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Abstract 

Transforming acquired data in time or space is necessary for many applications, due to practical 

constraints on time-domain sampling at high data rates or the requirement for algorithms to 

process frequency-domain data during the image reconstruction procedure. Therefore, the 

discrete Fourier transform (DFT) plays an important role in many fields for preprocessing, 

reconstruction or data analysis stages of algorithms. The hardware or physical constraints also 

necessitate acquisition of limited length raw data which results in DFT-imposed distortions after 

data processing for which low pass filters are considered as general solution. Through this thesis, 

fundamental DFT properties are investigated and an optimization method is introduced to take 

advantage of these properties. This method is a potential alternative to low pass filters which 

impose resolution loss to processed data. The formalized method is examined and validated 

using preliminary observer metrics for two magnetic resonance imaging reconstruction 

approaches and a microwave imaging technique.   
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Chapter One: Introduction 

1.1 Statement of the Problem 

In many technologies, practical constraints on sampling time domain signals at high data rates 

when acquiring raw data has led to investigations into Fourier domain data acquisition and 

manipulation prior to further data interpretation. Data needs to be consistently transformed 

during the pre-processing or data reconstruction procedures to fulfill the requirements of 

algorithms such as discrete Fourier transform (DFT) reconstruction in magnetic resonance (MR) 

imaging applications. However, the constraints applied on raw data due to hardware limitations 

or the limited acquisition of data due to physical constraints appear in the form of distortions 

imposed on the transformed data each time the DFT is used for transformation of data between 

Fourier-space or Fourier-time domains (Chilla, 2015; Smith, 1993). The distortions created in 

pre-processing stages propagate through the algorithmic pipeline and may intensify in the final 

interpretable data, including the diagnostic results acquired from imaging techniques in 

biomedical applications.  

We illustrate this issue with a biomedical application example. In Fig. 1.1A, a high 

resolution magnetic resonance image has been reconstructed by applying an inverse discrete 

Fourier transform (IDFT) to a large (full) k-space data set. The image shows two regions of 

interest (ROI) comprising of a fine detail comb superimposed upon a broader feature. The cross-

sections clearly illustrate that there is little distortion surrounding the fine detail in the image, 

green arrows. Fig. 1.1B illustrates the result of a simulated functional magnetic resonance 

imaging (fMRI) reconstruction where, because of practical constraints, images have had to be 

reconstructed by applying the IDFT to a smaller, truncated, k-space data set.  The image is 

impacted, red-arrows, by the well-known Gibbs’ artifacts of intensity loss of fine detail, and  
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blurriness associated with ringing around, and increased width of, image final detail (Dyrby et 

al., 2011; Ferreira et al., 2009; Harris, 1978; Jesmanowicz et al., 1998; Peled and Yeshurun 

2001).  A common approach to remove Gibbs’s artifacts is the pre-processing application of an 

apodizing, low pass filter, to the truncated k-space data set before reconstruction. As can be seen 

in Fig. 1.1C, this approach removes the ringing artifacts at a cost of an overall resolution loss.  

 

Figure 1.1 A) High resolution image, and associated cross-sections, from a  IDFT 
reconstruction of large (full k-space data set with high resolution detail superimposed upon 
finer detail. B) Low resolution IDFT reconstruction of truncated (smaller) k-space data set. 
C) IDFT reconstruction of the apodized truncated k-space, data set show resolution loss 
across the full image. D) Reconstruction of the undersampled truncated k-space data set. A 
representation of the K-space data set is provided adjacent to each dataset. Red arrows 
demonstrates features mostly affected by DFT-imposed artifacts. 
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Under-sampling of the truncated k-space data is another approach to improve time 

resolution during MR imaging. Fig. 1.1D shows the compressed-sensing reconstruction, another 

DFT-based algorithm, of an under-sampled data set. Gibbs’ artifacts are again present, an 

application of an apodizing filter leads to a low resolution image, Fig. 1.1C, equivalent to that of 

the apodized DFT reconstruction. 

These artifacts are a common problem in other biomedical areas such as microwave 

imaging (Curtis et al., 2017) techniques for which limited bandwidth of acquired frequency 

signals and several time-to-frequency transformations during re-processing steps leads to 

processed signals with Gibb’s artifacts. Gibbs’ ringing artifacts manifest at tissue boundaries and 

destroy the fine detail structure of tissues by decreasing the effective resolution, and introduces 

distortions in neighboring regions. In microwave imaging, the final interpretable data are images 

reconstructed from back-scattered microwave signals from breast tissue.  Intensity loss and other 

artifacts present in back-scattered signals affect the accuracy of tumor detection in the 

reconstructed images. This indicates the importance of reliability and accuracy of pre-processing 

algorithms in biomedical pipelines to mitigate non-idealities of processed signals.  

In fMRI applications, the Gibbs’ effects may distort the relative intensity changes of 

signals through successive scans. This can affect the diagnostic results of stroke or hemorrhage 

in the brain (Gallichan et al., 2009). Considering this importance, many MR studies have focused 

on novel methods to improve resolution accuracy of final interpretable images by providing 

more reliable techniques for artifact removal. However, there is always a trade-off with the 

proposed approaches between lower contrast-to-noise ratio, lower temporal resolution or loss of 

details in exchange for data consistency (Plenge et al., 2012). A balance commonly discussed in 
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the literature is to take advantage of low pass filtering, or data windowing, to reduce Gibbs 

artifacts, an approach where resolution loss is inevitable.  

Similar effects were discussed in an early paper by our group (Smith, 1993). There, DFT-

imposed artifacts impacted the investigation of the operational efficiency of compressors used to 

pump natural gas down a pipeline. A new data manipulation approach was proposed to achieve 

higher accuracy without the resolution cost of filtering.  However, at the time, the approach 

seemed highly customized to a particular, very specialized, industrial situation, and was not 

extended to other fields.   

Recently, our team identified that a possible relationship exists between the solution to 

that industrial resolution problem and issues in DFT and compressed sensing reconstruction 

(Smith et al., 2013).   The goal of this thesis is to formalize that relationship theoretically. By 

experimentally validating this new approach in two different imaging fields, we aim to 

demonstrate the general potential for applying these techniques to improve the resolution of 

DFT-based algorithms in many fields.    

 

1.2 Objectives of this research 

As discussed in the previous section, reliable signal processing algorithms providing final images 

with improved resolution are a must in biomedical applications. I recently contributed to the 

identification that the (Smith, 1993) industrial solution can be considered an early example 

related to a new research area, dictionary learning in compressed sensing (Ravishankar et al., 

2011).  I extend that approach through this thesis to introduce a formalized general method for 

re-sparsification of DFT basis components to improve effective resolution in DFT and 

compressed sensing reconstruction applications. Such an approach is expected to provide both 
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improved resolution accuracy and data consistency when compared to other commonly used 

algorithms. This re-sparsification of DFT basis components will then be presented as an adaptive 

algorithm using a total variation optimization of frequency manipulated data. I have investigated, 

theoretically and empirically, the applicability of the proposed idea in advanced MR 

reconstruction techniques, common compressed sensing (CS) algorithms (Lustig et al., 2007; 

Ravishankar et al., 2011), and one of the recent microwave imaging techniques, tissue sensing 

adaptive radar (TSAR) (Sill and Fear, 2005). The proposed changes are then validated using 

several quantitative and qualitative metrics.   

 

1.3 Thesis outline 

In Chapter 2, the background of MRI and fMRI and the literature review of existing DFT-based 

data reconstruction algorithms are provided. Current solutions introduced in literature to mitigate 

DFT-imposed artifacts are discussed, with the shortcomings of such methods in balancing the 

trade-off between high temporal and spatial resolution in MRI applications detailed.  This chapter 

also provides an introduction of metrics used in this thesis to emphasize the importance of 

appropriate choice of validation methods. An important lack in current literature studies on 

signal processing algorithms in imaging contexts is neglecting the appropriate choice of such 

metrics.  These metrics help to validate the robustness of algorithms and also suggest hints on 

where algorithms fail when applied to a specific target. Two visual comparison techniques are 

developed to provide preliminary observer metrics for comparison of test and reference images 

in biomedical applications. The background discussion of a specific microwave imaging 

technique (tissue sensing adaptive radar - TSAR), also a target of this thesis, has been moved to 

Chapter 5 in order to keep the three Chapters associated with MR together. 
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Chapter 3 focuses on extending a common MR sparse reconstruction algorithm and 

shows how formalizing our general re-sparsification data manipulation technique leads to the 

ability to independently address Gibbs artifacts within the CS context. A modification to the 

algorithmic reconstruction pipeline of this compressed sensing algorithm is demonstrated. 

Chapter 4 takes advantage of a similar approach within an advanced sparse reconstruction 

algorithm known as dictionary learning MRI.  Experimental and numerical results are provided, 

indicating performance of proposed reconstruction procedure compared to the original 

commonly used algorithm.  

This thesis is intended to show that the increase in resolution by independently 

suppressing Gibbs artifacts is generally applicable to DFT-based algorithms in many fields. To 

demonstrate this potential, Chapter 5 and 6 focus on the removing equivalent DFT-imposed 

artifacts within the preprocessing procedure of TSAR microwave imaging technique with Chapter 

5 focusing on background and 6 focusing more on methodology and discussion of results. A 

brief discussion of the tissue sensing adaptive radar (TSAR) microwave imaging technique is 

provided in chapter 5 as an example of DFT-based algorithms in a completely different imaging 

field. Then an approach is introduced in chapter 6 to formalize this issue within the TSAR 

preprocessing pipeline.  Chapter 7 provides a conclusion and discusses possible future 

extensions.  

1.4 Research contribution 

I had a contribution in developing the theory of when Gibbs’ artifacts are present in low 

resolution images and investigated improved techniques to automatically determine when Gibbs’ 

effects will destroy useful information. After investigating the idea in common reconstructions, 

e.g. IDFT, I investigated more advanced MR reconstruction techniques, e.g. compressed sensing 
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(CS), for which Gibbs’ artifacts are overlooked or are serendipitously removed through the 

standard regularization procedure but with an associated cost of resolution loss and increased 

blurriness in the final CS images.  

I have investigated two common CS implementations, Sparse MRI (Lustig et al., 2007) and 

CSMRI based on dictionary learning (DL) (Ravishankar et al., 2011), and proposed how the 

theory of CS can be modified to improve the accuracy of CS techniques, i.e. improvement in 

contrast-to-noise ratio with minimum resolution loss. I have formalized an approach discovered 

in (Smith, 1993), a method to improve frequency analysis resolution, and extended this approach 

in the form of a general, adaptive algorithm to two different sparse reconstruction algorithms. 

Next, I have investigated the effect of proposed developed method in improving the tumor 

detection accuracy of TSAR and proposed changes to TSAR pre-processing pipeline to substitute 

the common low pass filtering which inevitably lowers the resolution of final images.  

I was first author of the following papers presented or submitted in local and international 

conferences based on aspects of this thesis: 

 Adibpour, P., Smith, M., (June, 2015). An Approach to Improve the Effectiveness of 

Wavelet and Contourlet Compressed Sensing Reconstruction. 24th International Society 

of Magnetic Resonance in Medicine, Toronto, Canada. 

 Adibpour, P., Smith, M. R., (2016). Total Variation Assisted Fourier Shift Manipulation 

to Remove Gibbs’ Artifacts in Compressive Sensing Techniques. IEEE MIC, Strasbourg, 

France, Poster Presentation.  

 Adibpour, P., Fear, E., Smith, M., (2018). Improved Dictionary learning compressed 

sensing for MRI through Patch-based total variation regularization. Submitted October 

2017 for IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Calgary, Canada. 
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Chapters in this thesis form the basis of the following journal papers for which I will be the first 

author: 

 Adibpour, P., Fear, E., Smith, M., (2017). Improved Compressive Sensing Resolution 

through Optimization of Basis Function Sparse Representation. Ready for submission to 

IEEE Transaction on Computational Imaging by late January 2018.   

 Adibpour, P., Smith, M., Fear, E., (2017). Fourier manipulation of Tissue Sensing 

Adaptive Radar data to improve Tumor Detection Accuracy by Gibbs’ Ringing Removal. 

Under revision for submission to IEEE Transactions on Computational Imaging or 

Progress in Electromagnetics Research by March 2018.  

 

I was also a major contributor and co-author on the following conference papers and 

international presentations  

 Smith, M. R., MacDonald, M. E., Woehr* J. and Adibpour* P., (June, 2015). 

Overcoming the Image Position-Dependent Resolution Inherent in DFT and CS 

Reconstructions. 24th International Society of Magnetic Resonance in Medicine, Toronto, 

Canada. 

 Shahrabi*, E., Adibpour*, P. and Smith, M. R., (May, 2016). Application of a Fourier 

Shift Preprocessing Stage to Improve the resolution of resting state fMRI images. 

Proceedings of 32nd Canadian Medical and Biological Engineering Society. 32nd 

Canadian Medical and Biological Engineering Society, Calgary, Canada (A4 #4). 

 

 Smith, M. R., Adibpour*, P., Woehr*, J., McDonald M. E. and Choudhury*, S. H., 

(2014). To DSP or not to DSP; An overview of algorithms in the world of MRI. IEEE 

EMBS and IEEE SP Societies, Melbourne, Australia. 

 Smith, M. R., Adibpour* P., Woehr*, J., McDonald, M. E. and Choudhury *, S. H., 

(2014). MRI and Signal Processing. Digital signal processing class, Electrical and 

Computer Engineering, University of Melbourne, Melbourne, Australia. 
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Chapter Two: Background and Literature Review 

2.1 Introduction 

The conflicting needs of spatial and temporal resolution in imaging applications is 

challenging in terms of their effects on diagnostic results and have attracted the focus of many 

studies. As discussed in the previous chapter, this thesis focuses on spatial and temporal trade-

offs in two different imaging applications, fMRI and TSAR.  These algorithms are both highly 

dependent on DFT-based reconstruction or pre-processing data manipulations and are subject to 

the loss of effective resolution due to temporal resolution restrictions. In this chapter, the 

background of MRI, the necessary data manipulation including pre-processing, post-processing 

and reconstruction procedures are discussed in detail. Current and recent studies focusing on 

improvement of diagnostic results via enhancement of the accuracy of structural differentiation 

of different anatomies in final image maps are also reviewed. This chapter bridges between DFT 

specific properties and the possibility of Fourier manipulation as a means to enhance DFT-

imposed artifacts in DFT-based applications. 

In this chapter, section 2.2 covers the fundamentals of MR imaging and principles of MR 

data acquisition. Section 2.3 outlines important challenges of MR imaging from scanning 

procedures to reconstruction techniques, temporal versus spatial resolution, and provides a brief 

literature review of existing post-processing algorithms developed to address resolution accuracy 

enhancement. Then basic DFT reconstructions and DFT-imposed artifacts, e.g. Gibbs artifacts, 

associated with constrained data gathering in low resolution MR applications are discussed in 

section 2.4. This section opens the door to alternative resolution enhancement techniques by 

taking advantage of DFT properties. Section 2.5 covers one of the common DFT-based 

reconstructions, sparse reconstruction, which is the focus of next two chapters. The final section 
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provides a brief review of common validation metrics used in MR studies. Considering the 

shortcomings of such metrics, two techniques are introduced and used as validation criteria for 

algorithms proposed in MR context through this thesis.  

 

2.2 Principles of Magnetic Resonance Imaging 

In the next sections, first the physics of MRI, data acquisition technique and MR data 

interpretation are discussed. The next section covers MR image formation method and 

interpretation of final MR data in the form of a Fourier transformation of acquired data.  

 

2.2.1 Nuclear magnetic resonance 

The physics of magnetic resonance imaging (MRI) is based on nuclear magnetic resonance 

(NMR) concepts which will be described using classical physics ideas, at a macroscopic scale, in 

this and the following sections (Bernstein et al., 2004; Haacke et al., 1999; Liang and Lauterbur, 

1999). The protons in the body possess a magnetic moment due to their nuclear spin. The sum of 

all magnetic moments is termed the net magnetization, and is zero in the absence of an external 

field. In the presence of an external field ( 0B ) there is a net magnetization ( 0M ) oriented aligned 

with the static field. The external field is 1.5T or 3T for human scanning and is typically 

generated using superconducting magnets. 

     The alignment of individual protons with the external field can be described as parallel or 

anti-parallel to the main field. In a classical description, the protons gyrate (precess) around the 

0B  field, at the Larmor frequency 0 0( )
2

f B



 , where 
2




 is the constant gyromagnetic ratio (

42.57 /MHz T ) (Haacke et al., 1999). The spin magnetization vector of protons has two 
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orthogonal components, a transverse component which lies on the X-Y plane and a longitudinal Z 

component which in total is aligned with the external field ( 0B ).       

        The Bloch equation describes how the magnetization m changes in time (Hinshaw and Lent, 

1983): 

                                            (2.1) 

 

where 0m , zm , xym  are equilibrium, longitudinal and transverse magnetization and  , 1T  and 2T  

are constants specific to types of tissues and materials. The external field homogeneity is very 

important since inhomogeneity results in image artifacts (Lustig et al., 2008).  

 

2.2.1.1 Precession and Relaxation Procedures 

The key information for MRI image is obtained by modifying a proton’s magnetization 

vector’s precession. If a magnetic field ( 1B ) generated by radiofrequency (RF) excitation 

perpendicular to 0B  is applied, the magnetic resonance which is the interaction between spins 

and RF signal, happens. Through this interaction, spins whose Larmor frequency is the same as 

the frequency of RF pulse, will absorb energy from RF signal and transit to the higher energy 

state through a procedure called excitation. The longitudinal component of the magnetization, 

0M , decreases and the transverse component, xym , increases. The transverse magnetization at 

position r  and time t , denoted by ( , )m r t , is a complex quantity which represents physical 

properties, e.g. proton density of tissues, relaxation and other information. The transverse 

magnetization induces a change of voltage in the receiver coil (tuned to the Larmor frequency). 

0
0

1 2

xyz
mm mdm

m B
dt T T
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This received MR signal is a complex harmonic describing contributions of all excited 

magnetization in the volume.  

When the 1B  pulse is removed, relaxation occurs with which the spins emit 

electromagnetic energy through two mechanisms. Longitudinal relaxation, T1-relaxation or spin-

lattice relaxation is one mechanism through which the longitudinal component experiences 

exponential recovery ( 1/
0( ) (1 ) ( )T

z zm t M e m t     ) (McRobbie et al., 2003) with time 

constant T1. Transverse relaxation, T2-decay or spin-spin dephasing is the other relaxation 

mechanism with an intensity changing in time described by ( 2/( ) ( ) T
xy xym t m t e    )with time 

constant T2  (McRobbie et al., 2003).   

