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ABSTRACT 

Aerotriangulation is a key step in creating maps from aerial photographs. 

Conventionally, ground control is provided to relate the photographs to a reference 

coordinate system. The establishment of ground control, however, is difficult and 

costly, especially in remote areas. It has been proposed that ground control be 

replaced by control at flight level (Schwarz et al., 1985). Methods for obtaining 

precise aircraft positions and for using these positions for aerotriangulation have 

been investigated in this study. Two positioning strategies are examined. The first 

combines output from a stable-platform inertial navigation system (INS) with 

differential Global Positioning System (GPS) pseudoranges. The stable-platform 

INS output is characterized by a very low random noise level (less than 1 cm/s), but 

is subject to deterministic errors which grow very large with time. Conversely, 

differential GPS observations have a higher noise level but the resultant positions 

are unbiased. The first strategy exploits the complementary characteristics of these 

observations. An INS error curve is fit to the discrepancies between the raw INS 

positions and the GPS positions. Estimated corrections to the INS positions are 

then available for any epoch of interest. The second strategy uses GPS carrier-

phase observations, which, if not for the presence of cycle slips, would be of 

sufficient precision for aerotriangulation. In order to remove the effects of cycle 

slips, an inexpensive strapdown INS can be used. In both strategies, the INS 

serves two further purposes: to interpolate positions at the exposure epochs and to 

monitor the orientations of the offset vectors between the INS reference centre, the 

GPS antenna phase centre, and the camera's perspective centre. Simulations were 

carried out to test the proposed positioning strategies. Resulting root-mean-square 

(rms) coordinate errors were between 0.28 and 0.59 metres for the first strategy, 

and between 0.08 and 0.36 metres for the second strategy. Photogrammetric 

simulations were performed to test the applicability of the positions to 

aerotriangulation. In order to determine the detrimental effects of variations in the 

primary elements of interior orientation, random perturbations were applied to the 

camera principal distance and to the principal point offsets. Using a photography 

scale of 1: 50 000, the resultant rms tie point errors were between 0.47 and 0.69 

metres in planimetry and between 1.87 and 2.59 metres in height. These results are 

sufficient for Class "A" topographic maps at scales up to 1: 50000. If the principal 

distance remains constant during the photography, however, the height error is 

mainly composed of a bias. If this bias can be tolerated, map scales as large as 1: 

20 000 may be feasible. Recent results on GPS phase data (Schwarz et al., 1987) 

have confirmed the simulation results. Aerotriangulation tests are planned. 
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NOTATION 

Key symbols 

A Jacobian (first design) matrix 

CU covariance matrix of vector u 

dp vector of differences between GPS and INS-derived positions 

5e1 unit vector from receiver ito satellite s 

f camera principal distance 

f specific force vector 

g gravity vector 

g * gravitation vector 

h geodetic height 

integer ambiguity in 

r position vector 

RW rotation about w-axis (direction cosine matrix) 

JRi rotation from i system into  system (direction cosine matrix) 

v velocity vector 

w misciosure vector 

photocoordinates in photo n 

XPPIYPP photocoordinates of principal point of minimum variance 

Gx,Gy,Gz perspective center coordinates for photo n 

Cartesian coordinates expressed in i system 

y vector of coefficients in INS error model 

60, &2, 6h INS position errors 

Ar 12 baseline vector from receiver 1 to receiver 2 

x 



geodetic longitude 

difference in GPS pseudoranges between recievers 1 and 2 and 

satellite s 

single-difference phase measurement between receivers 

1 and 2 and satellite s 

GPS pseudorange from satellite s to receiver i 

geodetic latitude 

earth rotation rate (relative to inertial space) 

earth rotation vector 

Schuler rate 

skew-symmetric matrix of angular velocities of i system relative 

to j system coordinitized in i system 

Matrices are denoted by bold upper-case letters, vectors by bold lower-case 

letters. 

Note: Some symbols may have other meanings in certain contexts, but 

these cases are clearly identified in the text. 

Coordinate systems (superscripts or subscripts)  

AC aircraft 

CT conventional terrestrial 

C local reference system for aerotriangulation 

I operational inertial 

LL local level 

RA right ascension 

xi 



Operators  

W T transpose of matrix W 

inverse of matrix W 

a, a first and second time derivatives of a 

changein. 

(.) estimate of. 

xn 



Chapter 1 

Introduction 

Since the middle of this century, virtually all topographic mapping has been 

done photogrammetrically using aerial photographs. In order to relate two-dimen-

sional photographs to a three-dimensional coordinate system for mapping, control 

points, i.e. points with known coordinates, are needed. Traditionally, control 

points are established on the ground using terrestrial surveying methods. The 

establishment of ground control is difficult and expensive, especially in remote 

areas. Consequently, a lot of effort has been expended in developing ways to 

minimize the amount of ground control required. 

Major reductions in required control are achieved by using analytical 

methods in which the relationships of a large number of overlapping photographs to 

a three-dimensional reference coordinate system are determined simultaneously. 

Further reductions have been achieved by the use of auxiliary data, primarily from 

airborne sensors (Blais and Chapman, 1985; Corten, 1984). These methods have 

not as yet entirely eliminated the need for ground control. The recent development 

of the NAVS TAR Global Positioning System of satellites (GPS), however, has 

made precise positioning of an aircraft feasible, and ground control may soon be 

unnecessary for medium to small-scale photomapping. 

Schwarz et. al. (1984) suggested the removal of control to flight level by 

combining a GPS receiver with an inertial navigation system (INS), and they 

demonstrated the feasibility of using the derived aircraft positions in a 
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photogrammetric block adjustment. The work done for this thesis is an extension 

of their original study. 

The thesis is divided into three parts. Chapters 2 through 4, which 

comprise the first part, describe the strategies and mathematical models for aircraft 

postitioning using an INS-GPS and present results of simulations. Chapters 5 and 

6, part two, discuss photogrammetric models and processing, and describe the 

unique problems which arise when ground control is eliminated. Results of 

photogrammetric simulations are also presented. In Chapter 7 (part three), 

conclusions are drawn and recommendations for further study are made. 
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Chapter 2 

Positioning Concepts and Strategies 

The objective of this research is to develop methods for determining the 

precise positions of an aircraft at the times of exposures of aerial photographs and 

for using these positions as exclusive control in aerotriangulation. As mentioned in 

the previous chapter, two different types of navigation systems will be used. One 

system, the inertial navigation system, or INS, has been in existence in some form 

since the Second World War. The second system, the NAVSTAR Global 

Positioning System, or GPS, came on the scene much more recently. It is the 

synergism between these two types of systems which has made the techniques 

described in this report feasible. 

This chapter begins with brief conceptual descriptions of INS and GPS, and 

ends with an outline of two separate strategies for combining output from these 

systems to obtain positions having the precision required for aerotriangulation. 

2.1 Inertial Navigation Systems (INS) 

The operating principle of inertial navigation systems is based on Newton's 

second law of motion, i.e. 

force = mass • acceleration. 

The basic components of an INS are accelerometers and gyroscopes. Usually, 

three accelerometers are mounted orthogonally to provide measurements of specific 
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force (force per unit mass) in a Cartesian coordinate system. Two or more 

gyroscopes are provided to monitor changes in orientation of the accelerometer 

frame and, in some mechanizations, to maintain a particular reference frame 

physically by means of a gimballed platform. Starting with information obtained at 

an initial point, changes in position are obtained by two successive time integrations 

of the gravity-corrected specific force measurements. The gyroscopes provide data 

for the coordinate transformations necessary to the process. 

Britting (1971) classifies inertial navigation systems as geometric, 

semianalytic, or analytic. Geometric systems physically maintain, or instrument, 

two separate coordinate frames: an operational inertial coordinate frame and a 

navigational coordinate frame. The advantage of a geometric INS is that positions 

are available directly as analog output, thus eliminating the need for a digital 

computer. For this reason, early INS's were geometric. The analog output, 

however, is obtained at the price of a good deal of mechanical complexity. 

Semianalytic, or stable-platform systems, instrument one reference frame, 

which may be either inertial or navigational. These systems do require a computer 

to effect the necessary coordinate transformations. To date stable-platform INS's 

have been the only type of system used for surveying applications. Two different 

mechanizations are now in use. In the space-stable mechanization the 

accelerometer platform is maintained in an orientation which is constant with respect 

to inertial space. This mechanization is not considered in this study. The other type 

of INS in use for surveying is the local-level mechanization. Figure 2.1 is a block 

diagram of an ideal (errorless) INS of this type. The accelerometers and 

gyroscopes are mounted on a gimballed platform. The platform is initially aligned 

by leveling and gyrocompassing at a point of known location. When aligned, the 

three accelerometer axes point east, north, and up. As the INS is moved, the 
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Accelerometers 

Gimballed   
Platform 

Figure 2.1. Ideal local-level INS 

Gyroscopes 

A 

(A, AX, Ah) 

computer calculates gyroscope torque commands which control the orientation of 

the platform so that the accelerometers maintain the same directions relative to the 

ellipsoidal earth model, Specific force measurements are corrected for Coriolis 

acceleration, which is a function of the velocities (computed from the output of the 

first integrator), and for gravity, which is a function of position (computed from the 

output of the second integrator). Note that the constants of integration, initial 

position and velocity, have been omitted from the figure but are necessary for the 

computations. The change in the gravity vector induced by the movement of a 

vehicle is slow compared to the change in Coriolis acceleration. Therefore, the 

inner (velocity) loop usually operates at a much faster rate than the outer 
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(acceleration) loop, and the mechanization equations are written in terms of 

velocities, as will be seen in Chapter 3. 

In contrast to the other types of systems, the analytic mechanization does 

not physically instrument a reference frame. The accelerometers and gyroscopes 

are (except for some damping) rigidly attached to the vehicle which carries the INS. 

For this reason, analytical systems are most commonly referred to as "strapdown" 

INS's. Figure 2.2 shows an ideal strapdown INS mathematically mechanized in 

the local level frame. Again, integration constants have been omitted. As shown in 

the figure, the physical gimbals have in essence been replaced by "analytical 

gimbals" (VonBronkhorst, 1978). The purpose of the gyroscopes is to supply 

rotaion rate data for the transformation of the specific forces into the local level 

system. The vehicle, and hence the accelerometer-gyroscope platform, may 

change its orientation with respect to inertial and earth-referenced coordinate frames 

very rapidly. Consequently, time intervals for numerical integration of the system 

output must be quite short, and a high degree of computer power is necessary to 

obtain velocities and positions. However, strapdown inertial systems are relatively 

simple mechanically and are less expensive than other types of systems. Because 

they have appeared on the scene most recently, the error behaviour of strapdown 

systems is the least understood of the three types. 

The relationships between the three types of inertial navigation systems are 

illustrated in Figure 2.3. 

For the application under consideration, inertial navigation systems have the 

following desirable characteristics: 

1. INS errors are largely deterministic and although system errors can 
become quite large over time, they are easily managed given some form 
of external monitoring. 

2. System output is obtainable at very short time intervals. 
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As will be seen, these characteristics complement those of GPS very well. 

Transformation 
"Analytical 
Gimbals" 

4 

Accelerometers 

Gyroscopes 

Specific 
Force 

-00 

Coriolis 
Acceleration 

Gravity 

(At1, &, All) 

Figure 22. Ideal strapdown INS 

INS system errors must be monitored by external observations if they are to 

remain manageable. For terrestrial surveying, this is most commonly done by a 

zero-velocity update, or ZUPT. Here, the vehicle carrying the system is stopped 

for a short time period during which a series of velocity outputs are obtained from 

the INS. As a first approximation, these velocities are direct measures of the 

velocity state errors of the system. Obviously, this technique is not practical if the 

vehicle is a fixed-wing aircraft. Instead, external observations can be obtained from 

a separate system, such as a barometric altimeter, or, in this case, a GPS receiver. 

7 



COMPUTER LOAD 

"F 
4 fliW MECHANICAL COMPLEXITY 

DEVELOPMENT 

GEOMETRIC SEMIANALYTIC ANALYTIC TREND 
(STABLE PLATFORM) (STRAPDOWN) 

Figure 2.3. Relationships between INS types 

2.2 NAVSTAR Global Positioning System 

The Global Positioning System was designed by the U.S. Department of 

Defense (DOD) to provide military users with instantaneous three-dimensional 

positions having uncertainties of 10-20 metres. When the full satellite constellation 

is deployed, there will be 18 satellites in six orbital planes plus three active spares 

(Fullenwider and Jorgensen, 1984). The nominal altitude of the satellites is 20 183 

kilometres, yielding a period of approximately 12 hours (Milliken and Zoller, 

1980). This constellation will provide navigation coverage worldwide 24 hours a 
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day. During the development and deployment period, the DOD plans to phase out 

virtually all of the other navigation systems which it currently supports. Full 

deployment was originally scheduled for the mid-1980's, but the schedule has been 

set back by the Challenger disaster. 

GPS was designed to provide a means of timing the transit of a radio wave 

from the satellite to the receiver. The system achieves this by providing a uniform, 

continuous time frame and by superimposing time marks on the radio signals 

broadcast by the satellites. The time frame (referred to as GPS time) is established 

by designating a hydrogen maser clock at one of the tracking stations as the 

reference standird. Each satellite is equipped with an atomic clock; rubidium clocks 

were used in the prototypes, but cesium clocks have been used in more recently-

launched spacecraft. Hydrogen maser clocks are slated for launch in future 

vehicles. The behaviour of the satellite clocks is monitored at the tracking stations, 

and clock correction coefficients are uploaded to the satellites to be included in the 

broadcast navigation message. Time marks are superimposed on the signals by 

modulating the broadcast carrier with pseudorandom binary codes. 

The satellite clocks have a nominal frequency of 10.23 MHz, which is 

reduced slightly to correct for relativistic effects. The maximum allowable 

uncertainty in this clock rate is one part in 1012 (Milliken and Zoller, 1980). The 

manufacture of small, lightweight oscillators of this quality is one of the most 

important technological achievements in GPS. Each satellite broadcasts at two 

frequencies, each of which is an integer multiple of the nominal clock frequency: 

L1, at 154 times the clock frequency or 1575.42 MHz, and L2, at at 120 times the 

clock frequency or 1227.6 MHz. Two frequencies are provided to allow 

measurement of ionospheric group delay, which is, in part, frequency-dependent 

(Spilker, 1980). 
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The L1 signal is given by 

L1(t) = A . P(t) D(t) cos(2f1t + 0) 

+2A ' C(t) .D(t) • sin(2rf1t+ 0) (2.1) 

where 
A is proportional to the signal amplitude, 

P(t) is a pseudorandom binary code having a bit rate of 10.23 x 106 bps 
and a period of approximately 38 weeks (but is reset every week), 

C(t) is a pseudorandom binary code having a bit rate of 1.023 x 106 bps 
and a period of 1 x 10 seconds, 

D(t) is a 50 bps data stream containing the user navigation message and 
other pertinent data, 

is the L1 frequency, and 

0 is a small phase noise and oscillator drift component (Spilker, 1980). 

