided he 

bears in mind that this could considerably retard or even halt the 
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learning process. I am ofthe.opinion.thatthis apparent requirement 

for interfering with -the internal structure ,of the perceptron severely 

weakens any claim it may have to.being a "self-organizing" machine. 

A modification of the perceptron.learning procedure, used by 

Griffin et al. (1963), ensures that the weight vector becomes large 

but does not-appear to suffer from the disadvantages of the methods 

discussed above. It consists of seeking a corridor of specified width 

separating the pattern classes, rather than merely a line, and this is 

effected by using the rules 

If ftF+ and W. < d then replace W by W+; 

If ftF and W. > -d then replace W by W-; 

for some constant d>O. These rules are rather similar to the use of a 

hysteresis corridor to help a machine to "make up its mind" when 

digitizing a continuous input signal (Hill & Wacker, 1969). Griffin 

reports "a simple but significant improvement" in his character 

recognizer if the usual perceptron adaptation strategy is replaced by 

these adaptation rules, and I shall call this scheme the threshold 

perceptron strategy. The constant d is referred to as the threshold. 

The rules can easily be generalized to more than two pattern classes. 

A reject class can be used when classifying unknown vectors: 

Reject 1P if -Gd < W. < Gd, 

where 0 is a positive constant, usually less than 1. 

It is easy to see that the threshold perceptron strategy has 

the effect of forcing the size of the weight vector up as d increases. 

For, suppose c is a number such that there does not exist a unit 

vector X with 

X.>c for all ftV, 
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where 

F' = {JcF+} u {-cF} as before. 

(Such c's exist: c=a will do.the trick.) Then if W is a solution 

vector for the threshold perceptron, 

W.>d for all cF'. 

Hence 

W. > d/ IWI for all cF'. 

Now (d/IWJ) > c implies W.>c for all ftV, 

which contradicts the assumptions; 

so (d/IWI) < c. 

Hence 

IWI > d/c. 

So given A>O, we can find d such that if the threshold perceptron 

converges, its final weight vector has length greater than A (e.g. 

take d=Ac). The convergence theorem for the threshold perceptron is 

given in Appendix A (Theorem 2); the upper bound on the number of 

times W is changed increases linearly with d. 

The threshold perceptron has additional resources to fight 

noise, apart from its guarantee of a large weight vector. Suppose a 

solution weight vector W has been found, but owing to noisy conditions 

this has been perturbed to W' (by misclassified noisy query vectors). 

Then the machine is able to "realize" that its weight vector has been 

perturbed before it begins to misclassify noise-free vectors, and it 

begins to correct itself before making mistakes. For, suppose W' 

gives a discrimination which is dangerously close to misclassifying 

some noise-free vectors, i.e. 

for some ftFl. 
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Then if one of the vectors in danger.is encountered soon enough, the 

perceptron adjusts itself to alleviate the danger before a noise-free 

vector is misclassified, whereas an ordinary perceptron only adjusts 

itself after a vector has been misclassified. 

The threshold perceptron still, however, persists in the 

futile attempt to correct itself for noisy vectors, as does the 

ordinary perceptron. The above argument only applies to situations 

where the noise level is low, so that one can think of the query 

vectors as comprising a large core of noise-free vectors with some 

stray noisy ones. It. is expected that the behaviour of the threshold 

perceptron will deteriorate rapidly as the noise level increases. 

Having decided that the threshold perceptron has a better 

chance of performing well in noisy conditions than any other variant 

considered (or any other perceptron-like decision strategy that I have 

found in the literature), it was decided to simulate it to see just 

how well it does. The details and results of the simulation are 

presented in Chapter 7. 
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Chapter 4 

CLASSIFICATION USING STATISTICAL DECISION TECHNIQUES 

Statistical decision techniques are often used as the basis of 

a pattern-classifying system. One of the advantages of this is that 

the adaptation of the system can be accomplished simply by estimation 

of the appropriate probabilities (or probability distributions), and 

this process is amenable to theoretical treatment. Consequently we 

deal in this chapter only with the decision procedures, and the 

learning part is considered separately in Chapter 5. 

The problem of statistical classification is usually 

formulated in terms of the loss function (cost function) of decision 

theory. The loss function is defined on the Cartesian product of the 

set of pattern classes (possibly augmented by a reject class or a "no 

signal present" class) and represents the cost of deciding that a 

query vector is in class F when in fact it belongs to class 

This gives a generality which, from the point of view of this thesis, 

is rather vacuous: although the loss function may be both non-trivial 

and known for certain commercial applications, it is usually either 

trivial or unknown and assumed trivial for convenience. In 

experimental situations, where the decision process is used mainly to 

test (in order to improve) the feature extraction, a trivial loss 

function is invariably used. After formulating the classification 

problem in a very general way using the statistical decision model, 

Chow (1957) remarked that "an Optimum system may prove to be too 

expensive for mechanization". His opinion is confirmed by the 
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simplifications and approximations.usedin.the various implementations 

of these decision methods (including his own: see.Chow, 1962), and 

only techniques which have been used in or seriously proposed for 

practical machines are considered here. 

The simplest and by far the most frequently used statistical 

classification technique is the maximum likelihood decision rule: 

Given a query vector , choose the pattern class whose a 

posteriori probability is greatest, i.e. 

Choose class i if 

PrJ:F(1)l] > PrIF] for all j . • . (A) 

This rule is obtained from the general decision theory model if the 

loss function is "symmetric", that is, if correct decisions cost 

nothing and incorrect decisions all cost the same amount (Nilsson, 

1965). For any classification system which has access only to the 

query vector and the various conditional probabilities associated 

with the vectors and pattern classes, the above rule minimizes the 

number of mistakes made (Chow, 1957). It is in this sense that the 

decision is often called "optimal" (Minsky & Papert, 1969), but it 

should be emphasized that this optimality depends on correct assess-

ment of the conditional probabilities. These probabilities can in 

principle be estimated to any desired accuracy if the training period 

is sufficiently long and the training patterns are sufficiently 

representative, but the amount of space necessary for their storage is 

prohibitively large, and so approximations are used which of course 

destroy the optimality of the decision. 

A variant of this simple statistical classification rule 

concerns situations where the decisions may be taken on data resulting 
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from noise alone (Middleton, 1960). An additional class, F0iS, is 

introduced here, and the decision rule is: 

Choose class i if 

Pr[F ' J] > PrIFIj for all j, . . . (B) 

and Pr[F'Jfl 

decide that noise alone is present if 

PriF(0iSJc1] > Pr[P] for all j. 

In most classification systems the problem of deciding if a signal is 

present or not is assigned to the feature extraction phase rather than 

to the decision process, and this extra "noise" pattern class is not 

used--even in speech recognition applications where determining if a 

signal is present or not is a difficult problem (Reddy, 1967). 

One often wishes to reject a query vector if the recognizer is 

uncertain about its class. Chow (1957) showed that the following 

decision rule minimizes the error rate for a given rejection rate: 

Choose class I if 

Pr[clr(1)]Pr[F)] > for all j . . . (C) 

and Pr[IF ]Pr(F] > 0.Z Pr[IF]Pr[F]; 

reject if 

.Z Pr[IF]PrF] Pr for all j. 

The small positive constant controls the rejection rate. This rule 

corresponds to the decision theory model with a loss function for 

which 

a) all correct decisions cost nothing, 

b) all incorrect decisions cost the same, 

c) all rejections cost the same, 

where of course cfc2. The rule is equivalent to 
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Choose class iif 

Pr[F 1 J] > PrIFj] for all j 

and PrJF ' J] > O.E PrIFJJ. 

Note that 

E PrfF 1 J] = 1, 

provided that the pattern classes cover the space of query vectors 

(this is almost always true if the feature extractors eliminate "no 

signal present" query vectors, since the pattern classifier is 

expected to classify even unusual patterns by generalization). Hence 

a query vector is rejected if and only if the a posteriori probability 

of every class is less than the constant 13. With this in mind, the 

decision rule becomes: 

Choose class I if 

PrtF 1 I] > Pr[F] for all j . . . (D) 

and PrfF(1] 13; 

reject 1D if 

13 > Pr[Ffl for all j. 

This decision rule is equivalent to the introduction of a "noise" 

class if Pr[F(h1015Ij is considered to be independent of 11 . Also, 

there is no explicit provision for adaptation of the threshold (noise 

probability), since reject decisions cannot be reinforced whereas 

"noise only" decisions can. Adaptation of the threshold could be 

introduced during the training period by ad hoc methods. 

To implement any of these classification schemes properly, we 

must store Pr[FI] for each pattern class j and each query vector 

'. Unfortunately the space required for storing these probabilities 

is, in general, extremely large. If is n-dimensional and each 
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component can assume one of r values, the distribution 

is specified by r11-1 values for each j, and hence (m-i) (r'1-l) values 

are required for complete storage if there are in pattern classes. 

Suppose, to take a modest numerical example, r=n=m=10. Then around 

10 11 quantities are required to specify all the probabilities 

(Mariii & Green, 1960). 

A simplifying assumption is that of independence of the 

relative to the pattern classes, i.e. assume 

Pr[IF1] = U Pr[qIF]. 

Then we can write 

Pr[F(1)J] = 

Pr[F 1 ]  
Pr 4)  • Pr[4kIF] (4.1) 

This decreases storage requirements considerably. The price we pay 

for this reductiony the independence assumption, is discussed at 

length in Chapter 6; it is generally acknowledged in the literature 

only with a passing warning that it is a "strong" condition. Suffice 

it to say here that it seems to be a fundamental stumbling-block to 

the statistical classification methods, and one that will not be 

overcome except by ad hoc methods applicable only to restricted 

classes of problems. 

For the decision rule (A), where we choose the pattern class 

whose a posteriori probability is greatest with no restrictions on the 

absolute sizes of the probabilities, we can ignore the common factor 

1/Pr[] in the expression (4.1) to get the standard rule: 

Choose class I if 

Pr[F(1)].11 Pr[4kIF] > PrjF].II Pr[4klFW] for all j(4.2) 
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Only n.r.m quantities are required now for storage of the 

probabilities. The introduction of a lmnoiset,! pattern class, as in 

(B), requires a simple amendment to the rule; the additional 

probabilities are estimated in exactly the same way as those for the 

other pattern classes. 

Chow's decision rule (C) also does not require storage of 

Pr[]; it effectively calculates this-using the relation 

= E Pr[IF)]Pr[F(1] (43) 

However, if the independence assumption is used to determine PrJ451F (k) 11 

errors are, caused both by incorrect assessment of the values of 

PrI4.jF 1 ] (caused by inadequacy of the training set) and by the 

inevitable invalidity of the independence assumption. Hence the 

summation in (4.3) leads to an accumulation of errors which will 

almost certainly be quite large in normal circumstances, and this will 

cause inconsistent and probably rather arbitrary rejection. I have 

found no practical work reported in the literature which uses this 

rejection criterion--in fact few experimental workers in this field 

use a reject class at all. 

The decision rule (D) requires knowledge of the absolute 

values of Pr[FJ]. To use the simple Bayesian inversion and the 

independence assumption above, as in (4.1), we must effectively store 

Pr[J, which requires around r ii values for complete storage. 

Alternatively we can assume another form of independence: that the 

components of are statistically independent. This is much stronger 

than the original assumption and its effect in real situations can 

only be to increase the rate of misclassifications for a given 

rejection rate. 



- 44 - 

Another method of :Liuplementing.the.rule (D) is to note that 

maximizing PrIFI.] is equivalent to maximizing 

over the j's, and that 

Pr[FI] > if and only if 

Now 

PrjFIfl 

= 

PrfF] PrI k IF W ] 
= _(4)  .11  _(4 ' 

Pr[F PrfkIF J•) ] 

using our original independence assumption. Following Good (1965), we 

define the weight of evidence in favour of I provided by I: 

Pr[YIX] 
W[X:Y] = log - 

PrEYl X] 

Then, writing 

= 

prior 

() = iog(Pr[F ]/Pr[ J ]); post 

we assign tP to the class which maximizes 

R(1) () = R 1 + W[F:4 1. 
post prior k 

This gives a rather natural interpretation of the discriminatory 

functions in terms of summing weights of evidence--or in fact in terms 

of summing the self-information provided by the -components to the 

pattern class, since as Good (op. cit.)-pointed out, 

W[X:Y] = I[X:Y] - 

where I denotes the information function. 
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We may decide.to reject the query vector if 

PrIFI] < 1/2 for all j, 

i.e. if 

() < 0. post = 

This, or rather the converse, that is certainly not rejected if for 

some j, 

(') > 0, post 

is exactly the result obtained by Maron (1962) as the hypothesized 

condition for a neuron's firing. 

A price must be paid for the rejection threshold, for now both 

and Pr[4kIF] must be stored, together with the a priori 

probabilities, instead of merely the former as before. However, these 

need only be stored during the training period since on termination of 

training, Pr[kIF W ]/Pr[kI 3)] can be computed and stored instead. 