 

2.2.1.2 Spatial Encoding Gradients 

In order to generate the spatial distribution information, three additional fields, xG , yG

and zG are also applied with three gradient coils. These fields impose a linear variation upon the 

longitudinal magnetic field, changing the Larmor frequency of the spins in a spatially dependent 

manner.  This characteristic means that gradient fields can be used to selectively excite small 

portions, e.g. a slice, rather than a whole volume.   

 

2.2.2 MR Image Formation 

As discussed previously, the application of gradient fields causes the magnetic field to vary with 

position. This means that we expect higher or lower precessional frequencies depending on 

whether the total field is increased or decreased. This leads to a Fourier relationship between the 

received MR signal and magnetization distribution (Ljunggren, 1983; Twieg, 1983). 
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The phase of magnetization can be calculated from the integral of gradient field 

amplitudes starting from time zero as: 

   
0

0

( , ) 2 ( ) 2 ( )
2

where ( ) ( )
2

t

t

r t G s rds r k t

k t G s ds

  





   






                            (2.2) 

The signal equation for MRI acquired from the following equation is the magnetization 

distribution integrated over the entire volume: 

2 ( )( ) ( , ) j k t r

R

s t m r t e dr                (2.3) 

The above equation implies that the received signal at time t  is the Fourier transform of object 

( , )m r t  sampled at spatial frequency ( )k t . In other words, Fourier transformation is used to 

convert the frequency information contained in the signal from each location in the image plane 

to corresponding intensity levels, which are then displayed as shades of gray in a matrix 

arrangement of pixels. Also, the integral of ( )G s traces out a trajectory ( )k t  in spatial frequency 

space (k-space). At a high level, the acquisition method uses a sequence of gradients and the RF 

pulses which are called the pulse sequence. It is worth to mention that imaging speed and 

acquisition methods are affected by several imposed constraints. First, magnetization decays 

exponentially with time which limits the useful acquisition time window. Next, k-space is 

traversed at a speed limited by gradient system performance and physiological constraints. These 

are reasons behind the fact that most MR imaging methods use a sequence of acquisitions with 

which k-space and image are reconstructed from all the samples acquired from each acquisition. 
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In the next section, important factors which are the focuses of various developed MR 

imaging techniques are discussed. Before going through any details, let’s define two important 

terms used in this regard in MR studies.   

Resolution: is denoted by the sampled region of k-space, meaning that higher resolution is 

referred to a larger region of sampling, max | |resolution k . 

Field of view (FOV): is denoted by sampling density, meaning that in order to meet the Nyquist 

criterion, denser sampling is required for larger objects, 
1

 FOV
k




.    

 

2.3 Temporal vs. Spatial Resolution 

Different types of images are created by varying the sequence of RF pulses applied and 

collected. Time of echo (TE) is the time between the RF pulse delivered and the echo signal 

received. Also, repetition time (TR) is the time between successive pulse sequences applied to 

the same slice. An important factor which led to development of these different MR imaging 

techniques is meeting the conflicting needs of high spatial and high temporal resolution. Among 

various MR techniques, consider fast spin echo MRI (T2 weighted imaging (T2WI)) which is 

produced by using longer TE and TR times. Such images for which the contrast and brightness 

are predominately determined by the T2 properties of tissue are capable of high resolution 

visualization of structures. The more data acquired, the more spatial resolution will be achieved. 

However, as MR signal intensities decay in time, longer acquisition times required to achieve 

higher resolution introduce more image noise.  

Those applications for which pathological changes need to be detected in early stages 

require complementary imaging methods to improve lesion detection and localization (Bihan et 
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al., 2006). For example, in pathological conditions such as strokes arising from ischemia, T2WI 

doesn’t change until at least 8 hours after the onset of stroke and then appears hyper-intense in 

the stroke region. However, diffusion weighted imaging (DWI), as a complementary technique, 

can show the changes in brain as early as 30 mins after the onset of stroke (Allen et al., 2012; 

Srinivasan et al., 2006). 

 Diffusion means the movement of molecules in a system and follows a certain pattern 

based on properties and structures of tissues. This diffusion pattern will be disturbed in affected 

areas due to changes in pathological conditions such as acute stroke discussed above. In order to 

study these changes, specialized MRI techniques as DWI are used to track the diffusion pattern of 

water molecules to visualize internal physiology (Bihan et al., 1986; Stejskal and Tanner, 1965). 

DWI is able to generate image contrast using the diffusion property of water molecules in tissues. 

Such images, used as supplemental imaging scans to T2WI technique, aim to limit false-positive 

diagnosis.  

            However, DWI is not a sufficient substitution for conventional imaging due to its low 

resolution, noisy and blurry areas and artifacts present in the final image reconstructions. DWI is 

achieved through Echo Planar Imaging (EPI) gradient sequences. These enable fast image 

acquisition, generating DWI images with acquisition matrix of 128x128 and isotropic resolution 

limited to 2mm. For anisotropic scans, in-plane resolution of 2mm can be improved to 1mm but 

at lower Signal-to-Noise ratio (SNR). This low-resolution property is due to the limitations of 

FOV (which is directly related to the limitations of sampling density), low strength scanners. Fast 

acquisition techniques such as single shot EPI aim at acquiring images in very short time before 

complete signal decay and therefore have even greater limitations on maximum achievable 

resolution.  
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Since DWI images are used in conjunction with higher resolution scans such as T2WI 

images, the difference in the resolutions will result in over estimation of lesion area when DWI is 

super-imposed with T2WI and therefore higher resolution images are preferred. The artifacts and 

higher resolution challenges can be improved by hardware upgrading, acquisition parameter 

optimization or software-based post-processing techniques. Among post-processing software-

based techniques are interpolation which interpolates a high-resolution voxel from various low-

resolution ones. These interpolation methods, some adaptive and some non-adaptive (Lehmann 

et al., 1999; Thevenaz et al., 2000), have their own disadvantages such as ringing artifacts and 

blurring (Borman and Stevenson, 1998). Super-resolution reconstruction techniques are also 

among other post-processing techniques which aim at improving image quality. Unlike 

interpolation methods, they rely on adding information to the image to provide a high-resolution 

product. All aforementioned post-processing techniques directly or indirectly aim at recovering 

high frequency information to improve spatial resolution of low resolution MR applications. 

While promising in concept, the post-processing methods can lead to other types of artifacts or 

may need extra resources to acquire or estimate lost information.  

So far, we have seen the Fourier relationship between data gathered in MRI and the 

reconstructed image. This necessitates reconstruction algorithms to use discrete Fourier 

transform (DFT) at some point during the processing procedure for Fourier domain 

transformation. We have also introduced the importance of low-resolution MR techniques and 

the resolution challenges associated with them. We have also reviewed various post-processing 

techniques introduced in literature which tend to enhance effective resolution while either 

leading to other types of artifacts or requiring extra resources. In the following section, the 

background on how constrained reconstruction and DFT reconstruction can be combined to 
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improve magnetic resonance imaging resolution is discussed. This section shows when limited-

length data manipulation leads to destructive artifacts and provides the theoretical basis for the 

proposed algorithms in this thesis. 

 

2.4 Basic DFT reconstruction introducing Gibbs’ artifacts 

In this section, the 2D DFT-based reconstruction of detailed feature of a simulated GE phantom 

positioned on top of a broad feature is demonstrated to illustrate how DFT-imposed artifacts 

impact 2D resolution of final MR images. The effect of most common solution for the 

elimination of artifacts, global low pass filtering, is also demonstrated on this dataset. Distortions 

in the image associated with k-space truncation can be interpreted in terms of the point spread 

functions (PSF) in 1D imaging models. Since 2D and 1D DFT reconstructions share 

characteristics, the discussions on 1D cross section of a 2D object can be extended to the 2D 

sense. 

Fig. 2.1-A provides 512x512 high-resolution inverse DFT (IDFT) reconstruction of 

simulated GE phantom data using full k-space data. Fig 2.1-B is the 108x108 low resolution 

reconstruction of the truncated k-space data obtained with IDFT. Fig. 2.1-C is reconstructed 

using another DFT-based reconstruction (compressed sensing which will be introduced in 

section 2.6) from under-sampled of truncated k-space data also used for fig. 2.1-B. On the right 

side of each figure, a 1D cross section of the detailed feature is shown to help in analysing DFT 

properties. This comb feature has lost resolution after IDFT reconstruction (Fig. 2.1B) and 

residual ringing artifacts also affect parts of the image adjacent to the detailed feature which is 

observable in lower cross section. The application of a common approach to mitigate this effect, 

an apodizing filter, is shown in Fig. 2.1-D on IDFT reconstruction of truncated k-space data. This 
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approach destroys sufficient resolution in both cross sections and imposes blurriness and 

intensity loss to fine details even though the average intensity seems to look similar in both 

images. In other words, application of low-pass k-space filters suppress artifacts but degrade 

overall image quality.  In the following, we provide the mathematical background to indicate 

when Gibbs’ artifacts appear in the form of distortion in constrained DFT reconstruction. We 

show that relationships exist between the digital signal processing (DSP) characteristics of high-

resolution M x M and truncated N x N image reconstructions as an extension to (Smith et a., 

2013) that make it possible to avoid introducing Gibbs artifacts into truncated k-space 

reconstructions.   

 

 

Figure 2.1 A) 512x512 IDFT reconstruction of full k-space, B) 108x018 IDFT 
reconstruction of truncated k-space, C) 108x108 sparse sampled reconstruction of 
undersampled k-space, D) 108x108 IDFT reconstruction of apodized k-space, with upper 
and lower cross sections of tine features and tines on top of a broad feature. K-space 
representation of each reconstructed image is provided below each dataset. Red arrows 
demonstrates features mostly affected by DFT-imposed artifacts. 
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2.4.1 DSP relationship between high- resolution and low-resolution images of 1D objects 

Consider an infinite continuous 1D image cross section data experimentally sampled to generate 

an M x 1 k-space data set. The image has a pixel spacing given by /M Mx FOV M   where 

MFOV is the field of view of the M x 1 study.  

The continuous 1D image cross-section ( )I x  arising from the inverse continuous Fourier 

transform (ICFT) of infinite MR k-space ( )S f signal multiplied by a finite truncation window 

( )CTW f is equivalent to the convolution ( ) { ( )} { ( )}CI x ICFT S f ICFT TW f  . The image 

domain distortions arising from the finite window in k-space can be expressed in terms of the 

continuous point spread function ( ) { ( )};C CPSF x ICFT TW f  (broken line, Figs. 2.2A and B).  

The discrete complex valued image cross section samples can be expressed in terms of 

the orthonormal IDFT basis functions associated with the M x 1 sample space, exp(2 / )xjk x M  

as: 

/2 1

/2 1

[ ] { [ ]exp(2[ ]} / );
x

M

x x
k M

M M xCI x IDFT S k jkS k x M


 

                                                              (2.4) 

 

where [ ]xS k are the sampled k-space values. Following an M-point IDFT of [ ]M xS k  we have: 

/ 2 1

/2

[ ] [ ]exp(2
1

/ ).
x

M

x x
k M

M MCI x S k jk x M
M






                                          (2.5) 
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Figure 2.2 K-space truncated Continuous (broken line) and discrete (solid points) point 
spread functions of A) and B) sampled isolated fine detail objects with different positioning 
characteristics in FOV in terms of basis function representations. 

 

Similarly, the complex image cross section, [ ]NCI x , generated from the same k-space data 

truncated to a length N can be expanded in terms of the orthonormal IDFT basis functions 

associated with the N x N sample space. 

N/2 1

/2

[ ] [ ]exp(2
1

/ ).
x

x x
k N

N MCI x S k jk x N
N






                                          (2.6) 

where N = M / p (for an integer value p). For other values of N, the complex image cross section 

can be expanded in terms of sum of multiple basis functions (non-basis functions). 

In Fig. 2.2, upper and lower cross sections, the broken line and solid dots respectively 

show the continuous, ( )CPSF x , and discrete []NPSF  point spread functions of two point objects. 

The modeled 1D isolated objects A and B were placed with centers 1Bx and 2Bx which 

respectively satisfy the conditions 1 (2 1) / 2NB q X    and 2 (2 ) / 2; 0 .NB q X q N    The 
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truncation window, ( ),CTW f  was assigned to be rectangular and of length N f  making 

( )CPSF x a sinc function.  Harris (Harris, 1978) indicated that the level of distortion in the spatial 

frequency domain increased for each signal derivative that was discontinuous across the 

frequency truncation boundary.  For a rectangular truncation window, ( )CTW f , the distortions 

increase by 3db , a factor of 2, for every discontinuous derivative (Harris, 1978).  Point object 1 

at position 2B Nx x X    has all boundary derivatives continuous for both real and imaginary k-

space components.  In contrast, point object 2 at position 1 / 2B N Nx x X X    has no 

continuous boundary derivatives. A mathematical interpretation of cyclic continuity is that k-

space representation of point object 2 can be closely approximated by a single basis function.  By 

contrast, point object 1’s k-space representation requires the sum of multiple basis functions 

associated with the N point k-space truncation window. 

 

2.4.2 Truncation effects on isolated high intensity object close to a smoother broad region 
of interest 

In this section, we discuss approaches to deliberately use the relationships between the 

orthonormal basis functions in the M x 1 and N x 1 spaces to control Gibbs’ artifacts. Fig. 2.3A 

represents a cross section from a 1024x1024 high resolution image, specifically an isolated fine 

detail and a combined fine detail superimposed on a constant intensity broad feature. Identical 

broken lines in Figs. 2.3B and C represent the continuous point spread function of the isolated 

and combined objects k-space truncated to 64x64. The discrete point spread function responses 

demonstrated in Figs. 2.3B and C as solid dots have different effective resolution. Broad, smooth 

regions of interest span many samples (pixels in 2D image) and have a narrow representation in 

the M x 1 k-space that is not significantly impacted by truncation. Such features will appear 
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without artifacts when reconstructed from a truncated N x 1 k-space even when no low pass k-

space filter is applied before the DFT (Fig. 2.3B and C). In contrast, the sharp, fine features near 

broad features will have broad k-space representations that may be considerably modified 

following truncation. However, we will now show that k-space modification does not necessarily 

mean that these features will appear surrounded by artifacts when displayed in the truncated N x 

1 reconstruction. This effect is shown in Fig. 2.3B and C, where both left tines are located on top 

of a broad feature. While no distortions and intensity loss is witnessed in B following truncation, 

C shows intensity loss of fine details and destructive effects of residual oscillations on broad 

features.      

 

 

 

Figure 2.3 A) 1D phantom containing one isolated narrow-width image component and a 
fine detail on top of a broad constant intensity image feature. The isolated narrow width 
peak (B) retains a higher intensity and narrower half intensity width (one with basis 
function representations) than the peak (C) (one with non-basis function representations) 
despite being sampled versions of the same continuous point spread functions (dotted line).  
Of particular interest is that the distortions from the discrete power spread function are 
enhanced when the peak with non-basis function characteristics is close to a broad feature, 
left side of Fig. 2C. 
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Consider a pixel situated at index FDx  in the 1D cross section [ ]MCI x reconstruction. By 

definition, this image pixel’s k-space can be expressed by a single IDFT basis function   

 

[ ] exp(2 / ); / 2 / 2M x FD x FD xS k S jk x M M k M                           (2.7) 

 

For FDS , the intensity of this pixel’s IDFT basis function. If this pixel’s index in [ ]MCI x  is 

; 0 p,FDx dp d   an integer multiple of the truncation ratio p = M / N, then  

 

[ ] exp(2 / ) exp(2 / );M x FD x FD xS k S jk dp M S jk d N             (2.8) 

 

which involves a single IDFT N x 1 basis function. Assume this sharp isolated feature satisfied 

our original assumption of not being surrounded by truncation artifacts in the M x 1 image cross 

section. Then Eqn. (2.8) indicates that this will remain a sharp isolated feature with no 

surrounding artifacts following truncated N x 1 reconstruction (Fig. 2.3B).  Any other sharp 

feature in the M x 1 image will require a k-space representation involving a sum of multiple N x 1 

basis functions, i.e. the detail will become surrounded by truncation artifacts (Fig. 2.3C).  A 

different, but equivalent, interpretation is that the presence or absence of truncation artifacts is 

related to the differences between how the underlying truncation point spread function, a sinc 

function, is discretely sampled for signals that do, or do not, satisfy the criterion

; 0 .FDx dp d p     (Smith 1993; Kellner et al., 2016).    
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2.4.3 Fourier shift manipulation to increase basis function characteristics  

The distortions surrounding an individual fine detail are dependent on SHIFT B NX x x X   ; the 

difference between displayed pixel center positions, Nx X , relative to the high resolution fine 

detail peak intensity location, Bx . We can remove the distortions by deliberately planning the MR 

FOV placement to ensure that 0SHIFTX   for some targeted fine detail of interest with a specific

Bx  value. In principle, this could be achieved by physically manipulating the object’s position 

within the FOV (Mayer and Vrscay, 2007), or equivalently by selecting a specific FOV location 

by changing scan parameters (Tieng et al., 2011).    

However, a fundamental Fourier property does provide a potential path to a more 

generalizable solution.  The DFTs of impulses placed at positions x and x x  in an N-pt data 

sequence are respectively exp( 2 / )j kx N  and exp( 2 ( ) / )j k x x N   .  In this research 

program’s context, inverting this property means that performing a pre-processing multiplication 

by exp( 2 / )j k x N   will induce a x virtual FOV position shift in the signal’s properties. This 

k-space manipulation makes use of the Fourier transform (FT) property that multiplication by a 

complex sinusoid in one Fourier domain is equivalent to a position shift in the other domain. 

This manipulation ensures that the truncated MxM high resolution k-space data can now be 

described with the minimum number of low resolution NxN basis functions. 

We are proposing new Fourier shift manipulated (FSM) DFT and sparse reconstructions 

where a suitable selection of x across specific ROIs would shift them into new FOV positions 

with higher, positionally dependent resolution.   

This FSM approach involves uniformly re-modulating the 1D k-space data by 
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[ ] [ ]exp( 2 / );                                                       SHIFT x x x SHIFTS k S k j k N                  (2.9) 

and 2D data by the equivalent 

 [ , ] [ , ] exp( 2 / ) exp( 2 / );SHIFT x y x y x SHIFT y SHIFTS k k S k k j k N j k Y N                            (2.10) 

Fig. 2.2B demonstrates how FSM helps adjusting the effective resolution of high 

frequency components by enforcing basis function characteristics in the local regions of FOV-

shifted ROI. Similar observation is expected from fine details on top of a broad feature in Fig. 