The L2 signal is similar. P(t) is known as the P-code or precise code, while C(t) is 

known as the C/A-code or clear/access code (Milliken and Zoller, 1980). 

The original design of the system calls for the receiver to lock onto the C/A 

code by cross-correlation of the received signal with a replica of the C/A-modulated 

signal produced by the receiver. The point of maximum signal correlation is 

obtained by searching through the 1023 chips in a C/A code period. The C/A code 

thus acts as a rough vernier. The user has then obtained a coarse estimate of the 

(biased) range to the satellite, but this estimate is ambiguous because the C/A code 

has a period of only one millisecond. To resolve this ambiguity, the range must be 

known with an uncertainty of less than 150 kilometres, which is the distance 

traveled by light in half a millisecond. Through the navigation message, the user 

obtains an indicator of the GPS time of broadcast of a particular point in the code 
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stream. With prior knowledge of the timing of the P-code, an estimate has thus 

been obtained of the time offset between a replica of the P-code produced in the 

receiver and the received P-code, which acts as a fine vernier. Because the transit 

time of the signal from the satellite to the earth is bounded between 67 and 90 

milliseconds and the P-code has a period much larger than this, the time offset 

obtained at the point of maximum cross-correlation between the two P-codes gives 

an unambiguous (but biased) estimate of the satellite to receiver range. Figures 

2.4a and 2.4b illustrate a portion of a pseudorandom binary code and a portion of 

L 
Figure 2.4a. Pseudorandom code 

 A 
Figure 2.4b. Autocorrelation peak 

'C 

the corresponding autocorrelation function. Peaks in the autocorrelation function 

for the C/A-code are separated by one millisecond, while peaks for the P-code are 

separated by 38 weeks. Each satellite is assigned a one-week portion of the P-

code. 

If the user's clock were in perfect synchronization with the UPS time, range 

measurements to three satellites would give a unique determination of the receiver's 

position. In most cases, however, the receiver clock can only be synchronized to 
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GPS time within 100 nanoseconds (Remondi, 1984). This results in a 30 metre 

range uncertainty and the bias mentioned above. Furthermore, random irregu-

larities are present in the quartz oscillators which are used in most receivers. 

Therefore, GPS code measurements are commonly called "pseudoranges", and the 

usual algorithm for instantaneous positioning requires ranges to four satellites for a 

unique determination of three coordinates and a time offset. 

The major sources of error in GPS positioning can be categorized according 

to their location on the signal path, i.e.: 

1. Satellite 
- orbit prediction errors 
- satellitie clock errors 

2. Propagation 
- ionospheric group delay uncertainties 
- unmodeled tropospheric delay 

3. Receiver 
- multipath effects 
- receiver noise and truncation error 

These will be discussed in greater detail in Chapter 3. For now, it is important to 

note that the first three of these error sources, and to a lesser extent the fourth, are 

largely eliminated if pseudorange observations are replaced by pseudorange 

difference observations. These difference observations can be obtained by 

maintaining a second receiver at a fixed point; this is the so-called differential mode 

of GPS operation. The improvement in performance is due to the fact that satellite 

and propagation errors are highly correlated at the two receiver sites. Using the 

differential method, uncertainties in each coordinate can be reduced from 10-20 

metres to 5-10 metres. More importantly for this research, differential pseudo-

ranges yield unbiased position estimates. The differential technique will be 

emphasized in the sequel. 
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In the late 1970's, several radio astronomers, notably Charles Counselman 

at MIT (Counselman and Shapiro, 1979) and Peter MacDoran at JPL (MacDoran, 

1979), began to adapt the techniques of very-long-baseline interferometry (VLBI) 

to the GPS signal, and found that relative baseline accuracies of one part in 10-6 or 

better could be obtained. These techniques treat the satellite signals as truly random 

signals and cross-correlate on the carrier instead of on the code. Shortly thereafter, 

researchers with experience in navigation using Doppler observations on the 

Navy's TRANSIT satellites began to explore the possibility of utilizing the same 

techniques on the GPS carrier to improve resolution and reduce noise (see, for 

example, Hatch, 1982). Kinematic tests using these techniques have already 

yielded precision at the sub-metre level (Mader, 1986; Cannon, 1987). One of the 

two strategies employed in this research uses carrier-phase observations. 

A further motivation for both carrier-phase correlation and for differential 

utilization of GPS is the DOD's policy of "selective availability". The DOD plans to 

deny access to the P-code to most non-military users of the system. Further, the 

DOD will degrade the information provided in the broadcast navigation message so 

as to limit the attainable instantaneous accuracy available to general users. 

2.3 GPS-INS Combination Strategies 

There are four basic types of data which will be utilized: positions derived 

from a stable-platform INS, positions derived from a strapdown INS, positions 

derived from GPS differential P-code observations, and positions derived from 

differential GPS carrier-phase observations. Two separate strategies for the 

combination of these observations will be explored. 

The first strategy combines positions obtained from a stable-platform INS 

with differential GPS P-code observations. This strategy represents a true system 

13 



integration and can be explained as follows. As mentioned in §2.1, errors in 

positions derived from an INS are largely deterministic; the noise level of the 

velocities obtained from a commercially-available stable-platform INS is less than 1 

cm s-i. Over time, however, large biases accumulate which must be monitored by 

an external source in order to be manageable. On the other hand, positions from 

differential GPS pseudoranges, while of somewhat lower precision (5-10 m), are 

largely unbiased. Figure 2.5 illustrates these error characteristics schematically. 

The idea in the first strategy is to fit a curve based on the stable-platform INS error 

Z 
0 
I— 
Cl) 
0 
ci 

UNCORRECTED 
INS TRAJECTORY 

x 
x 

x 
X 

X 
X X 

X x X X X 

X 

DIFFERENTIAL GPS POSITION FIXES 

,- UE ( :RZCTORY 
V. 

TIME 

Figure 2.5. INS-Differential GPS 

model to the differences between positions derived from GPS and positions from 

the INS. The new differences obtained from the curve fit are then applied as 

corrections to the raw INS data. In this way, the smoothness of the INS data is 

preserved, while the GPS differential pseudoranges serve to remove the bias. This 

is a batch procedure which is summarized in Figure 2.6. 
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Figure 2.6. Positioning strategy 1 

The second strategy uses GPS differential carrier-phase data as the primary 

source of positions. By themselves, these positions have the precision required for 

aerotriangulation, and an INS would be unnecessary if GPS receivers functioned 

perfectly and if the satellite to receiver signal path were always unobstructed. In 

general, however, this is not the case; the phase data is subject to "cycle slips" or 

short periods of time during which the receiver loses lock on the signal. These are 

of concern because all carrier-phase observations are subject to ambiguity since 

only the fractional portion of a phase difference can be detected. (This ambiguity 

takes the form of an initial unknown range if integrated Doppler observations are 

used.) In fact, recent experience with carrier-phase data has shown that cycle slips 

are the major factor limiting accuracy in this type of positioning (Cannon, 1987). 

Therefore, the second strategy uses an inexpensive strapdown INS to bridge the 

gaps which occur when the receiver loses lock on the signal. In this case, all that is 
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required of the INS is that the noise level be somewhat lower than half the 19 cm 

wavelength of the Li carrier, since cycle slips manifest themselves as integer 

numbers of wavelengths. A conceptual flowchart of the second strategy appears in 

Figure 2.7. The box labled "bootstrap INS" indicates the error control which is 

provided by GPS and which is necessary to obtain meaningful strapdown INS 

output. 

Besides providing the functions described above, the inertial navigation 

systems in both strategies serve two further purposes. First, it is not practical to 

expect that the INS, GPS receiver, and aerial camera intervalometer (which controls 

the shutter) will be synchronized. Since, in gereral, the aircraft velocity will not be 

constant between exposures, the INS will serve to interpolate positions at the 

instant the shutter is open. Secondly, the GPS antenna phase centre, the reference 

centre of the INS, and the camera's centre of projection do not occupy the same 

position in space. Although the displacement vectors between these locations can 

be determined with respect to the aircraft structure, the orientation of these vectors 

will vary during the mission (Lucas, 1987). In this case, the INS can be used to 

monitor these changes in orientation. As will be seen in Chapter 6, however, INS 

data on the orientation of the camera will not be used as part of the 

photogrammetric block adjustment. 
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Chapter 3 

Positioning Models 

This chapter will provide a mathematical framework for processing the 

INS and GPS observations and will describe the error characteristics of these data. 

The first part of the chapter describes the various coordinate systems used. Next, 

the mechanization equations of inertial navigation systems are discussed, and an 

INS error model is presented. The local-level mechanization is emphasized; error 

models for strapdown INS's were not considered in this investigation. Lastly, 

GPS math models and error behaviour are described. 

3.1 Coordinate Systems 

All of the coordinate systems used in this study are right-handed Cartesian 

systems. Two of the coordinate systems, the mean right ascension system and the 

orbital system (Vanicek and Krakiwsky, 1986), are inertial in the Newtonian 

sense. Two of the systems are earth-referenced. Since January 1987, GPS 

positions have been given in the World Geodetic System of J984 (WGS84) 

(Wanless, 1987), and it will be assumed that the ellipsoid so-defined is the 

reference for INS positions as well (see Wong and Schwarz, 1983). The other 

earth-referenced frame is that maintained by the stable-platform INS used in this 

research; it is known as the local level system. The aircraft coordinate system is 

fixed with respect to the aircraft and provides a reference for the strapdown INS. 
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Detailed analysis requires that several other coordinate systems be defined. 

Some of these frames, e.g., the accelerometer and gyroscope frames, are, in 

general, non-orthogonal. This level of detail will not be treated here; the reader is 

instead referred to Britting (1971). 

The coordinate systems used in aerotriangulation will be described in the 

second part of this thesis. The earth-referenced coordinate systems will be 

discussed first. 

3.1.1 World Geodetic System of 1984 (WGS84) 

WGS84 is a conventional terrestrial (CT) system (Vanicek and Krakiwsky, 

1986) in which certain parameters of the approximate geometric figure of the earth 

(an ellipsoid of revolution) and of gravity have been specified. These parameters 

are: 

angular speed of earth (c)e) 7.292115" iø s-1 

ellipsoid semi-major axis (ae) 6 378 137.0 m 

ellipsoid flattening (fe) l/ 298.257 223 563 

gravitational constant (GM) 3.986 005. 1014 m3 s2 

fully-normalized second degree 
gravity zonal harmonic -484.1605. 106 

(Decker, 1986). A CT system has its origin at the centre of mass of the earth. Its 

z-axis is the mean spin axis of the earth, its x-axis is directed through the mean 

Greenwich meridian (0° longitude), and its y-axis is directed so as to form a right-

handed system. Figure 3.1 illustrates these axes. Coordinates in this system are 

designated by the superscript "CT" which preceeds them. The symbol 0ie 
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Figure 3.1. CT and local-level coordinate systems 

designates the mean rotation vector of the earth, with the subscript "ie" indicating 

the rotation of the earth relative to inertial space. The geodetic latitude, longitude, 

and height are curvilinear coordinates in the CT system; these are also illustrated in 

the figure. The geodetic latitude of a point P (Ø) is defined as the acute angle, 

measured in the ellipsopidal meridian of P, between the equatorial plane and the 

ellipsoid normal through P. The longitude of P (A,) is the clockwise angle, 

measured in the equatorial plane, between the Greenwich Meridian and the 

ellipsoidal meridian of P (Vanicek and Krakiwsky, 1986). The geodetic (or 

geometric) height of P (hr) is defined as the distance along the ellipsoid normal 
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from the surface of the ellipsoid (at P0 in the figure) to P. The transformations 

between geodetic curvilinear and Cartesian coordinates may be found in geodesy 

textbooks such as the one referenced above. 

3.1.2 The Local Level System 

The local level system has its origin in the INS. Its z-axis points up along 

the ellipsoidal normal, its x-axis points east, and its y-axis points north to complete 

the right-handed system (Wong and Schwarz, 1983). The relationship of the local 

level system to the CT system is illustrated in Figure 3.1. The superscript "LL" 

preceeding the coordinates designates them as local level. Since the particular 

ellipsoid to which the local level system is aligned is arbitrary; it will be assumed 

that the output from the stable-platform INS is available directly as WGS 84 

coordinate differences (ibid.). 

3.1.3 The Mean Right Ascension System 

This system will be the point of departure for the development of an 

operational inertial frame for the INS mechanization equations. Figure 3.2 illus-

trates the right ascension system and its relation to a CT system and to an orbital 

system. The xy-plane of this system is the mean celestial equator at a particular 

epoch T. The x-axis is directed toward the vernal equinox, denoted by the ram's 

head symbol in the figure, and the z-axis is the mean celestial pole at epoch T. The 

y-axis is directed to form a right-handed system (Mueller, 1969). The right 

ascension system is related to the instantaneous terrestrial (IT) system (Vanicek and 

Krakiwsky, 1986) by the Greenwich Apparent Siderial Time (GAST), which is 

defined as the angle measured counterclockwise in the equatorial plane between the 
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Figure 3.2. Right ascension and orbital systems 

vernal equinox and the true (instantaneous) Greenwich meridian. The true 

Greenwich meridian differs from the mean Greenwich meridian due to polar 

motion, but this difference can be neglected in this study without significant 

consequences, as will be seen below. The approximate equality of the 

instantaneous and conventional terrestrial x-axes is indicated in the figure. A 

further simplification was made in shifting the origin of the mean right ascension 

system from the barycentre (the centre of mass of the solar system) to the 

geocentre, but, again, the consequences (due to the orbit of the earth and to gravity 
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field differences) are several orders of magnitude smaller than the uncertainties in 

INS measurements (Schwarz, 1983b). The right ascension system is denoted by 

the "RA" superscript. 

3.1.4 Orbital Coordinate System 

The orbital coordinate system, also known as the perfocal system (Bate et 

al., 1971), is a quasi-inertial system. Its origin is at the earth's centre of mass, its 

xy-plane contains the satellite's orbit, its x-axis is the "line of apsides" (the semi-

major axis of the orbital ellipse) which connects the apogee of the orbit to the 

perigee, and its z-axis points in the same direction as the orbit's rotation vector. 