Alternatively an algorithm could be used for estimating weights of 

evidence directly, but I know of no such procedure. 

For the purposes of pattern recognition, decision techniques 

are very often used in conjrnction with query vectors whose components 

are binary-valued. This follows from the fact that the feature 

measurements usually serve to denote the presence or absence of some 

attribute, rather than the degree to which it occurs. The statistical 

classification method turns out to have a particularly simple form for 

binary features because Pr[4jJFJ)] is represented by a single number 

rather than by a probability distribution or density function. 

However, a few remarks on the non-binary case are in order here before 

proceeding to treat binary features. 
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in situations where the query vector components may take on 

continuous or pseudo-continuous range of values, one normally assumes 

a probability density function whichdepends on certain parameters 

such as the mean, variance, and.possibly higher moments, which are to 

be estimated. It can be shown (Highley311, 1961) that the optimum 

decision surface between Gaussian distributions with equal a priori 

probabilities is a hyperplane. If the covariances are not equal, 

however, the maximum likelihood boundary is non-linear (Cooper, 1963). 

I will not concern myself with cases where the distribution is 

considered to be continuous. 

In the discrete case, if the number r of the values 

which may be taken on by 4 i is reasonably small, it should be 

possible to estimate the probabilities Pr[4j=tpJF] separately. 

The decision surface is in general non-linear and assumes quite 

complicated shapes. 

A limited series of experiments was made to determine if 

either of the following two methods of treating a discrete non-binary 

query vector space is significantly better than the other: 

a) estimate the quantities Pr[4.=pIF) separately; 

b) encode the non-binary features into the positional binary 

notation and use the binary features so generated. 

(As noted in Chapter 6, it is probably better to use a binary encoding 

which is highly redundant but preserves the topological properties of 

the environment. Method (b) is, in this sense, perhaps unfair to the 

binary feature system.) The various probabilities were calculated 

exactly by a frequency count using each point of the environment in 

turn. The environments used were mostly linearly separable, but 
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because . of . the invalidity of . the. independence assumption, mistakes 

were normally made by both methods. 

Neither method seemed to be significantly more powerful than 

the other; the discriminatory surfaces for (b), although linear in the 

binary hyperspace (see below), assumed as complicated and seemingly 

arbitrary shapes when re-encoded into the original non-binary feature 

space as those for (a). It appears from this that if the query space 

is to be treated as discrete, no significant loss is suffered by 

considering the binary encodings of the original query vector 

components as new features, and the binary method may prove superior 

if an appropriate redundant but "helpful" coding scheme is used. 

If the features are binary, and if the independence 

assumption is used, the maximum likelihood pattern classification 

becomes linear. This was shown by Minsky & Selfridge (1960), and the 

following is based on their proof. 

Define 

ki = 

p1 PrfP]. 

The discriminatory functions are (see equation 4.2) 

g(i)() = Pr[F].II Pr[qkJF ' ], 

assuming independence. Since log is a monotonically increasing 

function, we may use the amended discriminatory functions 

f(i)() = log{PrfF].II PrI*kIF9j} 

= log(p.) + E logi 1-4k 

= E k log kd + log (p1) + E log (q) 

where 
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Wkj = 

= log (p + Z log(q). 

Defining 

(1) 
w = (wii ,w2i, 

the decision rule takes the form of maximizing V.W(1) by choice of i. 

In trying to gain some feeling for this decision rule, we 

shall ignore rigour and imagine the n-dimensional binary query space 

as being continuous. Consider the decision surface between the 

classes F and F This has equation 

- = 0. 

This hyperplane is normal to the join of the points (w1 .w2 , ... ,w.) 

and (W1J W2 . ... ,w nj .) in our n-dimensional space. Note that the 

"centre of gravity" of the class FM (mean value of {jcF(1)}) is 

represented by the point 

(i) 
C(pli''2i' ' 

This shows that the discriminatory hyperplane is normal to the join of 

the images of C(i) and C(j) under the transformation 

X + log{ x/ (l-x) } 

applied to each of the co-ordinates. This should be contrasted with 

the perceptron learning scheme which is in general sensitive to the 

outer boundaries of the pattern classes rather than to their interiors. 

As pointed out by Nilsson (1965), the equation of the hyperplane 

depends in a reasonable way on the probabilities involved. As p. 

increases with p . constant, w and hence (w - w .) increases. 
Mi mi mi mj 

This favours an FM response for query vectors with 

= 1. 

On the other hand, the m'th component of iP is ignored if and only if 
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w 
mi mj 

i.e. if and only if 

ini = mj' 

in which case that component contributes nothing to the discrimination 

between F 1 and The a pri0r1probabilities of the pattern 

classes affect only the thresholds G, and if FM becomes less likely 

then 6 decreases and the decision surface moves toward 

With a finite number of samples in the training set it may 

happen that some p. or q jj becomes zero. Usually, though, the 

conditional probabilities are smeared, partly because they are often 

estimated by an iterative process which rarely gives zero or one 

(except in storage limited cases where only a small set of values is 

available for probabilities), and partly because of noise 

perturbations. If the independence assumption is valid and the 

conditional probabilities are known for separated patterns in 

hyperspace, then the maximum likelihood classification becomes trivial 

since many of the conditional probabilities will assume their extreme 

values of zero or one, causing all but one Pr[jF] to vanish for 

any (see Chapter 6). However, if one wishes to preserve the 

formalism in these cases and use log probabilities in the form of 

weights of evidence, there is theoretical justification for replacing 

the usual frequency estlmte for PrI4i1].lFJ, where 

is the number of occurrences of Vs in with i-component 1 out of 

a sample of by + l}/{N' + 2), thus avoiding .the problem 

of zero probabilities (Good, 1965). 
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Chapter 5 

STANDARD PROBABILITY ESTIMATION TECHNIQUES, AND SOME 

CONPLICATIONS ARISING FROM STORAGE LIMITATIONS 

I regard this chapter, or at least the first part of it, as a 

necessary evil. Techniques for probability estimation are well known 

and have been used in learning machines for some time now, and I feel 

that little if any improvement can be made to these. However, our 

discussion of the maximum likelihood decision method is of little 

consequence unless these techniques are described; in addition to this 

it is difficult to find a complete treatment of more than one 

probability estimation procedure in any one place in the literature. 

An exception to this is provided by Minsky & Papert (1969), and the 

first part of this chapter is based on their exposition, with some 

alterations and additions of my own. It was not thought worthwhile to 

carry the argument to several decimal places, and means, variances, 

and limits are assumed to exist whenever this is convenient. 

One often requires learning machines to repeatedly estimate 

the probability of "favourable" events in some continuing process. 

Normally this cannot be calculated directly, since it is by definition 

a limit, and so one must find estimators. The simplest way to 

estimate a probability in situations of this kind is to find the ratio 

h/n of the number h of favourable events to the total number of events 

so far experienced. 

Define 

= (the n'th event is favourable'; 
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let p be -the true probability that an -event is favourable; 

Pbe the estimate of p after n trials. 

Then the formula 

pn = (1 - 1/fl)I + (1/n)4 

computes the frequency ratio 

pti = = h/n. 

. . . (5.1) 

Making the usual assumption that successive events are independent, 

and noting that 4. is binomially distributed, we have 

E[p] = p, . . . (expectation) 

Var[p] = p(l-p)/n. . . (variance) 

Note that p0 is truly arbitrary, since the value of p (ii > 1) is 

independent of p0. 

The estimate (h+l)/(n+2) was mentioned at the end of the last 

chapter; this avoids some problems which can arise from zero 

probabilities. The formula 

1 
= (1 n+2'n-1 + 

PO = 1/2; 

computes 

1 
n+2 

h+l 
= 1 • (2p0 + Z 4) = 

. . . (5.2) 

It behaves as the previous procedure would if one 41 and one 40 were 

observed in two moves, before starting to observe the 4,'s proper. 

Consider the alternative estimator 

Pu = (l-0)P 1 + 

This is the e.'zrponentiaily weighted past average (EWPA) procedure, and 

has the advantage that the current value of nneed not be stored and 

appropriately incremented. 'The solution of the recurrence relation is 
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Pn =(10)flp + OE 

so EJpJ = (1-0)'1p0 + pa - (10)r) 

+p as , for all P0. 

Also, 

Var[p] = p(l-p).0(l - (10) 2n)/(20) 

0 
• .P(l-P). 

It can be seen that recency outweighs experience, for this estimation 

procedure, since the coefficients of decay exponentially with time. 

This is an advantage for many pattern recognition systems, since the 

feature extractors may be changed (for example by varying thresholds) 

in a gradual but unpredictable manner, depending on the performance of 

the classifier. In the limit for large n, the expected value of p is 

p, and the variance can be made arbitrarily small by choosing 0 small 

enough. 

Following Minsky, we can "equate" the variances of procedures 

(5.1) and (5.3): 

p(l-p) = 0(1 - (10) 2fl) 

n 2 -• 0 •i :11_) 

so n"2/0. 

Thus the variance of procedure (5.3) is about the same as that 

obtained by averaging the last 2/0 observations. We can think of 1/0 

as a time-constant for "forgetting". For small 0, there is slow 

adaptation but the variances are small and the final estimate is 

reliable. For large 0 adaptation is fast but the limiting variance is 

large. Initially the situation is as though the probability had been 

estimated at p0 on the basis of l/0 trials. Hence for small 0 the 

influence of the arbitrary p0 is present for some time, and for large 
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o we run the risk of violent.osciilatjons atthe beginning. Samuel 

(1959) used an ingenious compEomise in his checker-playing program. 

He set yo = 1/2 and used 

= (1 - 1/N)p + (liN)+i 

where 

16 if n<32 

N = 2m if 32 < n < 256 and m is an integer with 2" < n <2111+1 

256 if 256<n 

This ensures stability at around 1/2 in the early stages, approximates 

uniform averaging in the middle, and finally settles down to an EWPA 

to ensure adaptation to changing circumstances. 

Minsky & Selfridge (1960) used an adaptation rule which is 

only trivially different from the EWPA estimator: 

Pu = (1_O)(p_ + 0<0<1. 

Let qn = 0Pn/(l_0)• 

Then 

so 

(1-O)q/6 = (l-0)cj. (l-0)/0 + (l_0)4, 

qn = (l•O) 1 + 

(5.4) 

which is the same as rule (5.3). Hence the limiting expectation of 

is (l-O)p/O, 

and the limiting variance is 

()2 

0(2-0) •P1P 

Pn 

One sometimes wishes to estimate the likelihood ratio p/ (]-p) 

directly. This can be done using 

Pn = (l-e)p 1 + 0(1 + p )4 
n-1 n 

Write 

0co<l. . . . (5.5) 
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E = EIpj; E = Lt(E) as n -'-

x=EIp]; X=Lt() as n+, 

Then 

E n 8p+(i-O+Op)E1, 

n-i 
so E 0p. Z(i-O+Op) 1 +(1-O+ fl 

n °' 0 

= . (l - (1-O+Op)'1.) + p0. (i-O+Op)' 
i-p 

provided 

p # 1. 

Hence 

R = as required. 
i--p 

Now p n n2  )2.pn2—i + 2O(1-O+O i + 

We have 

e2. 2 

E[(i-8+84)2] = p + (i—O) 2 .(1—p) = (i-8) 2 + O(2—O)p ; 

E[ (i-O+e) 

and E[4 2] = P. 

Hence 

xl-' 

so 

= 

= { (i—o) + 0 (2-0)p} . + 26 p n—i + p0 2 

= {(10) + 0(2-0)p}. + 20p2/(i—p) + pG 2 

This gives 

x 

p(2p+e—op) 

(2-o)(i-p) 2 

The limiting variance of p' is given by 

V= X — E 
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= 2-0 (1-p) 2 

Thus the limiting variance maybe made as small as we please by 

choosing 0 sufficiently small. 

The effect of limited storage for probabilities on EWPA 

estimation is now considered by means of an example. Suppose the 

probabilities are stored as integer percentages, i.e. write 

q = lOO.p, 

where the q's are stored as integers. The EWPA recurrence relation is 

pn = (l-O)P - i + 04, n n 

= n-1 + 0(1 - - 0p 1. (l - 

In terms of the q's, this is 

qn = q 1 + 0(100 - q_1 4, - Oq 1.(l - 4). (5.6) 

Let the value of 0 used be 2%. An acceptable digitization of (5.6) is 

(see Figure 5.1) 

where 

= q_1 4(q_ 1 ) + d'n-1 (1 - 

= 

= 

5 +2 if x < 50 , . . . (5.7) 

if x>5O; 

if x<50, 

1-2 if x> 50 

A digitization which sticks closer to the required line is 

+2 if x25 

= +1 if 25 < x 75 

0 if 75<x; 

and similarly for 1d(x), but this suffers from the disadvantage that 

if p is in the range 125,75] then m (m>n) can never be less than 24 
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or greater than 76. Hence we.usethe digitization (5.7). 

