1 INTRODUCTION

The relational algebra invented by Codd [10,11,12] is fundamental to the
theory and implementation of relational data bases [7]. Relational algebra is
extensively used for investigations into the structure of relational data bases
and the design of relations, particularily with respect to relational decomposition
to eliminate undesirable functional [1,2,3,10], multivalued [13], and join and
generalized dependencies [17,18]. It is also extensively used as the intermediate
target language [20] in the reduction of expressions of nonprocedural langauges
used with relational data bases, such as SQL [8, 14], originally developed at
IBM, and QUEL [19], the non procedural language of INGRES.

Relational algebra is ideal as the target language for reduction of SQL
expressions, and common SQL expressions can readily be reduced to quite simple
algebra expressions [14,21]. SQL is easily the most important non procedural
relational language, and has been implemented by many vendors. A standard version
is being developed by ANSI. However, SQL has its roots in conventional predicate
calculus [11] which permits only the existential and universal quantifiers. These
basic quantifiers are necessary and sufficient in predicate calculus, and although
SQL does not use quantifiers as such, it has structures that correspond to
existentially and universally quantified sets of tuples [14,20,22] Thus SQL is
essentially a primitive non procedural language. This primitive nature of SQL
is advantageous when it comes to reduction of common SQL expressions [14,23],
but has the disadvantage of frequently requiring highly contrived SQL expressions,
which are difficult to reduce to relational algebra, for certain types of
what are otherwise quite simple requests. Such requests involve any of the large
number of natural quantifiers [14, 16] available to the user of natural language.

An example will illustrate this important point. For example, if we take
the database DEPT[DEPT#, TYPE], EMP[EMP#, DEPT#, SALARY], the simple request:

"Find each marketing (TYPE) department, in which most employees earn

more than $20,000"

requires the SQL expression:
SELECT DEPT# FROM DEPT
WHERE TYPE = 'MARKETING'
AND (SELECT COUNT (*) FROM EMP
WHERE SALARY > 20,000

AND DEPT.DEPT# = EMP.EMP#)
>

(SELECT COUNT (*) FROM DEPT

WHERE SALARY <= 20,000

AND DEPT.DEPT# = EMP.EMP#)
which few, if any, current SQL implementations can reduce. The problem in this
example is the implicit natural quantifier "for most", which is not allowed
in SQL. The SQL user must instead specify that the count of associated employees
earning more than $20,000 exceeds the count of those not earning more than $20,000.
Thus, although the SQL is correct, it is also contrived.

In order to eliminate this difficulty, the author has researched and
developed a class of natural quantifier non procedural data base languages, which
permit the application of natural quantifiers to associations between relations
in a natural manner - at least in the author's opinion. One of these languages,
called SQL/N [4,5], has served as a working tool for research and development,
and has the advantage of being upward compatible with SQL. SQL/N is not the
subject of this paper, although it explains the motivation; we also need to use
SQL/N, in a minimal context, to illustrate the use of our proposed extension to
relational algebra.

Having defined SQL/N, the next problem is also one of software engineering,
namely implementation techniques.

There are two ways to implement a natural quantifier (NQ) language that
is upward compatible with SQL. One way is to treat the NQ language as a front

end, and develop a reduction system for converting NQ expressions to SQL expressions.

-3 -

The problem with this is that the SQL expression generated, when natural quantifiers
are used in the NQ expression, is likely to be complex, along the lines of the
SQL expression above, and will in turn require a further reduction to relational
algebra that will be either time-consuming, or not possible with existing SQL
implementations. In other words, this approach is likely to yield either a very
slow reduction system, or not work. In addition, it is not interesting.

The other approach is to develop a reduction system capable of reducing
NQ expressions directly to relational algebra expressions. It is work with this
second method that has led us to propose an extension to relational algebra that
greatly simplifies the reduction process.
2 A GROUP SELECTION COMMAND FOR RELATIONAL ALGEBRA

We have stated that simple natural quantifier request often require complex
SQL expressions that current SQL implementations cannot reduce. Unfortunately, it
is also the case that simple natural quantifer requests often require quite
complex relational algebra expressions and procedures, and sometimes such
algebra procedures cannot be found at all. As an example, consider the request
and database of the previous section. We use the abreviations D[D#, T], E[E#, D#, s]
for the data base.