The y-axis is the semi-minor axis of the orbit, directed so as to form a right-handed 

system (Vanicek and Krakiwsky, 1986). The orbital system and its relation to a CT 

system and to the right ascension system are illustrated in Figure 3.2. The orbital 

system is indicated by the superscript "o" which preceeds the coordinates. 

Six parameters must be defined to describe the position of the satellite in 

its orbit, the size of the orbit, and the position and orientation of the orbital ellipse in 

space. The most common representation is by the Keplerian orbital elements 

(ibid.), four of which are illustrated in Figure 3.2. These elements are: 

a ... the length of the semi-major axis of the orbital ellipse (not 
illustrated), 

e ... the eccentricity of the orbital ellipse (not illustrated), 

the argument of perigee, or the angle measured counter-
clockwise in the orbital plane between the ascending 
node (the intersection of the satellite's path northward 
and the equatorial plane) and the perigee, 

£2 ... the right ascension of the ascending node, or the counter-
clockwise angle, measured in the equatorial plane, between 
the vernal equinox and the ascending node, 
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i ... the (acute) inclination of the orbit with respect to the equatorial 
plane, and 

f ... the true anomaly of the satellite at a particular time, or the 
angle between the line of apsides and the line connecting the 
earth's centre of mass with the satellite, measured counter-
clockwise. 

Cartesian orbital coordinates are obtained from the true anomaly by applying 

Kepler's equation, which can be found in geodesy or astrodynamics textbooks. 

3.1.5 Aircraft Coordinate System 

The aircraft coordinate system, denoted by the "AC" superscript, is the 

familiar "pitch, roll, yaw" system. This system is illustrated in Figure 3.3. In 

principle, the orientation of the accelerometer frame in a strapdown INS remains 

fixed with respect to the aircraft frame. Therefore, for convenience, it will be 

assumed that the aircraft and strapdown sensor frames coincide. 

AC AC x Z (YAW) 
(PITCH) A 

AC 

(ROLL) 

Figure 3.3. Aircraft coordinate system 
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3.2 Models for INS Positioning 

It is useful to consider first an ideal non-rotating INS moving in an inertial 

frame without gravitation. Positioning would then be a simple matter, since the 

vector of specific force measurements would be identically equal to the vector of 

accelerations, i.e. 

.. 

fr (3.1) 

where the dots indicate differentiation with respect to time. With knowledge of the 

initial velocity v1 of the INS, position differences i\r could be obtained by two 

successive time integrations of the specific force measurements, i.e. 

rt2ct2 

Ar = v1. (t2-t1) + J J I d't-dt. 
t1 t1 

(3.12) 

In practice, the neglect of relativistic effects presents no problems because their 

combined magnitude is several orders smaller than the noise level of commercially-

available inertial sensors (Schwarz, 1983b), but these equations must nevertheless 

be modified for several reasons. The first modification is due to gravity and results 

from the fact that gravity cannot be distinguished from other accelerations by 

measurement at a single point. (It is possible, however, to distinguish between 

gravity and other accelerations through the Riemann curvature tensor, which can be 

derived in part from gravity gradiometer measurements; see Moritz, 1985.) 

Therefore, equation (3.1) must be modified to become 
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I = r - g* (3.3) 

where g* is a vector of purely gravitational accelerations whose sign is arbitrary 

and has been chosen to conform with existing literature. Equation (3.3) has been 

called the fundamental equation of inertial geodesy (Schwarz, 1983b). It is evident 

that in order to extract either one of the quantities on the right of (3.3) the other 

quantity must be known a priori. 

Secondly, in order to be useful, position differences must be related to 

some earth-fixed coordinate system. Lastly, noise corrupts the measurements and 

errors are present in the gravity reference model; these effects must be included in 

the equations. The formulation of INS equations in navigational coordinates and a 

model for error control are discussed in the next two subsections. 

3.2.1 INS Mechanization Equation 

The development which follows will emphasize the local-level INS 

mechanization, as this was the only type simulated in this study. Note that many 

strapdown systems are mathematically mechanized in the local level system. 

A precise definition of an inertial reference frame is needed. As cited 

above, relativistic effects can be neglected without ill effect. Therefore, an inertial 

reference frame may be defined as one in which the Newtonian equations of motion 

hold (Schwarz, 1983b). A practical realization of such a system is a star catalogue 

system, such as the mean right ascension system (Mueller, 1969). 

It is now possible to develop transformation equations between the inertial 

reference frame and the earth-fixed reference frames described above, and to relate 

26 



the INS specific force measurements to these various frames. If the proper motion 

of stars (Mueller, 1969) is neglected, the transformation which relates a vector RAr 

in the mean right ascension system at time To to a vector CTr in the conventional 

terrestrial system at time T is given by 

RAr = PlNlRz(_GAST)'Rx(yp)Ry(xp)Tr (3.4) 

where P is a rotation matrix accounting for general precession from time To to time 

T, N is a rotation matrix accounting for astronomic nutation from To to T, R(6) 

indicates a rotation through the angle 6 about the w-axis, and xp and yp are 

elements of polar motion from To to T (ibid.). Neglected effects in this definition 

have magnitudes totalling 2.4 • 10-12 s1 in rotation and 2 - 10-6 m -2 in linear 

acceleration (Schwarz, 1983b). Measurements from commercially-available 

equipment have uncertainties which are much greater than this; gyroscopes have 

accuracies of approximately 5 • 1O- s-1, and accuracies of 5 • 10-5 m s-2 can be 

expected of available accelerometers. As a rule of thumb, accuracies in the 

reference model for an INS should be one order of magnitude better than 

instrumental accuracies (Schwarz, 1985a). Therefore, equation (3,4) can be 

simplified. This is done by approximating precession, nutation, polar motion with 

a mean time system which averages the effects of these phenomena (along with the 

earth's variable rotation rate). The relation then becomes 

Ir = RZ(—GMST) (3.5) 

where GAST has been replaced by GMST, the Greenwich Mean Siderial Time and 

the superscript "RA" has been replaced by "I" to designate an operational inertial 
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frame (ibid.). For INS positioning, the absolute epoch is inconsequential, and 

GMST can be replaced by the accumulated mean time since the start of the mission. 

A shorthand notation, which is a variation of that found in Britting (1971), will be 

adapted and equation (3.5) becomes 

'r =IRcT .CTr (3.6) 

where 'RCT indicates a rotation from the conventional terrestrial system into the 

operational inertial system. The transformation from the local level system to the 

operational inertial system can be obtained by noting 

where, from Figure 3.1 

= 'RCT' CTRLL 

CflJJ, = R2(-90° - A) R(Ø - 900) 

For the explicit elements in 1R, CTflJL, and 'Rn , see Schwarz (1983b). 

Likewise, for the aircraft coordinate system 

LLrs = LLRAC . ACj. 

CTrs = CTRAC . ACrS 

'rs = 'RAG . ACrs 

(3.7) 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

where the "s" subscripts denote the vector from the geocentre to the INS. Note that 

translations of vectors are freely allowed. 

The alignment of the aircraft system with respect to the earth-fixed or 

inertial coordinate frames may change very rapidly. Therefore, various algorithms 
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have been developed for updating the transformation matrices quickly in strapdown 

INS's. A commonly-used algorithm expands the rotation matrices in terms of unit 

quaternions, in which algebraic combinations of four parameters replace the 

trigonometric functions in the matrices (VanBronkhorst, 1978). 

Relations may now be obtained between velocities and accelerations in the 

various frames by differentiating equations of the form of (3.6) or (3.9) with 

respect to time. For the case of the local level to operational inertial frame 

transformation, the first derivative is 

. . . 

= IRLL  + JR LL .LLr. (3.10) 

From Britting (1971), the time derivative of an orthogonal rotation matrix is given 

by 

JR1 =JR1.121 (3.11) 

where ii2ji is a skew-symmetric matrix composed of the elements of the rotation 

vector of the i system relative to the j system coordinatized in the i system; 

specifically 

0 WY 

CO  0 

29 

(3.12 a) 



where co, w and co, are the components of the rotation vector. Note that 

Equation (3.10) may then be rewritten as 

. 

(3.12b) 

1r = IRLL  (1 2 • LLr + r) (3.13) 

which is the Coriolis law in matrix notation (ibid.). 

For the remainder of this development, it will be assumed that both the 

stable-platform and strapdown INS's are mechanized in the local level frame. In 

the former case the mechanization is by hardware; in the latter it is accomplished 

with software. Note that 

LLf = (3.14) 

A similar transformation is needed to convert gyroscope rate measurements in the 

aircraft system to rates in the local level system. For details on these 

transformations, see VanBronkhorst (1978). 

As mentioned in §2.1, the INS mechanization is usually done in terms of a 

velocity, which is defined as 
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LLV LRCT . cTrs (3.15) 

(Britting, 1971). After differentiation and algebraic manipulation, the following 

expression is obtained 

S •S 

LLV = LLR1 'r - ('-"cmL + 2U JcT) • LLv 

- 1ICT' LLçJCT. LLrS. (3.16) 

The last two terms on the right side of equation (3.16) are the Coriolis and 

centripetal accelerations, respectively. This equation is derived in the appendix. 

A relationship between LLf, the specific force vector in the local level 

system, and the geographic positions, velocities, and velocity rates can now be 

developed. First, equation (3.3) is transformed to 

.. 

LLf = LLRI.1r - LLg*(r ) (3.17) 

where the argument rs has been added to LLg* to indicate the dependence of 

gravitation on position. Note that lunisolar and planetary tides, having a combined 

magnitude of approximately 2 • 10 -7 times gravity, have been neglected (Schwarz, 

1983b). The gravitational vector LLg* can be replaced by the gravity vector 

g(r) = LLg*(r) - 
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which includes the centripetal acceleration. Using equation (3.18) in (3.17), and 

combining the result with equation (3.16), the mechanization equation in the local 

level system results, which is 

. 

LLv = LLf (LLcrrj:, + 2JLf2IcT) LL'r + LLg(r5). (3.19) 

3.2.2 Local-Level INS Error Model 

The direct application of equation (3.19) would require perfect sensors and 

perfect knowledge of the earth's gravity field. Since neither of these conditions can 

be met, sensor and gravity model imperfections must be incorporated. In order to 

solve (3.19) and to take advantage of well-known estimation techniques, a linear 

error model is desired. The system of differential equations (3.19), however, is 

nonlinear, since LLv is implicit in LLOCTLL. The linearization of the error equations 

is accomplished by using perturbation techniques (Britting, 1971). Using these 

techniques, the system errors and gravity model imperfections are expressed as 

linear perturbations about an approximate reference trajectory and gravity reference 

model. Thus, the following substitutions are made: 

. . 

LLV = LLv0 + 5v 

LLg = 'y + 

The reference trajectory is given by 

. 

LLy0 = LLf - ("cmL + 2LL JcT)o . LLv0 + y 
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where the u1fl subscripts denote approximation and the vector yis a standard gravity 

model known as normal gravity, which is the gravity of a fictitious equipotential 

ellipsoid which has the same total mass as the earth (Heiskanen and Moritz, 1967). 

Formulae for the computation of normal gravity (which is a function of latitude and 

height), as well as the definition of the components of the gravity disturbance vector 

can be found in the cited reference. In principle, the known portion of the 

gravity disturbance vector can be included in the reference model, but this is usually 

not done. 

Time-dependent errors in local level INS's account for about 95% of the 

total error (Goldfarb and Schwarz, 1985), and these errors will be emphasized The 

time-dependent portion of the error model is of the form 

= 6v(6c, 6b, ag'; t, f, w) (3.21) 

where 

& is a set of initial sensor errors which propagate in a well-
defined fashion 

6b is a set of nonlinear sensor errors 

g' is the unmodeled portion of the gravity disturbance vector 

f is the specific force vector, and 

w is a vector of random forcing functions 

(Schwarz, 1985b). 

If the reference trajectory is sufficiently close to the true trajectory, 

equation (3.21) can be expressed in state-space notation (Gelb, 1974) as 
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x(t) = F(t) . x(t) + w(t) (3.22a) 

with initial conditions 

X(0) = x0. (3.22b) 

The vector x(t) is known as the state vector; in this case it is composed of error 

states. F(t) is known as the dynamics matrix, and its nature depends on the 

particular error states chosen. There are an infinity of choices for the components 

of the state vector, and a rigorous INS error model would require many scores of 

error states. In practice, individual error states are lumped to make the formulation 

and computations tractable. A common formulation uses twelve error states: six to 

specify translation and translation rates, and six to specify orientation and 

orientation rates (Schwarz, 1985b). 

In order to obtain a solution to equation (3.22), F(t) is assumed to be time 

invariant. In practice, this is done by choosing time intervals for the solution which 

are sufficiently short to make this assumption valid. The solution to the 

nonhomogeneous equation (3.22) is then given by 

X(t) = c1(t,t0).x 0 + fo (t,)•w('r)d. (3.23) 

(t, t0) is known as the state transition matrix from time to to time t and is given by 

the matrix exponential 

(t,t0) = eF(t - t0) 
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(Gelb, 1974). If the number of error states is relatively small, an analytical solution 

for the transition matrix can be obtained, for example, by using Laplace transform 

techniques (Wong, 1982). Otherwise, numerical techniques can be used, such as 

replacing (3.24) with the first few terms of its Taylor series. For a local-level INS, 

the transition matrix is dominated by trigonometric terms in the earth rate 0ie and 

the Schuler rate c, given by 

1 
O)s -. g2 

r (3.25) 

where g = I g I and r3 = I r5 I (but is usually approximated by the mean earth 

radius). It is interesting to note that the Schuler rate is the frequency of a 

hypothetical point-mass pendulum whose length is r. 

Most INS applications require real-time positions. Furthermore, in order 

to assure that the error behaviour remains linear, a reasonable reference trajectory 

must be used and real-time state variable estimation is needed. Consequently, 

sequential techniques such as Kalman filtering (Gelb, 1974) are most commonly 

used for state vector estimation. As mentioned in §2.1, the most common form of 

external observations for surveying applications is the ZUPT. For positioning 

strategy two, a Kalman filter with GPS range-rate (Doppler) updates can be used to 

bootstrap the strapdown INS. 