5-

5-

- S 

1 
-5-

- S 

0 

1 

-2 

Now 

IT 

-5-

5-

5-S 

- S 

5--

5--

- S 

50 100 

I -

- 1 

Figure 5.1 

The digitization of the A-functions. 

E[q] = E[q 1] + p.E[A1(ç1)] + 

x 

where p, as before, is Pr[il]. Assuming for convenience that q 

always remains above 50, 

Eq] = E[q 1] +p - 

so if 

p > 

i.e. if 

p>2/3, 

then q is expected to increase steadily until it reaches the upper 

limit. 
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This is clearly an undesirable state of affairs. ..Moreover, 

the phenomenon is not confined to-the example given; it willbe present 

to a greater or lesser extent in any system which digitizes the 

probabilities and adjusts them in a straightforward manner. The 

example is not an 

situation--on the 

complications was 

machine which was 

extreme one which is unlikely to occur in a practical 

contrary, the existence of storage limitation 

brought home to me while experimenting with a 

a realization of just this example. 

We have seen that the EWPA procedure (or in fact any other 

conventional probability estimation procedure) is spoiled by 

digitization unless the parameter 0 is large compared with the 

precision to which the probabilities are stored. The only explicit 

reference I have seen in the literature to the following technique for 

overcoming'this difficulty is due to Andreae (1969), although tlhr & 

Vossler (1963) used a similar technique without comment. 

I propose using this system for incrementation and 

decrementation in the above example: 

2 with probability (100 - 

0 ' 11 xl, 

II 

IV 

X%, 

(100 - x)%. 

Hence A. and Ad can be interpreted as random variables dependent on 

2.the argument x, whose expected values, given x, are the same as the. 

values of the a-functions given earlier. Fdr amore general treatment, 

let us revert to the p's and re-define1 andd by 

p n = p n -  i +L(p ).c + l n-1 n d 

We choose the s-functions to, be 

. . . (5.8) 
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= { o with probability 

o it VI 

15 0 " It 

where 0 is a positive constant, less than 1, chosen to be a multiple 

of the precision to which the p's are stored. We calculate the 

expectation and variance of the p's: these are assumed to exist. 

Let En = E=Lt(E) as n+. 

We need the following facts: 

EI] = p; E[l - = 

E[.(p)] = E[E[t.(p:)JpJ], by a well-known theorem of 

probability theory (see for example Gnedenko, 1962); 

so E[  (p)] = EjO(l - p)J 

= 0(1 - E). 

Similarly, 

= -OE. 

Hence (5.8) becomes, in terms of expectations, 

E = E 1 + Op (1 - E 1) - 0 (l-p) En_i 

Also, 

= (l-0)E 1 + Op. 

= p0. 

Hence 

E = (1_0)n• + (1 - 

so E = p. 

This result is exactly .the same as that obtained from the conventional 

EWPA procedure. For the variance of the p's, we use 
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= 1A (p •y}2;2 dn-l> (1 - 

+ 2p •1{1(p.1) . + (1 - } 

(5.9) 

Write 

X = E.fp]; x = Lt(X) as n -- 

these  are assumed to exist. We need the following: 

E[2] = p; EI(l - n)2) = i-p.; E.(l - = 0; 

E[(  1(p))2] = 02 .(i. - E); E[(I d (p)) 2] = 02.E; 

Etpn A (p)] = E[ep(1 - = 0(E - 

EIp.(n , d p)J = E[-0 .p) = 

In terms of expectations, (5.9) becomes 

Xn = X_i + P' (1 - E 1) + 02 (l-p).E 1 

+ 2p0(E :i. - Xn_i) -, 

= (l-20)x n-i + 0(0 + 2p(1-0)).E + p0 2. 

Hence 

x (i-20 )x + 0(0 + 2p(l-O))p + p0 2, 

° XP(O+PPO). 

Thus the limiting variance of p as n + is 

x - = 0p(i-p). 

Note that this is slightly larger than the variance 

0 
.p(l-p) 

of the conventional EWPA procedure. This is only to be expected since 

the additional random element in the 1-functions introduces a new 

degree of possible variation, so to speak. However for small 6 the 
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difference in the variances is negligible, and these probabilistic 

incrementation and decrementation techniques provide an acceptable 

method for overcoming difficulties arising from storage limitations. 
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Chapter 6 

THE INDEPENDENCE ASSUMPTION 

The single failing of the maximum likelihood decision strategy 

(in its usual form) is that the independence assumption is almost 

never true. While wandering through numerous papers on this decision 

strategy and associated topics in preparation for this thesis, I was 

forcibly struck by the lack of space devoted to this assumption and 

its implications. Although passing references are made to the 

difficulty at several places in the literature (see for example 

Minsky, 1961; Nagy, 1967), the problem is usually dismissed in a 

sentence or two. Having given the subject considerable thought, I am 

now of the opinion that in fact not much can be said about it; one 

must accept the assumption if one wishes to build a practical machine 

embodying  maximum likelihood decision strategy, and features should 

be chosen in such a way as to help the decision. For this reason the 

present chapter is cautionary rather than constructive, and a large 

part is devoted to an examination of some implications of the 

independence assumption. 

It seems that the problems of implementing a maximum 

likelihood decision scheme using a weaker form of the independence 

assumption are almost insurmountable. Lewis (1959) developed a method 

of successively approximating to probability distributions; his first-

order approximation is equivalent to assuming independence, and 

higher-order approximations are given which refine the estimate of the 

probability distribution at the expense of increased storage 
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requirements and considerable additional complexity. As far as I know, 

however, these higher-order approximations have never been embodied in 

practical machines. Lewis himself, when simulating an experimental 

pattern classification machine, used only his first-order 

approximation (Lewis, 1962), and it is instructive to examine his 

reasons for doing so: 

It [the independence assumption] was made . . . because 
1) the assumption yields a simple realization for the 

recognition system, 
2) there are a great many situations for which such an 

assumption is adequate, 
3) a study of this simple case furnishes a first step 

in the study of more general situations. 

(1) appears to me to be the most binding consideration as far as 

designers of practical machines are concerned. Note that in (2), 

Lewis claims only that the independence assumption is adequate, rather 

than valid, for many situations. It is shown below that the 

assumption is valid only for a greatly restricted class of situations; 

unfortunately its adequacy is rather more difficult to investigate, 

and the evidence for (2) is presumably that maximum likelihood 

classifiers using the independence assumption have been shown to 

function reasonably well. Concerning (3), the conspicuous absence in 

the literature of investigations of more general situations seems to 

indicate the difficulty of implementing higher-order approximations. 

It is possible to implement weaker forms of the independence 

assumption in an ad hoc manner depending on the particular features 

used. An example of this is provided by Chow (1962), who simulated a 

machine for recognition of hand-printed characters using the binary. 

matrix representation of a character as its feature vector. 

Approximate size normalization and registration had already been 
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performed. Chow assumed a "nearest-neighbour" dependence: 

Pr[IF] = II ii j_,j; F], 

where 

(the (i,j) 'th matrix square is occupied by part of the 

character. 

This form of dependence is justified by intuition and depends strongly 

on the particular kind of features used, and on the ordering of 

features. The dependence is on the north and west neighbours: • the 

other two neighbours are not explicitly needed. The number of 

probabilities to be stored is about four times that required if the 

usual independence assumption is used. Recognition was achieved with 

97% success (on previously seen samples taken from the set of ten 

numerals), which represents a considerable improvement over the 80% 

success achieved using the usual independence assumption. 

We next look at some of the implications of the independence 

assumption. Our starting-point is the following definition of 

independence: 

The events E1 and E2 are independent If PrIE1IE2J = 

The events E1 and E2 are independent with respect to the event A 

if Pr[E11E2 & A] = Pr[E1IA]. 

Thus E and E2 are independent w.r.t. (with respect to) A If given A, 

tells us nothing further about E1. It is easy to show that this 

implies that E2 and E are independent w.r.t. A, as it should. We deal 

for the moment with only two events for the sake of simplicity: all 

results generalize easily. 

When using independence to simplify the maximum likelihood 

decision scheme, one assumes that 
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Pr[ 1 & q2lF] = PrIq1IFJ.PrJ2IF]. 

This is exactly ,equivalent to assuming that 

and are independent w.r.t. F. 

For, (6.1) ,is true if and only if 

Prt1IF].Pr[2IF] Pr[41q2 &.'F].Pr142IFJ, 

(6.1) 

(6.2) 

which is equivalent to (6.2) (provided Pr[4 2 JF19&O, which must be true 

if Pr[  1 l4 2 & F] is to have meaning). 

Let us examine a simple situation where the independence 

assumption is not true. Consider the features given by two 

rectangular Cartesian co-ordinates; let A be the set of points (see 

Figure 6.1) 

A={(O,O) , (0,1) , 

where the points are encountered with equal frequencies, i.e. 

Pr[f 1=O, 2=OIA] = 1/3, 

and similarly for the other points in A. (The event (4 1, 2)cA is 

denoted by A where this will cause no confusion.) 

Figure 6.1 

A situation where the independence 
assumption is not true. 
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Then 

number of points in A with 

PrIq 1=OjA]. - 

number of points in A 

and Pr[4 2=OIA] = 1/3. 

Independence implies 

Pr[4 1=O, q2=OA] = Pr[4 1=O IA] .Prfl 2=O IA] 

= (2/.3).(1/3) = 2/9, 

= 2/3, 

and this is not true. 

Note that 

Pr[ 1=0I4 2=0 & A] = 1, 

so Prj4 1=0, 42=01A] = Pr[$1=OI4 2=0 & A].PrH 2 0IA] 

= 1.(1/3) = 1/3, 

which is as it should be. 

Suppose now that we have another pattern class B which 

contains the point (1,0), and such that 

Prf1::1, 2OIB] < 1/9. 

This is easily accomplished by taking 

B = {(1,O) , (2,0) , (3,0) , . . . , (1O,O)}. 

Then the features are independent w.r.t. B, ,and 

Prt4 1=1, 2=OIBJ = 1/10. 

If we assume independence for A, the point (1,0) will be categorized 

wrongly, since 

Pr[4 1=1, ,2=OIA] = Pr[p1=1IA].Prjcp2=OIA] 

= (1/3).(1/3) = 1/9 

> Pr[4 1=l, 42=OIB]. 

Note that if we do not assume independence for A, then 

Pr[ 1=1, 42=OIA] = Pr[1=1I4f0 & A].Pr[42=OIA] = 0, 
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since no point ( 1 ,4 2)cA with 40 has 4i=l. 

Whether or not the independence assumption holds for a pattern 

class,, F depends on the frequencies with which points of F are 

encountered. This can be seen by considering the set of 'points 

A {(0,0) , (0,1), (1,0) 

If all the points in A have equal frequencies, then the independence 

assumption clearly holds. However, if the frequencies are 

0.25 , 0.25 , 0.49 , 0.01 

respectively, then 

PrI 1=ll,A] = 0.50, 

Prt2=lI,A] = 0.26, 

so 0.01 Prt 1=1, ,2=1I,AJ 0 PrI 1=1I.AJ.PrI 2=1JA] = 0.13, 

so the independence assumption does not hold. Thus ,a pattern class F 

may be said to consist of a set A of points, each with frequencies 

attached, where the set A and the frequencies are defined by 

A = {XIPr(=XIF] >0 }; 

percentage frequency(X) 100.Pr[=XI.F] for all XcA. 

The next result gives a characteristic which must be possessed by all 

sets of points corresponding to pattern classes which satisfy the 

independence assumption, irrespective of the associated frequencies. 

It is proven here for the case where the set of points is discrete; 

the extension to the continuous case can be shown similarly but is not 

relevant to this thesis. 

Let F be a pattern class which satisfiesthe independence 

assumption, and denote by A its associated set of points as defined 

above. Suppose the query vectors are n-diiuensional and discrete. We 

assume that all points in A have integral (not necessarily binary) 
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co-ordinates--this is easily arranged since the feature space is 

discrete. Let A1 be the projection of A on the i'th feature axis, i.e. 

Ai = {xl there , exist x1 ,x2, ... ,x1 1 ,x 1, ... ,X with 

(x1 ,x2, ... ,x1_1 ,x,x 1, ... ,x)eA}, 1 < I < n. 

By the definition of A, 

Pr[4 1=x1 for all i, 1 < I .nIcF] > 0 if and only if 

(X 1:'x2:' ... ,x)A. 

Also, 

Pr[.=x.IcF] > 0 if and only if x1cA1. 

The independence assumption for F is 

Pr[41=x1I=x. for all jB, & cF] 

for any subset B of {l,2, ... ,i-1,i+l, ... ,n} and all 1. Note that 

this is stronger than merely pairzaise independence of the co-ordinates 

of w.r.t. the event 7?€F. The independence assumption for F implies 

that 

Pr 1=x1 for all 1, 1 < i < nIcF] 

= II Pr[+..x.I.=x. for all j, i < j < n, & CF] 

= II Pr[.=x1leF]. 