2.3B which is FSM representation of Fig. 2.3C, without intensity loss and residual artifacts. 

In the following section, one of the common DFT-based reconstruction techniques, 

compressed sensing (CS) and associated DFT-imposed artifacts in CS context is discussed which 

is the focus of the rest of this thesis. 

 

2.5 Sparse reconstruction techniques 

Given the issues around overcoming problems with acquiring a sufficient amount of data 

(meeting spatial resolution requirements) in lowest possible scanning time, rapid MR imaging 

techniques remain a constantly evolving research area.  Among those, Sparse MRI is one of the 

most recent and common techniques which enables acquisition of less data without resolution 

loss. In this section, sparse MRI techniques and resolution challenges are discussed.    

         Compressed sensing (CS) techniques were introduced first in the literature of information 

theory as an abstract mathematical idea. It proposes sensing of the compressed data (acquired at 

a sampling rate less than Nyquist sampling rate) and recovering the full samples from random, 

non-adaptive measurements provided that the original data has sparse representation. This 
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reconstruction scheme is possible if the signal or image has a specific form of sparse 

representation and the acquisition is incoherent with the transform (Donoho, 2006).  

The necessity of high imaging speed in MR imaging, a relatively slow imaging modality, 

led to the CS idea emerging in MR applications. This idea developed rapidly during the last ten 

years focusing on nonlinear optimization algorithms, adaptive sparse bases and k-space sampling 

patterns to improve final CS image quality. Several CS MRI methods have been proposed, 

focusing on analytic or trained sparse dictionaries which are believed to have significant effect 

on artifact reduction. These methods aim at solving ill-posed inverse problems to acquire more 

robust CS algorithms.  

A common CS method based on analytic sparse bases includes discrete wavelet transform 

(DWT) (Lustig et al., 2008) which is able to recover point-like and singular features from highly 

undersampled data. Other sparse bases include fast discrete curvelet transform (FDCT) (Ma, 

2011) and discrete shearlet transform (DST) (Pejoski et al., 2015). An iterative soft thresholding 

optimization algorithm has also been introduced in (Hao et al., 2013; Qu et al., 2010) which 

takes advantage of MR image sparsity in sharp frequency localization Contourlet transform 

(SFLCT). Sparsity based on SFLCT cancels aliasing components and outperforms wavelet-based 

methods by successfully reconstructing curve and edges. Other methods include the combination 

of these transforms (Qu et al., 2010).  

Dictionary learning (DL) has also been introduced for adaptive data fitting (Huang et al., 

2014; Ravishankar et al., 2011). Patch-based adaptive sparsity or CS based on dictionary learning 

(DL) from image patches are believed to outperform global analytical image sparsity since patch-

based dictionaries capture local image features and eliminate noise and artifacts in CSMRI 

algorithms without resolution loss. Based on such techniques, an image is decomposed into 
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overlapping patches to train a sparsifying dictionary and so provide higher sparsity which 

potentially leads to higher under sampling factors (Huang et al., 2014). Additional methods 

introduced in (Liu et al., 2013) combine dictionary learning and predefined sparse priors for 

stability under noise and reducing overfitting. 

Using aforementioned sparse bases, the following references indicate the wide range of 

different CS approaches currently discussed in the literature (Haldar, 2014; Huang et al., 2014; 

Jiang et al., 2013; Ma et al., 2008; Qu et al., 2010). Various CS methods have also been proposed 

in literature combining different sparse bases to address shortcomings of specific analytical 

sparse basis including (Kim et al., 2010).  

 

2.5.1 Positional dependent resolution of sparse reconstruction techniques 

In most advanced CS MRI techniques, it is believed that artifacts arise due to two main reasons: 

under sampling of k-space and inherent noisy images. These factors attract the most attention in 

recent CS research, overlooking the unavoidable DFT-imposed artifacts. This important factor is 

one of the main aspects of this thesis which is discussed in detail in Chapters 3 and 4. The 

observations discussed in section 2.4 in terms of positional dependency of resolution of DFT 

reconstructions are also demonstrated in the following in context of CS reconstructions. 

Low resolution CS reconstruction of data (Fig. 2.4C, lower ROI) results in equivalent 

parts of images, as low resolution IDFT reconstruction (Fig. 2.4B, lower ROI), suffer from 

ringing artifacts. This observation is predictable since CS uses DFT to move constantly between 

Fourier domains. Positional dependent resolution is demonstrated in Fig. 2.4C for which the 

upper cross section is 0.4% FOV positional shift of lower cross section. The comb tines are 

recovered (represented as basis function components) and residual ringing artifacts impacting the 
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neighboring pixels is eliminated for both low resolution IDFT and CS (Fig. 2.4B, C). The 

observed positional dependency resolution in CS results, indicates the applicability of FSM, as 

discussed in previous section, as a potential method to improve characteristics of CS 

reconstruction procedures.    

 

 

Figure 2.4 A) 512x512 IDFT reconstruction of full k-pace, B) 108x108 IDFT 
reconstruction of truncated k-space, C) 108x108 CS reconstruction of truncated k-space. 
All Lower ROIs have 0.4% FOV position shift with respect to upper ROIs. 

 

2.6 Validation tools in imaging applications 

The choice of a reliable measurement criteria is an important factor in determining the validity of 

a proposed algorithm for which the final product is an image, e.g. medical imaging applications. 

Common objective quality metrics used for fidelity evaluation of reconstructed images include 

peak signal to noise ratio (PSNR) (Anand and Sahambi, 2008; Wiest et al., 2008), transfer edge 

information (TEI) (Xydeas and Petrovic, 2000), mean squared error (MSE) (Gregoria et al., 

2013) and mutual information (MI) (Qu et al., 2002).  

While they are simple to calculate, mathematically convenient (Wang et al., 2004) and 

independent of individual observers (Basant et al., 2013), their inference is not well-matched to 

perceived visual quality. This will result in unreliable conclusions on the validity of a proposed 

technique (Eckert and Bradley, 1998; Eskicioglu and Fisher, 1995; Girod, 1993; Teo and Heeger, 
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1994). This fact is shown in Fig. 2.5 in which a high-resolution IDFT reconstruction with and 

without additive noise (B, A) and low-resolution IDFT reconstruction of k-space truncation are 

demonstrated. Based on MSE values, C should be considered as a more appropriate algorithm for 

accurately imaging the ROI pointed out by red arrow. However, B in fact has higher quality in 

terms of visual comparison of ROI which is completely recovered through the other algorithm. 

Therefore, structural similarity comparison should be considered as an important factor for 

numerical metrics used as validation methods in imaging applications. 

This important fact has not been neglected in literature and has resulted in modified 

existing quantitative metrics where errors are penalized depending on their visibility (Eckert and 

Bradely, 1998; Pappas and Safranek, 2000; Winkler, 1999).  Some error-sensitivity approaches 

attempt to mimic human visual system (HVS) perception to determine error measures. However, 

the uncertainty in mapping the error visibility to the loss of quality (Silverstein and Farrell, 1996) 

and the effectiveness of cognitive understanding and interactive visual processing in perception 

of quality of images (Fuhrmann et al., 1995) has led to the proposal of more advanced qualitative 

metrics. 

  

MSE ~ 35 10x  

 

Truncated MSE ~ 32 10x  

Figure 2.5 A) High-resolution IDFT reconstruction of GE data, B) High-resolution IDFT 
reconstruction plus gaussian noise, C) Low-resolution k-space truncated IDFT 
reconstruction. The MSE values under B and C doesn’t correctly reflect the poor structural 
resolution of images.  
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 The modified imaging algorithms in this thesis have been validated using a number of 

specialized metrics.  The structural-similarity-based (SSIM) image quality assessment in section 

2.6.1 and high dynamic range visual difference predictor (HDR-VDP) metrics in section 2.6.2 

will be introduced. These visual difference metrics possess a high correlation coefficient with the 

mean-opinion-score (MOS) subjective quality metric (Basant et al., 2013).  

 

2.6.1 SSIM metric 

Based on the assumption that the human visual perception is adapted for extracting structural 

information from a scene, the structural-similarity-based SSIM metric relies on the measure of 

structural information change as a good approximation of perceived image distortion. The 

following subsections summarize the SSIM description by (Wang et al., 2004).  

 

2.6.1.1 SSIM Index 

As shown in Fig. 2.6, the metric compares luminance, contrast and structure separately for 

similarity measurement and defines the comparison similarity measures which satisfy the 

following conditions: 

1. ( , ) ( , )S x y S y x  

2. ( , ) 1S x y   

3. 1 if and only if x y  

for which S is the SSIM operator and x and y are reference and test images.  

Luminance: The luminance function ( , )l x y is defined as the function of the luminance of two 

signals (or images) which are estimated as the mean intensity of the signals (images),   



31 

 

1

1 N

x i
i

x
N




                              (2.11) 

1

2 2
1

2
( , ) x y

x y

C
l x y

C

 
 




 
         (2.12) 

The inclusion of constant 1C will avoid instability when 
2 2
x y   is very close to zero. 1C is 

defined as 
2

1 1( )C K L with L , dynamic range of the pixel values and 1 1K  , a small constant 

[Wang et al., 2004]. 

 

Contrast: The standard deviation of luminance subtracted signals (images) is considered as the 

estimate of their contrast and so contrast function ( , )c x y is the comparison of standard 

deviations x  and y  
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where 
2

2 2( )C K L and 2 1K  is a small constant [Wang2004]. 

Structure: the normalized signals 
x

x

x 



and 
y

y

y 



will be used as the inputs of the structure 

comparison function, ( , )s x y , as 
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Finally, the SSIM index between signals x  and y is defined as the combination of the 

three comparison functions  

 

( , ) [ ( , )] .[ ( , )] .[ ( , )]SSIM x y l x y c x y s x y         (2.16) 

 

where, 0  , 0   and 0  . (Wang2004) suggested to set these parameters as 1    

and 3 2 / 2C C .  

 

 

Figure 2.6 Pipeline of SSIM metric modified from (©2004 IEEE) showing where and how 
necessary structural information are captured from test and reference images and 
combined into one descriptive numerical value reflecting the similarity measure.   

 



33 

 

2.6.1.2 Quality Assessment Using SSIM Index 

Unlike the quantitative metrics (e.g. MSE, PSNR, etc.) which are applied globally, qualitative 

measures such as SSIM are applied locally for the following reasons (Wang et al., 2004).   First, 

the image statistical features are spatially nonstationary.  Second, image distortions may also be 

space variant. For this purpose, the local statistics ,x x   and xy are computed within a local 

square window or a circular-symmetric Gaussian weighting window (Wang et al., 2004). Rather 

than the local quality measurement, the mean SSIM (MSSIM) index evaluates the overall image 

quality for M local windows where SSIM is calculated (Fig. 2.6) 

1

1
( , ) ( , )

M

j j
j

MSSIM x y SSIM x y
M 

         (2.17) 

 

2.6.2 HDR-VDP-2.0 metric 

This visual metric aims at prediction of visibility and quality. It is based on a new visual model 

for all luminance conditions and compensates for the former visual metrics introduced in 

(Mantiuk et al., 2011) which only work for narrow intensity ranges (Mantiuk et al., 2011). It has 

been shown in literature that the quality predictions of this metric are comparable or better than 

MS-SSIM (defined in 3.7) (Mantiuk et al., 2011). However, studies in (Maniutik et al., 2011) 

shows that correlation between the results of these metrics with subjective MOS scores from two 

quality databases confirms that HDR-VDP2.0 has higher correlation for both databases compared 

to MS-SSIM. However, it has not been extensively used in biomedical applications. The 

schematic of the metric is presented in Fig. 2.7.  
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Figure 2.7 Pipeline of HDR-VDP2.0 metric modified from (© Maniutik et al., 2011) 
showing procedure of how necessary information are acquired from reference and test 
images and combined into a descriptive numerical value reflecting the quality of test 
image compared to reference.  

 

This algorithm is based on the comparison of the distorted and ground truth images which are 

inputs to the algorithm as test and reference respectively. Without going through any 

mathematical detail of such metric, various stages of metric’s pipeline are defined. Both images 

will be first analyzed in “optical and retinal pathway” section which is responsible for the 

following processing flow: 

 

2.6.2.1 Optical and Retinal Pathway 

The following is various stages through which test and reference images are passed simulating 

optical and retinal pathway of human visual system. 

Intra-ocular light scatter: This block models the light scattering in the cornea, inside the eye 

chamber and on the retina as a modulation transfer function acting on the input images. The idea 
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is actually modeling the scattering which attenuates the high spatial frequencies and the light 

pollution it results which reduces the contrast of the light projected on the retina.  

Photoreceptor spectral sensitivity: This block calculates the total amount of light sensed by each 

type of photoreceptor and the expected fraction of light sensed by each type of photoreceptors. 

Luminance masking: This block represents the non-linear photoreceptor response to light. The 

gain control of photoreceptors regulates sensitivity to the intensity of the incoming light and 

provides the ability to see the huge range of physical light. Only photoreceptor response for L-

,M-cones and rods is modeled. The effect of S-cones has been omitted since they have almost no 

effect on the luminance perception (Mantiuk et al., 2010).      

Achromatic response: In this stage, the rod and cone responses are summed up to compute the 

joint cone and rod achromatic response. The achromatic response is then passed through the 

“Multi-scale decomposition” stage which mimics the decomposition happening in the visual 

cortex. In this algorithm, steerable pyramid is used which offers good spatial frequency and 

orientation separation (Wang et al., 2004). 

After necessary information are acquired from test and reference images through optical 

and retinal pathway, the information is passed through a noise modeling stage. Due to the 

appropriate assumption that the differences in contrast detection comes from the several sources 

of noise, the sum of signal independent noise (neural CSF) and signal dependent noise (visual 

masking) needs to also be modeled.  

 As discussed earlier, this metric provides a visualization map to enable a local difference 

detection evaluation on the test image. Along with this, just like state-of-the-art quantitative 

metrics, it introduces a numeric value indicating the overall quality of the image decided based 

on the HVS perception.   
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2.6.2.2 Visibility metric 

The aim of this section is to introduce a spatially varying map with each pixel representing the 

probability of detecting a difference. First the values are transferred from contrast units to 

probability values using psychometric functions (Mantiuk et al., 2011). The maximum of the 

local probability map, can also be used as a single value representing the probability of 

difference detection for the entire image. 

 

2.6.2.3 Image quality prediction 

In order to get a quick sense of an algorithm’s performance, a single numerical value is 

preferable. Besides, the overall image quality rather than difference visibility might sometimes 

be the main target of image comparison. For this purpose, mosQ is introduced by which Q  is the 

output of a pooling function which pools the information from all pixels and all bands to arrive at 

a single value. 

 

2.7 Summary of the Chapter 

In this chapter, the background behind MR imaging applications, e.g.  fMRI is discussed 

including the physics behind MRI techniques, data gathering in k-space form and the necessity of 

data reconstruction using DFT-based algorithms to move data into image space. The necessity of 

constrained data gathering and inevitable DFT-imposed artifacts are also discussed in this 

chapter. The theoretical background of DFT reconstruction properties is outlined which points 

out when DFT-imposed artifacts are destructive and how Fourier manipulation helps to eliminate 

those distortions without resolution loss. A brief review on common evaluation metrics in 
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biomedical applications specifically MRI is outlined in the final section and a brief introduction 

on two imaging metrics used to validate algorithms proposed in this thesis are also introduced.  
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Chapter Three: Proposed Methods in Compressed Sensing Algorithms (I) 

3.1 Introduction1 

Compressed sensing (CS) algorithms attempt to exploit the sparseness of magnetic resonance 

(MR) data when addressing one of the critical challenges of MR imaging, maintaining both 

temporal and spatial resolution.  The nature of CS data manipulation first requires acquiring 

limited k-space information followed by post-processing stages to remove noise and under-

sampling artifacts. CS reconstruction involves iteratively moving between spatial and frequency 

(k-space) domains to achieve a data regularization that generates an image approximating an 

IDFT reconstruction on a full data set.   

The current CS literature has introduced several regularization and sparse techniques to 

improve CS results. However, these have not taken into account a key feature of CS methods:  

that there is the continual iteration of DFT-based techniques to move between Fourier domains. 

Each iteration reintroduces the common problems associated with DFT-based algorithms (as 

discussed in Chapter 2) onto a solution involved with noise and under-sampling artifact 

reduction. In particular, Gibbs’ distortions are inherently re-introduced at each iteration, which 

can be expected to have a considerable impact on the final resolution of image regions of 

interest, ROIs.  The impact of Gibbs’ distortions during CS reconstruction is not well explored in 

the literature. It has been shown that there is an inherent filtering feature present in the 

regularization functions used to reduce noise-like under sampling artifacts which removes the 

ringing Gibbs’ artifacts around a high-resolution detail (Ravishankar et al., 2011; Smith et al., 

                                                 

1This chapter is based on the paper “Improved Compressive Sensing Resolution through Optimization of Basis 
Function Sparse Representation” by Paniz Adibpour, Elise Fear and Michael Smith under revision for submission to 
IEEE Transactions on Computational Imaging, January 2018.   
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2013). However, the CS weighting factors in existing objective functions make no attempt to 

directly correct the other Gibbs’ distortions: associated loss of fine detail resolution and lower 

intensity.  

The focus of this and the next Chapter is to address the DFT imposed artifacts present in 

common CS methods. Each chapter consists of a recently submitted manuscript which focuses on 

one of the common CS software packages. We propose complementary objective functions with 

the purpose of differentiating between under-sampling noise and Gibbs’ distortions by proposing 

regularization solutions by which these artifacts will be separately addressed and eliminated. The 

intention is to make the proposed methods general enough to improve the reconstruction 

characteristics of CS techniques that use either adaptive or non-adaptive sparse basis concepts.  

 

3.2 Overview of the concept of Improved Compressed Sensing Resolution through 
Optimization of Basis Function Sparse Representation 2 

Compressed sensing (CS) reconstruction techniques attempt to utilize the sparsity of magnetic 

resonance images for accurate reconstruction of highly under-sampled k-space data. These CS 

nonlinear optimization algorithms iteratively move between image and k-space Fourier domains.  