For positioning strategy one, real-time positons are not needed (except for 

maintainance of the reference trajectory). Therefore, a batch procedure, known as 

spectral decomposition (Schwarz, 1983a; Vassiliou, 1984) has been applied to the 

"raw" INS data post-mission. The use of the spectral decomposition model 

simplified the INS simulation considerably. The predominance of sinusoids in the 
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earth and Schuler frequencies in the transistion matrix forms the basis for this 

method. In this method, the terms in the discrete version of the error equation 

(3.23) are reordered and are expressed in the form 

8ri = A1.y+e (3.26) 

where 

r1 is a vector of position errors at time t, 

Aj is a matrix composed of base functions in the earth 
and Schuler frequencies which are evaluated at 
time ti, 

y is a set of coefficients which are linear combinations 
of the initial state errors x0, and 

e is a noise vector. 

Specifically, the elements of the vector 8ri are 

SA(t) = a0 + a1 •tj + a2 - SIfl(0)ie t1) + a3 • cos(c)je t1) + a4• sin(0)3• t) 

+ a5 • cos(w8. ti) + a6 • ti - sin(o.. t1) + a7 - t1. cos(w. t1) + 8a (3.27a) 

S(t) = b0 + b, . tj + b S1fl(0)ie ti) + b3. COS(Wie' t) + b4. sin(C)• t1) 

+ b5 • cos(w. t) + b6 - t1• sin(w. ti) + b7• ti ' cos(o 3. t1) + e (3.27b) 

8h(t) = co + C1 sinh(12 ti) + C2 cosh(!C. ti) + C3, S1fl(Wie tj) 

+ c4• sin(co. t1) + c5 'c.os(o. ti) + c6 • ti • cos(o8. ti) + Eh (3.27c) 
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where S.X, 60, and 6h are errors in longitude, latitude, and height, respectively, and 

K is a damping factor. For the relationship of these quantities to the initial state 

vector and the transition matrix, see Vassiliou (1984). The vector y and matrix A 

are given by 

A 

where 

y 

[ 

a 

b 

C 

A*1 0 0 
0  0 

00 ] 

(3.28a) 

(3.28b) 

a = [a0, a1, a2, a3, a4, a5, a6, a7]T (3.29a) 

A1* = [1, t, sin(w ti), COS(0)ie • ti), sin(a • ti), cos(a)S • tjJ 1 ' t• • sin(0) • 

ti cos(wS i/ • tVi (3.29b) 

and b, c, and A2* are formed in an analogous manner. 

There are a number of other errors which are not time-dependent but 

instead are roughly proportional to the magnitude of the coordinate differences 

obtained during the mission. Major errors of this type are due to accelerometer 

scale factor uncertainties and to nonorthoganalities of the accelerometer frame. 
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These errors can be added to equations (3.28) by augmenting y and A1 (Goldfarb 

and Schwarz, 1985). However, since these errors account for less than five 

percent of the total error, they have not been included in this study. 

For positioning strategy one, estimation of the vector 6r is accomplished 

by fitting equations (3.28) to the discrepancies between the raw INS positions and 

the positions derived from GPS differential P-code pseudoranges. The processing 

of INS and GPS data is discussed in Chapter 4. 

3.3 Models for GPS Positioning 

GPS was designed to provide instantaneous position and time by ranging 

to four satellites simultaneously. Each measured pseudorange can be represented 

by 

spi = [(x5—x1)2 + —y1)2 + (z—z)2] 1/2 + c'St - cSt5+ 6j9fl+ Strop+ 8t 

(3.30) 

where 

.is the pseudorange from receiver 1 t satellite s, 

x8, ys, z5 ... are the Cartesian coordinates of satellite s, 

x, y1, z1 ...  are the Cartesian coordinates of receiver i, 

c' . . .is the average propagation speed of the signal from s to i, 

(54 .is the instantaneous receiver clock bias (to be estimated), 

.is the portion of the satellite clock error computed from the 
navigation message, 

.is the computed range-equivalent ionospheric group delay, 

.is the computed range-equivalent tropospheric delay, and 
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.is the sum of all undetermined effects in 

As mentioned in §2.2, differential pseudoranges were used in this research. A 

pseudorange difference can be expressed as 

sp12 
.se1+ Se2  1X 

- •F12+C'L%St12+C'ASion+C'4ôtrop+4 ,El2 (3.31) 
1+ se, •e 2 

where 

4sP12 

4&12 - - 

A, e2 . . .are unit vectors pointing from the receivers to 
satellite s, 

r1, r2 

r12 

llSjofl 

8trop 

As-012 

= sP1 - sP2' 

.are the geocentric position vectors of the receivers, 

• . .is the baseline vector from receiver 1 to receiver 2, 

• . .is the difference between the ionospheric corrections 
applied to the individual ranges, 

• .is the difference between the tropospheric correc-
tions applied to the individual ranges, 

• . .is the difference in unmodeled effects between the 
pseudoranges, 

and the indicated products are scalar products (Vanicek et al., 1984). Range and 

range difference geometry is shown in Figure 3.4. Note that equation (3.31) is 

linear in the components of Ar12, and its solution can be obtained by successive 

substitution of the components of e1, e2, r1 and r2. 
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(0,0,0) 

Figure 3.4. Range and range difference geometry 

There are several different models for GPS phase observations which 

involve differencing between receivers, between epochs, or between satellites 

(Remondi, 1984; Cannon, 1987). The model chosen for use here is the single 

difference, which is obtained by scaling equation (3.31) by the wavelength of the 

carrier and by adding a term representing an integer ambiguity. A single-difference 

phase measurement can be expressed (in simplified form) as 

12  
- [1+i• .r12+c'4St12+48iOfl+4StrOP]+El2+sWlz 

(3.32) 

where 

sø12 . . .is the difference between the instantaneous 
phase measurements at receivers 1 and 2, 

f .. .is the carrier frequency (in Hertz), 

c . . .is the speed of light in vacuum, 
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4 8012 .. .represents unmodeleJ effects in L% i2, and 

I12 .. .is the integer difference in the number of wavelengths in the 
rays from satellite s to the receivers (plus an arbitrary 
integer bias). 

For a more detailed model, see Remondi (1984). 

In order for this equation to be useful, all ambiguities N12 must be 

determined. This is easily done by placing the receivers on a fixed baseline and 

treating the ambiguities as unknown parameters to be estimated along with the 

baseline components. The ambiguities can usually be resolved with less than one-

half hour of observations if the baseline components are unknown (Wanless, 

1987). Less time is required if there is good a priori knowledge of the baseline 

components. Another technique for ambiguity resolution, which uses an adaptive 

Kalman filter, may also be applicable to kinematic positioning (Brown and Hwang, 

1984). For an aerial photography mission, the integers could be determined from 

data collected before the plane takes off. Once the ambiguity is resolved, the 

accumulated cycle count is tracked at each receiver. However, if one of the 

receivers loses lock on a satellite's signal, or if a new satellite is selected, a new 

ambiguity parameter must be determined. In either case, the output of an 

inexpensive strapdown INS could be used to aid the process. 
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3.3.1 GPS Error Model 

The major error sources categorized in §2.2 are repeated here: 

1. Satellite 
- orbit prediction errors 
- satellitie clock errors 

2. Propagation 
- ionospheric group delay uncertainties 
- unmodeled tropospheric delay 

3. Receiver 
- multipath effects 
- receiver noise and truncation error. 

The errors induced by these sources in ranges, range differences, and phase 

differences propagate into the coordinates or coordinate differences which are being 

estimated. The magnitudes of the errors in the estimated parameters are functions 

of the satellite-receiver geometry. The error sources and geometrical considerations 

will be discussed in turn. 

1.  Satellite uncertainties  

Orbit prediction errors arise for several reasons. Firstly, for expediency, a 

simplified ephemeris representation is broadcast. Secondly, satellite perturbations 

are not completely predictable because thereis incomplete knowledge of perturbing 

forces, especially solar radiation pressure. Finally, the relative positions of the 

tracking stations are not known exactly, and errors in tracking station coordinates 

and tracking measurements propagate into the orbit. 

GPS was designed for single receiver operation using pseudoranges. 

Consequently, the allowable spatial distribution of orbit uncertainties in the 

broadcast ephemeris is based on the contribution of these errors to the "user range 

error" (URE). Divine and Francisco (1984) used the following formula to express 

the relationships of the orbit and satellite clock errors in the error budget: 
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where 

1 
2 2 

URE = (E++ LN +c28_2wRt.ER.6t) 
50 50 

ER .is the radial orbit uncertainty, 

ET .is the tangential orbit uncertainty, 

eN .is the cross-track orbit uncertainty, 

c . . .is the speed of light, 

Et .is the satellite clock uncertainty, and 

W1 . . .is the cross-correlation between 2R and e. 

(3.33) 

As would be expected for single-receiver pseudoranging, tangential and cross-track 

orbit errors are allowed to be quite a bit larger than radial orbit or satellite clock 

errors. With a projected URE of six metres, tangential and cross-track uncertainties 

in broadcast ephemeris can reach 25 metres or more (Swift, 1985). 

A property of the broadcast ephemeris which has significance in this study 

is its smoothness. Smoothness in the ephemeris implies that uncertainties in 

satellite positions will manifest themselves as slowly-changing biases. For the 

observation time span used in this study (84 minutes), these uncertainties are treated 

as random constants. 

The parameters in the broadcast ephemeris are changed every hour. 

Therefore, an indication of the internal consistency of the data can be obtained by 

computing the satellite coordinates at the division point between ephemeris blocks 

using the coefficients in each block (i.e. forward and backward) and examining the 

resulting coordinate differences. For this purpose, broadcast ephemeris data 
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spanning four days in January, 1985 were reduced using the algorithm outlined in 

Van Dierendonck et al. (1980). The resulting differences, expressed in 

conventional terrestrial coordinates, are summarized in Table 3.1. Note that in all 

cases the discrepancies are one or more orders of magnitude smaller than the 

expected uncertainties. 

CT  CT  CT  

rms 0.08 0.12 0.09 

maximum 3.08 4.23 3.48 

Table 3.1. Ephemeris discrepancies (m) 

Ironically, for range differences, radial orbit errors are more easily 

tolerated than tangential and cross-track uncertainties. Nevertheless, the effects of 

all orbit errors on differential positions are negligible unless very high precision 

(e.g. one part in 10-7) is needed (Beser and Parkinson, 1984; Krakiwsky et al., 

1985). This conclusion is supported by the simulation results presented in Chapter 

4 of this thesis. Satellite clock errors are effectively eliminated by differencing 

between receivers. 

2.Propagation uncertainties  

The group delay induced by the ionosphere on a radio signal is a function 

of the frequency of the signal and the integrated electron count along the ray path. 

The most effective way to minimize ionospheric uncertainties is to take advantage of 
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the frequency dependence of the ionospheric delay by using a two-frequency 

receiver. In this study, however, a single-frequency receiver has been assumed. In 

this case a good deal of uncertainty can be removed by using differential 

pseudoranges. Remaining uncertainties are then due to the difference in the 

elevation angles at the receivers (resulting in different signal path lengths through 

the ionosphere), and, less significantly, to random scintillations along the 

independent ray paths (Denaro, 1984). The worst-case ionosphere-induced error in 

differential ranges for a 50 kilometre receiver separation should not exceed 1.1 

metres (Kalfus et al., 1984). For the simulations in this study, an empirical 

formula for ionospheric delay as a function of elevation angle was used; see 

Chapter 4 for details. 

Tropospheric delays are usually estimated by using surface meteorological 

measurements. Surface measurements are effective for estimating the dry 

component of tropospheric delay, but are less effective for estimating the wet 

component (Fell, 1980). The dry component, however, accounts for 80-90% of 

the total delay (Spilker, 1980). Uncertainties can grow quite large at low elevation 

angles. For this reason, observations below 5° are not used. 

The troposphere above 12 000 metres contributes very little to the wet 

component of the delay. Therefore, because this study concerns an aircraft flying at 

a moderately high altitude (7 600 metres), there will be little correlation between the 

tropospheric uncertainties at the aircraft and at the ground, and little reduction in 

these effects is obtained by using the differential technique. 

For the tropospheric model used in this research, see Chapter 4. 

3. Receiver effects  

Multipath errors arise when a portion of the received signal is reflected off 

nearby objects. These effects are a function of the antenna's directionality and 
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surroundings. Multipath errors can be minimized by antenna design, judicious 

placement of the antenna, and by using digital filtering techniques (Bletzacker, 

1985). In this study, the receivers used for differential ranging are at least 75 

kilometres apart. Therefore, the multipath errors will be independent and are not 

reduced by range differencing. 

Receiver noise and resolution are functions of the receiver's design and 

operating environment and of the type of measurement used. Both noise and 

truncation effects are reduced by at least an order of magnitude if code 

measurements are replaced by phase measurements (Martin, 1980). 

Geometrical considerations  

The magnitude of errors in coordinates or coordinate differences resulting 

from errors in ranges or range differences can be approximated by a covariance 

analysis. Specifically, the a posteriori covariance of the estimated quantities is 

given by the transformation 

C> = (AT. C1-1 • A)-1 (3.34) 

where 

Cw  • .is the covariance matrix ot the estimated coordinates (or 
coordinate differences) and clock bias, 

A • . .is the Jacobian or design matrix composed of the partial 
derivatives of the observations with respect to the to the 
estimated parameters, 

C1 . . .is the covariance matrix of the range or range difference 
observations, 

and the brackets () denote estimation (Mikhail, 1976). The matrix A is strictly a 

function of the satellite-receiver geometry, and an estimate of the geometrical 

contribution to parameter uncertainties can be obtained by replacing C1 with the 
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identity matrix in equation (3.34). In navigation, the square root of the trace of the 

resulting parameter covariance matrix, known as the dilution ofprecision (DOP), is 

often used to select a particular observation geometry. Most GPS receivers are only 

capable of tracking four satellites. In this case, the minimization of DOP factors can 

be used as the criterion for selecting the best combination of satellites from all 

visible satellites. For GPS single-receiver operation, the diagonal elements of A 

can be obtained from equation (3.30) and are of the form 

- Xi-XS 
a11,a22,a33 - r• , etc. 

= 1 

(3.35a) 

(3.35b) 

where ris is the geometric range from receiver i to satellite s and the range-

equivalent time bias c'&1 is the fourth parameter being estimated. Note that a11, 

'22' and a33 are the elements of the unit vector from the satellite to receiver i. It can 

be demonstrated that the trace of the covariance matrix C > is minimized by 

maximizing the volume of the tetrahedron having vertices at the four satellites. This 

is accomplished by selecting one satellite near the zenith and selecting three others 

widely distributed around the observation horizon. 