Hence 

(x 1 ,x2, ... ,x)cA if and only if II PrI.x1lcF] > 0 

if and only if Prf 1 x1 jcFJ > 0 for all i 

if and only if x..cA1 for all 1. 

Hence 

A = {(x1 ,x2, ... x )IX cA for all i, 1 I 

that is, A is exactly the Cartesian product of its projections on each 

of the axes. The best way I can describe figures satisfying this 

restriction is to call them striated rectangular figures, with 
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striations parallel to the feature axes. An example in 2-space is 

given in Figure 6.2. 

y 

A 
y 

IZI V//I/A 

Figure 6.2 

An example of a striated rectangular figure. 

We have shown that if a pattern class satisfies the 

x 

independence assumption, then its associated set of points must have 

the form of a striated rectangular figure, as described above. It is 

easy to see that if a pattern class F does not satisfy the 

independence assumption, and its associated set of points does not 

have this form, then a maximum likelihood classification scheme which 

assumes independence will assign all points in the smallest striated 

rectangular figure containing A to F with a non-zero probability. For, 

suppose there exists a point in A, for each I, with i-component x1. 

Then 

Pr[41=X1ICF] >0 for all I, 

so Pr[ = (x1 ,x2, ... ,x)IcF] > 0. 

Hence there is a sort of generalization of the pattern class to the 
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smallest striated rectangular figure containing A. An example is 

given in Figure 6.3. 

-y 

x 

generalization 

y 

Figure 6.3 

Generalization resulting from invalidity 
of the independence assumption. 

x 

A further consequence of the independence assumption is that 

if it is really true, and if the pattern classes are separated (i.e. 

do not intersect), then a maximum likelihood decision can be 

accomplished by a form of exact matching of the query vector with 

templates associated with the pattern classes. This is shown for the 

case where the features are binary-valued; the extension to many-

valued features is obvious. Using the terminology of Chapter 4, and 

assuming independence, 

Pr[F] ( =l ( 
'J  i 

Pr[] 3 

Now Pr[Fl] > 0 if and only if 4)cF, 

since the classes are separated. Take any particular sF, the 

complement of F. 

Pr[Fk'] '0, 

so there exists j such that 
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14; =l' (4) =& 
pi i .(l - = o. 

Hence either p=O and 4).=l or p.=l and 4).0. In either case, it 

follows that the j'th bit (feature) is the same for all query vectors 

in F. Define 

f = {j J4 is the same for all cF}, a non-empty set. 

Take any particular *cF. Then 

cF if and only if Pr[P In > 0 

if and only if 4). = 4 for all jcf. 

Hence one can tell if a query vector 4P is in any particular pattern 

class by exact matching of certain bits (depending, of course, on the 

pattern class) of the vector with any representative of that class. 

All that need be stored is a Vin thatciass, together with pointers 

to the bits of which are iñiportart for that class. 

In the light of the above discussion, it is evident that the 

independence assumption is actually valid only for an extremely 

restricted class of situations. Fortunately it is adequate for 

pattern classification purposes in a rather larger class of situations. 

Each pattern class can be viewed as competing for any given query 

vector --we assign 1P to the class which maximizes 

without requiring that 

Pr[FI'] > 0 and Pr[F ' Ifl = 0 for all i#j. 

I have found no general way of examining the adequacy of the assumption 

except by experiment. 

At the beginning of this chapter it was mentioned that since 

one virtually has to accept the rather dubious independence assumption 

to implement a maximum likelihood decision, the features should be 
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chosen in such a way as to help the decision. Although a discussion 

of the feature extraction process is beyond the scope of this thesis, 

a brief consideration 'of the important special case where a binary 

encoding of measurements is used to provide binary features is in 

order here, since this encoding process can affect the independence 

property. The next result shows by an example that independence can 

be lost just by encoding numerical measurements into the usual 

positional binary notation. It is interesting to recall that encoding 

features into the positional binary notation, actually enhances the 

possibility of linear separability (see Chapter 2). 

Let A be the set 

A = {(0,l) , (0,2)), 

and let F be the pattern class associated with A, where the points in 

A are encountered with equal frequency. Then F evideitly satisfies 

the independence assumption. Consider 

A' = {(0,0,0,l) , (0,0,1,0)), 

obtained from A by a 'two-bit positional binary encoding of the features. 

Let F' be the pattern class associated with A'. , 

Then 

Pr[3=lI'cF'] = 1/2, 

but Pr[4 3 114 4 0 & eF'] 1. 

Hence F" does not satisfy the independence assumption. 

Andreae (1969) discusses a situation where the feature 

extraction process consists merely of coding the points of a 10 x 10 

matrix.' Although he is primarily concerned with STeLLA'-like decisions 

(see Chapter 8), I feel that his remarks are also relevant to maximum 

likelihood decisions. He suggests that the kind of input encoding 
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scheme used is vital to the performance of an adaptive pattern 

classifier, and recommends the use of a SIG (snake in the grass) code 

(see Figure 6.4). For .Andreae's particular situation, each point is 

Number •Code 

11 00000 
2 00001 
3 00011 
4 .00111 
5 01111 
6 11111 
7 11110 
8 11100 
9 11000 

10 10000 

Figure 6.4 

A SIG code. 

represented by ordinary rectangular Cartesian co-ordinates, each 

converted into the corresponding SIG code. This, he points out, has 

the advantage of preserving environmental continuity. 

The input coding [see above] . . . is particularly helpful to 
the machine because it reflects the natural topology of the 
environment. The Hamming distance (number of digits in 
opposite state) between code words reflects quite accurately 
the proximity of the lattice points in the 2-dimensional 
input space. 

He goes on to compare this with a positional binary encoding scheme 

which, of course, preserves environmental continuity only to a very 

limited extent, if at all. 

SIG coding also has the effect of introducing a high degree of 

redundancy. This is vital in noisy situations, but has disastrous 

implications for the independence assumption when little or no noise 

is present. Nevertheless, I believe that the adequacy of the 
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independence assumption will not be greatly impaired by the use of 

this kind of redundant input èoding, although its validity will 

certainly be destroyed. Unfortunately I can offer no concrete 

evidence for this conjecture. 
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Chapter 7 

SOME EXPERIMENTS WHICH ILLUSTRATE THE DIFFERENCES BETWEEN THE 

PERCEPTRON AND MAXIMUM LIKELIHOOD DECISION STRATEGIES 

It was mentioned in Chapter 1 that few attempts to compare the 

performances of different decision strategies have been reported in 

the literature. I feel that the following reasons account, at least 

in part, for this regrettable fact: 

1) Adaptive decision techniques are specifically intended for 

situations where incomplete and possibly unreliable information is 

available to the decision taker. Hence if comparison is attempted 

using environments taken from real life situations, these environments 

are unsuitable for well-controlled experiments, especially when reason 

(2) is considered. If, on the other hand, abstract environments are 

used, one runs the very real risk of "favouritism"--see (3) and (4). 

2) While the emphasis in adaptive machine design is usually on 

economical hardware realization, machines are usually simulated by 

digital computer in the experimental stage. This simulation is rather 

costly in terms of computer time. 

3) Different decision strategies have different characteristics 

which render fair comparison difficult. 

4) There is no way of grading or comparing the complexity of 

environments except by way of the decision strategies which are to be 

evaluated. 

At first sight, (3) looks a little out of place since after all, 

decision strategies are designed to perform roughly the same tasks. 
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For me, one of the main benefits which came from attempting an 

experimental comparison of decision strategies was that I was forced 

to consider their different characteristics in order to make 'the 

comparison fair. This is one of the chief interests of the present 

chapter, and will become apparent in the following pages. 

Normally when one tests a pattern-classifying machine, it is 

the particular features used that are under test, rather than the 

decision strategy itself. Such tests are reported fairly well in the 

literature, although comparisons .of the effect of different features 

on the same data are rather more difficult to come by. (A notable 

exception to this is provided by Bledsoe & Bisson, 1962; in connection 

with this see also Chow, 1963). As mentioned in Chapter 2, the 

performance of different decision strategies will depend critically on 

the features used; thus a comparison of decision strategies would be a 

gargantuan task if-no analytic techniques were used. For this reason 

the experiments reported here are intended to illustrate some points 

made in previous chapters; they are presented to augment the arguments, 

not to carry them. 

The decision data for the experiments were specially chosen in 

order to investigate the following phenomena: 

1) the influence of threshold size on convergence time for a 

threshold perceptron; 

2) the behaviour of a threshold perceptron in noisy conditions; 

3) convergence time of a maximum likelihood classifier using the 

independence assumption; 

4) behaviour of a maximum likelihood classifier in noisy conditions. 

(1) evidently requires an environment which is linearly separable. 
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Moreover, for (3), the environment must be such .that the independence 

assuniptionis adequate, though not necessarily valid. To investigate 

(2) and (4), some mechanism for introducing noise in a controllable 

manner is required. 

The environment used is illustrated in Figure 7.1. The blank 

"don't care" points in the 8 x 8 two-dimensional matrix are never 

presented to the decision machine, but they may be received by it 

because of noise corruption. Features were obtained from any 

Figure 7.1 

The standard environment used in 
all experiments. 

particular point by a positional binary encoding of the two 

rectangular co-ordinates, giving a 6-component binary feature vector. 

A further component was added to each query vector to obtain the 

augmented query vector ': this component was always 1. Using these 

features, the two pattern classes F+ and F are linearly separable. 

In addition, the independence assumption, while not valid, was 

adequate for discrimination between the classes. 

Noise was added to the environment by corrupting the 

components of each query vector with a specified probability in an 

independent manner thus: 



- 77 - 

Replace by 1- with probability p (1 < I < 6). 

The last component of each augmented query vector was never corrupted, 

since its use is merely a notational trick to simplify writing and 

programming. The probability p is referred to as the noise level and 

is expressed as a percentage. Thus if the noise level is 10%, the 

probability that any particular query vector is not corrupted is 

(1 - (1/10))6 = 0.53 

For all experiments, points in F+ U F were chosen at random. 

The process of choosing and corrupting a query vector can be stated as 

follows: 

START: Select a point P at random from the 8 x 8 matrix; 

If P is not classified as + or - then go to START; 

If P is classified as + then TYPE = +, else TYPE = -; 

Compute the uncorrupted binary '-vector from the 

co-ordinates of P; 

For i = 1 step 1 until 6 then 

replace 4 by 1-4 with probability (noise level/100); 

Present the corrupted query vector to the decision strategy 

for recognition, together with TYPE. 

Figure 7.2 shows the relationship between convergence time for 

a threshold perceptron and threshold size, when no noise is present. 

The vertical axis indicates the number of mistakes made before 

convergence was reached. The initial weight vector for the perceptron 

was randomly chosen with length 1. Al]. query vectors were normalized 

to length 1 before being added to the weight vector. For each 

threshold value the perceptron was run ten times, each run being 

terminated when convergence was reached. Each run took place with a 
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different initial weight vector, and with the pseudo-random number 

generator in a differentstate (this ensured that the sequence of 

points examined was different for each run). Figure 7.2 shows the 

mean number of mistakes before convergence, plotted against the 

a I I 
0.0 0.5 i3O i.5 2.0 

Figure 7.2 

Convergence time for a threshold perceptron. 

threshold. Larger threshold values were not used because of the 

amount of computing time required, but a smaller number of runs with 

thresholds 3 and 4 indicated that the linear relationship continues at 

least up to threshold 4. The theoretical upper bound shown is 

calculated from the formula obtained in the proof of the convergence 

theorem for the threshold perceptron (Theorem 2): 
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1.+ 2di-.2tS 
Ii = 

The value of 6 which was used was the maximum ô found in the 

simulation runs: 

ô = 0.187 

The results obtained in the simulation are strikingly close to half 

the theoretical upper bound--a further line is given in Figure 7.2 to 

emphasize this. 

In Figure 7.3 the ranges of convergence times are shown for 

perceptrons with various thresholds and for the maximum likelihood 

(independence assumed) classifier. Note that the vertical axis gives 

the total number of cycles to convergence, and not merely the number 

of misclassified points as in Figure 7.2. Ten simulation runs were 

made for each method, and the maximum and minimum convergence times 

were deleted in an attempt to eliminate exceptional cases. The range 

between the maximum and'minimum of the amended set is shown. The 

results are not very reliable--they depend rather critically on the 

particular sequence of points used for adaptation. Nevertheless, it 

can be seen that the maximum likelihood classifier can be expected to 

converge in roughly the same length of time as a perceptron with zero 

threshold, for this particular environment. 

The question of convergence time in noisy conditions now 

arises. We provisionally define this to be the time taken for the 

adaptive machine to reach .a state where it correctly classifies all 

noiseless points, since clearly the machine cannot be expected to 

classify all noisy points correctly. Certain types of decision scheme, 

however, improve their performance after they reach the stage where 
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they can correctly classify.allnoiselesspoints---the maximum 

likelihood decision strategy is an example of this. Hence convergence 

time as defined above is not necessarily an indication of the length 

of training period required for a classification machine if noise is 

present. 