Custom sparse transforms and optimization techniques have become the main CS focus to more 

accurately eliminate noise and under-sampling artifacts. However, the literature does not 

specifically explore a key feature of CS methods: the impact of reintroducing Gibbs’ distortions 

when repeatedly using discrete Fourier transform (DFT) based techniques to move between 

Fourier domains.  CS regularization will achieve suppression of the ringing components of 

Gibbs’ artifacts around a high-resolution detail through an inherent low pass filtering operation.  

                                                 

2 This is the abstract of the submitted paper and repeats material discussed in earlier chapters 
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However, the CS weighting factors in existing objective functions make no attempt to directly 

correct other Gibbs’ distortions:  the loss of fine detail resolution through lower peak intensity 

and increased detail width following this low-pass filtering operation. In this chapter, we propose 

changes to the objective function of the non-linear optimization procedure, and indicate 

corresponding changes to CS algorithm pipelines to improve the effective resolution of CS 

results in low resolution MR applications to recover the information lost due to Gibbs’ effects. 

Experiments are conducted on a GE phantom and MR clinical data of several anatomies by 

applying the proposed changes as an addition to a common CS software package. The results 

confirm improvements in effective resolution of final images following independent Gibbs’ 

correction within CS procedures.  

 

3.3 Detailed background to 3MRI DFT and sparse reconstructions 

Magnetic resonance imaging (MRI) is a non-invasive imaging modality which provides high-

quality visualization of anatomical structure and physiological function. A key limitation of MRI 

is meeting the conflicting needs of high spatial and high temporal resolution (Hollingworth, 

2015; kim et al., 1997; Lustig et al., 2008; Uecker et al., 2010) This limitation arises from 

experimental and physiological constraints in sequentially acquiring the samples of the object’s 

k-space. The emergence of compressed sensing (CS) techniques in an MR context revolutionized 

the data acquisition capability of MR scanners. Faster scanning times are achieved by gathering 

less k-space data (Hollingworth, 2015; Lustig et al., 2008), while using non-linear techniques in 

                                                 

3 This is the introduction of the submitted paper and repeats material mentioned in earlier chapters 
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an attempt to achieve reconstruction of images with final resolution equivalent to full k-space 

reconstruction.  

Resolution and intensity loss through the introduction of Gibbs’ distortions around fine detail 

is an issue for analysis in any field where DFT-based algorithms are applied on finite length data 

(Harris, 1978).  These distortions mean, for example, that a sharp peak in a high resolution IDFT 

reconstruction becomes a wider, smaller intensity peak surrounded by ringing artifacts in a lower 

resolution, truncated DFT reconstruction.  CS is an algorithm that iteratively moves between 

image and k-space by repeated application of DFT-based stages. The CS regularization is 

designed to remove the noise-like artifacts that derive from reconstruction of under-sampled data 

sets (Lustig et al., 2007).  This non-linear operation acts as a low pass filter operation to remove 

the under-sampling noise which, as a by-product, also removes the Gibbs’ ringing artifact around 

any distorted high-resolution peak (Candes and Wakin, 2008; Smith et al., 2013).   However, CS 

studies overlook the fact that the three Gibbs’ distortions of ringing, intensity loss and widened 

detail width arise from a different mechanism than the noise and under-sampling artifacts. These 

studies frequently focus on improvement of one CS technique over another with test cases that 

are under-sampled versions of large high-resolution data sets where the impact of Gibbs’ effects 

is not immediately obvious in the experimental results (Qu et al., 2010; Ravishankar et al., 2011). 

This means that any proposed CS improvements developed using these case studies will be less 

realizable in low resolution applications, e.g. functional MRI (fMRI) studies, with different 

temporal resolution constraints. 

 In this chapter, we examine a common CS reconstruction algorithm (SPARSE-MRI, (Lustig, 

2006)) whose theory and pipeline can be considered the basis of other recently developed CS-

MRI techniques. We propose changes that we believe are generalizable to many advanced CS 
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techniques regardless of the choice of sparse domain, regularization technique or k-space 

trajectory used. A Fourier manipulation of CS k-space is investigated where the three Gibbs’ 

distortions are correctable in either a local or global sense independently of the suppression of 

under-sampling noise artifacts.  

This chapter is organized as follows. In section 3.4, we provide the theory of when DFT basis 

functions will remain sparse (i.e. Gibbs’ artifact free) after k-space truncation (low resolution 

representation). The theory behind the investigated CS technique is also introduced in this 

section. In section 3.5, we will propose how to re-sparsify basis functions of frequency 

components by a Fourier shift manipulation (FSM) method. Theoretical changes will be then 

introduced to the SPARSE- MRI CS algorithm taking advantage of an adaptive FSM approach 

using a total variation regularization technique. In section 3.6, the necessary changes to the CS 

algorithm pipeline to accommodate the proposed re-sparsification are introduced. The scan 

information of datasets and specific software settings used in this work are specified in section 

3.7. In section 3.8 the results are presented for experiments conducted using the SPARSE-MRI 

package applied on GE phantom and clinical MR data before providing a conclusion and 

discussing future perspectives.  

 

3.4 Theory 

The concepts and optimization procedures surrounding compressed sensing MRI (CS-MRI) are 

introduced in this session.  We propose that Gibbs’ ringing be re-interpreted as arising from a 

data truncation-induced de-sparsification of the MR data.  We provide a plausibility argument to 

indicate why our proposed Fourier shift manipulation filter can introduce re-sparsification of the 

truncated data sets.  
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3.4.1 CS-MRI with analytical sparse representation 

Based on the most dominant features of the image, various analytical sparse transforms have 

been introduced in the literature ranging from wavelets appropriate for point-like features (Kim 

et al., 2009) to over-complete contour-lets to recover curve-like features (Qu et al., 2010). 

Regardless of the type of analytical sparse transform, CS is generally formulated as  

 

0min || ||  s.t. u
I

I F I y                                                           (3.1) 

 

In the above formulation, the vector representations of the 2D p-pixel complex image, I , 

and the under-sampled  k-space samples measured during acquisition, y ,  in the complex 

domain, C , are respectively given by pI C and ( )qy C q p  .   is the global analytical 

sparse transform of the image. In absence of noise, I and y are related via uy F I for which 

pq
uF C  is the under sampled Fourier encoding matrix (Lustig et al., 2007).  

In the presence of noise, the CS problem is formulated as a constrained optimization 

problem which minimizes the ol quasi norm of the sparsified image, I . In practice, the ol quasi 

norm is replaced with the 1l norm which promotes sparsity (Chen et al., 1999; Donoho, 2004), 

and the data consistency modified to include a noise term, mC  , scaled to the expected noise 

level (Lustig et al., 2007) producing 

 

  2
1 2min || ||  s.t. || ||u

I
I F I y                                                            (3.2) 
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A total variation (TV) regularization is added to the objective function to increase spatial 

homogeneity and improve noise reduction (Lustig et al., 2007; Tsaig and Donoho, 2006) as 

 

2
1 2min || || + ( ) s.t. || || ,  for 0u

I
I TV I F I y                                                                  (3.3) 

 

Adding this TV penalty, which is a measure of the sum of absolute variations in the image and 

minimizes the finite differences, is intended to “enforce spatial homogeneity” and improve peak-

signal-to-noise ratio (PSNR) (Lustig et al., 2007; Qu et al., 2010). A number of authors have, 

however, indicated that applying a TV penalty comes at the cost of resolution loss. (Ravishankar 

et al., 2011) indicates that the “choice of TV weight after empirical studies on angiographic 

and brain images, not only removes excess noise but also eliminates Gibbs’ artifacts through 

an inherent filtering effect of data optimization to provide data consistency”. This implies that 

adding a TV penalty to the CS objective function introduces an additional trade-off between data 

consistency and resolution loss in final CS images. In the context of this research, we suggest 

deliberately taking into account the differentiation between noise-like under sampling artifacts 

and Gibbs’ distortion ringing artifacts to improve resolution, and lower intensity degradation and 

blurriness to the high-resolution image detail.  Our proposed approach avoids unnecessarily 

removing high frequency components responsible for resolution detail compared to application 

of piece-wise constant features formulated with a low frequency representation less subject to 

Gibbs’ distortions (e.g. Qu et al., 2010).  
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3.4.2 Basis and non-Basis function characteristics of truncated frequency components 

Smith et al. (Smith et al., 2013) demonstrated that not all high-resolution image components 

would be subject to Gibbs’ distortions following data truncation for algorithms such as direct 

DFT or DFT-based CS reconstructions. In this section, we extend the discussions in (Smith et al., 

2013) and (Smith et al., 2015) and explore the relationship between the discrete signal 

representations of high and low-resolution data which is used to identify these components.  

Consider a high-resolution M x M k-space set, [ , ]x yFS k k , where M x M is large enough 

that the complex-valued image, [ , ]MxMI x y  shows no Gibbs distortions. The discrete form of the 

sampled IDFT reconstruction of  can be expressed as  

 

/2 1 /2 1

/2 /2

[ , ] { [ , ]exp(2 exp(2[ , ]} / ) / );
x y

M M

x y x y
k M k M

MxM MxM x yI x y IDFT FS FS k k jk jkk k x M y M 
 

 

          (3.4) 

 

where exp(2 / )xjk x M  and  exp(2 y/ )yjk M  are the orthonormal IDFT basis functions. 

Following an M-point IDFT along the y-direction of [ , ]x yFS k k  to obtain FSR
MxM

[k
x
,y], for the 

yth image row we have: 
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           (3.5) 
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Similarly, the yth row of the complex image, [ , ]NxNI x y , generated from the same k-space 

data truncated to a length N can be expanded in terms of the orthonormal IDFT basis functions 

associated with the new truncated N x N sample space. 

 

N/2 1

/2

[ , ] [ ]exp(2
1

, y / ).
x

x x
k N

NxN MxMI x y FSR k jk x N
N






                (3.6) 

 

A pixel associated with a high-resolution image detail situated at position FDx  is 

represented by a single IDFT basis function in the high-resolution M x M space 

 

[ , y] exp(2 / ); / 2 / 2 1MxM x FD x FD xFSR k FSR jk x M M k M               (3.7) 

 

If the pixel position satisfies ; 0 ,R RFDx dT d T    where /RT M N  is the truncation ratio, 

then this high-resolution pixel is also represented by a single IDFT basis function in the 

truncated, low resolution N x N space 

 

[ , y] exp(2 / ) exp(2 / );MxM x FD x R FD xFSR k FSR jk dT M FSR jk d N                          (3.8) 

 

This implies that this pixel will appear without Gibbs distortions in a truncated reconstruction.  A 

pixel at any other high-resolution image location will require a k-space representation involving 

a sum of multiple N x N basis functions (Harris, 1978), i.e. the detail will become surrounded by 

truncation artifacts and suffer intensity loss and increased peak width.   
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3.5 Proposed Alternative CS-MRI Formulation 

The fact that high resolution pixels not satisfying the position criterion, ; 0R RFDx dT d T    

exhibit Gibbs’ distortions after truncation can be re-interpreted as implying that Gibbs’ 

distortions are the result of a position-dependent de-sparsification of image components imposed 

by the data truncation operation.   In the next sections, we propose the foundation for a 

framework by which these components can be re-sparsified, and show that this concept can be 

expressed as a complementary objective function fitted into CS theory.   

 

3.5.1 Re-sparsification of basis function representation of finite length Frequency 
Components 

Lustig et al. (Lustig et al., 2007) provided a plausibility argument to explain the CS recovery 

scheme.  This recursive thresholding technique starts with detection of the highest peak through 

amplitude thresholding followed by the calculation of interference caused from that peak. Image 

quality is improved by the subtraction of this interference, and the same procedure is recursively 

used to improve the characteristics of the weaker peaks. We follow a similar argument to explain 

how re-sparsification can be used to recover the main peak intensity and remove side lobes 

during data truncation independently of the suppression of under-sampling noise. 

Fig. 3.1 shows various different reconstruction approaches applied to a 512-point high 

resolution 1D signal containing two signal patches. The first patch has fine detail peaks at 

location 131 / 512 and 147 / 512, the second has peaks at 320 / 512 and 354  / 512, described 

using relative field of view (FOV) positions, 0 1.0posn  , within the data set.  Thresholding will 

recover four peaks above the threshold line in the fully sampled high resolution signal, Fig. 3.1A. 

Under-sampling introduces noise-like artifacts, but we can expect to successfully recover the 
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sharp peaks on the under-sampled high-resolution data set by thresholding out this noise, Fig. 

3.1B with a standard sparse algorithm.   

Fig. 3.1C shows the impact of four-fold data truncation on the fully-sampled data patches.  

The actual right signal patch peaks are now located at relative FOV positions 76 / 128 and 78 / 

128 with integer numerator values.  By comparison, the actual left-hand peaks are now located at 

relative FOV positions with non-integer numerators, 30.25 / 128 and 34.25 / 128.   

Peaks with a relative FOV position having integer numerator values, can be represented by a 

single k-space basis function in the new truncated 128 DFT space. Thresholding will recover the 

true intensity of these peaks as they are minimally impacted by Gibbs’ distortions following 

truncation.  However, multiple k-space basis functions in the new truncated 128 DFT space must 

be used to represent peaks whose relative FOV positions are described with non-integer 

numerator values. The need to use multiple basis functions is an alternative expression of the 

introduction of the three Gibbs’ distortions.  

The Gibbs’ distortions (blurriness, increased peak width, and loss of intensity) present in the 

left signal patch will remain following under-sampling, Fig. 3.1D. They will be untouched when 

sparse reconstruction thresholding removes both the under-sampling noise like artifacts and the 

Gibbs’ distortion ringing artifacts.  

We propose to introduce re-sparsification of the Fig. 3.1-C truncated reconstruction by taking 

advantage of a Fourier shift modulation (FSM) property that multiplication by a complex 

exponential, W( / ) exp(2 / )Sh x ShX N jk X N  in the N x N  k-space domain will introduce a 

relative shift, /ShX N , in the position of components in the N x N  image domain [Smith et al., 

2015]. Selecting 1 / 2 1 / 2SX    will cause a frequency up-shift operation sufficient to 
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introduce a position shift in the range 1 / 2 1 / 2X posn X      , where X  is the image 

resolution.  Fig. 3.1E shows the re-sparsification of Fig. 3.1C following a left-patch ROI specific 

k-space multiplication by W( 0.25 / 128) , which causes the left patch peak characteristics to 

become describable by basis functions with no Gibbs’ distortions present. Fig 3.1F demonstrates 

that the FSM re-sparsification is transitive with the under-sampling operation. 

Specifically targeting the characteristics of the Gibbs’ distortions imposes restrictions upon 

how the TV measure is evaluated. Calculating TV from the magnitude image, e.g. 

(| ( 1, ) | | ( , ) |)MAG
IMAGE

TV abs I x y I x y    is inappropriate. This calculation incorrectly 

calculates a lower TV measure for the Gibbs’ distorted left patch (Fig. 3.1C) than for the re-

sparsified, non-Gibbs’ distorted, Fig. 3.1E whenever the fine detail is superimposed upon a 

background intensity smaller than approximately 10% of the peak height. This introduces an 

error similar to that introduced if MRI signal-to-noise ratios are calculated under similar 

circumstances (Henkleman, 1985; McGibney et al., 1993).  An image wide global TV, 

( ( 1, ) ( , ))GLOBAL
TV

TV abs I x y I x y   , calculated from the complex image would also be invalid 

as the re-sparsification operation applied to the left-hand peaks in Fig. 3.1C has de-sparsifed the 

right patch peaks increasing the global TV.   
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Figure 3.1 Sparse signal reconstruction of (A) 512-length high resolution signal, from (B) 
pseudo-random k-space under sampling by thresholding technique. (C) Following k-
space data truncation, Gibbs distortions are introduced into the left patch signal peaks. 
(D) The true intensity and peak width will not be recovered from the under-sampled 
truncated data set using a thresholding technique.  Applying a frequency upshift 
multiplication technique to shift the left patch peak positions by 0.25 of the pixel 
resolution recovers the true left patch peak intensity and width in both (E) the fully 
sampled and (F) under-sampled data sets. 
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We propose a local TV calculated across specific ROIs, 

 ( ( 1, ) ( , ))ROI
ROI

TV abs I x y I x y   .   

This approach differs from that taken of the independent work Kellner et al (Kellner et al., 2016) 

who evaluated point-by-point TV measures to suppress truncation artifacts in the context of 

standard truncated DFT reconstructions rather than sparse reconstructions.  The Kellner approach 

treats every image pixel as if it was impacted by truncation artifacts, resulting in a more intense 

image smoothing, i.e. loss of fine detail across the ROI.  Our proposed regionally-applied TV 

measures are applicable to both DFT and CS reconstructions.   

 

3.5.2 Alternative CS-MRI with Analytical Sparse Representation 

The aim of the following sections is to formulate the CS-MRI problem in a form which improves 

both de-noising and spatial homogeneity properties of CS result while preserving or improving 

the effective resolution, local contrast-to-noise ratio, of CS image through adaptive re-

sparsification of high resolution details.  Eqn. 3.3 is the SPARSE-MRI formulation which 

represents sparsity in both analytical sparse transform and finite differences. A more flexible 

choice of TV weight helps to remove much of the noise while not enforcing spatial homogeneity 

as strong as the SPARSE-MRI protocol. With this approach, the Gibbs’ artifacts originally 

smoothed out through TV regularization will be present and the IDFT basis functions become 

non-sparse. The proposed CS-MRI formulation of Eqn. 3.9 and 3.10 together provide a CS 

reconstruction which balances the conflicting needs of noise reduction and spatial homogeneity. 

Gibbs’ artifacts will be independently eliminated from the CS result by solving a new objective 
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problem (Eqn. 3.10) which enforces a row-based Gibbs’ removal by optimizing the frequency 

upshifting factor which results in minimum TV among the various Fourier shift modulated data.   

2
1 2min || || + ( ) s.t. || || ,  for 0u

x
I TV I F I y          (3.9)

1
1
,...,

min ( (I)) s.t. -1/2 ,..., 1/ 2,  
sh Nish shN

x sh shx x
TV RS x x                                                   (3.10A) 

where  ( ) ( ( ). ( , ))
sh ii

x shRS I IDFT S k W k x                                                                  (3.10B) 

and 

1 1
exp(2 ( / 2) ) ... exp(2 ( / 2 1) )

W(k,x ) ... ... ...

exp(2 ( / 2) ) ... exp(2 ( / 2 1) )
i

N N

sh sh

sh

sh sh

j N x k j N x k

j N x k j N x k

 

 

    
 

  
     

                  (3.10C) 

 

Eqs. 3.10 (A) – (C) form a complementary TV regularization of the re-sparsification matrix         

( (I)
shi

xRS ) of CS image (signal) acquired from the CS optimization formula in Eqn. (3.9). 