To construct the algebra procedure, the first step would be to eliminate
from E, those employees in departments that are not in marketing (abreviated to

T = 1). The required version of E, or E,, is given by:

17

E [(§ _ 1(D)) * E]

17 ﬂE#,D#,s T
Here § denotes the algebraic selection operation.[10], and fl the projection
operation [10].

The next step 1is to extract from E,, the relation E for employees that earn

more than $20,000 and the relation En for employees that do not. These relations

are given by:

[s (Rl)]

m = TE#,D# S9S > 20,000

[Rl] - E

n ﬂE#,D# m

where we have eliminated the S attribute from futher consideration, as it is no

longer useful. Instances of Em and En could be:

E# D# E# D#
el di e3 dl
e4 dl e5 d2
eb d2 e’ d2
Em En

O0f the two departments shown, dl has two employees making more than $20,000 and
only one that is not, the converse being true for d2. For these instances, dl is
the answer the request.

Unfortunately, there is no relational algebraic operation that can be carried
out on relations Em and En that will give each D# value such that the number of
tuples in En‘with such a D# value exceeds the number in En' In contrast, there
is no problem with devising algorithms for this purpose, when the two relations
Em and En are processed as sequential files. The problem with the relational algebra
as it is conventionally constituted is that we have no method of specifying
a quantity of tuples within a relation. It is precisely a quantity of tuples
within a relation that is specified in an SQL/N expression containing a natural
quantifier. For example, for most means '"more than half", and so on.

An extension to relational algebra that permitted quantities of tuples
to be specified would clearly be useful. The question is whether the extension
should be a low level one, involving a COUNT function, along the lines of that
used in SQL [8, 14], a higher level one involving the natural quantifiers. Because
our motivation is the efficient reduction of NQ expressions, such as SQL/N
expressions, we favor the NQ approach to an extension. Our extension proposal

merely involves introduction of a single new command, called a group-select

operation.

The semantics of the parameters of the group-select operation are:
Operation: Group-select (q, c, r, a)
q : specification of number of tuples satisfying a condition, that

is, any quantifier.

c: the logical condition to be satisfied by q tuples.
T: the relation from which groups of tuples are being extracted.
a: the attribute in r whose value defines a group of tuples being

tested for extraction.
In other words, the operation partitions a relation according to the values of a
given attribute a, and extracts each entire block of tuples (from the partition)
for which a specified number of tuples (q) satisfy a condition (c).
We can immediately apply this command to the relation El’ in order to
complete the retrieval left unfinished above. The answer to the request is
the set of D# attribute values in the relation obtained by:

group-select(for most, (S 20,000), E Di#)

10
The semantics are:
select each group of tuples from E1 with the same D# value, provided that
for most tuples of the group, S ? 20,000.
Thus the quantifier is for most, the condition that the specified quantity of
tuples must meet is (S > 20,000), the relation is E1 and the attribute used for
grouping the tuples is D#. These four parameters are necessary and sufficient.
As far as a suitable algebra syntax is concerned, we suggest the syntax
shown below in the complete algebraic procedure for carrying out the request
from the first section. The group-select operation has the symbol [.

R A l(D)) * E]

1= "es o5t OB

Ry = Low/2)0s 20,0001 1) ps

Ry = TID#(RZ)

A complete and consistent notation for the natural quantifiers has also
been developed. The universal quantifier for all is denoted by either the conventional
¥ or our 3(V¥). For all but 1 becomes 3(¥ - 1), and for most 3(?¥/2). The existential
quantifer can be denoted by either the conventional Jor our &) or evenzdorl).
A list of the symbols for the more common natural quantifers is given in the
appendix to this paper.
3 REDUCTION OF SQL/N EXPRESSIONS

It is not our purpose to report on a complete reduction algorithm for SQL/N
in this paper. SQL/N permits the application of natural quantifiers to every
kind of association [5,6,9] that can occur in a relational database, whether
cyclic or non cyclic, primitive or non primitive, composite or non composite
[6], and each type of assocaition requires unique reduction techniques. But to
demonstrate the utility of this modest extension of relational algebra, we can
give the reduction expression for a general SQL/N expression involving the simplest
and most common association between the tuples of two relations, namely the common
or primitive one-to-many association. This is the association between DEPT and
EMP in the example from the fist section.