I 
MAXIM1 
LIIHflW 

Figure 7.3 

Variations in convergence time for various 
pattern classifying methods with a 

standard noiseless environment. 

In cases where the details of the environment and the noise 

statistics are known, the optimum performance of a maximum likelihood 

classifier (both with and without the independence assumption) can be 

calculated, and one useful measure of' the length of training period 
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required for ;ths type of decision strategy is the mean time taken to 

reach this optimum performance. This is discussed later. 

For perceptron-like machines, which do not eventually settle 

down to a fairly constant performance level, convergence time as 

defined above has little meaning, since the performance may 

deteriorate, considerably after the machine has "converged". I can 

propose no satisfactory measure of convergence time for perceptron-

like machines in noisy conditions, although clearly the confusing 

effect of noise means that the higher the noise level the longer the 

training period required. Some rather inconclusive experiments were 

made to investigate the expected time taken by perceptrons to reach a 

state which correctly classifies all noise-free points: it was found 

that the times taken on different occasions under the same conditions 

varied so much that the results were rather meaningless. For these 

reasons, the following investigations of the perceptron's performance 

in noisy conditions were conducted after the perceptron had converged 

in conditions of no noise, since experience of the noise during 

convergence would not have helped the perceptron. 

In order to compare the performances of threshold perceptrons 

with different thresholds in noisy conditions, points corrupted by 

noise were ignored in the success count for the perceptron. These 

points had an implicit influence on the success count because 

adaptation continued throughout the experiments, and all misclassified 

points--noisy, or not--modified the weight vector. The effect of the 

perceptron's futile attempts to adapt itself to the noisy points was 

sought, and since it cannot be expected to classify noisy points 

correctly (except by chance), the inclusion of these in the frequency 
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count would only cloud the issue. Figure 7.4 shows .the percentage 

misclassification for points whichwere uncorrupted by noise, plotted 

against threshold values, for various noise levels. As predicted in 

Figure 7.4 

Success of a threshold perceptron in 
noisy conditions. 

Chapter 3,, misclassification of noise-free points can be almost 

completely eliminated by using a perceptron with a threshold of three 

or four times the length of the query vectors (the query vectors in 

these simulations were normalized to length 1), provided the noise 

level is low. If the noise level is high, in our case greater than 
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about 15%, it is much more difficult.to.eliminate.the.perturbing 

effect of noise on the weight vector. It.should be pointed out that 

no decision strategy works well in conditions where a large amount of 

noise is present--one of'the purposes of feature extraction is to 

reduce the amount of noise passed to the decision stage--and so, in 

normal conditions, it will be highly beneficial to use a threshold 

perceptron rather than one of the basic variety. 

One of the advantages of using an artificial environment with 

controlled noise is that it is possible to determine the expected 

performance of a true maximum likelihood (not assuming independence) 

classifier by exact calculation. To do this, one first determines the 

machine's correct strategy for classification of each query vector 0, 

using the relation 

prtr(1)I) = E 

where the sum is taken over all possible vectors V, and 

= Pr[' is transformed to 0 by noise corruption]. 

f(',) can be 'calculated using the number of unlike bits of V and , 

and the noise level. The machine's correct strategy for classifying a 

query vector is now known, viz. choose i such that Pr[F1) is 

greatest. Naturally'the "don't care" class (blank points in 

Figure 7.1) is never chosen, although its probability may be greater 

than the others. For low noise levels (up to 40% in fact), the 

machine's correct strategy differs from the true dichotomy, as in 

Figure 7.1, only in the classification of the "don't care" points. 

Having determined this optimum classification, the probability of a 

mistake being made can be calculated: 
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Primistalce] = ). {Pr.[' .chosenj. E 

.1true classification of V 0 machine's 

classification of } }, 

where the summations are taken over ' and D respectively. 

This probability of, error is plotted in Figure 7.5 as line E. 

jo I ED 

NOM LEV 

Figure 7.5 

Percentage error for different decision strategies 
with varying noise levels. 

Line B shows the probability of error if all noise-free points are 

classified correctly, but all "don't care" points in Figure 7.1 are 

given the class opposite to that dictated by the optimal policy. This 
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provides an upper bound to .the number of mistakes made by machines 

which correctly classify all noiseless points. A further decision 

strategy is always to decide the class which has the highest a priori 

probability, without reference to the query vector. The percentage of 

mistakes made if this strategy is used is unaffected by noise; it is 

shown as A in Figure 7.5. 

Lines C and in Figure 7.5 show the performances achieved 

experimentally by perceptrons with thresholds 0 and 4 respectively. 

These simulations took place under the same conditions as those 

reported earlier, except that the percentage probability of any 

mistake is given, rather than the percentage probability of a mistake 

being made on a point uncorrupted by noise. 

Figure 7.6 is a distortion of Figure 7.5 designed to show more 

clearly both the relationships between the lines, and the 

perturbations in lines C and D which give some indication of the 

experimental error. It is obtained as follows: in 100 trials, 

decision strategy A (for example) will make A(N) mistakes at noise 

level N, where 

yA(x) 

is the equation of line A in Figure 7.5. At the same noise level, E, 

the optiil strategy, will makeE(N) mistakes. Thus there are only 

100 - E(N) 

trials in which A could possibly be expected to identify the query 

vector correctly, and of these, 

A(N) - E(N) 

mistakes occur. Thus 
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A(N) - E(N)  
100 - E(N) x 100 

represents the percentage of needless mistakes made by decision 

strategy A. It is this which is plotted as A in Figure 7.6, and 

similarly for B, C, and D. The line obtained from E evidently 

coincides with the horizontal axis, as shown. 

1D 

BD 

NOM LEVEL 

Figure 7.6 

Needless errors as a percentage of points that 
could have been classified correctly, for 

different decision strategies. 

One can deduce from Figure 7.6 that if the noise level is 

greater than about 27%, a perceptron with zero threshold performs so 

badly that the chance of error is reduced by ignoring the query 

vectors and always deciding the class whose a priori probability is 
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greatest. Although this resultevidently depends on.the particular 

environment used, it indicates rather strikingly just how badly 

standard perceptrons behave in noisy conditions. The. vast improvement 

in performance which results from using a perceptron with a threshold 

of about 4 is also apparent. 

So far no mention has been made of the performance of the 

usual maximum likelihood decision strategy in noisy conditions. 

Although the environment was chosen so that the independence 

assumption was adequate for discrimination between the noiseless 

pattern classes, the assumption is not in fact valid for this 

environmen t. It was thought that this would detraOt considerably from 

the performance of the usual maximum likelihood strategy in noisy 

conditions; however, this was not so. 

It is possible to calculate the expected error for the usual 

maximum likelihood strategy in a manner similar to that described for 

the true maximum likelihood strategy. It was found that the difference 

in performance resulting from assuming independence was less than 0.2%, 

for all noise levels between zero and 35%. Thus an error curve for 

the maximum likelihood strategy with independence assumed would be 

almost indistinguishable from E in Figures 7.5 and 7.6. 

Since probability estimation is a stable process, a practical 

machine embodying a maximum likelihood decision (independence assumed) 

will reach within an arbitrary latitude of the above expected 

performance level, given sufficient training time. It was found 

experimentally that after 700 training cycles, the error probability 

was within 0.8% of that indicated above; that is, a line in Figure 7.5 

indicating the performance attained experimentally by a maximum 
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likelihoodelassifier with 700. training cycles would lie less than one 

vertical unit above E. 

Thus there is no doubt that for-the environment shown in 

Figure 7.1, a maximum likelihood strategy is superior to all 

perceptron-like strategies that have been considered, whether or not 

noise is present. It would be interesting to know if adequacy of the 

independence assumption for discrimination between the noiseless 

pattern classes guarantees near-optimal performance for the usual 

maximum likelihood strategy in noisy conditions, or whether the 

phemonemon occured here because of a lucky choice of environment. As 

far as I am aware, no investigation of this question has been reported. 
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Chapter 8 

STeLLA-LIKE DECISION TECHNIQUES 

8.1 Introduction. 

We have seen that neither the perceptron nor the maximum 

likelihood (with the independence assumption) decision strategy can be 

described as a general purpose classification technique. Each behaves 

unsatisfactorily in some kinds of environment, but is very competent 

under certain circumstances: the perceptron strategy guarantees 

discrimination between patterns provided they are linearly separable 

but does not work well in noisy conditions, whereas the independence 

assumption, so vital to the implementation of the maximum likelihood 

decision strategy in any practical situation, almost never holds and 

is very often violated flagrantly enough to ruin the classification. 

If, however, the independence assumption is valid then the maximum 

likelihood decision strategy is optimal, even in noisy conditions. 

This chapter is devoted to a discussion of a compromise 

decision strategy, one which combines the characteristics of the 

perceptron and maximum likelihood schemes. If W* is such that 

> S for all 

< S for all cF; 

and if X is a vector with 

lxi < 

where c is the maximum size of the query vectors '; then 

(W* + X). > tS - lXl.Il 

> S - (S/c).c = 0 for all ftF 
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and similarly, 

(W* + X). < 0 for.all PeF; 

so (W* + X) also discriminates between.the pattern classes. Among 

these vectors which discriminate between the classes, some must behave 

better than others in-noisy situations. The perceptron strategy is 

content with any vector which discriminates between the pattern 

classes: the decision strategy discussed here attempts to find a 

discriminating vector which gives good behaviour in noisy conditions. 

The strategy we will consider is derived from STeLLA, a learning 

machine whose rules were chosen on an empirical basis. It is 

remarkable how such rules give rise to a decision scheme with the very 

characteristics we seek. 

STeLLA is a general purpose learning machine, described by 

A.ndreae (1964, 1969) and Gaines & Andreae (1966). She sees her 

environment at any one time as a binary input pattern, and selects one 

of a specified set of actions. The taking of this action changes the 

state of the environment, and the new state is reflected in a new 

input pattern which is presented to STeLLA. Thus by -selecting various 

actions and observing the input patterns she attempts to build an 

internal model of her environment. 

to be desirable states and this is 

system. Her goal is to get reward 

policy is responsible for choosing 

Some input patterns are considered 

communicated to STeLLA by a reward 

as often as possible. The control 

the best sequence of actions with 

respect to the goal, and it calls on a neutral predictor for aid. The 

predictor is that part of the machine which models the behaviour of 

the environment, independently of rewarded states; while the control 

policy models the environment as it relates to goal achievement. 
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Adaptive decision procedures occur in several places in STeLLA, 

and the details of adaptation vary according to the purpose1. Because 

of this, it was decided to treat the problem in as general a manner as 

possible. The discriminatory functions described below are 

representative of the various forms of discriminatory function which 

STeLLA uses, and the form of the adaptive rules given is designed so 

that every set of rules used by her can be considered as a special 

case. To facilitate this, the quantitative amounts of adaptation are 

left unspecified as far as possible. The resulting model is a flexible 

tool for theoretical and experimental investigation of adaptive 

pattern recognition techniques, and I shall refer to it in all that 

follows as the STeLLA method, or some such term. Unfortunately the 

STeLLA method sacrifices elegance for generality. We have seen how 

the perceptron and maximum likelihood decision strategies are embedded 

in a precise mathematical framework: I have not been able to build 

such a mathematical edifice for STeLLA-like strategies, although a few 

bricks appear here and therein the following pages. Hence this 

1 
For example, the predictor in more recent versions models the 
environment by partitioning the input patterns into sets called 
clumps, and examining the effect, in terms of reaching other 
clumps, of each action at each clump. The association of input 
patterns with clumps is accomplished using adaptive pattern 
classification techniques. A predicted clump is used to 
determine the next prediction, and, since there are two rein-
forcable steps here, the reinforcement is spread over the two 
moves. A further complication arises from the fact that both 
clumps and elements of the control policy are competitive in 
the sense that the total number of each is strictly limited. 
This means that unused or infrequently used clumps or policy 
elements will be forced out of existence to make way for new 
ones, and the adaptation procedures used are tailored 
accordingly. Unfortunately most of these details of STeLLA's 
operation are unpublished. 
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chapter takes on a rather vague and imprecisecharacter in parts, and 

most solid theoretical results are applicable only to certain special 

cases of the decision strategy. 

We consider the case where just two pattern classes, F+ and F, 

are present; the results and methods generalize easily to multi-class 

cases. The discussion is restricted to query vectors with binary 

components--as indeed is STeLLA. The query vectors are assumed to 

contain a completely redundant component so that the augmented query 

vectors 40  are not needed. To each pattern class is assigned a 

prototype:' a query vector, generally contained in the class, which is 

assumed to be representative of that class. The prototype of class 

is denoted by P, and similarly for F. Each binary component of the 

prototype has an associated pattern digit weight (PDW) which 

represents the danger of overlooking a disparity between the k'th bit 

of a query vector ' and the prototype's k'th component, when assigning 

to the pattern class associated with that prototype. PDW's are 

constrained to lie in the interval [0,1], even if one of the 

adaptation rules below attempts to take the PDW out of the range. 