( , )
ishW k x  is the frequency shift modulation matrix which applies frequency upshifting through 

the operation ( ). ( , )
ishS k W k x  containing distinguished shift factors (

1
,...,

Nsh shx x ) for each row of 

the image k-space ( ( )S k ) which needs to be optimized within Eqn. 3.10. Using this technique, 

we will minimize the trade-off between data consistency and noise reduction by differentiating 

important types of artifacts and proposing distinct approaches for elimination of each artifact.  

 

3.6 Method  

The current CS algorithm pipeline is shown schematically in Fig. 3.2A.  In this chapter, we 

illustrate the two proposed uses of the Fourier shift manipulation (FSM) approach as an 
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independent optimization algorithm designed to be inserted into the existing CS algorithm 

pipeline, see Figs. 3.2A and 3.2B.   

 

3.6.1 Gibbs’ Correction using FSM Estimation from initial preparatory scans 

In low resolution applications, e.g. fMRI studies, an initial reference scan is acquired to calibrate 

the system and adjust the field of view for further acquisition of time series scans. In addition, 

information from the initial scan can be used as a priori information to support further analysis 

(e.g. Ravishankar et al., 2011).  In Fig. 3.2B we propose a modified CS pipeline where estimates 

for the FSM resolution enhancement are used to correct the zero-filled sparse data before it is 

processed by a sparse algorithm. 

One approach for generating the FSM estimates is to directly determine the high-

resolution relative FOV position of any sharp detail near desired ROI likely to generate the three 

Gibbs distortion. A corrective FSM X can then be proposed if the relative FOV position does 

not satisfy the x-position criterion, ; 0R RFDx dT d T   or the corresponding y-position 

criteria. Alternatively, a truncated reconstruction of the preliminary scan can be generated, and 

TV measures used to identify ROIs impacted by Gibbs artifacts. 

The following steps introduce the order of procedure taken in the first proposed method: 

 Acquire several FSM estimates of the sparse-sampled k-space  
 Apply CS algorithm on each set of FSM processed k-space 
 Determine the optimized FSM estimates using TV measure (this can be done in a row-by-

row, column-by-column or with the focus on a local ROI) 
 Select the CS results of FSM estimate which has been identified as the optimal one when 

investigating the initial scan (this can be one FSM estimate focusing on one region of 
ROI or combination of optimal FSM estimates for rows or columns of dataset) 

 In cases where multiple FSM estimates are acquired, registration of final image is 
required to re-adjust the sampling positions due to phase ramping of dataset in step 1   
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A) Common CS Scheme 

B) Modification 1 

 

C) Modification 2 

 

 

Figure 3.2 A) The existing CS pipeline can be modified to remove Gibbs’ artifacts independently 
of under-sampling noise using FSM estimates derived from B) a preparatory full k-space scan or 
C) estimates derived from a zero-filled under-sampled data set. 
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3.6.2 Gibbs’ correction using FSM estimation from zero-filled under-sampled data 

In order to implement the first proposed pipeline, Fig. 3.2B, an initial reference scan is needed to 

perform reliable FSM estimation. The aim of the second proposed pipeline, Fig. 3.2C is to 

provide a potential framework by which independent Gibbs’ correction is possible. This 

approach may result in lower accuracy compared to the first pipeline and yet higher accuracy 

compared to the original CS pipeline without the necessity of acquiring preliminary information 

from initial reference scan or the use of full, non-sparse, truncated scans. To achieve this, FSM 

estimates should be acquired prior to the first time a DFT-stage is employed to process the sparse 

sampled data.  Later determination is inappropriate as the iterative CS reconstruction have 

already corrupted the TV information needed to identify the necessary FSM correction, and this 

corruption will propagate further through the algorithm.  

Fig. 3.2C shows this CS pipeline modification where FSM estimates are acquired from an 

initial IDFT of the zero-filled (ZF) under-sampled k-space data. Our empirical studies show that 

FSM estimates of acquired sparse sampled data are not as interpretable as FSM estimates 

acquired from fully-sampled k-space data since noise-like under sampling artifacts are also 

changing the intensity of pixels in addition to DFT artifacts, e.g. Gibbs’ distortions. On the other 

hand, FSM estimates of CS reconstructed data are not interpretable since the regularization 

procedure filters data and will have already smoothed out ringing. Therefore, in the second 

modification shown schematically in Fig. 3.2C, we propose to acquire the FSM estimates from 

the initial ZF data before any optional inherent CS low pass filtering removes fundamentally 

useful information for the reliable FSM estimates. But, in order to improve the accuracy of FSM 

estimates, we propose to improve SNR of zero-filled data and fade the effect of noise-like under-

sampling artifacts while keeping the effect of DFT artifacts. We then perform FSM estimation on 
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pre-filtered ZF data. It has been pointed out frequently in several CS studies (Lustig2007, 

Doneva2010) that random under-sampling schemes yield noise-like under-sampling artifacts 

with characteristics similar to Gaussian noise. Therefore, to boost the SNR of ZF data, the 

Wiener filter is used in the model to improve the accuracy of FSM estimates. The filter 

parameters are deliberately adjusted to decrease the background noise while preserving most of 

the destroying effects of Gibbs’ artifacts. Upon acquiring FSM estimates from filtered ZF data, 

the information is used to correct Gibbs’ effects from ZF data. This method will certainly remove 

part of Gibbs’ distortions from ZF data when improving SNR of undersampled data, which will 

also certainly decrease the accuracy of FSM estimates in the next step of the algorithm. 

However, the empirical studies show that the cost of accuracy loss for the algorithm is less than 

the temporal resolution cost of the first CS alternative. This means that most of the corrupted 

features in the ROI after regular CS reconstruction are still recovered which suggests the 

reliability of the proposed algorithm. 

 

3.6.3 Quantitative metrics to compare standard and FSM supported CS reconstructions 

An important factor when comparing clinical results acquired from different algorithms is that 

diagnosis is performed by radiologists or human specialist. While direct comparisons of different 

algorithm results using least square error measures relative to a standard image are useful, we 

propose the use of three metrics which focus on the structural similarity, or lack of it, between 

images as perceived by human vision. The high-frequency error norm (HFEN) quantifies the 

quality of reconstruction of edges and fine features (Ravishankar et al., 2011). The structural 

similarity index map (SSIM) represents a comparison map for luminance, contrast and structure 

with each pixel intensity quantifying the level of similarity between gold standard and the test 
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image (Wang et al., 2004). It also represents a numerical value for each of the aforementioned 

image visual properties4  

 

3.6.4 CS software and dataset materials 

The protocol associated with SPARSE-MRI software [Lustig, 2006] is kept unchanged. The k-

space under-sampling pattern included 10% full sampled central core and variable density 

random sampling pattern of periphery of k-space. SPARSE-MRI wavelet reconstruction approach 

was used in all simulations.  The MRI experimental 512x512 raw k-space data set from a GE 

phantom presented in Fig. 3.3 was provided by Dr. MacDonald, University of Calgary, Canada, 

and was obtained using a fast gradient recalled echo sequence with MFOV of 18 cm x 18 cm. CS 

reconstruction involved 21% of a 108 x 108 truncation of an original high resolution 512 x 512 

sampling. The truncation length was deliberately chosen to enhance potential distortions in the 

GE phantom.  Figure 3.4 is a slice of a 3D multi-slab, magnetic resonance renal angiography 

study from anonymized data provided by Dr. Chen, Rotman Research Institute, Canada and Dr. 

Lebel, GE (Calgary), Canada. CS reconstructions made use of a 33% sparse sampled truncated 

128 x 128 subset from an initial 384 x 384 high resolution data set. 

 

3.7 Results and Discussion 

In this section, we report on how the approaches to adding FSM support affects the quality of 

ROIs in images before comparing the performance of the standard SPARSE-MRI and modified 

CS pipelines using the HFEN, and SSIM which simulate the human perception of image quality.    

                                                 

4 These metrics were described in detail in Chapter 2 
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3.7.1 Experimental Results  

Figs. 3.3 and 3.4 respectively show the results from the current and proposed modifications of 

the SPARSE-MRI pipeline used for GE phantom and clinical reconstructions.  For each Fig., A) 

shows the original image and B) the standard SPARSE-MRI CS reconstruction. Figs. C) and D) 

respectively show FSM supported SPARSE-MRI CS reconstructions supported by estimates from 

the initial scan, pipeline Fig. 3.2B, and from the zero-filled data, pipeline Fig. 3.2C.   

In Fig. 3.3B, the standard SPARSE-MRI CS generates blurred tines (solid arrows) and there is 

evidence of residual artifacts (dotted arrows) around the comb feature. There is full recovery of 

comb feature (Fig 3.3C, solid arrows) and the complete elimination of Gibbs oscillations 

surrounding high frequency components (dotted arrows) for the FSM supported CS 

reconstruction using TV optimization of FSM estimates from the IDFT of the initial scan.  The 

results from FSM supported CS reconstruction using TV optimization of FSM estimates from 

zero-filled data with improved SNR shows complete elimination of the Gibbs ringing (Fig. 3.3D, 

dotted arrows) and a superior recovery of the tines within the comb feature (solid arrows).  

    The zoomed version of Fig. 3.4 provides better insight into structural differences following the 

application of the proposed TV optimization of FSM estimations. The results from both proposed 

pipelines (Fig. 3.3 C and D) provide images which are less blurry and the specific ROIs have 

recovered effective resolution (solid white arrows). Using FSM estimation from a preliminary 

reference scan provides the opportunity to more accurately reconstruct structural details of fine 

objects. Unlike that, the results of pipeline using FSM estimations of SNR-boosted zero-filled 

data demonstrates less accuracy in recovery of structural details.  
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Figure 3.3 A) The high resolution DFT reconstruction from a 512 x 512 GE data  set are 
compared to B) a standard SPARSE-MRI  CS reconstruction, and FSM supported 
reconstructions using  FSM estimates from C) the preliminary scan and  D) low-pass 
filtered zero-filled sparse sampled data. 
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Figure 3.4 Zoomed portion of A) The high resolution DFT reconstruction from a 384 x 
384 renal study GE data  set are compared to B) a standard SPARSE-MRI  CS 
reconstruction, and FSM supported reconstructions using  FSM estimates from C) the 
preliminary scan and  D) low-pass filtered zero-filled sparse sampled data. 

 

3.7.2 Performance measure of the proposed techniques 

To compare performance with common SPARSE-MRI software results, the numerical metrics are 

calculated for results acquired from proposed algorithms and the gold standard, Fig. 3.3A and 

3.4A. Fig. 3.5 provides numerical metrics calculated for simulated GE data demonstrated in Fig. 

3.3 and Fig. 3.6 provides results of similar metrics for the experimental renal data demonstrated 
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in Fig. 3.4. The consistency of results is examined for various sparse sampling rates and each 

graph represents results of the metric versus various sampling rates for three algorithms, original 

SPARSE-MRI with blue line, proposed optimized SPARSE-MRI using FSM estimations of 

preliminary reference scan with yellow line and proposed optimized SPARSE-MRI using FSM 

estimations of SNR-boosted ZF data with red line.  

The HFEN metric versus various sampling rates, Fig. 3.5A, quantifies the quality of 

reconstruction of edges and fine features (Ravishankar et al., 2011). HFEN shows the highest 

performance (smallest error, yellow line) for the proposed pipeline modification where FSM 

estimates are generated from the preliminary full-scan. HFEN metrics are lower when FSM 

estimates are derived from the ZF IDFT reconstruction (red line) but still outperforms the 

standard CS reconstruction. This result is predictable based on discussions we had on image 

results in previous section. The SSIM comparisons of contrast (Fig. 3.5-B), luminance (Fig. 3.5-

C) and structure (Fig. 3.5-D) demonstrate that both modified CS pipelines outperform the 

standard CS pipeline. This means that both pipelines succeeded in recovery of structural and 

contrast information of datasets while there is not much difference between the quality of results 

of proposed pipelines in terms of numerical comparisons.  

Fig. 3.6 provides the HFEN and mean-SSIM metrics for the renal data with Fig. 3.4A 

used as a gold standard.  Mean-SSIM is used for this dataset which provides an estimation of 

image quality perceived considering elements of natural visual system. Again, these metrics 

demonstrate the better performance of alternative CS methods compared with standard CS  
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            HFEN vs. sparse sampling rate                  SSIM (Contrast) vs. sparse sampling rate 

       

    SSIM (Luminance) vs. sparse sampling rate       SSIM (Structure) vs. sparse sampling rate 

Figure 3.5 A) HFEN, B) SSIM-Contrast, C) SSIM-Luminance, D) SSIM-Structure 
measures applied on 108x108 GE k-space CS reconstructed using Sparse MRI (blue 
lines), optimized Sparse MRI with FSM information acquired from zero-filled (ZF) data 
(red lines) and optimized Sparse MRI with FSM informaion acquired from IDFT of 
reference scan (yellow lines).    
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            HFEN vs. sparse sampling rate                  mean-SSIM vs. sparse sampling rate 

Figure 3.6 A) HFEN, B) mean-SSIM measures applied on 128x128 Renal k-space CS 
reconstructed using Sparse MRI (blue lines), optimized Sparse MRI with FSM 
information acquired from zero-filled (ZF) data (red lines) and optimized Sparse MRI 
with FSM informaion acquired from IDFT of reference scan (yellow lines).    

 

reconstruction technique. The mean-SSIM for both alternative CS methods provides very similar 

results which is also predictable from Fig. 3.4 for which C and D differ in specific structural 

accuracy. Similar conclusions can be made from Fig. 3.5 for which luminance, structure and 

contrast show very close numerical results. This indicates that such metrics provide insights 

additional to visual comparison to emphasize where and how different methods differ.   

 

3.8 Conclusion and Future Work5 

In this study, changes to acquired MR k-space data are proposed in CS pipelines to improve the 

resolution achieved during CS reconstruction of under sampled data by correcting Gibbs’ 

artifacts independently of the suppression of under sampling noise. The theory of how adaptive 

                                                 

5 This Conclusion from the submitted paper partially overlaps with the content of Chapter 6. 
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FSM through TV optimization will enable correction of Gibbs’ effects was discussed. Two 

approaches to providing FSM estimates are proposed, to be acquired from IDFT of fully sampled 

k-space initial reference scan, as a pre-processing stage, or from IDFT of initial zero-filled under 

sampled k-space, as a post-processing stage. The former provides more accurate results but is 

less applicable in comparison to the later technique. The algorithms are validated for a common 

CS-MRI protocol (SPARSE-MRI) using a GE phantom and clinical MR data. The performance 

measurement of algorithms using preliminary observer tools shows the potential of proposed 

changes in positively affecting the diagnostic results. Future work is needed to improve the 

accuracy of FSM estimates acquired from initial zero-filled under sampled k-space to possibly 

mimic the reconstruction accuracy of FSM estimates acquired from IDFT reconstruction of 

initial reference scans. 

 

3.9 Summary of the Chapter 

In this chapter, the common DFT-imposed distortions associated with one of DFT-based 

algorithms, CS, is explored. The focus was a common CS package, SPARSE-MRI, for which an 

improved objective function is proposed which considers individual weights for regularization of 

fundamentally different artifacts, Gibbs’s and under-sampling. SPARSE-MRI is chosen in this 

context as representative of compressed sensing based on non-adaptive sparse basis. Although 

the scope of this paper is limited to certain sparse bases, the proposed changes can be fitted into 

any CS software.  This is demonstrated in the next chapter where the proposed changes are 

applied in the context of the new CS approach based on adaptive sparsity, or dictionary learning 

CS-MRI.  
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Chapter Four: Proposed Methods in Compressed Sensing Algorithms (II) 

4.1 Introduction6 

A significant mutation in compressed sensing (CS) techniques occurred with the introduction of 

dictionary learning (DL) theory to MR applications. DL emerged as a method to better represent 

data sets in reduced dimensionality subspaces. Such subspaces were aimed to be adaptive to both 

the characteristics of the signals and the processing method (Olshausen and Field, 1996; Engan 

et al., 1999; Aharon et al., 2006; Yaghoobi et al., 2009).  

As discussed in the previous chapter, CS emerged in MR applications as a compromise 

between temporal and spatial resolution when current DFT reconstruction approaches failed to 

overcome all challenges of limited data acquisition. CS MRI based on dictionary learning (DL-

MRI) has been suggested to solve some of the challenges present in the original CS approaches. 

This technique outperforms the primary CS techniques in reconstruction of high frequency 

components (Qu et al., 2010; Ravishankar et al., 2011; Hao et al., 2013). However, once again, 

we suggest that neglecting to consider suppressing DFT-imposed artifacts independently of other 

factors will cause DL-MRI results to have lower than expected image quality. The inherent 

filtering effect present in CS approaches such as SPARSE-MRI algorithm that partly removed 

DFT artifacts are eliminated in DL-MRI. This effect leaves behind the potential for an increased 

level of ringing artifacts in the neighborhood of image fine detail during each DFT-based 

reconstruction stage. Therefore, we suggest that overlooking these DFT issues will have an even 

more expensive cost than with earlier CS approaches since DL-MRI targets more accurate 

reconstruction of edges and fine details.  

                                                 

6 This chapter is reformatted from the paper “Improved Dictionary learning CS MRI through Patch based TV 
regularization” by Paniz Adibpour, Elise Fear and Michael Smith submitted to IEEE ICASSP 2018, October 2017.  
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4.2 Overview of the concept of Improved Dictionary learning CS MRI through Patch based 
TV regularization7 

Lower data acquisition times that provide accurate magnetic resonance imaging (MRI) 

reconstructions are achieved with compressed sensing (CS) by modeling under-sampled data 

using non-linear algorithms employing analytical sparse bases. Improved reconstruction can be 

achieved using dictionary learning (DL) frameworks to adaptively identify sparsifying 

transforms better matched to local feature characteristics. Both the original and DL-CS 

approaches make use of the discrete Fourier transform (DFT), and are inherently subject to 

Gibbs artifacts. These artifacts are suppressed alongside under-sampling and other artifacts 

during CS and DL-CS reconstruction. We suggest that the DFT-related artifacts will appear 

stronger in DL-CS approaches because of the improved sparsification inherent in the DL-CS 

approach. We propose a patch-based total variation (TV) regularization that independently 

corrects DFT-imposed Gibbs distortions, leading to sparser basis function representation of the 

local patches. The proposed method is validated by comparison with CS and DL-CS algorithms 

using GE phantom data.  