Assume relations A(é,C), B(E, G, F), with primary key attributes underlined,
and involved in a one-to-many association, such that for one A tuple there may
be zero or more associated B tuples, and let the rule for primitive association
be that the A candidate key attribute A be drawn on the same domain as the B
attribute G, and that A and G attribute values be equal. We call this rule W,
and assume it specified in the relational schema. (W can also be called a
coincidental mode of association [5].)

The general SQL/N expression for retrieval of A tuples depending on A
attribute values and associated B tuples is:

SELECT * FROM A
WHERE A-condition AND quantifier W-ASSOCIATED B (B-condition)

Here A-condition is a logical expression, compound or atomic, involving the

attributes of A, and B-condition is a logical expression for the attributes of B.
Readers may be surprised at the simplicity of this general expression, but should
not be misled. The expression is also powerful. The simplicity arises from the
fact that retrievals of the same semantic class in English always give rise to
SQL/N expression of the same syntactic class . [5], which is not the case with SQL.
For example, taking the data base and request from the first section, the SQL/N
expression gives us an instance of the general expression above:
SELECT * FROM DEPT
WHERE TYPE = 1 AND FOR MOST W-ASSOCIATED EMP (SALARY > 20,000)
We had the corresponding SQL expression in the first section. As a second example,
suppose that we have the request:
" Retrieve the DEPT records for departments in engineering in which
all but two employees earn more than $30,000'".
The SQL expression is another instance of the general expression above:
SELECT * FROM DEPT
WHERE TYPE = 3 AND FOR ALL BUT 2 W-ASSOCIATED EMP (SALARY > 30,000)
or equivalently:
SELECT * FROM DEPT
WHERE TYPE = 3 AND FOR EXACTLY 2 W-ASSOCIATED EMP (SALARY < = 30,000)
Here the SQL expression has a different structure from the previous SQL expression:
SELECT * FROM DEPT
WHERE TYPE = 3 AND 2 = (SELECT COUNT(*) FROM EMP
WHERE SALARY <= 30,000
AND DEPT.DEPT# = EMP.DEPT#)
Many current SQL systems would probably not be able to reduce this expression
either.
The general SQL/N expression given above always reduces to the following

relational algebra procedure containing a group-select operation:

Rl = (§A—condition(A)) * B

2 = “A,C[rkquantifieﬁ[B—condition](Rl)G]

In the case of the second retrieval above, the SQL/N expression would thus
reduce to:

R

1 (§T=3(D)) * E

Ro = Toe,1l T v - 20 > 30,0001 F)py]

Readers should evaluate it and determine that it is correct, and for comparison
purposes attempt a reduction of the corresponding SQL expression - without

the group-select operation.

In the setting up these algebra expressions the reduction system would
inspect the W specification to determine the join attributes for the join in the
first expression. In the general case these are the attributes A and G. The
reduction system would also inspect W to determine the tuple grouping attribute G
for the group select operation in the second expression. The specification in

the schema for W simply states that an A and B tuple are W-associated iff

r

they have equal A and G values (a common domain being assumed). Assuming T, Tp

to be A and B tuples, a typical W specification in the database schema
would be-equivalent to:

VrAVrB[(rA.A = rB.G) <{=> W(rA.A, rB.B)]

for the primitive one-to-many association we are assuming. For other types of
association the schema W specification would be different [5].
4 PERFORMING THE GROUP-SELECT OPERATION

It can be seen that, for the primitive one-to-many association, the
reduction of a very large and important class of SQL/N expressions becomes
trivially simple when a group-select operation is available in relational algebra.
An obvious question is the efficiency with which a group-select operation can

be carried out.

-9 -

Unfortunately, the answer is that the operation cannot be carried
out efficiently with conventional hardware. However, file processing algorithms
for carrying out the operation are trivially easy to construct. They are just
all expensive to execute. Without secondary indexes, the basic method of
carrying out the group-select operation essentially involves sequential processing
of the file for the relation, counting records that meet conditions, and the number
of records in a group. This is clearly expensive, especially when the file is
large.