8.2 The discriminatory functions. 

The discriminatory functions used by the STeLLA method are 

= fl (1 p+) 

and similarly for f, where the ')kS (1 < k < n, where n is the 

dimensionality of ) are the appropriate PDW's. This function takes 

into account the dissimilarities of the prototype and the query vector. 

Its value is 1 if the query vector is exactly the same as the 

prototype. If differences exist the function takes a value less than 
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1, the value being smaller if many unlike components exist or if the 

unlike components are important ones. 

There are two ways of interpreting these discriminatory 

functions heuristically, corresponding to situations in which the 

maximum likelihood strategy works well and situations in which the 

perceptron strategy works well. In each case, the prototype P is 

considered to be a typical member of the class F+. 

Firstly, suppose the class F consists of only one element 

whose components may be corrupted by noise in an independent manner. 

This element shall be chosen for the prototype. Let us take our null 

hypothesis to be that the query vector belongs to F+. Evidence 

against this hypothesis is provided by the bits of unlike the 

corresponding bit of P+, and these represent features which were 

obscured by noise. In this case we interpret 

Pk 
= Pr[feature k is not obscured by noise], 

and this is certainly a measure of the danger of overlooking a 

disparity of the k'th bit of when assigning to the class F+. 

The second interpretation of the discriminatory function 

concerns cases where there is no noise present but the class 

consists of many members. We describe it by means of an example: 

Suppose 

= 1111 (n=4), 

and the query vector 

=lOOl 

is presented. Since the PDW's represent the danger of neglecting the 

digit, we can write 
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pl = Prf 0111 

4 = Pr[l0ll I 

4 =  Pr[ 1101 F] 

P4  Pr[1110 F]. 

Hence 

f(1001) = Pr[ 1011 c F±].PrI1101 e el. 

Since we know that 

the discriminatory function can be interpreted as a measure of our 

confidence that 

1001 5 

provided that the environment is "continuous" (to some degree), that 

is, provided that 

1111 e F, 1011 s F+, 1101 s F 

provides evidence for the proposition 

1001 s 

It is suggested that this requirement of environmental continuity 

explains why helpful coding schemes, discussed in Chapter 6, are 

especially important for STeLLA-like decisions, although they would 

probably help most maximum likelihood schemes as well (Andreae, 1969; 

Gaines & Andreae, 1966). 

These two heuristic interpretations, while admittedly vague 

and rather unsatisfactory, illustrate the compromise which was made in 

STeLLA between the maximum likelihood and perceptron decision 

procedures. As we have seen, the maximum likelihood decision is 

linear if binary features are used, and could in principle be used 

with ttComproifljsett adaptation rules like those described below. 
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However, .this is difficult in practice because the linear forin,of this 

decision is rather involved, and the omission of query vector 

components which are like the corresponding prototype components from 

the discriminatory functions, as above, reduces the "compromise" 

adaptation rules from an interesting theoretical possibility to a 

practical proposition. Obtaining practical approximations to ideal 

schemes is, after all, one of the main themes of this thesis. 

8.3 Qualitative aspects of the adaptation procedure. 

Although facilities exist in STeLLA for generating and 

adapting prototypes, they will not be discussed here. Our concern is 

with the generalized adaptation process for PDW's. This is governed 

qualitatively by the rules below, which are suggested by common sense. 

If a query vector IeF+ is found with 

< 

where d is a non-negative constant 2, so that e  > 1 (the 

exponentiation is used for later convenience), then is incorrectly 

assigned to class F (or rather 1D is not assigned to class F+ with 

sufficient confidence), and the adaptation rules are: 

decrease PDW's of P+ corresponding to -coirtponents unlike P (8.1) 

increase PDW's of P corresponding to -components unlike P (8.2) 

If cF+ is such that 

> 

then D is correctly assigned to class F+, and the rules are: 

2 In the STSLLA machine, this threshold was always taken to be 
zero. It is introduced here for generality. 
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decrease PDW's of Pt .corresponding.to -components unlike p+ (8.3) 

increase. PDW's + s of P corresponding to + -components like P (8.4) 

Similar rules are used for query vectors in F (change all +'s to -'s, 

and vice versa,, in the above). Rules (8.2) and (8.3) alone were used 

in the adaptation of STeLLA's control policy elements. 

Rules (8.1) and (8.2) are used when the query vector is 

either misclassified or correctly classified by only a small margin. 

Only PDW's corresponding to -components unlike the respective 

prototype bits are adjusted since only these PDW's,affect the 

categorization of D. Rule (8.1) increases f+(); rule (8.2) decreases 

f(). Rules (8.3) and (8.4) come into play only,if the query vector 

is correctly classified. Rule (8.3) generalizes on the basis of the 

justifiably ignored -components, and incidentally strengthens the 

association of with Ft. Rule (8.4) is intended to balance the 

effects of (8.3) and prevent the PDW's from constantly decreasing if 

no mistakes are made. Note that these last rules involve only the 

pattern class which contains : in a sense the effect of the 

adaptation is local if the query vector is correctly classified (by a 

sufficiently large margin), whereas for incorrect classifications the 

rules have a global effect--they alter the values of some PDW's of all 

the pattern classes. This also accords with common sense, for the 

effect of the adaptation should be rather more drastic when mistakes 

are being made than when the machine is functioning correctly, when 

delicate adjustments are required in order to improve but not disturb 

the balance of weights. , 

The quantitative amounts of adaptation used in the STeLLA 

method are governed by the increment/decrement functions; these have 
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as their onlyargument the PDW currently under consideration. For 

reasons mentioned earlier, we shall deal with the rules in terms of 

general increment/decrement-functions as far as possible, but shall 

rapidly be forced to specialize in many ways since the STeLLA method 

is mathematically rather intractable. It is as well to mention here 

that the problem of instability can occur; for example the machine, 

when started in a correctly discriminating state, may run away and end 

up in a situation where all PDW's are constantly bouncing off their 

lower bound. This cannot happen with the perceptron (provided its 

environment is noiseless and linearly separable) since the convergence 

theorem guarantees that a discriminating weight vector will be found 

and no adaptation takes place after such a vector is found; nor can it 

happen with the maximum likelihood decision (provided that the query 

vectors are reasonably representative) since the probability 

estimation procedures discussed earlier force the probabilistic 

weights to settle down eventually. Both these procedures, when 

started in a "correct" state, will retain this, with minor variations 

in the case of the maximum likelihood decision, indefinitely in the 

absence of noise. For STeLLA-like decisions, however, this is not 

necessarily true: stability depends on the exact form of the 

increment/decrement functions used. It is possible that instability 

could be environment-dependent--although I consider this to be rather 

unlikely for non-pathological environments--and if so, to suggest that 

any particular increment/decrement functions are "the best" or even 

"fairly good" would be rather presumptious. Whenever increment/ 

decrement functions are suggested below, they are intended as 

plausible specializations whose purpose is to give a lower bound to 
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the power and versatility of the STeLLA method. 

The increment/decrement functions are denoted as follows: 

Ifor rules (8.1) and (8.2), 

Ai(x) 1 
for rules (8.3) and (8.4); 

J 
where the argument x is the PDW currently under consideration 

(0 < x < ). We use the convention that the decrement functions are 

such that 

< 0, t(x) < 0 for all x (0 < x < 1); 

so that a decrement is added to the PDW, rather than an increment 

being subtracted. 

8,4 Perceptron-like behaviour of the STeLLA strategy. 

Any query vector 0 is assigned to class F+ or r according as 

- +) kPk 
Pk 

II (1 - p)kk , 

i.e. according as 

E {1 4 &P. log (l - p) - ;)} 0 

Unfortunately this decision is not, in general, linear in . It can, 

however, be made linear by assuming that 

P = P = 0 (or 1) for all k (1 < k < n); . . . (A) 

suitable rules for prototype adaptation will ensure that if a linear 

dichotomy is required, this condition is eventually satisfied. Note 

that prototypes which satisfy (4) cannot be considered to be 

representative of their respective classes. The somewhat hopeful 

assumption is made that since non-representative prototypes are, in a 

sense, "unf air" to the decision strategy, better performance will be 
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obtained without restriction.(A), so.that by using this. assumption we 

run the risk of underestimating rather thanoverestimating .the power 

of the decision strategy. 

The process of adaptation to successfully classified query 

vectors (rules (8.3) and (8.4)) is now considered to be suspended for 

the time being, so that we can concentrate on the machine's attempts 

to improve itself when confronted with query vectors which it 

classifies incorrectly (or which it classifies correctly but only by a 

small margin). For reference purposes this is called assumption (B). 

We also assume that there are no attempts to make out-of-range 

adaptations (C). 

The discriminatory functions are now 

= II (1 - Pk 

and is assigned to F. or F according as 

E kWk 0, 

where 

= log(l - + - iog(l - 

The adaptation rules are as follows: 

Suppose a query vector F+ is encountered with 

n (1 p)k < e'.fl (1 - p)4k 

i.e. with 

E4kWk<d. 

+' -' 
Then + - and are changed to and k respectively, where 

+' + 
Pk = k + k 1 

Pk  p + k=1 

Now 
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log(l - - (x)) logl - x) + iog{l - 

log (1 - x) - 

provided 

'A (X) << Ii xl.. . . . (D) 

We consider for the moment only increment/decrement functions which 

satisfy (D); it is shown later that this condition can be relaxed. 

Now 

W k  = log (1 - p) - iog(1 - p) 

= Wk 

- + 

{ + 

1 - Pk 1 

It is clear that the following increment/decrement functions will 

simplify the problem coisiderab1y: 

i(l-x) = d(X) 

for some constant p. Using these functions, 

= wk+211.cbk_l 

so W' =W+2. 

Similarly, ifP and 

d e.11 (1- p)4k >n(l 

(8.6) 

then 

W' = W - 20. . . . (8.7) 

Combining .5), (8.6), (8.7); and writing 

G+ = 

G = {2 p(D  

we can write the adaptation rules in this restricted case in the form 

of a program: 
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TEST: Choose "l'c G+ IJ G; 

If YG+ and W.'1'<2itd then replace W by W±'i'; 

If TE:G7 and W.Y>21.td then replace W by W-T; 

Go to TEST. 

This is exactly the procedure used by a perceptron with threshold 2pd. 

Hence we can apply Theorem 2, using as upper limit for the length of 

query vectors 

= 2p& > ITI for all Te G+ 13 G , 

where n is the dimensionality of the query vectors : 

If there exists a unit n-vector W and some cS>0 with 

c Ft = {IcF+} U {—  lcF} implies W*. > 

so that 

'1! c = {2pF'} implies W*.'1! > 2j; 

then if W is initially chosen to be an n-vector of length A, the above 

program will change W at most 

4ji2n + 4iid + 4Xi 

times. 

i.in + d +• AS 

4ii 2 5 2 - 2 

Thus a STeLLA-like pattern classifier behaves like a threshold 

perceptron if 

A)P=Pk0 for all k (1<k<n); 

B) no adaptations are made for correctly classified (by a large 

enough margin) query vectors; 

C) there are no attempts to make out-of-range adaptations; 

D) p << 1, so that the approximations in the expansions of 

log(1 ± p) are valid; 
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E) the functions A and A d have the form given. 

Theorem 4 (see. Appendix .A) was begun in an attempt to generalize 

restriction (E): upper and lower bounds were sought for the function 

n(x,y) log (l log(l   ) 
1-x l - y 

so that the theorem would remain true. It was found, however, that it 

was necessary to assume that the upper and lower bounds were rather 

close together; the allowable latitude depended on S in such a way 

that the bounds must actually be equal if the theorem was to hold for 

all linearly separable environments. Thus 

ri(x,y) = constant, 

so if p and vary independently, which they can do if rules (8.3) 
k Pk 

and (8.4) are brought back, then the increment/decrement functions 

must be of the form (E). This does not of course prove that the 

increment/decrement functions necessarily have the form (E), it merely 

shows that I was unable to prove the convergence theorem without this 

assumption. I conjecture, however, that it is indeed true that the 

convergence theorem holds in general only if (E) is assumed, but I 

have not been able to prove this. 

Two interesting corollories come out of Theorem 4: firstly 

that restriction (D) is not necessary, and secondly that if the 

components of the discriminating weight vector W* are all positive 

then the only condition that need be placed on n is 

(x,y) > 0 for all x,y. 

This condition is always true if the increment/decrement functions 

satisfy 

Ai (x) > 0; A d(X) < 0 for all x. 
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8.5 Use of the increment/decremént.fuflctioflsfOr'PrObabi'litY  

estimation. 

In order to consider the behaviour of the STeLLA pattern 

classification method for classifications which are correct (by a 

large enough margin), we can dispense with all the restrictions used 

above: all that is assumed is that rules (8.1) and (8.2) are never 

applied. The difficulty here is not the mathematical intractability 

of the general problem that troubled us in the last few pages; rather 

it is the vagueness of the probabilistic interpretation of the PDW's. 