 

4.3 Detailed background to CS MRI techniques and Motivation for the proposed methods 

Compressed sensing (CS) algorithms are non-linear algorithmic approaches to reconstructing 

images from under-sampled data sets in areas such as magnetic resonance imaging (MRI). 

Standard CS approaches (e.g Lustig et al., 2007; Qu et al., 2010; Ma, 2011; Hao et al., 2013) 

make use of analytical sparse bases originating in standard functions, e.g. wavelet, curvelet, 

                                                 

7 This section is the abstract of submitted paper. 
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contourlet or discrete cosine, to generate sparse parameters regardless of the specifics of the 

anatomical structure present in an image. Adaptive sparsity based on dictionary learning (DL) 

has recently been suggested to mitigate limitations introduced by analytical sparsity (e.g. 

Ravishankar et al., 2011). Adaptive approaches attempt to sparsify based on patch-based image 

dictionaries to improve the reconstruction of high frequency components.   

As with the original CS approach, DL-CS makes repeated use of discrete Fourier 

transform (DFT) processing stages. Each stage’s results are inherently subject to the well-known 

associated limitations of three Gibbs related distortions near high resolution features – ringing 

artifacts, peak intensity loss and feature width increase (Harris, 1978). While it is anticipated 

these will be suppressed during reconstruction, the impact of DFT-related artifacts will appear 

stronger in DL-CS than with standard CS reconstructions because of the fine tuning of the basis 

representation.   

The suppression of DFT artifacts independent of CS-related problems hasn’t been 

considered important since DL-CS often focuses on the reconstruction of under-sampled high-

resolution MR data (Aharon et al., 2006; Engan et al., 1999; Olshausen and Field, 1996; 

Yaghoobi et al., 2009). However, it has been demonstrated that applying CS reconstruction to 

unfiltered, truncated MRI data sets led to preferential enhancement of patch resolution depending 

on the patch’s position within the field of view (FOV) (Ravishankar et al., 2011; Smith et al., 

2013; Smith et al., 2015). We propose changes to the pipeline of DL-CS software to take 

advantage of this position dependent resolution enhancement in the absence of k-space filtering.  

The chapter is organized as follows. In Section 4.4, the theory behind DL-CS technique is 

introduced. Section 4.5 outlines the proposed complementary objective function to adaptively re-

sparsify basis functions of local patches through our proposed Fourier shift manipulation (FSM). 
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In Section 4.6, the necessary changes to the DL-CS pipeline to fit the proposed theory are 

introduced. Section 4.7 provides results from a GE phantom study.   

 

4.4 Theory  

In the following sections, first theoretical background of DL-MRI technique is introduced. Then, 

the positional resolution enhancement of such technique is detailed as a basis for the proposed 

alternative DL-MRI theory discussed in this study. 

 

4.4.1 DL-MRI based on adaptive sparse representation 

Since the choice of sparse transform in CS algorithms is very much dependent on image features, 

patch-based adaptive sparsity or CS based on dictionary learning (DL) uses patch-based 

dictionaries to capture local image features. It is shown in (Ravishankar et al., 2011) that such 

property provides higher sparsity and eliminates noise and under-sampling artifacts without 

imposing resolution loss. In an adaptive DL sparse representation in the complex domain, C, 

n
ijI C  is the vector representation of 2D image patch of n pixels of size n x n , with ij  the 

index of location of its top-left corner, ( , )i j , in the 2D image. The image patch, ijI , can be 

formulated as a linear combination of its sparse representation, K
ij C  , through ijD  where 

nxKD C  is the image patch-based dictionary with K atoms (columns) with each atom 

corresponding to an nx n  “elemental patch”.  

In DL-MRI, first the dictionary and patch-based sparse representations are identified from 

an initial scan I  by solving the following cost function 
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i j
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                          (4.1) 

In Eqn. (4.1), 
nxp

ijR C is the patch extracting operator from image I  through ij ijR I I ,  is the 

sparse representation set { }ij ij of all training patches of image and 0T is the sparse threshold. As 

Fig. 4.2 (DL-MRI scheme) also demonstrates, in (Ravishankar et al., 2011) the K-SVD algorithm 

is used to adaptively generate the dictionary sets from reference MR scans and ij is determined 

by performing sparse coding on all patches (Aharon et al., 2006). Based on Fig. 4.2-A, I can 

then be determined using learned sparse dictionaries and from under sampled k-space through 

the following least squares problem  

2 2
2 2min || || || ||ij ij uI

ij

R I D v F I y                          (4.2) 

once sparse representations and the dictionary are determined and fixed.  

With the above CS formulation, sparsity is generated based on learning local image 

features. This approach avoids the natural noise buried in acquired k-space samples and the 

aliasing caused by under sampling of k-space (Ravishankar et al., 2011). Unlike CS-MRI based 

on an analytical sparse basis, this method has the potential to lead to a more accurate 

reconstruction of high frequency components.  

 

4.4.2 8Positional resolution enhancement in DL-CS 

The left side of each image in Fig. 4.1 shows reconstructions of two patches containing the comb 

features from a GE MRI phantom superimposed on a smooth broad feature. The x-position of the 

                                                 

8 This section is a re-worked section of the paper adapted to the chapter format due to conceptual similarity to 
section 3.4.2.  
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lower patch is shifted by 2 high resolution pixels relative to the upper, a positional shift of only 

0.4% FOV.  The right side of each image shows two cross-sections of each patch.   

   Fig. 4.1A is the 108x108 DFT reconstruction of truncated data with no k-space filtering. The 

shifted patch demonstrates a higher level of Gibbs artifacts distortion than noted in the upper 

patch. In Fig. 4.1B, the CS reconstruction using 33% of the truncated data shows an upper patch 

with most of the artifacts removed. The lower patch, shifted by 0.4% FOV, shows minimal 

reduction in the Gibbs artifacts and no intensity gain despite removal of the under-sampled noise. 

This positional resolution enhancement occurs because, after truncation, the upper patch signal 

components for both DFT-based algorithms are exactly represented by the basis (sparse) 

functions of the truncated data space, but those of the lower patch are not. 

 

 

Figure 4.1 A) DFT reconstruction of a truncated data set is compared to B) CS 
reconstruction using 33% of the data. 

 

    We suggest the use of a fundamental Fourier property to gain deliberate advantage of 

this positional dependent patch enhancement. The DFTs of impulses placed at positions x and 

x x  in an N point data sequence are respectively exp( 2 / )j kx N and

exp( 2 ( ) / )j k x x N   .  We propose applying a Fourier shift manipulation, FSM, of the k-
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space data, specifically multiplication by exp( 2 / )j k x N  .  This introduces a x virtual 

position shift in the FOV.  We propose a complementary optimization which aims to re-sparsify 

basis function characteristics of image patches. This is achieved through a TV regularization 

procedure by which image patches are automatically and selectively resampled through FSM 

phase ramping. Since DL-CS adapts the dictionary and sparse frame work using a fixed reference 

scan, the approach will re-sparsify basis function characteristics of the reference scan and use 

this information for further phase correction of under sampled k-space. 

 

4.5 Proposed Alternative DL-MRI Formulation  

We propose a complementary optimization which aims to re-sparsify basis function 

characteristics of image patches. To achieve this, a TV regularization procedure is introduced by 

which image patches are automatically and selectively resampled through phase ramping. Since 

DL-MRI adapts the dictionary and sparse frame work using a fixed reference scan, we propose to 

re-sparsify basis function characteristics of the reference scan and use that information for 

further phase correction of under sampled k-space.   

The following optimization provides the mathematical representation of the proposed 

changes to DL-MRI procedure 

 

2
2 ,, , ,

min || || ( (I )) ,
sh shij ijsh shij ij

ij ij x y ijD x y
ij

I D TV RS


                                            (4.3-A)   

1 0 0, , -1/2 , 1/ 2; -1/2 ,..., 1/ 2  . . || || , ,
ij ij Nsh sh sh sh iji j x y y y s t T i j                                                  

where , ( ) ( ( ). ( , , ))
sh sh ij ijij ij

x y ij ij sh shRS I IDFT S k W k x y  and ij ijI R I                                           (4.3-B)                                                                         
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     (4.3-C)            

 

Eqns. 4.3 (A) – (C) form a complementary dictionary learning objective function which 

enables definition of set of dictionaries using patch-based analysis. A TV regularization objective 

function is also added as part of this learning method which clarifies patch-based features to 

avoid common artifacts, e.g. Gibbs’ distortions, that decrease the accuracy of dictionary sets. 

, (I )
sh shij ij

x y ijRS is the Fourier manipulated patch of reference image acquired through multiplication 

of  ( , , )
ij ijsh shW k x y , the frequency shift modulation matrix which applies frequency upshifting 

through ( ). ( , , )
ij ijij sh shS k W k x y  contains shift factors ,ij ijx y  for specific patch of the image k-space 

( ( )ijS k ), and specific image patch.   

After learning dictionaries by patch-based analysis of initial reference image, the 

reconstruction procedure can be applied on sparse sampled data set using the following 

equations:  

' '

2 2
2 2 0 0

, ,
min || || || || . . || || , ,

                           

sh shij ij

ij ij u ij
I x y ij

R I D v F I y s t T i j     
                   (4.4) 

' '
' 1 1

'

,,
min ( (I)) s.t. -1/2 ,..., 1/ 2;-1/2 ,..., 1/ 2 

N Nsh shij ijshij shij
sh sh sh shx yx y

TV RS x x y y               (4.5-

A) 
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                                ...
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Based on above formulation, the appropriate dictionary, sparse representations and 

frequency shift manipulation estimates are first determined (Eqn. 4.4) and then optimized I will 

be calculated solving objective function of Eqn. 4.4 using 4.5. The interpretation of Eqn. 4.5 is 

that sparse framework is adaptively determined through the l2-norm optimization and the data 

fidelity is controlled through the second objective function. The FSM factors are optimized for 

2D DFT in both x and y directions using Eqn. 4.5. From now on, we will refer to this procedure 

as patch-based TV optimization technique. 

 

4.6 Materials and Methods 

In the following sections, first proposed changes in DL-MRI pipeline are introduced to match the 

proposed theory. Then appropriate quantitative metrics are suggested to be used for validation of 

proposed algorithm. Imaging details of the datasets used in this study are also discussed in the 

last section. 
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4.6.1 Proposed Design Pattern in DL-MRI Pipeline  

Fig. 4.2B represents the practical implementation of the proposed DL-CS algorithm to change 

both the dictionary set definition stage and the reconstruction procedure using pre-defined 

adapted dictionary sets. As in the original algorithm (Ravishankar et al., 2011), we propose to 

first define patch-based sparse bases through a dictionary learning method using an initial scan  

A) DL MRI Scheme 

 

B) Proposed DL MRI Scheme 
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Figure 4.2 A) The existing DL-MRI pipeline can be modified to remove Gibbs’ artifacts 
independently of under-sampling noise using FSM estimates derived from B) a preparatory full 
k-space scan. 

 

which possess undistorted features. This may impose longer post-processing time to define all 

sets of dictionaries.  

In the next step, the regularization procedure is applied on under-sampled datasets. 

Although DL-CS is shown (Ravishankar et al., 2011) to have better fine detail reconstruction 

compared to SPARSE-MRI (Lutig et al., 2008), the constant validation of these algorithms with 

high resolution experimental datasets, leaves the practical usage of such algorithms under 

question. Through the proposed pipeline we offer to use smaller under-sampled datasets and 

instead correct DFT-imposed distortions using similar patch-based TV optimization applied to 

the first step. This method improves temporal resolution by decreasing acquisition time while 

preserving the effective resolution. 

 

4.6.2 9Quantitative metrics to compare DL-CS and patch-based TV Regularization 
reconstructions 

In order to validate proposed algorithm, we suggest the use of three metrics which focus on the 

structural similarity, or lack of it, between images as perceived by human vision.  The high-

frequency error norm (HFEN) quantifies the quality of reconstruction of edges and fine features 

(Ravishankar et al., 2011). The structural similarity index map (SSIM) represents a comparison 

map for luminance, contrast and structure with each pixel intensity quantifying the level of 

similarity between gold standard and the test image (Wang et al., 2004), and provides a 

                                                 

9 This section has contents in common with section 3.6.2, both describing necessary numerical metrics used for 
validation of algorithms presented in two individual papers. 
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numerical value for each of the properties. The high dynamic range visual difference predictor 

(HDR-VDP-2.0) provides a visual comparison map with pixel intensities identifying the 

probability of difference detection by the human visual system.  This metric examines the quality 

of the reconstructed image and a gold standard, numerically predicting the percentage of 

similarity between gold standard and the test image (Mantiuk et al., 2011).  

 

4.6.3 Imaging Details 

The MRI experimental 512x512 raw k-space data set from a GE phantom presented in Fig. 4.1 

was provided by Dr. MacDonald, University of Calgary, Canada. The data was obtained using a 

fast gradient recalled echo sequence with MFOV of 18 cm x 18 cm.  

DL-MRI software (Ravishankar et al., 2011) is studied in this work. The software 

protocol is kept unchanged. K-space sampling pattern with 33% sampled including 10% full 

sampled central core and variable density random sampling pattern of periphery of k-space is 

applied on the input data. SPARSE-MRI software (Lustig, 2006) is also used in this study to 

examine performance of algorithms, with that software’s protocol kept unchanged. A similar k-

space sampling pattern to that used for DL-MRI study is applied -- 33% sampled including 10% 

full sampled central core and variable density random sampling pattern in the periphery of k-

space.  
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Figure 4.3 A) The high resolution DFT reconstruction from a 512 x 512 GE data  set are 
compared to B) a standard SPARSE-MRI  CS reconstruction, C) a standard DL-MRI CS 
reconstruction and D) patch-based TV regularized DL-MRI reconstructed with FSM 
estimates from IDFT of initial scan. 

 

4.7 Results and Discussion 

 

4.7.1 Experimental results 

Fig. 4.3-B, C and D represent results of the CS algorithms applied on the GE data in 

comparison with the high-resolution GE phantom shown in Fig. 4.3-A. For illustration purposes, 

CS algorithms are applied on 108x108 k-space truncated data that is sparse reconstructed using 

SPARSE-MRI software. In Fig. 4.3-B, some patches have lost information due to Gibbs’ artifacts 

(solid white arrow) and the residual Gibbs’ effects have also affected neighborhood areas 



78 

 

(dashed white arrows). The result of DL-CS software, Fig. 4.3-C, demonstrates that this 

algorithm fails in differentiation of artifacts (solid and dashed arrows of DFT-imposed Gibbs’ 

artifacts).  Also, the residual artifacts appear even stronger (dashed arrows) since the 

regularization procedure hasn’t smoothed out residual Gibbs’ effects leading to enhanced 

distortions on the neighboring pixels.  

Fig. 4.3-D, the result from patch-based TV optimized DL-CS, demonstrates the 

effectiveness of adaptive Fourier manipulation of an ROI as a technique for mitigation of DFT-

imposed artifacts. The area enclosed by the white rectangle is the specific patch (ROI) size used 

for the complementary optimization algorithm. The specific ROI enclosed with this rectangle has 

an effective resolution comparable to the gold standard, Fig. 4.3-A. The comb tines are fully 

recovered, and the residual Gibbs’ effects, which strongly appeared in neighborhood of comb 

feature, are completely removed (white dashed arrows).  This indicates the advantage of 

separately tackling the two independent noise sources – Gibbs artifacts and under-sampling 

noise. 

4.7.2 Performance Measure of Proposed method 

Application of a numerical quality measure can be indicative of stability of the proposed 

techniques. Fig. 4.4 provides a comparison of the HFEN, HDR-VDP (percentage) and SSIM 

metrics for 108x108 GE data reconstructed using DL-CS, proposed optimized DL-CS algorithms 

and SPARSE-MRI software results.  
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A) HFEN versus sampling rate      B) HDR-VDP (%) versus sampling rate 

 

C) SSIM (Luminance) versus sampling rate      D) SSIM (Contrast) versus sampling rate 

 

E) SSIM (Structure) versus sampling rate 
Figure 4.4 A) HFEN, B) HDR-VDP (%), C) SSIM-Luminance, D) SSIM-Contrast, E) 
SSIM-Structure measures applied on 108x108 GE k-space CS reconstructed using DL-MRI, 
optimized DL-MRI with FSM informaion acquired from IDFT of reference scan.    
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The high frequency error is the lowest for patch-based TV optimized DL-CS. Although DL-

CS also demonstrates less high frequency error, this metric indicates little difference between 

DL-CS and SPARSE-MRI;this numerical result reflects the qualitative appearance seen in Fig. 

4.3. DL-CS attempts to mimic characteristics of reconstructed high frequency components, tines 

and edges. However, as with SPARSE-MRI, it fails to clarify Gibb’s distortions as shown by the 

low success in the HFEN results. The SSIM-Luminance results do not provide much insight into 

the relative effectiveness of the algorithms. However, the SSIM-Contrast and SSIM-Structure 

results support the claim of the superiority of TV optimized DL-CS in improving the effective 

resolution (contrast). This better structural detail reconstruction of proposed algorithm is also 

evident from HDR-VDP results.   

 

4.8 Conclusion and Future Work 

In this study, a complementary optimization algorithm is proposed for a new generation 

of CS techniques (DL-CS). We suggest that there are advantages to separately modeling the 

artifacts associated from under-sampling that are suppressed in CS and DL-CS reconstruction and 

the inherent artifacts generated by employing DFT-based reconstruction stages. While ringing 

may be suppressed during CS and DL-CS, the other Gibbs’s artifacts, loss of intensity and 

increased width of sharp detail, remain. The proposed objective function aims to reconstruct 

images from pre-learned dictionaries while independently optimizing the basis DFT functional 

characteristics on a patch-based level. The proposed algorithm is theoretically outlined, and a 

new DL-CS pipeline proposed.  A qualitative improvement is shown in images when the new 

approach is empirically employed on GE phantom data.  The advantage of separating the 
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elimination of Gibbs and other CS-related artifacts is supported by the quantitative results using 

SSIM, HFEN and HDR-VDP2.0 metrics. 

 

4.9 Summary of the Chapter 

In this chapter, the DFT imposed artifacts are explored in a new generation of CS techniques 

based on dictionary learning. It is shown that the effect of Gibbs’ artifacts appears stronger near 

edges and sharp features, which make it a challengeable phenomenon in recent developed CS 

techniques. New changes have been proposed using patch-based TV regularization to eliminate 

Gibbs’ effects appearing after regularization process. The proposed method is tied into DL MRI 

software theoretically and empirically. The results indicate that the proposed changes to the 

objective function and CS pipeline will introduce a two-level optimization to the CS technique 

which generates effective resolution more comparable with IDFT of full k-space data. 