Note, however, that the expense of carrying out the group-select operation
is not something inherent in the natural quantifier approach. Suppose that we
do not use an SQL/-like language, but use SQL instead. If natural quantifiers
are involved in the retrieval request, the COUNT function has to be used in some
way in the SQL expression, thus also requiring that tuples be counted, often by
sequential file processing. The problem is inherent in retrievals involving
natural quantifiers, and not in the language used to express them. This ultimate
need for counting of tuples, and resulting inefficiency, may well be the reason
for the current commercial inertia with respect to natural quantifier facilities
in data base langauges. Natural quantifer languages, like SQL/N, make natural
quantifier requests trivially easy to formulate, but result in retrieval routines
that are inherently costly, the major cost involving the performance of the
group-select operation, or its equivalent.

The method of secondary indexes can be employed to much improve the
efficiency of the group-select operation only where updates are limited.
The method involves creating a secondary index on the tuple grouping attribute G,
as well as on any attributes involved in the quantifier conditions, such
as the F attribute in the examples. (F corresponds to SALARY). For any given
G value, the primary keys of the group of B tuples can be obtained from the G
secondary index by direct access. Using direct access with the F value in the

B-condition (for example F = kZ) to the F secondary index, we obtain the B

- 10 -

primary keys for tuples where F = k). Intersecting these keys with those ontained
from the G secondary index gives the primary keys of the tuples in the group with
the given G value that meet the quantifier condition. From this the system can
easily determine if the quantity of tuples is sufficient - for example, if there
are at least 3, or if there are a majority, that meet the condition B-condition.

Any method of improving efficiency based on secondary keys is unsatisfactory
in general because of the updating cost, so that a better method must be found.
The only other alternative is associative memory with a data base machine, and
research in this direction is currently under way.

5 CONCLUDING REMARKS

An efficient method of reducing natural quantifer language expressions
has been found, and requires only that relational algebra be extended to permit
a group select operation, which extracts from a relation each group of tuples

of tuples
in which a specified quantity, specified using a natural quantifier, satisfies
A
specified conditions. Without this operation, it is very difficult to reduce NQ
expressions to relational algebra expressions, often for the reason that no
relational alebra expression is possible. The general SQL/N expression given
in this paper, and reduced to a general algebra procedure, is for a particular
class of natural quantifier expressions, although probably the most common class.
Because of the wide scope of SQL/N and the fact that it permits application
of natural quantifiers to any of a large number of asscciation types [6],
there are other types of reductions. With all of the asscociations currently
known, reduction to relational algebra expressions containing group-select
operations has proven quite straightforward.

A remaining problem is an efficient method of carrying out group select
operation. It seems likely that the only satisfactory solution will involve
associative memory and data base machines. In the meantime, it is a simple
matter to write a sequential file processing program that will carry out
a group-select operation with any of the large number of natural quantifiers.

The problem is that such a program will be inherently expensive to execute.

11.
12.
13.
14.
15.

16.

17.

18.

19.

Appendix 1.

FOR
FOR

FOR
FOR

FOR
FOR

FOR

FOR

FOR

FOR
FOR

FOR

FOR

FOR

. FOR

FOR

FOR

FOR

FOR

FOR

FOR
FOR

FOR
FOR

FOR
FOR

FOR

n, FOR THE n,
EXACTLY n

AT LEAST n,
n OR MORE

AT MOST n,
n OR LESS

AT LEAST 1, FOR ONE OR MORE,

SOME

BETWEEN n AND m

ALL, FOR EACH,

ALL IF ANY, FOR EACH IF ANY

ALL BUT n

ONE AND ALL

NO

SOME BUT NOT ALL

SOME BUT NOT n

SOME BUT NOT MORE THAN n
SOME BUT LESS THAN n
MOST, FOR A MAJORITY OF
A MINORITY OF

x PERCENT OF,
EXACTLY x PERCENT OF

AT MOST x PERCENT OF
x PERCENT OR LESS OF

AT LEAST x PERCENT OF
x PERCENT OR MORE OF

BETWEEN x AND y PERCENT OF

Common natural quantifiers

- 11 -

4(n

4(>n)