If the distance between the receivers is small compared with the range to 

each satellite (as it was in this study), e1 = e2 in equation (3.31) and, therefore, 

the DOP factors for differential positioning can be approximated by the corres-

ponding factors for single receiver ranging. 

Note that for static positioning the instantaneous DOP factors are less 

significant than the integrated DOP factors over the observation period (Wanless, 

1987). 
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Chapter 4 

Positioning Simulation, Processing, and Results 

A simulation package has been written in order to test the aircraft 

positioning strategies outlined in Chapter 2. This chapter describes this package, 

discusses the processing of the simulated GPS and INS observations, and presents 

simulation results. 

4.1 Simulation 

The structure of the simulation program "fltsim" is illustrated in Figures 

4.la and 4.lb. Each ot the elements of this program are discussed below. 

4.1.1 Simulation Input 

The major input parameters specify the location and size of the flight 

pattern, the locations of ground receivers for differential GPS ranges, the altitude 

and speed of the aircraft, the approximate GPS update interval, the condition of the 

atmosphere at the aircraft and on the ground, and the size and nature of the random 

and systematic errors applied to the INS and GPS data. Other input parameters are 

provided for the photogrammetric simulation, and some of these are used to 

determine the flight configuration. 
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"TRUTH" 
FILE 

 1 

RAW INS 
FILE 

Figure 4.la. Simulation program "fitsim" 

4.1.2 Trajectory Generation 

Subroutine "flight" generates a trajectory for a photogrammetric mission. 

For convenience, all flight lines are laid out east or west. The spacing between 

exposures and flight lines is determined using the flight altitude, the camera focal 

length, and the percentage of overlap in adjacent photos. The GPS update interval 

is determined in this routine as a multiple or sub-multiple of the computed exposure 

interval. During the processing a binary "truth file" is written for later comparison 

with the positions derived from the simulated INS and GPS observations. 
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4.1.3 INS Simulation 

Subroutine "siminrt" is used to simulate INS data for the mission. INS 

postitions are computed at each update or exposure epoch, whichever occurs more 

often. Equations (3.27) are used to compute perturbations to the true positions. 

The stochastic coefficients a, b, and c are generated with standard deviations 

supplied by the user. The noise terms e can be generated as first-order Markov 

processes or as random walks (Gelb, 1974), at the user's discretion. The perturbed 

INS postions are written to a file for later analysis. 

4.1.4 Orbit Perturbations 

As was discussed in Chapter 3, orbit errors can be treated as constant 

biases for the relatively short observation periods considered in this study. 

Therefore, perturbations can be conveniently computed for each orbit before the 

actual satellite positions are generated. GPS orbits are nearly circular; eccentricities 

are less than 0.01 in all cases (Buffett, 1985). Consequently, circular orbits are 

simulated, and two of the Keplerian elements - the eccentricity and the argument of 

the perigee - are superfluous. Subroutine "satpert" generates random biases in three 

of the remaining orbital elements: the semi-major axis (radius), the inclination 

(cross-track), and the satellite anomaly (along-track). These biases are generated 

separately for each of the 18 satellites in the operational constellation. Standard 

deviations of these elements are supplied by the user. 

4.1.5 Satellite Position Computation 

Subroutine "satpos" computes positions of all satellites in the constellation 

at each update epoch using the perturbed orbital elements discussed above. The 18-
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SIMULATION 

Figure 4.lb. Simulation program "fitsim" 

satellite constellation used is the one given in Fullenwider and Jorgensen (1980), 

but without the active spares. As mentioned above, circular orbits are simulated. 
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The orbital period is 43078.3 siderial seconds, and the nodes of the orbits precess 

at - 8.076. 10 s1. 

4.1.6 Satellite Selection 

A set of four satellites is selected each minute (but the selections change 

much more slowly than this). Subroutine "satslct" uses the minimum DOP criterion 

discussed in §3.3.1 to select four satellites. In particular, the geometric dilution of 

precision (GDOP) is used, which is the square root of the sum of all four of the 

diagonal elements in the normalized covariance matrix. User inputs to this process 

are elevation angle cutoff and maximum allowable GDOP. If the maximum GDOP 

is exceeded, a warning message is issued. Perturbed CT coordinates of the four 

selected satellites are written to a binary file at each update epoch. 

4.1.7 Generation of Perturbed GPS Observations 

The true ranges from the aircraft and ground receivers to each satellite are 

computed using the true satellite, ground, and aircraft positions. These ranges are 

then corrupted by tropospheric delays, ionospheric delays, and random noise. The 

receiver clock times are also perturbed for each update. 

It has been assumed that single-frequency receivers are used. Therefore, 

there is no effective way to compensate for the ionospheric delay (Cannon, 1987), 

and the entire simulated delay is an uncertainty. In order to simulate ionospheric 

decorrelation at the receivers, an elevation-angle-dependent single-frequency model, 

found for example in Martin (1980), was used. The approximate delay, in metres, 

is 

= (-b /4r2J2). I,. csc(E2 + 0.126)1/2 
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where 

b . . .is a constant which depends on fundamental physical 
quantities, and, in MKS units, is 1.6. 103, 

f . . .is the carrier frequency, 

.. Is  the vertical electron content (electrons / m2), and 

E • . .is the elevation angle, in radians. 

The vertical electron content I is a user input. 

Tropospheric delays are computed using Black's approximation, which is 

a function of temperature, pressure, and partial water vapor pressure derived from 

measurements at ground level, as well as of the elevation angle E. The delay is the 

sum of a dry component and a wet component, and, in metres, is 

5,p(dry) = kd• {ri - (cos El {1+ [1-c1]) • dd)2]"2- be) (4.2a) 

Strop(Wt) = k• { [1 - (cos El (1 - [I - c1]} d,)2]-1/2 - be  (4.2b) 

Strop(total) = 6trop(dly) + Strop(wet) (4.2c) 

where 

kd = 1.152. 10 5 .p' [(40 136.0 + 148.72.T)l(T+273.16)], 

k = 7.465 • 10-2 • [11000.0 /  (T + 27 3.16)2] , 

cl = 0.833 + (0.076 + 1.5 • 10-4 - 1) 'exp(-17.188 733 854. E), 

be = 5.848 654 459 7 10 4'(E2+ 1.8277045186.10-4), 

dd = (40136.0+148.72.T)l In, 

d = 11000.0/ In, 

p .. As  the atmospheric pressure, in millibars, 
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T . . .is the temperature in °C, 

p .. .is  the partial water vapour pressure, in millibars, and 

r . . .is the geocentric position vector of the receiver, in metres. 

The major uncertainty arising from the use of this formula is due to the inadequacy 

of surface measurements for the determination of the partial water vapour pressure 

along the ray path (Fell, 1980). For this reason, uncertainty in the tropospheric 

delay is simulated by adding a random perturbation to the input partial water vapour 

pressure. This error is applied only at the ground receiver, because the wet 

troposphere is not a significant source of error for a high-flying aircraft. The 

standard deviation of this perturbation is also input by the user. 

Separate inputs are provided for P-code pseudorange and code measure-

ment noise standard deviations. 

4.2 Processing 

Figure 4.2 illustrates the processing of the simulated observations for the 

two strategies used in this study. The steps used in processing the GPS and INS 

data are described below. 

4.2.1 GPS Processing 

In this study it has been assumed that the GPS receivers are able to track 

only four satellites, as is the case with most commercially-available equipment. 

Therefore, if three coordinates and a clock offset are estimated, there is no 

redundancy in the observations. Assuming that reasonable geometry exists, the 
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Figure 4.2. Processing of simulated observations 

design matrices of the observations with respect to the coordinates or coordinate 

differences and clock bias in equations (3.30) or (3.31) are non-singular. The solu-

tion of the system of equations (3.30) can then be obtained by an iterative Taylor-
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series expansion about some initial approximations, whereas the solution of (3.31) 

can be obtained by successive substitutions. Variances of and covariances between 

the coordinates and clock bias at each update epoch are approximated by equation 

(3.34) which, since the design matrices are non-singular, can also be written as 

CX = A-1 • C1. (A-1)T, (4.3) 

In this investigation, C1 has been assumed to be diagonal, as is common practice. 

The computation of covariances between epochs would require a more sophisticated 

observation model than the one used here. Therefore, the composite covariance 

matrix C, for all epochs is block-diagonal with three-by-three blocks. 

For positioning strategy one, the matrices CX are used in the estimation of 

INS error coefficients in equations (3.27) and their covariances. The covariances 

are then propagated into the estimated coordinates using (3.34). For strategy two, 

the matrices C are transformed into the photogrammetric reference coordinate 

system and are then used directly in the bundle adjustment along with the computed 

coordinates. 

The remainder of the discussion on processing only applies to positioning 

strategy one. The use of a strapdown system in strategy two to detect cycle slips in 

the GPS phase data or to interpolate positions between observation epochs has not 

been simulated, and the actual processes were not investigated. 

4.2.2 INS Processing 

Equations (3.28) lead to a very simple method for estimating the error 

coefficients y. The least-squares estimate of these coefficients is given by 
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where 

(y) = - (A,T CI'-1 • A1)-' • Air C11 • dp (4.4) 

A, . * .is the composite design matrix for all update epochs, 

Cl' .. .is  the covariance matrix of the observation vector, and 

dp . . .is the observation vector, which is composed of the 
differences between the GPS-derived positions and 
the raw INS positions. 

The covariance matrix C1' is the sum of the individual covariance matrices of the 

GPS and INS positions. The covariance matrix of the GPS positions, originally 

expressed in terms of Cartesian CT coordinates, is transformed by similarity into 

curvilinear coordinates for combination with the INS covariances. Therefore, 

where 

Cl' = C + C1, 

C1G = ; . C,, 
(4.6a) 

(4.6b) 

C1G . . .is the covariance matrix of the GPS positions expressed 
in curvilinear CT coordinates, 

C11 . . .is the covariance matrix of the raw INS positions, and 

J4x • . .is the Jacobian matrix of the curvilinear coordinates 
with respect to the Cartesian coordinates. 

Because the INS output is integrated, the random processes which describe the 

error terms e in equations (3.27) can be nonstationary. In the simulation package 

described here, the position errors can be generated as either a first-order Markov 

process or as a random walk (Gelb, 1974). For the Markov process, an 

exponential correlation exists between each coordinate at adjacent epochs (resulting 
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in a banded matrix C11), but the variances remain constant. In the case of the 

random walk, the matrix C11 is diagonal but the variances grow linearly with time. 

The terms in J# can be found, for example, in Krakiwsky et al. (1977). 

4.2.3 Estimation of Exposure Station Coordinates and Covariances 

After the coefficients (y) have been estimated, they are used in equations 

(3.27) to estimate corrections (&?t,(t1)), (S(ti),) and (8h(t)) for each exposure 

epoch, which, in general, will not occur simultaneously with the GPS updates. 

The estimated corrections are applied to the raw INS postitions to obtain the 

estimates of the exposure station coordinates. Variances of the derived coordinates 

are obtained using the covariance law (4.6b); in each case, the Jacobian matrix is a 

row vector, given by Al* or A2* in equation (3.29b). 

4.3 Simulation Results 

A flight pattern for a simulated photogranimetric mission was generated. 

This pattern is illustrated in Figure 4.3. The spacing of the lines was determined 

from the input photogrammetric parameters, which are discussed in Chapter 6. 

This same flight pattern was used for a variety of simulations incorporating up to 

two ground receivers and various error combinations. 

Table 4.1 summarizes the parameters used in the simulations. An effort 

has been made to use liberal estimates of error magnitudes. This was done 

because, inevitably, some error sources are neglected in simulations. Estimates of 

actual GPS errors can be found, for example, in Martin (1980) or Payne (1982). 

The table is mostly self-explanatory, but a brief explanation of some of the 

parameters follows. 
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GFDJf'D 
STATION #1 

Figure 4.3. Simulated flight pattern 

The flight altitude was chosen to conform with a photography scale of 

1:50 000, as is described in Chapter 6. The speed, which is reasonable for an 

aircraft such as a DC-3, was chosen to allow convenient synchronization of the 
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camera shutter with the position updates. (The shutter interval was 60 s.) This 

synchronization was done strictly for simulation purposes and would not be done in 

Flight 

altitude - 7 620 m 
speed •- 76.2 m s-1 
duration - 5040 s 

GPS Utilization 

satellite constellation 

satellite selection 

average GDOP 
updates 

- 18 satellites in 6 orbital planes, 40° phasing, 

55° orbital inclination 
- 4 satellites per epoch, minimum GDOP criterion, 
10° elevation angle cutoff 

- 4.3 
- 1/3 s-i, 1 680 total 

Errors Simulated 

A. Applied in all cases 

GPS code measurement noise - 2.0 m, 1, uncorrelated 

GPS phase measurement noise - 0.05 m, 1, uncorrelated 

GPS instantaneous clock bias - 100 m range-equivalent, icy, 1st-
order Markov process, 3 s cor. time 

INS system grow to 5-6 kilometres in each coordinate 

INS random errors - 0.01 m s-1, 1s, random walk in positions 

B. Applied in specific cases 

orbit prediction errors (1(7, bias) 

standard - jia = 3 m, Al = 1.13•10-, 4f= 1.38.10.6 
improved - Aa = 2 m, 4i = 7.53.10-8, Af= 7.53.10-8 

ionosphere - equation (4. 1), I, = 2.1017 m 2 

wet troposphere - equation (4.2), 10 mb, la uncertainty in p, 
at ground receiver(s), bias 

Table 4.1. Simulation summary 
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practice. The flight duration, by coincidence, was equal to one Schuler period, 

which is desirable for the estimation of the INS error coefficients. 

The 100 elevation angle cutoff is conservative; 50 is often used. With the 

100 cutoff, some outage periods (i.e. periods with less than four visible satellites or 

with unacceptably high GDOP's) will occur with the 18-satellite constellation. The 

starting time of the simulation was chosen so that outages would not occur during 

the mission. 

The standard orbit errors are equivalent to three metres in radius and 

inclination and 37 metres in the satellite anomaly. The improved (post-determined) 

orbit errors are based on the objectives of Krakiwsky et al. (1985) and were 

equivalent to two metres in each of the three perturbed elements. The ionospheric 

vertical electron content (Iv) of 2•1017 rn-2 is a median daytime value (Martin, 

1980). 

Tables 4.2 and 4.3 summarize the results of the positioning simulations. 

Table 4.2 gives results for GPS code single-receiver and differential positioning. 