It shall be assumed in the following that the PDW's are required to 

estimate 

Pr(kPI cF3, 

but it is clear that many alternative strategies could be adopted, and 

as usual the increment/decrement functions given below are intended as 

examples rather than as recommendations. 

Let us write p(t) for the value of the k'th PDW of class 

at time t: 'suppose that rules (8.1) and (8.2) are never applied at 

times t > 0. If P is correctly identified in (by a sufficiently 

large ma:gin) at time t, then accordingto the increment/decrement 

rules, 

p(t+l) = p(t) +k k  i(p(t))k + d(pk(t)).køk 

Let p = Pr[kPIcF+];. q = 1 - p. 

Suppose 

+ 
pk(t1 = P, 

i.e. the value of p at time tequals the quantity which p is required 

to estimate. Then the expected value (over all s) of pk (t+l) should 
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be the same; 'namely p. Hence 

p = E[pk(t+l)] = p(t) + p.A.(p(t)) + 

= p + p.L.(p) + q.Lt(P) ; 

where E denotes statistical expectation. (This is not strictly true. 

The expectation should be taken over all such that 

p Pk ) k0 k' > ed.n (1 - p) 

rather than over all such that 

(DeFrl 

as above. It is assumed that the discrepancy between these will make 

very little difference, especially if d is small, and this point is 

ignored in the following. Note however that the discrepancy exists 

even for d=0, if the machine is not in a correctly discriminating 

state.) Hence the increment/decrement functions must satisfy 

= 

Consider the functions 

= 

= -v.x; 

where v is a positive constant with v<l. These give us no trouble 

with attempts to make out-of-range adaptations, for 

0xl implies 

• x+v(i-x)v+x(I-v)v+lvl; 

and x-vx(l-v)x0; 

since 

v<l. 

Using these functions, 

p(t+1) = p(t) + v(l - p(t)). 1 k=P - vp(t). 1 k,P 

(8.8) 
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I.pW 

p(t) + \)so p(t+l) = (l-v) 
with probability 

with probability 

This is an EPA formula (see Chapter 5), and so 

E[p(t)] = p Ci - (i v)t) + (l_v)t. p (0) 

VarEp(t)] = p(l-p)(l - (iv)2t)v/(2v) ; 

P3, 

q. 

and the limiting expectation and variance of p(t) for large t are 

p and p(1-p).v/(2-v) 

respectively. Hence these increment/decrement functions ensure that 

if all classifications are correct (by a sufficiently large margin), 

then the expected value of the k'th PDW of class f+ approaches 

Pr[4k=PI p+] 

and its variance can be made as small as we please by choosing a small 

enough v, 

8.6 Discussion. 

Both the probabilistic and the perceptron-like aspects of the 

STeLLA decision strategy have now been investigated to a limited 

extent. I have found no way of systematically investigating the 

coinbined,effect of both, but the following remarks give a qualitative 

picture of what should happen. 

Unless the PDW's are specially chosen initially, most 

classifications will be incorrect at first, and rules (8.1) and (8.2) 

will be used most of the time. This period of perceptron-like 

behaviour can be prolonged by increasing the threshold d, but too 

large a threshold may stall the learning procedure. For, if d is 

large then the size of the finalwaight vector must be large (see 
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Chapter 3), and hence some components of the final weight vector must 

be large in size. This means that 

+ 
1 -  

is large, and so 

log 

is either large or small, for some k. Hence the PDW's take values at 

or near the ends of their ranges. Now if the increment/decrement 

functions are like those in (E), it is inevitable that the PDW's will 

make continual frustrated attempts to adapt out of range, causing 

erratic and perhaps seemingly irrational behaviour. But if the 

increment/decrement functions are like those in (8.8), which by their 

very nature cannot, attempt out-of-range adaptations, the changes made 

in the PDW's will be very small if the latter are near the ends of 

their ranges. This in itself may stall the learning procedure. 

After the initial period of frequent misclassifications is 

over, but before the machine has converged to a correctly 

discriminating state, both sets of rules will be used fairly often. 

This invalidates the convergence theorem because the intervention of 

rules (8.3) and (8.4) could nullify the converging effects of rules 

(8.1) and (8.2). This seems unlikely, though, if rules (8.3) and (8.4) 

are well chosen, since both sets of rules are designed to achieve the 

same end (improving the performance of the machine) and it is probable 

that they will help rather than hinder each other. This of course 

depends on the exact form of the increment/decrement functions. 
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In the final stages of learning, rules (8.3) and (8.4) will be 

used most often in an attempt to.refine the discrimination. 

No matter how well these rules work, it is inevitable that in a long 

sequence of correct classifications the PDW's will wander away from 

their optimum positions (provided that the patterns are not presented 

in a systematic order), unless the functions LI. and Ad are identically 

zero. Hence rules (8.1) and (8.2) must be invoked sometimes during 

this stage, and the purpose of the threshold d is to prevent 

misclassifications occurring while these rules put the machine back on 

the right track. 

The above arguments can hardly be called watertight or 

indisputable, and are natural targets for criticism in the form of 

counter-examples. It is possible that the STeLLA strategy, in 

attempting to combine the advantages of the perceptron and maximum 

likelihood methods, in fact turns out to combine their disadvantages 

instead. One cannot point to STeLLA for confirmation and say "she 

works"--she does, but it is difficult to isolate the success of just 

the pattern classification part, for it forms only a small sub-section 

of a rather complex machine. Further mathematical and experimental 

investigation of this pattern-classification technique is required, 

and because' of the many variables involved this could form a complete 

research topic. It was for this reason that the STeLLA technique was 

not simulated, as were the perceptron and maximum likelihood decision 

schemes. 
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Chapter 9 

CONCLUSION 

The principal goal of this work has been the development of an 

understanding of the characteristics of the perceptron and maximum 

likelihood decision strategies. We shall discuss here the results of 

the investigation for each method in turn. 

The perceptron was found to behave perfectly provided the 

conditions are favourable, that is, provided the environment is 

noiseless and linearly separable (note that this is not true of the 

maximum likelihood decision strategy if independence is incorrectly 

assumed). It was found experimentally that, for the environment used, 

the mean number of mistakes made during training was approximately 

half the smallest upper bound obtainable from the-perceptron 

convergence theorem. Since a lower bound to the number of mistakes 

made is zero (the arbitrarily chosen initial weight vector may itself 

discriminate between the pattern classes), the mean number of mistakes 

to convergence found experimentally was the same as the mean of the 

upper and lower bounds for this quantity. Unfortunately a 

discriminating weight vector must be known before the upper bound can 

be calculated; nevertheless the very existence of this bound--even 

though it may not be known--must surely provide some comfort to 

trainers 'of perceptrons. 

In noisy conditions, the perceptron tends to be misled by 

query vectors which are unavoidably misclassified. This is basically 

because the perceptron is sensitive to the outer bounds of the "clouds" 
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representing the pattern classes in feature space, rather than to the 

centres of gravity of these clouds. After some deliberation, a variant 

of the perceptron, which I called.the "threshold perceptron", was 

defined. Heuristic arguments were used to show that this appears to 

have a better chance of behaving well in noisy conditions than the 

standard perceptron, especially when the noise level is low, and this 

was confirmed by experiment. As predicted, the behaviour of the 

threshold perceptron deteriorated rapidly as the noise level increased. 

This deterioration can be partially restrained by increasing the 

threshold, but additional cost is entailed here since convergence time 

increases linearly with threshold size. 

The second adaptive decision strategy investigated, the 

maximum likelihood method, is optimal (in a precise sense) under all 

conditions, but unfortunately its implementation is impractical unless 

restrictive assumptions about statistical independence of features are 

made. This prompted an examination of situations for which the 

independence assumption is valid, and it was found that the assumption 

holds only for a greatly restricted class of environments. It is 

clear, however, that adequacy rather than validity of the assumption 

is the key factor here. This opens a new field for investigation 

which is hardly touched upon in this thesis. I feel that some theory 

of adequacy of the assumption would prove extremely useful to 

designers of practical machines, The main difficulty that such a 

theory would have to face is that adequacy is goal dependent--adequate 

for what?---whereas validity can be investigated without consideration 

of goals. One surprising result that came out of the experimental 

work is that for the environment used, adequacy of the assumption for 
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the noiseless pattern classes ensured.adequacy (or near-adequacy--.there 

was a small error rate) when independent noise was added. 

The work on the independence assumption showed that if a 

pattern classification situation is such that 

1) the features used are binary (in fact this restriction is not 

necessary), 

2) the independence assumption is valid, 

3) the pattern classes are separated in hyperspace; 

then one might as well forget weighted decisions and use exact 

matching procedures based on the features indicated as important. 

(This is equivalent to a STeLLA-like decision with binary weights.) 

If most of the features are important for all of the classes, then an 

efficient way of implementing this decision is to store a 

representative query vector for each class, and use as discriminatory 

functions the negative of the Hamming distance between the query 

vector and the stored representatives. This is in fact a voting 

schem 1, and I suggest that this accounts for the fact that voting 

schemes have often proved as successful as weighted decisions (see 

Chapter 1). 

The gap between adequacy and validity of the independence 

assumption is particularly striking here. If we replace condition (2) 

above by 

2) the independence assumption is assumed to be adequate, 

1 
Voting schemes can be similarly defined for non-binary 
features: instead of the Hamming distance one uses the number 
of query vector components whose value is different from the 
corresponding component of the stored representative. Bobrow 
& Klatt (1968) provide a practical example of this. The 
arguments given are easily modified to cover this case. 



then I have not shown, and indeed I do not believe, that a voting 

scheme is as powerful as the resulting maximum likelihood (independence 

assumed) decision strategy. 'A .theory of adequacy of the assumption 

would enable us not to close this gap but at least to chart it. 

The secàndary objective of this research was to provide a 

basis for theoretical investigation of the two main decision 

strategies with a view to combining their virtues. Such a basis was 

found in the STeLLA method, a decision scheme which combines the 

various strategies which exist in the learning machine STeLLA. It was 

found that an appropriate specialization of the STeLLA strategy is 

almost equivalent to the threshold perceptron method. Another version 

of the STeLLA strategy can be shown to behave in a manner similar to 

the maximum likelihood (independence assumed) method. It is not 

possible to find a version which behaves in exactly the same manner as 

the maximum likelihood strategy because it was found necessary to Iuse 

somewhat simplified discriminatory functions. Further investigation 

of the STeLLA method was not undertaken because of the enormity of the 

problem, but I feel that this may prove to be a fruitful topic for 

both theoretical and experimental investigation. 

However, although this thesis has been concerned with some 

very basic adaptive decision mechanisms, for reasons given in Chapter 

1, it would be wrong to omit mention of several more advanced topics, 

apart from the few mentioned above, which are of vital importance to 

designers of practical decision machines. 

General ways of implementing non-linear decisions have long 

been sought. The inclusion of logical combinations of features as new 

features has been used fairly successfully (see for example Uhr & 



- 112 - 

Vossler, 1963), but thenuruber of possible combinations is extremely 

large, especially if more-than pairwise interactions are envisaged. 

One compromise method is proposed by Samuel (1967). Another way of 

realizing , general non-linear decision is to use layered machines 

(Nilsson, 1965). These consist of hierarchies of linear decision 

machines, the output of one layer being used as input to the next. In 

view of the proven effectiveness of hierarchical solutions to problems 

in artificial intelligence generally, layered machines seem worthy of 

detailed investigation. One difficulty is the problem of deciding 

which part of a complex machine is to be "rewarded" (reinforced) for a 

correct decision--the "credit assignment problem". Very little is 

known about layered machines; the only operational example I can give 

is Widrow's "Madaline" (1962, 1963). 

A further topic relevant to adaptive decision strategies is 

the feature selection problem. At present, feature selection is 

usually undertaken by the designer of the machine. It is conceivable, 

however, that the decision strategy could provide some assistance here 

by evaluating the usefulness (to the decision) of each feature, and 

perhaps generating new features comprising logical combinations or 

random mutations of useful features. tJhr & Vossler's machine (1963) 

attempts this in a primitive manner. Some theoretical work has been 

done on the problem of feature evaluation and selection by Lewis (1962) 

and Kamentky & Liu (1963). 

As decision machines become more complicated, the problem of 

instability will arise. This has already been mentioned in connection 

with both bootstrapping machines (Chapter 2) and the STeLLA method 

(Chapter 8). It seems, highly probable that it will occur to a much 
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greater extent in layered machines. Ihre Pohl contends that there is 

an optimum amount of infOrmation storage ability for learning machines, 

above which they begin to break down (as far as I know, .this is 

unpublished). This appears to be an interesting topic for research. 
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Appendix A 

PROOFS OF THEOREMS QUOTED IN THE TEXT 

Theorem 1: The convergence theorem for a perceptron whose weight  

vector is of a given initial length. 