In order to show the applicability and generality of the optimized method in various 

algorithms based on DFT during data processing, I am going to explore an additional algorithm 

in context of my thesis. In the following chapter, the DFT-imposed problems will be explored in 

a microwave imaging technique known as tissue sensing adaptive radar (TSAR). It is shown that 

the optimization method based on Fourier manipulation of data can be a potential method in 

suppressing clutter and DFT-imposed artifacts in this microwave imaging application.  
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Chapter Five: Alternative preprocessing for radar-based microwave imaging 

5.1 Introduction 

Early diagnosis is critical for detection of many diseases to accelerate the treatment procedure. In 

some imaging applications, e.g. breast tumor detection, low resolution imaging techniques may 

also play an important role in applications such as treatment monitoring. Improvements to such 

techniques aim to increase accuracy of processing algorithms for reliability of detecting changes 

in tissues. The accuracy in processing has a direct relation with spatial resolution of the final 2D 

or 3D images. Therefore, studying factors that affect the final spatial resolution can assist in 

accuracy improvement of such algorithms.  

 In this chapter, one of the microwave imaging methods used for imaging is studied. 

Tissue sensing adaptive radar (TSAR) uses back-scattered microwave signals from breast 

anatomy to estimate the position of the tumor. One of the factors affecting spatial resolution, and 

possibly the accuracy of tumor detection, is the limitation in data gathering procedures.  The 

necessary limited length of data acquisition imposes artifacts on the back-scattered signals. As 

discussed in previous chapters, this issue can be identified via fundamentals of discrete Fourier 

transform. In this chapter, the scope of studied algorithms is extended to microwave imaging 

techniques and the application of alternative methods in such imaging technique is studied. 

In order to acquire a focused response for image formation, several pre-processing steps 

are required to reduce early and late time clutter, including removing the dominant response 

from the skin (Bond et al., 2003; Maklad et al., 2012) and additional necessary or optional data 

manipulation steps. While raw data acquisition and most of the preprocessing data manipulations 

are applied in frequency space, time transformation of data is required for specific steps of TSAR 
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system. The necessity of limited-length data acquisition (Curtis, 2015) and the use of discrete 

Fourier transform (DFT) to move data between Fourier domains introduce additional oscillations 

during these preprocessing steps. While low pass filters (LPF) can be considered as a straight-

forward option to reduce additional signal distortions, their usage always causes a trade-off 

between simplicity and loss of contrast-to-noise ratio. In fact, LPF impact an important feature of 

reconstruction maps, contrast ratio, which plays an important role in further tumor detection 

accuracy. 

 In this work, we explore extensions suggested in (Smith, 1993) to take advantage of 

digital signal processing (DSP) signal characteristics to reduce artifacts by making minor 

adjustments to frequency characteristics of pre-processed data. We will introduce the Fourier 

shift manipulation (FSM) approach to tune the frequency data such that ringing effects are 

reduced without the need to compromise between resolution loss and Gibbs’ removal imposed 

by the global application of LPF. We will take advantage of the total variation (TV) metric to 

adapt the Gibbs’ artifact suppression when using the FSM approach.    

In section 5.2, the detailed background on microwave imaging techniques are reviewed 

with a focus on tissue sensing adaptive radar (TSAR). Then we provide an overview of the 

necessary TSAR preprocessing steps and demonstrate how each step might affect the time signals 

in section 5.3.  

 

5.2 Detailed background to microwave imaging and tissue sensing adaptive radar method 

Breast cancer is the most common cancer among women and the top threat to women’s health 

for which various imaging modalities are used at several stages including screening, diagnosis, 

biopsy, and treatment monitoring (American Cancer Society, 2005). Among various imaging 
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modalities for screening and early detection of breast tumors, x-ray mammography has broad 

clinical use (Morgan and Bair, 2013). While providing high spatial resolution, mammographic 

techniques have limitations in terms of repeated scanning for treatment monitoring.  

Ultrasonography is a safe and inexpensive imaging approach, however has not been 

demonstrated to track changes during treatment. Magnetic resonance imaging (MRI) is 

applicable in different stages of screening, diagnosis and monitoring. However, as an expensive 

modality, it is suited for repeated imaging.   Microwave imaging techniques are based on the 

significant contrast in dielectric properties of malignant and normal breast tissues at microwave 

frequencies.  As these methods are very low power, non-ionizing, non-invasive and cost 

effective, they have been proposed as alternative imaging techniques for breast health 

monitoring. Contrary to X-ray techniques with potential high spatial resolution, microwave 

technology offers contrast corresponding to physiological factors of clinical interest (Fear et al., 

2002). It also enables the 3D volumetric map representation of tissue properties which eliminates 

the need for breast compression (Fear et al., 2002). 

The two classes of microwave imaging techniques include tomography and backscatter. 

Tomography requires solving an ill-conditioned nonlinear inverse scattering problem, which 

involves computationally intensive techniques (Fear et al., 2002). Backscatter methods aim at 

detecting the location of microwave scatterers in the breast. These methods were first introduced 

by Hagness et al. (Hagness et al., 1998) as confocal microwave imaging (CMI). CMI illuminates 

the breast with microwave signals from antennas located at different positions and measures the 

energy distribution from backscattered signals. The backscattered signals are used to calculate 

the round-trip time delay from each reconstruction point to each antenna position using an 

average propagation speed. Combining the distance estimates from each antenna position, a 3D 
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map of scattering objects can be created. This technique has shown capability in detecting 

tumors in physical phantoms, and patient studies.  

 

5.2.1 Tissue sensing adaptive radar 

Tissue sensing adaptive radar (TSAR) (Sill and Fear, 2005) is a backscatter microwave imaging 

technique.  The TSAR system consists of an imaging tank filled with a matching medium (canola 

oil), a vector network analyzer (VNA) used to record signals, the antenna which is used for both 

transmitting and receiving. a laser used to estimate the surface of the breast in the scanner, and 

an antenna positioning system used to scan the antenna around the breast 4 degrees of freedom 

(Curtis, 2015).  

During data acquisition, the woman lies prone on the surface of the prototype with her 

breast extending through the tank. The antenna positioning system is used to rotate the antennas 

around the breast.  At each azimuth location, the laser is scanned vertically to obtain an estimate 

of the breast contour. The estimated location of the contour is used to compute a predefined 

number of antenna positions. The mechanical positioning system locates the antenna to each of 

the predefined positions where microwave measurements are collected using a VNA at discrete 

frequencies, typically ranging from 10MHz to 12GHz in 10MHz steps for TSAR imaging with 

lower frequency further limited to 850 MHz in preprocessing steps due to practical 

considerations (Curtis, 2015). The results in (Curtis, 2015) also shows that higher sampling rates 

lead to similar time domain signals. This suggests that the number of frequency points during 

measurement can also be reduced.  For testing algorithms, simulations of breast models 

illuminated by the antenna are performed with electromagnetics simulation tools (Curtis, 2015). 
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5.3 Preprocessing calculations in TSAR software 

In this section, we review necessary preprocessing steps and discuss how they affect time signal 

characteristics. In the next section, we explore how Fourier manipulation of backscattered signals 

will help improving basis function characteristics of time signals.   

 

5.3.1 Necessary TSAR Preprocessing Steps and source of artifacts 

Four main sets of data are acquired during a TSAR scan: calibration data (data acquired without 

object present – referred to as “antenna only”), the target data (complex reflection coefficient of 

measured data with object present at antenna position), the antenna position data (antenna 

positions) and laser data (skin surface estimated by the laser). The following pre-processing 

steps, represented in pipeline 1 of Fig. 5.2, are applied using these four data sets: 

1. Calibration: The target data not only consists of the back scattered signals from the target 

object but also includes the internal antenna reflections and the reflections from the system 

hardware. The necessary calibration step simply subtracts the antenna only data from the target 

data (Fig. 5.1A-B). 

2. Frequency truncation: simulated data is acquired up to 15GHz, however is truncated to 

12GHz to prevent high frequency noisy data from interfering with final contrast map (Fig. 5.1C-

D). This is one of the steps which aims to avoid noise with the cost of truncation artifacts to 

processed signals.  
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Figure 5.1 Backscattered signals in preprocessing TSAR pipeline; Calibrated signal in A) 
frequency and B) time; signals after frequency truncation in C) frequency and D)time; 
signal after skin response subtraction in E) frequency and F) time; signals shifted to the 
aperture position in G) frequency and H) time;  

3. Time Domain Transformation: The frequency data have to be transformed to the time domain 

for further processing e.g. skin subtraction and final image formation (Curtis, 2015; Fear et al., 

2002). Inverse chirp Z-transform (ICZT) is used for data transformation in TSAR software due to 

the following reasons. It has been shown in (Curtis and Fear, 2014) that to avoid quantization 

errors, a high time domain sampling rate is required. With maximum frequency of 12 GHz, the 

Nyquist sampling rate is 41.67t ps  while in fact the time signals are Sinc interpolated within 

ICZT algorithm to 2 ps sample spacing. Although ICZT eliminates the need to individually 

interpolate signals after transforming to time domain, this algorithm introduces oscillations to 

preprocessed data which can further influence image accuracy due to intensity loss of time 

signals. 

4. Skin Response Subtraction: This step reduces the dominant reflection from the skin.  An 

adaptive filtering method using the dominant skin response from a local neighborhood of 
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antennas (Maklad et al., 2012; Bond et al., 2003) is used in the TSAR algorithm to mitigate the 

dominant response from the skin (Fig. 5.1.E-F). Examination of frequency response of the 

tumour (Curtis, 2015) suggests the application of a LPF (e.g. a Hamming window) after skin 

subtraction. This aims at intensity reduction of higher frequencies which are not present when 

examining the isolated tumour response. While this filtering is important for reducing the 

dominant reflections from the skin that impede imaging, it might impose blurring and resolution 

loss to the final image maps. 

5. Shift to the aperture position: There is a time delay between feed of the antenna where signals 

are measured and the aperture of the antenna. After suppression of skin response, the time 

signals are shifted such that their reference point corresponds to the antenna aperture. (Fig. 5.1G-

&H). 

6. Image formation: This step basically relates the time domain radar data to the spatial imaging 

domain using a delay and sum (DAS) imaging process introduced in (Curtis, 2015). Since the 

details of imaging algorithm is out of the scope of this thesis, the image formation process which 

consists of imaging grid definition and intensity allocation to pixel positions will be briefly 

reviewed in this section. In radar imaging, the grid spacing is defined using the breast surface 

estimate obtained from the laser data and is typically in 1-2mm cubic voxels (Curtis, 2015).  

Next, intensity values are assigned to each reconstruction point. First, the path between each 

antenna and the reconstruction position is divided into immersion medium, skin, and the breast 

interior. The corresponding travel times are calculated and used to identify the portion of the 

signal associated with the reconstruction point.  These signals are then summed for all antennas.  

When all the voxels have been assigned a value, the result is squared and displayed in 3D or 2D 

slices through the maximum intensity response (the estimated tumor location).  
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The intensity of the voxels ( ( )I r ) after reconstruction grid definition (Curtis, 2015) will be 

calculated through DAS algorithm as  

2
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I r s round

t





                                 (5.1) 

Where ( )m r : round-trip time delay from antenna position mr  to voxel position r , [ ]ms n : discrete 

preprocessed radar signal. This equation implies that the sum of intensities of the time signals 

will directly impact each voxel’s intensity in the final 3D image.  

Based on the discussions on pre-processing stages in TSAR imaging, conversion of 

microwave signals between Fourier domains is unavoidable due to the characteristics of 

processing algorithms which necessitate calculations in frequency and time domain. The nature 

of delay-and-sum imaging for further intensity estimation of each voxel on a 3D grid is highly 

dependent on the intensity of individual signals after preprocessing. This indicates that DFT-

imposed distortions are distributed to the final processed signals and might be suppressed after 

application of LPF (either through pulse shaping by using an equivalent of a LPF after frequency 

truncation or in the form of a hamming window after skin subtraction). This suggests the 

applicability of Fourier analysis of TSAR signals in investigating an alternative for the 

application of LPF to avoid the effects of intensity loss.  
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Chapter Six: Improving basis function characteristics of backscattered signals 

6.1 Introduction10 

In the previous chapter we explained that tumor detection in microwave imaging 

techniques such as TSAR is based on the high contrast of the tumor response compared to 

surrounding tissues.  In this chapter, we provide information on an alternative Gibbs’ removal 

technique that preserves the contrast of the dominant response. Next, we will show sub-duration 

shift of time data by Fourier domain manipulation mitigates the ringing effects while preserving 

the contrast of original back-scattered time data. 

 In section 6.2, the Fourier manipulation of TSAR signals to improve basis function 

characteristics of backscattered signals is discussed. In section 6.3, the proposed total variation 

optimization of Fourier shift manipulated data is introduced as a potential alternative for artifact 

reduction of the microwave imaging signals. Modifications to TSAR software [Curtis, 2015] to fit 

the new algorithm and the simulated breast models used to test the proposed preprocessing 

algorithm are also introduced in this section. The results of experiments are demonstrated in 

section 6.4 with the evaluation of proposed technique performed with subjective and objective 

comparison between unfiltered data, filtered data and data affected by the proposed method. The 

conclusions are drawn and possible future extensions are discussed in section 6.5.  

 

                                                 

10 This chapter is based on the paper “Fourier manipulation of Tissue Sensing Adaptive Radar data to improve 
Tumor Detection Accuracy by Gibbs’ Ringing Removal” by Paniz Adibpour, Michael Smith  and Elise Fear, Under 
preparation for submission to IEEE Transactions on Computational Imaging or Progress in Electromagnetics 
Research by March 2018.   
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6.2 Fourier manipulation of backscattered signals to improve basis function characteristics 

An early study in (Smith, 1993) aimed at avoiding the necessary application of resolution-

destroying windows to mitigate the impact of truncation artifacts inherent in DFT-based 

algorithms by suggesting minor adjustments in the experimental data gathering procedures. This 

idea which is discussed in detail in section 4.4.2 is examined in the context of microwave 

imaging due to the DFT basis of the preprocessing procedure of the TSAR algorithm. 

Windowing, which results in convolution in time domain with a sinc function, imposes ringing 

artifacts on the time-domain signals except when sampling positions coincide with the zero 

crossings of Sinc function. Based on this interpretation, optimum sub-duration shift of 

backscattered time signals via phase ramping (Eqn. 6.1) to match the sampling points to zero 

crossings of Sinc function will eliminate the side lobes of the sinc function.      

[ ] [ ]exp( 2 / ); /2 /2 1;SHIFT SHIFTS f S f j fT N N f N                                             (6.1) 

 

From another point of view, frequency truncation imposes discontinuity which is interpreted in 

(Harris, 1978) as changing a basis function to a non-basis function in a Fourier space, generating 

artifacts in the DFT-transformed signal. The application of an LPF forces continuity in the 

frequency boundaries by suppressing the high frequency components with the cost of resolution 

loss. Frequency manipulation of signals by phase ramping aims at mimicking the basis function 

characteristics.     

In realistic cases, there is no individual scatterer embedded in a time-domain response or 

individual fine object in image space. Therefore, one sub-duration shift might remove ringing 

artifacts from one scatterer while distorting another. Therefore, a criterion is necessary to choose 
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local adaptive windows within which Gibbs’ effects are minimum. In the following section, this 

criterion is proposed in TSAR software as an optimization filtering technique. 

 

6.3 Methods and materials 

This section briefly introduces the simulation data which are used to test the algorithms. Next, 

the total variation (TV) optimization of Fourier manipulated backscattered signals is introduced 

as an alternative for the application of LPF in TSAR software. Finally, the necessary 

modifications to the TSAR preprocessing pipeline are detailed. 

 

6.3.1 Simulated realistic breast models 

Simulated reflections of signals from breast models are obtained with a microwave-frequency 

simulation tool.  The software used to simulate models is a commercial FDTD program (Semcad 

X, SPEAG, CH). Similar to prototype systems, the background of the simulation model is defined 

as canola oil ( 2.5, 0.04 /r S m   ). The model uses validated model of the BAVA-D antenna 

which mimics radiation pattern of a physical ultrawideband antenna used in experiments 

(Bourqui et al., 2010).  A simulation system is demonstrated in Fig. 6.1, showing illumination of 

a simplified model with the BAVA-D antenna.  To acquire the signals required to form an image, 

the antenna is scanned around the breast model to a number of different locations.  To acquire 

the complex reflection coefficients, the spectrum of the received response is divided by the 

spectrum of the transmitted signal (Curtis, 2015). 
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Figure 6.1 Left: Computer-generated model of the breast phantom; © 2015 IEEE; Right: 
schematic of antenna and test object in simulation model; screenshot from SEMCAD 
@C.Curtis (Curtis, 2015) 

 

Several models, presented in table 6.1, are assessed in this paper. “Tumor only” models 

are idealistic models including a 1 cm tumor embedded in skin layer. The more sophisticated 

models include a glandular tissue model or consider additional reflections from the tank. Fig. 6.1 

demonstrates a compute-generated model of breast phantom and the schematic of antenna and 

test object in simulation model. Fig. 6.2 also represents a sample of TSAR software result using 

the baseline pipeline.  
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Figure 6.2 It demonstrates how TSAR software generates three different slices of 3D 
simulated model;  

 

Table 6-1 simulated breast models 

Model Description of the Model Tumor Position 
[x,y,z] mm 

Case #1 Tumor #1 inclusion+ reflection from the lid [25, 0, -17.85] 
Case #2 Tumor #2 inclusion, ideal measurement system without 

tank, tank lid, etc. 
[25, 0, -37.85] 

Case #3 Tumor #1 inclusion+ single cylindrical Gland [25, 0, -17.85] 
Case #4 Tumor #1 inclusion+ no Glands+ Oil background [25, 0, -17.85] 
 

6.3.2 Total variation optimization of Fourier manipulated back scattered signals 

As discussed in section 6.1, signal resampling can eliminate oscillations if resampling points 

coincide with the zero crossings of the Sinc function convolved with finite-length processed 

signals. In this section, we introduce an optimization method to automate data resampling.   