Table 4.3 presents results for combined GPS-INS positioning. Single-difference 

phase results were included in the second table to emphasize the need for cycle-slip 

control. The table results were obtained from five simulation runs using different 

random seeds. The first three figures in each table location are rms errors in CTx, 

CTy, and CTz, respectively. The fourth number, in parentheses, gives the standard 

deviation of the vector magnitudes of these errors over the five simulation runs, and 

is a measure of bias in the individual runs. 
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'NErrors 

Configuration 

standard 
orbit 
errors 

only 

ionosphere 
only 

standard 
orbit 
+ 

ionosphere 

standard 
orbit + 

ionosphere 
+wet 

troposphere 

improved 
orbit + 

ionosphere 
+wet 

troposphere 

8.85 3.00 8.45 3.94 
Single Receiver 12.17 11.42 14.53 11.55 

Code 18.83 14.38 20.91 
ground 

receiver) 17.16 
(12.05) (0.10) (12.31) (5.23) 

3.23 3.23 3.23 3.23 3.23 
Differential Code 5.55 5.55 5.55 5.56 5.55 
1 Ground Receiver 8.46 8.45 8.46 8.46 8.46 

(0.26) (0.25) (0.25) (0.25) (0.25) 

2.81 2.81 2.81 2.81 2.81 
Differential Code 4.69 4.69 4.69 4.69 4.69 
2 Ground Receivers 7.27 7.28 7.27 7.27 7.27 

(0.08) (0.08) (0.08) (0.08) (0.08) 

Table 4.2. GPS rms position errors (m) 

An examination of Table 4.2 reveals that orbit prediction errors are the 

major source of uncertainties in single-receiver positioning. Ionosphere 

uncertainties are also significant for single-receiver single-frequency operation, but 

could be reduced if a dual-frequency receiver is used. For the single-receiver 

results, the large magnitude of the standard deviations between runs indicate that 

biases are present in the individual runs. These biases are fairly large even when 

the improved orbit is used, and have important implications for the combination of 

GPS with an INS. 

The most significant result in Table 4.2 is the improvement which is 

obtained when the differential technique is used. The rms errors in each coordinate 

range from 8 to 21 metres for single-receiver pseudoranges are used, but drop to 3 

to 8 metres when one ground receiver is added. These error estimates agree with 

actual results given in Lachapelle et al. (1984) where standard errors of 10 to 25 
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metres were estimated when using a single receiver, whereas errors of 5 to 10 

metres were estimated for differential positioning. Some additional improvement is 

obtained if a second ground receiver is added to bracket the flight area. This 

improvement is due to an averaging of the partially-correlated errors at the three 

receivers. The small values in parentheses indicate that the differential technique 

effectively removes the biases which are present in positions derived from single-

receiver observations. 

The differential results presented here were obtained by using the range-

difference model of equation (3.31). An alternative method, which is applicable in 

real-time, uses range corrections obtained at the ground station. The pseudorange 

measured at the ground station is compared with the range computed from the 

known ground station and satellite coordinates, and the difference is transmitted to 

the aircraft and applied as a correction. Test results using this second method were 

identical to those using equation (3.31). 

A common characteristic of all the results in Table 4.2 is the spatial 

distribution of errors. The largest errors occur in the CTz.coor&nates, while the 

smallest occur in the CTx..coordinates. This distribution is due to the geometrical 

restrictions of satellite postitioning. Because all visible satellites are above the 

horizon, the determination of the component of position in the local vertical is 

weaker than the determination of the horizontal components. The northeast corner 

of the simulated flight pattern was placed at (0, X) = (50°, -100°). The distribution 

of errors in the table is due to the fact that, at this location, the local vertical has its 

largest projection in the CTz..yJ.5, and its smallest projection in the CTx.is 

The final results of the simulations for positioning strategies one and two 

are given in Table 4.3. The figures above the bold line pertain to strategy one, 

while the numbers below the line pertain to strategy two. 
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With the addition of a stable-platform INS, the accuracy of the positions 

derived from single-receiver pseudoranges improves only slightly, while the 

accuracy of positions derived from differential pseudoranges improves by an order 

of magnitude. This result indicates the importance of using the differential 

technique to reduce biases in the GPS positions. Note that preliminary results 

(Cannon, 1987) have not verified strategy number one, but the causes of the dis-

rrors 

Configuration 

standard 
orbit 
errors 

only 

ionosphere 
only 

standard 
orbit 
+ 

ionosphere 

standard 
orbit + 

ionosphere 
•wet 

troposphere 

improved 
orbit + 

ionosphere 
+wet 

troposphere 

8.09 1.79 7.68 2.76 
Single Receiver 10.89 10.58 13.50 

(no 
10.56 

Code 16.87 12.96 19.09 
ground 

15.77 
(12.67) (0.08) (12.71) 

receiver) 

0.27 0.26 0.28 0.29 0.27 

Differential Code 0.36 0.29 0.36 0.35 0.31 

1 Ground Receiver 0.60 0.52 0.59 0.58 0.54 
(0.13) (0.09) (0.12) (0.11) (0.06) 

0.23 0.23 0.23 0.23 0.23 
Differential Code 0.35 0.36 0.35 0.37 0.38 
2 Ground Receivers 0.58 0.59 0.58 0.58 0.59 

(0.12) (0.11) (0.11) (0.15) (0.14) 

Phase 
0.13 0.12 0.16 0.16 0.13 

Single 
Difference 

0.22 0.15 0.24 0.26 0.22 

1 Ground Receiver 
0.36 0.22 0.36 0.33 0.29 

(0.11) (< 0.01) (0.09) (0.18) (0.08) 

0.07 0.07 0.08 0.08 0.08 
Phase Single 
Difference 

0.12 0.12 0.12 0.21 0.21 

2 Ground Receivers 
0.20 0.18 0.20 0.29 0.27 

(< 0.01) (< 0.01) (< 0.01) (0.09) (0.09) 

Table 4.3. GPS-INS rms position errors (m) 

crepancies have not yet been identified. 

The highest accuracies were obtained by using GPS phase observations. 

Again, these simulation results are in line with recent field test results obtained by 
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Schwarz et al. (1987), in which estimated errors were between 0.1 to 0.5 metres in 

each coordinate for cycle-slip free data. Cycle-slip control is still needed, however. 

The GPS phase technique is attractive because an inexpensive strapdown INS can 

be used for this purpose. The GPS phase results improved slightly when a second 

ground receiver was added. The addition of a second receiver may also be 

desirable to increase the system reliability with regards to ambiguity resolution and 

cycle slips. 

As a check on the simulation results, the propagated coordinate 

covariances were compared with the rms coordinate errors. As would be expected, 

the covariance estimates agreed with the coordinate errors when systematic effects 

were not present, but they were too optimistic when such effects were simulated. 

Again, it should be mentioned that the strapdown INS was not simulated, 

and that the phase results presented were obtained simply by replacing the code 

observations (which were used to generate Table 4.2) with more precise phase 

observations. The details of cycle-slip detection and correction have yet to be 

worked out. 
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Chapter 5 

Aerotriangulation Concepts and Models 

This chapter will introduce photogrammetric concepts and will describe 

math and error models for aerotriangulation. In Chapter 6, the simulation and 

processing of photogrammetric observations is described; and simulation results are 

presented. 

5.1 Aerotriangulation Concepts 

The ultimate aim of this study is to develop methods to reduce the diffi-

culty and expense of topographic mapping. One of the key steps in making maps 

from aerial photographs is aerotriangulation. The object of aerotriangulation is to 

determine the coordinates of points on the ground by exploiting ray intersections in 

overlapping aerial photographs. The earliest applications of photogrammetry used 

analog means to produce maps from photographs. Thus, in its original form, 

aerotriangulation was strictly an optical-mechanical procedure. As the science 

developed, photogrammetric equipment (primarily stereoplotters) became more 

sophisticated, as did the techniques used to exploit the information in the 

photographic imagery. Analytical techniques became a key element in the mapping 

process with the advent of the digital computer in the late 1950's (Brown, 1976). 

The most important trend today is the supplanting of photographic imagery with 

digital imagery. Mechanical procedures, however, are still prevalent in the mapping 

industry. 
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Techniques and terminology in photogrammetry are inextricably tied to its 

historical development. Hence, some of the methods and language used today may 

seem obsolete in the context of today's digital technology (Rauhala, 1987). It is 

instructive, however, to examine a traditional sequence of operations in order to 

understand the nature of the photogrammetric problem. In stereoplotters, the 

mapping process can be divided into four distinct steps: interior orientation, relative 

orientation, absolute orientation, and compilation. 

The purpose of interior orientation is to recreate the internal geometry and 

conditions of the camera at the time of exposure. Roughly defined, the elements of 

interest include the principal distance, or the perpendicular distance from the 

camera's perspective centre to the image plane, the location in the image plane of the 

principal point, which lies at the foot of the perpendicular from the perspective 

centre, and parameters of lens distortion. 

Interior orientation is facilitated in aerial mapping by the use of metric 

cameras. A metric camera is "a camera whose interior orientation is known, stable, 

and reproducible" (ASP, 1980). The elements of interior orientation are determined 

in laboratory precalibration and are generally assumed to be constant between cali-

brations. This assumption, however, is not justified in practice (Brown, 1985), as 

will be discussed in §5.3. Metric cameras are provided with reference marks, 

known as fiducials, which are imaged in each exposure. Usually, four to eight 

fiducials are distributed around the periphery of the image, as shown in Figure 5.1. 

Some cameras are equipped with a reseau, which is a grid of reference marks 

distributed throughout the image plane. The purpose of these reference marks is to 

establish a reproducible photocoordinate system to which all photogrammetric 

observations refer. The marks, especially reseau, are also used in the compensation 

of some image-variant effects, such as film shrinkage and unflatness of the image 

67 



plate. Analog procedures for interior orientation include the setting of the calibrated 

principal distance, the alignment of the photographic transparency in the projector 

carriage, and the correction of lens distortion by compensating optics. Today these 

operations have almost universally been replaced by mathematical techniques. 

Although interior orientation can be integrated with relative and absolute orientation 

in a unified aerotriangulation, it is usually performed as a separate process. 

Fiducial 
Marks 

Principal 
Point 

Figure 5.1. Fiducials and photocoordinate system 

In relative orientation, the spatial relationship of a pair of exposures is 

reproduced, creating the stereomodel (Wolf, 1974). The stereomodel is the locus 

of conjugate ray intersections from a pair of relatively-oriented photographs. A ray 

intersection from a pair of conjugate images is illustrated in Figure 5.2. The coor-

dinate systems in the figure are discussed in §5.2. The stereomodel reproduces the 

shape of the imaged object (in this case terrain), but the scale and orientation of the 

model are arbitrary. In mechanical plotters, relative orientation is done by physical 
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translations and rotations of the projectors. Mathematically, relative orientation 

involves the determination of five quantities chosen from the 12 spatial degrees of 

freedom of the two projectors. 

During absolute orientation, the scale and orientation of the stereomodel 

with respect to a reference coordinate system are determined. Again, in analog 

plotters, this is accomplished by moving the projectors so that the rays 

corresponding to ground control points intersect at pre-determined locations in the 

map volume. An analytical solution requires that seven additional parameters be 

determined, thus accounting for the total of 12 degrees of freedom of the projectors. 

G G  
Cx ., y 1, z1) 

('1x p ,'1y) 

12 12 
( x, Y) 

G G (x21y21Gz2) 
12y  

Figure 5.2. Conjugate images and ray intersection 
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Relative and absolute orientation are together called exterior orientation. 

There are six elements of exterior orientation per photo; these are the three spatial 

coordinates of the exposure stations along with three orientation parameters which 

relate the ground coordinate system to the photocoordinate system. Once exterior 

orientation has been completed, the map compilation process can begin. 

Mechanically, compilation involves the tracing of features and topography by an 

operator. Although automated terrain compilation has been around for a number of 

years (Kok, 1986) and is becoming more prevalent, manual compilation is still 

almost universal. 

So far in this discussion, explicit consideration has been given only to 

pairs of photographs. The use of pairs of photographs without regard to other 

photographs in the mapping area is restrictive, however, because at least three 

ground control points must appear in each pair, and because large discontinuities 

may appear between adjacent pairs. These restrictions motivated the development 

of a technique called bridging. Using this technique, control can be extended to 

models in which no ground control was established. Mechanical bridging was 

implemented by using multiple projectors, by imposing constraints on the projector 

movements in so-called universal stereoplotters, or by radial-arm triangulation, 

which is a form of analog least-squares adjustment (ASP, 1980). With the 

introduction of digital computers, analytical bridging in large blocks of photo-

graphs, or block adjustment, became feasible. 

Figure 5.3 illustrates a block of 24 photographs and a typical ground 

control configuration. Each rectangle is, roughly, the overlap area between two 

adjacent photographs in a strip. The shaded areas are overlap between adjacent 

strips. The amount of overlap determines the number of photographic ray 

intersections which occur at each ground point. Typical values are 60% end lap (in 
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strip direction) and 30% side lap (between strips), which results in three to six ray 

intersections per point. Increasing the amount of overlap enhances the reliability 

and precision of aeroiriangulation (Lucas, 1984), but it also increases the expense. 

(0 

A 0 A 

© 

A A 

A A 

A 

© 
Vertical control 

Horizontal and vertical 
control 

© 

Figure 5.3. Typical ground control configuration 

Conceptually, the block may be thought of as a sheet of plastic, and the 

control points can be viewed as tacks which constrain the sheet's horizontal or 

vertical movements with respect to the ground coordinate system. The control 

points can be conspicuously marked on the ground, or pre-targeted, before the area 

is flown, or, alternately, they can be established on well-defined features which 
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appear on existing photography. Control is extended photogrammetric ally to other 

points on the ground so that there are several points in each model. These new 

points, known as tie points, must be well-defined so that they can be identified in 

each photograph in which they appear. Tie points constrain the block's internal 

deformations. In this study, ground control has been replaced by control at the 

exposure stations, such as (Gx1, Gy1, Gz1) and (Gx2, Gy2, G22) in Figure 5.2, and 

all points identified in the imagery are tie points. Note that the "sheet of plastic" is 

less constrained with exposure station control, as will be seen below. Although tie 

points can also be pre-targetted, it has been assumed here that they have not been 

marked. Thus, it is not necessary for anyone to enter the area to be mapped. 

There are several different types of analytical block adjustment in use. In 

independent model block adjustments (Blais, 1979), relative and absolute 

orientation are performed separately. In this study, a bundle adjustment (Brown, 

1976) was used, in which relative and absolute orientation are combined. The 

word "bundle" refers to the bundles of rays which create each image. The bundle 

adjustment was selected because it permits the rigorous incorporation of a priori 

covariance information on the exposure station coordinates, ground station 

coordinates, and photocoordinate measurements. In self-calibrating bundle adjust-

ments, parameters of interior orientation may also be recovered (ibid.). Self 

calibration was not used in this investigation. 