Thi3 simple extension of the convergence theorem is given here 

for completeness. The result is directly applicable to the two class 

case and generalizes easily if there are more than two pattern classes, 

as shown by Minsky & Papert (1969). 

THEOREM 1. 

Let F be a set of real n-vectors with 

cF implies k1 
Suppose there exists a unit n-vector W and some S>O with 

eF implies W*.Z>ô. 

Then if W is initially chosen to be an n-vector of length A, the 

program 

TEST: Choose OcF; 

If W.O then assign W-14 to W; 

Go to TEST; 

will chance W at most (a2 + 2AS)/iS2 times. 

Proof. Define 

G(W) = w*.w < 1. 

Consider the behaviour of G(W) on successive performances of the 

assignment statement. 

G(W t+1) = wt+l = w*. (wt + ) / I 
Now W*. (Wt + ) > W* . + ;s 

+ I. 
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so after the m'th execution of the assignment statement, 

+) > mo - A. 

Also, 

lwt+l2 t2 2 1W I + c , since W. (1<0; 

so lmI2 2 2 < mc + A 

Hence 

1> G (ñ > (mO - A) / m 2 + A2 )h/2 

ma 2 + A2 >22 - 2AOm + A'2, 

2 2 
so m< (c+2AO)/O. 
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Theorem 2: The coxiergence 'théOrém for a threshold perceptron. 

THEOREM 2. 

Let F be a set of real n-vectors with 

cF implies 

Suppose there exists a unit n-vector W* and some ô>O with 

cF implies W*.>5 

Then if W is initially chosen to be an n-vector of length A, the 

program 

TEST: Choose F; 

If W. '<d then assign W-I4 to W; 

Go to TEST; 

will change W at most (c 2 + 2d + 2AiS)/ô 2 times for any d > 0. 

Proof. Using the same notation as in the previous theorem, we find 

w*• + ) > md - A as before, 

but ImI2 < (2 + 2d) + A2 since wt'. < d. 

Hence 

1 > G(Wm)> (mô - A)/(m(a2 + 2d) + A2)112 

2 
so m < (+ 2d + .2X6)/ 6-
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Thëorern3: COncernitig:the size'of:thefinai weight vector of a  

perceptron. 

The quoted result concerning the length of the final weight 

vector of a perceptronwhose initial -weight vector is constrained to a 

certain size is proved here. 

THEOREM 3. 

If the weight vector of a perceptron is set initially to length A and 

allowed to vary according to the usual perceptron adaptation procedure, 

then for any €>O there exists a non-trivial environment for which the 

final weight vector W satisfies 

IwtI < 1 + C, 

provided an unlucky choice is made for the initial weight vector. 

Proof. Let F consist of unit vectors clustered around some vector 

sP implies > 1 - 8, for some small 0. 

Let the initial choice of W be 

= 

Denote the weight vector after the k'th mistake has been made during 

training by let Wt be the final weight vector. 

Then 

Wk k k-i 
= +W (t > k > 1), where 

Hence 

wt_wO  

Iw t 
- w°I 

> 

(t + t_1 + • +  

(t + t_1 + • • + l) 

ti - e)  
t 

Now (W t t t t-1 t, t 
- lb ). = W . < 0 since was misclassified; hence 

(A. 1) 
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= 1 

Let x t _*; 

1x12 = 1,Dt 4z * 12 - 2-2(1-0) 20. 

Hence 

,x) 

:< 1 + 1iWl 

Also, 

(w.4*)1*J + 1W, - (Wt.*)*l 

< 1+ + jWt - (Wt.*)*l from (A.2) 

Let v = + 

t' 0 
•uW -W, 

w = W -, (Wt.*)*. 

(A.2) 

(A.3) 

Then u,v,w fotin a triangle with a right angle between v and w, and the 

acute an1e 4' between u and w satisfies 

cosp > 1 - 0 from (A.1). 

Hence 

sin 2ip = 1 - c0524, < 20 - o2 < 20, 

so lvi = lwltanp 
< l° '-

(A + Wt. *).//(l_o) 

<(x + 1+ Iwtl)./2o/(l_e) from (A.2) 

Now W < 1 + v2O1W 1 + lvi from (A.3) 

< 1 + /2oIW + Cx + 1 + /1wt1)./2o/(l_o), 

1 + 
so lwtl 

1 - - 20/(1-0) 
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(1-O)(1 - v') - 20 

+1 as 0+0 for any fixed A. 

Hence given c>O there exists 0 with 

Wj < 1 + 
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Theorem 4: Generalization of :the convergence theorem for STeLLA-like 

pattern classifiers. 

Before stating the theorem we introduce some notation, and 

state the adaptive rules for STeLLA in a concise and tractable form. 

The prototype bits are assumed to be all zero, and the process of 

adaptation to successfully classified query vectors is considered to 

be suspended, as before. The rules (8.1) and (8.2) of Chapter 8 are: 

and W.<d implies 

W W + (log   ) logPk k 

+ k'kk (1 < k < 

where W' is the modified (new) weight vector, n is the dimensionality 

of the query vectors, and 

n(x,y) = log (1 -   
l-x 

Similarly, 

cI,cF and W.>-d implies - 

log(1   ). 
1- y 

W = W - [log(1•-   - log (1 1 Pk  
+ )]. 1 k=1 

'Pk l Ik 

W 71 -+ 
= - PkPk)1k (1 < k n). 

We write the adaptive rules in the form of a program as follows: 

+ 
TEST: Choose sF U F_; 

-If ftF+ then let 'i'=; else let' '=; 

(A) 

If W.'1<d then 

If DeF+ then replace Wk by Wk + for 1 <k <n; 

If cF then replace Wk by Wk + h1(Pkpk).k for 1 <k n; 
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Go to TEST.. 

We use the notation (k) for 1-- 
k` pk or rl(pk,pk) in places 

where the distinction is either not important or adequately made by 

the context; the argument (k) is shown explicitly because the 

dependency of r on k is vital. The notation Y for or -4 depending 

on the classification of , as above, is also used. 

THEOREM 4. 

Let F + and F be classes of an n-dimensional binary query space, 

and suppose there exists a unit n-vector W* and some s>O such that 

cF+ implies W*.>S'; 

cF implies W*.<_S. 

Suppose not only that there are no attempts to make out-of-range 

adaptations (8.4, Assumption C), but also that there exists 0>0 such 

that no attempt is made to take any PDW out of the range 

+ e 92  + e 62 ) ]. 

(This condition ensures that each component of all weight vectors 

obtained in the course of adaptation satisfies 

IWkJ 

as can be readily verified.) 

Let r be a real valued function defined on the Cartesian product of 

the interval [0,1] with itself, such that there exist g and with 

0 < < n(x,y) < 4 for all 0 < x,y < 1, 

and < (l + ô/n). 

Then if W is initially chosen to be an n-vector of length A, the 

program (A) above will change W at most 

+ 2d + 2AS + 2n(-)(2-A) 

[(n + s) - fl] 
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times. 

Proof. Define 

G(W) = W*,W< 1. 

Consider the behaviour of G(W) on successive changes of the weight 

vector. 

G (Wt+l) = w*.wt+1,Iwt+11. 

= i; w, (W + r(k)p) 

= W*.W+ E (W4k+ 1) TI  - E r(k). 

Now, Wj < 1 since W is a unit vector; 

I 'PI S 1 since the query vectors are binary. 

Hence 

+ 1 ?. 0. 

So W*.W 1 > W*.W + .E (W.*k + 1) - 

w*.wt + w*.II + n(-) 

: 

where 

= + ) - 

> 0 by the conditions of the theorem. 

Hence after the m'th change of W, 

W*.>m'_A. 

Also, 

I w' E + (k) *k) 

1 2 1wt + 2 I'I2 + 2.E + ).(k) - 2Q .Z (k) 

T 1W + n + (W4k + c) - 2n2 
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jwtl2 + + 2n(-) + 2d. 

So < mIne + 2n(-) + 2dJ t A2 

Hence 

1 > 2 
- {mIn + 2n2(-) + 2dJ ± 

so in • < 

+ 2n(-) + 2d + 'A 

6 ,2 

+ 2d + 2AS + 2n(-) (2-A) 

f(n + ) - 

Corollary 1. The convergence, theorem is satisfied if 

= (1 - x) = 

for any co.istant O. If these increment/decrement fUnctions are used 

then no restriction is required on the size of each component of all 

weight vectors, so one need only assume that no out-of--range PDW 

adaptations are attempted. 

Corollary 2. If in addition to the conditions of the theorem, 

W>O (lkn), 

1/2 

'then the theorem holds even if 

> (l + S/n), 

provided none of the other conditions are violated. 
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Appendix B 

GLOSSARY 

This glossary explains important terms, abbreviations, and 

some notations which are used throughout this thesis. Although no 

attempt has been made to include every symbol used, all frequently 

used global symbols are given. The order of items in the glossary 

corresponds roughly to the order in which the ideas are introduced in 

the thesis, although a couple of miscellaneous notations appear at the 

end. 

Query (feature) vector, The query or feature vector is the input to 

, , n, r, c. the decision phase. Its i'th component 

indicates the extent to which the i'th 

feature is present. Query vectors are always 

denoted by ; * is sometimes used for a 

particular query vector. is n-dimensional; 

can take on r values; and the maximum 

length, of is a. 

Query (feature) space, Query or feature space is the n-dimensional 

Environment. hyperspace in which query vectors lie. The 

environment is the set of possible query 

vectors, with their frequencies and classes. 
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Pattern class, 

reject and noise only 

classes, 

m, F+, F, F'. 

Convergence, 

Convergence time. 

Discriminatory 

functions, surfaces, 

f(1) 31 f+ , - 

The purpose of a pattern classifier is to 

classify inputs into pattern classes. These 

may include a reject class (informationnot 

sufficient for a firm decision) and/or a noise 

only class (no pattern present). Pattern 

classes are denoted by F(1) (1 < i < m), or, 

in the two class case, by F and 

found convenient to define 

F' = {l cF+} u  

F. It is 

An adaptive pattern classification machine is 

said to have converged if it can classify all 

possible query vectors correctly. If noise 

is present we only require it to classify all 

noiseless query vectors correctly. The 

convergence time of a particular machine for 

a particular environment is the mean number 

of patterns presented before convergence is 

reached. 

Classification is effected by discriminatory 

- 

functions Mf (f+ and f in the two class 

case), one associatedwith each pattern class, 

such that (ideally) 

for all ji if and only if 

Ci) 
The surfaces in feature space given 

by f(i)O ) = f(j,) () (ji) are called 
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discriminatory surfaces. 

Weights, 

weight vector, 

A. 

Linear discriminatory functions are of the 

form 

+ w'  q2 + •.. + q(i)q, + M 
n n n+1 

The coefficients w are called weights, and 

the weight vector is 

MM (1) 
=(w1 ,w2 ,... 

The length of the initial weight vector (for 

a perceptron) is denoted by A. 

Augmented query vector, Linear discriminatory functions can be 

V. written as 

Linear separability, 

discriminating weight 

vector, W*, S. 

= where the 

augmented query vector V ,is such that 

for l<j<n; .q;+=l. 

The two pattern classes f+ and F are said to 

be linearly separable if there exists a weight 

vector W* and some 6>0 with 

W*.I'>6 for all 

W*.'<-6 for all DeF. 

W* is called the discriminating weight vector. 

The notion of linear separability extends to 

the case where there are more than two 

pattern classes. 
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Threshold perceptron, 

d. 

Pr[A], PrfAj.BI, 

E[X], Var[X]. 

EWPA. 

Prototype, 

P+, P_. 

The notion of a threshold perceptron is 

explained in Chapter 3. d denotes the 

threshold of a threshold perceptron. 

PrIA] (Pr[AI,B]) denotes the probability of 

the event A (given the event B). E[XJ, 

Var[X] denote the expectation and variance, 

respectively, of the random variable X. 

Abbreviation for the exponentially weighted 

past average probability estimation procedure 

(see Chapter 5). 

A prototype is a query vector, generally 

contained in the pattern class with which the 

prototype is associated, which is assumed to 

be representative of that class. It is 

+ 
denoted by - P , P (for classes F and F 

respectively). 

Pattern Digit Weight, The k'th pattern digit weight (PDW) of the 

- 

PDW, k' k i'th class is a number which represents the 

danger of overlooking a disparity between the 

k'th (binary) component of a query vector 

and the prototype, when assigning to the 

i'th class. PDW's are denoted by p, k (for 

and F respectively). 
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Increment/decrement These specify the quantitative amounts of 

functions, adaptation.used in the STeLLA method (see 

(x), (x), Chapter 8). A and A are also used to 

d(X). denote increment/decrement functions in 

Chapter 5. 

Corners, The Boolean value of an expression is denoted 

by enclosing the expression in corners. Thus 

(x=51 = 

ji if x=5, 

0 otherwise. 

Unit vectors, A denotes the unit vector in the direction of 

A. the vector A, i.e. A = A/IA. 