Let’s assume [ ]NS f F  is the Fourier transform of [ ]Ns t T with length N. A set of 

signals with sub-duration shifts are created by phase-ramping of the original frequency signal. To 
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find the appropriate re-sampled signal with minimum oscillation and therefore minimum ringing 

effects, a total variation (TV) calculation metric is used. Variations can be measured by an 

absolute difference between neighboring time samples as | [ ] [( 1) ] |N NTV s t T s t T     .                                             

Based on the considerations discussed in section 6.1, emphasizing the necessity of local 

resampling factors where various major scatterers are present in the backscattered signals, we 

propose to have local TV measures on adaptive time windows. Major scatterers are identified by 

detecting the position of major peaks. By calculating the peaks of the envelop of signals, the 

durations between two time slots where the envelope approaches zero intensity is considered as 

the approximate window where TV is measured for an individual scatterer. The window size is 

kept fixed for all the signals and the Fourier shift for which minimum TV is calculated is chosen 

as the optimized phase ramping factor.  

 

1min ( { ( ).exp( 2 / )}),
i

shi

i sh
T

i

TV F S f j fT N                                                                          (6.2) 

,-1/2 1/ 4, 1,2,..., , / 2 / 2 1
ishi T i M N f N         

 

After optimization through Eqn. 6.2, the Fourier shifted signals ( ( )  1,...,iS r for i M ) have 

to be then interpolated with appropriate rate to fulfill the requirements discussed in section 5.3.1.  
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Pipeline1 

 

Pipeline2 

 

Pipeline3 

 

Figure 6.3 Three pipelines for preprocessing procedure of TSAR software different in 
highlighted sections. Pipeline1: Without pulse shaping; Pipeline2: with pulse shaping; 
Pipeline3: TV optimized of Fourier shifted signals 

 

 

6.3.3 TSAR Pipelines 

In order to examine the proposed changes in TSAR software, three pipelines which are 

demonstrated in Fig. 6.3 are the focus of our results.  
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Pipeline 1: All necessary preprocessing stages are considered without inclusion of any filtering 

step throughout the pipeline (Fig. 6.3-A – baseline pipeline). 

Pipeline 2: All stages of pipeline 1 are included and the effect of low pass filtering is also 

included in the pipeline as an original solution for DFT-imposed artifacts (Fig. 6.3-B – baseline 

+ LPF). 

Pipeline 3: In order to apply the proposed technique in TSAR software, the following 

modifications are included in the preprocessing pipeline. Note that resampling to improve basis 

function characteristics of signals is only applicable when signals are sampled at the Nyquist 

rate. As discussed in section 5.3.1, TSAR signals are transformed to time domain using ICZT 

with higher sampling rates to decrease quantization errors.  

1. Frequency signals are transformed to time domain using ICZT or inverse discrete time Fourier 

transform (IDFT) sampled at Nyquist rate. 

2. Time signals are optimized using proposed algorithm. 

3. The output of the proposed optimization algorithm, total variation optimized Fourier 

manipulated signals, are oversampled to the appropriate rate used in original pipeline (2 ps) to 

match the requirements of TSAR software for image reconstruction (Curtis, 2015). Since ICZT 

uses Sinc interpolation which itself imposes oscillations to time signals and can be considered as 

another source of artifacts, we have investigated other types of interpolation to mitigate this 

effect (Fig. 6.3-C – baseline + TV-FSM). 

 

6.3.4 Measurement criteria 

In microwave imaging context, the signal to clutter ratio (SCR) has been extensively used to 

assess the performance of imaging algorithms. This poorly defined metric can occasionally lead 
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to a high numerical value for an unfocussed tumor response. In recent microwave imaging 

literature, new metrics have been introduced and tested on imaging algorithms. Tumor position 

error is a numerical metric which has been used in testing simulation models for which the 

position of tumor is known (Curtis, 2015). This metric calculates the Euclidean distance between 

the estimated and true tumor position.  

To assess the three algorithms, two numerical criteria are used in this paper. SCR is defined 

as the ratio of the tumor response to the clutter response. The clutter response as defined in (Fear 

et al., 2002) is the maximum pixel value outside the tumor volume (tumor volume is considered 

as the pixels within twice the full width at half maximum (FWHM) of the tumor response). 

FWHM is defined as width of the signal at half of its maximum value (Fear et al., 2002). 

 

6.4 Results and discussions 

In the following sections, first an analysis of various oversampling techniques is evaluated with 

the aim of searching for an alternative for Sinc interpolation which impose extra oscillations to 

signals. Then, the effect of three introduced pipelines are evaluated on backscattered signals in 

terms of intensity and resolution of time signals. The final section represents results of image 

maps of simulated models using three pipelines and discusses the observations and differences 

between them. 

  

6.4.1 Analysis of oversampling techniques 

Before analysis of the final results acquired from three pre-processing procedures of Fig. 

6.3, an analysis is done to determine which interpolation technique is more appropriate for over 

sampling of the time signals. For this purpose, five interpolation techniques are tested on 



100 

 

backscattered data with the same parameters, specifically Sinc, piecewise linear (PL), nearest 

neighbor (NN), piecewise cubic hermite (PCH) and spline interpolations. FWHM and SCR 

metrics are used to assess the results. Pipeline 3 is applied to three of the cases described in table 

6.2 for consistency of the results. Table 6.2 represents the results of the metrics applied to a 2D 

cross section where the maximum response occurs (tumor position). Highest and lowest 

numerical values of SCR and FWHM, respectively, are obtained for piecewise linear 

interpolation. This choice of linear interpolation decreases the oscillations introduced by higher 

order interpolations such as Sinc interpolation originally used in TSAR software. Also, results 

indicate that the tumor was not detected with the sinc approach for cases #1 and #3, having very 

low signal to clutter ratio. This suggests that the proposed approach not only preserve the tumor 

response but also changes the characteristics of the clutter response. 

 

Table 6-2 Measurements on 2D cross sections of the maximum responses 

 Sinc PL NN PCH Spline 
Case #1 FWHM(mm) (6,4) (5,4) (5,4) (5,4) (6,4) 

SCR(dB) .008 .326 .134 .204 .231 
Case #2 FWHM(mm) (3,5) (3,5) (4,4) (3,6) (3,6) 

SCR(dB) .302 .447 .188 .423 .289 
Case #3 FWHM(mm) (3,5) (3,5) (5,4) (5,4) (3,5) 

SCR(dB) .085 .211 .111 .186 .108 
 

6.4.2 comparison of backscattered signals using three pipelines 

Fig. 6.4 presents results of the preprocessing steps when backscattered signals are passed through 

the three pipelines. This section provides a comparison of characteristics of frequency and time 

signals and the possible effects of those characteristics on final image maps.  
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To suppress the nonidealities imposed after skin subtraction or frequency truncation to 

mitigate noise, the application of a LPF within the preprocessing algorithm either after the 

truncation or before image formation (Fig. 6.4-A-2 & B-2) is of interest. Pipeline 2 of Fig. 6.3 

suggests another variant of the preprocessing procedure that considers pulse shaping (LPF) 

effect. As Figs. 6.4-A1, 6.4-B1, 6.4-A2 and 6.4-B2 imply, the application of a LPF smoothes out 

the ringing artifacts in time signals (zoomed-in time signal in A-1 & A-2), while inevitably 

reducing the intensity of dominant response (left solid arrow in A-1 & A-2). These effects will 

be further investigated on tumor position accuracy of final images. 

As figs. 6.4, A-3 and B-3 demonstrate, the alternative algorithm forces the frequency data 

to mimic the basis function characteristics. The solid arrow in Fig. 6.4, A-3 shows that the 

spectrum tends to have continuous characteristics demonstrated by the low pass filtered data in 

A-2.   This therefore degrades the ringing effects in the other Fourier domain due to discontinuity 

imposed on frequency data after truncation of spectrum (zoomed-in time signal in Fig. 6.4, B-3). 

On the other hand, this algorithm preserves the actual contrast between the dominant and clutter 

responses in comparison to the case where low pass filtering is used. Almost 46% of the intensity 

of the tumor response is decreased after application of LPF which will degrade the contrast of 

tumor and clutter response and can have detrimental effects on tumor detection accuracy. 
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Figure 6.4 Backscattered signals following three TSAR pipelines; A-1)frequency and B-
1)time; signals after application of pipeline 1, baseline; A-2)frequency and B-2)time; 
signals after application of pipeline 2, baseline + LPF; A-3)frequency and B-3)time; 
signals after application of pipeline 3, baseline + TV-FSM; 
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6.4.3 Comparison of TSAR image maps 

Tumor only Models: 

Fig. 6.5 represents results for case #1 and #2 models processed with the 3 different 

pipelines presented in Fig. 6.3 (where pipeline 3 uses linear oversampling).   The 3D images are 

sliced at the location of maximum intensity and the 2D slices are presented here for better 

comparison. All the pipelines succeed in generating a focused response. However, x and z slices 

of the maps from pipeline 1 and pipeline 2 have side lobes around the tumor response location. 

This is reduced in proposed TV-FSM method (c, f) where a more focused response is present in 

final images.  Different characteristics of the clutter are also observed with TV-FSM. 

The same analysis has been done on models including both tumor and glands. Fig. 6.6 

represent the results of TSAR images comparing the three pipelines for case #3 and #4. All the 

algorithms show good tumor localization and appear subjectively consistent. Fig. 6.6.a-c 

demonstrate the results for a model which includes a 1 cm tumor and a single cylindrical gland. 

Results from x and z slices indicate that the pipeline 3 leads to a more focused maximum 

response with more clutter attenuation. The application of LPF generates blurriness in 2D 

reconstructed images and leads to the interference of the adjacent clutter with the tumor response 

(Fig. 6.6.b). The same interpretation is valid for Fig. 6.6.d-f for which a 1cm tumor is located 

within a homogeneous background. Low pass filtering imposes blurriness while the proposed 

algorithm suggests a more focused response with eliminated side lobes.  

 

 

 



104 

 

a)Baseline TSAR Imaging (Case #1) 

 

d)Baseline TSAR Imaging (Case #2) 

b)TSAR imaging + LPF (Case #1) 

 

e)TSAR imaging + LPF (Case #2) 
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c)TSAR imaging + TV-FSM (Case #1) 

f)TSAR imaging + TV-FSM (Case #2) 

Figure 6.5 Images of tumor only models 

 

a)Baseline TSAR Imaging (Case #3) d)Baseline TSAR Imaging (Case #4) 
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b)TSAR imaging + LPF (Case #3) 

 

e)TSAR imaging + LPF (Case #4) 

 

c)TSAR imaging + TV-FSM (Case #3) 
f)TSAR imaging + TV-FSM (Case #4) 

Figure 6.6 Images of more sophisticated models  
 

In order to determine how different preprocessing procedures might affect the tumor 

localization accuracy, the tumor position error, introduced in section 6.2.4, is compared for 

selected breast models in Fig. 6.7. The position error is in general within a smaller range when 

TV-FSM is used (pipeline 3). For cases 2 and 3, the position error is considerably smaller 

compared to the procedures including low pass filtering (pipeline 2) and the baseline with no 
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filtering effects (pipeline 1). Cases 1 and 4 show better position errors with pipelines 2 and 3. 

However, the position errors are very similar and the differences are neglectable between 

algorithms. In general, preprocessing procedure with proposed TV-FSM changes (pipeline 3) 

shows more stability in terms of detection accuracy and this is due to the effectiveness of this 

algorithm in mitigating the DFT-imposed artifacts, instead preserving the original intensity of 

time signals at tumor response locations.  

 

 
Figure 6.7 Tumor position error  

 

6.5 Conclusion and Future work 

This chapter applies an alternative simple yet effective method to mitigate Gibbs’ artifact which 

is a common distortion in medical imaging applications due to the concerns associated with 

patient comfort, time resolution or practical limitations of infrastructure for data acquisition. The 

TSAR microwave imaging system, which confronts the same problem, has been studied in this 
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chapter. The TSAR pre-processing algorithm has eliminated oscillation effects using the 

application of LPF. However, the parameters of the LPF should be accurately chosen to 

compromise between smoothing and the inherent imposed resolution loss effects. The 

application of a proposed TV optimization method does not suffer destructive effects of low pass 

filtering on contrast of signals. Instead, it provides promising results with higher SNR and yet 

preserves the spatial resolution of final reconstructed image compared to the LPF. Results from 

breast models suggest that, in specific cases, this technique accentuates the tumor response by 

considerably reducing the ringing and clutter effects. Based on the numerical criterion of tumor 

position error, the TSAR system with proposed changes in pre-processing steps provides more 

reliable results. 
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Chapter Seven: Conclusion and Future Work 

In this research, preliminary observations of the effects of Fourier manipulation of the data 

generated during constrained MR imaging have led to the exploration of specific fundamental 

DFT properties. Such characteristics founded the basis for investigation of alternative methods 

capable of correcting DFT-imposed artifacts without imposing loss of intensity and resolution to 

final product of algorithms, e.g. 2D or 3D image maps. The general application of low pass filter 

(LPF) has long been used as a common and computationally inexpensive method to mitigate 

inevitable DFT artifacts in low resolution biomedical applications without considering its 

destructive effects on diagnostic results. In fact, the corruption of signals through a pipeline as 

the result of a loose solution like LPF, can propagate to the whole system and cause 

misinterpretation of final results.  

It has been shown through this thesis that taking advantage of DFT properties, total variation 

optimization of Fourier shift manipulated (FSM) signals or data can be a potential alternative for 

DFT artifact reduction methods. This method basically aims to target DFT artifacts 

independently and through adaptation of deliberate change in data gathering procedure or 

deliberate shift of FOV through post processing stages, recover the corrupted fine details. The 

results from the preliminary studies were presented in following conferences for which I was the 

first author or contributed as co-author: 

 Adibpour, P., Smith, M., (June, 2015). An Approach to Improve the Effectiveness of 

Wavelet and Contourlet Compressed Sensing Reconstruction. 24th International Society 

of Magnetic Resonance in Medicine, Toronto, Canada. 
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 Smith, M. R., MacDonald, M. E., Woehr* J. and Adibpour* P., (June, 2015). 

Overcoming the Image Position-Dependent Resolution Inherent in DFT and CS 

Reconstructions. 24th International Society of Magnetic Resonance in Medicine, Toronto, 

Canada. 

 

Discussions on low resolution MR applications, as necessary complementary diagnostic 

techniques, introduce the need for resolution enhancement of such techniques due to DFT-

imposed artifacts. This important factor makes MR applications an appropriate potential frame 

work where the alternative proposed optimization method can be examined and integrated into 

MR reconstruction techniques. One of the very common and recent reconstruction methods 

which takes the attention of many current MR studies is compressed sensing. It has been shown 

that such sparse reconstruction method neglects independently addressing DFT artifacts and 

noise-like under-sampling artifacts. This thesis addresses this issue and integrates total variation 

optimization of Fourier manipulated data into one of compressed sensing algorithms based on 

analytical sparse basis named SPARSE-MRI by introducing two varieties of scenarios. In the first 

scenario, it is assumed that a preliminary initial scan is used to adjust FOV of scanned object. 

Taking advantage of Fourier manipulation information from this reference scan provides highly 

accurate FSM estimations which can further be applied on acquired under-sampled data. 

The second scenario is when a reference scan is not available for this analysis. Then the only 

dataset which can directly be used in FSM estimation is zero-filled under-sampled data. 

However, experiments show that this dataset is too noisy to be able to provide accurate FSM 

information since random under-sampling imposes Gaussian-noise-like artifacts. Therefore, it is 

suggested to make use of an equivalent of a not-very-strong wiener filter to boost the SNR of 

zero-filled data and acquire FSM information from this manipulated zero-filled data. It is shown 
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that results from the first scenario are more accurate. While the second scenario still outperforms 

the original pipeline results, there is room to improve this method in the future to show 

comparable results to the former method. The methods used for validation of results are 

preliminary observer methods which are less common in literature while providing the highest 

correlation to subjective mean-opinion-score results. It is shown from metric results how the 

proposed methods succeed in recovering structural information of parts where highly affected by 

DFT-imposed artifacts. Results from these studies were presented in following conference and 

journal papers:   

 

 Adibpour, P., Smith, M. R., (Oct. 29th-Nov. 6th, 2016). Total Variation Assisted Fourier 

Shift Manipulation to Remove Gibbs’ Artifacts in Compressive Sensing Techniques. 

IEEE MIC, Strasbourg, France, Poster Presentation.  

 Adibpour, P., Fear, E., Smith, M., (2017). Improved Compressive Sensing Resolution 

through Optimization of Basis Function Sparse Representation. Ready for submission to 

IEEE Transaction on Computational Imaging by late January, 2018.   

     Through this study, a new generation of CS techniques, DL-MRI, for which patch-based 

dictionary sets are defined first to more accurately model local features of objects in sparse 

bases. This method not only suffers from similar DFT artifacts but also the destructive effects of 

DFT artifacts are way higher than the former CS method. It is shown that the application of the 

proposed optimization method benefits this algorithm even more and not only recovers peak 

intensity of fine details but also mitigates residual artifacts. This study is submitted in the 

following conference paper: 
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 Adibpour, P., Fear, E., Smith, M., (2018). Improved Dictionary learning compressed 

sensing for MRI through Patch-based total variation regularization. Submitted October 

2017 for IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Calgary, Canada. 

 

In order to generalize suggested method in various DFT-based algorithms, one of the 

microwave imaging techniques, tissue sensing adaptive radar (TSAR), is chosen as the third 

target of this thesis. This algorithm through which backscattered microwave signals go through a 

preprocessing pipeline and then image maps are generated through a delay-and-sum algorithm 

integrating all signals to achieve a pixel value, has several sources of resolution loss. Truncation 

of signals to avoid high frequency noise, application of Sinc oversampling which is a source of 

artifact itself and on top of those, application of LPF to mitigate those effects. It has not been 

considered that LPF proposes hard intensity loss to time signals which is dangerous considering 

the fact that contrast of malignant and natural tissues are the basis for tumor detection. Changes 

to the TSAR pipeline is proposed by which the application of LPF is removed from the pipeline, 

the proposed total variation optimization of FSM estimation of microwave signals are applied 

and a linear oversampling instead of sinc interpolation is suggested to the original pipeline. 

Results indicate that the proposed pipeline not only helps accentuating tumor response, it 

generates more focused response and also helps to undermine clutter responses. The results from 

his study is also included into the following journal paper which is under preparation:  

 Adibpour, P., Smith, M., Fear, E., (2017). Fourier manipulation of Tissue Sensing 

Adaptive Radar data to improve Tumor Detection Accuracy by Gibbs’ Ringing Removal. 

Under revision for submission to IEEE Transactions on Computational Imaging or 

Progress in Electromagnetics Research by March 2018.  
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