Mapping from aerial photography is usually done with vertical 

photography, and deviations of the camera's optical axis of only two or three 

degrees from the vertical are allowed. Vertical photography was (and still is) used 

because of restrictions of the human visual system which constrain stereoplotter 

design, and because it simplifies the mathematics. A consequence of vertical 

photography is that the determination of the heights of ground points is somewhat 
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weaker than the determination of horizontal coordinates. In this study, vertical 

photography is assumed. 

5.2 Aerotriangulation Model 

Two new coordinate systems are introduced. The photocoordinate system 

is shown in Figure 5.1. The axes in the figure are only approximate, as the exact 

directions of these axes with respect to the fiducial marks is determined in labora-

tory precalibration. For the case of vertical photography, the ix-axis nearly 

coincides with the direction of flight, known as the epipolar direction. The origin 

of the system is at the interior nodal point, which is treated as the perspective centre 

(Merchant, 1973). As a first approximation, image points are constrained to a 

plane, and thus all image points have a constant z-coordinate equal to the camera 

principal distance. For aerial cameras focussed at infinity, the principal distance is 

equal to the focal length of the lens. The y-axes completes the right-handed 

system. 

The ground coordinate system used in this study is a three-dimensional 

Cartesian system. Its origin is on the ellipsoid at the centre of the flight area, its xy-

plane is tangent to the ellipsoid at the origin, its x-axis points east, and its y-axis 

points north to complete the right-handed system. This system is equivalent to a 

local-level system, such as that illustrated in Figure 3. 1, with its origin at the map 

centre. Ground coordinates are designated by the superscript 'G 11. 

The basic observation model for aerotriangulation is known as 

collinearUy, which is the condition that the ground point, the cameras perspective 

centre, and the image of the ground point lie on a straight line. In the literature, the 

collinearity equations are usually derived using geometric optics with a thin lens 

(ASP, 1980). Bender (1971), however, wrote an interesting dissertation in which 
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the equations were derived by imposing constraints on the general projective 

equations. With reference to Figure 5.2, the observation equations are given by 

where 

inXp + 5lens+ at+ = i,pp_J  Sx 

iny , = my —f• -r+5y lens +St+8y 
PP z 

fly jfl' 
P, .Yp 

(5.la) 

(5. ib) 

are photocoordinates of the image of point p in photo n, 

iX m ,,,,, v , . . . are principal point offsets from precalibration, 

f ...  is the camera principal distance from precalibration, 

SXle , 6Y1e.ç ...  are computed corrections for lens distortion, 

are computed corrections for atmospheric refraction, 

.are due to unmodeled effects, and 

• are components of the vector from exposure station n 
to ground point p expressed in the photocoordinate 
system. 

The vector (x', y', z') is given by 
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where inRG is a direction cosine matrix which rotates from the ground coordinate 

system into the photocoordinate system of photo n, and the other coordinates are as 

illustrated in Figure 5.2. 

The parameters f, inxpp, and inypp are known as the primary elements of 

interior orientation, and the fact that they are determined in laboratory precalibration 

has significant implications in this study, as will be seen below. Note that there are 

several different definitions for the principal point. The offsets inxpp, and inypp are 

the photocoordinates of the principal point of minimum variance (Merchant, 1973). 

5.3 Aerotriangulation Error Model 

The error terms e and ey in equations (5.1) are due to inadequacies of the 

various precalibration models, uncertainties in the parameters determined in 

precalibration, neglected effects such as film shrinkage and film unflatness, and 

residual atmospheric uncertainty. In this study the most significant effects are 

variations in the primary elements of interior orientation, and these were the only 

errors which were explicitly simulated. For the sake of completeness, however, a 

short discussion of other error sources precedes the treatment of the latter errors. 

5.3.1 Lens Distortion 

Deviations from collinearity due to lens distortion are primarily due to two 

physical phenomena: 

1. departures of the lens surfaces from their ideal shape (a parabaloid of 
revolution), and 

2. non-alignment of the various elements of the compound lens 

(Merchant, 1973). Distortion due to the former cause is known as radial distortion, 

while that due to the latter is known as decentering distortion. The models which 
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are most commonly used to compute these effects are due to A.E. Conrady, who 

published his work in 1919 (ibid.). Radial distortion is usually modeled as an odd-

powered polynomial in the radial image distance, i.e. 

rad = a1•r +a2•r3 +a3•r5 + 

r = (ix2 + iy2)l/2. 

(5.3a) 

(5.3b) 

As an alternative, Munjy (1986) has suggested using a variable focal length repre-

sented by finite elements in the image plane, thus eliminating the assumption of 

radial symmetry implicit in (5.3). 

Conrady's model for decentering distortion is of the form 

where 

Li1dec dec 

00 

Lrdec = 3 P(r). sin( - øo) (5.4a) 

Lttdec = P(r) cos(Ø - øo) 

.are radial and tangential components of decentering 
distortion, 

(5.4b) 

.is the angle to the image point radius vector in the image 
plane, 

.is the direction of maximum tangential distortion, and 

P(r) . . .is an even-powered polynomial in r 

(Fryer and Brown, 1986). 

In self-calibrating adjustments, a subset of the coefficients in equations 

(5.3) and (5.4) are recovered along with the other unknown parameters. In 

laboratory calibration, the convention is to provide distortion values in table or 
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graph format, leaving the choice of interpolation method to the user. Piecewise-

linear interpolation is usually effective (Chapman, 1987). For modem aerial 

cameras, residual uncertainties in lens distortion are below the noise level of most 

photogrammetr.ic instruments. Therefore, these effects have not been explicitly 

treated in this investigation. 

5.3.2 Atmospheric Refraction 

Refraction in aerial photography is due to the variation of air density in the 

atmosphere. As a first approximation, it can be assumed that atmospheric density is 

strictly a function of altitude, and, therefore, that vertical rays are not deflected. 

Consequently, for vertical photography, atmospheric refraction is usually computed 

as a function of radial image distance using 

Ar = K. r+-
f2 

(5.5) 

where K is an empirical function of altitude (ASP, 1980). The slight deviations of 

near-vertical photography from true verticality do not induce significant errors in the 

computed values (Merchant, 1973). For a standard 6-inch focal length, nine-inch 

format camera and a flying height of 7600 metres, the computed image displace-

ment due to atmospheric refraction can reach 24 micrometres at the corners of the 

photo. Residual uncertainties, however, are below the noise level of photogram-

metric measurements, and refraction has not been simulated in this study. 
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5.3.3 Other Image-Variant Effects 

There are several distortions which do not have explicit representation in 

equations (5.1). The most significant of these are due to film shrinkage and 

unflatness of the film during exposure. The effects of film shrinkage, and, to a 

lesser extent, film unflatness can be reduced by use of a reseau. Brown (1976), 

however, found significant residual systematic errors caused by deformations of the 

reseau-carrying platen itself, and these findings resulted in the design of a new 

platen. It has been assumed that such a non-deforming platen was used for the 

photography in this study, and film shrinkage and unflatness have not been 

explicitly treated. 

5.3.4 Projective Compensation 

For metric cameras, the primary elements of interior orientation - f, inx pp, 

and inypp - are determined in laboratory precalibration. Aerial cameras, however, 

are operated under a variety of environmental conditions, and these elements can 

not be assumed to remain constant. Variations of 50 micrometres in f and 3 

micrometres in inxpp and inypp can occur (Brown, 1985). If all control is at ground 

level, the variations in the primary elements do not contribute significant 

uncertainties to aerothangulated ground coordinates due to a phenomenon called 

projective compensation. Conversely, when ground control is replaced by 

exposure station control, the consequences of projective compensation are 

detrimental. 

Projective compensation is a consequence of coupling between certain 

parameters in the collinearity equations. Of concern here is the coupling between 

the primary elements of interior orientation and the ground and exposure station 

coordinates. This phenomenon can be readily understood by making the 
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simplifying assumtions that the photography is truely vertical and that the horizontal 

axes are in alignment with the ground axes. In this case, inRG —k I in equation 

(5.2) and equations (5.1) become (neglecting error terms) 

• GGx 
= i?; _f.  P fl 

p pp Gz_Gz 
P fl 

in = in f.Pfl  
P YPP 

Gz_Gz 

(5.6a) 

(5.6b) 

An examination of these equations reveals that there is coupling between the 

following pairs of elements: inxpp <> G ,, inx, -* Gx,, iny , Gyp,, iny , 

Gy,f<—> Gz, andf Gz. This coupling is indicated by the fact that the ratios of 

partial derivatives of equations (5.6) with respect to each member of the pairs is 

equal to ±f / (Gz - For most aerial photography, GZn >> Gz for all points p, 

and this ratio is practically constant. This near-perfect linear dependence of these 

elements precludes the estimation of both members of any pair for vertical photo-

graphy over relatively flat terrain (Merchant, 1973). Therefore, the determination 

of inxPP, iny,,, andf by self-calibration is not feasible in this study. 

When all control is at ground level, errors in the primary elements of 

interior orientation are "soaked up" by the exposure station coordinates Gx, 

and Gz. This effect is most pronounced in the coupling f Gz,, which has a 

similar contribution from both equation (5.la) and equation (5.lb). Since the 

exposure station coordinates are essentially "nuisance parameters" in aero-

triangulation, projective compensation results in beneficial effects for ground-

controlled block adjustments. When the exposure station corrdinates are cons-
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trained, however, errors in the interior orientation elements propagate into the 

ground coordinates, which are the parameters of interest. For this reason, errors in 

andf were simulated, as is discussed in Chapter 6. 
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Chapter 6 

Photogrammetric Simulation, Processing, and Results 

The trajectory simulation discussed in Chapter 4 was used to drive a photo-

grammetric simulation. The generation of photogrammetric data and the use of 

these data and the simulated exposure station positions in a bundle adjustment are 

described in this chapter, and simulation results are presented. 

6.1 Photogrammetric Simulation 

Figure 6.1 is a simplified flowchart of the photogrammetric simulation. 

Some of its features are discussed below. 

6.1.1 Photogrammetric Input 

Photogrammetric data comprises part of the input to the simulation program 

"tfltsim". The camera focal length, along with the percentage of end and side 

overlap, determines the spacing of the flight lines and the exposure and GPS update 

intervals. Other input parameters are standard deviations of camera orientation 

elements from true verticality and from azimuthal alignment with the ground 

coordinate system, amount of relief variation for tie points, and standard deviations 

of the primary elements of interior orientation and of photocoordinate measure-

ments. 
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Figure 6.1. Photogrammetric simulation 
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6.1.2 Perturbation of Interior Orientation Elements 

The focal length and principal point coordinates are given random 

perturbations based on the input stanfrrd deviations. These perturbed elements are 

held constant for the duration of the simulation run. 
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Figure 6.2. Tie point configuration 

6.1.3 Generation of Tie Points 

Figures 6.2 and 6.4 illustrate the tie point configuration used. Nominally, 

nine tie points are generated per image. In Figure 6.2, six photos from the interior 
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of the block are shown. The small squares indicate tie points near the principal 

points of each of the six photos. The photos have been offset in the figure to 

illustrate the overlap. The tie points along the line connecting the principal points 

are imaged in three photos and thus are determined by three ray intersections, while 

the points near the edges of the photos are determined by six ray intersections. As 

shown in Figure 6.4, no tie points are generated at the ends of the flight lines. 

Relief is generated in a regular pattern using the input terrain parameter. 

6.1.4 Generation of Image Coordinates 

Image coordinates are generated for each tie point in the image using 

equations (5.1) and the perturbed interior orientation elements. For each image, the 

camera is given a random orientation with respect to the ground coordinate system. 

The deviations in orientation are based on values input by the user. The image 

coordinates are given additional random errors based on input standard deviations. 

6.2 Photogrammetric Processing: The Bundle Adjustment 

In its most simple form, the bundle adjustment is a combined relative and 

absolute orientation of a block of overlapping photographs. The parameters to be 

determined are six exterior orientation elements for each photo and three ground 

coordinates for each tie or control point. The choice of the three angular exterior 

orientation elements is arbitrary (Merchant, 1973). Gimbal angles are the most 

common choice, and they have been used here. These are three sequential rotations 

of the ground system into the photocoordinate system: co, a rotation about thex-

axis, 0, a rotation about the (new) y-axis, and ic, a rotation about the (new) z-axis. 

Sometimes the order of these rotations is changed, resulting in different numerical 
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values for these parameters. The rotation matrix 1nRG in equation (5.2), however, 

is unique, regardless of the parameterization. 

Two types of observation equations are used. The first is the collinearity 

condition (5.1) which relates the exterior orientation elements and ground 

coordinates to photocoordinate observations. The second observation type incor-

porates a priori information on the parameters which are to be estimated. This 

second model is of the simple form 

X = XØ + 8x0 (6.1) 

where 

x . . .is the vector of parameters (exterior orientation 
elements and ground coordinates), 

x0 . . .are initial estimates of the parameters, and 

exo • .is a random vector with zero mean with 
associated covariance matrix C, 0. 

In this study, the matrix C, 0 takes the form 

C. = ICXPC 0 
0 CxGI (6.2) 

where C, is block diagonal with 6 x 6 submatrices composed of the covariances 

of the perspective centre coordinates (computed as described in Chapter 4) and the a 

priori variances of the perspective centre gimbal angles, and CXG is diagonal and 

composed of the a priori variances of the tie point ground coordinates. The col-

linearity equations are linearized by a first-order Taylor series expansion. Utilizing 

both types of observations, the least-squares solution for the parameters is 
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(8x) = _(AT.cj1.A + c; 1.AT.c1 1. w (6.3) 

where 

(ax) . . .is a vector of estimated corrections to the 
approximate parameters x0, 

A . . .is the design matrix arising from the coilinearity 
condition, 

C1 . . .is the covariance matrix of the observed 
photocoordinates (assumed here to be 
diagonal), and 

W . . .is the misclosure vector composed of the differences 
between the observed photocoordinates and the 
photocoordinates computed using the parameter 
estimates 

(Krakiwsky, 1982). The solution is iteratively improved until it satisfies a 

convergence criterion. Note that some of the variances in C, 0 may be very large, 

as were the gimbal angle variances and the tie point coordinate variances CXG in this 

study. Nevertheless, the corresponding weights are often used in the solution 

(6.3), even though they are very small. These weights are useful, however, since 

the addition of small quantities to the main diagonal of the coefficient matrix in-

creases the numerical stability of the system. 