4 (<n)
4(3),3,4(1)

4 (0Gn Acm)
:l(V)J 4

j(\/-n)

4 (>1AY),43nY)
4(0)

4G1A7Y) @AY
(1A ~n) 4@ Ah)
d(1Asn)4(3A<N)
dELA<n) 4@ A <n)
10 Vv/2)

d(<v/2)

4 (xf100)

k (é X/loo)

_—_l(>/ X [160)

4 (> X/loo A < \/'0")

- 12 -

REFERENCES

1.

10.

11.

12.

13.

Aho, A. V., Beeri, C., and Ullman, J.D. The theory of joins in relational
databases, ACM Trans. Database Syst., 4(3), 1979, 317-314.

Armstrong, W.W. Dependency structures of database relationships, Proc. IFIP
74, North Holland, Amsterdam, 1974, 580-583.

Bernstein, C.W., and Chiu, C.W. Using semijoins to solve relational queries,
J. ACM, 28(1), 1981, 25-40.

Bradley, J. SQL/N and attribute/relation associations implicit in functional

dependencies, Int. J. Computer & Information Science, 12(2), 1983

. Bradley, J. SQL/N and modes of association in relational databases, Research

Report No. 84/143/5, Univ. of Calgary, Calgary, Alberta, Canada, 1984, 39 pages.
Bradley, J. A fundamental classification of assocaitions in relational databases,
Research Report No. 85/204/17, Univ. of Calgary, Alberta, Canada, 1985, 32 pages.
Chamberlin, D.D. Relational database management systems. Comput. Surv.,
8(1), 1976, 43-66.
Chamberlin, D.D., et al. SEQUEL 2: A unified approach to data definition,
manipulation and control, IBM J. Res. & Dev., 20(6), 1976, 560-575.
Chen, P.P., The entity-relationship model: Towards a unified view of data,
ACM Trans. Database Syst. 1(1), 1976, 9-36.
Codd, E.F. Further normalization of the database relational model, In
"Database Systems', Courant Computer Science Symposium, 6, R. Rustin,
Ed., Prentice-Hall, Englewood Cliffs, N.J., 1971, 33-74.
Codd, E.F. Relational completeness of database sub-languages, In '""Database
Systems'", Computer Science Symposium 6, R. Rustin, Ed., Prentice-Hall, Englewood
Cliffs, N.J., 1971, 65-98.
Codd, E.F. Relational database: A practical design for productivity, CACM,
25(2), 1982, 109-117.
Fagin, R. Multivalued dependencies and a new normal form for relational

databases, ACM Trans. Database Syst., 2(3), 1977, 262-278.

14, Kim, W. On optimizing an SQL-like nested query, ACM Trans. Database Syst.,

16.

17.

18.

19.

20.

21.

22.

23.

- 13 -

7(3), 1982, 443-469.
Merret, T.H. QT logic: Simpler and more expressive than predicate calculus,
Information processing letters, 7(6), 1978, 251-255.
Sadri, F, Ullman, J. D.. Templete dependencies: a large class of dependencies
in relational data bases and its complete axiomatization. J. ACM 29(2),
363-372, 1972.
Sagiv, Y. and Walecka, S.F. Subset dependencies and a completeness result
for a subclass of embedded multivalued dependencies, J. ACM 29(1), 1982,
363-372.
Stonebraker, M., Wong, E., Kreps, P., and Held, G. The design and implementation
of INGRES, ACM Trans. Database Syst., 1(3), 1976, 189-222.
Ullman, J.D., Principles of Database Systems, Computer Science Press,
Rockville, MD, 1983.
Wald, J.A., and Sorenson, P.G. Resolving the query inference problem using
Steiner trees, ACM Trans. Database Syst. 9(3), 348-368, 1984.
Weiderhold, G. Database Design, McGraw-Hill, New York, 1983.
Welty, D. and Stemple, D.W. Human factors comparison of procedural and
non procedural query languages, ACM Trans. Database Syst., 6(4), 1981,

626-649 .