For a block of aerial photographs, the system of normal equations can be 

quite large. For the relatively small block of photographs used in this study (48 

photos and 108 tie points), there are 288 exterior orientation parameters and 324 

ground coordinates to be estimated. The solution of the resulting 612 x 612 system 

of equations by brute force is not practical. Fortunately, with proper parameter 

ordering, the normal equations have a sparse pattern which is easily exploited. The 
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usual scheme is to order the photo unknowns first and the ground coordinates 

second. The normal coefficient matrix then assumes the form 

AT.C1l.A+C;= N= 
N 11N 12 

-"s 12 22 

(6.4) 

where N11 corresponds to the exterior orientation elements and is block-diagonal 

with symmetric 6 x 6 blocks, N22 corresponds to the ground coordinates of the tie 

points and is block diagonal with symmetric 3 x 3 blocks, and N12 is a sparse 

matrix. 

Figure 6.3 is a schematic of the structure of a portion of the normal 

coefficient matrix corresponding to the six photos and 25 tie points illustrated in 

Figure 6.2. The shaded sections are the locations of non-zero elements. The 

numerical ordering shown in Figure 6.2 was used, with the exterior orientation 

parameters of the six photos (in the order indicated by the Roman numerals) coming 

first, and the tie points (in the order indicated by the Arabic numerals) coming 

second. For any configuration there is a particular parameter ordering which 

minimizes the bandwidth of the matrix. The ordering shown in the figure is not 

optimal, but it is similar to the ordering used in this study. Optimal ordering would 

not have improved the efficiency of the bundle adjustment in this research, 

however, because a relatively simple partitioning and solution scheme was used. 

Automated optimal ordering of parameters for a general block of photographs, 

which may contain cross-flight strips, is a topic of current research (Lucas, 1981). 

Note that for a large block of photos, the off-diagonal portion N12 is very sparse. 
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Figure 6.3. Structure of normal equations 

For the computation of (6.3) a simple matrix identity was used which 

relates the inverse of the normal coefficient matrix N to the terms in the partition 

(6.4): 

where 

-1 [EF 

N [GH 22 

E = (N jj—N 12-N -1 -NT 
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(6.5a) 

(6.5b) 



1 T 
G = —N 2.N 12.E 

F = GT, and 

H = N—N.Nf2.F 

(6.5c) 

(6.5d) 

(6.5e) 

(Faddeev and Faddeeva, 1963). Note that the largest submatrix to be inverted, 

N22, is block diagonal with 3 x 3 blocks. Therefore, the inversion of N22 is 

accomplished by n 3 x 3 inversions, where n is the number of tie points. The off-

diagonal submatrices are essentially folded into N11, which is 6m x 6m, where m 

is the number of photos and 6m <3n. There are analogous formulae for the 

inversion of N for the case where 6m > 3n (ibid.). Brown (1976) describes more 

efficient methods in which formulae similar to (6.5) are applied recursively. These 

latter methods are also useful when parameters of self-calibration are added to the 

border of N. The more efficient partitioning schemes were not used in this 

investigation. 

6.3 Simulation Results 

An existing bundle adjustment program, written by M.A. Chapman, was 

modified for this investigation. These modifications were necessary to allow the 

adjustment of a reasonably-sized block (i... 50 photos) and to allow the introduction 

of covariances between coordinates for each exposure station. It was found that the 

"very large array" option on the Honeywell Multics computer was not sufficient for 

the former purpose (due to system bugs), so the program was modified to utilize 

disk input and output during processing of the normal equations. Packed storage 
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was also used to exploit the block-diagonal structure and symmetry of the 

coefficient matrix. 

Photography 

camera principal distance . . .6 inches (152.4 mm) 

camera format . . .9 inches (228.6 mm) 

average photo scale . . .1:50 000 

end lap . . .60% 

side lap * . .30% 

number of strips 

number of photos per strip . . .12 

number of tie points . . .108 

gimbal angle generation ...  a., o = 3°; a = 5°, random per 

photo 

photocoordinate perturbations . . .8 gm (1 a) 

Interior Orientation Element Perturbations 

principal distance . . .50 gm (1 a), applied as bias 

principal point offsets . . .5 jim (1 a), applied as bias 

Weights for Bundle Adjustment 

photocoordinate measurements 

exposure station coordinates 

gimbal angles 

• . .as computed (see Chapter 4) 

• . .correspond to 1 / (10°)2 

Table 6.1. Photogrammetric simulation summary 

Table 6.1 summarizes the parameters of the photogrammetric simulation. 

The seven flight lines generated in the simulation were trimmed to four lines of 12 

photos per line, for a total of 48 photos. The tie point configuration used is shown 

in Figure 6.4. The small squares are tie points near the principal points in each 
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photo. The terms Ali and —Ali appearing in the figure refer to the simulated terrain 

variations; a value of 300 metres was used, but this is inconsequential in this 

context. 

• . . . • . . . 

ci ci ci ci ci ci ci ci Cl CI CI 13  

• • • • • • • -Ah 

ci ci CI U ci U U Cl ci U CI a  

• • • • • • • 

U CI ci CI CI I] CI I] ci ci ci no 

• • • • • • • 

ci 0 ci CI 0 CI ci 0 ci CI 0 00 

• . • • • • • +Esh 

Figure 6.4. Simulated tie points 

The perturbations on the photocoordinate observations (8 gm, 1 o) are 

larger than usual; other investigators typically use 3 gm. As was mentioned in 

Chapter 5, the large value was used because it has been assumed that the points 

have not been pre-targetted. Pre-targetting of the points would increase the 

precision, but can be difficult and costly. If a subset of the points were to be pre-

targetted, these points could be controlled using differential GPS observations 
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without significant additional effort, further enhancing the accuracy and reliability 

of the aerotriangulation. 

Again, note that the weights used for the gimbal angles and the tie point 

ground coordinates are relatively small. Attitude information from the INS was not 

used in the bundle adjustment. Due to the high inherent geometric strength of 

photogrammetr.ic blocks, accuracies of approximately 10 arc seconds or better are 

needed if such attitude information is to contribute to the adjustment (Schwarz et 

al., 1984). The best that can be expected of commercially-available stable-platform 

INS1s is approximately 20-30 arc seconds. It should be mentioned, however, that 

auxiliary attitude information is necessary if only a single strip is to be adjusted, 

due to the indeterminancy of the gimbal angle coin this situation. Also note that the 

gimbal angles obtained from the INS will be used to recover the orientations of the 

predetermined offset vectors between the OPS phase centre, INS reference centre, 

and camera perspective centre. Assuming the INS orientation angles are accurate 

within 1 arc minute, and assuming that the magnitude of these vectors is less than 5 

metres, uncertainties of less than 2 millimetres will result in the exposure station 

coordinates. Therefore, these errors have not been explicitly simulated. 

The aerotriangulation simulation results are summarized in Table 6.2. 

Each table entry is an average derived from five simulation runs. The values are 

rms differences between tie point coordinates obtained by aerotriangulation and 

their simulated true values. They are expressed in the local ground coordinate 

system in order Gx, Gy, Gz. The figures in parentheses in the last column are rms of 

Gz coordinate differences after the mean differences in each run have been removed, 

and are thus measures of the internal consistency of the Gz determination. Simula-

tions for the entries which are left blank in the table were not carried out; they 
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Err 

egy 0rs Positioning 
Strat 

image 
coordinates 

only 

image 
coordinates 
+ principal 
distance 

all errors 

0.49 
I  0.69 

(GPS code + - - 

2.59 
stable-platform INS) 

(0.91) 

0.45 0.45 0.47 
11  0.55 0.55 0.58 

(GPS phase + 
0.84 1.86 1.87 

strapdown INS) 
(0.85) 

Table 6.2. Photogrammetric simulation results (rms, 111) 

would not contribute additional insight into the results. 

It is apparent that of the three interior orientation elements which were 

perturbed, only the variations of the principal distance significantly affected the re-

sults. Uncertainties in the principal point offsets had negligible effects because of 

the inherent symmetry of the aerotriangulation, and because the perturbations were 

below the noise level of the photocoordinate measurements. Variations of the 

principal distance, however, do pose a significant problem. As indicated by the 

values in parentheses and by the last value in the first column, however, a good 

deal of the error is in the form of a bias. This assumes, of course, that the principal 

distance remains stable during the photography. 

In general, the simulation results meet Class "A't map accuracy standards 

for scales of 1: 50 000 or smaller, as specified by the Canadian Surveys and 

Mapping Branch (Chapman, 1986). These standards call for standard errors of 

2.33 metres in Gx and G and 2.43 metres in Gz. However, because the Gz 
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component of the simulated errors is largely a bias, these results may be adequate 

for mapping at even larger scales. For example, Class !!AIt standards for scales of 

1: 20000 call for standard errors of 0.93 metres in Gx and Gy, and 0.97 metres in 

Gz. Most applications of topographic maps require high relative accuracy; high 

absolute accuracy is less important. In practice, height biases are common in 

topographic maps. Furthermore, if the maps are maintained in a digital data base, 

such a bias can be easily corrected at a later date. Therefore, the techniques pro-

posed in this thesis are sufficient for map scales as large as 1: 20 000 for many 

applications. 

Note that Ackermann (1986) is much more optimistic about the prospects 

of photogrammetry without ground control. 
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Chapter 7 

Conclusions and Recommendations 

The simulations which were performed lead to the following conclusions: 

1. Aircraft positions with half-metre accuracies are obtainable using either of 

the strategies outlined in this thesis. 

2. Aerotriangulation simulations using these data have demonstrated that 

these positions are adequate as exclusive control for mapping at scales of 1: 50000. 

3. A height bias is present in the aerotriangulated points due to uncertainty 

in the cameras effective precalibrated principal distance. If this bias can be tolerated 

or eliminated, the results may be suitable for mapping at scales up to 1: 20000. 

The following recommendations are made: 

1. For higher aerotriangulation accuracy, some form of in-flight camera 

calibration is needed. Self calibration of the primary elements of interior orientation 

is usually not possible with vertical photography over flat terrain due to projective 

coupling. Such calibration could be made possible, however, by photographing a 

control field near the airport before and after the mapping mission, by using 

photography taken during aircraft rolling maneuvers (Brown, 1985) in addition to 
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the vertical photography, by including photography taken over terrain which has 

large height variations (Merchant, 1973), or by using ground clearance measure-

ments. Accuracy and reliability can also be enhanced by increasing side lap, by 

adding a few ground control points, or by pre-targetting some of the tie points. 

2. The fact that the major observations in the aerotriangulation in this study 

are of two distinct types - perspective centre coordinates and photocoordinate obser-

vations - suggests that variance component analysis may be applicable. Here, the a 

posteriori variance of unit weight is decomposed into components which corres-

pond to contributions from the distinct observation types. If the relative weights 

between these observation types have been entered incorrectly, variance 

components can then be used to rescale these weights (Mackenzie, 1985). 

3. For aerotriangulation in production mapping, an efficient bundle adjust-

ment program is needed. Such a program should use ideas outlined in Brown 

(1976). Furthermore, as computer power increases, the combined adjustment of 

photogrammetric and positioning data (ibid.; Anderson, 1985) becomes feasible. 

The aircraft positioning techniques described here are applicable to other 

tasks in addition to aerotriangulation, such as airborne gravimetry and laser 

profiling. Simulations are only the first step in testing the proposed methods; field 

trials must follow. Recent tests using GPS phase data (Schwarz et al., 1987) have 

verified the simulation results, and have confirmed the need for cycle-slip control. 

Aerotriangulation tests are planned. 
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Appendix 

Derivation of the Velocity Rate Equation in the Local Level Frame 

Applying equation (3.13) to the transformation from the operational 

inertial frame to the conventional terrestrial frame, and using (3.12b) 

LLv = R' CTR1. (14'j'j' 1r + lr) = R1. (1r - Ir). (A. 1) 

Differentiating (A. 1) 

LLy = LLR1. 'LL, (1r - '1CT . 1r) 

S. S 

+ LLR1. (1r - 'IT' 1r - 1ICT . 1r). (A.2) 

In substituting GMST for GAST in equation (3.5), the earth's rotation rate has been 

assumed to be constant, i.e. 

(A.3) 

Therefore, 

LLy = LLR1. ['r + (I LL, - 1j) 1r - 'r] . (A.4) 

Decomposing 'C2w  (Britting, 1971), and using (3.12b) 

+ 'I)CTJ = 'CTI - 'CTLL (A.5) 
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Thus 

Iv = R1. ['r + (1 k:TI - ' CTLL '1CT) 'r 

- (1 CTI - 'c2CTLL) 'ic7' Ir]. (A.6) 

From (3.12b) 

R1. [Jr - ('c2CThL + 2')) . Ir + + 192CTLLj • 'r]. 

(A.7) 

Applying (3.13) and decomposing 

a. a 

LLV = R1 - ['r - ('2cT1 + 21c21 .) • IRLL  (r + Ij2ILL • r) 

+ ('C21 + I7 - r] 

a. . 

LLR1. [Jr - ('≤cTu, + 2'c2 7.) • IRLL  (LLr + LLICT LL. 

+ L2CTJJ . r) + ('≤≥z + '2c') 11). Ir] 

From (3.13), equation (3.15) may be transformed as follows 

Iv = [CTRLL . (Ur + LL92CTLL • L1r)] 

a 

= r + LLfCTLL • r. 

(A.8) 

(A.9) 
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Using this result in (A.8) and substituting 'R . r for 'r 

LLV = R1. ['r - ('cTu, + 2I IcT) v 

('CTLL ± • IRLL• LL(J1,.LLr 

+ ('2c' + 'c2CTLL) 'PICT 1R r] (A. 10) 

Noting that skew-symmetric matrices transform under similarities (ibid.), as do 

products of skew-symmetric matrices, i.e. 

Jnp = JR1. lc Jj. 'R (A.11a 

Jc≥fl . ig2ji = QI(1. 1ki 1W) (jR1. ig2jj 1RJ) 

= JR1 . ic 1. ic2 1 , (A.11b) 

equation (A. 10) becomes 

LLy = LLR1. 1r - ('cru + 2''≥JcT) . LLv 

- (1-cTz1. + 2LLJcT) . LLc2ICT r 

+ ('I2Jc7' + CTLL) "2zcr LLr 

S S 

LLRJ - ('c' + 2'-"2JcT) - '-2IcT' LLK2ICT  LLr (A. 12) 

which is the relation required for the mechanization equation. 
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